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SECTION I
INTRODUCTION

This final technical report is submitted to Rome Air Development Center
(RADC) in accordance with data item A005 of contract F30602-80-C 0171, The

principle project reference relevant to this technical report is the State-

ment of Work (SOW) for the Improved Microprocessor Design contract, RADC PR
NC. I1-0-4344 dated May 7, 1980.

1.1 Purpose. The intent of this report is to provide the reader with an

anderstanding of current Micro Programmable Controller (MPC) capabilities and
the design of the Improved MPC resulting from engineering services provided

under the referenced contract by PRC.

1.2 Scope. The scope of this report includes engineering services provided
under the above referenced contract and improved MPC hardware/firmware
characteristics as designed by PRC personnel. This approach conveys the

current operational state of the MPC development and provides the reader with
an appreciation of how these new capabilities could be utilized by other

agenices throughout the Air Force and the Department of Defense.

1.3 Report Organization. This report is organized into five major sections

as follows:
o Section 1 provides information concerning contract F30602-
80-C-0171 and its associated SOW, RADC PK NO. I-0-4344; statemeunts

of purpose and scope; and concludes with report organization.

o Section 2, background data providing the history of the MPC, and the

requirements for an Improved MPC.
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Section 3 presents each major component of the MPC by describing
hardware, communications (firmware) and software architectures that

collectively make up the current MPC.

Section 4 provides design details for the Improved MPC in satis-
faction of each requirement under this contract.

$
Section 5 provides a summarization of the specific design details
and the implications of the new design. This section is followed by
an appendix containing a list of hardware and software acronyms and

terms used in this report.




SECTION 11
SUMMARY OF REQUIREMENTS

The purpose of this section is to provide s brief background of the
events that led to the development of the MPC, and an overview of the current
architecture with possible improvements that could be made to it. This is
followed by a summary of requirements for the improved MPC design as stated
in the SOW.

2.1 Background. This subsection described the technical problems that led

to definition of the MPC architecture and the history of the MPC development
including its integration into the SAC Intelligence Data Handling System

(IDHS) enviromment.

2.1.1 History of the MPC. Beginning in 1966, Rome Air Development Center

(RADC) and Planning Research Corporation (PRC) personnel began designing the
first large-scale, on-line intelligence system within the Department of
Defense (DoD) at Headquarters Strategic Air Command (SAC). This system was
named PACER or Program Assisted Console Evaluation and Review. PACER
achieved an initial operating capability in November 1970 with on-line,
real-time, data base update and applications support being provided by 16
Bunker Ramo graphics counsoles (BR-90s) and 32 Radio Corporation of America
(RCA) textual consoles. The BR-90 consoles were interfaced to the PACER
Honeywell 6080 mainframe by two uniquely developed hardware components called
Channel Control Units (CCUs) while all 32 RCA consoles were interfaced to the
mainframe by a Digital Equipment Corporation (DEC) PDP~15 minicomputer. With
this hardvare configuration, failure of either CCU or the PDP-15 caused eight
BR~90s or all 32 RCA consoles respectively to be unavailable for use.
Furthermore, the supporting PACER system and console handling software could
not handle additional consoles of either the same type or of a different type.
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By 1975 changing requirements dictated a need for increased capabili-
ties. Among those required were: incresased system capacity and reliability,
direct access to communications circuits, existing terminsl replacement and
the means to support increased numbers of terminals and multiple terminal-
types, the ability for a single terminal to access multiple systems, and the
ability to electrically intertie the Honeywell 6080s with five DEC PDP-ll

minicomputers.

In short, PACER required a capability to satisfy the following system

requirements:
o Normalize the BR-90 and RCA Textual Console Interface
o Standardize the PACER to console communication
o Provide high relisbility and availability
o Incur minimum PACER executive and application software impact

o Provide future system flexibility and extemsibility to meet near-

real-timwe information processing objectives

There were two standard systems approaches for providing the required
PACER capabilities. The first was to upgrade the host processor; however,
since PACER already was supported by the Honeywell top-of-the-line 6080 sys-
tem, this alternative was not feasible. The second approach was to add ome
or more Front-End Processors (FEPs) to provide needed communications capabi-
lities. With the large screen size of the BR-90 console and the high system
interaction rates, it was determined that an FEP would have to handle a
steady-state load of 30,000, and a peak load of 60,000, characters-per-second
to provide adequate system response time to PACER users. Loads of this
magnitude were above the effective range of available FEPs and would there-~
fore place additional work on the Honeywell 6080 mainframe for network

control. Additional PACER host workloads were considered undesirable.
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During 1975, RADC engineering personnel were investigating the benefits
that wmight accrue to USAF Commands from integration of microprocessor techno-
logy into various Cowmand ADP environments. This work together with consul-
tation between RADC engineers and PRC technical personnel led to definition
of a concept using an array of asynchronously operating microprocessors and a
high-speed communications bus to resolve certain PACER problems. This
concept was later developed and implemented by PRC and called the Micro
Programmable Controller (MPC). Under this concept, all PACER consoles were
directly interfaced t.o the MPC and operationally implemented in August 1979.
The MPC was integrated with the PACER Honeywell 6080s by new subexecutive
software called PACER Communications Module (PCOM) which communications with
the MPC in a message mode through the standard Honeywell Datanmet 355 FNP.
PCOM provides a standard communications interface with the Honeywell 6080s
and performs required transliteration between the network and PACER character
sets. It also performs necessary message data compression and expansion

functions within the network.

Implementing the PACER MPC resulted in eliminating the two unique CCUs
and the PDP-15 computer -- all critical network components -- and provided
needed flexibility in switching individual BR-90s or RCA Textual Consoles

between the Operational and Test PACER Honeywell 6080 computers.

Subsequent PACER executive software enhancements in concert with MPC
developments removed the previous constraint of two console types and 48
total consoles. Today, the PACER system supports a complement of 67
dual-screen UNIVAC 0J-389(V)/G workstations, twenty local printers, and is
interfaced with two PDP-11 based AN/GYQ-21(V) systems. Since its implemen-
tation, the MPC has had one system failure operating 23 hoursper-day, seven

days-a-week. The system was restored to full operation in 30 minutes.
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2.1.2 MPC Architectural Overview. This paragraph briefly describes the MPC
design concept, the physical configuration, and system-level software that
collectively embody the SAC MPC. This discussion is intended as an aid for

the reader in relating the current MPE concept to subsequent requiremsnts
discussions for this specific contractual effort to improve the MPC hardware
architecture.

The MPC is an innovative combination of microcomputer hardware and soft-
ware synergistically coupled to produce a distributed computer system.
Physically, the MPC is composed of an array of microcomputers called "ports"
interconnected by a common high-speed communications bus. Each port is a
complete computer consisting of a microprocessor, memory, and 1/0 interfaces

with the bus and an optional attached device.

Each port within the MPC architecture operates independent of, and in
parallel with, all other ports. Assuming a 50-port configuration using INTEL
8080A microprocessors, the MPC is capable of executing 25-million instruc-
tions per second -- considerably in excess of instruction execution rates for

the largest mainframes available today with the exception of supercomputers.

The MPC architecture distributes dedicated processing resources (i.e.,
ports) as close as possible to a data source or device. This design ensures
that network processing on behalf of one user device cannot diminish
resources required by another user device. The design .also reduces the
processing burden of an attached mainframe by offloading some processing that
it would otherwise have had to accomplish. The result of this approach when
implemented within existing host-centered, saturated, architectures is
frequently an improvemerit in system response time to user system requests
since such requests can be satisfied entirely within the MPC without a burden

on mainframe resources.
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The MPC architecture is totally modular with respect to both hardware and
software, Therefore, as mnew interfaces or processing requirements are
identified they can be satisfied by addition of specially designed ports
without affecting the existing MPC configuration. This architectural feature

is the basis of MPC expandability, flexibility, and adaptability.

At the software level, the current MPC exchange bus or XBUS is controlled
by the Inter-Port Communications (IPC subsystem, a copy of which resides in
each port. The IPC software lies between the XBUS hardware and any port
application software. Consequently, an IPC in one port is able to establish
and conduct dialogues with an IPC in another port without assistance or
awareness of any intermediary third port. The totally distributed nature of
IPC allows any number of simultaneous two~port dialogues to occur across the
XBUS within MPC hardware limits and communications requirements of the
moment. Since IPC software lies between f:he XBUS hardware and any port
application software, it provides hardware transparency for all other soft-
ware subsystems executing within a port. This transparency is so complete
that if the XBUS hardware were changed the only software impact would be upon
IPC. The MPC architecture provides another level of hardware transparency in
that all attached MPC devices communicate through a standard data protocol.
It is the application level software within each port that is responsible for
translating between the data level protocol of any attached device and the
MPC standard data protocol. The hardware transparency features of IPC are
what make the MPC architecture so flexible in resolving problems commonly

found in today's large-system architectures.

The final major architectural feature of the MPC is embodied in the
Inter-Bus Communications (IBC) subsystem. The IBC software acts as an exten-
sion of IPC to permit ports that do not physically reside on the same XBUS to
conduct port-to-port dialogues. This feature provides network growth flexi-
bility in that multiple MPC systems can be physically separate within a net-

work architecture but logically and elect‘rically interconnected.
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2.2 BRequired MPC Design Improvements. The MPC presents an opportuaity to

address problems not currently solvable with traditional architectures
through the application of parallel processing techniques. These techniques
when applied to the large integrated problems found in IDH Systems require
that those problems be functionally decomposed in order to apply separate
processing resources to each. Once a problem has been decomposed and imple-~
mented on several processors, the need for data communications and process
coordination becomes paramount. The MPC through its numerous microcomputers
interconnected by a common bus managed by the Inter-Port Communications (IPC)
firmware subsystem has solved the basic data communications and process

coordination problem.

However, improvements in the existing MPC architecture remain to be
developed in order for the communications and coordination functions to be
accomplished at a speed substantially closer to that at which they are accom-
plished within the traditional mainframe. This is especially true since more
data and process control communications must be accomplished in a function-
ally decomposed, parallel, implementation than in the serial wmainframe
approach. This inter-process communication is the price that wmust be paid to

reduce processing time through the application of parallelism.

Improvements in the MPC architecture to decrease the time it takes to
accomplish this inter-process communication can be made by increasing the

bandwidth of the MPC in two major areas:

o Data communications bandwidth

o Process coordination bandwidth

Data communications bandwidth is a measurement of the amount of data that
can be transferred between two ports during a given period of time. Data
communications bandwidth can therefore be analyzed by determining the raw
bandwidth of the XBUS (bus bandwidth) and the effective bandwidth at which
two ports can exchange data (port-to-port bandwidth). XBUS bandwidth is a
measurement of the bus cycle rate and the number of bits of data transferred
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per bus cycle. In the current MPC implementation, the bus cycle rate is 2
wmegacycles per second. Because the XBUS addressing lines are shared (multi-
plexed through) with the XBUS data lines, 16 bits of data is transferred
every other bus cycle. The effective bandwidth of the current MPC XBUS is
therefore 16 megabits per second (16 bits of data X 2 million bus cycles per
second/2 = 16 megabit per second). Port-to-port bandwidth is a measurement
of the rate at which data can be transferred from port memory to the XBUS and
the amount of data moved during each transfer. In the current MPC implemen-
tation, 16 bits of data is transferred from the port memory to the XBUS at
15.75 kilo cycle per second rate. The maximum port-to-port bandwidth in the
current MPC implementation is therefore 250 kilo bit per second (16 bits of

data X 15.75 thousand cycles per second = 250 kilobit per second).

Process coordination bandwidth is a product of the amount of time
expended in the course of a dialogue to ensure synchronization of two ports,
accomplish the transfer of data, ensure data integrity, and release each port
from the dialogue. These functions are required in each IPC dialogue. The
proportion of time required to complete overhead processing in relation to
the time spent actually transferring data is too excessive in the current
architecture. This problem is most evident in the case of control dialogues
where only a small amount of data is transferred to facilitate the initiation
of parallel tasks or update statuses. Assuming a data transfer of ten words
(16 bits each), about 700 microseconds would be required to complete the
port-to-port transfer. The overhead processing would require about an addi~
tional 1800 microseconds. The overall duration of the control dialogue then
becomes approximately 2.5 milliseconds. Process coordination, with respect
to the control dialogue, is then the limiting factor in the amount of paral-~
lel activities or tasks each MPC port can sustain in a given period of time.
In the current architecture, this figure is 400 control dialogues per
second. (1/2.5 milliseconds per control dialogue = 400 control dialogues per

second).
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In terms of MPC architectural characteristics, bus bandwidth can be
improved by decreasing the amount of time between bus cycles, transferring
more bits in parallel per bus cycle, or by bus segmentation. Bus sementation
implies multiple busses linked together operating as a single system.
Improved bus bandwidth also improves port-to-port bandwidth, however, addi-
tional improvements are possible. The main alternatives are to employ a
faster microprocessor in the ports; use of parallel Direct Memory Access
(DMA) techniques in transferring data across the bus, thus freeing the micro-
processor to create the next transfer request; or both. Process coordination
bandwidth is improved if bus and port-to-port bandwidths are improved, again
however, additional improvements are possible. For example, portions of the
firmware overhead associated with establishing contact with another port,
lockon of one port to another to accomplish a dialogue, and the termination
of that dialogue, could be migrated into the bus interface electronics.
Firmware overhead processing would then execute asyncronously to the port
processor. In addition to bandwidth, there are also reliability, flexibi-

lity, extensibility, and other engineering improvements that could be made.
The paragraphs below expand upon general requirements for an improved MPC
hardware design as reflected in the Statement-of-Work (SOW) for this procure-

ment.

2.2.1 Improved Bugs Design. The objective of the improved bus design is to

remove existing throughput limitations and increase performance without
significantly altering the basic MPC architectural concept. The present bus
bandwidth can be increased by demultiplexing the data and address lines and
by minimizing the number of handshaking signals required for a bus cycle data
transfer. Theoretically, an XBUS cycle of close to 200 nanoseconds should be

achievable using these techniques.
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2.2.2 Improved Bus Controller. The objective in improving the MPC bus

controller is to increase bandwidth by redesigning the bus control signals.
This design approach will be less complex than the current wversion due to
related design changes being incorporated into the Bus Interface Electronics
discussed in paragraph 2.2.3 below, and because of plamnneé changes in the
manner by which bus interface control signals will be generated. The
improved bus controller will consist of one XBUS module that will control the

arbitration signals for the physical bus.

2.2.3 Improved Bus Interface Electronics. This area of performance improve-

ment addresses such issues as XBUS bandwidth, port-to-port bandwidth, DMA
data transfers across the XBUS, and hardware vs. software port dialogue
establishment. Currently, all XBUS cycles require direct initiation by the
port processor; therefore the processor must be directly involved during all
phases of dialogue establishment and data transfer. One objective in
improving MPC performance involves decoupling of XBUS activities frow other
port processor functions. By migrating port dialogue establishment functions
of IPC from firrware to hardware this element of delay or overhead will be
greatly reduced, thereby decreasing overall dwell time of a dialogue. Addi-
tionally, by using hardware DMA techniques to affect data transfer the
processor will be decoupled from the actual data transfer and be able to

proceed at the cycle time of memory and/or the XBUS (whichever is the limi-
ting factor).

2,2.4 Inter-Bus Link (IBL). The 1BL design concept is an improvement to the

existing MPC Inter-Bus Communications (IBC) port that permits multiple physi-
cal XBUSs to be electrically interfaced. The IBL design will be implemented
in a new port capable of initiating and receiving bus cycles from all other
ports on the same physical XBUS. The primary function of IBL will be to buf-
fer data from a bus cycle on one physical XBUS to a second physical XBUS all
within one logically extended MPC XBUS.
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2.2.5 Iwmproved Firuware. The objective of this task will be to redesign

existing MPC system-level and interface-specific port firmware subsystem to
support components of the improved MPC design. Specifically, the Inter-Port
Comaunications (IPC) subsystem firmware that controls and communicates with
the XBUS interface circuitry will be redesigned. This change is required
because of the bus interface circuitry design change and some IPC functions
previously accomplished in firmware will now be accomplished by hardware in

the new design.

2.2.6 Reliability/Performance Requirements. Several techniques are being

used in the improved MPC to provide greater reliability and performance. As
mentioned in previous paragraphs much of the effort for this design is aimed
towards increased performance. In addition, efforts are being expended to
improve the overall reliability of data transfer in the MPC by such means as
providing hardware checksum techniques and including error recovery in the

bus interface unit.

2.2.7 Timing Requirement. Many of the new timing requirements are being met

by changes in XBUS interface circuitry. Also, this implies some changes in

the hardware interface portions of IPC.
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SECTION III
CURRENT MPC DESCRIPTION

The current MPC can be logically divided into two major areas - MPC hard-
ware and MPC software/firmware. In the following sections each of these
topics will be separately addressed describing the MPC in terms of existing

capabilities.

3.1 MPC Hardware Description. The MPC architecture is an array of wmicro-

processors called ports, interconnected by a common, high speed exchange bus
(XBUS). Each port is a complete computer consisting of a microprocessor,
memory, and I/0 interfaces to the XBUS and, in some cases, to an attached
device. The XBUS allows the interconnection of ports on a demand basis by
resolving conflicts and granting bus cycles on a rotating priority basis.
Figure III-01 Bus/Port Relationship illustrates the basic architecture of the

MPC. A more complete discussion of this hardware is presented below.

3.1.1 Cabinet. The MPC cabinet consists of a stand-alone enclosure

containing the card cage in which the ports are mounted, the exchange bus
(XBUS), onme DEC 11/23 File Management System port, an optional floppy disk,

power supply, and cable transition plate.

3.1.1.1 Enclosure. The enclosure is a modified commercially available 24"

rack CABTRON cabinet. To meet EMI shielding requirements, the CABTRON
cabinet is fitted with specially made doors, side panels, and back panel.
Access is currently via the top for card insertion/removal and the front for
1/0 cabling connect/disconnect. The DC on/off controls and indicator lights
are accessible from the front exterior. Commercially available foam and
metal gaskets are used to provide necessary EMI shielding between removable

panels/doors and the enclosure frame. 1f it is necessary to increase the
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overall system beyond a single cabinet, the cabinets may be bolted together,

side-by-side, with interconnecting cables running internal to the cabinets.

3.1.1.2 Card Cage. The card cage is mounted inside the cabinet enclosure

via the 24" rack mount on the frame. The card cage is custom fabricated from
12 Ga steel to house up to 24 cards in pairs, with .75 inch spacing between
each card. The XBUS motherboard at the rear of the cage is actually suppor-
ted by the Zero Insertion Force (ZIF) connectors which are bolted to the
cage. Presently, the rear of the cage consists of 2 rows of connectors.
Only the bottom row is used by the XBUS motherboard with the top row avai-
lable for future expansion. All of the connectors in the card cage are ZIF
connectors manufactured by AMP. The connectors serve as both a card guide
and electrical connection. The unique sequential feature of these connectors
allow power to be applied prior to signal connection allowing carc removal/-
insertion with DC power supplied to the cage and while other cards remain

functioning.

3.1.1.3 Optional Floppy Disk Space. The cabinet also has space for an

optional 8" floppy disk with its own power supply. This floppy is directly
below the card cage, enclosed within the EMI shielding of the outer cabinet,
and can be connected to any port within the MPC as desired. This space is

also of proper dimension to contain a PDP LSI 11/23 chassis and power supply.

3.1.1.4 Cable Transition Plate. The cable transition plate is at the very

bottom of the cabinet accessible from the front (via the door) for routing
cables underneath a raised floor. For installation over a nonraised (solid)
floor, an optional pedestal type device would have to be built to allow
routing cables out of the cabinet. The transition plate consists of several
subpanels which allow various types of connectors to be placed on it and
optionally added later. The purpose of the transition plate is to allow the
standard I/0 connectors internal to the cabinet to be interfaced to various
types of external interfaces requiring varied styles, sizes, and connector

shapes.

111-3

7

[

fe YRNE VR TRpS

.
R,

7T T



3.1.1.5 Power Supply. Several power supplies are present inside the MPC

cabinet, depending upon specific configuration. A large switching power
supply (300W) provides voltages of +5 at 50A, and + 12V at 8A, to the card
cage (-5V is also supplied via a single component ié¢gulator). The power
controller is powered by a separate smaller (+5V at 6A mp) supply which
operates independently of the larger supply. If a floppy disk or LSI 11/23
chassis is also present, they contain their own power supply. The main AC
power entering the cabinet is protected by a 10 Amp, 120 V/AC breaker and is

in series with an EMI line filter.

3.1.1.6 Cooling. Cooling within the cabinet is via forced convection, using

air drawn from beneath the cabinet base and expelled through the top rear.
This arrangement utilizes and enhances the effect of natural rising air

convection past the MPC cards.

3.1.1.7 Controls. Controls for the current MPC consist of an AC wmain

breaker controlling power to the fans and an on/off switch for DC power for
the cage itself. The present configuration allows the DC power switch on the
cabinet containing the master arbitor to control power to all cabinets in a

MPC network.
In addition to these controls there are indicator lights to show which
cabinet is the master, indicate power on (DC), and whether the master is on

for those cabinets slaved to the master.

3.1.2 Exchange Bus (XBUS). The MPC architecture includes a back plane bus

to interconnect all ports. The MPC XBUS has a mumber of unique characteris-~
tics which make it superior to the more common forms of bus design found in
today's minicomputers. The following paragraphs highlight these unique MPC

characteristics.

3.1.2.1 Physical Characteristics. The MPC XBUS is physically short and

allows connection of 24 two-board ports in a cabinet. When cabinets are
placed side-by-side, an XBUS may be extended across three cabinets to accom-

modate 72 ports. Further, through facilities of the Inter-Bus
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Communications (IBC) subsystem described in paragraph 3.2.1.2 several MPC

XBUS configurations may be interconnected to form very large MPC networks.

3.1.2.2 Cycle Time, The MPC XBUS has a fixed cycle time of 500 nanoseconds

using tri-state TTL logic for bus drivers. However, since there is no XBUS
clock continuously supplying bus cycles, the XBUS actually operates in an
asynchronous wmanner. That is, XBUS cycles only appear on the bus when

requested.

