AD=AL10 861

UNCLASSIFIED

STANFORD UNIV CA COMPUTER SYSTEMS LAS
DIRECTLY EXECUTED LAMBUASES. (U)
JAN B2 M FL

nare
FuNEn

F/8 9/2
nnno—u-o-ozos

- e T

ADA110861

DTIT FLE €ORY

ST p——pr e e

e R el a X e b ———

L[VEW --l'—‘—?ﬁ;‘-/ff 77. 02—5 C

| &

DIRECTLY EXECUTED LANGUAGES -

Final Report 1
Prepared for
Department of the Army

U.S. Army Research Office
Research Triangle Park, NC

Contract No. DAAG29-78-G-0205

September 25, 1978 - September 24, 1981

by

Michael J. Flynn
Computer Systems Laboratory
Department of Electrical Engineering
Stanford University
Stanford,CA 94305

The views and/or findings contained in this report are those of the authors and should not be construed as an
official Dcpartment of the Army position, policy, or decision, ualess so designated by other official
documentation. :

. UNCLASSIFLED
SECURITY CLASSIFICATION OF THIS PAGE (Whon Date Entered)
READ INSTRUCTIONS
REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM
' t. REPORY NUMBER / 2. GOVY ACCESSION NO{ 3. RECIPIENTY'S CATALOG NUMBER

4 TITLE (and Subtitle) 1] TVPE:—F REPORT & PERIOD COVERED
3 Final Report
b DIRECTLY EXECUTED LANGUAGES

EXECUTED 25 Sept. 1978 - 24 Sept.1981
6 PERFORMING ORG HEPORT NUMBER

r

7. AUTHOR(s) 8 CONTRACT OR GRANY NUMBER(s)

Michael J. Flynn DAAG29-78-G-0205

i

9. PERFORMING ORGANIZATION NAME AND ADDRESS 1. PROGRAM ELEMENT, PROJECT, TASK

AREA & WOR T
Computer Systems Laboratory K UNIT NUMBERS

Department of Electrical Engineering
Stanford University, Stanford, CA 94305

B 11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

f U. S. Army Research Office January 1982

] Post Nffice Box 12211 13. NUMBER OF PAGES

] Research Triangle Park, NC 27709

i T4. MONITORING AGENCY NAME & ADORESS(I! different from Controlling Ollice) 15. SECURITY CL ASS. (of thie report)

{ Unzlassified

1Sa. DECLASSIFICATION DOWNGRADING
SCHEDULE

3 18. DISTRIBUTION STATEMENT (of thie Report)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abatract entered in Block 20, It di{ferent from Repurt)

g TA

7 18. SUPPLEMENTARY NOTES

K {‘4 The view, opinions, and/or findings contained in this report are those of the
‘ i author(s) and_should not.be construed as an official Department of the Arnmy
position, policy, or decision, unless so designated by other documentation.

19. KEY WORDS (Continue on reverse sids ([necesaary and iaentily Oy DIOCK number)

-

i

20, \W?‘IACT (Coatfme e reverse side 1f rreceesary sad tdentify by block number) i

The research reviewed in this study specifically covered 3 issues: 3

1. fhe design of "ideal execution architectures" suitable for a range of
source languages and host machine environments,’
2. Analysis of the relation between source language program constructs
' and execution architectures:.
o 3. Methods of implementing these "ideal" instruction sets.
\

\

F ORM
DD | an 7y W73 €OITION OF 1 HOV 6515 OBSOLETE

UNCLASSIFIED

CECTIRITY (F ARG EIFAT AR OF TIS BALE rWean Natn Frotarad

DIRECTLY EXECUTED LANGUAGES

Abstract

The research reviewed in this study specifically covered 3 issues:

1. The design of "idcal exccution architectures™ suitable for a range of source languages and host
machine environments.

2. Analysis of the relation between source language program constructs and execution architectures.

3. Methods of implementing thesc “ideal™ instruction scts.

Acco""hn Fﬂr '
A e d

/ Py _—
\ Vi - .-t
]
Avn Ty Yooes
b —
irsep
Dist c.al

T P—

Introduction

The basic objective of this rescarch is to find improved computer architectures which will allow more
concise representations of programs, faster execution of programs and morc accurate program

representations.

