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SECTION I

INTRODUCTION

This final technical report is submitted to Rome Air Development Center

(RADC) in accordance with data item A005 of contract F30602-80-C 0171. The

principle project reference relevant to this technical report is the State-

,enc of Work (SOW) for the Improved Microprocessor Design contract, RADC PR

X4C. 1-0-4344 dated May 7, 1980.

1.1 Purpose. The intent of this report is to provide the reader with an

understanding of current Micro Programmable Controller (MPC) capabilities and

the design of the Improved MPC resulting from engineering services provided

under the referenced contract by PRC.

1.2 Scope. The scope of this report includes engineering services provided

under the above referenced contract and improved MPC hardware/firmware

characteristics as designed by PRC personnel. This approach conveys the

current operational state of the MPC development and provides the reader with

an appreciation of how these new capabilities could be utilized by other

agenices throughout the Air Force and the Department of Defense.

1.3 Report Organization. This report is organized into five major sections

as follows:

0 Section 1 provides information concerning contract F30602-

80-C-0171 and its associated SOW, RADC PR NO. 1-0-4344; statements

of purpose and scope; and concludes with report organization.

o Section 2, background data providing the history of the MPC, and the

requirements for an Improved MPC.

1-1



o Section 3 presents each major component of the KPC by describing

hardware, comaunications (firmware) and software architectures that

collectively make up the current MPC.

o Section 4 provides design details for the Improved MPC in satis-

faction of each requirement under this contract.

" Section 5 provides a summarization of the specific design details

and the implications of the new design. This section is followed by

an appendix containing a list of hardware and software acronyms and

terms used in this report.
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SECTICS 11

SIM4ARY OF UQUIMMETS

The purpose of this section is to provide a brief background of the

events that led to the development of the NPC, and an.,overview of the current

architecture with possible improvements that could be made to it. This is

followed by a summary of requirements for the improved XPC design as stated

in the SOW.

2.1 Background. This subsection described the technical problems that led

to definition of the MPC architecture and the history of the I4PC development

including its integration into the SAC Intelligence Data Handling System

(IDHS) environment.

2.1.1 History of the MPC. Beginning in 1966, Rome Air Development Center

(RADC) and Planning Research Corporation (PRC) personnel began designing the

first large-scale, on-line intelligence system within the Department of

Defense (DoD) at Headquarters Strategic Air Command (SAC). This system was

named PACER or Program Assisted Console Evaluation and Review. PACER

achieved an initial operating capability in November 1970 with on-line,

real-time, data base update and applications support being provided by 16

Bunker Ramo graphics consoles (BR-90s) and 32 Radio Corporation of America

(RCA) textual consoles. The BR-90 consoles were interfaced to the PACER

Honeywell 6080 mainframe by two uniquely developed hardware components called

Channel Control Units (CCUs) while all 32 RCA consoles were interfaced to the

mainframe by a Digital Equipment Corporation (DEC) PDP-15 minicomputer. With

this hardware configuration, failure of either CCU or the PDP-15 caused eight

BR-90s or all 32 RCA consoles respectively to be unavailable for use.

Furthermore, the supporting PACER sstem and console handling software could

not handle additional consoles of either the same type or of a different type.
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By 1975 changing requirements dictated a need for increased capabili-

ties. Among those required .were: increased system capacity and reliability,

direct access to comunications circuits, existing terminal replacement and

the means to support increased numbers of terminals and multiple terminal-

types, the ability for a single terminal to access multiple system, and the

ability to electrically intertie the Honeywell 6080s with five DEC PDP-11

minicomputers.

In short, PACER required a capability to satisfy the following system

requirements:

o Normalize the BR-90 and RCA Textual Console Interface

o Standardize the PACER to console coaunication

" Provide high reliability and availability

" Incur minimum PACER executive and application software impact

o Provide future system flexibility and extensibility to meet near-

real-time information processing objectives

There were two standard systems approaches for providing the required

PACER capabilities. The first was to upgrade the host processor; however,

since PACER already was supported by the Honeywell top-of-the-line 6080 sys-

tem, this alternative was not feasible. The second approach was to add one

or more Front-End Processors (FEPs) to provide needed communications capabi-

lities. With the large screen size of the BR-90 console and the high system

interaction rates, it was determined that an FEP would have to handle a

steady-state load of 30,000, and a peak load of 60,000, characters-per-second

to provide adequate system response time to PACER users. Loads of this

magnitude were above the effective range of available FEPs and would there-

fore place additional work on the Honeywell 6080 mainframe for network

control. Additional PACER host workloads were considered undesirable.
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During 1975, ADC engineering personnel were investigating the benefits

that might accrue to USAF Commands from integration of microprocessor techno-

logy into various Comand ADP environments. This work together with consul-

tation between RADC engineers and PRC technical personnel led to definition

of a concept using an array of asynchronously operating microprocessors and a

high-speed communications bus to resolve certain PACER problems. This

concept was later developed and implemented by PRC and called the Micro

Programmable Controller (MPC). Under this concept, all PACER consoles were

directly interfaced to the MPC and operationally implemented in August 1979.

The MPC was integrated with the PACER Honeywell 6080s by new subexecutive

software called PACER Communications Module (PCOM) which communications with

the MPC in a message mode through the standard Honeywell Datanet 355 FNP.

PCOM provides a standard communications interface with the Honeywell 6080s

and performs required transliteration between the network and PACER character

sets. It also performs necessary message data compression and expansion

functions within the network.

lIplementing the PACER )PC resulted in eliminating the two unique CCUs

and the PDP-15 computer -- all critical network components -- and provided

needed flexibility in switching individual BR-90s or RCA Textual Consoles

between the Operational and Test PACER Honeywell 6080 computers.

Subsequent PACER executive software enhancements in concert with MPC

developments removed the previous constraint of two console types and 48

total consoles. Today, the PACER system supports a complement of 67

dual-screen UNIVAC OJ-389(V)/G workstations, twenty local printers, and is

interfaced with two PDP-11 based AN/(YQ-21(V) systems. Since its implemen-

tation, the MPC has had one system failure operating 23 hoursper-day, seven

days-a-week. The system was restored to full operation in 30 minutes.

-4
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2.1.2 MPC Architectural Overview. This paragraph briefly describes the HIC

design concept, the physical configuration, and system-level software that

collectively embody the SAC MPC. This discussion is intended as an aid for

the reader in relating the current MPG -concept to subsequent requirements

discussions for this specific contractual effort to improve the MPC hardware

architecture.

The MPC is an innovative combination of microcomputer hardware and soft-

vare synergistically coupled to produce a distributed computer system.

Physically, the MPC is composed of an array of microcomputers called "ports"

interconnected by a common high-speed communications bus. Each port is a

complete computer consisting of a microprocessor, memory, and 1/O interfaces

with the bus and an optional attached device.

Each port with in the !4PC architecture operates independent of, and in

parallel with, all other ports. Assuming a 50-port configuration using INTEL

8080A microproces sors, the NPC is capable of executing 25-million instruc-

tions per second -- considerably in excess of instruction execution rates for

the largest mainframes available today with the exception of supercomputers.

The I4PC architecture distributes dedicated processing resources (i.e.,

ports) as close as possible to a data source or device. This design ensures

that network processing on behalf of one user device cannot diminish

resources required by another user device. The design also reduces the

processing burden of an attached mainframe by offloading some processing that

it would otherwise have had to accomplish. The result of this approach when

implemented within existing host-centered, saturated, architectures is

frequently an improvement in system response time to user system requests

since such requests can be satisfied entirely within the HPC without a burden

on mainframe resources.
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The HPC architecture is totally modular with respect to both hardware and

software. Therefore, as new interfaces or processing requirements are

identified they can be satisfied by addition of specially designed ports

without affecting the existing 4PC configuration. This architectural feature

is the basis of MPC expandability, flexibility, and adaptability.

At the software level, the current MPC exchange bus or XBUS is controlled

by the Inter-Port Communications (IPC subsystem, a copy of which resides in

each port. The IPC software lies between the XBUS hardware and any port

application software. Consequently, an IPC in one port is able to establish

and conduct dialogues with an IPC in another port without assistance or

awareness of any intermediary third port. The totally distributed nature of

IPC allows any number of simultaneous two-port dialogues to occur across the

XBUS within MPC hardware limits and communications requirements of the

moment. Since IPC software lies between the XBUS hardware and any port

application software, it provides hardware transparency for all other soft-

ware subsystems executing within a port. This transparency is so complete

that if the XBUS hardware were changed the only software impact would be upon

IPC. The MPC architecture provides another level of hardware transparency in

that all attached MPC devices communicate through a standard data protocol.

It is the application level software within each port that is responsible for

translating between the data level protocol of any attached device and the

MPC standard data protocol. The hardware transparency features of IPC are

what make the MPC architecture so flexible in resolving problems comonly

found in today's large-system architectures.

The final major architectural feature of the MPC is embodied in the

Inter-Bus Cosmunications (IBC) subsystem. The IBC software acts as an exten-

sion of IPC to permit ports that do not physically reside on the same XBUS to

conduct port-to-port dialogues. This feature provides network growth flexi-

bility in that multiple MPC systems can be physically separate within a net-

work architecture but logically and electrically interconnected.

*
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2.2 Required KPC Design Improvements. The NPC presents an opportunity to

address problem not currently solvable with traditional architectures

through the application of parallel processing techniques. These techniques

when applied to the large integrated problems found in 1IN Systems require

that those problems be functionally decomposed in order to apply separate

processing resources to each. Once a problem has been decomposed and imple-

mented on several processors, the need for data communications and process

coordination becomes paramount. The MPC through its numerous microcomputers

interconnected by a common bus managed by the Inter-Port Communications (IPC)

firmware subsystem has solved the basic data communications and process

coordination problem.

However, improvements in the existing MPC architecture remain to be

developed in order for the comunications and coordination functions to be

accomplished at a speed substantially closer to that at which they are accom-

plished within the traditional mainframe. This is especially true since more

data and process control comunications must be accomplished in a function-

ally decomposed, parallel, implementation than in the serial mainframe

approach. This inter-process comunication is the price that must be paid to

reduce processing time through the application of parallelism.

Improvements in the MPC architecture to decrease the time it takes to

accomplish this inter-process comunication can be made by increasing the

bandwidth of the MPC in two major areas:

o Data communications bandwidth

o Process coordination bandwidth

Data communications bandwidth is a measurement of the amount of data that

can be transferred between two ports during a given period of time. Data

comunications bandwidth can therefore be analyzed by determining the raw

bandwidth of the XBUS (bus bandwidth) and the effective bandwidth at which

two ports can exchange data (port-to-port bandwidth). XBUS bandwidth is a

measurement of the bus cycle rate and the number of bits of data transferred
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per bus cycle. In the current HPC implementation, the bus cycle rate is 2

megacycles per second. Because the XBUS addressing lines are shared (multi-

plexed through) with the XBUS data lines, 16 bits of data is transferred

every other bus cycle. The effective bandwidth of the current MPC XBUS is

therefore 16 megabits per second (16 bits of data X 2 million bus cycles per

second/2 -16 megabit per second). Port-to-port bandwidth is a measurement

of the rate at which data can be transferred from port memory to the XBUS and

the amount of data moved during each transfer. In the current MPC implemen-

tation, 16 bits of data is transferred from the port memory to the XBUS at

15.75 kilo cycle per second rate. The maximum port-to-port bandwidth in the

current MPC implementation is therefore 250 kilo bit per second (16 bits of

data X 15.75 thousand cycles per second -. 250 kilobit per second).

Process coordination bandwidth is a product of the amount of time

expended in the course of a dialogue to ensure synchronization of two ports,

accomplish the transfer of data, ensure data integrity, and release each port

from the dialogue. These functions are required in each IPC dialogue. The

proportion of time required to complete overhead processing in relation to

the time spent actually transferring data is too excessive in the current

architecture. This problem is most evident in the case of control dialogues

where only a small amount of data is transferred to facilitate the initiation

of parallel tasks or update statuses. Assuming a data transfer of ten words
(16 bits each), about 700 microseconds would be required to complete the

port-to-port transfer. The overhead processing would require about an addi-

tional 1800 microseconds. The overall duration of the control dialogue then

becomes approximately 2.5 milliseconds. Process coordination, with respect

to the control dialogue, is then the limiting factor in the amount of paral-

lel activities or tasks each KPC port can sustain in a given period of time.

In the current architecture, this figure is 400 control dialogues per

second. (1/2.5 milliseconds per control dialogue -400 control dialogues per

second).
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In terms of MPC architectural characteristics, bus bandwidth can be

improved by decreasing the amount of time between bus cycles, transferring

more bits in parallel per bus cycle, or by bus segmentation. Bus sementation

implies multiple busses linked together operating as a single system.

Improved bus bandwidth also improves port-to-port bandwidth, however, addi-

tional improvements are possible. The main alternatives are to employ a

faster microprocessor in the ports; use of parallel Direct Memory Access

(DMA) techniques in transferring data across the bus, thus freeing the micro-

processor to create the next transfer request; or both. Process coordination

bandwidth is improved if bus and port-to-port bandwidths are improved, again

however, additional improvements are possible. For example, portions of the

firmware overhead associated with establishing contact with another port,

lockon of one port to another to accomplish a dialogue, and the termination

of that dialogue, could be migrated into the bus interface electronics.

Firmware overhead processing would then execute asyncronously to the port

processor. In addition to bandwidth, there are also reliability, flexibi-

lity, extensibility, and other engineering improvements that could be made.

The paragraphs below expand upon general requirements for an improved MPC

hardware design as reflected in the Statement-of-Work (SOW) for this procure-

ment.

2.2.1 improved Bus Design. The objective of the improved bus design is to

remove existing throughput limitations and increase performance without

significantly altering the basic MPC architectural concept. The present bus

bandwidth can be increased by demultiplexing the data and address lines and

by minimizing the number of handshaking signals required for a bus cycle data

transfer. Theoretically, an XBUS cycle of close to 200 nanoseconds should be

achievable using these techniques.
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2.2.2 Improved Bus Controller. The objective in improving the MPC bus

controller is to increase bandwidth by redesigning the bus control signals.

This design approach will be less complex than the current version due to

related design changes being incorporated into the Bus Interface Electronics

discussed in paragraph 2.2.3 below, and because of planned changes in the

manner by which bus interface control signals will be generated. The

improved bus controller will consist of one XBUS module that will control the

arbitration signals for the physical bus.

2.2.3 Improved Bus Interface Electronics. This area of performance improve-

ment addresses such issues as (BUS bandwidth, port-to-port bandwidth, DMA

data transfers across the XBUS, and hardware vs. software port dialogue

establishment. Currently, all XBUS cycles require direct initiation by the

port processor; therefore the processor must be directly involved during all

phases of dialogue establishment and data transfer. One objective in

improving MPC performance involves decoupling of XBUS activities from other

port processor functions. By migrating port dialogue establishment functions

of IPC from firnware to hardware this element of delay or overhead will be

greatly reduced, thereby decreasing overall dwell time of a dialogue. Addi-

tionally, by using hardware DMA techniques to affect data transfer the

processor will be decoupled from the actual data transfer and be able to

proceed at the cycle time of memory and/or the XBUS (whichever is the limi-

ting factor).

2.2.4 Inter-Bus Link (IBL). The IBL design concept is an improvement to the

existing MPC Inter-Bus Communications (IBC) port that permits multiple physi-

cal XBUSs to be electrically interfaced. The IBL design will be implemented

in a new port capable of initiating and receiving bus cycles from all other

ports on the same physical XBUS. The primary function of IBL will be to buf-

fer data from a bus cycle on one physical XBUS to a second physical XBUS all

within one logically extended MPC XBUS.

U
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2.2.5 Improved Firmware. The objective of this task will be to redesign

existing 14PC system-level and interface-specific port firmware subsystem to

support components of the improved MPC design. Specifically, the Inter-Port

Communications ([PC) subsystem firmware that controls and communicate& with

the XBUS interface circuitry will be redesigned. This change is required

because of the bus interface circuitry design change and some IPC functions

previously accomplished in firmware will now be accomplished by hardware in

the new design.

2.2.6 Reliability/Performance Requirements. Several techniques are being

used in the improved MPC to provide greater reliability and performance. As

mentioned in previous paragraphs much of the effort for this design is aimed

towards increased performance. in addition, efforts are being expended to

improve the overall reliability of data transfer in the MPC by such means as

providing hardware checksum techniques and including error recovery in the

bus interface unit.

2.2.7 Timing Requirement. Many of the new timing requirements are being met

by changes in XBUS interface circuitry. Also, this implies some changes in

the hardware interface portions of IPC.
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SECTION III

CURRENT MPC DESCRIPTION

The current MPC can be logically divided into two major areas - PC hard-

ware and MPC software/firmware. In the following sections each of these

topics will be separately addressed describing the MPC in terms of existing

capabiiities.

3.1 MPC Hardware Description. The MPC architecture is an array of micro-

processors called ports, interconnected by a common, high speed exchange bus

(XBUS). Each port is a complete computer consisting of a microprocessor,

memory, and I/O interfaces to the XBUS and, in some cases, to an attached

device. The XBUS allows the interconnection of ports on a demand basis by

resolving conflicts and granting bus cycles on a rotating priority basis.

Figure III-01 Bus/Port Relationship illustrates the basic architecture of the

MPC. A more complete discussion of this hardware is presented below.

3.1.1 Cabinet. The MPC cabinet consists of a stand-alone enclosure

containing the card cage in which the ports are mounted, the exchange bus

(XBUS), one DEC 11/23 File Management System port, an optional floppy disk,

power supply, and cable transition plate.

3.1.1.1 Enclosure. The enclosure is a modified commercially available 24"

rack CABTRON cabinet. To meet EMI shielding requirements, the CABTRON

cabinet is fitted with specially made doors, side panels, and back panel.

Access is currently via the top for card insertion/removal and the front for

I/O cabling connect/disconnect. The DC on/off controls and indicator lights

are accessible from the front exterior. Commercially available foam and

metal gaskets are used to provide necessary EMI shielding between removable

panels/doors and the enclosure frame. If it is necessary to increase the
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overall system beyond a single cabinet, the cabinets may be bolted together,

side-by-side, with interconnecting cables running internal to the cabinets.

3.1.1.2 Card Cage. The card cage is mounted inside the cabinet enclosure

via the 24" rack mount on the frame. The card cage is custom fabricated from

12 Ga steel to house up to 24 cards in pairs, with .75 inch spacing between

each card. The XBUS motherboard at the rear of the cage is actually suppor-

ted by the Zero Insertion Force (ZIF) connectors which are bolted to the

cage. Presently, the rear of the cage consists of 2 rows of connectors.

Only the bottom row is used by the XBUS motherboard with the top row avai-

lable for future expansion. All of the connectors in the card cage are ZIF

connectors manufactured by AMP. The connectors serve as both a card guide

and electrical connection. The unique sequential feature of these connectors

allow power to be applied prior to signal connection allowing car,: removal/-

insertion with DC power supplied to the cage and while other card3 remain

func tioning.

3.1.1.3 Optional Floppy Disk Space. The cabinet also has space for an

optional 8" floppy disk with its own power supply. This floppy is directly

below the card cage, enclosed within the EMI shielding of the outer cabinet,

and can be connected to any port within the MPC as desired. This space is

also of proper dimension to contain a PDP LSI 11/2.3 chassis and power supply.

3.1.1.4 Cable Transition Plate. The cable transition plate is at the very

bottom of the cabinet accessible from the front (via the door) for routing

cables underneath a raised floor. For installation over a nonraised (solid)

floor, an optional pedestal type device would have to be built to allow

routing cables out of the cabinet. The transition plate consists of several

subpanels which allow various types of connectors to be placed on it and

optionally added later. The purpose of the transition plate is to allow the

standard I/O connectors internal to the cabinet to be interfaced to various

types of external interfaces requiring varied styles, sizes, and connector

shapes.
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3.1.1.5 Power Supply. Several power supplies are present inside the WC

cabinet, depending upon specific configuration. A large switching power

supply (300W) provides voltages of +5 at 50A, and + 12V at 8A, to the card

cage (-5V is also supplied via a single component xtgulator). The power

controller is powered by a separate smaller (+5V at 6A up) supply which

operates independently of the larger supply. If a floppy disk or LSI 11/23

chassis is also present, they contain their own power supply. The main AC

power entering the cabinet is protected by a 10 Amp, 120 V/AC breaker and is

in series with an EMI line filter.

3.1.1.6 Cooling. Cooling within the cabinet is via forced convection, using

air drawn from beneath the cabinet base and expelled through the top rear.

This arrangement utilizes and enhances the effect of natural rising air

convection past the MPC cards.

3.1.1.7 Controls. Controls for the current MPC consist of an AC main

breaker controlling power to the fans and an on/off switch for DC power for

the cage itself. The present configuration allows the DC power switch on the

cabinet containing the master arbitor to control power to all cabinets in a

MPC network.

In addition to these controls there are indicator lights to show which

cabinet is the master, indicate power on (DC), and whether the master is on

for those cabinets slaved to the master.

3.1.2 Exchange Bus (XBUS). The MPC architecture includes a back plane bus

to interconnect all ports. The HPC XBUS has a number of unique characteris-

tics which make it superior to the more comon forms of bus design found in

today's minicomputers. The following paragraphs highlight these unique HPC

characteristics.

3.1.2.1 Physical Characteristics. The MPC XBUS is physically short and

allows connection of 24 two-board ports in a cabinet. When cabinets are

placed side-by-side, an XBUS may be extended across three cabinets to accom-

modate 72 ports. Further, through facilities of the Inter-Bus
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Couunications (IBC) subsystem described in paragraph 3.2.1.2 several MPC

XBUS configurations may be interconnected to form very large MPC networks.

3.1 .2.2 ycle Time. The MPC XBUS has a fixed cycle time of 500 nanoseconds

using tri-state TTL logic for bus drivers. However, since there is no XBUS

clock continuously supplying bus cycles, the XBUS actually operates in an

asynchronous manner. That is, XBUS cycles only appear on the bus when

requested.

3.1.2.3 Bus Width. The MPC XBUS width is 16 bits. Since 8-bit microcom-

puters are used in th MPC, a double byte load is required to transfer one

16-bit word across the XBUS. This two-byte load occurs in the XBUS interface

of the port.

3.1.2.4 Interrupt Resolution. XBUS cycles are granted to requesting ports

by a separate XBUS interrupt resolver circuit connected to each port. Inter-

rupt resolution occurs in parallel to data movement across the XBUS. When

multiple ports try to acquire XBUS cycles at the same time, the interrupt

resolver fields each request on a round-robin basis. When a port has been

granted an XBUS cycle, it is able to trasnfer only 16 bits of data before it

must request another cycle. This procedure provides for automatic inter-

leaving of data on the XBUS and prevents XBUS domination by any one port.

3.1.2.5 Bus Addressing. The MPC bus utilizes the same circuit paths for

both data and address transfers across the bus. Since each 16 bits of data

is separately addressed and requires a bus cycle, effective data transfer

bandwidth is one-half of minimum XBUS bandwidth or 16 megahertz.

3.1.3 XBUS Control Port. The XBUS Control Port (XBCP) is required on each

physical XBUS for the purpose of controlling access to the XBUS. The bus

cycle request/grant function of the bus control port determines, or arbi-

trates, the time slot during which a 'port has access to the XBUS. Also, the

XBCP handles such error conditions as one port attempting to access a

nonexisting port or the recovery from issuance of false grants due to noise

or other error conditions on the bus. Additionally, the XBCP has the
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capability of directly linking up to three 15USa via a parallel date

cable. If several XeUSe are to be linked directly, then the JZC? arbitrates

between then to determine which 1BUS has priority. Currently, three EUs

can be directly linked allowing up to 72 ports to exchange information via

directly synchronized bus cycles.

Each XBUS port has a request line to the IBUS Control Port and a grant

line from the Control Port. Wienever a port requires control of the hBUS to

execute a bus cycle, it issues an asynchronous request to the control port

via its own request line. The control port is then responsible for arbi-

trating among these requests and issuing one and only one grant at a time

based upon sam type of arbitration scheme. The arbitration scheme for this

control port is based upon a priority encoding scheme with several levels of

encoding.

Fuuctionally, the XBUS control port consists of arbitration nodules,

cable transceivers with control logic, and other control logic.

3.1.3.1 XECP Arbitration Modules. Arbitration modules are the basic

building blocks of the Bus Control Port. Each module is an independent

circuit linked to other modules for synchronization purposes. Ports on the

XBUS link directly to the lowest level of arbitration modules via individual

request/grant signal lines. Thus, a 24 port ZEUS requires three low level

arbitration modules because each module handles eight request/grant pairs;

i.e., ports. These low level arbitration modules require one group arbitra-

tion module. In addition, if several XBUSs were to be linked directly then a

master arbitration module would be required to provide synchronization.

3.1.3.2 XBCP Cable Transceivers and Control. Several XBUS. may be linked

via an ZEUS cable. This cable transfers bus cycle data between any of three

XBUSs under control of the master XBCP. Control logic on each XBCP deter-

mines whether its host ZBUS is to receive or transmit data and subsequently

enables or disables the ZBUS cable transceivers. During a bus cycle all

three ZEUSs become synchronized to the same bus cycle, so that ports may be

arbitrarily located in any of the three ZBUSs.
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3.1.3.3 Control Logic. Control logic exists on the XBCP for the purpose of

generating a proper power-up reset and to provide proper error recovery due

to exception conditions on the XBUS. Whenever power is first applied to an

XBUS, it is necessary for the XBCP to provide a reset signal to all ports.