3.1.2.3 Bus Width. The MPC XBUS width is 16 bits. Since 8-bit wmicrocom-

puters are used in th MPC, a double byte load is required to transfer one
lé-bit word across the XBUS. This two-byte load occurs in the XBUS interface

of the port.

3.1.2.4 Interrupt Resolution. XBUS cycles are granted to requesting ports

by a separate XBUS interrupt resolver circuit connected to each port. Inter-
rupt resolution occurs in parallel to data wovement across the XBUS. When
multiple ports try to acquire XBUS cycles at the same time, the interrupt
resolver fields each request on a round-robin basis. When a port has been
granted an XBUS cycle, it is able to trasnfer only 16 bits of data before it
must request another cycle. This procedure provides for automatic inter-

leaving of data on the XBUS and prevents XBUS domination by any one port.

3.1.2.5 Bus_Addressing. The MPC bus utilizes the same circuit paths for

both data and address transfers across the bus, Since each 16 bits of data
is separately addressed and requires a bus cycle, effective data transfer

bandwidth is one-half of minimum XBUS bandwidth or 16 megahertz.

3.1.3 XBUS Control Port. The XBUS Control Port (XBCP) is required on each

physical XBUS for the purpose of controlling access to the XBUS. The bus
cycle request/grant function of the bus control port determines, or arbi-
trates, the time slot during which a port has access to the XBUS. Also, the
XBCP handles such error conditions as ome port attempting to access a
nonexisting port or the recovery from issuance of false grants due to noise

or other error conditions on the bus. Additionally, the XBCP has the
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capability of directly linking up to three XBUSs via a parallel data XBUS
cable. If several XBUSs are to be linked directly, then the XBCP srbitrates
between them to determine which XBUS hss priority. Currently, three XBUSs
can be directly linked allowing up to 72 ports to exchange informatiom via
directly synchronized bus cycles.

Each XBUS port has a request line to the XBUS Control Port and a grant
line from the Control Port. Wuenever a port requires control of the XBUS to
execute a bus cycle, it issues an asynchronous request to the control port
via its own request line. The control port is then responsible for arbi-
trating among these requests and issuing one and only one grant at a time
based upon some type of arbitration scheme. The arbitration scheme for this
control port is based upon a priority encoding scheme with several levels of

encoding.

Functionally, the XBUS coatrol port consists of arbitration modules,

cable transceivers with control logic, and other control logic.

3.1.3.1 XBCP Arbitration Modules. Arbitration wodules are the basic
building blocks of the Bus Control Port. Each module is an independent

circuit linked to other modules for synchronization purposes. Ports om the
XBUS link directly to the lowest level of arbitration modules via individual
request/grant signal lines. Thus, a 24 port XBUS requires three low level
arbitration modules because each module hardles eight request/grant pairs;
i.e., ports. These low level arbitration modules require one group arbitra-
tion module. In addition, if several XBUSs were to be linked directly then a

master arbitration module would be required to provide synchronization.

3.1.3.2 XBCP Cable Tranmsceivers and Coutrol. Several XBUSs may be linked

via an XBUS cable. This cable transfers bus cycle data between any of Cthree
XBUSs under control of the master XBCP. Control logic on each XBCP deter-
mines whether its host XBUS is to receive or transmit data and subsequently
enables or disables the XBUS cable transceivers. During a bus cycle all
three XBUSs become synchronized to the same bus cycle, so that ports may be
arbitrarily located in any of the three XBUSs.

111-6
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; 3.1.3.3 _Control Logic. Control logic exists on the XBCP for the purpose of

generating a proper power-up reset and to provide proper error recovery due
to exception conditions on the XBUS. Whenever power is first applied to an
XBUS, it is necessary for the XBCP to provide a reset signal to all ports.
This reset signal assures that both the hardware and software on each XBUS
port will be properly initialized. The other function of the control logic
is to handle exception conditions on the XBUS. This includes such situations
as one port attempting to access a nonexisting port or the recovery from
issuance of false grants due to noise or other error conditions on the XBUS.

1f an attempt is made to access a nonexisting port, the control logic must

provide an indication to the requesting port that the bus cycle is to be
terminated. If a false grant is issued, the XBCP must decide after an
arbitrary time span to terminate the grant signal and process other
requests. Currently, this time span is approximately two to three micro-
seconds; i.e., several times the length of a normal bus cycle. Thus, these

exception conditions have minimal impact on the throughput of the XBUS.

3.1.4 Bus Interface Logic., The MPC bus is interfaced to each port through a

bus interface module resident on each port. This module contains an Input
Data Handling Register (IDHR), an Output Data Handling Register (ODHR), and a
Bus Address Register (BAR). The IDHR allows data to be written into a port
and the ODHR allows data to be written from a port. The BAR contains the
address of the destination port for any bus cycle. ‘Additionally, the port's
bus interface contains logic to allow the reset/restart of a port when power
is applied to the cold system, the state controller associated with the XBUS
data transfer protocol, and the circuitry required to request and recognize

bus cycle grants. Figure 111-02 depicts these components.

3.1.5 XBUS Extension. The current MPC architecture will support a direct

o Fadp e

connection of three XBUSs with a total of 72 ports. Further extension is not

directly supported at the hardware level. The method currently employed to

achieve XBUS extension is the interconnection of two independent XBUSs via a ;
high speed communications line. One port on each bus must be dedicated to g
. . . ]
the support of the communications lines. The firmware resident on those by
ports is the Inter-Bus Communications (IBC) subsystem. IBC, discussed in §
{
»
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Figure 111-02. Typical MPC Port

I11-8

12 S A INE, I s ey e --—-‘-f‘ - e S pvan




Section 3.2.1.2, is designed to support cross bus IPC dialogues in s faoh lon
which is transparent to each of the ports engaged in the dialogue.

3.1.6 _MPC Option Ports. The MPC uses s two-board approsch in fabricating
ports to provide added design flexibility. The CPU board contains the Cen-~

tral Processing Unit (CPU), memory, and XBUS interface vhile the 1/0 board
contains the I/0O interface to the attached device. This approach provides
the flexibility to develop new 1/0 interfaces without wmodifying the CPU
board. It also permits changing CPUs or memory without wodifying the I/0
board.

Both the CPU and 1/0 boards are fabricated using the Multiwire process
that encapsulates all component interconnection circuits in an adhesive sub-
strate instead of the printed circuit approach. This is such a reliable ap-
proach that it is used in high density space craft circuits. The cost to
produce Multiwire boards is competitive with printed circuit (PC) technology,
yields from production runs are higher than multi-level PC boards, and over-

all production turn-around time is less.

Each board measures 9.5 by 9.5 providing 90.25 square inches or- a total

o* 180.5 square inches of space for electronic components.

3.1.6.1 CPU Board. The CPU board contains the microprocessor, memory, XBUS

interface, local port bus, and a conuector to the I1/0 board. Each is
described below.

3.1.6.1.1 Microprocessor. The MPC uses the INTEL 8080A microprocessor that

executes 500,000 instructions per second. The INTEL 8080A is an 8-bit :
processor based on NMOS technology and is capable of addressing up to 64K : .‘

bytes of memory.

3.1.6.1,2 Read Only Memory (ROM), The CPU board contains 8K bytes of }'
! eraseable ROM used for program storage. When software is placed in ROM, the ¥
| resulting firmware takes on the characteristics of hardware and is, there- :‘j
fore, not remotely modifiable. This physical characteristic of ROM Y
)
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makes its use in the MPC ideally suited to the secure environments typical of

Defense Department installations.

3.1.6.1.3 Random Access Memory (RAM). Each CPU board also contains 4K bytes
of static RAM for data storage within a port. Both RAM and ROM memory

operate on a 500 nanosecond cycle time, matching the cycle time of the INTEL
8080A CPU.

3.1.6.1.4 XBUS Interface. The CPU board also contains logic to interface a

port to the XBUS. The XBUS interface contains an Input Data Holding Register
(IDHR), an Output Data Holding Register (ODHR), and a Bus Address Register
(BAR). The IDHR allows data to be received by a port and the ODHR allows
data to be written from a port. The BAR contains the address of the destina-

tion port to which data in the ODHR is to be written to.

Additionally, the port's XBUS interface contains logic to allow the
reset/restart of a port when power is applied to a cold aystem, the state
controller logic associated with the XBUS data transfer protocol, and the

logic required to request and recognize bus cycle grants.

3.1.6.1.5 Port Bus. Each port has its own bus interconnecting its proces-

sor, memory, XBUS and 1/0 interfaces. This means that port operation does
not affect the XBUS until sufficient data has been processed and accumulated
for transmission to another port. Therefore, the effective bandwidth of the
MPC is far in excess of the XBUS. Each port bus also has a bandwidth of 16

megahertz.

3.1.6.2 1/0 Board. The 1/0 board is prewired for several component confi-

gurations; however, it is fabricated only with the components required for a

specific configuration. The use of component sockets provides this flexibi-

lity. The prewired configurations include:

o Asynchronous/Synchronous Receiver/transmitter
i
o Multi-Protocol Communications Controller 1
I11-10




o Single/Double Density Floppy Disk Countroller

Prewiring of these three types of 1/0 interfaces also allows fewer
spares. That is, instead of wmaintaining a complete board set for each
application, a single CPU board can be used with several 1/0 boards, as

required.

3.1.6.2.1 Asynchronous/Synchronous Receiver/Transmitter. Each I/0 board is

prewired to use the Western Digital 1931 Asynchronous/Synchronous Receiver/-
Transmitter device which interfaces serial data communication channels to a
port. The WD1931 is capable of full duplex communications with asynchronous
or synchronous systems using character-oriented protocols. Eight selectable
clock rates support communication circuits operating at up to 1 million bits
per second. This configuration of the Option Module is used to implement the
0J-389 and Inter-Bus Communications (IBC) subsystems. Figure III-03 depicts
this particular 1/0 board.

3.1.6.2.2 Multi-Protocol Communications Controller. Each I/0 board is also

prewired to accept the Signetics 2652 Multi-Protocol Communications
Controller (MPCC). The MPCC is an multichannel device that formats, trans-
mits, and receives synchronous serial data while supporting bit-oriented or
byte compatible protocols. Bit-oriented protocols supported include Sychro-
nous Data Line Control (SDLC), High Level Data Control Link (HDLC), and
Advanced Data Communications Control Protocol (ADCCP). Character-oriented
protocols supported include BI-SYNC and Digital Data Communications Message
Protocol (DDCMP). The 1652 MPCC supports line rates of up to 500,000 bits
per second. This Option Module configuration is currently used to implement
DDCMP interfaces to DEC PDP-1l1 computers.

3.1.6.2.3 single/Double Density Floppy Disk Controller. The NEC Microcom-

puters, Inc., uPD765 Single/Double Density Floppy Disk Controller (FDC) chip
contains the circuitry and control functions for interfacing one MPC port to
up to four Floppy Disk Drives. The uPD765 FDC is capable of supporting
either IBM 3740 single density, or IBM System 34 double density formats,

including double-sided recording. Programmable data record lengths

I11-11
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of 128, 256, 512, or 1024 bytes per sector are supported. This Option Module

configuration may be used to interface the Floppy Disk which is optional

within each MPC cabinet.

3.2 MPC Firuware Description. A combination of system-level and interface

specific firmware subsystems reside in the ROM of every MPC Version 1.0
port. All subsystems are contained in ROM with no global memory attached to
the bus. In cases where a ports ROM is not sufficient to contain the entire
subsystem, the MPC system allows for downloading of modules from other ports
into RAM for execution and hence effects a quasi-virtual memory capability.

Figure III-04 depicts the MPC firmware subsystems.

3.2.1 System-level Subsystems. System-level control and services for the

MPC are provided by its Inter-Port Communications (IPC), Inter-Bus Communi-
cations (IBC), Error Detection and Recovery (EDR), and External Control and
Monitoring (ECM), subsystems. Debug and diagnostic facilities are provided
by the MPC Asynchronous Control Element (MACE). Each subsystem is discussed
below. Since IPC is the only subsystem within a port to directly address the
bus, the new design the MPC affected major modifications in its structure.
For this reason, the current IPC will be discussed first and in greater
detail than other subsystems to provide an understanding of its overall func-

tion.

3.2.1.1 Inter-Port Communications (IPC). Each MPC port must be able to

establish and participate in port-to-port dialogues. The hardware that
provides this capability is the XBUS and related circuitry on each port. The
software that provides this capability is the IPC subsystem. IPC effectively
lies between the bus interface hardware and the remaining MPC subsystems
contained within each port. No other subsystem within a port directly
addresses the bus interface hardware. 1In this manner, IPC essentially enve-
lopes the exchange bus and shields the remaining subsystems from the intri-

cacies of the exchange bus interface, thus providing hardware transparency.

I11-13
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Figure 111-08. MPC Firmware Architecture
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3.2.1.1.1 Dialogues. A copy of IPC is contained within the RM of every

port in the MPC. When a port subsystem has data or control information to
pass to another port it expresses that requirement to IPC which then
establishes the dialogue. A dialogue has three components: contact and
lockon, data exchange, and termination. Figure III-05 depicts the elements

and sequence of each component of an IPC dialogue.

3.2.1.1.1.1 Contact and Lockon. Contact and lockon establishes a port-to-

port connection. In this process, an initiating port examines the status of
the desired destination port to determine whether it is available, writes a
lockon request to that port (contact), and then waits for a lockon response
(lockon). 1If the request is accepted, IPC will retain control of the micro-
processors in each connected port. The contact and lockon process ensures
that both ports agree to a dialogue and provides synchronization for a
subsequent date exchange. Once a dialogue has been established between two
ports, all other ports attempting to estsblish a dialogue will be prevented

from doing so until the initial two-port dialogue is completed.

3.2.1.1.1.2 Data Transfer. The physical description of data to be transfer-

red between ports is expressed as a four byte data control word (DCW) passed
to IPC from the subsystem requesting the transfer. The actual data transfer
1s driven by the use of data and control interrupts and is performed under
checksum coatrol to ensure communications reliability for data exchange.
Furthermore, only two bytes of data may be transferred per bus cycle and a
dialogue between ports may not utilize continuous (back to back) bus cycles.
Thus, data being transferred between ports is interleaved on the XBUS but the
software in any one port is completely unaware of it. Any checksum error
will result in data retransmission or termination of the dialogue with
appropriate notification to each port. Any number of simultaneous dialogues
may be active on the XBUS at any time limited only by the number of ports in

the MPC and the capacity of the XBUS.
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3.2.1.1.1,2 Dialogue Termination. The normal termination of a dialogue is

signalled by the control byte of the last DCW executed by IPC. At this time,
the ports will be disconnected and processing will be restored to the soft-

ware subsystem executing in each port.

3.2.1.1.2 IPC Components. The IPC subsystem contains two distinct compo-
nents; the active component ;nd the passive component. The passive component
must reside in each port, but the active component is optional, although wost
ports do require both components. Each component 1is necessary to a
dialogue. The active component of one port controls the dialogue while the
passive component of the other port executes in lockstep with the first port
as the dialogue proceeds. The active component is invoked as a subroutine
call from a subsystem executing within a port. The passive component is
executed at the interrupt level in response to interrupts received from the
active component of IPC in another port. Behaviorly, the active component
operates as a main level extension of a local port subsystem, while the pas-
sive component operates as an asynchronous, interrupt level process which
executes independently from a local port subgystem. Figure III-06 depicts

the concept of active and passive IPC.

3.2.1.1.3 Communication Types. Port-to-port dialogues may be initiated by

either an active port or a passive port, depending on which component of IPC
will e utilized by the port initiating the dialogue. An active port may
initiate a dialogue with a passive port by simply executing a subroutine call
to the active IPC component in that port. This type of dialogue is called
direct because the initiator port also controls the dialogue. A passive port
may also initiate a dialogue, but the dialogue must be controlled by the
active port. This type of dialogue is called an indirect dialogue. The pas-
sive port cannot initiate the dialogue directly because the passive IPC com-
ponent in that port can only operate in response to interrupts received from
an active port. Thus, the passive port must simply express a desire for the
dialogue by conditioning the port status. By prior arrangement, the desired
active port must be actively scanning the status of other ports connected to

the XBUS in order to detect when a passive port has requested a
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Figure 111-06. Port-to-Port Dialogue
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dialogue. When the request is recognized by the active port, the active port
will then conduct a prearranged dialogue with the passive port.

The direct communications mode is subdivided further into two classes;
system direct and network direct. A port may be conditioned to be available
for any or all communication types. The system direct wmode is generally
utilized for general purpose system control messages from subsystems such as
the Error Detection and Recovery (EDR) or the External Control and Monitoring
(ECM) subsystems. The network direct is utilized by application level sub-
systems such as the DN-355 or DDCMP subsystems. The subdivsion of the direct
mode allows a port to condition itself to receive system control messages but

not general network traffic.

3.2.1.1.4 Communications Channels. A Commmications Channel is a table

which contains all control information needed by IPC in order to conduct a
dialogue. Any diaiogue between two ports requires a specific Communications
Channel in one port to be logically counected to a specific Communications
Channel in the other port. A Communications Channel is a long-term control

mechanism for communicating between two processes in different ports.

Each port is capable of handling a multi-tasking enviromment in which
several asynchronous processes are executing. Each of these processes may
have its own unique communication requirements. Thus, each port may be
configured with up to four Communications Channels. Multiple Communications
Channels allows IPC an opportunity to multiplex dialogues through the single

XBUS interface of each port.

3.2.1.2 IBC Subsystem. The Inter~Bus Communications (IBC) subsystem is

designed to provide a XBUS to XBUS link between two MPC systems. Each IBC is
identical and the link provided by a pair of IBCs in conjunction with the
Inter Port Communications (IPC) software is designed to be transparent to all

other MPC subystems. Transparency is accomplished by mutual arrangement
between IPC and IBC subsystems.
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3.2.1.3 EDR Subsystem. The Error Detection and Recovery (EDR) subsystea

acts primarily as the MPC System Manager. EDR is aware of the software and
hardware functions of each port type and provides this information to indivi-
dual ports as required. EDk maintains various control configuration and
status tables in which the dynamic state of each port, console, connected
device, or external system is continuously recorded. Logic for the reconfi-
guration or recovery of various port or port subsets of the MPC is resident
in EDR. Commands for the execution of these routines may be received from
the MPC operator or from other internal subsystems of the MPC. Provision for
the eventual automatic execution of these routines as the result of internal

EDR decision logic has been made.

3.2.1.4 ECM Subsystem. The External Control and Monitoring (ECM) subsystem

is designed to interface with the MPC monitor console which enables operators
and maintenance personnel to monitor MPC operating conditions. ECM utilizes
the control configuration and status tables maintained by EDR. ECM commands
fall into two categories; those for displaying the current status of MPC
components and thoge for directing the reconfiguration/recovery of various

MPC components.

3.2.1.5 MACE Subsystem. The final system-level control subsystem called MPC

Asnychronous Control Element (MACE) is an interactive development tool that
is integrated with the operation of the ECM subsystem. MACE provides a
machine level interface between the MPC programmer or maintenance personnel
and any of the various MPC ports. With MACE, any mumber of MPC ports may be
simultaneously synchronized and/or debugged. Any number of MACE ports may be
configured. MACE is the subsystem that provides actual hardware control over
the MPC monitor congole(s) and is able to discriminate between commands to
the internal MACE debug facility or to the external ECM subsystem. Commands
for ECM are passed through IPC and the MPC XBUS to the ECM port. ECM command
logic executed and appropriate display output responses are generated. These
responses are transferred back through IPC and the XBUS to the MACE port

which performs the actual output on the MPC monitor console.
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3.2,1.6 File Management System. The File Management System (FMS) provides
standard file management services for any other MPC subsystem. These
services include the capability to create and delete files, and the capabi-
lity to read ané write files. The FMS port type is configured as a DEC 11/23

16 bit microprocessor with 84K bytes of memory. The large memory is utilized

as cache buffers for file control information. The disk hardware consists of
an 80 Mbyte Ampex disk drive which is Tempest Qualified, and a DILOG DQ200
disk controller. Each FMS port type controls a single disk drive. Two FMS
ports are configured on the PACER MPC and one on the OISS MPC.

The FMS also includes the File Management Control (FMC) port type which
provides operator interface to the FMS and provides a mechanism for locating

files for access.

3.2.2 Interface~Specific Application Subsystems. MPC application firmware .

provides the custom design interface for all communications circuits, proces-
sors, or peripherals interfaced with an MPC. Currently, the following inter-

face-specific port application firmware is available or under development.

3.2.2.1 0J-389(V)/G Subsystem. The 0J-389 port software provides sufficient

intelligence to handle line, data, and command manipulation required to
control an 0J-389 workstation, in addition to communicating with the host and
other MPC subsystems. The major functions of the 0J-389 software are to:
(1) receive and process messages from other MPC subsystems or the host and
(2) build and send messages for other MPC subsystems or the host and (3)

download the 0J-389 control program to the workstation when requested.

3.2.2.2 Local Printer Subystem. The MPC also has a printer subsystem to

provide an interface with a Model T5160 local printer which is a TEMPEST

approved version of a Centronics 704 printer.
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3.2.2.3 HDLC/DN355 Subsystem. The DN3I55 Subsystem provides the MPC {iater~
face to PACER through the HIS-DN355 FEP. The DN355 Subsystem is responsible
for maintaining communications between the MPC and the HIS-DN355. This

communication is accomplished by the exchange of data frames on 50,000 bits
per second (50 KBPS) communications lines between the MPC and the HIS-DN35S.
Each communications line is terminated in a Receive and Transmit Port pair
wvhich manages the communications flow on each line between the MPC and the
HIS-DN355. The MPC interfaces to the HIS-DN355 using High Level Data Link

Control (HDLC) Remote Network Processor (RNP) procedures.

3.2.2.4 DDCMP Subsystem. The Digital Data Commmications Message Protocol
(DDCMP) port is designed to interface the MPC with any Digital Equipment

Corporation (DEC) computer using the DDCMP protocol. The subsystem provides
line start-up and termination, data exchange, and retransmission services

over a 56,000 bits per second, full duplex, communication circuit.