In our past rescarch, we have demonstrated techniques to afford significant improvement in spatial

requirements to represent programs and in exccution time to interpret programs. ‘These techniques are based
upon creating computer architectures which are tailored to a single high level language in which the
architecture represents only those objeets explicitly mentioned in the high level language (a 1:1 language to

architecture mapping).

Techniques have been devcloped, such as accessing values by contour map and use of
transformationally complete scts of formats, which allow the 1:1 mapping. The minimization of objects

reduces both program size and improves exccution time,

DEL Theory

We have completed at least a preliminary version of a broad bascd theory on the synthesis of directly
exccuted languages. The kernel of this is a measure of ideal program representation. In actuality, this is a
constructive measurc of program space and interpretation that one can usc for exploitation of alternativc
representations. This measure, while not necessarily achievable, intuitively represents a clearly superior

program representation that is readily definable and easy to use.

We call these measures the canonic interpretive measures (CI measures) of a program. The space
mecasure is the number of bits of program size, and the time measure is the number of instruction, data,

mcemory and other actions in the program space.

The CI mcasure usually indicates a full order of magnitude less space than the System 360
representation or other familiar traditional machine representations. The CI measurcs play an important role
in our development of a theory of DEL synthesis, since we cssentially proceed in a step-by-step fashion to
achicve program mecasurcs which arc as close as possible to them. Except for frequency information, the Cl
measures arc oricnted toward an information theoretic minimum program representation. In many ways our
DEL synthesis theory achicves exactly the CI measures. However, in order to achicve the transformational

completeness property, we have found that 22 formats are required. This adds effectively about 5 bits to each

instruction unit or statement (log2 of 22). In most other ways, however, Cl measures are achicved.

-

A . A et evey - = WS AN T ARt A M . RO S+ i -9 Al e e : M‘

Ideal Image Machines and their Hosts

In trying to definc an idecal image machine, onc must first recognize that the image machine architect is
limited by the high-lcvel languages that originally represent the program. If these are poorly formed,
incfficient, or erroncous, there is no way that the architecture, the interpreter, or even the compiler can restore
the initial deficiencics. The best the architect can do is to retain the information present in the high-level
language representation and to provide this information in a form as concisc and uscful as the interpreter and

the host require. Moreover, this interpretive hierarchy occurs at many levels in the system.

Thus, here we will derive certain aspects of HI.L. program representation which ultimately determine
3 (and limit) the space-time product of image program interpretations. While we will come up with a number i
of measures of source program beha_vior, we must remember that these are measures and are not equally
! weighted. Their importance depends 2 great deal on the type of host machine doing the interpretation. These
i‘” quantitative mecasures are expressed in architectural terms, so that for a particular machine rcprcscntatién, one
4 could specify an idcal size and intcrpretation time for a source program, for example, and compare those ideal
measures to the achicved size and interpretation time. Of course, specifying an idcal machine measure is a

formidable task in itself,

Before proceeding we need to state some assumptions:

e Measures arc independent of technology. We arc interested in comparing logical representations
and architectures, not in comparing different machine technologies.

e The original HLL source program is a good rcpresentation of the original problem; i.e.,
optimization is source to source. The original program is aready optimized to the degree desired.

e Mecasures focus on two T ccts of program representation: space to represent the image program
and time to interpret tha IFprcscntation. Simplicity in generating the representation is an implied
necessity.

o The measures consist of correspondence, size, activity, stability and distance. The first two
dctermine static program size. The last three affect in varying degrees the time it takes to interpret
a program,

Canonic Measures of Interpretation

1. Correspondence. An idcal representation minimizes the number of objects to be interpreted without
disturbing transparency with respect to the HLI. source. For each semantic action in the HLI. source

(addition, subtraction, ctc.), there is one instruction in the ideal representation (one CI instruction); for each

unique name mentioned in the HLL statement, there is an explicit object identification in the ideal

represcnatation.

2. Size. All obiccts of the same class can be coded with variable-width identifiers appropriate to the

. language environment as follows:

e All variables are identified by [(log2 of the number of variables in the enviropment)] bits,

e operations atc identified by [(log2 of thc number of distinct actions specified in the
environment) bits, and

Ty

e labels are identified by [(log2 of the number of distinct labels specified in the environment)] bits,
where the environment is usually taken to be a single subroutine or procedure.