This reset signal assures that both the hardware and software on each XBUS

port will be properly initialized. The other function of the control logic

is to handle exception conditions on the XBUS. This includes such situations

as one port attempting to access a nonexisting port or the recovery from

issuance of false grants due to noise or other error conditions on the XBUS.

If an attempt is made to access a nonexisting port, the control logic must

provide an indication to the requesting port that the bus cycle is to be

terminated. If a false grant is issued, the XBCP must decide after an

arbitrary time span to terminate the grant signal and process other

requests. Currently, this time span is approximately two to three micro-

seconds; i.e., several times the length of a normal bus cycle. Thus, these

exception conditions have minimal impact on the throughput of the XBUS.

3.1.4 Bus Interface Logic. The MPC bus is interfaced to each port through a

bus interface module resident on each port. This module contains an Input

Data Handling Register (IDHR), an Output Data Handling Register (ODHR), and a

Bus Address Register (BAR). The IDHR allows data to be written into a port

and the ODHR allows data to be written from a port. The BAR contains the

address of the destination port for any bus cycle. Additionally, the port's

bus interface contains logic to allow the reset/restart of a port when power

is applied to the cold system, the state controller associated with the XBUS

data transfer protocol, and the circuitry required to request and recognize

bus cycle grants. Figure 111-02 depicts these components.

3.1.5 XBUS Extension. The current MPC architecture will support a direct

connection of three XBUSs with a total of 72 ports. Further extension is not

directly supported at the hardware level. The method currently employed to

achieve XBUS extension is the interconnection of two independent XBUSs via a

high speed comunications line. One port on each bus must be dedicated to

the support of the comiunications lines. The firmware resident on those

ports is the Inter-Bus Communications CIBC) subsystem. IBC, discussed in
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Section 3.2.1.2, is designed to support cross bus IPC dialogues in &a lsiAM

which is transparent to each of the ports engaged in the dialog".

3.1.6 KPC Option Ports. The MPC uses a two-board approach in fabricating

ports to provide added design flexibility. The CPU board contains the Can-

tral Processing Unit (CPU), memory, and XBUS interface while the 10 board

contains the I/0 interface to the attached device. This approach provides

the flexibility to develop new I/0 interfaces without modifying the CPU

board. It also permits changing CPUs or memory without modifying the 1/0

board.

Both the CPU and 1/0 boards are fabricated using the Multiwire process

that encapsulates all component interconnection circuits in an adhesive sub-

strate instead of the printed circuit approach. This is such a reliable ap-

proach that it is used in high density space craft circuits. The cost to

produce ultiwire boards is competitive with printed circuit (PC) technology,

yields from production runs are higher than multi-level PC boards, and over-

all production turn-around time is less.

Each board measures 9.5 by 9.5 providing 90.25 square inches or, a total

oO 180.5 square inches of space for electronic components.

3.1.6.1 CPU Board. The CPU board contains the microprocessor, memory, XBUS

interface, local port bus, and a conaector to the I/O board. Each is

described below.

3.1.6.1.1 Microprocessor. The MPC uses the INTEL 8080A microprocessor that

executes 500,000 instructions per second. The INTEL 8080A is an 8-bit

processor based on NlOS technology and is capable of addressing up to 64K

bytes of memory.

3.1.6.1.2 Read Only Memory (RON). The CPU board contains 8K bytes of zi

eraseable ROM used for program storage. When software is placed in RON, the

resulting firmware takes on the characteristics of hardware and is, there-

fore, not remotely modifiable. This physical characteristic of RON

111-9

, , l I I I



sakes its use in the MPC ideally suited to the secure environments typical of

Defense Department installations.

3.1.6.1.3 Random Access Memory (RAM). Each CPU board also contains 4K bytes

of static RAM for data storage within a port. Both RAM and ROM memory

operate on a 500 nanosecond cycle time, matching the cycle time of the INTEL

8080A CPU.

3.1.6.1.4 XBUS Interface. The CPU board also contains logic to interface a

port to the XBUS. The XBUS interface contains an Input Data Holding Register

(IDHR), an Output Data Holding Register (ODHR), and a Bus Address Register

(BAR). The IDHR allows data to be received by a port and the ODHR allows

data to be written from a port. The BAR contains the address of the destina-

tion port to which data in the ODUR is to be written to.

Additionally, the port's XBUS interface contains logic to allow the

reset/restart of a port when power is applied to a cold system, the state

controller logic associated with the XBUS data transfer protocol, and the

logic required to request and recognize bus cycle grants.

3.1.6.1.5 Port Bus. Each port has its own bus interconnecting its proces-

sor, memory, XBUS and I/O interfaces. This means that port operation does

not affect the XBUS until sufficient data has been processed and accumulated

for transmission to another port. Therefore, the effective bandwidth of the

MPC is far in excess of the XBUS. Each port bus also has a bandwidth of 16

megahertz.

3.1.6.2 1/0 Board. The I/O board is previred for several component confi-

gurations; however, it is fabricated only with the components required for a

specific configuration. The use of component sockets provides this flexibi-

lity. The prewired configurations include:

o Asynchronous/Synchronous Receiver/transmitter

" Multi-Protocol Comunications Controller
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o Single/Double Density Floppy Disk Controller

Prewiring of these three types of 1/0 interfaces also allows fur

spares. That is, instead of maintaining a complete board set for each

application, a single CPU board can be used with several I/O boards, as

required.

3.1.6.2.1 Asynchronous/Synchronous Receiver/Transmitter. Each I/O board is

previred to use the Western Digital 1931 Asynchronous/Synchronous Receiver/-

Transmitter device which interfaces serial data comunication channels to a

port. The WD1931 is capable of full duplex comunications with asynchronous

or synchronous systems using character-oriented protocols. Eight selectable

clock rates support comunication circuits operating at up to I million bits

per second. This configuration of the Option Module is used to implement the

OJ-389 and Inter-Bus Counications (IBC) subsystems. Figure 111-03 depicts

this particular I/O board.

3.1.6.2.2 Multi-Protocol Comunications Controller. Each I/O board is also

prewired to accept the Signetics 2652 Multi-Protocol Communications

Controller (MPCC). The MPCC is an multichannel device that formats, trans-

mits, and receives synchronous serial data while supporting bit-oriented or

byte compatible protocols. Bit-oriented protocols supported include Sychro-

nous Data Line Control (SDLC), High Level Data Control Link (HDLC), and

Advanced Data Comunications Control Protocol (ADCCP). Character-oriented

protocols supported include BI-SYNC and Digital Data Coamunications Message

Protocol (DDCMP). The 1652 MPCC supports line rates of up to 500,000 bits

per second. This Option Module configuration is currently used to implement

DDCMP interfaces to DEC PDP-11 computers.

3.1.6.2.3 Single/Double Density Floppy Disk Controller. The NBC Microcom-

puters, Inc., uPD765 Single/Double Density Floppy Disk Controller (FDC) chip

contains the circuitry and control functions for interfacing one MPC port to

up to four FLoppy Disk Drives. The uPD765 FDC is capable of supporting

either IBM 3740 single density, or IBM System 34 double density formats, -

including double-sided recording. Programmable data record lengths
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of 128, 256, 512, or 1024 bytes per sector are supported. This Option Module

configuration may be used to interface the Floppy Disk which is optional

within each MPC cabinet.

3.2 PC Firuware Description. A combination of system-level and interface

specific firmware subsystems reside in the ROM of every MPC Version 1.0

port. All subsystems are contained in ROM with no global memory attached to

the bus. In cases where a ports ROM is not sufficient to contain the entire

subsystem, the MPC system allows for downloading of modules from other ports

into RAM for execution and hence effects a quasi-virtual memory capability.

Figure 111-04 depicts the MPC firmware subsystems.

3.2.1 System-level Subsystems. System-level control and services for the

MPC are provided by its Inter-Port Communications (IPC), Inter-Bus Comluni-

cations (IBC), Error Detection and Recovery (EDR), and External Control and

Monitoring (ECH), subsystems. Debug and diagnostic facilities are provided

by the MPC Asynchronous Control Element (MACE). Each subsystem is discussed

below. Since IPC is the only subsystem within a port to directly address the

bus, the new design the MPC affected major modifications in its structure.

For this reason, the current IPC will be discussed first and in greater

detail than other subsystems to provide an understanding of its overall func-

t ion.

3.2.1.1 Inter-Port Communications (IPC). Each MPC port must be able to

establish and participate in port-to-port dialogues. The hardware that

provides this capability is the XBUS and related circuitry on each port. The

software that provides this capability is the IPC subsystem. IPC effectively

lies between the bus interface hardware and the remaining MPC subsystems

contained within each port. No other subsystem within a port directly

addresses the bus interface hardware. In this manner, IPC essentially enve-

lopes the exchange bus and shields the remaining subsystems from the intri-

cacies of the exchange bus interface, thus providing hardware transparency.
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3.2.1.1.1 Dialogues. A copy of IPC is contained within the ROM of every

port in the MPC. When a port subsystem has data or control information to

pass to another port it expresses that requirement to IPC which then

establishes the dialogue. A dialogue has three components: contact and

lockon, data exchange, and termination. Figure 111-05 depicts the elements

and sequence of each component of an IPC dialogue.

3.2.1.1.1.1 Contact and Lockon. Contact and lockon establishes a port-to-

port connection. In this process, an initiating port examines the status of

the desired destination port to determine whether it is available, writes a

lockon request to that port (contact), and then waits for a lockon response

(lockon). If the request is accepted, IPC will retain control of the micro-

processors in each connected port. The contact and lockon process ensures

that both ports agree to a dialogue and provides synchronization for a

subsequent date exchange. Once a dialogue has been established between two

ports, all other ports attempting to establish a dialogue will be prevented

from doing so until the initial two-port dialogue is completed.

3.2.1.1.1.2 Data Transfer. The physical description of data to be transfer-

red between ports is expressed as a four byte data control word (DCW) passed

to IPC from the subsystem requesting the transfer. The actual data transfer

is driven by the use of data and control interrupts and is performed under

checksum control to ensure communications reliability for data exchange.

Furthermore, only two bytes of data may be transferred per bus cycle and a

dialogue between ports may not utilize continuous (back to back) bus cycles.

Thus, data being transferred between ports is interleaved on the XBUS but the

software in any one port is completely unaware of it. Any checksum error

will result in data retransmission or termination of the dialogue with

appropriate notification to each port. Any number of simultaneous dialogues

may be active on the XBUS at any time limited only by the number of ports in

the MPC and the capacity of the XBUS.
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3.2.1.1.1.2 Dialogue Termination. The normal termination of a dialogue is

signalled by the control byte of the last DCW executed by IPC. At this time,

the ports will be disconnected and processing will be restored to the soft-

ware subsystem executing in each port.

3.2.1.1.2 IPC Components. The IPC subsystem contains two distinct compo-

nents; the active component and the passive component. The passive component

must reside in each port, but the active component is optional, although mest

ports do require both components. Each component is necessary to a

dialogue. The active component of one port controls the dialogue while the

passive component of the other port executes in lockstep with the first port

as the dialogue proceeds. The active component is invoked as a subroutine

call from a subsystem executing within a port. The passive component is

executed at the interrupt level in response to interrupts received from the

active component of IPC in another port. Behaviorly, the active component

operates as a main level extension of a local port subsystem, while the pas-

sive component operates as an asynchronous, interrupt level process which

executes independently from a local port subsystem. Figure 111-06 depicts

the concept of active and passive IPC.

3.2.1.1.3 Communication Types. Port-to-port dialogues may be initiated by

either an active port or a passive port, depending on which component of IPC

will be utilized by the port initiating the dialogue. An active port may

initiate a dialogue with a passive port by simply executing a subroutine call

to the active IPC component in that port. This type of dialogue is called

direct because the initiator port also controls the dialogue. A passive port

may also initiate a dialogue, but the dialogue must be controlled by the

active port. This type of dialogue is called an indirect dialogue. The pas-

sive port cannot initiate the dialogue directly because the passive IPC com-

ponent in that port can only operate in response to interrupts received from

an active port. Thus, the passive port must simply express a desire for the

dialogue by conditioning the port status. By prior arrangement, the desired

active port must be actively scanning the status of other ports connected to

the XBUS in order to detect when a passive port has requested a
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dialogue. When the request is recognised by the active port, the actiw port

will then conduct a prearranged dialogue vith the passive port.

The direct communications mode is subdivided further into two classes;

system direct and network direct. A port may be conditioned to be available

for any or all communication types. The system direct mode is generally

utilized for general purpose system control messages from subsystems such as

the Error Detection and Recovery (EDR) or the External Control and Nonitoring

(ECH) subsystems. The network direct is utilized by application level sub-

systems such as the DI-355 or DDCMP subsystems. The subdivsion of the direct

mode allows a port to condition itself to receive system control messages but

not general network traffic.

3.2.1.1.4 Communications Channels. A Communications Channel is a table

which contains all control information needed by IPC in order to conduct a

dialogue. Any dialogue between two ports requires a specific Communications

Channel in one port to be logically connected to a specific Communications

Channel in the other port. A Commnications Channel is a long-term control

mechanism for communicating between two processes in different ports.

Each port is capable of handling a multi-tasking environment in which

several asynchronous processes are executing. Each of these processes may

have its own unique communication requirements. Thus, each port may be

configured with up to four Comunications Channels. Multiple Communications

Channels allows IPC an opportunity to multiplex dialogues through the single

XBUS interface of each port.

3.2.1.2 IBC Subsystem. The Inter-Bus Communications (IBC) subsystem is

designed to provide a XBUS to XBUS link between two MPC systems. Each IEC is

identical and the link provided by a pair of IBCs in conjunction with the

Inter Port Communications (IPC) software is designed to be transparent to all

other HPC subystems. Transparency is accomplished by mutual arrangement

between IPC and IBC subsystems.
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3.2.1.3 EDR Subsystem. The Error Detection and Recovery (EDR) subsystem

acts primarily as the MPC System Manager. EDR is aware of the software and

hardware functions of each port type and provides this information to indivi-

dual ports as required. EDk maintains various control configuration and

status tables in which the dynamic state of each port, console, connected

device, or external system is continuously recorded. Logic for the reconfi-

guration or recovery of various port or port subsets of the MPC is resident

in EDR. Commands for the execution of these routines may be received from

the MPC operator or from other internal subsystems of the MPC. Provision for

the eventual automatic execution of these routines as the result of internal

EDR decision logic has been made.

3.2.1.4 ECM Subsystem. The External Control and Monitoring (ECM) subsystem

is designed to interface with the MPC monitor console which enables operators

and maintenance personnel to monitor MPC operating conditions. ECM utilizes

the control configuration and status tables maintained by EDR. ECM co mands

fall into two categories; those for displaying the current status of MPC

components and those for directing the reconfiguration/recovery of various

MPC components.

3.2.1.5 MACE Subsystem. The final system-level control subsystem called MPC

Asnychronous Control Element (MACE) is an interactive development tool that

is integrated with the operation of the ECM subsystem. MACE provides a

machine level interface between the MPC programmer or maintenance personnel

and any of the various MPC ports. With MACE, any number of MPC ports may be

simultaneously synchronized and/or debugged. Any number of MACE ports may be

configured. MACE is the subsystem that provides actual hardware control over

the MPC monitor console(s) and is able to discriminate between commands to

the internal MACE debug facility or to the external ECM subsystem. Comands

for ECM are passed through IPC and the HPC XBUS to the ECM port. ECM comand

logic executed and appropriate display output responses are generated. These

responses are transferred back through IPC and the XBUS to the MACE port

which performs the actual output on the MPC monitor console.
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3.2.1.6 File Management System. The File Management System (FMS) provides

standard file management services for any other MPC subsystem. These

services include the capability to create and delete files, and the capabi-

lity to read an& write files. The FMS port type is configured as a DEC 11/23

16 bit microprocessor with 84K bytes of memory. The large memory is utilized

as cache buffers for file control information. The disk hardware consists of

an 80 Mbyte Ampex disk drive which is Tempest Qualified, and a DILOG DQ200

disk controller. Each FMS port type controls a single disk drive. Two FMS

ports are configured on the PACER MPC and one on the OISS MPC.

The FMS also includes the File Management Control (FMC) port type which

provides operator interface to the FMS and provides a mechanism for locating

files for access.

3.2.2 Interface-Specific Application Subsystems. MPC application firmware

provides the custom design interface for all comnunications circuits, proces-

sors, or peripherals interfaced with an MPC. Currently, the following inter-

face-specific port application firmware is available or under development.

3.2.2.1 OJ-389(v)/G Subsystem. The OJ-389 port software provides sufficient

intelligence to handle line, data, and command manipulation required to

control an OJ-389 workstation, in addition to communicating with the host and

other MPC subsystems. The major functions of the OJ-389 software are to:

(1) receive and process messages from other MPC subsystems or the host and

(2) build and send messages for other MPC subsystems or the host and (3)

download the 0J-389 control program to the workstation when requested.

3.2.2.2 Local Printer Subystem. The MPC also has a printer subsystem to

provide an interface with a Model T5160 local printer which is a TEMPEST

approved version of a Centronics 704 printer.

111-23



3.2.2.3 HDLC/DN3355 Subsystem. The D9355 Subsystem provides the hC inter-
face to PACER through the HIS-DN355 PEP. The DM355 Subsystem is responsible

for maintaining comunications between the NPC and the SIS-DN355. This

communication is accomplished by the exchange of data frames on 50,000 bits

per second (50 KBPS) communications lines between the UPC and the RIS-11355.

Each communications line is terminatcd in a Receive and Transmit Port pair

which manages the comunications flow on each line between the MPC and the

HIS-DN355. The MPC interfaces to the HIS-DN355 using High Level Date Link

Control (HDLC) Remote Network Processor (RNP) procedures.

3.2.2.4 DDCMP Subsystem. The Digital Data Commications Message Protocol

(DDCQP) port is designed to interface the MPC with any Digital Equipment

Corporation (DEC) computer using the DDCMP protocol. The subsystem provides

line start-up and termination, data exchange, and retransmission services

over a 56,000 bits per second, full duplex, comwunication circuit.

3.2.2.5 Special Purpose Communications link (SPCL) Subsystem. The SPCL

subsystem for the MPC is currently being designed. It will provide for

termination of the SPCL comunications link and for CSP/AUTODIN message traf-

fic destined for PACER. The MPC will include a store-and-forward function to

hold message traffic and send it on to PACER when that system is available.
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SECTION IV

IMPROVED MICROPROCESSOR DESIGN

This section presents a detailed discussion of the Improved Microproces-

sor Design. The following subsections delineate hardware and software ele-'

ments of the MPC architecture that have been designed or redesigned to

satisfy the specifications established in Section II of this document.

4.1 Design Overview. The Improved Microprocessor Design consists of an

integrated group of design changes to the MPC Exchange Bus, Exchange Bus

Control Port, Exchange Bus Interface electronics, Inter-Port Communications

Subsystem firmware, and the design of a new Inter-Bus Link Port. The fol-

lowing denotes the major design consideration in each component of the

Improved Microprocessor Design:

rmproved Exchange Bus

o Demultiplexing of data and address lines

o Addition of Function Code Bus

Improved Exchange Bus Interface Electronics

o Decoupling of port processor from the Exchange Bus Interface

o Multi channel DMA

Improved Inter-Port Communications Subsystem Firmware

o Integration and consolidation of the improved hardware
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Nov Inter-Bus Linking Port

o Asynchronous bus cycle propogation

4.1.1 Improved Exkhange Bus. The improved KPC Exchange Due (ZIUS) will be

the common hardware communications media for all ports in m NPC cabinet.

Section 4.2 describes this in detail. The most notable feature of the

improved XXBUS is the denultiplexing of the data and address lines in the

information bus. In addition, a Function Code bus has been incorporated into

the information bus to support design changes in the XXBUS interface elec-

tronics of each KPC port which involves the formatting of XXUS information

into information packets. The control bus will be simplified to facilitate

bus cycle arbitration and error detection. This configuration will increase

the bandwidth of the XXBUS by permitting the simultaneous transfer of data,

address, and the new Function Code.

4.1.2 Improved Exchange Bus Control Port. The Improved Exchange Bus Control

Port (XXBCP) will provide the hardware logic to grant NPC ports access to the

XXBUS. Section 4.3 describes this in detail. The improved XIBCP will uti-

lize new arbitration logic that services all bus cycle requests on an equal

and independent basis. This improvement, made in harmony with changes to the

XBUS interface electronics, will permit the duration of a bus cycle to

decrease to a minimum of 200 nanoseconds and therefore increase the maximum

bus cycle rate to 5 megacycles per second. The maximam bandwidth of the

XXBUS wil l then increase dramatically to 80 megabits per second. In addition

to increasing the performance capabilities of the XXBCP, the reliability will

be increased as well. Through the use of 3 control lines in the US and a

hardware timing device, the XXBCP will be able to detc:t and recover errors

such as a request to access a nonexistant port, or a false grant issued due

to noise or other error conditions that mkay exist on the XXBUS.
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The XXBUS and XXBCP will provide the 4PC with a powerful high speed hard-

ware communications media for the purpose of transferring data and control

information. The remaining aspects of the Improved Microprocessor Design

describe improvements to the basic MPC architecture that will optimize the

rate at which data can be trasnferred efficiently across this bus.

4.1.3 Improved Exchange Bus Interface Electronics. The improved Exchange

Bus Interface Electronics Unit (XXBIU) will provide the interface for an MIPC

port and its Primary Port Processor Unit (PPPU) to access the improved

Exchange Bus (XXBUS). The most significant. kspect of the redesign of the

XXBIU is the logical decoupling of the PPPU from the XXBUS. The XXBIU will

provide all the required logic to gain access to the XXBUS, resolve dialogue

contention, transfer data and ensure its integrity in an environment asyn-

chronous to the PPPU. The XXBIU will consist of three hardware modules:

Microprogram Control, Direct Memory Access, and XXBUS. These modules will

function as integrated yet independent elements under microprogram control to

facilitate control and data transfers. To support these 3 modules, the XXBIU

will be configured with dedicated Read Only Memory for microinstruction

storage, internal buses for routing of data and control, and control lines to

support intermodule communication and control. The XXBIU is described in

detail in Section 4.4.

This configuration will increase port-to-port bandwidth in the MPC signi-

ficantly by releasing the PPPU from time consuming overhead processing

required to initiate and sustain dialogues. Application subsystems subordi-

nate to the PPPU will therefore have more processing power at their dispo-

sal. The result of these improvements, made in harmony with changes to the

Inter-Port Counications Subsystem, will permit highly efficient port-to-bus

data transfers at a 10 megabit per second rate.

4.1.4 Improved Inter-Port Comunications Subsystem Firmware. The improved

Inter-Port Co unications (IPC) subsystem will provide the software interface

to consolidate the improved hardware components of the Improved Microproces-

sor Design. The most significant aspect of the redesign of the IPC subsystem

is the distinct separation of IPC into two logical levels of operation.
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The first level of IPC, IPC Level One (IPC Li), will consist of a group of

microprograms residing in the XXBIU. This micro software will perform all of

the 4overhead processing associated with dialogue initiation and data transfer

asynchronously to the PPPU. The second level of IPC, IPC Level Two (IPC L2),

will consist of firmware residing in the Read Only Memory (ROM) of the port.

This level of IPC will execute under the domain of the PPPU and initiate IPC

LI microprograms in a structured manner to perform port-to-port dialogues.

The improved IPC subsystem firmware, utilizing the hardware resources of

the XXBIU, will provide a highly efficient coummunications interface. This

configuration will allow port resident application subsystems to devote more

processing power to their individual requirements and therefore permit the

MPC architecture to address integrated problems of a greater magnitude. The

IPC is further described in Section 4.5.

4.1.5 Inter-Bus Linking Port. The new Inter-Bus Linking Port (XXBLP) will

provide an asynchronous hardware connection to link two or more MPC XXBUSs

together. The XXBLP will be an instrumental component of the improved MPC

architectuie which will support application environments where more than 24

MPC ports are required to solve a problem. The most notable feature of the

new XXBLP will be the decoupling uf XXBUS's ar the bus cycle level. The

XXBLP will transmit and receive data and control information contained in an

individual bus cycle to physically isolated, but logically connected XXBUSs.