3.2.2.5 Special Purpose Communications link (SPCL) Subsystem. The SPCL

subsystem for the MPC is currently being designed. It will provide for
termination of the SPCL communications link and for CSP/AUTODIN message traf-
fic destined for PACER. The MPC will include a store-and-forward function to
hold wessage traffic and send it on to PACER when that system is available.
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SECTION 1V
IMPROVED MICROPROCESSOR DESIGN

This section presents a detailed discussion of the Improved Microproces-
sor Design. The following subsections delineate hardware and software ele-
ments of the MPC architecture that have been designed or redesigned to

satisfy the specifications established in Section II of this document.

4.1 Design Overview. The Improved Microprocessor Design consists of an

integrated group of design changes to the MPC Exchange Bus, Exchange Bus
Control Port, Exchange Bus Interface electronics, Inter-Port Communications
Subsystem firmware, and the design of a new Inter-Bus Link Port. The fol-
lowing denotes the major design consideration in each component of the
Improved Microprocessor Design:

Tmproved Exchange Bus

o Demultiplexing of data and address lines

o Addition of Function Code Bus

Improved Exchange Bus Interface Electronics

o Decoupling of port processor from the Exchange Bus Interface

o Multi channel DMA

Improved Inter-Port Communications Subsystem Firmware

o Integration and congolidation of the improved hardware
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Nev Inter-Bus Linking Port
o Asynchronous bus cycle propogation

4.1.1 Improved Ex.liange Bus. The improved MPC Exchange Bus (XXBUS) will be

the common hardware communications media for all ports in an MPC cabinet.
Section 4.2 describes this in detail. The most notable feature of the
improved XXBUS is the demultiplexing of the data and address lines in the
information bus. In addition, a Function Code bus has been incorporated iato
the information bus to support design changes in the XXBUS interface elec-
tronics of each MPC port which involves the formatting of XXBUS information
into information packets. The control bus will be simplified to facilitate
bus cycle arbitration and error detection. This configuration will increase
the bandwidth of the XXBUS by permitting the simultaneous transfer of data,

address, and the new Function Code.

4.1.2 Improved Exchange Bus Control Port. The Improved Exchange Bus Control

Port (XXBCP) will provide the hardware logic to grant MPC ports access to the
XXBUS. Section 4.3 describes this in detail. The improved XXBCP will uti-
lize new arbitration logic that services all bus cycle requests on an equal
and independent basis. This improvement, made in harmony with changes to the
IXBUS interface electronics, will permit the duration of a bus cycle to
decrease to a minimum of 200 nanosecunds and therefore increase the maximum
bus cycle rate to 5 megacycles per second. The maximum bandwidth of the
XXBUS wil. then increase dramatically to 80 megabits per second. In additiom
to increasing the performance capabilities of the XXBCP, the reliability will
be increased as well. Through the use of 3 control lines in the XEBUS and a
hardware timing device, the XXBCP will be able to detz:t and recover errors
such as a request to access a nonexistant port, or a false grant issued due

to noise or other error conditions that may exist on the XXBUS.
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The XXBUS and XXBCP will provide the MPC with a powerful high speed hard-
ware communications media for the purpose of transferring data and control
information. The remaining aspects of the Improved Microprocessor Design
describe improvements to the basic MPC architecture that will optimize the

rate at which data can be trasnferred efficiently across this bus.

4.1.3 Improved Exchange Bus Interface Electronics. The improved Exchange

Bus Interface Electronics Unit (XXBIU) will provide the interface for an MPC
port and its Primary Port Processor Unit (PPPU) to access the improved
Exchange Bus (XXBUS). The most significant aspect of the redesign of the
XXBIU is the logical decoupling of the PPPU from the XXBUS. The XXBIU will
provide all the required logic to gain access to the XXBUS, resolve dialogue
contention, transfer data and ensure itg integrity in an environment asyn-
chronous to the PPPU., The XXBIU will consist of three hardware modules:
Microprogram Control, Direct Memory Access, and XXBUS. These modules will
function as integrated yet independent elements under microprogram control to
facilitate control and data transfers. To support these 3 modules, the XXBIU
will be configured with dedicated Read Only Memory for microinstruction
storage, internal buses for routing of data and control, and control lines to
support intermodule communication and control. The XXBIU is described in

detail in Section 4.4.

This configuration will increase port-to-port bandwidth in the MPC signi-
ficantly by releasing the PPPU from time consuming overhead processing
required to initiate and sustain dialogues. Application subsystems subordi-
nate to the PPPU will therefore have more processing power at their dispo-
sal. The result of these improvements, made in harmony with changes to the
Inter-Port Communications Subsystem, will permit highly efficient port-to-bus

data transfers at a 10 megabit per second rate.

4.1.4 Improved Inter-Port Communications Subsystem Firmware. The improved

Inter-Port Communications (IPC) subsystem will provide the software interface
to congsolidate the improved hardware components of the Improved Microproces-
sor Design. The most significant aspect of the redesign of the IPC subsystem ‘ !

is the distinct separation of IPC into two logical levels of operation.
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The first level of IPC, IPC Level One (IPC Ll1), will consist of a group of
microprograms residing in the XXBIU. This micro software will perform all of
the overhead processing associated with dialogue initiation and data transfer
asynchronously to the PPPU. The second level of IPC, IPC Level Two (IPC L2),
will consist of firmware residing in the Read Only Memory (ROM) of the port.
This level of IPC will execute under the domain of the PPPU and initiate IPC

Ll microprograms in a structured manner to perform port-to-port dialogues.

The improved IPC subsystem firmware, utilizing the hardware resources of
the XXBIU, will provide a highly efficient communications interface. This
configuration will allow port resident application subsystems to devote more
processing power to their individual requirements and therefore permit the
MPC architecture to address integrated problems of a greater magnitude. The

IPC is further described in Section 4.5.

4.1.5 1Inter-Bus Linking Port. The new Inter-Bus Linking Port (XXBLP) will

provide an asynchronous hardware connection to link two or more MPC XXBUSs
together. The XXBLP will be an instrumental component of the improved MPC
architecture which will support application environments where more than 24
MPC ports are required to solve a problem. The most notable feature of the
new XXBLP will be the decoupling of XXBUS's at the bus cycle level. The
XXBLP will transmit and receive data and control information contained in an

individual bus cycle to physically isolated, but logically connected XXBUSs.

The XXBLP will consist of an XXBUS transmitter, receiver, Inter Bus Link
(IBL) cable, and IBL cable electronics. A queue to buffer Information
Packets (IP) will provide the asynchronous decoupling of XXBUSs and produce a
pipeline effect for transfers across the IBL cable. The XXBUS transmitter
and receiver will be configured to allow variable routing paths between
XXBUSs to prevent possible bottlenecks from degrading the overall performance
of a MPC network. In addition, because the XXBUS transmitter and receiver
logic will propogate earli IP asynchronously at the bus cycle level, the XXBLP
will be able to mu'tiplex an infinite number of dialogues concurrently

without regard for individual dialogue synchroni=ation.
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This configuration will allow system plamners to design and tailor an
integrated network of MPC XXBUSs to solve unique, large scale problems. The
use of XXBLPs would permit network growth with a potential for up to 4096
ports (64 XXBUSs) in an individual network, where each individual bus and its
associated ports would operate at full bandwidth oblivious to the remaining
componeuts of the network. The XXBLP is further described in Section 4.6 of

this document.

1V-5/1vV-6

e b e e




4.2 The XXBUS Information Packet. Information that is exchanged between the

ports of an MPC via XXBUSes and XXBUS linking ports, (described later in this
document), is transferred in Information Packets (IP). Each IP corresponds
physically to the amount of information that is written onto an XXBUS during
a single bus cycle and logicaily to the smallest amount of information that
can support communication between any two ports in a XXBUS network. Figure
IV-01 shows the structure of the XXBUS Information Packet. As shown, the IP
consists of the data, address, and function code fields. The following is a
description of each of these fields and how they support communications

between the ports of an MPC.

4.2,1 XXBUS Information Packet Data Field. The IP data field is 16 bits in

width which corresponds to the width of a port system data bus. The IP data
field contains the data that is to be transferred between processing elements

of MPC ports.

4.2,2 XXBUS Information Packet Address Field. The XXBUS IP address field

consists of 14 bits and is partitioned (Figure IV-0l1) into three fields: the
PATH 1.D., BUS I.D., and the PORT I.D. Table IV-0l provides a detailed

description of each of these fields.

4,2.3 XXBUS Information Packet Function Code Field. The XXBUS IP function

code field cunsists of 7 bits. The function code is used to specify the

function of the addressed port that is to operate on the IP data field.

4.2.4 Improved MPC Exchange Bus. The Improved MPC Exchange Bus (XXBUS)

inc ludes all of the bused and radially connected information and control
circuit paths that provide for the transfer of information between MPC ports
of a XXBUS card cage. Each XXBUS card cage contains 25 port slots, one for
the XXBUS control port and 24 for any type or mix of MPC ports. Figure I1V-02
st.ows the XXBUS to contain four sets of bused parallel circuit paths connec-
ting these port slots. Three of these sets, the data, address, and function
code buses, are referred to collectively as the information bus. The fourth

is referred to as the XXBUS control bus. Along with these bused paths each
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Figure 1V-01. XXBUS Information Packet
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of the 24 port slots has a pair of dedicated control lines, XXBUSRQ/XXBUSGT,

which are connected to the XXBUS Control Ports Arbitration Unit.

4,2.4,1 XXBUS Information Bus. The XXBUS information bus is designed to

carry a complete information packet during each bus cycle. Although each of

the circuit paths comprising the information bus are identical in timing and
electrical characteristics, for discussion purposes the XXBUS information bus
is partitioned into three additional buses: data, address, and function code
buges. These correspond to the data, address, and function code fields of

the information packets.

4.2.4.1.1 Data Bus. The Data Bus will consist of 16 parallel paths which

connect the 24 port slots. These 16 parallel paths correspond to the 16 bits
of the data field of the XXBUS information packet.

4.2.4.1.2 Address Bus. The Address Bus will consist of 14 parallel paths

which connect the 24 port slots. These 14 parallel paths correspond to the
14 bits of the address field of the XXBUS information packet.

4.2.4.1.3 Function Code Bus. The Function Code Bus will consist of the 7

parallel paths which connect the 24 port slots. These 7 parallel paths cor-

respond to the 7 bits of the function code field of the XXBUS information
packet.

4.2.4.2 XXBUS Control Bus. The XXBUS Control Bus will consist of the

control lines used to synchronize XXBUS port transmitters and receivers
during XXBUS cycles. They are also connected to the XXBCP which uses them to
coordinate the operations of the arbitration unit with XXBUS cycle opera-
tions. The XXBUS control bus consists of four control lines: XBCA, XBACK,
XBIRL, and XBRESET.

4.2.4.3 XXBUSRQ and XXBUSGT Control Lines. Each port slot has a pair of
.XXBUSRQ/XXBUSGT lines connecting it to the XXBCP Arbitration Unit. The

XXBUSRQ lines are used by the ports of the XXBUS to request the use of the
XXBUS. The XXBUSGT lines are used by the XXBCP to grant the use of the XXBUS

to a requesting port.

Iv-10
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4.3 THE XXBUS Control Port. Since only a single port may use the XXBUS at

any one time, a mechanism for establishing when a port may use the XXBUS is
required. This section describes the XXBUS Control Port (XXBCP) which
provides this mechanism along with those used for detecting and recovering
faulty bus cycles and for aiding system initialization during power up and

system reset.

4.3.1 General Description. Each port on the XXBUS will have s dedicated
pair of signal lines, XXBUSRQ/XXBUSGT. The XXBUSRQ line will be used to make

a request to the arbiter and the XXBUSGT line will be used by the arbiter to
grant ugse of the XXBUS to the port. The XXBUSRQ lines are sequentially scan-
ned and latched by the arbiter when they become active. The scanning opera-
tion will provide a Last-Look-At-Lowest-Priority (LLLP) method of determining
which requesting port will be granted use of the XXBUS.

Principle characteristics of the XXBCP design are:

) The arbiter will be modular consisting of nine modules organized
into three levels of arbitration. These nine modules can provide
arbitration of 24 ports however, more modules can be added to expand
this number up to 40. This provides for a total of 64, which can be

added without adding another level of arbitration.

o Worst case request to grant delay time when the XXBUS is not busy
will be less than 200 nanoseconds. Worst case queued grant~to-grant

delay will be less than 50 nanoseconds.

o The XXBUS Control Port will detect and provide recovery from faulty
bus cycles caused by requesting transmitter failing to respond to

grant or by the receiver failing to engage transmitter.
o The XXBCP will provide the proper XXBUS reset signal during power

up. This reset can also be triggered manually or by writing a

special command Function Code to the XXBUS.

1v-11
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4.3.2 XXBUS Control Port Structure. Figure IV-03 shows the functional block

diagram of the XXBCP. As shown the XXBCP will consist of the arbitration
unit, the XXBUS cycle sequencer, the XXBUS time out timer, and the XXBUS
reset unit. Associated with these major functional units are the following
control lines: XXBUSRQO-XXBUSRQ23, XXBUSGTO-XXBUSGT23, GRANTED, QUEGT,
OUTGT, STARTTIMER, TIMEOUT, and XXBCP reset. This section describes these

units and how they are organized to support the functions of the XXBCP.

4,3.2.1 XXBCP Arbitration Unit, The arbitration unit will consist of nine

logically identical modules organized hierarchally intc three levels of arbi-
tration (see Figure IV-04). The first level will consist of six modules.
Each of the Level 1, or Port Arbiters can arbitrate over four ports. These
six Port Arbiters are divided into two groups of three modules each. The
Port Arbiters in each group must make a request to, and receive a grant from,
the Level two or group module before issuing a grant. Likewise, the two
group arbiters prior to issuing a grant to a port arbiter must make a request

to and receive a grant from the Level three or master module.

Each module will consist of two separate elements. The first will per-
form the function of scanning the request lines and queuing the grant to be
issued. The second will perform forwarding requests to the next level of
arbitration. This arrangement will permit the parallel operation of request

forwarding, scanding, and latching the request.

The operations of these modules and the XXBUS will be coordinsted by the
three control lines, GRANTED, QUEGT, and OUTGT. The GRANTED control line
will be wired to all of the Port Arbiters and will be used to indicate when
the arbiter is issuing a grant. The OUTGT control line will also connect to
all of the Port Arbiters and will be used by the XXBUS cycle sequencer to
synchronize the outputting of grants with the completion of XXBUS cycles.
The QUEGT control line will be connected to all of the modules of the arbiter
and be used by the XXBUS cycle sequencer to release the arbiter from its
granting state.
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Figure IV-04. XXBCP Arbitration Unit
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4.3.2.2 XXBUS Cycle Sequencer. The XXBUS cycle sequencer will control the

sequenc ing of XXBUS cycle initiation and completion with the request scan and
grant queuing operations of the arbitration unit. The logic of this control
will be implemented as an Algorithmic State Machine (ASM) which coordinates
its activities with the arbiter using the control lines GRANTED, QUEGT, and
OUTGT; and the XXBUS using the control lines XBCA, XBACK, and XBIRL.

Associated with the XXBUS cycle sequencer is the XXBUS cycle timer which
will be used to time out bus cycles that fail to take place or to complete.
The control line start timer will be used to enable and reset the timer and
the control line time out will be used by the timer to indicate the time out

condition.

4,3.2,3 XXBUS Reset Unit. The XXBUS reset unit will provide the proper

reset signals to the XXBUS and/or the XXBCP. These reset signals can be
triggered either by power up, manually, or by writing the appropriate command
Function Code to the XXBUS. The control line XBRESET will be sourced by the
XXBUS reset unit and will be used to reset all the ports on an XXBUS. The
XBACK line will time the decoding of the execution codes. The manual XXBCP,

and XXBUS reset lines will be connected to hardware switches.

4.3.3 XXBUS Control Port Operations. The operations of the XXBUS control

port will include arbitrating requests for use of the XXBUS, sequencing the
operation of the arbiter with the operation of the XXBUS, detecting and
correcting faulty XXBUS cycle operations, and providing the proper reset
signals during power up and system reset. The following is a description of
these operations presented with respect to the operations of the arbitration,

sequence control, and reset control units.

4.3.3.1 XXBCP Arbitration Unit Operations. The XXBCP arbitration unit will

perform the operation of arbitrating requests for use of the XXBUS by the
various processing and linking ports of the XXBUS. The arbitration operation
includes scanning for XXBUS requests, latching and forwarding incoming

requests, queuing latched requests, and outputting the XXBUSGT.

1v-15
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The arbiter will receive requests and issue grants via the 24 pairs of
XXBUSRQ and XXBUSGT lines. The arbiter will coordinate with the XXBUS cycle
sequencer via the control lines GRANTED, OUTGT, and QUEGT. A description of
each of these signals is provided in Table IV-0l.

Figure IV-05 is an example of the relative timing of specific arbiter
signal lines and serves to illustrate the operation of the XXBCP arbitratiom
unit. The following is a description of this operation made in reference to
this specific example:

The sequence of events begins with all port, group, and mater modules
scanning. That is, none of the XBUSRQ lines are active and the XXBUS is
idle. During this time the coutrol lines GRANTED and QUEGT will be inactive

and control line OUTGT will become active.

o When an XXBUSRQ line becomes active, this request will be immediate-
ly forwarded to the master arbiter. In the diagram, XXBUSRQ 23
becoming active causes PORTRQ 5 to become active which in turn
causes GROUPRQ 1 to become active (see (1)).

o When the master arbiter scans a GROUPRQ line and sees it active it

will immediately stop scanning and make the corresponding GROUPGT
line active. In the diagram GROUPGT 1 will become active (2).

o While the request is being forwarded, the group arbiter's scanner
will be sequencially looking at the PORTRQ lines connected to it.
When the scanner sees the active PORTRQ line it will also stop scan-
ning. The group arbiter will not, however, make the corresponding
PORTGT active until its GROUPGT 1line becomes active. In Figure
1IV-05, GROUP Arbiter 1 does not make PORTGT 5 active until it has
scanned and latched PORTRQ 5 and GROUPGT 1 becomes active (3).
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Figure IV-056, XXBUS Arbiter Scan-Request-Grant Timing
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Again, while the request is being forwarded, the Port Arbiter's
scanner will be sequencially looking at the XXBUSRQ lines connected
to it. The Port Arbiter will stop scanning when it sees XXBUSRQ
active. If and when OUTGT and its PORTGT line become active, the
Port Arbiter will then proceed to make the corresponding XXBUSGT
line active. When XXBUSGT becomes active, the granted line which is
wired to all the Port Arbiters will be made active by the granting
Port Arbiter. In the example, OUTGT is already active therefore
Port Arbiter 5 makes XXBUSGT 23 active upon seeing PORTIGT 5 becoming

active (&4).

The master and involved ‘Group and Port Arbiters will remain in the

granting state until QUEGT becomes active.

Upon receiving an XXBUS grant from the Arbiter, the granted trans-
mitter will proceed, if operating properly, with a bus cycle. The
start of the XXBUS cycle will be sensed by the XXBUS cycle sequencer
which will then proceed to make QUEGT active. When QUEGT becomes
active, the granting arbiter modules will leave their granting
states and return to their scanning states. In the example when
QUEGT becomes active, Port Arbiter 5, GROUP Arbiter 1, and the
master arbiter will deactivate their grant lines and resume scanning
(54).

Also, OUTGT will become inactive at this time and will remain

inactive during the duration of the bus cycle.

Upon receiving an X¥BUS grant from the Arbiter, the transmitter if
operating properly will proceed with a bus cycle. When it does so,

its corresponding XXBUSRQ line will become inactive (5B).

When the granting Arbiters leave their granting state, the granted
line will become inactive. This action will indicate to the
sequencer that the arbiter has resumed scanning and therefore will

make QUEGT inactive again.
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It should be noted that while the master and involved Group and Port
Arbiters are in their granting state, the other Group and Port
Arbiters will continue to scan their request lines. If a XXBUSRQ to
a non-involved Arbiter is received, that request will be immediately
forwarded to the master module where it will wait until the master
module resumes scanning. When the Master Arbiter resumes scanning
the pending GROUPRQ will be sensed and the corresponding GROUPGT and
PORTGT lines will become active. The Port Arbiter will hold off
making the corresponding XXBUGT line active until OUTGT becomes

active again at the end of the previous bus cycle (6).

o When OUTGT becomes active again, the Port Arbiter with the queued
grant will make the corresponding XXBUSGT line active. 1In the
figure, XXBUSRQ O became active shortly after XXBUSRQ 23 did. The
request generated by XXBUSRQ 0 is forwarded to the master module via
PORTRQ O and GROUPQ 0. When the Master Arbiter resumes scanning, it
sees the active GROUPRQ 0 1line; the Master Arbiter stops scanning
and makes GROUPGT 0 active which in turn causes PORTGT O to become
active. With PORTGT 0 active, OUTGT becoming active is the only

remaining condition for XXBUSGT 0 becoming active (7).

4.3.3.2 XXBUS Cycle Sequence Operations. The XXBUS cycle sequenc: will

perform the operation of sequencing the arbiter with the XXBUS. Figure IV-06
shows the relative timing of the control signals associated with the opera-
tion of the XXBUS cycle sequencer. The following is a description of the
operation of the XXBUS cycle sequencer given in relationship to the relative

timing of these signals:

o The sequence begins with the XXBUS idle. When the XXBUS is idle the
sequencer will make OUTGT active. When it receives an XXBUS request
it will respond immediately by issuing the corresponding grant and

making granted active (see (1) in diagram).

o When granted becomes active, the sequencer will proceed to start the

XXBUS cycle time out by activating the control line STARTTIMER (2).
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The sequencer will remain in the STARTTIMER state until the trans-
mitter receiving the grant starts the XXBUS cycle by making XBCA

active (3).

When XBCA becomes active, the sequencer will know that the transmit-
ter received the grant. The sequencer will then proceed to make
QUEGT active which will cause the Arbiter to resume scanning and to

queue the next grant (4).

When the arbiter resumes scanning, the sequencer will deactivate
OUTGT and keep it inactive until the completion of the XXBUS cycle;

the granted line will become inactive (5).