Idcally, the size measure requires that coding be as concise as possible, i.c., using [(log2 of the number
i of objects in the environment)] bits. There are two aspects to coding. First, the objects should be of like kind.
i Thus, labels, operators, and values which can be easily distinguished should be treated and coded separately.
Sccond, coding always takes place in the context of an environment. The statement itself can be an
environment, although measures of time (such as measure 4, below) which count the number of.environments

interpreted will increase if such a small coding environment is choscn. This is a trade-off between two

mcasures—space and time. The scope of the definitions used in the HLL usually defines the
environment—that is, the environment cncompasses names or objects of the same scope of definition, e.g.,

subroutines as follows:

3. Activity. This measures the number of objects interpreted. Usually, there are two separate types of

activity—instructions (operations) interpreted and variables accessed from image storage:

o let A i be the number of instructions interpreted. Then, ideally, 4; is equal to the number of
semantic actions specified (dynamically) in the HLL, source.

e Lct 4, be the number of data references required. Ideally, A d is no more than the dynamic
number of variables encountered.

4. Stability. This measurcs the number of environments encountercd and other disruptions to the
ordinary "in-linc" proccssing of objects.
e lct S‘_ be the total number of environments encountered.

® letS be the number of computed (interpreted) objects, ¢.g., array clements,

e Let S, be the number of control actions (branches dynamically interpreted).

This measurc is an cxtension of the activity measure in that it measures the more global types of activity,
the number of environments encountered, the number of objects whose location has to be computed, and,

finally, the number of branches or procedural statements encountered. Ideally, there is one interpretable

action per HLL action,

5. Distance. This measures the “initialization” required in a program. The ultimate host machine

might have an infinite cache, robust sup;ion of array accessing, and an unlimited branch target capture table.

But even such a machine would be limited by the following measures:

e Lot De be the number of unique environments entered.
e let Dc be the number of unique objects requiring interpreted definition.

e Let D, be the number of unique branch targets.

The distance mecasure represents the total number of unique environments and unique branches
encountered. It represents the distance the program has transversed, i.c., the number of localities it has

visited. .

An Example and a Comparison

Consider the Pascal example shown in Table 1; hardshuffle—a program for shuffling vector elements

the hard way—consists of shuffle procedure swapvec and the main program.

Swapvec interchanges the elements of two vectors from the first element up to the paramecter limit.
Hardshuffle—the main program—creates two vectors, identity consisting of the integers and sum which
consists of the sum of the integers. For a variable limit ranging from /7 to 10, swapvec is called to interchange
the clements of the two created vectors. Finally, the values of the vectors are written out. Table 1 shows the
derivation of the Cl measures from the original hardshuffle source. The number of instructions, static
(column a) and dynamic (j) correspund to the number of source semantic actions held in memory and
cncountercd during exccution. The column labelled "Data References” (k) is the dynamic count of activity
(both local and main memory) for data objects. The number of syllables interpreted (o) corresponds to the
count of the number of objects (variables, operations and labels) encountered in each instruction times its
dynamic weight. The number of branches encountered (1) is a dynamic count of branch instructions, Sp
while the distance Db measures the number of unique branch targets encountered. Computed data items (g)
refers in this example to array clements. The dynamic sum of (g) is Sc (p) while the number of unique
occurrences of such items is D_(q). Of course there are two cnvironments in this little example (D) and since

the main program calls the subroutine ten dmes we have a total of 11 dynamic environments (Se).

In computing the static CI measures of this program we first must identify the distinct operands and
opcerators in cach of the environments. For swapvec the operands arc al, a2, limit, index, temp, a container for
the final value, and the constant /, i.c. 7 unique operands. The opcrators are for, array subscript, end for, and

return—4 uniquc operators. There are also two labels. Each line of the body of swapvec basically represents a

single CI instruction; an exception is

e .

allindex] : = a2|index).