The XXBLP will consist of an XXBUS transmitter, receiver, Inter Bus Link

(IBL) cable, and IBL cable electronics. A queue to buffer Information

Packets (IP) will provide the asynchronous decoupling of XXBUSs and produce a

pipeline effect for transfers across the IBL cable. The XXBUS transmitter

and receiver will be configured to allow variable routing paths between

XXBUSs to prevent possible bottlenecks from degrading the overall performance

of a MPC network. In addition, because the XXBUS transmitter and receiver

logic will propogate earit IP asynchronously at the bus cycle level, the XXBLP

will be able to multiplex an infinite number of dialogues concurrently

without regard for individual dialogue synchroni'.ation.
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This configuration will allow system planners to desiSn and tailor an

integrated network of MPC XXBUSs to solve unique, large scale problems. The

use of XXBLPs would permit network growth with a potential for up to 4096

ports (64 XXBUSs) in an individual network, where each individual bus end its

associated ports would operate at full bandwidth oblivious to the remaining

components of the network. The XXBLP is further described in Section 4.6 of

this document.
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4.2 The XXBUS Information Packet. Information that is exchanged between the

ports of an MPC via XXBUSes and XXBUS linking ports, (described later in this

document), is transferred in Information Packets (IP). Each IP corresponds

physically to the amount of information that is written onto an XXBUS during

a single bus cycle and logically to the smallest amount of information that

can support communication between any two ports in a XXBUS network. Figure

IV-O shows the structure of the XXBUS Information Packet. As shown, the IP

consists of the data, address, and function code fields. The following is a

description of each of these fields and how they support communications

between the ports of an MPC.

4.2.1 XXBUS Information Packet Data Field. The IP data field is 16 bits in

width which corresponds to the width of a port system data bus. The IP datit

field contains the data that is to be transferred between processing elements

of MPC ports.

4.2.2 XXBUS Information Packet Address Field. The XXBUS IP address field

consists of 14 bits and is partitioned (Figure IV-Ol) into three fields: the

PATH 1.D., BUS I.D., and the PORT I.D. Table IV-O1 provides a detailed

description of each of these fields.

4.2.3 XXBUS Information Packet Function Code Field. The XXBUS IP function

code field consists of 7 bits. The function code is used to specify the

function of the addressed port that is to operate on the IP data field.

4.2.4 Improved MPC Exchange Bus. The Improved MPC Exchange Bus (XXBUS)

includes all of the bused and radially connected information and control

circuit paths that provide for the transfer of information between MPC ports

of a XXBUS card cage. Each XXBUS card cage contains 25 port slots, one for

the XXBUS control port and 24 for any type or mix of MPC ports. Figure IV-02

shows the XXBUS to contain four sets of bused parallel circuit paths connec-

ting these port slots. Three of these sets, the data, address, and function

code buses, are referred to collectively as the information bus. The fourth

is referred to as the XXBUS control bus.. Along with these bused paths each
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of the 24 port slots has a pair of dedicated control lines, XXBUSRQ/XXBUSGT,

which are connected to the XXBUS Control Ports Arbitration Unit.

4.2.4.1 XXBUS Information Bus. The XXBUS information bus is designed to

carry a complete information packet during each bus cycle. Although each of

the circuit paths comprising the information bus are identical in timing and

electrical characteristics, for discussion purposes the XXBUS information bus

is partitioned into three additional buses: data, address, and function code

buses. These correspond to the data, address, and function code fields of

the information packets.

4.2.4.1.1 Data Bus. The Data Bus will consist of 16 parallel paths which

connect the 24 port slots. These 16 parallel paths correspond to the 16 bits

of the data field of the XXBUS information packet.

4.2.4.1.2 Address Bus. The Address Bus will consist of 14 parallel paths

which connect the 24 port slots. These 14 parallel paths correspond to the

14 bits of the address field of the XXBUS information packet.

4.2.4.1.3 Function Code Bus. The Function Code Bus will consist of the 7

parallel paths which connect the 24 port slots. These 7 parallel paths cor-

respond to the 7 bits of the function code field of the XXBUS information

packet.

4.2.4.2 XXBUS Control Bus. The XXBUS Control Bus will consist of the

control lines used to synchronize XXBUS port transmitters and receivers

during XXBUS cycles. They are also connected to the XXBCP which uses them to

coordinate the operations of the arbitration unit with XXBUS cycle opera-

tions. The XXBUS control bus consists of four control lines: XBCA, XBACK,

XBIRL, and XBRESET.

4.2.4.3 XXBUSRQ and XXBUSGT Control Lines. Each port slot has a pair of

XXBUSRQ/XXBUSGT lines connecting it to the XXBCP Arbitration Unit. The

XXBUSRQ lines are used by the ports of the XXBUS to request the use of the

XXBUS. The XXBUSGT lines are used by the XXBCP to grant the use of the XXBUS

to a requesting port.
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4.3 THE XXBUS Control Port. Since only a single port may use the ]MAS at

any one time, a mechanism for establishing when a port say use the IUB8 is
required. This section describes the XXBUS Control Port (ZXnCP) which

provides this mechanism along with those used for detecting and recovering

faulty bus cycles and for aiding system initialization during pwer up and

system reset.

4.3.1 General Description. Each port on the XXBUS will have a dedicated

pair of signal lines, XXBUSRQ/XXBUSGT. The XXBUSRQ line will be used to make

a request to the arbiter and the XXBUSGT line will be used by the arbiter to

grant use of the XXBUS to the port. The ZIBUSRQ lines are sequentially scan-

ned and latched by the arbiter when they become active. The scanning opera-

tion will provide a Last-Look-At-Lowest-Priority (LLLP) method of determining

which requesting port will be granted use of the XXBUS.

Principle characteristics of the XXBCP design are:

0 The arbiter will be modular consisting of nine modules organized

into three levels of arbitration. These nine modules can provide

arbitration of 24 ports however, more modules can be added to expand

this number up to 40. This provides for a total of 64, which can be

added without adding another level of arbitration.

o Worst case request to grant delay time when the XXBUS is not busy

will be less than 200 nanoseconds. Worst case queued grant-to-grant

delay will be less than 50 nanoseconds.

o The XXBUS Control Port will detect and provide recovery from faulty

bus cycles caused by requesting transmitter failing to respond to

grant or by the receiver failing to engage transmitter.

0 The XXBCP will provide the proper XXBUS reset signal during power

up. This reset can also be triggered manually or by writing a

special comuand Function Code to the XXBUS.
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4.3.2 XXBUS Control Port Structure. Figure IV-03 shows the functional block

diagram of the XXBCP. As shown the XXBCP will consist of the arbitration

unit, the XXBUS cycle sequencer, the XXBUS time out timer, and the XXBUS

reset unit. Associated with these major functional units are the following

control lines: XXBUSRQO-XXBUSRQ23, XXBUSGTO-XXBUSGT23, GRANTED, QUEGT,

OUTGT, STARTTIMER, TIMEOUT, and XXBCP reset. This section describes these

units and how they are organized to support the functions of the XXBCP.

4.3.2.1 XXBCP Arbitration Unit. The arbitration unit will consist of nine

logically identical modules organized hierarchally into three levels of arbi-

tration (see Figure IV-04). The first level will consist of six modules.

Each of the Level 1, or Port Arbiters can arbitrate over four ports. These

six Port Arbiters are divided into two groups of three modules each. The

Port Arbiters in each group must make a request to, and receive a grant from,

the Level two or group module before issuing a grant. Likewise, the two

group arbiters prior to issuing a grant to a port arbiter must make a request

to and receive a grant from the Level three or master module.

Each module will consist of two separate elements. The first will per-

form the function of scanning the request lines and queuing the grant to be

issued. The second will perform forwarding requests to the next level of

arbitration. This arrangement will permit the parallel operation of request

forwarding, scanding, and latching the request.

The operations of these modules and the XXBUS will be coordinated by the

three control lines, GRANTED, QUEGT, and OUTGT. The GRANTED control line

will be wired to all of the Port Arbiters and will be used to indicate when

the arbiter is issuing a grant. The OUTGT control line will also connect to

all of the Port Arbiters and will be used by the XXBUS cycle sequencer to

synchronize the outputting of grants with the completion of XXBUS cycles.

The QUEGT control line will be connected to all of the modules of the arbiter

and be used by the XXBUS cycle sequencer to release the arbiter from its

granting state.

IV-12



4  W (A )

ww

CD-
x2

..- ,-

W- I 0U
W ) I

0 0

Im -
u W Z 3

do 0
x C

RQ

9p tp U

Z w I- m

4 D D I



MASTER ARBITER

(LEVEL 3)

TO/FROM GROUP 0 0
PORT ARBITER 0...2 00

PORT 0...)T5

PORTU ARBITER I

TO/FRTO/FROM
POPOR ARBITTRS 0.04

PORTSRQ 12X...S15 3
TXBORZFXXUST2

PORT ARBITER 4 USGT2I

PORT SRBITE/xxsusGT

Fig,, /V-0. XXSP ArbtGRANTEUni

(LVEL 1



4.3.2.2 XXBUS Cycle Sequencer. The XXBUS cycle sequencer will control the

sequencing of XXBUS cycle initiation and completion with the request scan and

grant queuing operations of the arbitration unit. The logic of this control

will be implemented as an Algorithmic State Machine (ASH) which coordinates

its activities with the arbiter using the control lines GRANTED, QUEGT, and

OUTGT; and the XXBUS using the control lines XBCA, XBACK, and XBIRL.

Associated with the XXBUS cycle sequencer is the XXBUS cycle timer which

will be used to time out bus cycles that fail to take place or to complete.

The control line start timer will be used to enable and reset the timer and

the control line time out will be used by the timer to indicate the time out

cond i t ion.

4.3.2.3 XXBUS Reset Unit. The XXBUS reset unit will provide the proper

reset signals to the XXBUS and/or the XXBCP. These reset signals can be

triggered either by power up, manually, or by writing the appropriate command

Function Code to the XXBUS. The control line XBRESET will be sourced by the

XXBUS reset unit and will be used to reset all the ports on an XXBUS. The

XBACK line will time the decoding of the execution codes. The manual XXBCP,

and XXBUS reset lines will be connected to hardware switches.

4.3.3 XXBUS Control Port Operations. The operations of the XXBUS control

port will include arbitrating requests for use of the XXBUS, sequencing the

operation of the arbiter with the operation of the XXBUS, detecting and

correcting faulty XXBUS cycle operations, and providing the proper reset

signals during power up and system reset. The following is a description of

these operations presented with respect to the operations of the arbitration,

sequence control, and reset control units.

4.3.3.1 XXBCP Arbitration Unit Operations. The XXBCP arbitration unit will

perform the operation of arbitrating requests for use of the XXBUS by the

various processing and linking ports of the XXBUS. The arbitration operation

includes scanning for XXBUS requests, latching and forwarding incoming

requests, queuing latched requests, and outputting the XXBUSGT.
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The arbiter will receive requests and issue $rants via the 24 pairs of

XXBUSRQ and XXBUSGT lines. The arbiter will coordinate with the XIBUS cycle

sequencer via the control lines GRANTED, OUTGT, and QUEGT. A description of

each of these signals is provided in Table IV-01.

Figure IV-05 is an example of the relative timing of specific arbiter

signal lines and serves to illustrate the operation of the XXBCP arbitration

unit. The following is a description of this operation made in reference to

this specific example:

The sequence of events begins with all port, group, and mater modules

scanning. That is, none of the XBUSRQ lines are active and the XXBUS is

idle. During this time the coutrol lines GRANTED and QUECT will be inactive

and control line OUTGT will become active.

" When an XXBUSRQ line becomes active, this request will be imdiate-

ly forwarded to the master arbiter. In the diagram, XXBUSRQ 23

becoming active causes PORTRQ 5 to become active which in turn

causes GROUPRQ I to become active (see (1)).

o When the master arbiter scans a GROUPRQ line and sees it active it

will immediately stop scanning and make the corresponding GROUPGT

line active. In the diagram GROUPGT I will become active (2).

o While the request is being forwarded, the group arbiter's scanner

will be sequencially looking at the PORTRQ lines connected to it.

When the scanner sees the active PORTRQ line it will also stop scan-

ning. The group arbiter will not, however, make the corresponding

PORTGT active until its GROUPGT line becomes active. In Figure

IV-05, GROUP Arbiter I does not make PORTGT 5 active until it has

scanned and latched PORTRQ 5 and GROUPGT I becomes active (3).
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o Again, while the request is being forwarded, the Port Arbiter's

scanner will be sequencially looking at the XXBUSRQ lines connected

to it. The Port Arbiter will stop scanning when it sees XXBUSRQ

active. If and when OUTGT and its PORTGT line become active, the

Port Arbiter will then proceed to make the corresponding XXBUSGT

line active. When XXBUSGT becomes active, the granted line which is

wired to all the Port Arbiters will be made active by the granting

Port Arbiter. In the example, OUTGT is already active therefore

Port Arbiter 5 makes XXBUSGT 23 active upon seeing PORTGT 5 becoming

active (4).

o The master and involved 'Group and Port Arbiters will remain in the

granting state until QUEGT becomes active.

o Upon receiving an XXBUS grant from the Arbiter, the granted trans-

mitter will proceed, if operating properly, with a bus cycle. The

start of the XXBUS cycle will be sensed by the XXBUS cycle sequencer

which will then proceed to make QUEGT active. When QUEGT becomes

active, the granting arbiter modules will leave their granting

states and return to their scanning states. In the example when

QUEGT becomes active, Port Arbiter 5, GROUP Arbiter I, and the

master arbiter will deactivate their grant lines and resume scanning

(5A).

Also, OUTGT will become inactive at this time and will remain

inactive during the duration of the bus cycle.

" Upon receiving an XYBUS grant from the Arbiter, the transmitter if

operating properly will proceed with a bus cycle. When it does so,

its corresponding XXBUSRQ line will become inactive (SB).

o When the granting Arbiters leave their granting state, the granted

line will become inactive. This action will indicate to the

sequencer that the arbiter has resumed scanning and therefore will

make QUEGT inactive again.
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It should be noted that while the master and involved Group and Port

Arbiters are in their granting state, the other Group and Port

Arbiters will continue to scan their request lines. If a XXBUSRQ to

a non-involved Arbiter is received, that request will be imediately

forwarded to the master module where it will wait until the master

module resumes scanning. When the Master Arbiter resumes scanning

the pending GROUPRQ will be sensed and the corresponding GROUPGT and

PORTGT lines will become active. The Port Arbiter will hold off

making the corresponding XXBUGT line active until OUTGT becomes

active again at the end of the previous bus cycle (6).

o When OUTGT becomes active again, the Port Arbiter with the queued

grant will make the corresponding XXBUSGT line active. In the

figure, XXBUSRQ 0 became active shortly after XXBUSRQ 23 did. The

request generated by XXBUSRQ 0 is forwarded to the master module via

PORTRQ 0 and GROUPQ 0. When the Master Arbiter resumes scanning, it

sees the active GROUPRQ 0 line; the Master Arbiter stops scanning

and makes GROUPGT 0 active which in turn causes PORTGT 0 to become

active. With PORTGT 0 active, OUTGT becoming active is the only

remaining condition for XXBUSGT 0 becoming active (7).

4.3.3.2 XXBUS Cycle Sequence Operations. The XXBUS cycle sequence will

perform the operation of sequencing the arbiter with the XXBUS. Figure IV-06

shows the relative timing of the control signals associated with the opera-

tion of the XXBUS cycle sequencer. The following is a description of the

operation of the XXBUS cycle sequencer given in relationship to the relative

timing of these signals:

" The sequence begins with the XXBUS idle. When the XXBUS is idle the

sequencer will make OUTGT active. When it receives an XXBUS request

it will respond immediately by issuing the corresponding grant and

making granted active (see (1) in diagram).

o When granted becomes active, the sequencer will proceed to start the

XXBUS cycle time out by activating the control line STARTTIMER (2).
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o The sequencer will remain in the STARTTIMER state until the trans-

mitter receiving the grant starts the XXBUS cycle by making XBCA

active (3).

o When XBCA becomes active, the sequencer will know that the transmit-

ter received the grant. The sequencer will then proceed to make

QUEGT active which will cause the Arbiter to resume scanning and to

queue the next grant (4).

o When the arbiter resumes scanning, the sequencer will deactivate

OUTGT and keep it inactive until the completion of the XXBUS cycle;

the granted line will become inactive (5).

" At this point, the sequencer will wait for the normal completion of

the bus cycle or for the time out condition to occur. A normal bus

cycle will proceed with the transmitter engaging a receiver via the

control lines XBCA/XBIRL/XBACK as shown in Figure IV-06. When all

of these signals become inactive the bus cycle will be completed and

the sequencer will proceed to reset the time out timer and reacti-

vate OUTGT (6A).

o If the control line TIME OUT becomes active, then the sequencer will

engage the transmitter by providing the proper sequencing of XBACK.

This action will enable the transmitter to complete the bus cycle

(6B). In both cases upon completion of the bus cycle, OUTGT will be

returned to its active state and start timer will be returned to its

inactive state.

o At this point, the arbiter will issue the next grant if one is

queued (7).
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4.4 Exchange Bus Interface Unit (XXBIU). The XXBIU is a microproeraimble

interface control unit that will provide the interface between the Primry

Port Processing Unit' (PPPU) and the new MPC Exchange Bus (XXBUS) (Figure

IV-07). The general architecture of the new XXBIU design is illustrated in

Figure IV-08. The improved XXBIU will consist of microprogram mmory, a

Microprogram Control Module, DMA Module, and a XXBUS module. Independently

controlled data paths and control lines will be utilized to interconnect the

XXBLU modules internally, as well as to the Primary Port Processing Unit, and

the new MPC Exchange Bus. These architectural features contribute to the

realization of the design requirements and are further discussed in the

following paragraphs.

The Microprogram Memory (MM) of the XXBIU will be dedicated to the stor-

age of Microinstruction directives (MI directives). Having a dedicated MM

will eliminate the latency periods introduced by multiplexing which is re-

quired if operands and MI directives share the same memory. This also means

that the more complicated logic needed to implement the multiplexing scheme

will not be re':uired. Through the addition of a mechanism to support the

pipelining oi MI directives, operations related to MI directive transfers and

operand transfers can take place in parallel.

The microprograms will remain static and cannot be dynamically altered by

the XXBIU. This simplifies the addressing hardware and will also ensure

integrity of the microprograms by preventing an inadvertent alteration due to

software or hardware addressing errors.

The hardware addressing control imposes partitioning of the MM into three

fixed groupings. These groupings will be organized hierarchically into three

levels. The first and highest level divides the memory into 32 equal sec-

tions, or microprograms. Each of the 32 microprograms are divided into 8

equal subsections, or microprogram modules. Each microprogram module con-

tains 8 microinstruction words, representing the lowest level of MM address-

ing. Each microinstruction word may contain one or two MI directives with
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associated data. The microinstruction word format is depicted in Figure

IV-09. This method of partitioning greatly simplifies addressing logic.

These three addressing levels will be controlled or handled differently by

the control logic residing in the Microprogram Control Module.

Each microprogram of the XXBIU corresponds to a function that the XXBIU

can be directed to perform. The function (microprogram) to be executed is

specified by Function Codes which are written to the XXBIU via the Port Bus

by the PPPU or via the XXBUS Function Code Bus by other Ports. Although each

microprogram must be specified by an unique Function Code, Function Codes do

not always specify microgrograms; that is, Function Codes are also used to

specify hardware implemse.ed functions such as Port Reset, XXBIU Reset,

Enables, mode setting, and status reading.

The Microprogram Control Module (M4X) will contain the control logic and

primitive hardware elements needed to control the execution of Micrograms.

It will also contain the command and monitoring facilities which are used by

the Primary Port Processing Unit (PPPU) and the XXBUS to control the XXBIU at

the command level. The principle architectural features of the M04 involve

support of two duplex channels. The MCY1 will be able to execute four micro-

program at the same time to support the two duplex channels through the use

of special multiplexing hardware. This capability supports simultaneous

active and passive IPC dialogues.

The DMA Module (DMAM) will contain the hardware elements used by the

XXBIU to directly access the port memory. The DMA module will support two

channels of block transfers and direct addressing from the microprogram.

Thus, the addressing parameters of two channels can be maintained simultane-

ously as the IMAM is used by the microprograms to directly address the port

memory to fetch processing parameters, etc. All DMAM activities will be

driven from MI directives. This arrangement makes the number, type, and mix

of data transfer activities and data processing activities programmable.

The XXBUS Module (XBN) will contain the XXBUS transmitter and receiver

elements along with the Conditional Logic Unit (CLU) which is used to decode
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control data and to perform data validity checks. Principle features of the

XXBUS Module include support of two channels and the Transmit/Receive

(XMIT/RCVE) control logic. Each channel will have dedicated Port addressing

registers and redundant check word generators. The XXBUS receive and

transmit control logic will be implemented using hardware Algorithmic State

Machines (ASHs). This will minimize the IMBUS cycle time by eliminating

synchronization latencies and microprogram response times.

The MI directive path, the XXBIU Transfer Bus (XTS), the XXBUS Port Paths

and their associated control logic are designed for parallel operations. The

MI directive path will be dedicated solely for transferring information

representing MI directives. This dedication will permit the pipelining or

queuing of HI directives concurrently with other XXBIU activities. It will

also simplify the memory control circuitry, making memory access time the

primary limiting factor in reducing MI directive queuing times. The XTB will

carry data between the XXBIU and the Port Data Bus. These operations will be

performed in parallel with unrelated activities involving the XXBUS and/or

the MI directive path. This arrangement will also help reduce the impact of

the relative slowness of these transfers on the overall throughput of the

XXBIU. The XXBUS port paths will be controlled by dedicated ASMs containing

transmit and receive control logic. This differs from the XTB in that the

XTB will be driven directly by the MI directives and the XXBUS transmit and

receive controllers will almost completely be decoupled from MI directive

control.

4.4.1 Microprogram Memory. The Microprogram Memory (MM) contains the micro-

programs that drive the XXBIU hardware activities. The following is a

description of how these microprograms are mapped into the MM and how micro-

program memory addressing supports the logical flow of XXBIU operations.

4.4.1.1 Mapping. The mapping of microprogram into the MM is constrained by

the addressing hardware which imposes a partitioning of the MM into three

hierarchically arranged levels. These levels are microprograms, microprogram

modules, and microinstructions. At the highest level, the MM is divided into

IV-28



32 sections where each section is a microprogram. At the second level, each

microprogram is divided into eight (8) microprogram modules. At the lowest

level, each microprogram module contains 8 microinstructions.

4.4.1.2 Microprogram Memory Addressing. Addressing at each level is accom-

plished through three different address fields of the microprogram memory
address. These three fields correspond to the partitioning of the MM and are

referred to as the microprogram address, the microprogram module address, and
microinstruction address. The most significant difference between these

three address fields is how they are specified. The microprogram address is

specified externally to the XXBIU by writing a Function Code to the XXBIU.

This is the only way in which a microprogram address can be specified; that

is, the XXBIU cannot by itself modify a microprogram address. The micropro-

gram module address is specified by, and only by, the microprograms them-

selves as they are executed. A microprogram elects to change its micropro-

gram module address by issuing a microinstruction that involves branching.

The microinstruction address can be specified only by the XXBIU hardware.

When the microprogram and/or the microprogram module address is changed, the

microinstruction address will be automatically reset to zero (0). When a

microprogram module begins executing, the microinstruction address will be

incremented automatically each time a microinstruction is fetched.

4.4.1.3 Microprogram Logical Flow. The logical flow of XXBIU operations

will be controlled at three levels which correspond to the partioning and

addressing of the microprogram memory. Logical flow at the microprogram

level is a process of deciding which microprogram to execute and will be

controlled externally by the primary port processing unit or by other ports

via the XXBUS. This is a process of deciding which Function Code to send to

the XXBIU. At the second or HP module level, logical flow is a process of

deciding the next MP module address and is controlled by the microprograms

themselves via the Jump (iMP) MI directives and the hardware it drives. At

the third or microinstruction level logical flow will be sequential and

controlled by the hardware.
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4.4.2 Microprogram Control Module. The Microprogram Control Module (MCM)

contains the mechanisms that provide for XXBIU coiinand and monitoring, Func-

tion Code control, microprogram control, and for microinstruction control.

XXBIU comnand and monitoring provides the PPPU and the XXBUS with the

mechanism needed to reset, enable, disable, select the operational mode of,

and to read the status of the XXBIU. Function Code control involves the

movements of function codes within the XXBIU. Microprogram control involves

the logical flow of microprogram execution. Microinstruction control

involves the fetching, decoding, and execution of microinstructions. Figure

IV-10 shows the functional block diagram of the microprogram control module.

This subsection will describe how these elements are organized and how they

operate to support these mechanisms.

4.4.2.1 XXBIU Command and Monitoring. The elements of the MCM that provide

for XXBIU command and monitoring include the Port Command Unit (PCU), the

iXBUS Command Unit (XCU), and the Status Interface Unit (SIU). The following

is a description of each of these units.

4.4.2.1.1 Port Command Unit (PCU). The PCU will provide the PPPU with hard-

ware level control of the XXBIU. Through the use of the PCU, the PPPU will

set the operational mode, control status reads, set hardware control flags,

and load Function Codes from the port bus. These commands will be sent

asynchronously to the PCU via the port data bus by using I/0 write cycles,

controlled by the two lines I/0 write (lOW) and XXBUS command. The IOW line

is the port system bus I/O write cycle timing control line and will be used

to control the command decode sequenc. ging of the PCU. The XXBUS command

line comes from the port bus devi me decoder and will be used to enable

the PCU for I/O cycles.