At this point, the sequencer will wait for the normal completion of
the bus cycle or for the time out condition to occur. A normal bus
cycle will proceed with the transmitter engaging a receiver via the
control lines XBCA/XBIRL/XBACK as shown in Figure IV-06. When all
of these signals become inactive the bus cycle will be completed and
the sequencer will proceed to reset the time out timer and reacti-
vate OUTGT (6A).

1f the control line TIME OUT becomes active, then the sequencer will
engage the transmitter by providing the proper sequencing of XBACK.
This action will enable the transmitter to complete the bus cycle
(6B). In both cases upon completion of the bus cycle, OUTGT will be
returned to its active state and start timer will be returned to its

inactive state.

At this point, the arbiter will issue the next grant if one is

queued (7).
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4.4 Exchange Bus Interface Unit (XXBIU). The XXBIU is a microprogrammsble
interface control unit that will provide the interface between the Primary
Port Processing Unit’ (PPPU) and the new MPC Exchange Bus (XXBUS) (Figure
IV-07). The general architecture of the new XXBIU design is illustrated in

Figure 1V-08. The improved XXBIU will consist of microprogram memory, a
Microprogram Control Module, DMA Module, and a XXBUS module. Independently
controlled data paths and control lines will be utilized to interconnect the
XXBIU modules internally, as well as to the Primary Port Processing Unit, and
the new MPC Exchange Bus. These architectural features contribute to the
realization of the design requirements and are further discussed in the

following paragraphs.

The Microprogram Memory (MM) of the XXBIU will be dedicated to the stor-
age of Microinstruction directives (MI directives). Having a dedicated MM
will eliminate the latency periods introduced by multiplexing which is re-
quired if operands and MI directives share the same memory. This also means
that the more complicated logic needed to implement the multiplexing scheme
will not be reruired. Through the addition of a mechanism to support the
pipelining of MI directives, operations related to MI directive transfers and

operand transfers can take place in parallel.

The wmicroprograms will remain static and cannot be dynamically altered by
the XXBIU. This simplifies the addressing hardware and will also ensure
integrity of the microprograms by preventing an inadvertent alteration due to

software or hardware addressing errors.

The hardware addressing control imposes partitioning of the MM into three
fixed groupings. These groupings will be organized hierarchically into three
levels. The first and highest level divides the memory into 32 equal sec-
tions, or microprograms. Each of the 32 microprograms are divided into 8
equal subsections, or microprogram modules. Each microprogram module con-
tains 8 microinstruction words, representing the lowest level of MM address-

ing. Each microinstruction word may contain one or two MI directives with
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Figure IV-07. XXBIU interface Unit
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associated data. The microinstruction word format is depicted in Pigure
IV-09. This wmethod of partitioning greatly simplifies addressing logic.
These three addressing levels will be controlled or handled differently by

the control logic residing in the Microprogram Control Module.

Each microprogram of the XXBIU corresponds to a function that the XXBIU
can be directed to perform. The function (microprogram) to be executed is
specified by Function Codes which are written to the XXBIU visa the Port Bus
by the PPPU or via the XXBUS Function Code Bus by other Ports. Although each
microprogram must be specified by an unique Function Code, Function Codes do
not always specify microgrograms; that is, Function Codes are also used to
specify hardware implemented functions such as Port Reset, XXBIU Reset,

Enables, mode setting, and status reading.

The Microprogram Control Module (MCM) will contain the control logic and
primitive hardware elements needed to control the execution of Micrograms.
It will also contain the command and monitoring facilities which are used by
the Primary Port Processing Unit (PPPU) and the XXBUS to control the XXBIU at
the command level. The principle architectural features of the MCM involve
support of two duplex channels. The MCHM will be able to execute four micro-
programs at the same time to support the two duplex channels through the use
of special multiplexing hardware. This capability supports simultaneous

active and passive IPC dialogues.

The DMA Module (DMAM) will contain the hardware elements used by the
XXBIU to directly access the port memory. The DMA module will support two
channels of block transfers and direct addressing from the microprograms.
Thus, the addressing parameters of two channels can be maintained simultane-
ously as the DMAM is uged by the microprograms to directly address the port
memory to fetch processing parameters, etc. All DMAM activities will be
driven from MI directives. This arrangement makes the number, type, and mix

of data transfer activities and data processing activities programmable.

The XXBUS Module (XBM) will contain the XXBUS transmitter and receiver
elements along with the Conditional Logic Unit (CLU) which is used to decode
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control data and to perform data validity checks. Principle festures of the
XXBUS Module include support of two channels and the Transmit/Receive
(XMIT/BRCVE) control logic. Each channel will have dedicated Port addressing
registers and redundant check word generstors. The XXBUS receive and
transmit control logic will be implemented using hardware Algorithmic State
Machines (ASMs). This will minimize the XXBUS cycle time by eliminating

synchronization latencies and microprogram response times.

The MI directive path, the XXBIU Transfer Bus (XTB), the XXBUS Port Paths
and their associated control logic are designed for parallel operations. The
MI directive path will be dedicated solely for transferring information
representing MI directives. This dedication will permit the pipelining or
queuing of MI directives concurrently with other XXBIU activities. It will
also simplify the memory control circuitry, making wmemory access time the
primary limiting factor in reducing MI directive queuing times. The XTB will
carry data between the XXBIU and the Port Data Bus. These operations will be
performed in parallel with unrelated activities involving the XXBUS and/or
the MI directive path. This arrangement will algo help reduce the impact of
the relative slowness of these transfers on the overall throughput of the
XXBIU. The XXBUS port paths will be controlled by dedicated ASMs containing
transmit and receive control logic. This differs from the XIB in that the
XTB will be driven directly by the MI directives and the XXBUS transmit and
receive controllers will almost completely be decoupled from MI directive

control.

4.4.1 Microprogram Memory. The Microprogram Memory (MM) contains the micro-

programs that drive the XXBIU hardware activities. The following is a
description of how these microprograms are mapped into the MM and how micro-

program memory addressing supports the logical flow of XXBIU operationms.

4.4.1.1 Mapping. The mapping of microprograms into the MM is constrained by

the addressing hardware which imposes a partitioning of the MM into three
hierarchically arranged levels. These levels are microprograms, microprogram

modules, and microinstructions. At the highest level, the MM is divided into
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32 sections where each section is a microprogram. At the second level, each
microprogram is divided into eight (8) microprogram modules. At the lowest

level, each microprogram module contains 8 microinstructions.

4.6.1.2 Microprogram Memory Addressing. Addressing at each level is accom—

plished through three different address fields of the microprogram memory
address. These three fields correspond to the partitioning of the MM and are
referred to as the microprogram address, the microprogram module address, and
microinstruction address. The most significant difference between these
three address fields is how they are specified. The microprogram address is
specified externally to the XXBIU by writit;g a Function Code to the XXBIU.
This is the only way in which a microprogram address can be specified; that
is, the XXBIU cannot by itself modify a microprogram address. The micropro-
gram module address is specified by, and only by, the microprograms them-
selves as they are executed. A microprogram elects to change its micropro-
gram module address by issuing a microinstruction that involves branching.
The microinstruction address can be specified only by the XXBIU hardware.
When the microprogram and/or the microprogram module address is changed, the
microinstruction address will be automatically reset to zero (0). When a
microprogram module begins executing, the microinstruction address will be

incremented automatically each time a microinstruction is fetched.

4.4.1.3 Microprogram Logical Flow. The logical flow of XXBIU operatioms

will be controlled at three levels which correspond to the partioning and
addressing of the microprogram memory. Logical flow at the microprogram
level is a process of deciding which microprogram to execute and will be
controlled externally by the primary port processing unit or by other ports
via the XXBUS. This is a process of deciding which Function Code to send to
the XXBIU. At the second or MP module level, logical flow is a process of
deciding the next MP module address and is controlled by the microprograms
themselves via the Jump (JMP) MI directives and the hardware it drives. At
the third or microinstruction level logical flow will be sequential and

controlled by the hardware.
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4.4.2 Microprogram Control Module. The Microprogram Control Module (MCM)

contains the mechanisms that provide for XXBIU command and monitoring, Func-
tion Code control, microprogram control, and for microinstruction control.
XXBIU command and monitoring provides the PPPU and the XXBUS with the
mechanism needed to reset, enable, disable, select the operational mode of,
and to read the status of the XABIU. Function Code control involves the
movements of function codes within the XXBIU. Microprogram control involves
the logical flow of microprogram execution. Microinstruction control
involves the fetching, decoding, and execution of microinstructions. Figure
IV-10 shows the functional block diagram of the microprogram control module.
This subsection will describe how these elements are organized and how they

operate to support these mechanisms.

4.4.2,1 XXBIU Command and Monitoring. The elements of the MCM that provide

for XXBIU command and monitoring include the Port Command Unit (PCU), the
XXBUS Command Unit (XCU), and the Status Interface Unit (SIU). The following

is a description of each of these units.

4.4.2.1.1 Port Command Unit (PCU). The PCU will provide the PPPU with hard-
ware level control of the XXBIU. Through the use of the PCU, the PPPU will

set the operational mode, control status reads, set hardware control flags,
and load Function Codes from the port bus. These commands will be sent
asynchronously to the PCU via the port data bus by using I/0 write cycles,
controlled by the two lines I/0 write (IOW) and XXBUS command. The IOW line
is the port system bus I/0 write cycle timing control line and will be used
to control the command decode sequenct sing of the PCU. The XXBUS command
line comes from the port bus devi ve . 1 decoder and will be used to enable
the PCU for 1/0 cycles.

4.4.2.1.2 XXBUS Command Unit (XCU). The XCU will provide other MPC Ports

with hardware level control of the XXBIU. Through the use of the XCU, other
MPC Ports may issue commands that consist of enabling, disabling, and reset-
ting the XXBIU. These commands will be set asynchronously to the XCU via the
XXBUS by the use of XXBUS write MI directives from the other ports.
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The commands will be encoded in Function Codes received by the XXBIU via
the XXBUS Function Code Bus and the XXBUS Input Function Code Register
(XXIFR). Commands will be indicated by the setting of the Passive-Active
Switch (PAS), and setting of the Lock On Request Bit (LOB). When the PAS is
set to select the passive channel (PAS=0), and the LOB is set to indicate a
lock on request (LOB=1), then a command is indicated ar? the XCU will decode
and execute the specified command. The timing of this execution sequence
will be controlled by the queue controller using the Drcode XXBUS Control
(DECXC) line.

4.4.2.1.3 Status Interface Unit (SIU). The SIU will provide the PPPU with

the capability to monitor the state of the XXBIU at 2 levels. At the micro-
program level, two status registers, one for both active and passive IPC, are
provided. These two registers are updated from Microprogram Memory (MM) via
the MM data bus when an 'update status' MI directive is executed. At the
hardware level, the state of principle hardware control and status lines can
be monitored. Timing and control of status reads are provided by the two
control lines 1/0 Read, (IOR) and XXBUS command. The IOR will be the port
system bus I/0 read timing control line and is used to control the output
sequencing of the SIU. The XXBUS command line originates from the port
memory bus device select decoder and will be used to enable the SIU for I1/0

read cycles.

4.4.2.1.4 Interrupt Request Lines. In addition to the SIU, there are two

interrupt request lines, Active Ready (ACTRDY) and Passive Request (PASRQ).
The setting of these lines will be controlled via the 'set interrupt request'
MI directive. Once set, each line is cleared only when the PPPU sends the
appropriate ‘'clear interrupt request' command to the Port Command Unit
(PCU). These two interrupts and the SIU can be used to implement a high

level communications protocol between the microprograms and the PPPU firmware.

4.4.2,2 Function Code Control. Function Code Control involves the movements

of Function Codes internally to the XXBIU. The following paragraphs describe
the structure and operations of the data path and control elements that

support this movement.
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4.4.2.2.1 Punction Code Transfer Paths. Function Codes will enter the

Microprogram Control Module (MCM) from either the port data bus or the XXBUS
Furction Code bus. The Function Code from the port data bus will be loaded
directly into the Address Queue (AQ) by the Port Command Unit (PCU), when it
receives a load-execution-code command from the PPPU. Function Codes that
enter the AQ from the port data bus can only be loaded into either the Active
Port Microprogram Address Register (APMPAR) or the Passive Port Microprogram
Address Register (PPMPAR) of the AQ (Figure 1IV-11). Function Cendes that
enter the MCM from the XXBUS are loaded into the XXBUS Input Function Code
Register (XXIFR) by the receiver logic that resides in the XXBUS module.
Once a Function Code is loaded into the XXIFR, it is held until the AQ
controller rejects or accepts it. If the Function Code is accepred, it will
be either sent to the XXBUS Command Unit (XCU), or to the AQ. Function Codes
that enter the AQ from the XXBUS can only be loaded into either the Active
XXBUS Microprogram Address Register (XAMPAR) or the Passive XXBUS Micropro-
gram Address Register of the AQ. After a Function Code is loaded into an
addressing register (AXMPAR), its next destination is the Microprogram Memory
Address Bus (MPMAB). This transfer is made via the multiplex switch which
connects all the addressing registers of the AQ to the MPMAB. This wmultiplex

switch is controlled by logic contained in the AQ controller.

The path taken by Function Codes when leaving XXBIU will originate in
Microprogram Memory (MM) and end at the XXBUS Function Code bus. An outgoing
Function Code is stored in the data field of a "load XXOFR" MI directive.
When this MI directive is executed, the Function Code is loaded into the
XXBUS Output Function Code Register (XXOFR). The Function Code is held until
the XXBUS transmitter logic, located in the XXBUS Module (XBM), gains control
of the XXBUS. At that time, the Function Code is sent out onto the XXBUS and
is transferred to the XXIFR of the target port.

4.4.2.2.1.1 Function Code Control - Port Data Bus. Function Codes will be

loaded from the port data bus into the AQ when the PPPU I/0 writes a 'load
function code' command to the Port Command Unit (PCU). To support the PPPU

in this operation, the MCM will provide two interrupt request lines, ACTRDY
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and PASRQ, and two status bits via the Status Interface Unit (SIU). The two
interrupt request lines are set to their active state from the microprograms
when a "set interrupt' MI directive is executed, and are reset when the PPPU
I/0 writes an "acknowledge interrupt' command to the PCU. These two inter-
rupts are used by the XXBIU to indicate when a microprogram requires servi-
cing from the PPPU. The two status bits are connected to the execute request
flags of the Active and Passive Port Microprogram Address Registers (APMPAR
and PPMPAR). These two status bits thus provide the PPPU with the means to
verify the availability of the APMPAR and the PPMPAR prior to loading a Func-

tion Code.

4,4.2.2.1.2 Function Code Control - XXBUS. Function Codes entering from the

XXBUS Function Code bus will go through two transfer sequences before
reaching the XXBUS Command Unit (XCU) or the AQ. The first transfer, from
the XXBUS to the XXIFR, will be controlled by the XXBUS receiver logic
located in the XXBUS Module (XBM). The second transfer, from the XXIFR to
either the XCU or the AQ, will be controlled by the AQ loader located in the
AQ controller. These transfers will be supported by the ..catrol status lines
PAS, LOB, LORQEN, ACTEN, PASEN, EXXARQ, and EXXPRQ. During each transfer,
control of the XXIFR will be maintained by the controller of that transfer.
Transfer of XXIFR contrul will be performed using 'handshaking' techniques

and control lines XXIRLOCKED, RELXXIR, INRQ, and INACK.

The following paragraphs describe the sequence of events that will take

place in the XXBIU when Function Codes are received from the XXBUS.

o The XXBUS receiver will transfer the Function Code into the XXIFR.
Once the XXIFR has been loaded, the XXBUS receiver will begin the

control transfer sequence with the AQ loader.

Immediately after a bus cycle, during which the XXBUS input holding
registers have been written into, the XXBUS receiver logic will take
INRQ to its active state and wait for INACK to assume its active

state. Wnen the AQ loader senses that INRQ is active, it will
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respond immediately by taking INACK to its active state. When INACK
becomes active, the XXBUS receiver logic returns INRQ to its
inactive state and becomes available for the unext bus cycle. When
INRQ becomes inactive, the AQ loader returns INACK to its inactive

state.

o The AQ loader will then determine what action is required, regarding

the Function Code just received.

o The next event to occur, is the release of XXIFR. Once loaded,
XXIFR is locked, indicated by XXIRLOCKED becoming active, and
remains locked until the release sequence is executed. This
sequence will be executed by the loader if the Function Code is
rejected, or by the microprogram when the Release-Input Data
Register (XXIDR) MI directive is executed. RELXXIR will be taken to
its active state when this sequence is initiated. The 1locking
flip~flop, located in the XBM, will be cleared and the control line
XXIRLOCKED becomes inactive. When XXIRLOCKED becomes inactive,
RELXXIR will be taken to its inactive state. Once the XXIDR is
released, the XXBUS receiver will permit its loading during the

attempt to write to it by the XXBUS.

4$.4.2.2.2 Microprogram Memory Address Registers and Multiplexor. The

switching of the Microprogram Memory Address Regiaters, (MPMAR), onto the
Microprogram Memory Addressing Bus, (MPMAB), will be controlled by the multi-
plex logic located in the Address Queue (AQ) controller. This multiplex
logic will consist of two sets of flip-flops and an ASM. Each set contains
four flip flops. The first set of four flip-flops will serve as execute
request flags for each of the MPMARs, with the second set of flip-flops
controlling the multiplex switch. The ASM will implement the logic as a
rotating, last handled, lowest priority wmultiplexing scheme. This scheme
will be used to control the scanning and latching of requests from the execu-
tion request flag and to control the setting of the multiplex switch control

flip-flops.
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4.4.2.3 Microprogram Control. The Microprogram Control mechanisms support

the logical flow of microprogram execution. These mechanisms include those
hardware elements that implement the MI directives used by the microprograms
to perform conditional and unconditional branching to one of eight micropro-
gram modules within a microprogram, and termination/subtermination of micro-
program execution. It will also include sections that provide direct hard-
ware control of the logical flow including reset and special timer triggered
activities. 1In all cases, microprogram module branching will be a process of
selecting between alternative Microprogram Module Addresses used to address
the next microprogram module. The following paragraphs describe the hardware
elements and operations involving the manipulation of the microprogram module

address fields of the microprogram memory address registers.

4.4.2.3.1 Microprogram Control Elements. The following describes the ele-

ments that provide for microprogram control and how they are organized.
These elements include the data paths and thogse that control, as directed by

the microprograms, the operation associated with microprogram control.

4.4.2.3.1.1 Microprogram Control Data Paths. The registers that support

Microprogram Control include the Module Branch Register (MBR), and the four
Microprogram Module Addressing Registers (MDAR) of the Microprogram Address
Queue. The MBR will hold the if-true-branch target module address during the
execution of conditional branch MI directives. Each of the MDAR's will hold
the address that points to the next microprogram module of the associated

microprogram to be axecuted.

As shown in Figures IV-10 and 1IV-ll, circuit paths associated with these

registers include:

o the Microprogram Memory Data Bus (MPMDB)

o the Branch Microprogram Module Bus (BMMB)

o the multiplex switch

o the Microprogram Memory Address Bus (MPMAB)
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The MPMDB will carry the MP Module Branch Address contained in the data
field of branch MI directives to the MBR during MI directive fetch cycles.
The BMMB will carry the MP Module Branch Address from the MBR to any ome of
four MDARs. From the MDAR, MP Module Address will be connected to MPMAB by

the multiplex switch.

4.4.2.3.1.2 Microprogram Control Hardware. The Microprogram Control Hard-

ware is represented in Figure IV-10 by the Microprogram Control Moduie
Control Unit (MCMCU). The MCMCU will contain the sequence controller that
performs transfer operations along the Microprogram Control data path, hard-
ware that decodes and executes the branch MI directives, and hardware that

implements the channel time out operatioms.

Associated with the MCMCU will be the following control and status lines

supporting the Microprogram control hardware:

o >ATO: This line represents the timing element used to coatrol

time related activities of the active channel.

o >PTO: Passive channel version of ATO.

o ATC: This line provides the status of the active channel DMA

block transfer word counter.

() PTC: Pagsive chamnel version of ATC.

o COMPCND: This line provides the result of the compare logic unit,
which is contained in the XXBUS module, during the execu-

tion of compare MI directives.

With respect to the organization of these control lines, each circuit path of
the microprogram control data paths will have a different ASM controlling its
activities; that is, the fetch MI directive activity associated with MPMAB
and the MPMDB, the MI directive execution activity associated with the BMMB,
and multiplex switch coantrol will all be controlled by separate, yet, coor-

dinated hardware logic.
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4.4.2.3.2 Microprogram Control Operations. The operations involved with the

control of microprogram logical flow will be processes that determine the
next state of the Microprogram Module Address Registers (MDAR). These opera-
tions consist of two types. The first type provides microprogram controlled
logical flow or branching. This control is represented by the MI directive
set that includes: DMA Block transfer branch activities, compare logic
branch activities, unconditional branching, and microprogram termination/sub-
termination. The second type of activity provides for direct hardware

control of microprogram logical flow.

4.4.2.3.2,1 DMA Block Transfer Branch Operations. DMA block transfer opera-

tions will be performed by the DMA Module (DMAM) under direction of the
microprograms. The MI directives to be sent to the DMAM include those that
set up the DMAM addressing parameters and those that direct the DMAM as to
when a word transfer can take place with respect to other possible MI direc-
tive activities. This direct control by the microprograms will be performed
by the execution of the DMA tranfer MI directive and the JMP ATC/PTC MI

directive set.

The block transfer microprograms of the two DMA channels will be imple-
mented using the appropriate versions of these two MI directives in a condi-
tional loop structure. During the execution of these microprograms, the DMAM
will transfer a single word of the block to be transferred each time it
receives a DMA transfer MI directive. The JMP (ATC/PTC) MI directive will be

used to determine when all words in the block have been transferred.