A scparate instruction is required to compute a2[index] and retricve its value. This valuc will be used in the

next Cl instruction which actually stores the value into al[index). 1n computing the number of operands per
Cl inst action it is merely necessary to follow the semantics of the statement, thus:
for index ;= Ito limit do

has an index operand, two opcrands for the range (/ and limir) and an operand for the final value. This
particular statement also includes an opcode and a label (for use if limit < 1). Most other statcments in this
routine inctude a single ¢~ .iuiner for each operand mentioned in the statement. Static program size for
swapvec can be computed to be three bits per operand X 16 opcerands + 2 bits per operator X 7 operators +
1bit per label X 2 labels, totaling 64 bits.

Similarly with the main program the unique operands are i, the operand for the final value, identity,
sum, swapvec, and the constants /, 2 and /0, for a total of 8 unique operands. The unique operators aré array
subscript, for, —, +, end for, call, write, and writeln, for a total of 8 unique opcrators. There are also 6 labe!-
in the main program. Static size can be computed as 3 bits per operand X 45 operands + 3 bits per operator
X 20 operators + 3 bits per label X 6 labels, the total being 213 bits.

The hardshuffle example illustrates the rather mechanical nature of deriving the CI parameters. First,
the program is assumed to be optimized—although hardshuffle certainly isn't . Thus, the CI measures can be
derived on a line by linc basis. Each HLL statement will take at least one CI instruction. If the statement
involves a computed data item (an indexed array clement) an extra instruction sometimes is required.
However, most HLL statements in the main program have one CI instruction in their exccution architecture.
Exceptions include a statement with two subscripted variables (line 4), the write instructions (lincs 7 and 18)
that use subscripted variables, and the statement computing sumfi] (linc 13) which requires 4 instructions (—,
+ and subscripting). In computing operands, usually the count is simply the number of explicit variables
mentioned in the statement. E.g. on line 2 we have: index, i and limit. Occasionally the semantics of an
operation requircs a hidden operand; e.g. (line 6) the end of a for requires a final value operand. The
statement on line 3 has but one instruction while line 4 required two instructions. In column (a) we
enumerate the number of instructions per statcment, and column (b) cnumerates the number of associated
opcrands per statement. Labels are not tabulated explicitly but the sum of column (a) plus column (b) p]ﬁs
implied labels cquals the number of syllables, column (e), for that line. Thus on line 2, we sce a single
instruction with three associated operands (index, i, and limif). There is an implicd label; thus there are five
syllables to be interpreted for instruction exccution. On line 4 it is assumed that onc instruction computes the
location of the indicated source operand and fetches it. The second instruction computes the location of the

sink operand and stores the value of the source operand. Thus the two instructions

9TIINYSPIBH 103 310 ay3 BurAyaag T AIQEY

NMALAY PaTIdmy 203 duo pue [Y8D DoAdems 103 auo {yod 103 *IIsuUT duo
.

