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Abstract

The research reviewed in this study specifically covered 3 issues:

1. The design of "ideal execution architectures" suitable for a range of source languages and host
machine environments.

2. Analysis of the relation between source language program constructs and execution architedures.

3. Methods of implementing these "ideal" instruction sets.
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Introduction

The basic objective of this research is to find improved computer architectures which will allow more

concise representations of programs, faster execution of programs and more accurate program

representations.

In our past research, we have demonstrated techniques to afford significant improvement in spatial

requirements to represent programs and in execution time to interpret programs. These techniques are based

upon creating computer architectures which are tailored to a single high level language in which the

architecture represents only those objects explicitly mentioned in the high level language (a 1:1 language to

architecture mapping).

Techniques have been developed, such as accessing values by contour map and use of

transfornationally complete sets of formats, which allow the 1:1 mapping. The miiimization of objects

reduces both program size and improves execution time.

DEL Theory

We have completed at least a preliminary version of a broad based theory on the synthesis of directly

executed languages. The kernel of this is a measure of ideal program representation. In actuality, this is a

constructive measure of program space and interpretation that one can use for exploitation of alternative

representations. This measure, while not necessarily achievable, intuitively represents a clearly superior

program representation that is readily definable and easy to use.

We call these measures the canonic interpretive measures (CI measures) of a program. The space

-? measure is the number of bits of program size, and the time measure is the number of instruction, data,

memory and other actions in the program space.

The Cl measure usually indicates a full order of magnitude less space than the System 360

representation or other familiar traditional machine representations. The Cl measures play an important role

in our development of a theory of DEL synthesis, since we essentially proceed in a step-by-step fashion to

achieve program measures which are as close as possible to them. ixcept for frequency information, the Cl

measures are oriented toward an information theoretic minimuir program representation. In many ways our

I)L synthesis theory achieves exactly the Cl measures. However, in order to achieve the transformational

completeness property, we have found that 22 formats are required. This adds effectively about 5 bits to each

instruction unit or statement (log 2 of 22). In most other ways, however, CI measures are achieved.
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Ideal Image Machines and their Hosts

In trying to define an ideal image machine, one must first recognize that tie image machine architect is

limited by the high-level languages that originally represent the program. If these are poorly formed,

incfficient, or erroneous, there is no way that the architecture, the interpreter, or even the compiler can rcstore

the initial deficiencies. The best the architect can do is to retain the information present in the high-level

language representation and to provide this information in a form as concise and useful as the interpreter and

the host require. Moreover, this interpretive hierarchy occurs at many levels in the system.

Thus, here we will derive certain aspects of HI.L program representation which ultimately determine

(and limit) the space-time product of image program interpretations. While we will come up with a number

of measures of source program behavior, we must remember that these are measures and are not equally

weighted. Their importance depends a great deal on the type of host machine doing the interpretation. These

quantitative measures are expressed in architectural terms, so that for a particular machine representation, one

could specify an ideal size and interpretation time for a source program, for example, and compare those ideal

measures to the achieved size and interpretation time. Of course, specifying an ideal machine measure is a

formidable task in itself.

Before proceeding we need to state some assumptions:

9 Measures are independent of technology. We are interested in comparing logical representations
and architectures, not in comparing different machine technologies.

. The original HI.I, source program is a good representation of the original problem; i.e.,
optimization is source to source. The original program is aready optimized to the degree desired.

* Measures focus on two gs'ects of program representation: space to represent the image program
and time to interpret thad i'presentation. Simplicity in generating the representation is an implied
necessity.

* The measures consist of correspondence, size, activity, stability and distance. The first two
* "determine static program size. The last three affect in varying degrees the time it takes to interpret

a program.