The JMP (ATC/PTC) MI directives will be supported by the status lines ATC
and PTC which indicates to the Microprogram Control Module (MCM) the word
count status of their respective channel's word counter. Each time a DMA
transfer MI directive of a channel is executed, that channel's word counter
will be decremented by one. When the channel's word counter reaches its
terminal count state, the terminal count status line, ATC/PTC, of that chan-
nel will become active. Once it becomes active, the execution of that
channel's JMP-IF-ATC/PTC MI directive will result in the microprogram module

jumping to the microprogram module specified by the MI directive, ending the
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block transfer operation. Also, when the terminal count condition for a
channel is reached, the execution of any subsequent DMA transfer MI direc-
tives by the DMA Module will be inhibited. This action is required because

of the possible pipelining of the DMA transfer MI directives.

Any number or mix of MI directives can be contained within a DMA transfer
microprogram module, except those that might erroneously change the DMA para-
meters. These additional MI directives may be included to perform integrity
checking, data comparisons, or subterminations. The inclusion of subtermi-
nate MI directive will permit the multiplexing of a DMA operation with the

operations of any other microprogram.

4.4.2.3.2.2 Compare Logic Unit (CLU) Branch Operations. The XXBIU can be

programmed to perform any one of a number of compare operations on data that
is received from the XXBUS. The hardware that performs these operations, as
directed by microprograms, resides within the XXBUS Module and are referred
to collectively as the Compare Logic Unit (CLU). A compare operation will
begin when a Compare-Jump MI directive is received by the XXBUS Module
(XBM). During the fetch of this directive, the Branch Module Address will be
loaded into the MBR. During the execution of this directive, the CLU will
indicate the results to the MCMCU via the CMPCND status line. If the cowmpare
tests true, then CMPCND becomes active., CMPCND becoming active will result
in the. target MP Module address being loaded into the Microprograms MDAR. If
the compare does not test true, the execution will terminate. This communi-
cation arrangement requires that the MCMCU and XBM remain synchronized

throughout the entire execution of Compare-Jump MI directive.

4.4,2.3,2.3 Unconditional Branching. This operation will be performed when

an unconditional Jump MI directive is received. During the execution of this
M1 directive, the Module Address which was loaded into the Module Branch
Register (MBR) during the MI directive Fetch cycle will be loaded into Module
Address Register (MDAR) of the executing microprogram. Also during this
execution cycle, the microinstruction counter will be set to zero. Thus, the
next MI directive to be executed after the execution of an unconditional Jump

will be the first MI directive of the target microprogram wmodule.
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4.4.2.3.2.4 Termination/Subtermination MI Directive. The termination MI

directive will be used by the microprogram to indicate to the hardware that
it has finished, thus terminating its execution. 1If this MI directive 1is 1
executed by a portside microprogram, the MCM will clear the appropriate EXRQ 1
flag in the multiplex logic and wil! also set the availability status flag to
indicate to the PPPU that the respective port channel is available for the
next XXBIU operation. If this MI directive is executed by an XXBUS-side
microprogram, then the MCM will clear the appropriate EXRQ flag in the multi- '
plex logic and will indicate to the loader logic that the channel is ready to
receive the next microprogram Function Code from the XXBUS. 1In either case,
the microprogram module address register will be set to zero and the

Multiplexor will advance to the next requesting microprogram.

The operation of subtermination will be provided to implement the micro-
program controlled multiplexing scheme. When a microprogram completes execu-
ting MI directives that require, for reasons of integrity and speed, the
microprogram to maintain control of the XXBIU, the microprogram will issue a
subterminate MI directive, which will result in the multiplexor advancing to
the next requesting microprogram. When the MCM executes this instruction,
the module address that was loaded into the MBR during the fetch sequence,
will be loaded into the MDAR of the subterminating microprogram. After the
MDAR is loaded with this "return" address, the MCM will advance the multi-

plexor and reset the microinstruction counter to zero.

4.4,2,3.2.5 Channel Time OQut Activity. Channel time out will be provided

for the synchronization of microprogram level communication between XXBlUs by
sapporting the request/respond-or-time-out protocol used to achieve this
synchronization. The time out activity during this synchronization process

will be as follows:

o The wmicroprogram of the initiating port assembles the appropriate

request information packet and sends it out onto the XXBUS.

o The requesting microprogram then starts the appropriate timer.
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o After starting the timer, the microprogram issues a terminate MI
directive and waits for a response Function Code or for the time out
condition. 1If the Function Code is received, the microprogram that
is subsequently executed stops the timer. At this point, the
microprograms are synchronized. 1If the time out condition occurs,

then the MCU will issue an interrupt to the port processor.

4.4.2.4 Microinstruction Control. The XXBIU Microinstruction set supports

the activities needed for the three modules encompassed in the XXBIU. These
include the XXBUS, DMA, and Microprogram Control Modules. Each module can
operate independently, dependently, synchronously, or asynchronously on the
portion of the MI directive that they receive and operate on. In support of
this operating environment, the MI directive set is functionally partitioned
into two types of directives: XXBUS/DMA Control, and MCM Control. One type
of directive need not be related to the directive specified in the other
type. This partitioning will provide for increased throughput by eliminia-
ting the need for synchronization of the entire XXBIU for each MI directive,

while supporting the concurrent operation of each module.

The operations asociated with each MI directive are further divided into
two phases: fetch and execution. MI directive fetch phase relates to the
process of transferring the MI directive from the microprogram memory (MM),
to the execution hardware of the XXBIU. The execution phase coordinates the
hardware primitives that execute the MI directives specified with each micro-

instruction.

There are four possible combinations of MI directives, each requiring
different fetch and execution cycles. These combinations include the
XXBUS/DMA directive, MCM directive, a combination of both that are executed
independently, and a combination of both where ome requires the coordination
of the other. The MI directive, as well as the state of the XXBIU, both

contribute to the number of fetch and execution cycles required.
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4.4.2.4.1 MI Directive Fetch Phase. This phase includes the execution of

four sequential processes: determination of when the fetch cycle should take
place, analyzing the MI directive, the XXBIU status to determine which
modules are involved, synchronization of the modules involved, and loading of
the MI directive into the specified module's Microinstruction Holding
Register (MIHR.

The determiniation of when to fetch will be controlled by the multiplex
logic, the Microprogram Control Module (MCM), and the Micronistruction Execu-
tion Logic (MIEL). The multiplexor and the fetching logic will coordinate
this process by handshaking the lines MIELRDY and MIELEX. MIELRDY indicates
to the multiplexor that the MIEL is ready to begin execution of the next
microprogram. MIELEX is used by the multiplexor to indicate to the MIEL tha

the next microprogram is ready to be executed.

The determination of the modules involved and the sequencing required is
reflected by the setting of the key control bits in the microinstruction
word, and the status of the Transmit Ready (XMITRDY) and Compare Condition
(CMPCND) control lines. Figure IV-09 showed the format of the XXBIU microin-
struction. Of the bits shown, 23 and 19 will be used to indicate to the
fetch logic which MI directive is to be executed, along with those that
specify the XXBUS output register transfer, or the Compare/Jump directive.
During the early phase of the microinstruction fetch cycle, these bits are to
be tested by the fetch logic and their setting determines the nature of the

remaining cycle.

If the XXBUS/DMA module directive of the microinstruction is to be
executed, the fetch logic will use the handshake lines DXRDY and DXEX to
synchronize these modules with the fetch operation. 1If only the MCM portion
of the MI directive is to be executed, the fetch logic will wait for a ready
indication from the MCM. 1In this case, the MI directive execution logic,
DXRDY and DXEX, will not be used. When both are specified, the fetch logic
will coordinate the two activities by waiting for both to become ready before

execution of the load sequence.

1V-43




When the loading of the MI directive into the XXBUS/DMA MIHR is required,
and either the XMITRDY line is not active, or if the XMITRDY is active and
the MI directive does not involve the XXBUS output register, the DXRDY line
will be checked. The DXRDY line will be set to an active state by the
XXBUS/DMA module when it is ready to receive the next MI directive. When
this occurs, the MI directive data bus will be gaéed to the MIHR's of both
modules. When the fetch logic retrieves an MI directive with bit 19 set and
the DXRDY line active, DXEX will be activated. When this occurs, the
XXBUS/DMA modules will respond by deactivating the DXRDY line. This action
latches the MI directive into the XXBUS/DMA MIHR's and starts the execution
phase when the DXRDY becomes inactive. The fetch logic deactivates the DXEX
line and proceeds with the next fetch sequence, if the Compare/Jump portion
of the MI directive was not specified. If the Compare/Jump is specified, the
fetch logic will wait for either the CMPCND or the DXRDY line to become

active before proceeding with the next fetch operation.

When loading of an MI directive into the MCM MIHR is required, and either
the XMITRDY is not active, or the XMITRDY is active and an XXBUS output
register is not part of the MI directive, the following will occur. During
the execution of the MCM portion of an MI directive, a point will be reached
when the address of the next MI directive becomes valid. At this point, the
fetch logic will gate the MI directive into the holding registers. When the
execution of the previous MI directive is completed, the fetch logic will
latch the MI directive into the holding registers, start the execution logic,
and proceed with the next fetch sequence if the Compare/Jump portion of the
MI directive was not specified. If the Compare/Jump was specified, the fetch
logic will wait until either the DXRDY or CMPCND control lines become active

before proceeding with the next fetch.

The loading of a MI directive into the MIHR of the DMA/XXBUS module, or
the MIHR of the MCM when XMITRDY is not active and the MI directive involves
an XXBUS output register, will be held in a wait state until the XXBUS trans-
mitter completes the XXBUS transfer. Completion will be indicated by XMITRDY
becoming active. To prevent hang up of the microprogram by the transmitter,

a time out condition can also terminate this wait state.
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4.4.2.4.2 M1 Directive Execution Phase. The MIEL will determine when to

perform a MI Directive execution cycle, the hardware primitives imvolved in
the execution of the MI directive, and the actual execution of the MI direc-
tive by the hardware primitives. The details of each of these processes is
the function of the XXBIU modules involved. For the MCM, it will be a func-
tion of the MI directive being executed. The MCM execution hardware will
also respond to the hardware directives of time out and reset and to the
state of XXBIU. For the MCM execution hardware, all of these processes will
require coordination with the fetching logic, the microprograms, and with the

execution hardware of the XXBUS and DMA modules.

The determination of when to perform an execution cycle will be control-
led by the fetching logic and the microprograms. The fetching logic will
coordinate the MI directive loading operation with the initiation of the
execution sequence. The microprograms will indicate to the MIEL when to stop
execution by issuing a terminate/subterminate MI directive. The execution of
either MI directive results in the MIEL transitioning to its idle state. The
MIEL will remain in its idle state until it is restarted by the fetching

logic.

Execution sequence of a MI directive will be a function of the operati-n-
al specifics of the MI directive and the state of the XXBIU. The MI direc-
tive specified operations of conditional branching, unconditional branching,
flag setting, flag testing, register transferring, and NOP will require
different sequencing. This determination will be made early in the execution
cycle when the MI directive is decoded. The state of the XXBIU will include
the setting of the mode register, and the state of the status lines XMITRDY
and COMPCND which respectively coordinate the activities of the transmitter
and the CLU with the MIEL.

4.4.3 XXBUS Module. The design of the XXBUS Module (XBM) includes the

hardware elements to perform activities associated with transferring informa-
tion to and from the XXBUS. These elements involve transmitter and receiving
XXBUS Information Packets, decoding (testing) XXBUS data, and supporting data

error detection.
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4.4.3.1 XXBUS Transmitter Elements. Figure 1V-12 shows the functional
elements of the XBM. The XXBUS Transmitting Elements (XT), include the XXBUS
Output Data Register, (XXODR), XXBUS Passive Channel Output Addressing
Register, (XXPOAR), XXBUS Active Channel Output Addressing Register (XXAOAR),

and the transmit control logic.

The XXODR will be a 16-bit register with its input connected to the XIB
and its output connected to the XXBUS data bus. Loading of the XXODR will be
controlled by the XBM Control Unit (XBMCU) and is performed when the XBMCU
receives a load-XXODR MI directive. Transfers from the XXODR will be
controlled by the transmit control logic. The XXODR serves to decouple the
activitie: of the XXBIU from those of the Bus.

The XXPOAR and XXAOAR registers will be l4-bits in width and are to be
loaded from the XXBIU Transfer Bus (XTB) by the XBMCU when the XBMCU receives
a Load-XY¥POAR or Load-XXAOAR MI directive. These registers will hold the
addressing information to control the routing of information packets through
the XXBUS network. The XXPOAR and XXAOAR will be dedicated to the Passive
and Active DMA channels of the XXBIU respectively. By having dedicated
address registers, multiplexing of the active and passive DMA channels can
take place without requiring the reloading of the address register each time

a channel resumes operation.

The transmitter control logic will control the transfer of Information
Packets from the XXBUS output registers, (XXODR, XXPOAR or XXAOAR, and
XXOER), to the XXBUS. The transmitter will be an Algorithmic State Machine
and coordinates its activities with the XBMCU, using lines XMITSTART and
XMITRDY. Control of the XXBUS will be transferred to the transmitter using
lines XBUSRQ/XBUSGT. Synchronization of the transmitter with the receiver
sections of the other port on the XXBUS will be accomplished using XXBUS
control lines XBCA, XBACK and XIRL. XBCA will be activated by the transmit-
ter to indicate the start of the bus cycle on the XXBUS. XBACK will be acti-
vated by the receiver to indicate that the XXBUS Information Packet has been
loaded. XBIRL will be activated by the receiver to indicate that the XXBUS

Information Packet was locked out.
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4.4.3,2 XXBUS Receiver Elements. The XBM Receiver Elements (XR) will

inc lude the XXBUS Input Data Register (XXIDR) and the receiver control logic
which is internal to the XBM (see Figure IV-12). The XR will also include
two external components: the address recognition unit (see Figure 1V-08) and

the XXIFR, which is contained in the MCM (see Figure 1V-10).

The XXIDR will be a 16-bit register with its input connected to the XXBUS
data bus and its output connected to the XXBIU Transmit Bus (XTB). The XXIDR
serves to decouple the activities of the XXBUS and those of the XTB, by
providing temporary storage of data received from the XXBUS during a bus
cycle. Loading of the XXIDR will be controlled by the XR. Transfer of data
from the XXIDR will be controlled by the Microprogram Control Module.

The Address Recognition Unit (ARU) shown in Figure 1V-08, will perform
the function of comparing the port’s XXBUS and port ID with the XXBUS address
bus. Thus, making the status line SELECT active when they are equal. The
ARU will consist of a word comparator with one argument connected to the Port
and Bus ID and with the other argument connected to the XXBUS address bus via
the XXBUS address port path and transceivers. The SELECT status line will
connect to the receiver logic located in the XBM and is used in conjunction
with the XBCA to indicate to the receiver port when to engage in an XXBUS

cycle.

The XR control logic will control the transfer of Information Packets
from the XXBUS to the XXBUS input registers, XXIDR and XXIFR. The XR control
logic will be implemented as an algorithmic state machine which must communi-
cate with the XT logic of other ports and with the Loader Logic of the MP
Addres. Queue Controller. Communication with the XT control logic of other
ports will be supported by the bus control lines XBCA, XBACK, and XBIRL.
Communication with the Loader Logic will be supported by the handshaking
lines INRQ, and INACK, the status line XXIRLOCKED, and the control 1line
RELXX IR,
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4.4.3.3 Data Decoding Elements. XBM Data Decoding Elements (DDE) support

the actiities of XXBUS data decoding and testing and are shown in Figure
1V~12. The DDE includes (MPRl, QMPR2, XXIDR, the compare select vector, and
the Compare Logic Unit (CLU). Also associated with these operations is the
XBMCU which will control the DDE during the execution of the COMPARE-JUMP MI

directives.

CMPRl and CMPR2 will be 16-bit registers used to hold data to be compared
with the contents of the XXIDR. This loading activity will be performed by
the XBMCU when a COMPARE-JUMP MI Directive, specifying CMPR1/CMPR2, is
executed. The Compare Logic Unit (CLU) will provide the various bit test,
bit compare, and word compare functions' required to support the data decode
and test operations. The bit test operations can only be performed using the
XXIDR. The compare operations will be performed between the XXIDR and either
COMPl, COMP2, Active Redundant Checkword generator (ARC), or Pagsive Redun-
dant Checkword generator (PRC). The type of compare/bit test will be
specified by the compare select vector. The result of these compares and bit
tests will be provided via the COMPCND status line. Synchronization of the
CLU with the Microprogram Control Module branch control logic will be provi-
ded by the control line TESTCOND.

The COMPCND select vector register will be used to hold the COND select
vector during execution of the Compare/Jump MI directive. This wvalue is
stored in the DMA/XXBUS Directive '"Comp: Mode" field of Compare-JMP Micro-
instructions and will be loaded into the COMPCND select vector register

during the MI Directive load sequence (see Figure IV-09).

4.4,3.4 XXBUS Data Transfer Error Detection. The XXBUS data transfer error

detection elements (Figure IV-12), include the Passive Redundant Checkword

Generator (PRCG), Active Redundant Checkword Generator (ARC) and the Compare
Logic Unit (CLU).

The PRCG and the ARC will be used to generate redundant check words, and
at the end of block data transfers to detect errors that might occur during

the data transfer process. Each of these sections will consist of 16 toggle
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type flip-flops. The inputs and outputs of each one of these flip-flops in
the PRCG and the ARC will be connected via a bidirectional gate to one of the
16 lines of the COMP bus. These connections are such that the PRCG and the
ARC each will have one flip-flop for monitoring each of the 16 lines of this

bus.

The CLU will be used to compare the check word of its port (read from the
PRCG or the ARC via the COMP bus) and the XXIDR (which will hold the check

word received from the other port involved in the data transfer).

The KBMCU will control the execution of the error checking MI directive.
Data transfer processes using error checking consists of four phases:
initialization, data transfer, check word transfer, and check word compare.
Before data is transferred between the XXBIU, the PRCG or the ARC, depending

on the DMA channel involved, must be set to their initial condition (0).

After the PRCG or ARC has been initialized, the data transfer will
begin. During the transfer operation, data streaming through the XTB will
also be gated onto the COMP bus where it will be looked at by the PRCG or
ARC. The flip~flops monitoring the COMP bus will change state each time they
see a high in one of the 16 bits. Since the PRCG or ARC of the XXBIUs see
the same data stream, the check word generated by each XXBIUs PRCG or ARC
should be equal. At the end of the data transfer, one of the ports sends its
check word to the other. The port receiving the check word places it in its
XXIDR and proceeds to compare it with the check word generated by its own
PRCG or ARC.

4.4.3.5 XXBUS Transmitter Operation. The XT and XR engage in one of two

possible bus cycles which correspond to the locked and unlocked states of the
XIDRs. Figures IV-13 and 1IV-14 show the relative timing of principle XT
control lines during each of these bus cycles. Of the signals shown, Trans-
mit Ready/Transmit Start (XMITRDY/XMITSTART) will be used to synchronize the
Module Control Unit with the XTE, Exchange Bus Request/Exchange Bus Graat
(XXBUSRQ/XXBUSGT) used by the XT to gain control of the XXBUS, and
XBCA/XBACK/XBIRL will be used to synchronize the XR with the XT during the

1v-50




PoNIOLN YixX ‘ BusunL I UBURI | SNGXX EL-Al UnBly

novax v

qH18x

vd8x

1v=-51

N ®

19snaxx

ousnaxx

—

@ LYVLISLINX

AQYLINX




POYI0T YIX X ‘Buyun ) se3usumi] SNEXX “Ph-Al @nbi4

®

e

™
AN
©
/

novax

wI8x

voax

19snaxx

DYSNBXX

LYVLISLINX

AQULINX

1v-52

RTINS




bus cycle. The following describes the operation of the XT with respect to
the timing of these signals during each of these bus cycles:

4.4.3.5.1 XXIR UNLOCKED. Start~up of the XXBUS transmitter will be
performed by the XXBUS Module Comtrol Unit (XBMCU) after it executes a
Load-XXODR MI directive. Before executing this instruction as shown in
Figure 1IV-13, the XBMCU will test the state of XMITRDY. 1I1f XMITRDY is not
active, the XBMCU will wait until it becomes active before executing the MI

directive., If XMITRDY is active, then the XBMCU will execute the instructiom

and proceed with the transmitter startup sequence (see (1) in diagram).

The start~up sequence begins with the XBMCU making XMITSTART active (2).
This action results in the transmitter leaving its ready state and moving to
its XXBUS Request state. When the transmitter leaves its ready state (3),
XMITRDY becomes inactive. This action will be sensed by the XBMCU which will
then know that the transmitter has started operating. The XBMCU will then
make XMITSTART inactive and proceed to become available for the next MI
directive. When the transmitter enters its XXBUS request state (3B), it will
make XXBUSRQ active. XXBUSRQ becoming active will be sensed by the XXBUS
control port (Section 4.3). When the XXBUS control port decides to tranafer
XXBUS control to a requesting transmitter, it will do so by waking the
XKBUSGT signal to that transmitter active. When XXBUSGT becomes active (4),
the transmitter will leave its requesting state which results in the deacti-

vation of XXBUSRQ and the beginning of the actual bus cycle sequence.

The bus cycle will begin with the transmitter making XXBCA active (5).
At the same time, the contents of the XXBUS output registers are placed onto
the XXBUS. When XXBCA becomes active, all receivers on the XXBUS will look
at the XXBUS address and determine whether or not to accept the bus cycle.
Also, the XXBUS Control Port will know that the trgnsnitter started and will
proceed to deactivate XXBUSGT and to queue up the next grant. The receiver
accepting the bus cycle will proceed to load the XXBUS information into its
Input Registers. After the XXBUS information has been loaded into the XXIRs
by the accepting receiver (6), that receiver will acknowledge the transmit-
ting port by making XBACK active. When XBACK becomes active, the
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transmitter will deactivate XXBCA and release the XXBUS. When XXBCA becomes
inactive (7), the receiver will proceed to deactivate XBACK. At this point,
the bus cycle is completed, the transmitter will return to its ready state
and the bus control port will proceed to transfer XXBUS control to the next
requesting port.

Note: During this process, if none of the receivers on the XXBUS accept the
bus cycle, then the XXBUS Control Port will time out and proceed to release
the transmitter by supplying the proper XBACK sequence.