0 0 14 0 o 1 Y 1 0 0 o T z 0 o0 o0 1 i (¥9T33n4spawyy) pul TZ
0 0 0t 0 0 ot (11 ot T 0 0 1 € 0 0 T 1 (¥2034) pua (174
0 (] (1)4 o o0 o 0 (1) ()3 o o0 0 T 0 o0 o0 T uraiyas 61
or o1 07y 0 =T 0O 0z o0z ot 6 1t o % 0 T z 2 t({¥]uns)a3zan 81
0T ot g 0 0T O 0z oz O 6 T o % 0 I ¢ T £([¥)43r3uepy)aazan L1
0 0 S 0 0 T € 1 0T 6 0 T S 0 0 € 1 uplag oQ @Y 0L T =: F 3031 9T
+ H ¢ ¢ -l
0 v %t o0 o wﬁ. mmm 12 WH 0o o 4 m+n 0] L € (¥ ‘mns ‘£373uapT)daadens oq ¢T oL T ¥ 3038 T
0 0 iz 0 o 6 6 6 6 0 0 I € 0 o0 T tpug ot
6 St 06 6 6 0 S 9€ 6 0 z o0 o T T 9 v T4 [T - T)uns =: []uns €1
6 6 9¢ 6 0 0 L 6 6 L 0 Y T 0 e I ¢ =: [¥)43FauepT A s
< 0 0 1 € T T 0 0 T S 0 4] [§ uy8ag og ¢T O Z = T 303 11
T T % < 0 0 € T 1 0 1 0 9 1 (o] [§ Y =: [Tjuns o1
1 1 ki 1 0 0 € 1 1 0 1 0 Y T 0 € I ‘T =: [T)L3F309PT ¢
0 0 0 0 0 0 T 0 1 1 0 0 0 0 0 0 90 (¥@733nyspaeyy) urdag g
0 0 [¢24 0 0 ()4 T (129 (02 0 0 T 4 0 0 o I $(y93adensy) puz [
Q 0 $9T 0 [119 39 19 (19 0 0 1 € 0 0 1 1 (¥303¢) puz - 9
0 S 02T SS O 0 9T ¢S 11 6 1T o0 v 1 0 € 1 . dmd3 =: {xopuy]ze S
s o1t 0EE S SS O 0Zz OIT S§ 6 z o 9 T T % T {[xepur]ze = : [xopuz]Te v
s§ s§ 0ZZ 0 S§ O $9T <€ 11 6o T o % o0 T € 1 {{xepur]ie =: duwa €
0 0S 0 0 (29 [+19 [0} 0T 0 0 T S 0 0 " € 1 uy8eg og ITWIT O1 T =: Xopujy 303 I
0] 0 0 0 0 0 0 ot T o 0 0 0 0 o 0 uy8e
697=2 86T1=3. 0€T=2 6€TxT 8OT=F 0£8=F SEY=1 _ o . oaq o » £Z IWT 0 ¥ nouw.—
$x3 FX2 IXP FXD TXJ IXqQ xe zg 2 839 & < oo @ =2 £302833uy ¢duay
) o) 3 7 g8 ®mO o °E & £8 8§ £ w8 a8 & &
- 8 . < 8 28 o8 2 B A g 0) on loA &8 9~ $3dLIxapuy xepuy aey
a3 B & gf &8 5 aR § g g g MNTS R &
e 4 o e i 5 & 2 U 8 g8 w ® = o r $(3dLIxapuy ITWIT Awp £30303A izZw ‘Iw 2w))doadeas ainpadolg
=3 o m ~ ~ ﬂoq % W _04 |l m m__o 73 ~ @ ~ ~ \m mr
2] a. o 3) " o 54 g o) m ~ ~ =
2 a = T S g 8 & gy L & 2 F @
" © ~ e 2 T tadlaxapuy :¥
3 2 A s 2 2~ 7 O
3 jd -~ -~ 2 o ~ $30399A :umg ‘A£373UPY awp
1]
LA m m. \ $1a823uy Jo [9dA3xepur] ABIIV = 203794
o® s 2 e $91°°T = adlaxapuy 8dS}
iy o
_ - ——— R _ {———— 3usmazels zad ejunod IIV

. P o g - e

w
m
i .
i RID YITM S2an3d93TYday snojiep 103 uostaedwo)y :z a1qel
!
*3IX2) 99S--POIBINOTERD 30Uy
— ! w m ! ~)
8 M g ! S 7 | | S bz Z @ onbtun :sjuswuoaTAUS JO
i 4 | s
18 ! 18 m v 184 1T “ % ! 17 11 mm OTWBUAP :SIUDWUOLATAUS JO
! | X N ! _
9¢¢ m 9¢¢ w 0orT ovl 69¢ 2= 65T 691 uo si9junodus anbrun :riyoa1 elEp paIndwod jJo
i u 5
9¢¢ W 966 | O%T 071 69¢ x= 69¢ 69¢ S oTweudp :1jye1 eiep paindwod 3o
! | — |
87 w £Z w ne M 8T 61 ST m VAt 71 pa a93junodous 3331e3 3ISITF sayoueag Jo
; M t— q .
112 “ 88T | 192 6T¢ | 20¢ 0¢e 80T 80T S oTweudp saydueag jo
q {
mmﬁ.ma 8TETT §99L £6EL 966 STT0T} €z6T 8671 pa3aadisur soIqRITAS 30
: |
€0¢ LSy zoy zZoYy 6412 | 6L% 0T 0€T "a391 (°37am) Liowsw urew jJo
99T | 0S¥%1 M 98y £y L6lz | £96 6¢T 6¢T 1391 (pEal) Alowsw ujBW 3O
0¢s (p2andwod/TeqOT8 + TEDOOT) S@OUSI8I21 BIEBP JO *OU TBIOL
AT A4 %4 9¢¢T1 ! 8wl 70%¢ €202 ey GEY *a3sul jo Iaquny OdFweuiq
i
891 0ET | 66 06 66t S0t &4 LT *13sUY 30 JdIaquny ITIEIS
[49Y 899¢ | 88cw | 960¢ : 096% 0082 #7811 Lz (s3tq ur) °2IS d13EIS
28eNUTT| 98BNUTT, 9BLYUTT] ITEAE (] . ~
yTe | Inoyate yITe usc:UHaumvoonm T1-dad | 3depy! KID
! !
-1d | teoseq | TeoSRg
0LE WOISAS M 0L€ WaISAS A
.