Canonic Measures of Interpretation

1. Correspondence. An ideal representation minimizes the number of objects to be interpreted without

disturbing transparency with respect to the HI.l. source. For each semantic action in the HLI. source

(addition, subtraction, etc.), there is one instruction in the ideal representation (one CI instruction); for each

unique name mentioned in the HLL statement, there is an explicit object identification in the ideal
representation.
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2. Size. All objects of the same class can be coded with variable-width identifiers appropriate to the

language environment as follows:

* All variables are identified by [(log2 of the number of variables in the environment)] bits,

* operations aie identified by [(log 2 of the number of distinct actions specified in the
environment)'l bits, and

* labels are identified by [(log 2 of the number of distinct labels specified in the environment) bits,
where the environment is usually taken to be a single subroutine or procedure.

Ideally, the size measure requires that coding be as concise as possible, i.e., using [(log2 of the number

of objects in the environment) bits. There are two aspects to coding. First, the objects should be of like kind.

Thus, labels, operators, and values which can be easily distinguished should be treated and coded separately.

Second, coding always takes place in the context of an environment. The statement itself can be an

environment, although measures of time (such as measure 4, below) which count the number of environments

interpreted will increase if such a small coding environment is chosen. This is a trade-off between two

measures-space and time. The scope of the definitions used in the HLL usually defines the

environment-that is, the environment encompasses names or objects of the same scope of definition, e.g.,

subroutines as follows:

3. Activity. This measures the number of objects interpreted. Usually, there are two separate types of

activity-instructions (operations) interpreted and variables accessed from image storage:

e Let A, be the number of instructions interpreted. Then, ideally, Ai is equal to the number of
%emantic actions specified (dynamically) in the HLL source.

9 Lct Ad be the number of data references required. Ideally, Ad is no more than the dynamic
number of variables encountered.

4. Stability. This measures the number of environments encountered and other disruptions to the

ordinary "in-line" processing of objects.
• Let S be the total number of environments encountered.

e

0 Let SC be the number of computed (interpreted) objects, e.g., array elements.

o Let Sb be the number of control actions (branches dynamically interpreted).

This measure is an extension of the activity measure in that it measures the more global types of activity,

the number of environments encountered, the number of objects whose location has to be computed, and,

, finally, the number of branches or procedural statements encountered. Ideally, there is one interpretable

action per HILL action.
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5. )istance. This meastres the "initialization" required in a program. The ultimate host machine

might have an infinite cache, robust support of array accessing, and an unlimited branch target capture table.

But even such a machine would be limited by the following measures:

* Let De be the number of unique environments entered.

* Let D be the number of unique objects requiring interpreted definition.
C

* Let D b be the number of unique branch targets.

The distance measure represents the total number of unique environments and unique branches

encountered. It represents the distance the program has transversed, i.e., the number of localities it has

visited.

An Example and a Comparison

Consider the Pascal example shown in Table 1; hardshuffle-a program for shuffling vector elements

the hard way-consists of shuffle procedure swapvec and the main program.

Swapvec interchanges the elements of two vectors from the first element up to the parameter limit.

Hardshuffle-the main program-creates two vectors, identity consisting of the integers and su? which

consists of the sum of the integers. For a variable limit ranging from I to 10, swapiec is called to interchange

the elements of the two created vectors. Finally, the values of the vectors are written out. Table 1 shows the

derivation of the Cl measures from the original hardshufle source. The number of instructions, static

(column a) and dynamic (j) correspund to the number of source semantic actions held in memory and

encountered during execution. 'The column labelled "Data References" (k) is the dynamic count of activity

(both local and main memory) for data objects. The number of syllables interpreted (o) corresponds to the

count of the number of objects (variables, operations and labels) encountered in each instruction times its

dynamic weight. The number of branches encountered (I) is a dynamic count of branch instructions, Sb,

while the distance Db measures the number of unique branch targets encountered. Computed data items (g)

* . refers in this example to array elements. The dynamic sum of (g) is Sc (p) while the number of unique

occurrences of such items is 1)¢ (q). Of course there are two environments in this little example (De) and since

the main program calls the subroutine ten times we have a total of I I dynamic environments (Sd.