4.4,3.5.2 XXIR LOCKED, The start-up and XXBUSRQ/GT sequences of the XT will
be the same for both the XXIR LOCKED and XXIR UNLOCKED cases. Also, as in
the UNLOCKED case, the bus cycle proceeds in the same way until the accepting

receiver with its Input Registers (XXIR) locked accepts the bus cycle (1-5 of
Figure IV-14). However, the accepting receiver will, instead of loading the
XXIR and making XBACK active (6), acknowledge the transmitting port by making
XBIRL active. When YRTRL becomes active (7), the transmitter will know that
the receiver accepted the bus cycle, hovever, did not load the XXBUS Informa-
tion Packet into its XXIRS; the transmitter will then deactivate XBCA and
return to its requesting state to try again. This process will be repeated
until the XXIR becomes unlocked, or until the transmitter is reset by the
XXB1U.

4.4.3.6 XXBUS Receiver Operations. Figures 1IV-15 and 1IV-16 show the

relative timing of the principle control signals of the XXBUS receiver. Of

the signals shown, XBCA, XBIRL, and XBAC will be used to synchronize the
transmitter of the transmitting port with the receiver of the receiving port;
In Request/In Acknowledge (INRQ/INACK) will be used to transfer cowtrol of
the XXIRs from the receiver to the loader logic located in the MCM; SELECT
will be a status line from the address recugnition unit indicating when a
receiver has been selected for a bus cycle; XXIR STROBE will be the clocking
pulse uged to load the XXIRs; and XXIRLOCKED will indicate the status of the
XXIRs, The following describes the operation of the XXBUS receiver with
respect to the timing of these signals during XXIR LOCKED and XXIR UNLOCKED
bus cycles.
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4.4.3.6.1 XXIR UNLOCKED. The bus cycle begins when XBCA is made active by
the transmitting port ((1) of Figure IV-15). When XBCA becomes active, the

receiver's Address Recognition Unit (ARU) will look at the address field of
the XXBUS. 1If the ARU decides to accept the bus cycle, it will make SELECT
active. When becoming active (2), SELECT will cause the receiver to generate
an XXIR STROBE pulse which will result in the XXBUS information being strobed
into the XXIRs.

After loading the XXIRs (3), the receiver will acknowledge the transmit-
ter by making XBACK active, set XXIR LOCKED active (until reset by the MCM),
and begin the XXIR control transfer sequence by making INRQ active.

When XBACK becomes active (4A), the transmitter in the transmitting port
will deactive XBCA.

When INRQ becomes active (4B), the loader 1logic will acknowledge the
request by making INACK active.

When XBCA becomes inactive (5), SELECT becomes inactive, the receiver
deactivates XBACK which terminates the bus cycle, and waits for INACK from

the loader logic to become active.

At the completion of the bus cycle (6), the receiver will wait for the
loader logic to accept control of the XXIR (indicated by INACK becoming
active). When INACK becomes active, the receiver will deactivate INRQ and
become available for the next bus cycle., After this time, control of the
XXIR remains with the MCM until the MCM releases it.

4.4.3.6.2 XXIR LOCKED. Bus cycle initiation is the same for XXIR LOCKED as
it was for XXIR UNLOCKED (see Figure IV-16). 1In the locked case (2) however,

when SELECT becomes active, the receiver will, instead of loading the XXBUS
Information Packet into the XXIR, indicate the lock condition to the
transmitter of the transmitting port by making XBIRL active. Wheu XBIRL

becomes active (3), the transmitter will deactivate XBCA.
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When XBCA becomes inactive (4), the ARU will deactivate SELECT snd the
receiver deactivates XBIRL; the receiver then becomes svailable for ths sext
bus cycle.

4.4.4 XXBIU DMA Module. The XXBIU DMA Module (DMAM) contains the hardware
elements that perform Direct Port Memory Access. Capabilities will include

the support of concurrent DMA block transfers of two DMA chsnnels, in
addition to supporting single word access. Each of the three capabilities
will have a dedicated set of address registers. DMAM control will be distri-
buted among three algorithmic state machines which provide mechanisms for
port memory bus control, coordination of processes between the DMAM and MCM
modules, and controlling the decoding and execution sequencing of the DMAM MI

directives.

4.4.4.1 DMAM Block Transfer Addressing. Figure IV-17, shows the functional
block diagram of the DMAM, Of the elements shown, the DMAM block transfer

addressing elements include the Active/Passive Page Pointers, the ADMA/PDMA
Address Pointers, and the ADMA/PDMA Word Counters.

Both DMAM block transfer channels will have dedicated page address
pointer registers which include the Active Page Pointer Register (APPR), and
a Passive Page Pointer Register (PPPR). These page pointers will be 4-bit
registers with their outputs mapped into the most significant bits of the
port memory address bus and their inputs mapped into the most significant
bits of the XTB. Prior to a DMA block transfer process by & channel, the
page pointer of that channel will be loaded from the port memory data bus or
from the XXBUS with the page address of the block to be transferred. Once
loaded, the page pointer remains static throughout the DMA block transfer
process of its chamnnel.

Both DMAM block transfer channels will have dedicated transfer address
pointer registers which include the Active DMA Pointer Register (ADMAP) and
the Passive DMA Pointer Register (PDMAP), These two pointers will be 16-bit
counters with parallel load capability. The output of these registers will
be mapped into the least significant bit of the port memory address bus while
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the inputs are mapped into bits 3 thru 18 of the XTB. Prior to a DMA block
transfer process by a channel, the starting address of the data block to be
transferred will be loaded from the Port Memory Data Bus or from the XXBUS
into the channels DMA pointer register. During the DMA block tramsfer
process, this pointer will be incremented by one while the word count
register is decremented by one after each execution of the channels DMA block
transfer MI directive. This operation is repeated until the channels's word

counter reaches a count of zero.

Each DMAM block transfer channel will have dedicated word counters which
include the Active DMA Word Counter (ADMAWC) and the Passive DMA Word Counter
(PDMAWC). These word counters will be 16-bits in width and have a parallel
load capability. Each word counter will also have a status line that
indicates to the MCM when the contents of the word counter equals zero. The
inputs of the word counters will be mapped into bits 3 thru 18 of the XTB.
Prior to a DMA block transfer process, the word counter of that channel will
be loaded from the port memory data bus or from the XXBUS with the length of
the data block to be transferred. During the DMA block transfer process, the
word counter will be decremented by one after each execution of the channels
DMA block transfer MI directive until the word counter reaches the count of
zero. When a word counter reaches a couant of zero, its terminal count status
line (ATC/PTC) will become active. ATC/PIC are used in conjunction with the
JMP (ATC/PTC) MI directive to detect end of DMA transfer. Also, when ATC/PTC
become active, the DMA module will not execute any subsequent DMA block
transfer MI directives for that channel until the word counter is reloaded

for the next DMA block transfer.

4.4.4.2 DMA Single-Word Addressing. The DMAM will contain one additional

address pointer. This pointer is provided by the High Byte and Low Byte
#

General Purpose Address Pointers (HBGPAP and LBGPAP), and the MI directive
Data Handling Register (MIDHR), which supports single word DMA at any time by
either channel. The HBGPAP will be an 8-bit register with its oucPuta*pped
into bits 8 thru 15 of the port memory address bus and with its inputs mapped
into bits 0 thru 7 of the XTB. When located from the Microprogfam Memory
(MM), this value will be stored in the data field of the load HBGPAP MI

&
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directive. Once loaded, the value loaded remains unchanged until the next

load HBGPAP MI directive is executed.

The LBGPAP will be an 8-bit gate that connects bits O thru 7 of the XTB to
bits 0 thru 7 of the port memory address bus. Supporting the LBGPAP during
single word DMAs is the MI directive data handling register, (MIDHR). The
MIDHR will be an 8-bit register with its input mapped into bits 0 thru 7 of
the XTB and with its outputs mapped into bits 0 thru 7 of the port Memory
Address Bus. During every DMA MI directive load cycle, the data field of the
MI directive section will be gated into the MIDHR. During DMA single-word
transfers, it is this value that is gated onto the port memory address bus by
the LBGPAP. During execution of load direct MI directives, the value loaded
into the MIDHR is available for transfer to any XABIU.

4.,4.4.3 DMA Module Control. DMAM control 1is distributed among three

separate control units. These Control units are shown in Figure IV-17 and
include the Port Bus Acquisition Unit (PBAU), the DMA Module Control Umit
(DMAMCU) and the MI directive Loading Unit (MILU). These uaits will provide
the DMA module with the necessary mechanisms for coordinating its activities
with the PPPU and the other elements of the XXBIU and for controlling the

execution sequencing of the DMAM MI directives.

4.4.4.3.1 Port Bus Acquisition Unit. The Port Bus Acquisition Unit (PBAU)

will perform the operations of port bus acquisition and port bus relinquish-
ment. A single bidirectional handshaking line, PS RQ/GT, and a three-phase
protocol, request-grant-release, will be used to coordinate these operations
with the other users of the ports memory bus. The required communication
between the PBAU and the DMAMCU is provided by the lines GETPB, RELPB, and
PBCAVL. GETPB and RELPB will be used respectively by the DMAMCU to tell the
PBAU when to get control of the Port Memory Bus (PMB) and when to release
it. PBAVL will be used by the PBAU to indicate to the DMAMCU when it has

control of the port memory bus.

4.4.4.3.2 DMA Module Control Unit (DMAMCU). The DMAMCU will perform

operations facilitating MI directive decoding and execution sequencing.
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Decoding is the process of determining the type of data transfer to perform.
This includes determining the source, destination, and direction of involved
buses. Execution sequencing will include proper read/write timing and
coordinating external elements that are involved. This coordination with the
port memory bus will be provided by the PBAU. With the XBM, it is supported
by the bidirectional handshaking line RWXTB and with the MCM, it is supported
by the handshaking lines DXEX and DXRDY.

4.4.4.3.3 MI Directive Loading Unit. The MI Directive Loading Unit (MILU)

will support synchronization of the activities of the DMAM with those of the
XBM and MCM during MI directive loading. The handshaking lines DXRDY and
DXEX will support this synchronization'between the DMAM and the MCM, and the
RWXTB bidirectional line will support this synchronization between the DMAM
and XMB.

4.4.5 Data Paths. This section covers the routes in which all information

associated with the XXBIU is transferred from, or to, its various internal
and external elements. These paths, as illustrated in Figure IV-08, include
the XXBIU Transfer Bus (XTB), Port ID Data Path, Port Memory Bus, the
Microprogram Memory (MM) address and data buses, and the MPC XXBUS.

4.4.5.1 XXBIU Transfer Bus. The XXBIU Transfer Bus (XTB) will be the path

over which all information associated with the DMAM and the XBM is

transferred. This information will include the MI directives for both the
wodules as well as the information that is transferred between the port
memory bus and the XXBUS.

The XTB will be structured to support two types of sequences and

controls. These include the MI directive execution and MI directive load.

4.4.5.1.1 Sequence. The XTB will be 19 bits in width and supports two types

of bit formats, one for the MI directive execution sequence, and the other

for the MI direct load sequence.
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4.4.5.1.1.1 MI Directive Execution_Sequence Format. In this sequence, bits*
3-18 (16 bits), will contain data that can be transferred either betwsen two

modules, or between either module and port memory via the port data bus.
Bits 0-2 will not be used in this sequence.

4.4.5.1.1.2 MI Directive Load Sequence Format. This format will comtain

bits 8-18 (11 bits) which comprise the MI directive, and bits 0-7 containing
a literal value which can be transferred from the Microprogram Memory (MM) to
any element associated with the XTB. During the load sequence, thio value
will be loaded into a holding register located in the DMA module where it is
held until the execution sequence. If at that time, a 'load direct
instruction is executed, the countents of this holding register will be
transferred to the target speci‘fied in the MI directive. This requires that
bits 0-2 need only be connected to the DMA module and the buffer that

interfaces to the MI directive data bus.

4.4.5.1.2 Control. Both MI directive execution and M1 directive 1load

sequences will have their own respective points of control, which include the
DMA module (DMAM) and the port memory bus.

4.4.5.1.2.1 MI Directive Execution Control. The point of control during

this sequence will be from the DMAM which coordinates the sequence with the
XBM via the low level control lines, and with the port memory bus, using the
Request/Grant (RQ/GT), Memory Read (MEMRD), and Memory Write (MEMWT) lines.

4.4.5.1.2.2 MI Directive Load Control. Control during the MI directive load

sequence will be distributed between al' three modules which coordinate their

activities via the low-level control lines that connect all three.

4.4.5.2 Microprogram Memory Address Bus. The Microprogram Memory Address

Bus (MPMAB) will carry the address of the instruction to be executed from the
MCM to the MM, and will consist of 11 bits thus providing an addressing
capacity for 2048 MI directives. The microprogram address will contain 5
address bits, while both the MP wodule and the microinstruction address will
contain 3 bits of address each. The detailed nature of these fields is
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presented in the sections on the MM and the MCM. Control of the MPMAB will
be maintained by the MCM. Since the MPMAB ig dedicated, no control lines to
the memory are required. Synchronization of address updates with MI

directive loads will be controlled by the MCM.

4.4.5.3 Microprogram Memory Data Bus. The Microprogram Memory Data Bus

(MPMDB) will carry information from the MM to the buffer interfacing to the
XTB and to the MCM. It will consist of 24 bits, of which 19 bits will be
bused to the buffer and carry the MI directive and data to the XBM and DMAM.
Bits 0-8, 11, 19, and 21 will be connected to the MCM.

The Microprogram Memory Data Bus will be dedicated and, therefore, no
control is required. The value of the data will change as the address is
transferred through the memory. Loading of the microinstruction will be
controlled by the MCM.

4.4.5.4 Port ID Path. The data path associated with the Port ID Header will

connect the Port ID not only to the Address Recognition Unit (ARU) but also
to the Port Data Bus. This buffer will be mapped into the 1/0 space of the
port memory bus and provide the mechanism by which the PPPU can read the
port's own ID. This path will be 6 bits wide and mapped into the lowest 6
bits of the Port Data Bus. The remaining 10 bits of Port Memory Bus will be
forced to their zero state during a port ID read.

4,4.5.5 Port System Bus. This bus is external to the XXBIU and will contain

the paths in which the Primary Port Procesging Unit (PPPU), Port System
Memory, and the XXBUS exchange information. The XXBIU has been designed to
interface to a8 Port System Bus with the IOW, IOR, MEMRD, and MEMUT used as
timing and control lines. Transfer of control to this bus will be
accomplished using the dedicated PS RQ/GT control 1line. The timing
specification for these control lines will be compatible with the PPPU.
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4.5 IPC Improved Firmware Design. Each MPC Port must be able to establigh

and participate in Port-to-Port dialogues. The hardware that provides this

capability is the MPC Exchange Bus and related interfaces. The software that
provides this capability is the Inter-Port Communications (1IPC) Subsystem.
IPC logically resides between the Bus hardware and the remaining MPC
subsystems contained within each port. No other subsystem within a port
directly addresses the Bus Interface Hardware. In this wmanner, IPC
essentially envelopes the Exchange Bus interface hardware and shields the
remaining subsystems from the intricacies of the Exchange Bus interface. IPC
also maintains various dialogue and error counts which can be used to monitor

system performance.

4.5.1 Dialogue Concepts. A copy or element of IPC resides in each MPC

port. This provides a standardized communications capability to the
remaining software witihnin each local port. A subsystem within one port may
express a requirement to exchange data or directives with a subsystem in
another port, thus establishing a connection between the two ports,
transferring the data or directives, and disconnecting the two ports. This
process constitutes a port—-to-port dialogue. The IPC element in the
receiving port transfers the data to the software subsystem residing within
that port. No intermediary port is required to establish a dialogue.

Therefore, many port-to-port dialogues may occur in a given time frame.

4.5.1.1 Multiple Dialogue Requests. Several types of port-to-port

communications are supported by IPC. In some cases, a period of time may
elapse between the request for, and the completion of, a specified transfer.
At times more than one dialogue request may be outstanding. IPC will handle
several requests by wmultiplexing dialogues to different ports through its

single physical bus interface.
A port may be involved in two types of dialogues during any given time

frame. It may be engaged in a dialogue that was initiated by another MPC

port (a dialogue in the passive role), while at the same time be engaged in a
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port-to-port dialogue that was initiated by itself (a dislogue in the active
role). While a port may participate in each role simultaneously, it may not

be engaged in two active or two passive roles concurrently.

4.5.1,2 Dialogue Synchronization. Specific physical details relevant to the

command structure of the bus interface hardware, timing required for
interport synchronization, and the hardware attributes of each local port and
microprocessor are totally resolved within IPC. The multiple processor
nature of the MPC is transparent to the remaining sofiware subsystems. IPC
allows the subsystems in each MPC port to concentrate exclusively om its own
logical requirements, yet be able to solicit inputs, address outputs, and

initiate processing in other external MPC ports.

4.5.1.3 IPC Communication Modes. IPC allows any subsystem to exchange dats

and directives with another cooperating subsystem bv establishing a
port-to-port dialogue. Within this dialogue one port will be the requester
and one port will be the responder. The requester is the port that detects
the current need for a dialogue and performs the first action in an attempt
to initiate the dialogue. The responder is the port that has been
conditioned to participate as the other umember in a particular dialogue.
Normally, the responder is the receiver of the data or directives produced by
the requester. The relationship between the requester and the responder

ports will determine the communication mode.

4.5.1.4 Direct and Indirect Communicatioun Modes., All  port-to-port

communications may be divided into two wmodes, depending on whether the
requescer or responder port controls the dialogue. The requester port may
need to directly contact the responder port, establish a connection, and
carry out the required dialogue. Alternatively, the requester may choose to
notify the responder of the required dialogue and defer the actuzl contact
and dialogue control to the responder port. Within IPC these two distinct
situations determine the direct and inciirect communication wodes respec-
tively, 1In the indirect mode, the requester is willing to wait for - the

responder to detect the notification and initiste the dialogue. In the
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direct mode, the requestor initiates the dialogue immediately, waiting only
if the responder is not available.

4.5.1.5 Parallel Tasking. The architecture of the MPC imposes a natural

distribution of functions and allows the assignment of dedicated hardware
resources to each individual function. Each port is dedicated to a single
function, and the complicated multitasking of a central processor is not
required. However, individual functions may still break down into multiple,
parallel tasks.

4.5.1.5.1 Port Activities. Each independent parallel task will be called an

activity. Each MPC port may contain any number of activities as dictated by
the user level logic contained within the port. At any point in time, each

individual activity may have its own communications requirements.

4.5.1.5.2 Communication Channels. Each activity requiring port-to-port

communications will require a communications channel. In any dialogue, &
specific communication channel in one port will be connected to a specific
communication channel in another port. A communication channel is thus a

long term control mechanism that will allow a specific activity to conduct a
dialogue.

4.5.1.5.3 Channel Comtrol Table (CCT). A port will typically contain

several communication channels. The current status of each communication
channel is described in a Channel Control Table (CCT) dedicated to that
communication chamnel. The location of the CCT is specified by the
subsystem. To carry out a dialogue, the activity enters information
describing the dialogue in its CCT and then calls IPC which uses the
information in the CCT to carry out the dialogue. All CCTs have the same
structure, which allows IPC to interface with varying port subsystems through

a standardized interface.

4.5.1.5.4 Port Control Table (PCT). Information concerning the status of
the port as a whole is maintained in the Port Control Table (PCT). The PCT
also contains items used strictly by IPC during a dialogue.
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4.5.1.5.5 Dialogue Multiplexing. Because a port may contain several CCTs,

IPC is able to multiplex dialogues for many different activities via the
port's single Exchange Bus Interface Unit (XXBIU). Each activity is provided
the capability to carry out port-to-port communications with no awareness of

the existence or state of any channel other than its own.

4.5.1.6 Dialogue Termination Codes. At the end of every dialogue, IPC will

always tell the wuser if the dialogue completed successfully or if the
dialogue was incomplete and why it failed. This is accomplished by means of
a dialogue completion code which is stored in the user CCT by IPC when a port
is engaged in the passive role. When a port assumes the active role IPC will

return the completion code directly to the user logic.

4.5.1.7 Dialogue Error Count. 1In order to facilitate system performance

monitoring and hardware failure detection, IPC maintains a record of the
mumber of incomplete dialogues which terminated due to various causes. The
number of dialogues completed through a given channel is stored in that
channel's CZT. The number of terminated dialogues as a whole is stored as a

function of the dialogue termination code in the PCT.

4,5.1.8 IPC Dialgue Counts. IPC also maintains a record in the PCT of

several anomalous situations which may be indicative of error situations.
These are maintained separately because they may or may not be reflected in

the counts maintained on the basis of the dialogue termination code.

4.5.1.9 Dialogue Control Words (DCW). A DCW is a block of data which

contains the starting address and the length of the data to be transferred,

as well as the control information for the next segment of data. The control
infcrmation contains the end of dialogue indicator, the direction flow of the
next data segment, and other control information necessary to maintain

dialogue coordination.

4.5.1.10 Data Segments. One or wore data words within a segment must be

tranaferred across the exchange bus in the same direction. The direction of

the data flow can only be reversed at the end of a segment.
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4.5.2 Dialogue Contention. Resolution of port-to-port contention, which is

currently managed totally in IPC, will migrate to the Exchange Bus Interface
Unit (XXBIU) of each MPC port through the use of the Lockon Request Enable
flag (LORQEN) located in the microprogram countrol module of the XXBIU. The
setting of LORQEN will reflect the ports willingness to participate in a
port~to-port dialogue in a passive role to the XXBIU hardware. Upon
receiving a lockon request from an active port, the XXBIU will schedule the
Passive Lockon Response Microprogram (MP) of IPC for execution, only if
LORQEN reflects a set condition. 1I1f a lockon request is received with LORQEN
in a clear condition, the XXBIU will not schedule the Passive Lockon Response
Microprogram. This will force the XXBIU in the active port to invoke a
lockon request time-out condition. IPC in the active port will recognize
this time-out condition indicating that the target port is currently engaged
in a dialogue in the passive role. At this time IPC will pass a port busy
status to the requesting user activity. IPC controls the set or clear
condition of LORQEN at all times, enabling each MPC port to maintain its own

passive availability independently of other ports in the MPC system.