4.4.2.1.2 XXBUS Command Unit (XCU). The XCU will provide other MPC Ports

with hardware level control of the XXBIU. Through the use of the XCU, other

4PC Ports may issue commands that consist of enabling, disabling, and reset-

ting the XXBIU. These commands will be set asynchronously to the XCU via the

XXBUS by the use of XXBUS write MI directives from the other ports.
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The commands will be encoded in Function Codes received by the XXBIU via

the XXBUS Function Code Bus and the XXBUS Input Function Code Register

(XXIFR). Commands will be indicated by the setting of the Passive-Active

Switch (PAS), and setting of the Lock On Request Bit (LOB). When the PAS is

set to select the passive channel (PAS=O), and the LOB is set to indicate a

lock on request (LOB=1), then a command is indicated ai'd the XCU will decode

and execute the specified command. The timing of this' execution sequence

will be controlled by the queue controller using the DN code XXBUS Control

(DECXC) line.

4.4.2.1.3 Status Interface Unit (SIU). The SIU will provide the PPPU with

the capability to monitor the state of the XXBIU at 2 levels. At the micro-

program level, two status registers, one for both active and passive IPC, are

provided. These two registers are updated from Microprogram Memory (MM) via

the MM data bus when an 'update status' Ml directive is executed. At the

hardware level, the state of principle hardware control and status lines can

be monitored. Timing and control of status reads are provided by the two

control lines I/O Read, (IOR) and XXBUS command. The IOR will be the port

system bus I/O read timing control line and is used to control the output

sequencing of the SIU. The XXBUS command line originates from the port

memory bus device select decoder and will be used to enable the SIU for I/O

read cycles.

4.4.2.1.4 Interrupt Request Lines. In addition to the SIU, there are two

interrupt request lines, Active Ready (ACTRDY) and Passive Request (PASRQ).

The setting of these lines will be controlled via the 'set interrupt request'

MI directive. Once set, each line is cleared only when the PPPU sends the

appropriate 'clear interrupt request' command to the Port Command Unit

(PCU). These two interrupts and the SIU can be used to implement a high

level communications protocol between the microprograms and the PPPU firmware.

4.4.2.2 Function Code Control. Function Code Control involves the movements

of Function Codes internally to the XXBIU. The following paragraphs describe

the structure and operations of the data path and control elements that

support this movement.

IV-32



4.4.2.2.1 Function Code Transfer Paths. Function Codes will enter the

Microprogram Control Module (MCM) from either the port data bus or the MUS

Futction Code bus. The Function Code from the port data bus will be loaded

directly into the Address Queue (AQ) by the Port Comand Unit (PCU), when it

receives a load-execution-code command from the PPPU. Function Codes that

enter the AQ froa the port data bus can only be loaded into either the Active

Port Microprogram Address Register (APMPAR) or the Passive Port Microprogram

Address Register (PPMPAR) of the AQ (Figure IV-i). Function Codes that

enter the MCM from the XXBUS are loaded into the XXBUS Input Function Code

Register (XXIFR) by the receiver logic that resides in the XXBUS module.

Once a Function Code is loaded into the XXIFR, it is held until the AQ

controller rejects or accepts it. If the Function Code is accepted, it will

be either sent to the XXBUS Command Unit (XCU), or to the AQ. Function Codes

that enter the AQ from the XXBUS can only be loaded into either the Active

XXBUS Microprogram Address Register (XAMPAR) or the Passive XXBUS Micropro-

gram Address Register of the AQ. After a Function Code is loaded into an

addressing register (AXMPAR), its next destination is the Microprogram Memory

Address Bus (MPMAB). This transfer is made via the multiplex switch which

connects all the addressing registers of the AQ to the MPMAB. This multiplex

switch is controlled by logic contained in the AQ controller.

The path taken by Function Codes when leaving XXBIU will originate in

Microprogram Memory (MM) and end at the XXBUS Function Code bus. An outgoing

Function Code is stored in the data field of a "load XXOFR" MI directive.

When this M1 directive is executed, the Function Code is loaded into the

XXBUS Output Function Code Register (XXOFR). The Function Code is held until

the XXBUS transmitter logic, located in the XXBUS Module (XBM), gains control

of the XXBUS. At that time, the Function Code is sent out onto the XXBUS and

is transferred to the XXIFR of the target port.

4.4.2.2.1.1 Function Code Control - Port Data Bus. Function Codes will be

loaded from the port data bus into the AQ when the PPPU I/O writes a 'load

function code' command to the Port Coumand Unit (PCU). To support the PPPU

in this operation, the MCM will provide two interrupt request lines, ACTRDY
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and PASRQ, and two status bits via the Status Interface Unit (SIU). The two

interrupt request lines are set to their active state from the microprograms

when a "set interrupt" MI directive is executed, and are reset when the PPPU

I/O writes an "acknowledge interrupt" command to the PCU. These two inter-

rupts are used by the XXBIU to indicate when a microprogram requires servi-

cing from the PPPU. The two status bits are connected to the execute request

flags of the Active and Passive Port Microprogram Address Registers (APMPAR

and PPMPAR). These two status bits thus provide the PPPU with the means to

verify the availability of the APMPAR and the PPMPAR prior to loading a Func-

tion Code.

4.4.2.2.1.2 Function Code Control - XXBUS. Function Codes entering from the

XXBUS Function Code bus will go through two transfer sequences before

reaching the XXBUS Command Unit (XCU) or the AQ. The first transfer, from

the XXBUS to the XXIFR, will be controlled by the XXBUS receiver logic

located in the XXBUS Module (XBM). The second transfer, from the XXIFR to

either the XCU or the AQ, will be controlled by the AQ loader located in the

AQ controller. These transfers will be supported by the .-.trol status lines

PAS, LOB, LORQEN, ACTEN, PASEN, EXXARQ, and EXXPRQ. During each transfer,

control of the XXIFR will be maintained by the controller of that transfer.

Transfer of XXIFR contrl will be performed using 'handshaking' techniques

and control lines XXIRLOCKED, RELKXIR, INRQj and INACK.

The following paragraphs describe the sequence of events that will take

place in the XXBIU when Function Codes are received from the XXBUS.

0 The XXBUS receiver will transfer the Function Code into the XXIFR.

Once the XXIFR has been loaded, the XXBUS receiver will begin the

control transfer sequence with the AQ loader.

Immediately after a bus cycle, during which the XXBUS input holding

registers have been written into, the XXBUS receiver logic will take

INRQ to its active state and wait for INACK to assume its active

state. When the AQ loader senses that INRQ is active, it will
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respond immediately by taking INACK to its active state. When IMACK

becomes active, the XXBUS receiver logic returns INRQ to its

inactive state and becomes available for the next bus cycle. When

INRQ becomes inactive, the AQ loader returns INACK to its inactive

state.

o The AQ loader will then determine what action is required, regarding

the Function Code just received.

o The next event to occur, is the release of XXIFR. Once loaded,

XXIFR is locked, indicated by XXIRLOCKED becoming active, and

remains locked until the release sequence is executed. This

sequence will be executed by the loader if the Function Code is

rejected, or by the microprogram when the Release-Input Data

Register (XXIDR) MI directive is executed. RELXXIR will be taken to

its active state when this sequence is initiated. The locking

flip-flop, located in the XBM, will be cleared and the contrtl line

XXIRLOCKED becomes inactive. When XXIRLOCKED becomes inactive,

RELXXIR will be taken to its inactive state. Once the XXIDR is

released, the XXBUS receiver will permit its loading during the

attempt to write to it by the XXBUS.

4.4.2.2.2 Microprogram Memory Address Registers and Multiplexor. The

switching of the Microprogram Memory Address Registers, (MPMAR), onto the

Microprogram Memory Addressing Bus, (MPMAB), will be controlled by the multi-

plex logic located in the Address Queue (AQ) controller. This multiplex

logic will consist of two sets of flip-flops and an ASM. Each set contains

four flip flops. The first set of four flip-flops will serve as execute

request flags for each of the MPMARs, with the second set of flip-flops

controlling the multiplex switch. The ASM will implement the logic as a

rotating, last handled, lowest priority multiplexing scheme. This scheme

will be used to control the scanning and latching of requests from the execu-

tion request flag and to control the setting of the multiplex switch control

flip-flops.
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4.4.2.3 Microprogram Control. The Microprogram Control mechanisms support

the logical flow of microprogram execution. These mechanisms include those

hardware elements that implement the MI directives used by the microprograms

to perform conditional and unconditional branching to one of eight micropro-

gram modules within a microprogram, and termination/subtermination of micro-

program execution. It will also include sections that provide direct hard-

ware control of the logical flow including reset and special timer triggered

activities. In all cases, microprogram module branching will be a process of

selecting between alternative Microprogram Module Addresses used to address

the next microprogram module. The following paragraphs describe the hardware

elements and operations involving the manipulation of the microprogram module

address fields of the microprogram memory address registers.

4.4.2.3.1 Microprogram Control Elements. The following describes the ele-

ments that provide for microprogram control and how they are organized.

These elements include the data paths and those that control, as directed by

the microprograms, the operation associated with microprogram control.

4.4.2.3.1.1 Microprogram Control Data Paths. The registers that support

Microprogram Control include the Module Branch Register (MBR), and the four

Microprogram Module Addressing Registers (MDAR) of the Microprogram Address

Queue. The MBR will hold the if-true-branch target module address during the

exe :ution of conditional branch MI directives. Each of the MDAR's will hold

the address that points to the next microprogram module of the associated

microprogram to be executed.

As shown in Figures IV-10 and IV-ll, circuit paths associated with these

registers include:

o the Microprogram Memory Data Bus (MPMDB)

o the Branch Microprogram Module Bus (BMMB)

o the multiplex switch

o the Microprogram Memory Address Bus (MPMAB)
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The MPMDB will carry the MP Module Branch Address contained in the data

field of branch MI directives to the HBR during MI directive fetch cycles.

The BMMB will carry the MP Module Branch Address from the NOR to any one of

four MDARs. From the MDAR, MP Module Address will be connected to HPK&3 by

the multiplex switch.

4.4.2.3.1.2 Microprogram Control Hardware. The Microprogram Control Hard-

ware is represented in Figure IV-1O by the Microprogram Control Module

Control Unit (MCMCU). The MCMCU will contain the sequence controller that

performs transfer operations along the Microprogram Control data path, hard-

ware that decodes and executes the branch MI directives, and hardware that

implements the channel time out operations.

Associated with the MCMCU will be the following control and status lines

supporting the Microprogram control hardware:

o >ATO: This line represents the timing element used to control

time related activities of the active channel.

o >PTO: Passive channel version of ATO.

o ATC: This line provides the status of the active channel iMA

block transfer word counter.

o PTC: Passive channel version of ATC.

" COMPCND: This line provides the result of the compare logic unit,

which is contained in the XXBUS module, during the execu-

tion of compare MI directives.

With respect to the organization of these control lines, each circuit path of

the microprogram control data paths will have a different ASH controlling its

activities; that is, the fetch MI directive activity associated with MPMAB

and the MPMDB, the MI directive execution activity associated with the BMMB,

and multiplex switch control will all be controlled by separate, yet9 coor-

dinated hardware logic.
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4.4.2.3.2 Microprogram Control Operations. The operations involved with the

control of microprogram logical flow will be processes that determine the

next state of the Microprogram Module Address Registers (MDAR). These opera-

tions consist of two types. The first type provides microprogram controlled

logical flow or branching. This control is represented by the MI directive

set that includes: DMA Block transfer branch activities, compare logic

branch activities, unconditional branching, and microprogram termination/sub-

termination. The second type of activity provides for direct hardware

control of microprogram logical flow.

4.4.2.3.2.1 DMA Block Transfer Branch Operations. DMA block transfer opera-

tions will be performed by the DMA Module (DMAM) under direction of the

microprograms. The MI directives to be sent to the DMAM include those that

set up the DMAM addressing )arameters and those that direct the DMAM as to

when a word transfer can take place with respect to other possible MI direc-

tive activities. This direct control by the microprograms will be performed

by the execution of the DMA tranfer MI directive and the JMP ATC/PTC MI

directive set.

The block transfer microprograms of the two DMA channels will be imple-

mented using the appropriate versions of these two MI directives in a condi-

tional loop structure. During the execution of these microprograms, the DMAM

will transfer a single word of the block to be transferred each time it

receives a DMA transfer MI directive. The JMP (ATC/PTC) MI directive will be

used to determine when all words in the block have been transferred.

The JMP (ATC/PTC) MI directives will be supported by the status lines ATC

and PTC which indicates to the Microprogram Control Module (MCM) the word

count status of their respective channel's word counter. Each time a DMA

transfer MI directive of a channel is executed, that channel's word counter

will be decremented by one. When the channel's word counter reaches its

terminal count state, the terminal count status line, ATC/PTC, of that chan-

nel will become active. Once it becomes active, the execution of that

channel's JMP-IF-ATC/PTC MI directive will result in the microprogram module

jumping to the microprogram module specified by the MI directive, ending the
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block transfer operation. Also, when the terminal count condition for a

channel is reached, the execution of any subsequent DMA transfer MI direc-

tives by the DMA Module will be inhibited. This action is required because

of the possible pipelining of the DMA transfer MI directives.

Any number or mix of MI directives can be contained within a DMA transfer

microprogram module, except those that might erroneously change the DMA para-

meters. These additional MI directives may be included to perform integrity

checking, data comparisons, or subterminations. The inclusion of subtermi-

nate MI directive will permit the multiplexing of a DMA operation with the

operations of any other microprogram.

4.4.2.3.2.2 Compare Logic Unit (CLU) Branch Operations. The XXBIU can be

programmed to perform any one of a number of compare operations on data that

is received from the XXBUS. The hardware that performs these operations, as

directed by microprograms, resides within the XXBUS Module and are referred

to collectively as the Compare Logic Unit (CLU). A compare operation will

begin when a Compare-Jump MI directive is received by the XXBUS Module

(XBM). During the fetch of this directive, the Branch Module Address will be

loaded into the MBR. During the execution of this directive, the CLU will

indicate the results to the MCMCU via the CMPCND status line. If the compare

tests true, then CMPCND becomes active. CMPCND becoming active will result

in the target MP Module address being loaded into the Microprograms MDAR. If

the compare does not test true, the execution will terminate. This communi-

cation arrangement requires that the MCMCU and XBM remain synchronized

throughout the entire execution of Compare-Jump MI directive.

4.4.2.3.2.3 Unconditional Branching. This operation will be performed when

an unconditional Jump MI directive is received. During the execution of this

MI directive, the Module Address which was loaded into the Module Branch

Register (MBR) during the MI directive Fetch cycle will be loaded into Module

Address Register (MDAR) of the executing microprogram. Also during this

execution cycle, the microinstruction counter will be set to zero. Thus, the

next MI directive to be executed after the execution of an unconditional Jump

will be the first MI directive of the target microprogram module.
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4.4.2.3.2.4 Termination/Subtermination MI Directive. The termination KI

directive will be used by the microprogram to indicate to the hardware that

it has finished, thus terminating its execution. If this MI directive is

executed by a portside microprogram, the 4H will clear the appropriate EXRQ

flag in the multiplex logic and will also set the availability status flag to

indicate to the PPPU that the respective port channel is available for the

next XXBIU operation. If this MI directive is executed by an ZEBUS-side

microprogram, then the M140 will clear the appropriate EXRQ flag in the multi-

plex logic and will indicate to the loader logic that the channel is ready to

receive the next microprogram Function Code from the XXBUS. In either case,

the microprogram module address register will be set to zero and the

Multiplexor will advance to the next requesting microprogram.

The operation of subtermination will be provided to implement the micro-

program controlled multiplexing scheme. When a microprogram completes execu-

ting MI directives that require, for reasons of integrity and speed, the

microprogram to maintain control of the XXBIU, the microprogram will issue a

subterminate MI directive, which will result in the multiplexor advancing to

the next requesting microprogram. When the 1C executes this instruction,

the module address that was loaded into the MBR during the fetch sequence,

will be loaded into the MDAR of the subterminating microprogram. After the

MDAR is loaded with this "return" address, the MCM will advance the multi-

plexor and reset the microinstruction counter to zero.

4.4.2.3.2.5 Channel Time Out Activity. Channel time out will be provided

for the synchronization of microprogram level communication between XXBIUs by

sapporting the request/respond-or-time-out protocol used to achieve this

synchronization. The time out activity during this synchronization process

will be as follows:

" The microprogram of the initiating port assembles the appropriate

request information packet and sends it out onto the XXBUS.

o The requesting microprogram then starts the appropriate timer.
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0 After starting the timer, the microprogram issues a terminate MI

directive and waits for a response Function Code or for the time out

condition. If the Function Code is received, the microprogram that

is subsequently executed stops the timer. At this point, the

microprograms are synchronized. If the time out condition occurs,

then the MCU will issue an interrupt to the port processor.

4.4.2.4 Microinstruction Control. The XXBIU Microinstruction set supports

the activities needed for the three modules encompassed in the XXBIU. These

include the XXBUS, DMA, and Microprogram Control Modules. Each module can

operate independently, dependently, synchronously, or asynchronously on the

portion of the MI directive that they receive and operate on. In support of

this operating environment, the MI directive set is functionally partitioned

into two types of directives: XXBUS/DMA Control, and MCM Control. One type

of directive need not be related to the directive specified in the other

type. This partitioning will provide for increased throughput by eliminia-

ting the need for synchronization of the entire XXBIU for each MI directive,

while supporting the concurrent operation of each module.

The operations asociated with each MI directive are further divided into

two phases: fetch and execution. MI directive fetch phase relates to the

process of transferring the MI directive from the microprogram memory (MM),

to the execution hardware of the XXBIU. The execution phase coordinates the

hardware primitives that execute the MI directives specified with each micro-

instruction.

There are four possible combinations of MI directives, each requiring

different fetch and execution cycles. These combinations include the

XXBUS/DMA directive, MCM directive, a combination of both that are executed

independently, and a combination of both where one requires the coordination

of the other. The MI directive, as well as the state of the XXBIU both

contribute to the number of fetch and execution cycles required.
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4.4.2.4.1 MI Directive Fetch Phase. This phase includes the execution of

four sequential processes: determination of when the fetch cycle should take

place, analyzing the MI directive, the XXBIU status to determine which

modules are involved, synchronization of the modules involved, and loading of

the MI directive into the specified module's Microinstruction Holding

Register (MIMRE.

The determiniation of when to fetch will be controlled by the multiplex

logic, the Microprogram Control Module (MCM), and the Micronistruction Execu-

tion Logic (MIEL). The multiplexor and the fetching logic will coordinate

this process by handshaking the lines MIELRDY and MIELEX. MIELRDY indicates

to the multiplexor that the MIEL is ready to begin execution of the next

microprogram. MIELEX is used by the multiplexor to indicate to the MIEL tha

the next microprogram is ready to be executed.

The determination of the modules involved and the sequencing required is

reflected by the setting of the key control bits in the microinstruction

word, and the status of the Transmit Ready (XMITRDY) and Compare Condition

(CMPCND) control lines. Figure IV-09 showed the format of the XXBIU microin-

struction. Of the bits shown, 23 and 19 will be used to indicate to the

fetch logic which MI directive is to be executed, along with those that

specify the XXBUS output register transfer, or the Compare/Jump directive.

During the early phase of the microinstruction fetch cycle, these bits are to

be tested by the fetch logic and their setting determines the nature of the

remaining cycle.

If the XXBUS/DMA module directive of the microinstruction is to be

executed, the fetch logic will use the handshake lines DXRDY and DXEX to

synchronize these modules with the fetch operation. If only the MCM portion

of the MI directive is to be executed, the fetch logic will wait for a ready

indication from the MCM. In this case, the MI directive execution logic,

DXRDY and DXEX, will not be used. When both are specified, the fetch logic

will coordinate the two activities by waiting for both to become ready before

execution of the load sequence.
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When the loading of the MI directive into the XXBUS/DMA MIHR is required,

and either the XMITRDY line is not active, or if the XMITRDY is active and

the MI directive does not involve the XXBUS output register, the DXRDY line

will be checked. The DXRDY line will be set to an active state by the

XXBUS/DMA module when it is ready to receive the next MI directive. When

this occurs, the MI directive data bus will be gated to the MIHR's of both

modules. When the fetch logic retrieves an Ml directive with bit 19 set and

the DXRDY line active, DXEX will be activated. When this occurs, the

XXBUS/DMA modules will respond by deactivating the DXRDY line. This action

latches the MI directive into the XXBUS/DMA MIHR's and starts the execution

phase when the DXRDY becomes inactive. The fetch logic deactivates the DXEX

line and proceeds with the next fetch sequence, if the Compare/Jump portion

of the Ml directive was not specified. If the Compare/Jump is specified, the

fetch logic will wait for either the CMPCND or the DXRDY line to become

active before proceeding with the next fetch operation.

When loading of an MI directive into the MCM MIHR is required, and either

the XMITRDY is not active, or the XMITRDY is active and an XXBUS output

register is not part of the MI directive, the following will occur. During

the execution of the MCM portion of an MI directive, a point will be reached

when the address of the next MI directive becomes valid. At this point, the

fetch logic will gate the Ml directive into the holding registers. When the

execution of the previous MI directive is completed, the fetch logic will

latch the MI directive into the holding registers, start the execution logic,

and proceed with the next fetch sequence if the Compare/Jump portion of the

MI directive was not specified. If the Compare/Jump was specified, the fetch

logic will wait until either the DXRDY or CMPCND control lines become active

before proceeding with the next fetch.

The loading of a MI directive into the MIHR of the DMA/XXBUS module, or

the MIHR of the MCM when XMITRDY is not active and the MI directive involves

an XXBUS output register, will be held in a wait state until the XXBUS trans-

mitter completes the XXBUS transfer. Completion will be indicated by XMITRDY

becoming active. To prevent hang up of the microprogram by the transmitter,

a time out condition can also terminate this wait state.
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4.4.2.4.2 MI Directive Execution Phase. The MIEL will determine when to

perform a MI Directive execution cycle, the hardware primitives involved in

the execution of the MI directive, and the actual execution of the MI direc-

tive by the hardware primitives. The details of each of these processes is

the function of the XXBIU modules involved. For the MCM, it will be a func-

tion of the MI directive being executed. The MCM execution hardware will

also respond to the hardware directives of time out and reset and to the

state of XXBIU. For the MCM execution hardware, all of these processes will

require coordination with the fetching logic, the microprograms, and with the

execution hardware of the XXBUS and DMA modules.

The determination of when to perform an execution cycle will be control-

led by the fetching logic and the microprograms. The fetching logic will

coordinate the MI directive loading operation with the initiation of the

execution sequence. The microprograms will indicate to the MIEL when to stop

execution by issuing a terminate/subterminate MI directive. The execution of

either MI directive results in the MIEL transitioning to its idle state. The

MIEL will remain in its idle state until it is restarted by the fetching

logic.

Execution sequence of a MI directive will be a function of the operati-n-

al specifics of the MI directive and the state of the XXBIU. The MI direc-

tive specified operations of conditional branching, unconditional branching,

flag setting, flag testing, register transferring, and NOP will require

different sequencing. This determination will be made early in the execution

cycle when the MI directive is decoded. The state of the XXBIU will include

the setting of the mode register, and the state of the status lines XMITRDY

and COMPCND which respectively coordinate the activities of the transmitter

and the CLU with the MIEL.

4.4.3 XXBUS Module. The design of the XXBUS Module (XBM) includes the

hardware elements to perform activities associated with transferring informa-

tion to and from the XXBUS. These elements involve transmitter and receiving

XXBUS Information Packets, decoding (testing) XXBUS data, and supporting data

error detection.
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4.4.3.1 XXBUS Transmitter Elements. Figure IV-12 shows the functional

elements of the XBM. The XXBUS Transmitting Elements (XT), include the XIBUS

Output Data Register, (XXODR), XXBUS Passive Channel Output Addressing

Register, (XXPOAR), XXBUS Active Channel Output Addressing Register (XXAOAR),

and the transmit control logic.

The XXODR will be a 16-bit register with its input connected to the XTB

and its output connected to the XXBUS data bus. Loading of the XXODR will be

controlled by the XBM Control Unit (XBMCU) and is performed when the XBMCU

receives a load-XXODR MI directive. Transfers from the XXODR will be

controlled by the transmit control logic. The XXODR serves to decouple the

activitie of the XXBIU fram those of the Bus.

The XXPOAR and XXAOAR registers will be 14-bits in width and are to be

loaded from the XXBIU Transfer Bus (XTB) by the XBHCU when the XBMCU receives

a Load-XYPOAR or Load-XXAOAR MI directive. These registers will hold the

addressing information to control the routing of information packets through

the XXBUS network. The XXPOAR and XXAOAR will be dedicated to the Passive

and Active DMA channels of the XXBIU respectively. By having dedicated

address registers, multiplexing of the active and passive DMA channels can

take place without requiring the reloading of the address register each time

a channel resumes operation.