In computing the static CI measures of this program we first must identify the distinct operands and

operators in each of the environments. For swap iec the operands are al, a2, limit, index, temp, a container for

the final value, and the constant 1, i.e. 7 unique operands. The operators are for, array subscript, end for, and
return-4 unique operators. There are also two labels. Each line of the hady of swapvec basically represents a

single Cl instruction; an exception is
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al[index]:= a2[index].

A separate instruction is required to compute a2[index] and retrieve its value. This value will be used in the

next CI instruction which actually stores the value into al[index]. In computing the number of operands per

CI inst .iction it is merely necessary to follow the semantics of the statement, thus:

for index : = I to limit do

has an index operand, two operands for the range (1and limit) and an operand for the final value. This

particular statement also includes an opcode and a label (for use if limit < 1). Most other statements in this

routine include a single cr i .iner for each operand mentioned in the statement. Static program size for

swapvec can be computed to be three bits per operand X 16 operands + 2 bits per operator X 7 operators +

1 bit per label X 2 labels, totaling 64 bits.

Similarly with the main program the unique operands are i, the operand for the final value, identity,

sum, swapvec, and the constants 1, 2 and 10, for a total of 8 unique operands. The unique operators ar6 array

subscript, for, -, -, end for, call, write, and writeln, for a total of 8 unique operators. There are also 6 label

in the main program. Static size can be computed as 3 bits per operand X 45 operands + 3 bits per operator

X 20 operators + 3 bits per label X 6 labels, the total being 213 bits.

The hardshuffle example illustrates the rather mechanical nature of deriving the CI parameters. First,

the program is assumed to be optimized-although hardshuffle certainly isn't. Thus, the C1 measures can bc-

derived on a line by line basis. Each HLL statement will take at least one CI instruction. If the statement

involves a computed data item (an indexed array element) an extra instruction sometimes is required.

However, most HLL statements in the main program have one CI instruction in their execution architecture.

Exceptions include a statement with two subscripted variables (line 4), the write instructions (lines 7 and 18)

that use subscripted variables, and the statement computing sum[i] (line 13) which requires 4 instructions (-,

+ and subscripting). In computing operands, usually the count is simply the number of explicit variables

mentioned in the statement. E.g. on line 2 we have: index, i and linit. Occasionally the semantics of an

operation requires a hidden operand; e.g. (line 6) the end of a for requires a final value operand. The

statement on line 3 has but one instruction while line 4 required two instructions. In column (a) we
enumerate the number of instructions per statement, and column (b) enumerates the number of associated
operands per statement. Labels are not tabulated explicitly but the sum of column (a) plus column (b) plus

implied labels equals the number of syllables, column (e), for that line. Thus on line 2, we see a single

instruction with three associated operands (index, i, and limit). There is an implied label; thus there arc five

syllables to be interpreted for instruction execution. On line 4 it is assumed that one instruction computes the

location of the indicated source operand and fetches it. The second instruction computes the location of the

sink operand and stores the value of the source operand. Thus the two instructions

6
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consist of a total of four opcrand fields, giving a total of six syllables to be interpreted for their joint execution.

On line 6 the end of the for loop requires one instruction-a return and an implied operand which contains

the final value as well as a label associated with the return. Thus the counts for the end of the procedure

depend upon the sematics of the instruction sequence initiated. On line 7, for cxample, the end requires no

operands; hence only two syllables arc interpreted. The resulting columns (a) through (h) are weighted by

column (i), the dynamic count or number of times each line is executed. When the respective columns are

weighted we can derive the appropriate Cl measures for that line. Summing over all lines we have the total

Ci measures for the program.

Main memory read and write rcferences-columns (c) and (d)--arise from computed data references.