4.5.3 Active and Passive Port Roles. 1In any dialogue, regardless of the

communications mode, one port will take the responsibility for actively
contacting the other port and controlling the dialogue. The other port must
passively wait to be contacted, and if the contact is accepted, must be

prepared to be driven through the dialogue under the active port's control.

Therefore, in any dialogue, one port will play the active role while the
other port will play the passive role. Since these roles require almost
diametrically opposed behavior from the IPC elements in the connected ports,
IPC is divided into two major components, active and passive. Currently, the
active component of IPC is executed as a result of a call from a local port
activity and performs all necessary bus operations. The passive component of
IPC is executed as a result of interrupts being received from the active
component in another port. Section 3.2.1.1,5 discusses the curreat
implementation. In the improved firmware design, the active component of IPC

is still initiated as a result of a call from the local port subsystem and

1v-69

Rt o g o T e s e gy
& X e

£
#
N
k4




passive IPC will still be initiated by active IPC at the interrupt level.
However, after both passive and active roles of a dialogue are initiated,
both sides are interrupt driven in the form of request, and response
interrupts. Active IPC will issue all request logic to a passive port at the
iaterrupt level since it controls the port-to-port dialogue. Passive IPC
will execute all response logic to the active port at the interrupt level.
Therefore, after dialogue initiation by active IPC, both the active and
passive ports drive each other in a synchronous manner. The interrupt
structure of each port will allow both active and passive IPC to execute in
the same time frame, thus allowing one port to be engaged in two dialogues

simultaneously (one active, and one passive).

4.5.4 logical Levels of IPC. Both the active and passive components of IPC

are divided into two distinct levels of operation which will be referred to
as IPC Level One (IPC L1), and IPC Level Two (IPC L2)., The execution of each
level will run asynchronously to the other. IPC Ll will be responsible for
the control and execution of all XXBUS data transfer operations, and is the
lower of the two IPC levels. IPC L2 will initate the various IPC L1 func-
tions in a structured manner, while also interfacing user activity processing

routines during each dialogue transaction as required (Figure IV-18).

4,5.4.1 1IPC Level One Description. IPC Ll will consist of microinstruction

code residing in Microprogram Memory of the Exchange Bus Interface Unit
(XXBIU), in each MPC port. 1IPC Ll is divided into three logical functions,
consisting of port-to-port lockon, data transfer, and dialogue terminatiom.
Each function is further broken down into various microprograms (MP), with
each MP dedicated to an active or passive role within a function. Each IPC
Ll function will be initiated by IPC L2 processing routines through the use
of port processor 1/0 commands. Each MP within an IPC L1 function will
initiate MPs in another port that reside within the same function. MPs in an
active port will initiate MPs in the passive port, and vice-versa, thus
establishing a synchronous request/response method used between any two ports
engaged in a dialogue. MPs within each function may also initate IPC L2
processing routines, through the use of interrupts to the Primary Port

Processing Unit (PPPU) when additinal processing is required to continue the
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Figure IV-18. IPC Logical Levels
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function, or the function is complete. IPC L2 will maintain contimicy with
IPC L1 at the point of each interrupt via the use of status registers,
located in the XXBIU, which will be updated by the IPC L1 function prior to
issuing the interrupt to IPC L2, thus transfering control and status

information needed by each IPC L2 interrupt routine for proper execution.

4.5.4.2 IPC Level 2 Description. IPC Level 2 (IPC L2) resides in the read

only memory (ROM) of each MPC port and is executed by the port processor.
All bus transactions are handled by initiating IPC L2 functions via port
processor I/0 commands to the XXBIU in which the IPC L1 microcode resides.
IPC L2 will return all port dialogue statuses to their respective cells in
the PCT and CCT. This level will algo pass intermediate statuses as required

during a dialogue to facilitate necessary port processing.

4.5.5 1PC Level 1| Program Description. 1IPC Level 1 (IPC L1) will be divided

into three dialogue functions: lockon, segment transfer, and termination.
The lockon function will coanaect and synchronize the two ports for a
port-to-port dialogue. The segment transfer function will move data or
directives between the two ports engaged in a port-to-port dialogue.

Termination will return both ports to their respective subsystems.

4.5.5.1 Lockon Function. This function will be initiated by the IPC L2

lockon routine and is divided into six microprograms (MP). Each MP will be
dedicated to an active or passive role. The two ports to be engaged in the
dialogue will be synchronized and the communication channel to be used is
verified. Upon completion of this function the two ports are ready to begin
the segment transfer function (Figure IV~19).

4.5.5.1.1 Active Lockon Request MP. The target port's bus address and
associated routing data will be moved from the PCT to the Exchange Bus

Interface Unit (XXBIU) to set up for future bus write commands. The bus
address of this port as well as the bus routing data to be used by the
passive port will then be written across the XXBUS to the Lockon Response MP

residing in the destination (passive) port. The Lockon time out timer will
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then be started, and this MP is terminated, waiting for the destination port

to reply with a passive lockon response.

1f the passive lockon response is not received within the time normally
recuired to receive a response, the XXBIU will issue an IPC L2 interrupt to
the PPPU. This condition indicates that the requested port is currently busy
in a dialogue in the passive role., If a lockon response is received, the

time-out timer will be reset, thus never allowing the time-out interrupt to

occur.

4.5.5.1.2 Lockon Response MP (Passive). The fact that this MP is executed

indicates that this port is available to participate in a port-to-port
dialogue in the passive role. The Port Bus address and associated bus
routing data of the active port that issued the lockon request will be moved
first from the input data section of the XXBIU to the XXBIU hardware
asscciated with the port destination of future XXBUS write commands to be
issued. The first available passive communication channel will be moved from
the PCT to the XXBIU, and written via a bus write to the active ports Channel
Request-Verification MP. This formulates the Passive lockon response to the
active port. The port's passive availability is then lowered, indicating to
the XXBIU to ignore any subsequent lockon requests while the curreant dialogue
is in progress. The passive time-out timer is then started, and the MP is

terminated.

4.5.5.1.3  Channel Request Verification MP (Active). This MP will be

initiated by the lockon response MP in the passive port. The lockon response
data located in the XXBIU input data section is the first of ’'N' communica-
tion channels available in that particular passive port. The next phase in
the lockon function will be to verify that the specific communication channel
needed to conduct the dialogue matches one ot the passive channels avail-
able. The communication channel required to conduct the port-to-port
dialogue will be moved to the XXBIU from the PCT and compared to the first
available channel in the passive port. 1If the two channels match, the
verification process is complete. 1If not, a channel verification request

must be made to the passive port.
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If the verification process is complete, the verified : communication
channel will be written across the XXBUS to the Lockon Notification MP in the
passive port, thus notifying the passive port of the successful port-to-port
lockon process and also of the communication channel to be used during the
rest of the dialogue. Section 4.5.5.1.5 discusses this microprogras. An
interrupt will then be issued to the PPPU to notify active IPC L2 that the
lockon function has completed successfully. The active time-out timer is
started and the MP will be terminated, thus completing the lockon function in

the active port.

The Communications Channel Lockon Request-Verification MP will be
executed if the first available passive channel information sent as the
passive lockon response was not the passive channel needed to conduct the
dialogue. The required Communication channel will then be written to the
Communication Channel Verification MP in the passive port. This MP will scan
the rest of the available passive channels for a match and write an ACK/NAK
back to the active port as a response. The active time-out timer will be
started, and the Channel Request Verification MP is terminated, waiting for

the passive ports verification response.

4.5.5.1.4 Channel Verification Response MP (Passive). This MP will move the

remainder of the available passive communication channels from the PCT one at
a time to the XXBIU and look for a match with the requested channel now
residing in the XXBIU data input section, placed there during the bus write
that executed this MP.

If a match is found, a Lockon ACK will be written to the Lockon
Termination MP in the active port. The communication channel to be used will
be stored in the PCT, and an interrupt issued to the PPPU notifing Passive
IPC L2 of the successful lockon and the cosmunication channel to be used for
the duration of the port-~to-port dialogue. The passive time-out timer will
be started, and the MP terminated, indicating the successful completion of

the passive portion of the lockon functionm.
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If a match is not found, a NAK will be written to the Lockon Termination
MP in the active port. The ports passive availability will then be raised,
notifing the XXBIU that the port is now available for lockon requests written
to this port, and the MP is terminated. The PPPU will never be interrupted

when a lockon attempt is unsuccessful except during a time-out condition.

4.5.5.1.5 Lockon Notification MP (Passive). This MP will be executed if the

first available passive communication channel sent to the active port as the
passive lockon response, is verified as the channel to be used to conduct the
port-to-port dialogue. This channel information, which was transferred in
the bus write that executed this MP, will be moved from the data input
section of the XXBIU to the PCT. An interrupt will then be issued to the
PPPU to notify passive IPC L2 of the successful lockon, and the communica-
tions channel to be used to conduct the port-to-port dialogue. The MP will
then terminate after the passive time—out clock 1is started, successfully

completing the port-to-port lockon function.

4.5.5.1.6 Lockon Termination MP (Active). This MP will be executed by the

Passive channel verification MP. The response residing in the input data
section of the XXBIU will be an ACK or NAK value, depending upon its channel
verification result. An interrupt will be issued to the PPPU to notify
active IPC L2 of the ACK/NAK condition. 1If the response was an NAK, the MP
will be immediately terminated. 1If the response was an ACK, the active
time~out clock is started and the MP will be terminated, waiting for the

first segment transfer function to be executed from active IPC L2.

4.5.5.2 Segment (Data) Transfer Function. This function will be initiated

by the IPC L2 segment transfer routine. It includes the actual port-to-port
data transfer from either the active to passive, or passive to active ports
(active write or passive write respectively). After the data is transferred,
redundant checkword values will be verified from both the active and passive
ports. Pagsive IPC Ll will then notify IPC L2 of the successful data
transfer. At this point, IPC L2 will provide any necessary port processing
to be accomplished and a completion status value them will be passed to the

active port, thus terminating the function. This function may be executed
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sequentially as many times as needed to complete the port-to-port dialogue.
Control for each segment transfer will reside in the PCT of both the active
. and passive ports in the form of DCWs, which are used to set up the XXBIU DMA
modules of both ports.

4.5.5.2.1 DMA Parameter Load MP (Active). This MP will be initiated by
active IPC L2 at the start of the segment function. After the active

time-out timer is reset, the control word for the segment of dsta to be
transferred will be moved from the PCT to the XXBIU, and transferred to the
DMA Parameter Load MP in the passive port. The remsining parameters of the
segment DCW, both active and passive will be moved from the PCT to the DMA
module of the XXBIU in the respective ports. Both the active and passive

ports are now ready for the segment DMA transfer.
The control word will then be examined to see if the data will be
transferred from the active to the passive port (active write), or from the

passive port to active port (passive write).

4.5.5.2.1.1 Active to Passive DMA (Active Write). Data will be moved from

port memory in the active port to the XXBUS, using the DMA module of the
XXBIU, and transferred to the DMA Read MP in the passive port, which in turn
will transfer the data from the XXBUS to port memory. This process will be
repeated until the XXBIU indicates to IPC L1 that the number of words to be

transferred has been reached (Figure IV-20).

At this point, the redundant check word that was generated in the active
port during the DMA transfer will be written to the Data Verification MP in
the passive port. The active time-out timer will be started, and the MP

terminated, waiting for a verification response from the passive port.

4.5.5.2.1.2 Data Verification MP (Passive). During the DMA transfer, the

passive DMA Read MP will also generate a redundant check word. The active
and passive values will be compared for verification. If the two check words
do not match, a segment check word NAK will be transferred to the Segment
Termination MP in the active port. The passive time-out timer will be
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started; and the MP terminated. Port processing will not be interrupted when
a redundant check work error occurs. If the redundant check words verify, an
interrupt will be issued for the PPPU to inform passive IPC L2 of the
successful segment (data) transfer. After the passive time-out timer is
started, the MP will terminate.

4.5.5.2.1.3 Segment Completion MPs (Passive). When all required port

processing has been completed, IPC L2 will initiate one of the passive
Segment Completion MPs, depending on the successful or unsuccessful segment
status to be passed to the Segment Completion MP in the active port. The

passive time~out timer will be started, and the module terminated.

4.5.5.2.1.4 Segmeut Completion MP (Active). This MP will issue an interrupt

to the PPPU to notify active IPC L2 of the segment completion status
transferred from the active port. The time-out timer will then be started,
and the MP, as well as the segment transfer function, will be terminated for

an active write.

4.5.5.2.2 Passive to Active DMA Transfer (Passive Write). After it has been

determined that the data is to be transferred from the passive to the active
port, the length of the segment will be written to the DMA Write MP in the
passive port. The active time-out timer will be started, and the MP

terminated.

4.5.5,2.2.1 DMA Write MP (Passive). Data will be moved from port memory in
the passive port to the XXBUS, using the DMA module of the XXBIU, and

transferred to the DMA Read MP in the active port, which in turn transfers
the data from the XXBUS to port memory. This process is then repesated till
the XXBIU indicates to IPC L1 that the number of words to be transferred has
been reached (Figure 1V~21).

At this point, the redundant check word that was generated in the
passive port during the DMA transfer will be written to the Data Verification
MP in the active port. The passive time-out timer will be started, and the

MP terminated, waiting for a verification response from the active port.
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4.5.5.2.2.2 Data Verification MP (Active). During the DMA transfer, the

active DMA Read MP will also generate a redundant check word, where the
active and passive values will be compared for wverification. If the
redundant check words match, a successful segment transfer status will be
written to the Segment Notification MP in the passive port, before the active

time-out timer is started, and the MP terminated.
If the redundant check words do not match, an interrupt will be issued
to the PPPU to notify active IPC L2 of the redundant check error. The active

time~out timer will be started and this MP terminated.

4.5.5.2.2.3 Segment Notification MP (Passive). At this point, the active

port will have verified the transferred data. An interrupt will be issued to
the PPPU to notify IPC L2 of the successful segment completion. After the

passive time-out timer is started, the MP terminates.

4.5.5.2.2.4 Segment Completioﬁ MP (Passive). When all required port

processing has been completed, IPC L2 will initiate one of the passive
Segment Completion MPs, depending on the successful, or unsuccessful segment
status to be passed to the Segment Completion MP in the active port. The

passive time-out timer will be started, and the MP terminated.

4.5.5.2.2.5 Segment Completion MP (Active). This MP will issue an interrupt

to the PPPU to notify active IPC L2 of the segment completion status
transferred from the passive port. The time-out timer will then be started,
and the MP, as well as the segment (data) transfer function is terminated for

a passive write,

4.5.5.3 1IPC Level 1 Lockon Termination Function. This function will send a

dialogue termination status (ACK or NAK) to the passive port to notify
passive IPC of dialogue termination. The passive port will then echo the
completion status back to the active port to verify that the two ports are
still in sync, and notify the passive IPC L2 termination routine to execute
its termination logic. The dialogue completion status to be transferred to

the passive port will be located in the active ports PCT (Figure 1V-22).
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4.5.5.3.1 Termination Request MP (Active). This MP will be executed by an

IPC L2 termination request routine. The dialogue completion status will be
moved from the PCT to the XXBIU, and written via a bus write to the
termination response MP in the passive port. The active time-out timer will
then be started, and this MP terminated.

4.5.5.3.2 Termination Response MP (Passive). This MP, initiated by the

Termination Request MP in the active port, will first move the dialogue
completion status to the PCT. The passive interrupt will then be issued to
the PPPU to notify the IPC L2 termination response routine of the final
dialogue completion status. This same completion status will then be written
to the Termination MP in the active port as the termination response. The
passive availability flag will then be raised to allow this port to
participate in future dialogues in the passive role, and the MP terminated,

indicating the completion of the port-to-port dialogue in the passive port.

4,5.5.3.3 Termination MP (Active). The execution of this MP will indicate

that the passive port has been notified of the dialogue termination, and the
status of its completion. An active interrupt will be issued to the PPPU to
notify the 1IPC L2 termination routine of the successful dialogue
termination. The MP will then be terminated, indicating the completion of

IPC L1 in the port-to-port dialogue.

4,5.6 1IPC Level 2 Description. IPC Level 2 (IPC L2) resides in port memory

and is executed synchronously with the wuser activity and may run
synchronously or asynchronously with IPC Ll, IPC L2 is divided into three
logical sections: lockon, segment transfer, and termination. Each section
may be divided into one or more routines. Each routine will be dedicated to
either an active or a passive role. Any fatal error detected within the
dialogue will cause the termination of the dialogue while returning the error

status to the activity that requested the port-to-port transaction.

At the termination of any IPC L2 routine, either active or passive,

processing control will be returned to the subsystem residing in its own
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respective port, and will remain there until the next IPC L2 routine is

initiated via an IPC L1 issued interrupt.

4.5.6.1 IPC Level 2 Lockon Section. The Lockon section will execute the IPC

Ll  lockon function and process the status information returned wupon
completion of that function. Any e-ror will be returned to the subsystem
that initiated the dialogue request. Upon a successful lockon by the IPC Ll
lockon function the DCWs for both the active and passive ports are processed
for the first segment transfer and the segment transfer function of IPC Ll is
executed. The Port interrupt coantroller is then revectored to allow the IPC
L2 segment transfer section to control further dialogue processing upon the

completion of the IPC Ll segment (data) transfer function (Figure IV-23).

4.5.6.1.1 Lockon Routine (Active). The lockon routine will be initiated by

the user activity via a call to IPC L2 in which the communications channel to
be used to conduct the dialogue is transferred as a call revameter. The
control information will be transferred fron the CCT to tiue PCT. This
information includes the target port's bus address, the originating port's
address, and the communication channel to be used by the passive port for
dialogue control once port-to-port lockon has been accomplished. The bus
routing data will be calculated and merged with both port's addresses. The
IPC L1 1lockon function will then be executed via a port 1/0 command,
initiating the lockon request to the target port. The interrupt controller
will then be revectored to ensure execution of the IPC L2 lockon verification

routine at the completion of the‘QFC Ll lockon function.
Processing control will then be relinquished to the user subsystem until an
active interrupt is issued to the PPPU by IPC L1, indicating the completion

of the IPC L1 lockon function.

4.5.6.1.2 1IPC L2 Lockon Verification Routine (Active). This routine will be

initiated via an active iaterrupt issued by the IPC L1 lockon function,
indicating the port-to-port lockon process is complete. The lockon status

will be read from the active status register in the XXBIU. This status will
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indicate ome of four conditions: port busy, out of sync, communication
channel not available, or successful lockon completion. The port busy status
indicates the target port is currently engaged in the passive role with
another port-to-port dialogue. Communication channel not available means
that contact was made with th: target port, but the communication channel
required to conduct the port-to-port dialogue was not available in the target
port. The out of sync status reflects the condition that contact was made
with the target port, but a response was not received during the
communication channel verification process of the IPC L1 lockon function. If
one of these errors exist, the error status will be returned to the user

activity that initiated the dialogue request, and IPC L2 terminated.

If the status reflects a successful completion, the DCW for the first
segment of data to be transferred is moved from the CCT to the PCT. The IPC
Ll segmemt transfer function will then be executed. The active interrupt
controller will then be revectored to the IPC L2 segment completion r atine,
which will be initiated upon IPC Ll segment transfer function completion.
This routine will then terminate, and port processing control relinquished to

the port subsystem.

4.5.6.1.3 IPC L2 Lockon Notification Routine (Passive). This routine will

be initiated via a passive interrupt issued to the PPPU from the IPC Ll
lockon function. The lockon status will be read from the passive status
register in the XXBIU, which will reflect one of two possible conditions -
port out of sync, or successful lockon from an active port. The port out of
sync status indicates that the passive portion of the IPC L1 lockon function
never received an expected reply from the active port during the IPC Ll
lockon process. This condition will result in the port out of sync error
count being incremented in the PCT, the execution of the IPC L1 passive
cleanup function, and termination of this routine. This will return
processing control to the port subsytem at the point that the interrupt was

issued.

If the status reflects a successful lockon from an active port, the

passive communication channel to be used which was stored in the PCT by the
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IPC L1 lockon function will be retrieved, and the DOW to be used for the
first segment (data) transfer function of IPC Ll will be moved from the CCT
to the PCT. The passive port is now ready to participate in the first
segment transfer. The passive interrupt controller will then be revectored
to execute the passive IPC L2 segment completion routine, which will be
executed at the end of the IPC L1 segment transfer function. This routine
terminates, and port processing will return to the user subsystem at the

point the interrupt that initiated the routine was issued.

4.5.6.2 IPC Level 2 Segment Control Section. This section will control the

actual port-to-port transfer of data or directives and is further divided
into two routines: Passive Segment Control Routine, and Active Segment
Control Routine. Any fatal error detected during this section will result in
its subsequent termination and the error will be passed back to the user

subsystem that initiated the dialogue (Figure IV-24).

4.5.6.2.1 Pasgive Segment Transfer Routine. This routine will be initiated

by a passive interrupt issued by either the gegment transfer function, or the
termination response function of IPC Ll. T1f the passive status register in
the XABIU reflects a dialogue termination status, processing control will be
transferred to the passive termination response routine for dialogue
termination processing. If the passive status register does not reflect
dialogue termination the interrupt was issued by the segment func;ion in IPC
Ll indicating a segment transfer has been successfully compleced. The DCW
for the segment transfer just completed will be examined to see if a user
completion routine is required for further processing. If the requirement
exists, a completion routine will be executed. This routine will return with
the segment status, which will be either a good completion status, fatal, or
a non-fatal segment error status. This status is placed in the PCT and the
IPC L1 segment completion function is then executed via an 1/0 command. 1If
the user completion routine returned a request to terminate the dialogue, the
interrupt controller will be revectored to the passive termination response
coutin~ in anticipation of a dialogue termination request. The routine will

be terminated, and processing control returns to the user subsystems.
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If the segment status reflects a good completion, or a non-fatal error,
the DCWs for the next segment of data to be transferred will be moved to the
PCT in anticipation of the active IPC L2 gegment transfer routine to execute
the IPC Ll segment transfer function. This routine will then be terminated
and processing control returned to the user subsystem until this routine is

executed again at the end of the next segment transfer.