The transmitter control logic will control the transfer of Information

Packets from the XXBUS output registers, (XXODR, XXPOAR or XXAOAR, and

XXOER), to the XXBUS. The transmitter will be an Algorithmic State Machine

and coordinates its activities with the XBMCU, using lines XMITSTART and

XMITRDY. Control of the XXBUS will be transferred to the transmitter using

lines XBUSRQ/XBUSGT. Synchronization of the transmitter with the receiver

sections of the other port on the XXBUS will be accomplished using XXBUS

control lines XBCA, XBACK and XIRL. XBCA will be activated by the transmit-

ter to indicate the start of the bus cycle on the XXBUS. XBACK will be acti-

vated by the receiver to indicate that the XXBUS Information Packet has been

loaded. XBIRL will be activated by the receiver to indicate that the XXBUS

Information Packet was locked out.
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4.4.3.2 XXBUS Receiver Elements. The XBM Receiver Elements (XR) will

include the XXBUS Input Data Register (XXIDR) and the receiver control logic

which is internal to the XBM (see Figure IV-12). The XR will also include

two external components: the address recognition unit (see Figure IV-08) and

the XXIFR, which is contained in the MCM (see Figure IV-10).

The XXIDR will be a 16-bit register with its input connected to the XXBUS

data bus and its output connected to the XXBIU Transmit Bus (XTB). The XXIDR

serves to decouple the activities of the XXBUS and those of the XTB, by

providing temporary storage of data received from the XXBUS during a bus

cycle. Loading of the XXIDR will be controlled by the XR. Transfer of data

from the XXIDR will be controlled by the Microprogram Control Module.

The Address Recognition Unit (ARU) shown in Figure IV-08, will perform

the function of comparing the port's XXBUS and port ID with the XXBUS address

bus. Thus, making the status line SELECT active when they are equal. The

ARU will consist of a word comparator with one argument connected to the Port

and Bus ID and with the other argument connected to the XXBUS address bus via

the XXBUS address port path and transceivers. The SELECT status line will

connect to the receiver logic located in the XBM and is used in conjunction

with the XBCA to indicate to the receiver port when to engage in an XXBUS

cycle.

The XR control logic will control the transfer of Information Packets

from the XXBUS to the XXBUS input registers, XXIDR and XXIFR. The XR control

logic will be implemented as an algorithmic state machine which must comuni-

cate with the KT logic of other ports and with the Loader Logic of the MP

Addres..' Queue Controller. Communication with the XT control logic of other

ports will be supported by the bus control lines XBCA, XBACK, and XBIRL.

Communication with the Loader Logic will be supported by the handshaking

lines INRQ, and INACK, the status line XXIRLOCKED, and the control line

RELXXIR.
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4.4.3.3 Data Decoding Elements. XMK Data Decoding Elements (DDE) support

the actiities of XXBUS data decoding and testing and are shown in Figure

IV-12. The DDE includes Q4PRI, O4PR2, XXIDR, the compare select vector, and

the Compare Logic Unit (CLU). Also associated with these operations is the

XBMCU which will control the DDE during the execution of the COMPARE-JUMP MI

directives.

CMPRI and CHPR2 will be 16-bit registers used to hold data to be compared

with the contents of the XXIDR. This loading activity will be performed by

the XBMCU when a COMPARE-JUMP MI Directive, specifying CMPRl/CMPR2, is

executed. The Compare Logic Unit (CLU) will provide the various bit test,

bit compare, and word compare functions required to support the data decode

and test operations. The bit test operations can only be performed using the

XXIDR. The compare operations will be performed between the XXIDR and either

COMPI, COMP2, Active Redundant Checkword generator (ARC), or Passive Redun-

dant Checkword generator (PRC). The type of compare/bit test will be

specified by the compare select vector. The result of these compares and bit

tests will be provided via the COMPCND status line. Synchronization of the

CLU with the Microprogram Control Module branch control logic will be provi-

ded by the control line TESTOND.

The COMPCND select vector register will be used to hold the COND select

vector during execution of the Compare/Jump MI directive. This value is

stored in the DMA/XXBUS Directive "Comp: Mode" field of Compare-JP Micro-

instructions and will be loaded into the COKPCND select vector register

during the MI Directive load sequence (see Figure IV-09).

4.4.3.4 XXBUS Data Transfer Error Detection. The XXBUS data transfer error

detection elements (Figure IV-12), include the Passive Redundant Checkword

Generator (PRCG), Active Redundant Checkword Generator (ARC) and the Compare

Logic Unit (CLU).

The PRCG and the ARC will be used to generate redundant check words, and

at the end of block data transfers to detect errors that might occur during

the data transfer process. Each of these sections will consist of 16 toggle
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type flip-flops. The inputs and outputs of each one of these flip-flops in

the PRCG and the ARC will be connected via a bidirectional gate to one of the

16 lines of the COMP bus. These connections are such that the PICG and the

ARC each will have one flip-flop for monitoring each of the 16 lines of this

bus.

The CLU will be used to compare the check word of its port (read from the

PRCG or the ARC via the COMP bus) and the XXIDR (which will hold the check

word received from the other port involved in the data transfer).

The XBHCU will control the execution of the error checking MI. directive.

Data transfer processes using error checking consists of four phases:

initialization, data transfer, check word transfer, and check word compare.

Before data is transferred between the XXBIU, the PICG or the ARC, depending

on the DMA channel involved, must be set to their initial condition (0).

After the PRCG or ARC has been initialized, the data transfer will

begin. During the transfer operation, data streaming through the XTB will

also be gated onto the COMP bus where it will be looked at by the PRCG or

ARC. The flip-flops monitoring the COMP bus will change state each time they

see a high in one of the 16 bits. Since the PRCG or ARC of the XXBIUs see

the same data stream, the check word generated by each XXBIUs PRCG or ARC

should be equal. At the end of the data transfer, one of the ports sends its

check word to the other. The port receiving the check word places it in its

XXIDR and proceeds to compare it with the check word generated by its own

PRCG or ARC.

4.4.3.5 XXBUS Transmitter Operation. The XT and XR engage in one of tvo

possible bus cycles which correspond to the locked and unlocked states of the

XXl Rs. Figures IV-13 and IV-14 show the relative timing of principle XT

control lines during each of these bus cycles. Of the signals shown, Trans-

mit Ready/Transmit Start (XMITRDY/XMITSTART) will be used to synchronize the

Nodule Control Unit with the XTE, Exchange Bus Request/Exchange Bus Grant

(XXBUSRQ/XXBUSGT) used by the XT to gain control of the XXBUS, and

XBCA/XBACK/XBIRL will be used to synchronize the XR with the XT during the
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bus cycle. The following describes the operation of the XT with respect to

the timing of these signals during each of these bus cycles:

4.4.3.5.1 XXIR UNLOCKED. Start-up of the XXBUS transmitter will be

performed by the XXBUS Module Control Unit (XBiCU) after it executes a

Load-XXODR MI directive. Before executing this instruction as shown in

Figure IV-13, the XBIMCU will test the state of XMITRDY. If XMITRDY is not

active, the XBNCU will wait until it becomes active before executing the MII

directive. If XMIrRDY is active, then the XB4CU will execute the instruction

and proceed with the transmitter startup sequence (see (1) in diagram).

The start-up sequence begins with the XBXCU asking XITSTART active (2).

This action results in the transmitter leaving its ready state and moving to

its XX3US Request state. When the transmitter leaves its ready state (3),

XDITRDY becomes inactive. This action will be sensed by the XBNCU which will

then know that the transmitter has started operating. The XBNCU will then

make XMITSTART inactive and proceed to become available for the next NI

directive. When the transmitter enters its XXBUS request state (3B, it will

make XXBUSRQ active. XXBUSRQ becoming active will be sensed by the XXBUS

control port (Section 4.3). When the XXBUS control port decides to transfer

XXBUS control to a requesting transmitter, it will do so by making the

XXBUSGT signal to that transmitter active. When XXBUSGT becomes active (4),

the transmitter will leave its requesting state which results in the deacti-

vation of XXBUSRQ and the beginning of the actual bus cycle sequence.

The bus cycle will begin with the transmitter making XXBCA active (5).

At the same time, the contents of the XXBUS output registers are placed onto

the XXBUS. When XXBCA becomes active, all receivers on the XXBUS will look

at the XXBUS address and determine whether or not to accept the bus cycle.

Also, the XXBUS Control Port will know that the transmitter started and will

proceed to deactivate XXBUSGT and to queue up the next grant. The receiver

accepting the bus cycle will proceed to load the XXBUS information into its

Input Registers. After the XXBUS information has been loaded into the XXIIS

by the accepting receiver (6), that receiver will acknowledge the transmit-

ting port by aking XBACK active. When XBACK becomes active, the
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transmitter will deactivate XXBCA and release the XXBUS. When XIBCA becomes

inactive (7), the receiver will proceed to deactivate XBACK. At this point,

the bus cycle is completed, the transmitter will return to its ready state

and the bus control port will proceed to transfer XXBUS control to the next

requesting port.

Note: During this process, if none of the receivers on the XXBUS accept the

bus cycle, then the MXMUS Control Port will time out and proceed to release

the transmitter by supplying the proper XBACK sequence.

4.4.3.5.2 XXIR LOCKED. The start-up and XXBUSRQ/GT sequences of the IT will

be the same for both the XXIR LOCKED and XXIR UNLOCKED cases. Also, as in

the UNLOCKED case, the bus cycle proceeds in the same way until the accepting

receiver vith its Input Registers (XXIR) locked accepts the bus cycle (1-5 of

Fi ; rp !"V-14). However, the accepting receiver will, instead of loading the

XXIR and making XBACK active (6), acknowledge the transmitting port by making

XBIRL active. When "JR5. becomes active (7), the transmitter will know that

the receiver accepted the bus cycle, however, did not load the XXBUS Informa-

tion Packet into its XXIRS; the transmitter will then deactivate XBCA and

return to its requesting state to try gain. This process will be repeated

until the XXII becomes unlocked, or until the transmitter is reset by the

XXBIU.

4.4.3.6 XXBU9 Receiver Operations. Figures IV-15 and IV-16 show the

relative timing of the principle control signals of the MMUS receiver. Of

the signals shown, XBCA, XBIRL, and XBAC will be used to synchronize the

transmitter of the transmitting port with the receiver of the receiving port;

In Request/In Acknowledge (INRQ/INACK) will be used to transfer control of

the XXIRs from the receiver to the loader logic located in the 1401; SELECT

will be a status line from the address recognition unit indicating when a

receiver has been selected for a bus cycle; XXIR STROBE will be the clocking

pulse used to load the XXIRs; and XXIRLOCKED will indicate the status of the

XXIRs. The following describes the operation of the XXBUS receiver with

respect to the timing of these signals during XXIR LOCKED and XXIR UNLOCKED

bus cycles.
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4.4.3.6.1 XXIR UNLOCKED. The bus cycle begins when XBCA is made active by

the transmitting port ((1) of Figure IV-15). When XBCA becomes active, the

receiver's Address Recognition Unit (ARU) will look at the address field of

the XXBUS. If the ARU decides to accept the bus cycle, it will make SELECT

active. When becoming active (2), SELECT will cause the receiver to generate

an XXIR STROBE pulse which will result in the XXBUS information being strobed

into the XXIRs.

After loading the XXIRs (3), the receiver will acknowledge the transmit-

ter by making XBACK active, set XXIR LOCKED active (until reset by the NCM),

and begin the XXIR control transfer sequence by making INRQ active.

When XBACK becomes active (4A), the transmitter in the transmitting port

will deactive XBCA.

When INRQ becomes active (4B), the loader logic will acknowledge the

request by making INACK active.

When XBCA becomes inactive (5), SELECT becomes inactive, the receiver

deactivates XBACK which terminates the bus cycle, and waits for INACK from

the loader logic to become active.

At the completion of the bus cycle (6), the receiver will wait for the

loader logic to accept control of the XXIR (indicated by INACK becoming

active). When INACK becomes active, the receiver will deactivate INRQ and

become available for the next bus cycle. After this time, control of the

XXIR remains with the MCM until the MCM releases it.

4.4.3.6.2 XXIR LOCKED. Bus cycle initiation is the same for XXIR LOCKED as

it was for XXIR UNLOCKED (see Figure IV-16). In the locked case (2) however,

when SELECT becomes active, the receiver will, instead of loading the XXBUS

Information Packet into the XXIR, indicate the lock condition to the

transmitter of the transmitting port by making XBIRL active. Wheti XBIRL

becomes active (3), the transmitter will deactivate XBCA.

IV-5 7

_____ ____ _____ ____



When XBCk becomes inactive (4), the ARU will deactivate SILCT *ad th

receiver deactivates XBRL; the receiver then becomes available for the Mt

bus cycle.

4.4.4 XXBIU 1MA Module. The XXBIU EMA Module (DKA) contains the hardware

elements that perform Direct Port Memory Access. Capabilities will include

the support of concurrent DU block transfers of two OKA channa ls, in

addition to supporting single word access. Each of the three capabilities

will have a dedicated set of address registers. IM control will be distri-

buted among three algorithmic state machines which provide mechanism for

port memory bus control, coordination of processes between the 1MAI and W%

modules, and controlling the decoding and execution sequencing of the WIKA MI

directives.

4.4.4.1 DMAK Block Transfer Addressing. Figure IV-17, shows the functional

block diagram of the DMAM. Of the elements shown, the 1IAM block transfer

addressing elements include the Active/Passive Page Pointers, the ADMA/PKA

Address Pointers, and the ADHA/PDI4A Vord Counters.

Both DIMAM block transfer channels will have dedicated page address

pointer registers which include the Active Page Pointer Register (APPR), and

a Passive Page Pointer Register (PPPR). These page pointers will be 4-bit

registers with their outputs mapped into the most significant bits of the

port memory address bus and their inputs mapped into the most significant

bits of the XTB. Prior to a 1)MA block transfer process by a channel, the

page pointer of that channel will be loaded from the port memory data bus or

from the XXBUS with the page address of the block to be transferred. Once

loaded, the page pointer remains static throughout the DMA block transfer

process of its channel.

Both DKAM block transfer channels will have dedicated transfer address

pointer registers which include the Active DNA Pointer Register (AIMAP) and

the Passive DMA Pointer Register (PDMAP). These two pointers will be 16-bit

counters with parallel load capability. The output of these registers will

be mapped into the least significant bit of the port memory address bus while
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the inputs are mapped into bits 3 thru 18 of the XTB. Prior to a DA block

transfer process by a channel, the starting address of the data block to be

transferred will be loaded from the Port Memory Data Bus or from the XXBUS

into the channels UMA pointer register. During the DMA block transfer

process, this pointer will be incremented by one while the word count

register is decremented by one after each execution of the channels DMA block

transfer MI directive. This operation is repeated until the channels's word

counter reaches a count of zero.

Each DMAM block transfer channel will have dedicated word counters which

include the Active DMA Word Counter (ADMAWC) and the Passive DMA Word Counter

(PDMAWC). These word counters will be 16-bits in width and have a parallel

load capability. Each word counter will also have a status line that

indicates to the MCM when the contents of the word counter equals zero. The

inputs of the word counters will be mapped into bits 3 thru 18 of the XTB.

Prior to a DMA block transfer process, the word counter of that channel will

be loaded from the port memory data bus or from the XXBUS with the length of

the data block to be transferred. During the DMA block transfer process, the

word counter will be decremented by one after each execution of the channels

DMA block transfer MI directive until the word counter reaches the count of

zero. When a word counter reaches a count of zero, its terminal count status

line (ATC/PTC) will become active. ATC/1"C are used in conjunction with the

JMP (ATC/PTC) MI directive to detect end of DMA transfer. Also, when ATC/PTC

become active, the DMA module will not execute any subsequent DMA block

transfer MI directives for that channel until the word counter is reloaded

for the next DMA block transfer.

4.4.4.2 DMA Single-Word Addressing. The DMAM will contain one additional

address pointer. This pointer is provided by the High Byte and Low Byte

General Purpose Address Pointers (HBGPAP and LBGPAP), and the MI directive

Data Handling Register (MIDHR), which supports single word DMA at any time by

either channel. The HBGPAP will be an 8-bit register with its outputs4aapped

into bits 8 thru 15 of the port memory address bus and with its inputs mapped

into bits 0 thru 7 of the XTB. When located from the Microprogl'am Memory

(MM), this value will be stored in the data field of the load HBGPAP MI

IV-59



directive. Once loaded, the value loaded remains unchanged until the next

load HBCPAP M1 directive is executed.

The LBGPAP will be an 8-bit gate that connects bits 0 thru 7 of the XTB to

bits 0 thru 7 of the port memory address bus. Supporting the LBGPAP during

single word VMAs is the MI directive data handling register, (MIDR). The

MIDHR will be an 8-bit register with its input mapped into bits 0 thru 7 of

the XTB and with its outputs mapped into bits 0 thru 7 of the port Memory

Address Bus. During every DMA MI directive load cycle, the data field of the

MI directive section will be gated into the MIDHR. During DMA single-word

transfers, it is this value that is gated onto the port memory address bus by

the LBGPAP. During execution of load direct MI directives, the value loaded

into the MIDHR is available for transfer to any XXBIU.

4.4.4.3 DMA Module Control. DMAM control is distributed among three

separate control units. These Control units are shown in Figure IV-17 and

include the Port Bus Acquisition Unit (PBAU), the DMA Module Control Unit

(DMAMCU) and the MI directive Loading Unit (MILU). These uaits will provide

the DMA module with the necessary mechanisms for coordinating its activities

with the PPPU and the other elements of the XXBIU and for controlling the

execution sequencing of the DMAM MI directives.

4.4.4.3.1 Port Bus Acquisition Unit. The Port Bus Acquisition Unit (PBAU)

will perform the operations of port bus acquisition and port bus relinquish-

ment. A single bidirectional handshaking line, PS RQ/GT, and a three-phase

protocol, request-grant-release, will be used to coordinate these operations

with the other users of the ports memory bus. The required comunication

between the PBAU and the DIMAMCU is provided by the lines GETPB, RELPB, and

PBCAVL. GETPB and RELPB will be used respectively by the DMAMCU to tell the

PBAU when to get control of the Port Memory Bus (PMB) and when to release

it. PBAVL will be used by the PBAU to indicate to the DMAMCU when it has

control of the port memory bus.

4.4.4.3.2 DMA Module Control Unit (DMAMCU). The DMAMCU will perform

operations facilitating MI directive decoding and execution sequencing.
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Decoding is the process of determining the type of data transfer to perform.

This includes determining the source, destination, and direction of involved

buses. Execution sequencing will include proper read/write timing and

coordinating external elements that are involved. This coordination with the

port memory bus will be provided by the PBAU. With the XBM, it is supported

by the bidirectional handshaking line RWXTB and with the MCM, it is supported

by the handshaking lines DXEX and DXRDY.

4.4.4.3.3 MI Directive Loading Unit. The MI Directive Loading Unit (MILU)

will support synchronization of the activities of the DMAM with those of the

XBM and 14CM during MI directive loading. The handshaking lines DXRDY and

DXEX will support this synchronization between the DMAM and the MCM, and the

RWXTB bidirectional line will support this synchronization between the DIAM

and XMB.

4.4.5 Data Paths. This section covers the routes in which all information

associated with the XXBIU is transferred from, or to, its various internal

and external elements. These paths, as illustrated in Figure IV-08, include

the XXBIU Transfer Bus (XTB), Port ID Data Path, Port Memory Bus, the

Microprogram Memory (MM) address and data buses, and the MPC XXBUS.

4.4.5.1 XXBIU Transfer Bus. The XXBIU Transfer Bus (XTB) will be the path

over which all information associated with the OMAN and the XBM is

transferred. This information will include the MI directives for both the

modules as well as the information that is transferred between the port

memory bus and the XXBUS.

The XTB will be structured to support two types of sequences and

controls. These include the MI directive execution and MI directive load.

4.4.5.1.1 Sequence. The XTB will be 19 bits in width and supports two types

of bit formats, one for the MI directive execution sequence, and the other

for the MI direct load sequence.
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4.4.5.1.1.1 MI Directive Execution- Sequence Format. in this sequence, bitse
3-18 (16 bits), will contain data that can be transferred either between two
modules, or between either module and port memory via the port data be@.
Bits 0-2 will not be used in this sequence.

4.4.5.1.1.2 MI Directive Load Sequence Format. This format will contain

bits 8-18 (11 bits) which comprise the MI directive, and bits 0-7 containing

a literal value which can be transferred from the Microprogram Memory (MK) to

any element associated vith the XTB. During the load sequence, this value

vill be loaded into a holding register located in the DMA module where it is

held until the execution sequence. If at that time, a 'load direct

instruction is executed, the contents of this holding register will be

transferred to the target specified in the MI directive. This requires that

bits 0-2 need only be connected to the DMA module and the buffer that

interfaces to the MI directive data bas.

4.4.5.1.2 Control. Both MI directive execution and MI directive load

sequences will have their own respective points of control, which include the

DMA module (DHAM) and the port memory bus.

4.4.5.1.2.1 MI Directive Execution Control. The point of control during

this sequence will be from the UNAM which coordinates the sequence with the

XEM via the low level control lines, and vith the port memory bus, using the

Request/Grant (RQ/GT), Memory Read (MEMRD), and Memory Write (MEMWT) lines.

4.4.5.1.2.2 MI Directive Load Control. Control during the MI directive load

sequence will be distributed between all three modules which coordinate their4

activities via the low-level control lines that connect all three.

4.4.5.2 Microprogram Memory Address Bus. The Microprogram Memory Address

Bus (MPMAB) vill carry the address of the instruction to be executed from the

14CM to the MM, and will consist of 11 bits thus providing an addressing

capacity for 2048 MI directives. The microprogram address will contain 5

address bits, while both the MP module and the microinstruction address willI

contain 3 bits of address each. The detailed nature of these fields is
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presented in the sections on the Wt and the MCK. Control of the K1 IAB will

be maintained by the 1CM. Since the MPMAB is dedicated, no control lines to

the memory are required. Synchronization of address updates with MI

directive loads viii be controlled by the MCM.

4.4.5.3 Microprogram Memory Data Bus. The Microprogran Memory Data Bus

(MPMDB) will carry information from the N to the buffer interfacing to the

XTB and to the 4ICK. It will consist of 24 bits, of which 19 bits vill be

bused to the buffer and carry the MI directive and data to the XIX and DKAM.

Bits 0-8, 11, 19, and 21 will be connected to the MCM.

The Microprogram Memory Data Bus will be dedicated and, therefore, no

control is required. The value of the data will change as the address is

transferred through the memory. Loading of the microinstruction will be

controlled by the MCI.

4.4.5.4 Port ID Path. The data path associated with the Port ID Header will

connect the Port ID not only to the Address Recognition Unit (ARU) but also

to the Port Data Bus. This buffer will be sapped into the I/O space of the

port memory bus and provide the mechanism by which the PPPU can read the

port's own ID. This path will be 6 bits wide and mopped into the lowest 6

bits of the Port Data Bus. The remaining 10 bits of Port Memory Bus will be

forced to their zero state during a port ID read.

4.4.5.5 Port System Bus. This bus is external to the XXBIU and will contain

the paths in which the Primary Port Processing Unit (PPPU), Port System

Memory, and the XXBUS exchange information. The XXBIU has been designed to

interface to a Port System Bus with the lOW, IOR, MKMRD, and MENUT used as

timing and control lines. Transfer of control to this bus will be

accomplished using the dedicated PS 1FQ/GT control line. The timing

specification for these control lines will be compatible with the PPPU.
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4.5 IPC Improved Firmware Design. Each NPC Port must be able to establish

and participate in Port-to-Port dialogues. The hardware that provides this

capability is the MPC Exchange Bus and related interfaces. The software that

provides this capability is the Inter-Port Comnuunications (IPC) Subsystem.

IPC logically resides between the Bus hardware and the remaining MPC

subsystems contained within each port. No other subsystem within a port

directly addresses the Bus Interface Hardware. In this manner, IPC

essentially envelopes the Exchange Bus interface hardware and shields the

remaining subsystems from the intricacies of the Exchange Bus interface. [PC

also maintains various dialogue and error counts which can be used to monitor

system performance.

4.5.1 Dialogue Concepts. A copy or element of IPC resides in each MPC

port. This provides a standardized communications capability to the

remaining software witiin each local port. A subsystem within one port may

express a requirement to exchange data or directives with a subsystem in

another port, thus establishing a connection between the two ports,

transferring the data or directives, and disconnecting the two ports. This

process constitutes a port-to-port dialogue. The IPC element in the

receiving port transfers the data to the software subsystem residing within

that port. No intermediary port is required to establish a dialogue.

Therefore, many port-to-port dialogues may occur in a given time frame.

4.5.1.1 Multiple Dialogue Requests. Several types of port-to-port

communications are supported by IPC. In some cases, a period of time may

elapse between the request for, and the completion of, a specified transfer.

At times more than one dialogue request may be outstanding. IPC will handle

several requests by multiplexing dialogues to different ports through its

single physical bus interface.

A port may be involved in two types of dialogues during any given time

frame. It may be engaged in a dialogue that was initiated by another MPC

port (a dialogue in the passive role), while at the same time be engaged in a
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port-to-port dialogue that was initiated by itself (a dialogue in the active

role). While a port may participate in each role simultaneously, it may not

be engaged in two active or two passive roles concurrently.

4.5.1.2 Dialogue Synchronization. Specific physical details relevant to the

command structure of the bus interface hardware, timing required for

interport synchronization, and the hardware attributes of each local port and

microprocessor are totally resolved within IPC. The multiple processor

nature of the MPC is transparent to the remaining software subsystems. IPC

allows the subsystems in each MPC port to concentrate exclusively on its own

logical requirements, yet be able to solicit inputs, address outputs, and

initiate processing in other external HPC ports.