The principle difference between operand references (b) and main memory referenccs-column (c) plus

column (d)--is that the operands are assumed to access a local memory if they are local scalars-other

references go to main (or global) memory. The counts in columns (c) and (d) are included in column

(k)-data referencing; these give an indication of the predictability of referencing ar-tivity. An architecture

which does not accommodate local references is more likely to encounter memory bandwidth and contention

problems. The total number of data rcferences-column (k)-is simply the number of operands per

instruction weighted by the number of times that the instruction is executed. The sum of column (k) for the

program is 830 references. Register-oriented architectures as well as architectures which make provision for

rapid access to local variables should do better than this, but reducing references below the main memoir',

referencing activity-column (m) plus column (n)-should be more difficult.

Since each instruction called for in column (a) requires an op-code syllable and each operand (d)

requires a syllable, the total number of syllables per statement (e) is the sum of (a) and (b) and the number of

labels. Labels are not tabulated directly. The branches (0 and computed data item counts (g) are fairly

obvious. Line 15 represents an initial (for) branch, a call to sw'apvcc and a return.

Table 2 is a complete evaluation for the example hardshuffle for all of the Cl measures on a variety of

different architectural approaches. A fair comparison for a variety of architectures is a more formidable task

than might first appear. The measures are significantly influenced by compiler strategies and run time

environments as well as the basic architecture itself. Thus, the data in Table 2 requires some explanation.

The first comparison is with an execution architecture called Adept, developed at Stanford and derived

from principles of minimizing Cl measures while maintaining transparency for Pascal programs. By using an

additional format syllable in each instruction it matches most static and dynamic Cl instruction count

measures. It also matches the C1 measures for memory activity as well as most of the stability and distance

measures. Additional syllables per instruction add about 5 bits to each instruction and hence account for

9



about 110 additional bits in static prograim size. An additional WO0 bits of Adept are used to hold addresses for

subscripted variables, array bases, and other environmental data. An Adept Nariable reference consists of the

addition of an environcntal pointer to a variable index whosc container matches the log2 CI requirement.

l.ach environment then will have its own environmental pointer and container width. Some variables such as

array elements have an address computation before the element can be retrieved from main storage which

contains the image array. Thus the address of the base of the vector must be storedt as well as the retrieved

array element. The additional Adept space includes these address constants and other values containing

information for the routine to execute properly, 'The object code for Adept is based upon a I + 1 pass

compiler developed by S. Wakefield. The Adept system has a simple run time environment required for a

small stand alone system.

The pdp-ll figures are based upon thQ Pascal compiler developed at Vrije University (the Netherlands),

Pascal-VU. It produces an intermediate program representation EM-1, developed by A. Tannenbaum, which

it further translates into pdp-11 code.

The static program size is the size of the instruction stream; however, in the pdp-11 architecture many

of the data parameters are represented as immediate data in the instruction stream. The number of computed

data references was not tabulated for the pdp-1l because of the nature of the architecture-the pdp-I1

architecture is heavily oriented towards conditicnal interpretation of successor syllables. Overlapping c.

instructions and/or syllable interpretation would be an extremely difficult process at best; therefore the total

amount of sequentiality in the instruction stream is not a measure of the architecture's responsiveness to a

particular example. The additional number of environments encountered in the pdp-l1 object code is a direct

result of the write commands in the subroutine. Tlese are implemented in the object code as calls to the

operating system.

Before discussing the P-code or 370 architectures the computation of the computed data references

should be examined. :[here is no problem in counting the occurrence of array elements in the source code or

in fact in a close surrogate to source code such as the Adept code. In more traditional machines the

occurrence of a computed data reference is a more murky event. It manifests itself as the loading of an index

register or an indexed value in one instruction, and the use in the immediately following instruction of that

value as a parameter in an address computation. In a stack machine such as the P-code processor a value is

placed on a stack which is used in the next instruction as an address. In System 370 the following is a tNpical

instance:

LR 15, A(13,14) instruction i

LR 2, B(15,10) instruction i+1

In the above, a value is loaded into a register (15 in this case) and use:l as an index/base value in the

10



immediately following instruction. [he result of this event is a potential "break" in the pipeline. Thc address

of the operand in instruction i+ I cannot be computed until instruction i is fully executed. This delay is

reflected as an increased execution time for instruction i+ 1 in overlapped machines, especially whei,' this

deferred data access is in the vicinity of a conditional branch.