consist of a total of four operand ficlds, giving a total of six syllables to be interpreted for their joint execution,
On line 6 the end of the for loop requires one instruction—a return and an implicd operand which contains
the final valuc as well as a label associated with the return. Thus the counts for the end of the procedure
depend upon the sematics of the instruction sequence initiated. On line 7, for example, the end requires no
opcrands; hence only two syllables are interpreted. The resulting columns (a) through (h) are wcightc& by
column (i), the dynamic count or number of times cach line is executed. When the respective columns are
weighted we can derive the appropriate Cl measures for that line. Summing over all lines we have the total

Cl measures for the program.

Main memory read and write references—columns (¢) and (d)—arisc from computed data references.

The principle difference between operand references (b) and main memory references—column (c) plus

column (d)—is that the operands are assumed to access a Jocal memory if they are local scalars—other

references go to main (or global) memory. The counts in columns (c) and (d) are included in column

(k)—data referencing; these give an indication of the predictability of referencing antivity. An architecture
which does not accommodate local references is more likely to encounter memory bandwidth and contention
problems. The total number of data references—column (k)—is simply the number of operands per
instruction weighted by the number of times that the instruction is executed. The sum of column (k) for the
program is 830 rcferences. Register-oriented architectures as well as architectures which make provision for

rapid access to local variables should do better than this, but reducing references below the main memon

referencing activity—column (m) plus column (n)—should be more difficult.

Since cach instruction called for in column (a) requircs an op-codc syllable and cach operand (d)
requires a syllable, the total number of syllables per statement (¢) is the sum of (a) and (b) and the number of
labels. Labels are not tabulated directly. The branches (f) and computed data item counts (g) are fairly

obvious. Line 15 represents an initial (for) branch, a call to swapvec and a return.

Table 2 is a complete evaluation for the example hardshuffle for all of the CI measures on a varicty of
different architectural aporoaches. A fair comparison for a variety of architecturcs is a more formidable task
than might first appcar. 'The measures are significantly influenced by compiler strategies and run time

environments as well as the basic architecture itself, Thus, the data in Table 2 requires some explanation,

The first comparison is with an exccution architecture called Adept, developed at Stanford and derived
from principles of minimizing CI measures while maintaining transparency for Pascal programs. By using an
additional format syllable in cach instruction it matches most static and dynamic Cl instruction count

measures. It also matches the Cl measures for memory activity as well as most of the stability and distance

mcasures. Additional syllables per instruction add about 5 bits to each instruction and hence account for

Y S

about 110 additional bits in static program size. An additional 800 bits of Adept are used 1o hold addresses for

subscripted variables, array bascs, and other environmental data. An Adept variable reference consists of the
addition of an environmental pointer to a variable index whose container matches the log,2 CI requircment.
Each environment then will have its own environmental pointer and container width. Some variables such as
array elements have an address computation before the clement can be retrieved from main storage which
contains the image array. Thus the address of the base of the vector must be Slorc{i as well as the retrieved
array clement. ‘The additiona) Adept space includes these address constants and other values containing
information for the routine to exccute properly. The object code for Adept is based upon a 1 + 1 pass
compiler developed by S. Wakefield. The Adept system has a simple run time environment required for a

small stand alone system.

The pdp-11 figures are based upon the Pascal compiler developed at Vrije University (the Netherlands),
Pascal-VU. It produces an intermediate program representation EM-1, developed by A. Tannenbaum, which

it further translates into pdp-11 code.