4.5.1.3 IPC Communication Modes. IPC allows any subsystem to exchange data

and directives with another cooperating subsystem by establishing a

port-to-port dialogue. Within this dialogue one port will be the requester

and one port will be the responder. The requester is the port that detects

the current need for a dialogue and performs the first action in an attempt

to initiate the dialogue. The responder is the port that has been

conditioned to participate as the other member in a particular dialogue.

Normally, the responder is the receiver of the data or directives produced by

the requester. The relationship between the requester and the responder

ports will determine the comunication mode.

4.5.1.4 Direct and indirect Communication Modes. All port-to-port

communications may be divided into two modes, depending on whether the

requester or responder port controls the dialogue. The requester port may

need to directly contact the responder port, establish a connection, and

carry out the required dialogue. Alternatively, the requester may choose to

notify the responder of the required dialogue and defer the acturl contact

and dialogue control to the responder port. Within IPC these two distinct

situations determine the direct and indirect communication modes respec-

tively. In the indirect mode, the requester is willing to wait for -the

responder to detect the notification and initiate the dialogue. In the

IV-66



direct mode, the requestor initiates the dialogue inmediately waiting only

if the responder is not available.

4.5.1.5 Parallel Tasking. The architecture of the HPC imposes a natural

distribution of functions and allows the assignment of dedicated hardware

resources to each individual function. Each port is dedicated to a single

function, and the complicated multitasking of a central processor is not

required. However, individual functions may still break down into multiple,

parallel tasks.

4.5.1.5.1 Port Activities. Each independent parallel task will be called an

activity. Each MPC port may contain any number of activities as dictated by

the user level logic contained within the port. At any point in tim, each

individual activity may have its own comunications requirements.

4.5.1.5.2 Comunication Channels. Each activity requiring port-to-port

cosmunications will require a comounications channel. In any dialogue, a

specific conmunication channel in one port will be connected to a specific

comaunication channel in another port. A communication channel is thus a

long term control mechanism that will allow a specific activity to conduct a

dialogue.

4.5.1.5.3 Channel Control Table (CCT). A port will typically contain

several comsunication channels. The current status of each comaunication

channel is described in a Channel Control Table (CCT) dedicated to that

comunication channel. The location of the CCT is specified by the

subsystem. To carry out a dialogue, the activity enters information

describing the dialogue in its CCT and then calls IPC which uses the

information in the CCT to carry out the dialogue. All CCTs have the same

structure, which allows IPC to interface with varying port subsystem through

a standardized interface.

4.5.1.5.4 Port Control Table (PCT). Information concerning the status of

the port as a whole is maintained in the Port Control Table (PCT). The PCT

also contains items used strictly by IPC during a dialogue.

IV-6 7

-~ - --- 4V



4.5.1.5.5 Dialogue Multiplexing. Because a port may contain several CCTs,

IPC is able to multiplex dialogues for many different activities via the

port's single Exchange Bus Interface Unit (XXBIU). Each activity is provided

the capability to carry out port-to-port comunications with no awareness of

the existence or state of any channel other than its own.

4.5.1.6 Dialogue Termination Codes. At the end of every dialogue, IPC will

always tell the user if the dialogue completed successfully or if the

dialogue was incomplete and why it failed. This is accomplished by means of

a dialogue completion code which is stored in the user CCT by IPC when a port

is engaged in the passive role. When a port assumes the active role IPC will

return the completion code directly to the user logic.

4.5.1.7 Dialogue Error Count. In order to facilitate system performance

monitoring and hardware failure detection, IPC maintains a record of the

number of incomplete dialogues which terminated due to various causes. The

number of dialogues completed through a given channel is stored in that

channel's COT. The number of terminated dialogues as a whole is stored as a

function of the dialogue termination code in the PCT.

4.5.1.8 IPC Dialgue Counts. IPC also maintains a record in the PCT of

several anomalous situations which may be indicative of error situations.

These are maintained separately because they may or may not be reflected in

the counts maintained on the basis of the dialogue termination code.

4.5.1.9 Dialogue Control Words (DCW). A DCV is a block of data which

contains the starting address and the length of the data to be transferred,

as well as the control information for the next segment of data. The control

information contains the end of dialogue indicator, the direction flow of the

next data segment, and other control information necessary to maintain

dialogue coordination.

4.5.1.10 Data Segments. One or more data words within a segment must be

transferred across the exchange bus in the same direction. The direction of

the data flow can only be reversed at the end of a segment.
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4.5.2 Dialogue Contention. Resolution of port-to-port contention, which is
currently managed totally in IPC, will migrate to the Exchange Bus Interface

Unit (XXBIU) of each MPC port through the use of the Lockon Request Enable

flag (LORQEN) located in the microprogram control module of the XXBIU. The

setting of LORQEN will reflect the ports willingness to participate in a

port-to-port dialogue in a passive role to the XXBIU hardware. Upon

receiving a lockon request from an active port, the XXSIU will schedule the

Passive Lockon Response Microprogram (HP) of IPC for execution, only if

LO QEIN reflects a set condition. If a lockon request is received with LORQEN

in a clear condition, the XXBIU will not schedule the Passive Lockon Response

Microprogram. This will force the XXBIU in the active port to invoke a

lockon request time-out condition. IPC in the active port will recognize

this time-out condition indicating that the target port is currently engaged

in a dialogue in the passive role. At this time IPC will pass a port busy

status to the requesting user activity. IPC controls the set or clear

condition of LORQEN at all times, enabling each KPC port to maintain its own

passive availability independently of other ports in the MPC system.

4.5.3 Active and Passive Port Roles. In any dialogue, regardless of the

communications mode, one port will take the responsibility for actively

contacting the other port and controlling the dialogue. The other port must

passively wait to be contacted, and if the contact is accepted, must be

prepared to be driven through the dialogue under the active port's control.

Therefore, in any dialogue, one port will play the active role while the

other port will play the passive role. Since these roles require almost

diametrically opposed behavior from the IPC elements in the connected ports,

IPC is divided into two major components, active and passive. Currently, the

active component of IPC is executed as a result of a call from a local port

activity and performs all necessary bus operations. The passive component of

IPC is executed as a result of interrupts being received from the active

component in another port. Section 3.2.1.1.5 discusses the current

implementation. In the improved firmware design, the active component of IPC

is still initiated as a result of a call from the local port subsystem and
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passive IPC will still be initiated by active IPC at the interrupt level.

Uowever, after both passive and active roles of a dialogue are initiated,

both sides are interrupt driven in the form of request, and response

interrupts. Active IPC will issue all request logic to a passive port at the

interrupt level since it controls the port-to-port dialogue. Passive IPC

will execute all response logic to the active port at the interrupt level.

Therefore, after dialogue initiation by active IPC, both the active and

passive ports drive each other in a synchronous manner. The interrupt

structure of each port will allow both active and passive IPC to execute in

the same time frame, thus allowing one port to be engaged in two dialogues

simultaneously (one active, and one passive).

4.5.4 Logical Levels of IPC. Both the active and passive components of IPC

are divided into two distinct levels of operation which will be referred to

as IPC Level One (IPC L1), and IPC Level Two (IPC L2). The execution of each

level will run asynchronously to the other. IPC Ll will be responsible for

the control and execution of all XXBUS data transfer operations, and is the

lower of the two IPC levels. IPC L2 will initate the various IPC Ll func-

tions in a structured manner, while also interfacing user activity processing

routines during each dialogue transaction as required (Figure IV-18).

4.5.4.1 IPC Level One Description. IPC LI will consist of microinstruction

code residing in Microprogram Memory of the Exchange Bus Interface Unit

(XXBIU), in each MPC port. IPC Ll is divided into three logical functions,

consisting of port-to-port lockon, data transfer, and dialogue termination.

Each function is further broken down into various microprograms (MP), with

each MP dedicated to an active or passive role within a function. Each IPC

Ll function will be initiated by IPC L2 processing routines through the use

of port processor I/0 cotmmands. Each MP within an IPC Ll function will

initiate MPs in another port that reside within the same function. MPs in an

active port will initiate MPs in the passive port, and vice-versa, thus

establishing a synchronous request/response method used between any two ports

engaged in a dialogue. I4Ps within each function may also initate IPC L2

processing routines, through the use of interrupts to the Primary Port

Processing Unit (PPPU) when additinal processing is required to continue the
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function, or the function is complete. IPC L2 will maintain continuity with

IPC Ll at the point of each interrupt via the use of status registers,

located in the XXBIU, which will be updated by the IPC Ll function prior to

issuing the interrupt to IPC L2, thus transfering control and status

information needed by each IPC L2 interrupt routine for proper execution.

4.5.4.2 IPC Level 2 Description. IPC Level 2 (IPC L2) resides in the read

only memory (ROM) of each MPC port and is executed by the port processor.
All bus transactions are handled by initiating IPC L2 functions via port

processor I/O commands to the XXBIU in which the IPC LI microcode resides.

IPC L2 will return all port dialogue statuses to their respective cells in

the PCT and CCT. This level will also pass intermediate statuses as required

during a dialogue to facilitate necessary port processing.

4.5.5 IPC Level I Program Description. IPC Level I (IPC LI) will be divided

into three dialogue functions: lockon, segment transfer, and termination.

The lockon function will coonnect and synchronize the two ports for a

port-to-port dialogue. The segment transfer function will move data or

directives between the two ports engaged in a port-to-port dialogue.

Termination will return both ports to their respective subsystems.

4.5.5.1 Lockon Function. This function will be initiated by the IPC L2

lockon routine and is divided into six microprograms (MP). Each MP will be

dedicated to an active or passive role. The two ports to be engaged in the

dialogue will be synchronized and the communication channel to be used is

verified. Upon completion of this function the two ports are ready to begin

the segment transfer function (Figure IV-19).

4.5.5.1.1 Active Lockon Request MP. The target port's bus address and

associated routing data will be moved from the PCT to the Exchange Bus

Interface Unit (XXBIU) to set up for future bus write commands. The bus

address of this port as well as the bus routing data to be used by the

passive port will then be written across the XXBUS to the Lockon Response MP
residing in the destination (passive) port. The Lockon time out timer will
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then be started, and this HP is terminated, waiting for the destination port

to reply with a passive lockon response.

If the passive lockon response is not received within the time normally

rec.iired to receive a response, the XXBIU will issue an IPC L2 interrupt to

the PPPU. This condition indicates that the requested port is currently busy

in a dialogue in the passive role. If a lockon response is received, the

time-out timer will be reset, thus never allowing the time-out interrupt to

occur.

4.5.5.1.2 Lockon Response MP (Passive). The fact that this MP is executed

indicates that this port is available to participate in a port-to-port

dialogue in the passive role. The Port Bus address and associated bus

routing data of the active port that issued the lockon request will be moved

first from the input data section of the XXBIU to the XXBIU hardware

associated with the port destination of future XXBUS write commands to be

issued. The first available passive communication channel will be moved from

the PCT to the XXBIU, and written via a bus write to the active ports Channel

Request-Verification MP. This formulates the Passive lockon response to the

active port. The port's passive availability is then lowered, indicating to

the XXBIU to ignore any subsequent lockon requests while the current dialogue

is in progress. The passive time-out timer is then started, and the MP is

terminated.

4.5.5.1.3 Channel Request Verification MP (Active). This MP will be

initiated by the lockon response MP in the passive port. The lockon response

data located in the XXBIU input data section is the first of 'N' communica-

tion channels available in that particular passive port. The next phase in

the lockon function will be to verify that the specific communication channel

needed to conduct the dialogue matches one ot the passive channels avail-

able, The communication channel required to conduct the port-to-port

dialogue will be moved to the XXBIU from the PCT and compared to the first

available channel in the passive port. If the two channels match, the

verification process is complete. If not, a channel verification request

must be made to the passive port.
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If the verification process is complete, the verified commuication

channel will be written across the XXBUS to the Lockon Notification HP in the

passive port, thus notifying the passive port of the successful port-to-port

lockon process and also of the conmunication channel to be used during the

rest of the dialogue. Section 4.5.5.1.5 discusses this microprogram. An

interrupt will then be issued to the PPPU to notify active IPC L2 that the

lockon function has completed successfully. The active time-out timer is

started and the MP will be terminated, thus completing the lockon function in

the active port.

The Communications Channel Lockon Request-Verification NP will be

executed if the first available passive channel information sent as the

passive lockon response was not the passive channel needed to conduct the

dialogue. The required Comunication channel will then be written to the

Comunication Channel Verification HP in the passive port. This MP will scan

the rest of the available passive channels for a match and write an ACK/NAK

back to the active port as a response. The active time-out timer will be

started, and the Channel Request Verification MP is terminated, waiting for

the passive ports verification response.

4.5.5.1.4 Channel Verification Response MP (Passive). This HP will move the

remainder of the available passive coemunication channels from the PCT one at

a time to the XXBIU and look for a match with the requested channel now

residing in the XXBIU data input section, placed there during the bus write

that executed this HP.

If a match is found, a Lockon ACK will be written to the Lockon

Termination HP in the active port. The communication channel to be used will

be stored in the PCT, and an interrupt issued to the PPPU notifing Passive

IPC L2 of the successful lockon and the comunication channel to be used for

the duration of the port-to-port dialogue. The passive time-out timer will

be started, and the MP terminated, indicating the successful completion of

the passive portion of the lockon function.
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If a match is not found, a NAK will be written to the Lockon Termination

HP in the active port. The ports passive availability will then be raised,

notifing the XXBIU that the port is now available for lockon requests written

to this port, and the MP is terminated. The PPPU will never be interrupted

when a lockon attempt is unsuccessful except during a time-out condition.

4.5.5.1.5 Lockon Notification HP (Passive). This HP will be executed if the

first available passive communication channel sent to the active port as the

passive lockon response, is verified as the channel to be used to conduct the

port-to-port dialogue. This channel information, which was transferred in

the bus write that executed this HP, will be moved from the data input

section of the XXBIU to the PCT. An interrupt will then be issued to the

PPPU to notify passive IPC L2 of the successful lockon, and the comunica-

tions channel to be used to conduct the port-to-port dialogue. The HP will

then terminate after the passive time-out clock is started, successfully

completing the port-to-port lockon function.

4.5.5.1.6 Lockon Termination MP (Active). This MP will be executed by the

Passive channel verification HP. The response residing in the input data

section of the XXBIU will be an ACK or NAK value, depending upon its channel

verification result. An interrupt will be issued to the PPPU to notify

active IPC L2 of the ACK/NAK condition. If the response was an NAK, the MP

will be immediately terminated. If the response was an ACK, the active

time-out clock is started and the HP will be terminated, waiting for the

first segment transfer function to be executed from active IPC L2.

4.5.5.2 Segment (Data) Transfer Function. This function will be initiated

by the IPC L2 segment transfer routine. It includes the actual port-to-port

data transfer from either the active to passive, or passive to active ports

(active write or passive write respectively). After the data is transferred,

redundant checkword values will be verified from both the active and passive

ports. Passive IPC Li will then notify IPC L2 of the successful data

transfer. At this point, IPC L2 will provide any necessary port processing

to be accomplished and a completion status value then will be passed to the

active port, thus terminating the function. This function may be executed
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sequentially as many times as needed to complete the port-to-port dialoue.

Control for each segment transfer will reside in the PCT of both the active

and passive ports in the form of DCWs, which are used to set up the UINIU MA

modules of both ports.

4.5.5.2.1 DMA Parameter Load HP (Active). This MP will be initiated by

active IPC L2 at the start of the segment function. After the active

tine-out timer is reset, the control word for the segment of data to be

transferred will be moved from the PCT to the XXBIU, and transferred to the

DMA Parameter Load MP in the passive port. The remaining parameters of the

segment DCW, both active and passive will be moved from the PCT to the lKA

module of the XXBIU in the respective ports. Both the active and passive

ports are now ready for the segment DMA transfer.

The control word will then be examined to see if the data will be

transferred from the active to the passive port (active write), or from the

passive port to active port (passive write).

4.5.5.2.1.1 Active to Passive DMA (Active Write). Data viii be moved from

port memory in the active port to the XXBUS, using the DMA module of the

XXBIU, and transferred to the DMA Read MP in the passive port, which in turn

will transfer the data from the XXBUS to port memory. This process will be

repeated until the XXBIU indicates to IPC Ll that the number of words to be

transferred has been reached (Figure IV-20).

At this point, the redundant check word that was generated in the active

port during the DMA transfer will be written to the Data Verification MP in

the passive port. The active time-out timer will be started, and the MP

terminated, waiting for a verification response from the passive port.

4.5.5.2.1.2 Data Verification HP (Passive). During the DMA transfer, the

passive DMA Read MP will also generate a redundant check word. The active

and passive values will be compared for verification. If the two check words

do not match, a segment check word NAK will be transferred to the Segment

Termination HP in the active port. The passive time-out timer will be
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started, and the MP terminated. Port processing will not be interrupted wben

a redundant check work error occurs. If the redundant check words verify, an

interrupt will be issued for the PPPU to inform passive IPC L2 of the

successful segment (data) transfer. After the passive time-out timer is

started, the MP will terminate.

4.5.5.2.1.3 Segment Completion MPs (Passive). When all required port

processing has been completed, IPC L2 will initiate one of the passive

Segment Completion HPs, depending on the successful or unsuccessful segment

status to be passed to the Segment Completion MP in the active port. The

passive time-out timer will be started, and the module terminated.

4.5.5.2.1.4 Segment Completion MP (Active). This MP will issue an interrupt

to the PPPU to notify active IPC L2 of the segment completion status

transferred from the active port. The time-out timer will then be started,

and the MP, as vell as the segment transfer function, will be terminated for

an active write.

4.5.5.2.2 Passive to Active DMA Transfer (Passive Write). After it has been

determined that the data is to be transferred from the passive to the active

port, the length of the segment will be written to the DMA Write MP in the

passive port. The active time-out timer will be started, and the MP

terminated.

4.5.5.2.2.1 DMA Write MP (Passive). Data will be moved from port memory in

the passive port to the XXBUS, using the DMA module of the XXBIU, and

transferred to the DMA Read HP in the active port, which in turn transfers

the data from the XXBUS to port memory. This process is then repeeted till

the XXBIU indicates to IPC Li that the number of words to be transferred has

been reached (Figure IV-21).

At this point, the redundant check word that was generated in the

passive port during the DMA transfer will be written to the Data Verification

MP in the active port. The passive time-out timer will be started, and the

HP terminated, waiting for a verification response from the active port.
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4.5.5.2.2.2 Data Verification MP (Active). During the DMA transfer, the

active DMA Read MP will also generate a redundant check word, where the

active and passive values will be compared for verification. If the

redundant check words match, a successful segment transfer status will be

written to the Segment Notification MP in the passive port, before the active

time-out timer is started, and the MP terminated.

If the redundant check words do not match, an interrupt will be issued

to the PPPU to notify active IPC L2 of the redundant check error. The active

time-out timer will be started and this HP terminated.

4.5.5.2.2.3 Segment Notification MP (Passive). At this point, the active

port will have verified the transferred data. An interrupt will be issued to

the PPPU to notify IPC L2 of the successful segment completion. After the

passive time-out timer is started, the 14P terminates.

4.5.5.2.2.4 Segment Completion MP (Passive). When all required port

processing has been completed, IPC L2 will initiate one of the passive

Segment Completion MPs, depending on the successful, or unsuccessful segment

status to be passed to the Segment Completion MP in the active port. The

passive time-out timer will be started, and the MP terminated.

4.5.5.2.2.5 Segment Completion MP (Active). This MP will issue an interrupt

to the PPPU to notify active IPC L2 of the segment completion status

transferred from the passive port. The time-out timer will then be started,

and the MP, as well as the segment (data) transfer function is terminated for

a passive write.

4.5.5.3 IPC Level 1 Lockon Termination Function. This function will send a

dialogue termination status (ACK or NAK) to the passive port to notify

passive IPC of dialogue termination. The passive port will then echo the

completion status back to the active port to verify that the two ports are

still in sync, and notify the passive IPC L2 termination routine to execute

its termination logic. The dialogue completion status to be transferred to

the passive port will be located in the active ports PCT (Figure IV-22).
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4.5.5.3.1 Termination Request MP (Active). This MP will be executed by an

IPC L2 termination request routine. The dialogue completion status will be

moved from the PCT to the XXBIU, and written via a bus write to the

termination response MP in the passive port. The active time-out timer will

then be started, and this MP terminated.

4.5.5.3.2 Termination Response MP (Passive). This MP, initiated by the

Termination Request HP in the active port, will first move the dialogue

completion status to the PCT. The passive interrupt will then be issued to

the PPPU to notify the IPC L2 termination response routine of the final

dialogue completion status. This same completion status vil then be written

to the Termination HP in the active port as the termination response. The

passive availability flag will then be raised to allow this port to

participate in future dialogues in the passive role, and the MP terminated,

indicating the completion of the port-to-port dialogue in the passive port.

4.5.5.3.3 Termination MP (Active). The execution of this HP will indicate

that the passive port has been notified of the dialogue termination, and the

status of its completion. An active interrupt will be issued to the PPPU to

notify the IPC L2 termination routine of the successful dialogue

termination. The MP will then be terminated, indicating the completion of

IPC Li in the port-to-port dialogue.

4.5.6 IPC Level 2 Description. IPC Level 2 (IPC L2) resides in port memory

and is executed synchronously with the user activity and may run

synchronously or asynchronously with IPC LI. IPC L2 is divided into three

logical sections: lockon, segment transfer, and termination. Each section

may be divided into one or more routines. Each routine will be dedicated to

either an active or a passive role. Any fatal error detected within the

dialogue will cause the termination of the dialogue while returning the error

status to the activity that requested the port-to-port transaction.

At the termination of any IPC L2 routine, either active or passive,

processing control will be returned to the subsystem residing in its own
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respective port, and will remain there until the next IPC L2 routine is

initiated via an IPC LI issued interrupt.

4.5.6.1 IPC Level 2 Lockon Section. The Lockon section will execute the IPC

Ll lockon function and process the status information returned upon

completion of that function. Any e-ror will be returned to the subsystem

that initiated the dialogue request. Upon a successful lockon by the IPC Ll

lockon function the DCWs for both the active and passive ports are processed

for the first segment transfer and the segment transfer function of IPC L1 is

executed. The Port interrupt controller is then revectored to allow the IPC

L2 segment transfer section to control further dialogue processing upon the

completion of the IPC Li segment (data) transfer function (Figure IV-23).

4.5.6.1,1 Lockon Routine (Active). The lockon routine will be initiated by

the user activity via a call to IPC L2 in which the communications channel to

be used to conduct the dialogue is transferred as a call r!rameter. The

control information will be transferred fron the CCT to the PCT. This

information includes the target port's bus address, the originating port's

address, and the comunication channel to be used by the passive port for

dialogue control once port-to-port lockon has been accomplished. The bus

routing data will be calculated and merged with both port's addresses. The

IPC LI lockon function will then be executed via a port I/0 command,

initiating the lockon request to the target port. The interrupt controller

will then be revectored to ensure execution of the IPC L2 lockon verification

routine at the completion of the\IPC LI lockon function.

Processing control will then be relinquished to the user subsystem until an

active interrupt is issued to the PPPU by IPC Li, indicating the completion

of the IPC Ll lockon function.

4.5.6.1.2 IPC L2 Lockon Verification Routine (Active). This routine will be

initiated via an active interrupt issued by the IPC LI lockon function,

indicating the port-to-port lockon process is complete. The lockon status

will be read from the active status register in the XXBIU. This status will
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indicate one of four conditions: port busy, out of sync, commnication

channel not available, or successful lockon completion. The port busy status

indicates the target port is currently engaged in the passive role with

another port-to-port dialogue. Communication channel not available means

that contact was made with the target port, but the communication channel

required to conduct the port-to-port dialogue was not available in the target

port. The out of sync status reflects the condition that contact was made

with the target port, but a response was not received during the

communication channel verification process of the IPC LI lockon function. If

one of these errors exist, the error status will be returned to the user

activity that initiated the dialogue request, and IPC L2 terminated.

If the status reflects a successful completion, the DCW for the first

segment of data to be transferred is moved from the CCT to the PCT. The IPC

Li segmemt transfer function will then be executed. The active ;.nterrupt

controller will then be revectored to the IPC L2 segment completion r~utine,

which will be initiated upon IPC Li segment transfer function completion.

This routine will then terminate, and port processing control relinquished to

the port subsystem.

4.5.6.1.3 IPC L2 Lockon Notification Routine (Passive). This routine will

be initiated via a passive interrupt issued to the PPPU from the IPC Ll

lockon function. The lockon status will be read from the passive status

register in the XXBIU, which will reflect one of two possible conditions -

port out of sync, or successful lockon from an active port. The port out of

sync status indicates that the passive portion of the IPC Li lockon function

never received an expected reply from the active port during the IPC Li

lockon process. This condition will result in the port out of sync error

count being incremented in the PCT, the execution of the IPC Li passive

cleanup function, and termination of this routine. This will return

processing control to the port subsytem at the point that the interrupt was

issued.