In computing the number of environments, we count the number of differrnt environment change

indicators, such as the Branch and Link (BAL) instruction (System 370). The called routine while outside the

object code listing may call other environments and are not accounted for in our counts, a fact that we shall

discuss shortly.

The P-code machine is actually a surrogate for the Pascal language. It is a stack oriented machine and

meant to be a transportable media for Pascal programs. Any host machine can compile into P-code from a

Pascal source and (in theory at least) another machine equipped with a P-code interpreter can execute this

compiled code. The emphasis for most P-code compilers is rapid compilation; thus the P-code statistics are

derived from a non-optimized compiler-much the same in philosophy as Adept.

The large number of dynamic instruction occurrences for P-code \shcn compared to Adept -o'er 5 to

1-is largely accounted for by the push and pop instructions inherent in a stack niachi'ic. Noticc th., the

dynamic number of P-code branches, for example, is less than a factor of t%%o t(, one over the CI ineaturc

In comparing the System 370 to any of the other environments one is f:iced %i ith 11n 1n. - o,,i, So

far we have been discussing machines and measures in very limited run-time en% irunuicnr CIs it t!:,. I,

minimal generality in support for non-Pascal system facilities, the antithcis of the cnrl

provided by the 370 Operating System. While the 370 program si/e itself is 3056 bh ,  h,, i, Ind

epilog and data space which alone-through a standard interface-is reser\c,l At 16(000 b,,,, Hoi' r, c's

our comparison and since it contains or allows for a great deal more informn it io h.1indlmg and

communications than required either in this program or by any of the other architectures. %kc lI,erkl clwini~te

(insofar as possible) instructions or data areas which are not specifically associated "ith thy program

hardshuffle. The column labelled "without linkage" represents the additional number of instructions in the

minimum linkage path between the two routines. Excluded from this.are the instructions executed as part of

the linkage which are calls to common run time facilities, space allocation, etc. These are again excluded in

our comparison since it seemed to us that the inclusion of such data is more a measure of run time philosophy

and its generality than a measure of archiecture itself. Calls to such facilities during routine entry are not

counted in the environment counts either. To fully include all instructions executed in a typical System 370

program plus 11 data areas and prolog and epilog areas would increase the cited numbers by several times.

'[hus, the 370 numbers can be interpreted as minimum numbers in comparing with the other architectural
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figures. Thc 370 numbers reflect an estimate of the measures of the architecture in a very simple dedicated

runtine environment which simply is not available to us to measure. As a firther experiment on 370 the

hardshuffle source program was recodcd in Pl./I and recompiled using an optimizing PIl compiler. Tlhe

increased generality of Pl/I plays a role in limiting the compiler's ability to optimize the program. The

additional environments introduced in the PL/l version of the program result from the compiler causing

several environment changes per source write command.

It is interesting to note that at least for this example the more dramatic variations in architectural

measures occur in parameters-such as space, dynamic instruction count, and syllables interpreted-that

affect simpler hosts, particularly partially mapped and well mapped machines. Parameters such as stability

and distance remain relatively invariant from the canonic measures over the spectrum of architectures

considered. In fact, compilers seem to play a more significant role than the architectural arrangements

themselves. This supports the observation that is more or less a truism that compiler technology is eveh more

important than the architecture as the interpreter and executor technology is enhanced, while for simpler

interpreters (hosts) the architecture seems to play a dominate role in determining execution performance.
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