The static program size is the size of the instruction stream; however, in the pdp-11 architecture many
of the data parameters arc represented as immediate data in the instruction stream. The number of computed
data references was not tabulated for the pdp—i] because of the nature of the architecture—the pdp-11
architecture is heavily oriented towards conditicnal interpretation of successor syllables. Overlapping ¢.
instructions and/or syllable interpretation would be an extremely difficult process at best; therefore the total
amount of scquentiality in the instruction stream is not a measure of the architecture’s responsiveness to a
particular example. ‘The additional number of environments encountered in the pdp-11 object code is a direct
result of the write commands in the subroutine. These are implemented in the object code as calls to the

operating system.

Before discussing the P-code or 370 architectures the computation of the computed data references
should be examined. There is no problem in counting the occurrence of array clements in the source code or
in fact in a close surrogate to source code such as the Adept code. In more traditional machines the
occurrence of a computed data reference is a more murky event. It manifests itself as the loading of an index
register or an indexed value in onc instruction, and the use in the immediately following instruction of that
valuc as a parameter in an address computation. In a stack machine such as the P-code processor a value is

placed on a stack which is used in the next instruction as an address. In Systemn 370 the following is a typical

instance:

LR 15, A(13,14) instruction i
LR 2, B(15,10) instruction i+1

In the above, a valuc is loaded into a register (15 in this casc) and uscd as an index/basce value in the

immediately following instruction. The result of this event is a potential "break™ in the pipeline. The address

of the opcerand in instruction i+ 1 cannot be computed until instruction i-is fully exccuted. This delay is
reflected as an increased cxecution time for instruction i+1 in overlapped machines, especially wher. this

deferred data access is in the vicinity of a conditional branch.

In computing the number of environments, we count the number of diffcr{:nl environment change
indicators, such as the Branch and Link (BAL) instruction (System 370). The called routine while outside the
object code listing may call other environments and are not accounted for in our counts, a fact that we shall

discuss shortly.

The P-code machine is actually a surrogate for the Pascal language. It is a stack oricnted machine and
meant to be a transportable media for Pa;cal programs. Any host machine can compile into P-code from a
Pascal source and (in theory at least) another machine equipped with a P-code interpreter can exccute this
compiled code. The emphasis for most P-code compilers is rapid comptlation; thus the P-code statistics arc

derived from a non-optimized compiler—much the same in philosophy as Adept.

The large number of dynamic instruction occurrences for P-code when compared to Adept - over § to
1—is largely accounted for by the push and pop instructions inherent in a stack machine, Nouwce that the

dynamic number of P-code branches, for example, is less than a factor of two to one over the Cl measure

In comparing the System 370 to any of the other environments onc is faced with unenwe problems So
far we have been discussing machines and measures in very limited run-time enviromments with relatol
minimal generality in support for non-Pascal system facilitics, the antithesis of the generdized o
provided by the 370 Operating System. While the 370 program sizc itself s 3056 buts thes oo lades prodoy,
cpilog and data space which alone—through a standard interface—is reserved at 10000 bis. This oveiwhelms
our comparison and sincc it contains or allows for a great deal more information handling and
communications than required either in this program or by any of the other architectures, we largely cluninate
(insofar as possible) instructions or data arcas which are not specifically associated with the program
hardshuffle. The column labelled “without linkage” represenis the additional number of instructions in the
minimum linkage path between the two routines. Excluded from this.are the instructions exccuted as part of
the linkage which arc calls to common run time facilitics, space allocation, ctc. These are again excluded in
our comparison since it scemed to us that the inclusion of such data is more a measure of run time philosophy
and its generality than a measure of archiccture itsclf. Calls to such facilities during routine cntry are not
counted in the cnvironment counts cither. To fully include all instructions exccuted in a typical System 370
program plus « 1l data arcas and prolog and cpilog arcas would increase the cited numbers by several times.