If the status reflects a successful lockon from an active port, the

passive comaunication channel to be used which was stored in the PCT by the
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[PC LI lockon function will be retrieved, and the DCW to be used for the

first segment (data) transfer function of IPC Li will be moved from the CCT

to the PCT. The passive port is now ready to participate in the first

segment transfer. The passive interrupt controller will then be revectored

to execute the passive IPC L2 segment completion routine, which will be

executed at the end of the IPC Li segment transfer function. This routine

terminates, and port processing will return to the user subsystem at the

point the interrupt that initiated the routine was issued.

4.5.6.2 IPC Level 2 Segment Control Section. This section will control the

actual port-to-port transfer of data or directives and is further divided

into two routines: Passive Segment Control Routine, and Active Segment

Control Routine. Any fatal error detected during this section will result in

its subsequent termination and the error will be passed back to the user

subsystem that initiated the dialogue (Figure IV-24).

4.5.6.2.1 Passive Segment Transfer Routine. This routine will be initiated

by a passive interrupt issued by either the segment transfer function, or the

termination response function of IPC LI. If the passive status register in

the XXBIU reflects a dialogue termination status, processing control will be

transferred to the passive termination response routine for dialogue

termination processing. If the passive status register does not reflect

dialogue termination the interrupt was issued by the segment function in IPC

Ll indicating a segment transfer has been successfully completed. The DCW

for the segment transfer just completed will be examined to see if a user

completion routine is required for further processing. If the requirement

exists, a completion routine will be executed. This routine will return with

the segment status, which will be either a good completion status, fatal, or

a non-fatal segment error status. This status is placed in the PCT and the

IPC LI segment completion function is then executed via an I/0 command. If

the user completion routine returned a request to terminate the dialogue, the

interrupt controller will be revectored to the passive termination response

.outin- in anticipation of a dialogue termination request. The routine will

be terminated, and processing control returns to the user subsystems.
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If the segment status reflects a good completion, or a non-fatal error,

the DCWs for the next segment of data to be transferred wiil be moved to the

PCT in anticipation of the active IPC L2 segment transfer routine to execute

the IPC Li segment transfer function. This routine will then be terminated

and processing control returned to the user subsystem until this routine is

executed again at the end of the next segment transfer.

4.5.6.2.2 Active Segment Transfer Routine. This routine wiii be initiated

via an active interrupt issued by the segment transfer function. The segment

completion status, stored in the PCT by the segment transfer function will

reflect the segment completion status. If this status reflects a fatal

error, processing control will be transferred to the IPC L2 active

termination request routine. If the completion status is good or nonfatal,

an active user completion routine will be executed if one was requested. If

it was requested, the completion status will then be rechecked to see if the

completion routine opted to terminate the dialogue. If the completion status

was changed to a fatal error, processing control will be transferred to the

active IPC L2 termination request routine. If the status indicates a good

segment completion, or a nonfatal error status, the DCWs for the next segment

of data to be transferred will be moved to the PCT. The IPC Li segment

transfer function will then be initiated. This routine will then be

terminated, and processing control relinquished to the user subsytem until

this routine is again executed at the end of the segment transfer by IPC LI.

4.5.6.3 IPC Level 2 Termination Section. This section will terminate the

port-to-port dialogue, and increment the appropriate dialogue counts. The

completion status of the dialogue will be passed back to the subsystem that

requested the dialogue, thus completing the port-to-port transfer process

(Figure IV-25).

4.5.6.3.1 Termination Response Routine (Active). This routine will be

jumped to from the segment processing routine when all segments have been

successfully transferred, or a fatal dialogue error has been detected. If a

port out of sync error has been detected, the error increment portion of the

termination routine will be jumped to. If not, the termination function of
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[PC L2 will be initiated. The interrupt controller will then be revectored

to execute the termination routine upon the termination response from the

passive port, and the processing coitrol will be transferred to the port

subsystem.

4.5.6.3.2 Termination Response Routine (Passive). This routine will be

initiated via a passive interrupt by the IPC LI termination function,

indicating the zompletion of a dialogue. The completion status of the

dialogue will then be incremented in the PCT, and the interrupt controller

revectored to execute the passive lockon notification routine the next time a

port locks on to this port. The routine will then terminate, completing the

port-to-port dialogue in the passive role and returning processing control to

the user subsystem..

4.5.6.3.3 Termination Routine (Active). Execution of this routine indica!es

that the passive port was successfully notified of the completion status of

the dialogue and is completing its dialogue termination logic. The

appropriate dialogue count will then be incremented, and the completion

status is passed back to the user activity that initiated the port-to-port

dialogue. This terminates IPC until the next dialogue request is received.
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4.6 XXBUS Linking Port. For applications requiring more ports than can be

accommodated by IA single XXBUS, a method of linking multiple XXBUSes is

required. This section describes the XXBUS Linking Port (XXBLP) which serves

as a hardware component of the inter XXBUS link. The software component for

these links is provided by the write only IPC that resides in every

processing port.

4.6.1 General Description. The XXBUS Linking Ports (XXBLP) will provide the

hardware level links between XXBUSes of the XXBUS network (MPC). Each link

will consist of two XXBLPs and a cable connecting the two. Each link is full

duplex with data transfer rates comparable to the bandwidth of the XXBUS (80

megabits per second).

information is transferred between XXBUSes by these linkes via

Information Packes (IP). Each packet corresponds physically to the amount of

information written onto a XXBUS during a single bus cycle and logically to

the smallest amount of information required to control communications between

any two ports in the XXBUS network. This packaging permits the total

decoupling of the linked XXBUSes; i.e., bus cycle activity on each bus is

completely asynchronous. To further decouple XXBUSes, each XXBLP will

contain an IP queue organized as a First-In-First-Out (FIFO) pipeline.

Principle characteristics of the XXBUS linking port design include:

" Bus cycle activity of each XXBUS is asynchronous with respect to

one another.

" The Information Packet addressing structure and the XXBLP can

support such networking schemes as: Direct only, Bused only,

Limited indirect, and combinations of each of these. Figure IV-26

depicts these different shcemes.

o Up to four redundant links or paths can connect any two XXBUSes.
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o Each link is full duplex with data transfer rates comparable to the

XXBUS bandwidth.

o At the bus cycle level the XXBLP appears as any other port.

4.6.2 XXBUS Linking Port Structure. Figure IV-27 shows the functional block

diagram of the XOBUS Linking Port (XXBLP). The elements shown are grouped

into four units: the XXBUS transmitter, the XXBUS receiver, the IBL cable

electronics, and the IP queue. The following paragraphs describe the

elements of these units and how they are organized to support the XXBUS

linking port's principle function.

4.6.2.1 XXBUS Receiver. The XXBUS receiver of the XXBLP will consist of the

XXBUS Information Input Register (XXIR), the Address Recognition Unit (ARU),

and the XXBUS receiver logic. Also associated with the receiver will be the

following control and status lines: XBCA, XBACK, XBIRL, XBRESET, IKNACK,

INRQ, QFULL, XXIRC, and SELECT. See Table IV-02 for a detailed description

of each of these signals.

4.6.2.1.1 XXBUS Information Input Register (XXIR). The XXIR will be a

37-bit register with its inputs connected to the XXBUS information but via

the XXBUS transceivers and with its outputs connected to the cable drivers.

The XXIR will be used to hold IPs that are accepted from the XXBUS by the

XXBUS receiver and also serve to decouple the IP queue from the XXBUS.

4.6.2.1.2 Address Recognition Unit (ARU). The ARU will perform the function

of comparing address fields of the XXBUS information bus during the early

phase of every bus cycle with the path and bus I.D. headers contained within

the ARU. This function will determine whether or not the receiver should be

selected to participate in the remainder of the bus cycle or not.

The ARUs of the XXBLP differ from those of the processing ports in that

the XXBLP ABJ will consist of two bus i.D. headers. These two bus IDs will

specify the upper and lower limits of the bus ID. The ARU can be configured
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SIGNAL SOURCE DESTINATION DISCRIPTION

INACK IP QUEUE XXBUS RECEIVER IN ACKNOWLEDGE. Used by IP

queue to indicate to XXBUS
receiver that an IP was loaded
into the FIFO as requested.

INRQ XXBUS IP QUEUE IN REQUEST. Used by XXBUS
RECEIVER receiver to request the

loading of the IP contained in
the XXIR into the IP queue.

INIP FIFO CNTRL FMDB BUFFER IN INFORMATION PACKET. Used
by FIFO control logic to gate
IPs from IBL electronics onto

the FIFO memory data bus
during IP transfers to FIFO
memory.

OUTEN FIFO CNTRL XXBUS XCVRS OUT ENABLE. Used by XXBUS
transmitter to gate XXOR onto

the XXBUS informtion bus
during BUS cycle.

QFULL FIFO CNTRL XXBUS RECEIVER [P QUEUE FULL. Used by IP

queue to indicate to XXBUS

receiver that FIFO is full and
will result in the XXBUS
receiver operating in the XXIR
locked mode.

READ FIFO CNTRL FIFO MEMORY READ MEMORY. Used by FIFO
control logic to output the

addressed IP onto the FMDB.

SELECT ARU XXBUS RECEIVER Used by XXBUS receiver to de
LOGIC termine when to accept a bus

cycle.

XBACK XXBUS XXBUS Bused XXBUS control signal
RECEIVERS TRANSMITTERS used by XXBUS receiver

accepting bus cycle to
indicate to XXBUS transmitter
controlling bus cycle that the
IP was loaded into its XXIR.

Table iV-02. XXBUS Linking Port Signal Definitions (Page I of 2)
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SIGNAL SOURCE DESTINATION DISCRIPTION

XBCA XXBUS XXBUS Bused XXBUS control signal used
XMITTERS RECEIVERS by XXBUS transmitters to indi-

cate to XXBUS receivers and
XXBUS control port that a bus
cycle has started and that an
IP is on the XXBUS information
bus.

XBIRL XXBUS XXBUS Bused XXBUS control signal used
RECEIVERS TRANSMITTERS by XXBUS receiver accepting

bus cycle to indicate to XXBUS
transmitter controlling bus
cycle that its XXIR is locked
and that the IP was not loaded.

XBRESET XXBUS ALL PORTS Bused XXBUS control signal used
CONTROL by XXBCP to aid Port initiali-

zation during Power Up and

System Reset.

XMITRDY XXBUS FIFO CONTROLLER TRANSMITTER READY. Used by
TRANSMITTER XXBUS transmitter to indicate

to the FIFO controller that
the XXUUS transmitter is idle
and that the XXOR is available
for the next IP.

XMITSTART FIFO CNTRL XXBUS TRANSMITTER START. Used by
TRANSMITTER the FIFO controller to start

the XXBUS transmitter.

XXBUSGT XXBCP ONE FOR EACH XXBUS CONTROL GRANT. Used by
XXBUS XMITTER XXBCP to transfer control of

XXBUS to requesting XXBUS
transmitter.

XXBUSRQ ONE FOR EACH XBCP XXBUS CONTROL REQUEST. Used by
XXBUS TRANS- XXBUS transmitter to request
MITTER .ontrol of XXBUS from XXBCP.

XXIRC XXBUS XXIR Control line used to strobe
RECEIVER IP into XXIR.

XXORC FIFO CNTRL XXOR Control line used to strobe
IP into XXIR.

Table I V.02. XXBUS Linking Port Signa/ Definitions (Page 2 of 2)
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to accept a bus cycle if the bus ID of an information packet is either inside

or outside this range.

Figure IV-28 shows the functional block diagram of the XXBLP ARU. As

shown, there are three sets of comparators and ID headers: one for the path

ID, and for both the upper and lower bus ID. The outputs of these

comparators are connected to a logic network which can be configured, via the

setting of the in/out range switch, to make the control line SELECT active

conditioned to the IP bus ID being either inside or outside the range

specified by the upper and lower bus ID headers. For an example of how the

ARU of a network can be figured, see Table IV-03 which shows the

configurations of the ARU for the network shown in Figure IV-28.

4.6.2.1.3 XXBUS Receiver Logic. The XXBUS receiver logic will control the

transfer of IPs into the XXIR and from the XXIR to the IP queue of the other

XXBLP forming the link. This control logic is implemented as an

Alogirithimic State Machine (ASM) which must communicate with the transmitter

logic of other ports. This communications is accomplished by using the

control lines XBCA, XBACK, and XBIRL and the IP queue controller of the

linked XXBLP using control lines INRQ, INACK, and QFULL.

4.6.2.2 KXBLP KXBUS Transmitter Elements. The XXBLP XXBUS transmitter

elements include the XXBUS information packet output handling register (XXOR)

and the XXBUS transmitter logic. Also associated with XXBUS transmitter are

the control lines XBCA, XBACK, XBIRL, XBRESET, XXBUSRQ, XXBUSGT, XMITRDY,

XMITSTART, KXORC, and OUTEN. Table IV-03 provides a detailed description of

each of these signals.

4.6.2.2.1 XXBUS Information Packet Output Register ((XXOR). The XXOR will

be used to hold the next IP that is to be transferred from a linking port and

will serve to decouple the IP queue from the XXBUS to which the XXBUS trans-

mitter is connected. The XXOR will be a 37-bit register with its input

connected to the IP queue and with its output connected to the XXBUS informa-

tion bus via the XKBUS transceivers.
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4.6.2.2.2 XXBUS Transmitter Logic. The transmitter logic will control the

transfer of IUs from the XXOR to the XXBUS and the transfer of IFs from the

IP queue to the XXOR. This control logic will be implemented as an ASH which

must coordinate its activities with the IF queue, the receivers of other

ports on this XXBUS and with the XXBUS control port. This coordination will

be accomplished by using the control lines XMIRDY, XMITSTART, XBCA, XBACK,

XBIRL, and the controls XXBUSGT and XXBUSRQ.

The XXBLP XXBUS transmitter logic is similar to that used by the XBIU.

Th only difference is that the XXBLP XXBUS transmitter logic contains a

timer used to time out attempts to transfer IP to ports which fail to unlock

their XXIRs. For XXBUS transmitters of XXBIU, the time out interrupts and

associated microprograms will reset the transmitter if this lock up condition

should occur. For the XXBLP transmitters, since XXBLP contains no software

component, this time out function must be an integral part of the XXBUS

transmitter logic.

4.6.2.3 IP queue Elements. The I? Queue will provide temporary storage of

Is as they are transferred between linked XXBUSes. It will also enhance the

efficiency of this link by increasing the probability that the XXIR of the

XXBUS receiver will be unlocked.

The IP queue will be organized as a FIFO pipeline which can accomodate

approximately 2000 IPs. The FIFO memory will consist of single port bipolar

RAM with read/write access times of less than 60 NSEC. The FIFO control

logic will consist of memory address pointers, comparators, and other logic

needed to implement the RAM as a FIFO memory. It will also control the

transfer of IPs from Inter-Bus Link (IBL) cable to the FIFO RAM and from the

FIFO RAM to the XXOR. The FIFO control logic operations will be prioritized

to favor transfers from the XXIR to the FIFO RAM. This is done to ensure

that the XXBUS receiver will be available for each bus cycle.

The definitions of signals associated with the IP queue are given in

Table IV-02.
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4.6.2.4 The Interbus Link Cable Electronics. The IBL Cable Electronics

include cable drivers, receivers, and the actual cables. The cable electro-

nics will provide a full duplex link between the two XXBLP forming the IBL

and will be capable of supporting the 5 MEGA IP transfer rate. The physical

nature of the cable electronics will be a function of the environment of the

IBL including distance, noise levels, and security requirements. It will

also be a function of the types of components that will be available at the

time of implementation.

4.6.3 XXBUS Linking Port Operations. The operations. of the XXBLP of an IBL

will involve the transfer of IPs between the XXBUS which they connect. These

operations include determining when to accept IPs from the XXBUS; loading IPs

into the XXIR; transferring IPs across the IBL cable to the IP queue of the

companion XXBLP; transferring the next IP in the IP queue to the XXOR; and

the transferring of IPs from the XXOR across the connected XXBUS to the final

destination or to the XXBLP of another IBL. This subsection describes each

of these operations with respect to the major functional units of the XXBLP.

4.6.3.1 XXBLP XXBUS Receiver Operations. The Exchange Bus Linking Port

(XXBLP) XXBUS receiver will perform the operations involving the transfer of

Information Packets (IP) from the XXBUS across the Inter-Bus Link (IBL) to

the IP queue of its companion XXBLP. These operations include determining

when to accept bus cycles from the XXBUS, transferring IPs from the XXBUS to

the XXIR, and transferring IPs from the XXIR to the IP queue. The control of

these operations will reside within the XXBUS receiver logic which coordi-

nates its activities with other transmitters on the XXBUS and the IP queue.

This coordination will be done via the control lines XBCA/XBACK/

XBIRL/INRQ/INACK/QFULL respectfully. A description of each of these signals

is given in Table IV-02.

The operation of determining when to accept a bus cycle begins when XBCA

is made active. When this occurs the XXBUS receiver will test the state of

the select status line from the ARU. The ARU will make SELECT active if the

following conditions are met:
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* The path ID of the IP must equal that specified by the path ID

header.

o If the in/out range switch is in the in position, then the bus ID

of the IP must lie inside the range specified by the upper and

lower bus ID headers.

o If the in/out range switch is in the out position, then the bus ID

of the IP must lie outside the range specified by the upper and

lower bus ID headers.

When the receiver tests the control line SELECT, and if SELECT is

active, then the XXBUS receiver logic will accept the bus cycle and proceed

to engage the transmitter. The bus cycle will proceed in one of two possible

ways depending on the state of the QFULL status line. If QFULL is active,

then the receiver will operate in the XXIR LOCKED mode. If QFULL is not

active, then the receiver will operate in the XXIR UNLOCKED mode. Section

4.4.3.6 describes in detail the operation of the XXBUS receiver in each case.

If, at the completion of a bus cycle, QFULL is not active, the XXBUS

receiver will proceed with transferring the IP contained in the XXIR across

the IBL cable to the IP Queue. This transfer operation is accomplished with

the control lines INRQ and INACK. INRQ is used by the receiver to request

the loading of the IP into the IP queue. INACK is used by the IP queue to

indicate to the receiver when an IP has been loaded into the IP queue. After

the IP is loaded into the IP queue the receiver will become available for the

next bus cycle. Since proper operation of the XXBUS transmitters and

receivers requires that all receivers on the XXBUS be available prior to the

start of a bus cycle, the operation of transfering the IP from the XXIR to

the IP queue must have top priority over all other IP queue operations.

If QFULL is active upon completion of the bus cycle the receiver will

wait for QFULL to become inactive before starting the XXIR-to-IP queue

transfer.
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4.6.3.2 Information Packet Que . Operations. The IP queue controller will

perform the operations of writing the IF received from the XXBUS receiver of

the companion XXBLP into the RAM. It will also track the next in and next out

addresses of the RAM, determine when the RAM is full and when it is empty and

transfer IP from RAM to the XXBUS transmitter. The control of these opera-

tions lies with the FIFO control logic which coordinates these operations

with the XXBUS receiver and the XXBUS transmitter. This coordination will be

done by the control lines INRQ, INACK, and QFULL, and XMITSTART and XHITRDY.

Definitions for these control lines are given in Table IV-02.

The operation of writing an IF into the FIFO RAM will begin with the

XXBUS receiver making INRQ active. When INRQ becomes active the FIFO

controller will proceed to activate INIP which will gate the IP onto the FIFO

Memory Data Buse (FMDB) followed by a write strobe to the RAM. The FIFO

controler will at the same time activate INACK which will result in the XXBUS

receiver becoming available for the next bus cycle. After the IF has been

written into the RAM the FIFO controler will increment its next address

counter and check for the queue full condition. If the FIFO is full, then

the FIFO controller will set QFULL active which will cause the XXBUS receiver

to operate in the XXIR locked mode.

The operation of reading an IP from the RAM and transferring it to the

XXBUS transmitter will begin with the existance of an IP in the RAM. If the

RAM is not empty, indicating an IP is waiting to be transferred, the FIFO

controller will test the state of the XMITRDY status line. If XMITRDY is

active then the transmitter will be idle and ready to be loaded with the next

IF to be transferred. The IP will then be loaded into the XXOR of the

transmitter by the FIFO controller using the strobe line XXORC. After the IF

is loaded into the XXOR, the FIFO controller will start the transmitter by

activating the XMITSTART control line. At this point, if QFULL is set, the

FIFO controller will reset it. Ths operation will be repeated until the

memory is empty and can only be interrupted by the transfer of IUs from the

XXBUS receiver to the IP queue.

IV-109



4.6.3.3 XXBLP XXBUS Transmitter Operations. The XXBLP XXBUS transmitter

will perform XXBUS acquisition and transferring of IP from the XXOR across

the XXBUS to the next destination port. The control of these operations

resides with the XXBUS transmitter logic which coordinates these activities

with those of the IP queue, the XXBUS receiver of other port on the XXBUS,

and with the XXBUS Control Port (XXBCP). This coordination will be done via

the control lines XMITSTART and XI4TRDY, XBCA, XBACK, XBIRL, and the control

lines XXBUSRQ and XXBUSGT. A description of each of these signals is provi-

ded in Table IV-02.

When the transmitter is ready to transfer an IP, it will make XIITRDY

active to indicate this readiness. When the IP queue has an IP to be trans-

ferred and sees XMITRDY active, it will load the IP into the XXOR and proceed

to start the XXBUS transmitter by activating XMITSTART. When XMITSTART

becomes active, the transmitter will leave its ready state and enter its

XXBUS request state. This action will result in XMITRDY becoming inactive,

XXBUSRQ becoming active, and in the starting of the transmitter retry

time-out timer. The transmitter will then proceed to operate as described in

Paragraph 4.4.3.5. At the end of the bus cycle, if the XXIR was unlocked,

then the transmitter will return to its ready state; if the XXIR was locked,

then the transmitter will return to its XXBUS request state and continue to

retry until it is successful or until the retry timer times it out.
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SECTION V

SUMMARY OF DESIGN

5. Summary. The Micro Programmable Controller (PC) is an innovative

combination of microcomputer hardware and software synergistically coupled to
produce a totally distributed, stand alone computer system. Through the use

of parallel processing techniques, large integrated problems can be resolved

with the MPC by functionally decomposing the problem and dedicating separate

processing resources to each decomposed element. Within this distributed
parallel architecture, the requirement for interprocess communications is

imperative to ensure coordination and integrity. The previous sections have
described design changes to the MPC architecture that will decrease the time

to perform interprocess communications. Section 5.1 briefly reviews the com-
ponents of interprocess communications as they were presented in Section 2.

S, - ion 5.2 discusses the major considerations of the improved MPC design as

they relate to the components of interprocess communications and provides a

table which contrasts current MPC performance characteristics with the goals
to be realized with the implementation of the new design.

5.1 Interprocess Communications. Interprocess communications consists of
two components : data communications and process coordination. In the Im-

proved Microprocessor Design, the bandwidth of these two components has been

increased thereby increasing overall performance of the MPC. The following
paragraphs describe various design changes that will increase the bandwidth

of each of these interprocess communication components.

Data communication is a measurement of the amount of data that can be

transferred between two ports during a given period of time. Data communica-

tion bandwidth can therefore be analyzed by determining the raw bandwidth of
the XBUS (bus bandwidth) and the effective rate at which two ports can ex-

change data (port-to-port bandwidth).
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o Bus bandwidth is a measure of bus cycle rate and the number of bits

of data transferred per bus cycle. (Cycle rate X number of bits

transferred per cycle - bus bandwidth)

o Port-to-port bandwidth is a measure of port-to-port transfer rate

and the number of bits of data transferred per cycle. (Port-to-bus

transfer rate X number of bits transferred - effective port-to-port

bandwidth)

Process coordination bandwidth is a function of the number of control dia-

logues a port can perform in a given period of time. Process coordination

bandwidth can therefore be determined as the reciprocal of the time required

for one control dialogue. This figure will represent the number of control

dialogues a port may engage in during the period of one second. (1/total

time for a control dialogue - process coordination bandwidth per port per

second)

5.2 Improved Microprocessor Design. This design addresses the performance

limitations inherent in any distributed parallel architecture - interprocess

communications. Interprocess communication is required to ensure the coor-

dination and integrity of parallel resources in a distributed architecture.

The time required to perform interprocess communication will ultimatelv

reduce the overall performance of a parallel processing system. Section 4

presented several ways to improve the current lPC architecture by decreasing

the time required to perform interprocess communications. The realization of

these architectural improvements will significantly increase the system per-

formance of the MPC by achieving interprocess communications performance for

single processes comparable with today's serial mainframe systems while pro-

viding for a relatively unrestricted number of simultaneous processes. The

following paragraphs delineate each of the maior MPC design improvements con-

sidered during the Improved Microprocessor Design contract. Table V-0, Im

proved Hardware Performance Characteristics, presents a comparison of the

currently operational MPC with the new design.
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5.2.1 Exchange Bus (XXBUS) Improvements. The most significant design change

in the XXBUS will be the demultiplexing of the data and address lines. This

improvement will increase XXBUS bandwidth by allowing the concurrent transfer

of 16 bits of data and a 14 bit address (2 bits for path, 6 bits for bus, and

6 bits for port identification) using a single phase bus cycle. In the cur-

rent architecture a two phase bus cycle is required to transfer 16 bits of

data because the address lines are multiplexed through the data lines. The

improved XXBUS will therefore use half as many bus cycles to accomplish this

transfer.

5.2.2 Exchange Bus Control Port (XXBCP) Improvements. The most significant

design change in the XXBCP will be the simplification of bus cycle arbitra-

tion logic. This improvement will increase XXBUS bandwidth by allowing the

maximum bus cycle rate to increase to 5 million cycles per second. Bus cycle

duration will therefore decrease to a minimum of 200 nanoseconds per cycle.

XXBUS bandwidth will thereby increase to 80 megabits per second which is five

times greater than the current XBUS bandwidth. The improved arbitration will

also remove the priority demand scheme from the request/grant process and

service all bus cycle requests equally. This will allow the XXBUS to sustain

loading where all of the connected ports are contending for bus cycles with-

out serious degradation to any individual port-to-port bandwidth. In the

improved design, an XXBCP will reside on each individual XXBUS therefore, the

addition of several XXBUS's into a network will not limit the performance of

any single XXBUS or the network as a whole.

5.2.3 Exchange Bus Interface Hardware (XXBIU) Improvements. The most sig-

nificant design change in the XXBIU will be the decoupling of the Primary

Port Processor Unit (PPPU) from the XXBUS. This improvement will increase

the port-to-port and process coordination bandwidth of each MPC port by re-

leasing the PPPU from the overhead processing required to initiate and

sustain dialogues. Port-to-port bandwidth will increase to 10 megabits per

second using DMA transfers across the XXBUS, a 50 fold increase over the

current MPC. Process coordination bandwidth will increase to allow 4,000

control dialogues per port per second. The effect of expanding these
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bandwidths will ultimately allow each MPC port, and collectively the MPC, to

address larger and more complex problems by providing more processing power

directed toward to its individual requirements.

The improved XXBIU will preserve the basic architectural characteristics

of the MPC while reducing the processes required to access the XXBUS and

transfer data to a lower level thereby applying hardware resources in a more

efficient manner. The redesign of the XXBIU will require many changes to the

Inter-Port Communications firmware subsystem in order to maintain consistency

with the improved MPC hardware architecture. It should be noted, however,

that redesign of the XXBIU and IPC will not necessitate the redesign of any

other MPC subsystem such as ECM, EDR, or MACE.

5.2.4 Inter-Port Communications (IPC) Subsystem Improvements. The most sig-

nificant design change to IPC will be the separation of IPC into two logical

levels. IPC Level I will be responsible for the control and execution of all

XXBUS data transfer operations and will reside in the Microprogram memory of

the XXBIU in each MPC port. TPC Level 2 provides the interface between other

MPC software subsystems and IPC Level 1. IPC Level 2 will reside in the ROM

of each port and be executed by the port processor. This improvement will

consolidate design changes in the XXBUS and XXBIU. IPC will provide port-to-

port communications in an environment totally asynchronous to the PPPU at the

bandwidths mentioned in the previous sections. The result of IPC

improvements, will preserve the proven functionality of the current IPC,

while providing a faster more efficient communications interface.

5.2.5 Inter-Bus Linking Port (XXBLP). The design of the XXBLP will allow

large networks of MPC XXBUS"S to be configured to resolve problems that

require more than 24 (minimum) to 64 (maximum) MPC ports per XXBUS, depending

upon MPC cabinetry. The most significant aspect of the XXBLP design will be

the asynchronous connection of XXBUS's at the bus cycle level. The XXBLP

will operate at the 80 megabit bandwidth of the XXBUS and support networking

growth to allow asynchronous interconnection of up to 64 XXBUS's. Such a

network would offer 4096 MPC ports to allocate for resolution of system

problems. In addition, the XXBLP will support multiple routing between
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XXBUS's using the 2 bits of path identification in the 14 bit address. This

will provide the system planner with a powerful tool to prevent possible
bottleneck that can occur in large, integrated networks.
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APPENDIX A

Terms and Abbreviations

A ( /NAK Acknowledge/Not Acknowledge (error).

ACK/NAK Response Two bytes displayed by Passive IPC in the

ODHR in response to a Transfer Termination

Request received from Active IPC.

ACTEN ACTIVE ENABLE. Mode control line of

microprogram control module of XXBIU used

to enable the active channel of the XXBIU.

Active Completion Routine Code called by the Active Direct or Active

Indirect Driver when Active IPC returns to

EDR for a processing break between DCWs.

Active Direct Service A routine which is directed towards one

specific port and in which the EDR Port

plays the active direct role in any

dialogue. An Active Direct Service is

executed as a result of a dispatch bit

being set in the Port Configuration Table.

Active Indirect Service A routine oriented towards one specific

port and executed by EDR in the active

indirect mode as a result of an indirect

request from the specific port.

Active Port (1) An MPC Port that contains the hardware

necessary to request exchange bus usage.

(2) The port which drives an IPC dialogue

by son, ing inter r,-ts to the pas ive port.
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ACTRDY ACTIVE READY. Interrupt request line

connecting XXBIU to PPPU interrupt

handling hardware.

DCCP Advanced Data Communications Control

Protocol

ADMAP Active DMA Address Pointer. Located in

DMA module of XXBIU. Used during active

DMA transfer to point to next word to be

transferred.

ADMAWC Active DMA Word Counter. Located in DMA

module of XXBIU. Used to determine end of

active DMA block transfer.

APMPAR Active Port Microprogram Address

Register. Register of Address Queue.

APPR Active Page Pointer Register. Points to

the page that contains a block to be

transferred during active DMA.

AQ Microprogram Address Queue. Registers

located in microprogram module u1ed for

addressing the microprogram memory.

ARC Active Redundant Check word generator.

Located in XXBUS module of XXBIU. Used to

generate check word during DMA operations.

ARU Address Recognition Unit. The element of

each XXBUS receiver which determines if

the XXBUS receiver should engage a bus

cycle.
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ASM Algorithmic State Machine. A type of

sequential state machine used to implement

hardware control logic.

ATC Active DMA Terminal Count. Connects a

microprogram module with a DMA module.

Used to indicate the end of an active DMA

block transfer.

ATO Active Time Out. Control line connecting

the microprogram control module to the

dialogue timer.

Attention Bit (Curent MPC). One of the status bits

which is used to synchronize the active

and passive pores in a dialogue.

Availbility (or Passive The passive communication modes and passive

Availabilty) service groups which some channel within a

port has requested.

AXMPAR Active XXBUS Microgram Address Register.

Register of Address Queue.

BAR Current Exchange Bus Address Register.

BIM (or BIMA) (Current MPC). Exchange Bus Interface

Module. The BIM grants a bus cycle to a

requesting port through the XIM in that

port's cabinet.

BMMB Branch Microprogram Module Bus.
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BR-90 Bunker Ramo Graphics Console.

BUS ID 6-Bit field of XXBUS address used to

specify Bus of destination Bus.

CCT Channel Control Table. IPC Table.

CCU Channel Control Units. Used to interface

BR-90 (PRE-MPC) with PACER

Channel A long-term interface between IPC and the

user-level program.

CLU Conditional Logic Unit. Located in XXBUS

module of XXBIU. Used to decode data

control words.

CMPRi Compare Register One. Located in gXBUS

module of XXBIU. Used with CLU operations.

CMPR2 Compare Register Two. Same as CHPRl.

COMCND Compare Condition. Status line connecting

XXBUS module to microprogram control

module. Used with CLU operations.

Completion Routine A routine called by Passive IPC at the end

of a header or segment transfer, or at the

end of a dialogue.

Control Word The last word in a DCW which provides

information concerning the data block

described by the DCW.
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Control Interrupt (Current NPC). A comand written across

the bus at the interrupt seven level.

CPU Central Processing Unit

CRC Cyclic Redundancy Check.

CS Chip Select.

Data Block A contiguous block of memory to be

transferred by IPC.

Data Interrupt (Current MPC). A command transferred

across the XBUS at the interrupt five

level.

DCW Dialogue Control Word.

DDCMP Digital Data Commun icat ions Message

Protocol.

DDE Data Decoding Elements. Elements of XXBUS

module that support XXBUS data decoding.

DEC Digital Equipment Corporation.

DECX Decode and Execute Function Code. Control

line connecting queue controller with

XXBUS command unit of the MCM.

Dialogue An interaction between IPC in two ports

which establishes a connection, transfers

the desired data and directives, and

terminates the connection.
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Dialogue Termination Code See Termin&tion code.

Dialogue Termination Request Two bytes written by Active IPC to the

connected passive port when a dialogue is

successfully completed or when a dialogue

is terminated due to error.

Direct Communication An inter-processor communication in which

IPC in the requesting processor is granted

bus usage and sends a message to a desired

port.

DMA Direct Memory Access

DMAM Direct Memory Access Module. Located in

XXBIU. Contains address registers and

control logic that supports DMA between

the port memory and the XXBUS.

DMAMCU DMA Module Control Unit. Control logic

that executes DMA module MI directives.

DOD Department of Defense.

DXEX DMA and XXBUS Modules Execute. Control

line connecting XXBUS, DMA, and

microprogram control module. Used to tell

XXBUS and DMA module to execute MI

directive.

DXRDY DMA and XXBUS Modules Ready. Control line

connecting DMA, XXBUS, and MCM modules of

XXBIU. Used to indicate DMA and XXBUS

modules ready for next MI directive.
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ECK External Control and Monitoring Software

Subsystem.

EDR Error Detection and Recovery. MPC

Software Subsystem.

EMI Electromagnetic Interference.

EXPARQ Execute Port Active Request. EXRQ line.

EXPPRQ Execute Port Passive Request. EXRQ line.

EXRQ Execute Request. Internal control lines

of queue controller used to request execu-

tion of microprograms.

EXXARQ Execute XXBUS Active Request. EXRQ line.

FEP Front End Processor.

FMS File Management System.

FMC File Management Control.

FIFO First-In, First-Out

FMDB First-In, First-Out Memory Data Bus.

Located in XXBUS linking port.

FUNCTION CODE Used to specify function of XXBIU to be
executed.
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GET PB Get Port Bus. Internal Control line of

DMA module.

GRANTED Control Line Located in XXBUS Control

Port. Indicates that arbiter is in

granting state.

G ROU PRQ Control Line Located in XXBUS Control

Port. Used by port arbiter to make

request to group arbiters.

HANDSHAKING Method of transfering information between

asynchronous control structures.

HBGPAP High Byte of General Purpose Address

Pointer. Located in DMA module.

HCR Header Completion Routine.

HDLC High Level Data Control Link.

Header A segment which contains information

describing the desired dialogue.

HIS Honeywell Information Systems.

I/0 Input/Output.

IBC Inter-Bus Communications. MPC Software

Subsystem.

IBL Inter-Bus Link. Hardware link used to

network XXBUS.
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IDHR Old Exchange Bus Input Data Handling

Register.

IDHS Intelligence Data Handling System.

INACK In IP ACKNOWLEDGE. Control line used to

acknowledge INRQ from XXBUS receiver.

Indirect Communication An inter-processor communication in which

the requesting processor enters the

request in its ODHR and waits for this

request to be read by the desired port.

INRQ In IP REQUEST. Control line used by XXBUS

receiver to request transfer of IP from

XXIR.

Internal port The hardware by which an Intel 8080A CPU

communicates with other parts of the

microprocessor or port.

Interrupt A command by, which otie port reads or

writes the bus interface registers of

another port and attempts to cause the

target port to execute at a location

determined by the bus interface hardware.

Interrupt-Level Processing Program execution caused by the receipt of

an interrupt and which causes the

user-level program to be temporarily

suspended.

IOR Input/Output Read.

A-9



low Input/Output Write.

IP Information Packet. Basic unit of infor-

mation exchanged between MPC ports via

XXBUS.

IPC Inter-Port Communication. MPC Software

Sub system.

IPC Li IPC Level One. IPC microprograms that are

executed by XXBIU.

IPC L2 IPC Level Two. IPC residing in firmware

of pPPU.

iMp JUMP. Branch operation.

LBGPAP Low byte of General Purpose Address

Pointer. Located in DMA module of XXBIU.

Used to make single word DMA accesses.

LBUS Linking Bus.

Linking Bus XXBUS containing only XXBUS Linking

Ports. Used to link XXBUSES.

LLLP Last-Looked-at, Lowest Priority.

LOB Lock On Request Bit. A bit within the

function code used to indicate that

function code is lockon request.
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Lockon Request (Current MPC). Two brtes written by

Active IPC to a target port requesting a

dialogue.

Lockon Response (Current MPC). Two bytes displayed in the

ODHR by Passive IPC to indicate that it

has accepted an active port's Lockon

Request.

LORQEN Lock On Request Enable. Enable line used

by IPC LI to indicate willingness to

accept lock on request to the XXBIU.

LSB Least Significant Byte or lower byte of a

two-byte grouping; least significant bit.

MACE MPC Asynchronous Control Element. MPC

Software Subsystem.

Machine State The current state of all registers in a

CPU, including the processor word,
instruction counter, and stack pointer.

MBR Module Branch Register. Located in the

MCM of the XXBIU. Holds target module

address during execution of branch micro-

instructions.

MCM Microprogram Control Module.

MCMCU Microprogram Control Module, Module

Control Unit.
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Module Control Unit. Logic contained

within the XXBUS, DMA, and MCM modules

that control the fetch and execution of

microinstructions.

MDAR Microprogram Module Address Register.

Register of XXBIU MCM address queue.

MEMRD Memory Read. Control line used by DMA

module to read from port memory.

MEMWT Memory Write. Control line used by DMA

module to write to port memory.

MI Microinstruction.

MICROINSTRUCTION A single word of the XXBIU microprogram

memory containing directives that are
executed by the XXBIU hardware.

MICROPROGRAM A collection of microinstructions which

implement a function of the XXBIU. The
XXBIU can contain up to 32 microprograms.

Microprogram Control Module A hardware module of the XXBIU which

provides for high level control of the
XXBIU and for the control of microprogram

execution.

MICROPROGRAM MEMORY Memory of the XXBIU which contains the

microprograms of the XXBIU.
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MICROPROGRAM MODULE A subdivision of a microprogram consisting

of up to 8 microinstructions. When the

XXBIU executes a module, the module main-

tains control of the XXBIU until it

terminates/subterminates. A microprogram

can contain up to 8 modules.

Microsecond(s) .000001 second.

MI Directive Microinstruction field reserved for

directives of a XXBIU module.

MIEL Microinstruction Execution Logic. Control

logic located in the MCMCU that controls

the fetch and execution of microinstruc-

t ions.

MIELEX Microinstruction Execution Logic Execute.

Control line connecting MCMCU and queue

controller of XXBIU MCM.

MIELRDY Microinstruction Execution Logic Ready.

Control line connecting MCMCU and queue

controller of XXBIU MCM.

MIHR Microinstruction Holding Register.

Registers associated with the XXBUS, DMA,

and MCM module control units. Used to

hold microinstruction during execution.

MILU Microinstruction Loading Unit. Control

Logic located in DMA module.

MM Microprogram Memory.
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MP Microprogram

MPC MICROPROGRAMABLE Controller.

MPCC Multiprotocol Communication Controller.

MPMAB Microprogram Memory Address Bus. Circuit

path of XXBIU connecting address queue of

MCM to the microprogram memory.

MPMAR Microprogram Memory Address Registers.

Registers of the XXBIU MCM address queue.

MPMDB Microprogram Memory Data Path. Circuit

paths of the XXBIU used to transfer

microinstructions from the microprogram

memory to the XXBIU modules.

ms Millisecond (.001 second).

MSB Most Significant Byte or upper byte of a

multiple byte grouping.

Network Direct Communication A communication mode characterized, in

general, by the exchange of information

between user-defined channels.

NOP No Operation. Null program instruction.

ODHR Old Exchange Bus Output Data Handling

Register.

OJ-389(V)/G Sperry Univac Alpha Numeric/Graphics

Console.
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OUTOT OUT GRANT. Control line located in XXBUS

control port used by XXBUS cycle sequencer

to tell arbitration unit to output ,-eued

grant .

PACER Program Assisted Console Evaluation and

Review.

PAS Passive Active Switch. .ontrol bit of

function code used to specify the passive

channel of the XXBIU.

PASEN Passive Enable. Control line of micropro-

gram control module of XXBIU used to

enable the active channel of the XXBIU.

PASRQ Passive Request. Interrupt request line

connect-ing XXBIU to PPPU interrupt

handling hardware.

Passive Availability Display (Current HPC). Two bytes displayed in a

port's ODHR when that port is available to

enter a dialogue.

Passive Port (1) An MPC Port that lacks the hardware

necessary to request XXBUS usage.

(2) The port which is driven through a

dialogue by the XXBUS interrupts received

from the active port.

Passive Servie A routine executed by EDR in the passive

role as a result of a request written to

EDR by an external active port.
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Path ID 2-Bit field of XXBUS address field used to

specify the path that an IP is to take.

PBAU Port Bus Acquisition Unit. Control unit

of the DMAM.

PBAVL Port Bus Cycle Available. Internal

control line of DMA module.

PCOM PACER Communication Modules used to

integrate PACER and MPC.

PCU Port Command Unit. Located in micropro-

gram control module. Provides command

level interface betwen PPPU and XXBIU.

PCT Port Control Table. IPC table.

PCU Port Command Unit.

PDMAP Passive DMA Address Pointer. Located in

DMA module of XXBIU. Used during active

DMA transfers to point to the word to be

transferred.

PDMAWC Passive DMA Word Counter. Located in DMA

module of XXBIU. Used to determine the

end of passive DMA block transfer.

PMB Port Memory Bus.

Port The physical device containing and execu-

ting the various MPC Software Subsystems.

Each is a complete microcomputer

consisting of Central Processing Unit,

memory, bus interface hardware, and (in

general) I/0 device handlers.
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Port Data Bus Circuit Path Connecting Port Memory to

XXBIU.

Port ID 6-Bit field of XXBUS address used to

specify destination port of IP.

PORTRQ PORT REQUEST. Control line of the XXBUS

control port's arbitration unit. Used by

port arbiter to make request to group

arbiter to issue grant.

PPMPAR Passive Port Microprogram Address

Register. Register of Addres Queue.

PPPR Passive Page Pointer Register. Points to

page that contains block to be transferred

during passive DMA.

PPPU Primary Port Processing Unit. The proces-

sing elements that perform the principle

tasks of the port. Includes the CPU(s),

port memory, and other support hardware.

PRCG Passive Redundant Check word generator.

Located in XXBUS module of XXBIU. Used to

generate check words during passive DMA

operations.

PS RQ/GT Single, bi-directional handshaking line

connecting PPPU and XXBIU. Used to trans-

fer control of Port System Bus.
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PTC Passive DMA Terminal Count. Connects

microprogram module with DMA module. Used

to indicate end of passive DMA block

transfer.

PTO Passive Time Out. Control line connecting

microprogram control module to dialogue

timer.

PXMPAR Passive XXBUS Microprogram Address

Register. Register of address queue.

QFULL QUEUE FULL. Control line of the XXBUS

linking port used by IP queue controller

to tell XXBUS receiver that IP queue is

full.

QUEGT QUEUE GRANT. Control line of XXBUS

control port connecting XXBUS sequencer

with arbitration unit. Used to tell

arbitration unit to prepare to issue next

grant.

RADC Rome Air Development Center.

RAM Random Access Memory.

RCA Radio Corporation of America

RCVE Receive.

RELPB Release Port Bus. Internal control line
of DMA module.
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RNP Remote Network Processor.

ROM Read Only memory.

SAC Strategic Air Comand.

SCR Segment Completion Routine.

SDLC Synchronous Data Link Control.

Segment A group of one or more data blocks which

is transferred across the bus in one

directioon and which is stored in a

contiguous memory location in the

receiving port. A segment may contain

either header information or data.

SELECT Control line used by address recognition

unit to tell XXBUS receiver to engage in

bus cycle.

Service Group (1) A bit or number that indicates a port

type. (2) A number of corresponding bit

mask used in the active indirect communi-

cation mode to request or offer a group of

services. EDRs service group numbr is

zero, which translates to a bit mask of

80 .

SIU Status Interface Unit. Unit of the Micro-

program Control Module. Used by PPPU to

read status of XXBIU and its microprogram.
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SOW Statement Of Work.

SPLC Special Purpose Communication Link.

STARTIMER Control line located in XXBUS control port

used by the XXBUS cycle sequencer to time

XXBUS cycle.

Status Bits (Current MPC). Four bits in a port's bus

interface hardware indicating if the port

is available for a dialogue, if the port

is executing, if the I/O drivers are

enabled, and if the port is servicing an

interrupt.

Status Read/Write (Current MPC). A command by which one

port reads or modifies the current state

of a port's status bits.

System Direct Communication A direct communication mode generally used

Code in the execution of control functions and

which frequently involves the IPC -

maintained channel in the target port.

Terminate Bit The highest bit in an ACK/NAK (or Dialogue

Termination Code.)

Termination Code A code indicating either the successful

termination of a dialogue or the reason

for unsuccessful termination. The code

consists of a terminate bit and an ACK/NAK

code (lowest seven bits).
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TIMEOUT Control line located in XXBUX control

port. Used by XXBUS cycle timer to indi-

cate the XXBUS sequencer bus cycle timed

out.

Transfer Termination Request Two bytes written by Active IPC to the

connected passive port when a data block

transfer is completed.

Visibility (Current MPC). A display in a port's ODHR

which initiates the port's passive availa-

bilty.

XIM (Current MPC). Exchange bus buffer

module. Each MPC cabinet contains a XIM
which forwards a port's requst for a bus

cycle to the BIM.

XXIDR XXBUS Input Data Register. Holding

register for data received from XXBUS.

XXIFR XXBUS Input Function Code Register.

Holding register for Function Codes

received from XXBUS.

XXIR XXBUS Input Registers. The holding

registers XXIFR, XXIDR, and in XXBUS

linking ports XXIAR.

XXIRC Control Line used to strobe data into the

XXIR.
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XXIRILOCKED XXBUS Input Registers Locked. Used to

indicate to an XXBUS receiver that the

XXBUS input registers are locked; if

active, an XXBUS receiver will operate in

the LOCKED mode.

XXODR XXBUS Output Data Register. Holding

register for data to be transmitted to

XXBUS.

XYWFR XXBUS Output Function Code Register.

Holding register for function codes to be

transmitted to XXBUS.

XXOR XXBUS Output Registers. For XXBIU,

includes the registers XXODR, XXOFR, and

XXAOAR/XXPOAR. For XXBUS linking ports,

holding register for Information Packets

to be transmitted to the XXBUS.

XXORC Control line used to strobe data into the

XXOR.

XXPOAR XXBUS Passive Output Address Register.

HoLding register for passive channel XXBUS

address to be transmitted to XXBUS.

XaACK XXBUS control line used by XXBUS receivers

in XXIR UNLOCKED mode to engage XXBUS

transmitters. Indicates Information

Packet was accepted.

XBCA XXBUS control line used to indicate when a

XXBUS transmitter has started a bus cycle.
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XBIRL XXBUS control line used by XXBUS receivers

in XXIR LOCKED mode to engage XXBUS

transmitters bus cycle. Indicates Infor-

mation Packet was not accepted.

XBRESET XXBUS RESET. XXBUS control line sourced

by the XXBUS control port. Used to reset
ttie MPC ports of a XYBUS during power up

and system reset.

XBUS Current MPC Exchange Bus.

XBM XXBUS Module. Module of XXBIU that

performs XXBUS data transmitting,

receiving, and error detecting.

XBMCU XXBUS Module Control Unit. Control logic

of XXBLjS module that controls the execu-

tion of XXBUS module Ml directives.

XCU XXBUS Command Unit. Unit of microprogram

control module tWat " provides the XXBUS
with command level control of a ports

XXBIU.

XM IT Transmit.

XMITRDY Transmitter Ready. Used by XXBUS trans-

mitter to indicate that it is ready to

transmit the next information packet.

XR XXBUS Receiver.

XT XXBUS Transmistter
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XTB XX3[U Tranfer 3us. A circUiL path of hile

XXBIU over which the DMA, XXBUS, and MCM
modnle transfer information betwee n each

other and port menory data bus.

XXAOAR XXBUS Active 04l rpIt Al I s Register.

holding r,,glst r tr i , . (w (Ia: ,,. f XY f n I

addr-ss to be transmitted to 'XBUS.

XXBCP XXBUS Cont roL Port. Port that controls

use of the XXhUS.

XXB 1U KXUS Lnterface Unit. h microprogramufable

controller that interfaces a ports PPPU

with the XXUS.

XXBLP XXBUS Linking Port. Port used to link

XXBUSFS.

XXBUS Improved MPC Exchange B3s. A common

coummunications chainn,,I owr which MPC

ports communicate.

XXBUSGT XXBUS Grant. Control lines used by XXBUS

control port to grant use of XXBUS to

requesting XXBUS, transmitt.r.

XXBUSRQ XXBUS Request. Control line used by a

XXBUS transmitter to request from XXBUS

control port use of the XXBUS.

Z IF Zero Insert i on Force. Board connectors

'r iLt hv AMP and q,,(d in the MP(' cabinet.
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