Thus, the 370 aumbers can be interpreted as minimum numbers in comparing with the other architectural

1l

T Y ARE Satteih o S,

M §

figures. The 370 numbers reflect an estimate of the measures of the architecture in a very simple dedicated
runtime cnvironment which simply is not available to us to measure. As a further cxperiment on 370 the
hardshuffle source program was recoded in PL/1 and recompiled using an optimizing PL/I compilcf. The
increased generality of PL/1 plays a role in limiting the compiler’s ability to optimize the program. The
additional environments introduced in the PL/1 version of the program result from the compiler cal;sing

several environment changes per source write command. 1

It is interesting to note that at lcast for this cxample the more dramatic variations in architectural
measures occur in parameters—such as space, dynamic instruction count, and syllables interpreted—that
affect simpler hosts, particularly partially mapped and well mapped machincs. Parameters such as stability
and distance remain relatively invariant from the canenic measures over the spectrum of architectures
considered. In fact, compilers seem to play a more significant role than the architectural arrangements
themselves. This supports the obscrvation that is more or less a truism that compiler technology is eveh more
important than the architecture as the interpreter and exccutor technology is enhanced, while for simpler

interpreters (hosts) the architecture seems to play a dominate role in determining execution performance.

[AUV

Scientific Personnel Supported by this Contract

Michacl J. Flynn, Principal Investigator
Professor, Electrical Engincering
Stanford University

Jerome Huck s
Research Assistant

Sianford University

(Expected to receive Ph.D. degree in Electrical Engineering, Summer Quarter 1982)

Ruby Lee

Rescarch Assistant

Stanford University

(Received Ph.D. degree in Electrical Enginecring, Summer Quarter 1980)

Charles Neuhauser

Rescarch Assistant

Stanford University .

(Received Ph.D. degree in Electrical Engincering, Spring Quarter 1980)

Scott Wakefield

Research Assistant

Stanford University

(Expected to reccive Ph.D. degree in Electrical Engincering, Summer Quarter 1982)

Robert Wedig

Rescarch Assistant

Stanford University

(Expected to receive Ph.D. degree in Electrical Engincering, Summer Quarter 1982)

Clark Wilcox

Research Assistant

Stanford University

(Reccived Ph.D. degree in Computer Science, Summer Quarter 1980)
Banman Zargham

Research Assistant

Stanford University

13

L2

Lo

Technical Reports and Publications Sponsored under this Contract

"A Theory of Interpretive Architectures: Ideal Language Machines” by Michacl J. Flynn and Lee
W. Hoevel, Computer Systems Laboratory TR No. 170, Stanford University, Stanford, CA, February 1979.

"A Theory of Interpretive Architectures: Some Notes on DEL Design and a FORTRAN Case Study”, by
1.. W. Hoevel and M.). Flynn, Computer Systems Laboratory TR No. 171, Stanford University, Stanford,
CA, February 1979. 4

*Instruction Stream Monitoring of the PDP-11", by Charles J. Neuhauser, Computer Systems Laboratory TN
No. 156, Stanford University, Stanford, CA, May 1979.

"EMMYXI.—An Assecmbler for the Slénford EMMY", by Bahman Zargham, Computer Systems Laboratory
TN No. 164, Stanford University, Stanford, CA, September 1979.

"Some Notes on a DEL Basis for Language-Oricnted Operating Systems”, by Michael J. Flynn and Martin
Freeman, Computer Systems Laboratory TN No. 169, Stanford University, Stanford, CA, November 1979. -

" Analysis of the PDP-11 Instruction Stream”, by Charles J. Neuhauscer, Computer Systems Laboratoy TR No.
183, Stanford University, Stanford, CA, February 1980.

"i.. ~ections and Issues in Architecture and I.anguage”, by Michael J. Flynn, Computer Magazine, Vol. 13,
No. 10, October 1980, pp. 5—22.

"Dynramic Detection of Concurrency in DO-loops Using Ordering Matrices”, by Robert G. Wedig, Computa-
Systems Laboratory TR No. 209, Stanford University, Stanford, CA, May 1981.

"Execution Architecture: The DEltran Experiment”, by Michael J. Flynn and Lee W. Hoevel, Accepted for
publication in JEEE Transactions on Computers.

"Ideal Execution Architecturc”, by Michael J. Flynn and Lee W. Hoevel, Submitted for publication in JEEE
Transactions on Software Enginecring.

"Analysis of Architectures for High Level Languages”, by M. 3. Flynn and J. C. Huck, Submitted to and
presented at the HLL Computer Architecture Workshop, October 1981, Los Angeles, CA.