4.5.6.2.2 Active Segment Transfer Routine. This routine will be initiated

via an active interrupt issued by the segment transfer function. The segment
completion status, stored in the PCT by the segment transfer function will
reflect the segment completion status. If this status reflects a fatal
error, processing control will be transferred to the IPC L2 active
termination request routine. If the completion status is good or nonfatal,
an active user completion routine will be executed if one was requested. If
it was requested, the completion status will them be rechecked to see if the
completion routine opted to terminate the dialogue. If the completion status
was changed to a fatal error, processing control will be transferred to the
active IPC L2 termination request routine. If the status indicates a good
segment completion, or a nonfatal error status, the DCWs for the next segment
of data to be transferred will be moved to the PCT. The IPC Ll segment
transfer function will then be initiated. This routine will then be
terminated, and processing control relinquished to the user subsytem until

this routine is again executed at the end of the segment transfer by IPC Ll.

4,5.6.3 IPC Level 2 Termination Section. This section will terminate the

port-to-port dialogue, and increment the appropriate dialogue counts. The
completion status of the dialogue will be passed back to the subsystem that
requested the dialogue, thus completing the port-to-port transfer process
(Figure 1IV-25).

4,5.6.3.1 Termination Response Routine (Active). This routine will be

jumped to from the segment processing routine when all segments have been
successfully transferred, or a fatal dialogue error has been detected. If a
port out of sync error has been detected, the error increment portion of the

termination routine will be jumped to. If not, the termination function of

1v-92



ACTIVE IPC

-

TERMINATION
REQUEST
ROUTINE

4

o

-

(8]

23

EXECUTE Iz =2

TERMINATION —— oy 2 o

REQUEST ' g o7

2 az

& Hg

| 5 Cw"

RELINQUISH FE L] 7

PROCESSING | £ 2 I

PE | f

| w !

4

| = ol

I 2 -5l

[ 2 -3

w

TERMINATION | = >

ROUTINE Q 35

— O

<!

~Z

Z|

at

[

INCREMENT |
DIALOGUE
COUNTS

PASSIVE IPC

RELINQUISH
PROCESSING

EXECUTE
CLEAN-UP
FUNCTION

TERMINATION
RESPONSE
ROUTINE

INCERMENT
DIALOGUE
COUNTS

|

[

|

|

i

|

{

——-1 f

ya ~

’ USER N !
|

i

!

|

I

|

i

! suesrsTem |

(—

RELINQUISH

PROCESSING

Figure IV-25. IPC Lavel Two Termination Routine

1v-93




IPC L2 will be initiated. The interrupt controller will then be revectored
to execute the termination routine upon the termination response from the

passive port, and the processing control will be transferred to the port
subsystem.

4.5.6.3.2 Termination Response Routine (Passive). This routine will be

initiated via a passive interrupt by the IPC Ll termination functiom,
indicating the completion of a dialogue. The completion status of the
dialogue will then be incremented in the PCT, and the interrupt controller
revectored to execute the passive lockon notificatien routine the next time a
port locks on to this port. The routine will then terminate, completing the

port-to-port dialogue in the passive role and returning processing control to
the user subsystem..

4,5.6.3.3 Termination Routine (Active). Execution of this routine indicates

that the passive port was successfully notified of the completion status of
the dialogue and is completing its dialogue termination logic. The
appropriate dialogue count will then be incremented, and the cowpletion
status is passed back to the user activity that initiated the port-to-port

dialogue. This terminates IPC until the next dialogue request is received.
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4.6 XXBUS Linking Port. For applications requiring more ports than can be
accommodated by # single XXBUS, a method of linking multiple XXBUSes is
required. This section describes the XXBUS Linking Port (XXBLP) which serves

as a hardware component of the inter XXBUS link., The software component for
these links is provided by the write only IPC that resides in every

processing port.

4.6.1 General Description. The XXBUS Linking Ports (XXBLP) will provide the
hardware level links between XXBUSes of the XXBUS network (MPC). Each link

will consist of two XXBLPs and a cable connecting the two. Each link is full
duplex with data transfer rates comparable to the bandwidth of the XXBUS (80

megabits per second).

information is transferred between XXBUSes by these linkes via
Informaticn Packes (IP). Each packet corresponds physically to the amount of
information written onto a XXBUS during a single bus cycle and logically to
the smallest amount of information required to control communications between
any two ports in the XXBUS network. This packaging permits the total
decoupling of the linked XXBUSes; i.e., bus cycle activity on each bus is
completely asynchronous. To further decouple XXBUSes, each XXBLP will

contain an IP queue organized as a First-In-First-Out (FIFO) pipeline.
Principle characteristics of the XXBUS linking port design include:

o Bus cycle activity of each XXBUS is asynchronous with respect to

one another.
o The Information Packet addressing structure and the XXBLP can
support such networking schemes as: Direct only, Bused only,

Limited indirect, and combinations of each of these. Figure 1V-26

depicts these different shcemes.

o Up to four redundant links or paths can connect any two XXBUSes.
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1v-98




o Each link is full duplex with data transfer rates comparable to the
XXBUS bandwidth.

o At the bus cycle level the XXBLP appears as any other port.

4.6.2 XXBUS Linking Port Structure. Figure IV-27 shows the functional block
diagram of the XXBUS Linking Port (XXBLP). The elements shown are grouped

into four units: the XXBUS transmitter, the XXBUS receiver, the IBL cable
electronics, and the 1P queue. The following paragraphs describe the
elements of these units and how they are organized to support the XXBUS

linking port's principle function.

4.6.2.1 XXBUS Receiver. The XXBUS receiver of the XXBLP will consist of the

XXBUS Information Input Register (XXIR), the Address Recognition Unit (ARD),
and the XXBUS receiver logic. Also associated with the receiver will be the
following control and status lines: XBCA, XBACK, XBIRL, XBRESET, IKNACK,
INRQ, QFULL, XXIRC, and SELECT. See Table IV-02 for a detailed description

of each of these signals.

4.6.2.1.1 XXBUS Information Input Register (XXIR). The XXIR will be a
37-bit register with its inputs connected to the XXBUS information but via
the XXBUS transceivers and with its outputs connected to the cable drivers.
The XXIR will be used to hold IPs that are accepted from the XXBUS by the

XXBUS receiver and also serve to decouple the IP queue from the XXBUS.

4.6.2.1.2 Address Recognition Unit (ARU). The ARU will perform the function

of comparing address fields of the XXBUS information bus during the early
phase of every bus cycle with the path and bus I.D. headers contained within
the ARU. This function will determine whether or not the receiver should be

selected to participate in the remainder of the bus cycle or not.
The ARUs of the XXBLP differ from those of the processing ports in that

the XXBLP ARU will consist of two bus 1.D. headers. These two bus IDs will

specify the upper and lower limits of the bus ID. The ARU can be configured
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SIGNAL SOURCE DESTINATION DISCRIPTION

INACK IP QUEUE XXBUS RECEIVER IN ACKNOWLEDGE. Used by 1P
queue to indicate to XXBUS
receiver that an IP was loaded
into the FIFO as requested.

INRQ XXBUS IP QUEUE IN REQUEST. Used by XXBUS

RECEIVER receiver to request the
loading of the IP contained in
the XXIR into the IP queue.

INIP FIFO CNTRL FMDB BUFFER IN INFORMATION PACKET. Used
by FIFO control logic to gate
IPs from IBL electronics onto
the FIFO memory data bus
during IP transfers to FIFO
memory.

OUTEN FIFO CNTRL XXBUS XCVRS OUT ENABLE. Used by XXBUS
transmitter to gate XXOR onto
the XXBUS informtion bus
during BUS cycle.

QFULL FIFO CNTRL XXBUS RECEIVER IP QUEUE FULL. Used by 1IP
queue to indicate to XXBUS
receiver that FIFO is full and
will result in the XXBUS
receiver operating in the XXIR
locked mode.

READ FIFO CNTRL FIFO MEMORY READ MEMORY. Used by FIFO
control logic to output the
addressed IP onto the FMDB.

SELECT ARU XXBUS RECEIVER Used by XXBUS receiver to de

LOGIC termine when to accept a bus
cycle.,

XBACK XXBUS XXBUS Bused XXBUS control signal

RECEIVERS TRANSMITTERS used by XXBUS receiver
accepting bus cycle to

indicate to XXBUS transmitter
controlling bus cycle that the
IP was loaded into its XXIR.

Table I1V-02. XXBUS Linking Port Signal Definitions (Page 1 of 2)
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SIGNAL SOURCE DESTINATION DISCRIPTION
XBCA XXBUS XXBUS Buged XXBUS control signal used
XMITTERS RECEIVERS by XXBUS transmitters to indi-
cate to XXBUS receivers and
XXBUS control port that a bus
cycle has started and that an
IP is on the XXBUS information
bus.
XBIRL XXBUS XXBUS Bugsed XXBUS control signal used
RECEIVERS TRANSMITTERS by XXBUS receiver accepting
bus cycle to indicate to XXBUS
transmitter controlling bus
cycle that its XXIR is locked
and that the IP was not loaded.
XBRESET XXBUS ALL PORTS Bused XXBUS control signal used
CONTROL by XXBCP to aid Port initiali-
zation during Power Up and
System Reset.
XMITRDY XXBUS FIFO CONTROLLER TRANSMITTER READY. Used by
TRANSMITTER XXBUS transmitter to indicate
to the FIFO controller that
the XXBUS transmitter 1is idle
and that the XXOR is available
for the next IP.
XMITSTART FIFO CNTRL XXBUS TRANSMITTER START. Used by
TRANSMITTER the FIFO controller to start
the XXBUS transmitter.
XXBUSGT XXBCP ONE FOR EACH XXBUS CONTROL GRANT. Used by
XXBUS XMITTER XXBCP to transfer coatrol of
XXBUS to requesting  XXBUS
transmitter.
XXBUSRQ ONE FOR EACH XBCP XXBUS CONTROL REQUEST. Usged by
XXBUS TRANS~- XXBUS transmitter to request
MITTER control of XXBUS from XXBCP.
XX IRC XXBUS XX1IR Cotitrol line used to strobe
RECEIVER IP into XXIR.
XX ORC FIFO CNTRL XXOR Control line used to strobe

IP into XXIR.

Table I1V-02. XXBUS Linking Port Signal Definitions (Page 2 of 2)
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to accept a bus cycle if the bus ID of an information packet is either inside

or outside this range.

Figure IV-28 shows the functional block diagram of the XXBLP ARU. As
shown, there are three sets of comparators and ID headers: one for the path
ID, and for both the upper and lower bus ID. The outputs of these
comparators are conmnected to a logic network which can be configured, via the
setting of the in/out range switch, to make the control line SELECT active
conditioned to the IP bus ID being either 1inside or outside the range
specified by the upper and lower bus ID headers. For an example of how the
ARU of a network can be figured, see Table 1IV-03 which shows the

configurations of the ARU for the network shown in Figure 1V-28,

4.6.2.1.3 XXBUS Receiver Logic. The XXBUS receiver logic wil) control the

transfer of IPs into the XXIR and from the XXIR to the IP queue of the other
XXBLP forming the link. This control logic is 1implemented as an
Alogirithimic State Machine (ASM) which must communicate with the transmitter
logic of other ports. This communications 1is accomplished by using the
control lines XBCA, XBACK, and XBIRL and the IP queue controller of the
linked XXBLP using control lines INRQ, INACK, and QFULL.

4.6.2.2 XXBLP XXBUS Transmitter Elements. The XXBLP XXBUS transmitter

elements include the XXBUS information packet output handling register (XXOR)
and the XXBUS transmitter logic. Also associated with XXBUS transmitter are
the control lines XBCA, XBACK, XBIRL, XBRESET, XXBUSRQ, XXBUSGT, XMITRDY,
XMITSTART, XXORC, and OUTEN. Table IV-03 provides a detailed description of

each of these signals.

64.6.2.2.1 XXBUS Information Packet Output Register ((XXOR). The XXOR will

be used to hold the next IP that is to be transferred from a linking port and
will serve to decouple the IP queue from the XXBUS to which the XXBUS trans-
mitter is connected. The XXOR will be a 37-bit register with its input
connected to the IP queue and with its output connected to the XXBUS informa-

tion bus via the XXBUS transceivers.
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4.6.2.2,2 XXBUS Transmitter Llogic. The transmitter logic will control the
transfer of IPs from the XXOR to the XXBUS and the transfer of IPs from the
IP queue to the XXOR. This control logic will be implemented as an ASM which

must coordinate its activities with the IP queue, the receivers of other
ports on this XXBUS and with the XXBUS control port. This coordination will
be accomplished by using the control lines XMIRDY, XMITSTART, KXBCA, XBACK,
XBIRL, and the controls XXBUSGT and XXBUSRQ.

The XXBLP XXBUS transmitter logic is similar to that used by the XXBIU.
Th only difference is that the XXBLP XXBUS transmitter logic contains a
timer used to time out attempts to transfer IP to ports which fail to unlock
their XXIRs. For XXBUS transmitters of XXBIU, the time out interrupts and
associated microprograms will reset the transmitter if this lock up condition
should occur. For the XXBLP transmitters, since XXBLP contains no software
component, this time out function must be an integral part of the XXBUS

transmitter logic.

4.6.2.3 1P Queue Elements. The IP Queue will provide temporary storage of

IPs as they are transferred between linked XXBUSes. It will also enhance the
efficiency of this link by increasing the probability that the XXIR of the

XXBUS receiver will be unlocked.

The IP queue will be organized as a FIFO pipeline which can accomodate
approximately 2000 IPs. The FIFO memory will consist of single port bipolar
RAM with read/write access times of less than 60 NSEC. The FIFO coatrol
logic will consist of memory address pointers, comparators, and other logic
needed to implement the RAM as a FIFO memory. It will also control the
transfer of IPs from Inter-Bus Link (IBL) cable to the FIFO RAM and from the
FIFO RAM to the XXOR. The FIFO control logic operations will be prioritized
to favor transfers from the XXIR to the FIFO RAM. This is done to ensure

that the XXBUS receiver will be available for each bus cycle.

The definitions of signals associated with the IP queue are given in
Table 1V-02.
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4.6.2.4 The Interbus Link Cable Electronics. The IBL Cable Electronics

include cable drivers, receivers, and the actual cables. The cable electro-
nics will provide a full duplex link between the two XXBLP forming the IBL
and will be capable of supporting the 5 MEGA IP transfer rate. The physical
sature of the cable electronics will be a function of the environment of the
IBL including distance, noise levels, and security requirements. It will
also be a function of the types of components that will be available at the

time of implementation.

4.6.3 XXBUS Linking Port Operations. The operations- of the XXBLP of an IBL

will involve the transfer of IPs between the XXBUS which they connect. These
operations include determining when to accept IPs from the XXBUS; loading IPs
into the XXIR; transferring IPs across the IBL cable to the IP queue of the
companion XXBLP; transferring the next IP in the IP queue to the XXOR; and
the transferring of IPs from the XXOR across the connected XXBUS to the final
destination or to the XXBLP of another IBL. This subsection describes each

of these operations with respect to the major functional units of the XXBLP.

4,6.3.1 XXBLP XXBUS Receiver Operations. The Exchange Bus Linking Port

(XXBLP) XXBUS receiver will perform the operations involving the transfer of
Information Packets (IP) from the XXBUS across the Inter-Bus Link (IBL) to
the IP queue of its companion XXBLP. These operations include determining
when to accept bus cycles from the XXBUS, transferring IPs from the XXBUS to
the XXIR, and transferring IPs from the XXIR to the IP queue. The control of
these operations will reside within the XXBUS receiver logic which coordi-
nates its activities with other transmitters on the XXBUS and the IP queue.
This coordination will be done via the control lines XBCA/XBACK/
XBIRL/INRQ/INACK/QFULL respectfully. A description of each of these signals
is given in Table IV-02.

The operation of determining when to accept a bus cycle begins when XBCA
is made active. When this occurs the XXBUS receiver will test the state of
the select status line from the ARU. The ARU will make SELECT active if the

following conditions are met:
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o The path ID of the IP must equal that specified by the path ID
header.

o If the in/out range switch is in the in position, then the bus ID

of the IP wmust lie inside the range specified by the upper and

lower bus ID headers.

o I1f the in/out range switch is in the out position, then the bus ID
of the IP must lie outside the range specified by the upper and

lower bus ID headers.

When the receiver tests the control line SELECT, and if SELECT is
active, then the XXBUS receiver logic will accept the bus cycle and proceed
to engage the transmitter. The bus cycle will proceed in one of two possible
ways depending on the state of the QFULL status line. If QFULL is active,
then the receiver will operate in the XXIR LOCKED mode. If QFULL is mnot
active, then the receiver will operate in the XXIR UNLOCKED mode. Section

4.4,3.6 describes in detail the operation of the XXBUS receiver in each case.

1f, at the completion of a bus cycle, QFULL is not active, the XXBUS
receiver will proceed with transferring the IP contained in the XXIR across
the IBL cable to the IP Queue. This transfer operation is accomplished with
the control lines INRQ and INACK. INRQ is used by the receiver to request
the loading of the IP into the IP queue. INACK is used by the IP queue to
indicate to the receiver when an IP has been loaded into the IP queue. After
the IP is loaded into the IP queue the veceiver will become available for the
next bus cycle. Since proper operation of the XXBUS transmitters and
receivers requires that all receivers on the XXBUS be available prior to the
start of a bus cycle, the operation of transfering the IP from the XXIR to

the IP queue must have top priority over all other IP queue operations.
1f QFULL is active upon completion of the bus cycle the receiver will

wait for QFULL to become inactive before starting the XXIR-to-IP queue

transfer.

1v-108




4.6.3,2 Information Packet Que.:c Operations. The IP queue controller will

perform the operations of writing the IP received from the XXBUS receiver of
the companion XXBLP into the RAM. It will also track the next in and next out
addresses of the RAM, determine when the RAM is full and when it is empty and
transfer IP from RAM to the XXBUS transmitter. The control of these opera-
tions lies with the FIFO control logic which coordinates these operations
with the XXBUS receiver and the XXBUS transmitter. This coordination will be
done by the control lines INRQ, INACK, and QFULL, and XMITSTART and XMITRDY.

Definitions for these control lines are given in Table 1IV-~02.

The operation of writing an IP into the FIFO RAM will begin with the
XXBUS receiver making INRQ active. When INRQ becomes active the FIFO
controller will proceed to activate INIP which will gate the IP onto the FIFO
Memory Data Buse (FMDB) followed by a write strobe to the RAM. The FIFO
controler will at the same time activate INACK which will result in the XXBUS
receiver becoming available for the next bus cycle. After the IP has been
written into the RAM the FIFO controler will increment its next address
counter and check for the queue full condition. 1If the FIFO is full, then
the FIFO controller will set QFULL active which will cause the XXBUS receiver
to operate in the XXIR locked mode.

The operation of reading an IP from the RAM and transferring it to the
XXBUS transmitter will begin with the existance of an IP in the RAM, If the
RAM is not empty, indicating an IP is waiting to be transferred, the FIFO
controller will test the state of the XMITRDY status line. If XMITRDY is
active then the transmitter will be idle and ready to be loaded with the next
IP to be transferred. The IP will then be loaded into the XXOR of the
transmitter by the FIFO controller using the strobe line XXORC. After the IP
is loaded into the XXOR, the FIFO controller will start the transmitter by
activating the XMITSTART coatrol line. At this point, if QFULL is set, the
FIFO controller will reset it. Ths operation will be repeated until the
memory is empty and can only be interrupted by the transfer of IPs from the

XXBUS receiver to the IP queue.
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4.6.3.3 XXBLP XXBUS Transmitter Operations. The XXBLP XXBUS transmitter

will perform XXBUS acquisition and transferring of IP from the XXOR across
the XXBUS to the next destination port. The control of these operations
resides with the XXBUS transmitter logic which coordinates these activities
with those of the IP queue, the XXBUS receiver of other port on the XXBUS,
and with the XXBUS Control Port (XXBCP). This coordination will be done via
the control lines XMITSTART and XMITRDY, XBCA, XBACK, XBIRL, and the control
lines XXBUSRQ and XXBUSGT. A description of each of these signals is provi-
ded in Table IV-02.

When the transmitter is ready to transfer an IP, it will make XMITRDY
active to indicate this readiness. When the IP queue has an IP to be trans-
ferred and sees XMITRDY active, it will load the IP into the XXOR and proceed
to start the XXBUS transmitter by activating XMITSTART. When XMITSTART
becomes active, the transmitter will leave its ready state and enter its
XXBUS request state. This action will result in XMITRDY becoming inactive,
XXBUSRQ becoming active, and in the starting of the transmitter retry
time-out timer. The transmitter will then proceed to operate as described in
Paragraph 4.4.3.5. At the end of the bus cycle, if the XXIR was unlocked,
then the transmitter will return to its ready state; if the XXIR was locked,
then the transmitter will return to its XXBUS request state and continue to

retry until it is successful or until the retry timer times it out.
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SECTION V
SUMMARY OF DESIGN

3. Summary. The Micro Programmable Controller (MPC) is an innovative
combination of microcomputer hardware and software synergistically coupled to
produce a totally distributed, stand alone computer system. Through the use
of parallel processing techniques, large integrated problems can be resolved
with the MPC by functionally decomposing the problem and dedicating separate
processing resources to each decomposed element. Within this distributed
parallel architecture, the requirement for interprocess communications is
imperative to ensure coordination and integrity. The previous sections have
described design changes to the MPC architecture that will decrease the tise
to per form interprocess communications. Section 5.1 briefly reviews the com-
ponents of interprocess communications as they were presented in Section 2.
S¢-tion 5.2 discusses the major considerations of the improved MPC design as
they relate to the components of interprocess communications and provides a
table which contrasts current MPC per formance characteristics with the goals

to be realized with the implementation of the new design.

5.1 Interprocess Communications. Interprocess communications consists of

two components: data communications and process coordination. In the Im-
proved Microprocessor Design, the bandwidth of these two components has been
increased thereby increasing overall per formance of the MPC. The following
paragraphs describe various design changes that will increase the bandwidth

of each of these interprocess communication components.,

Data communication is a measurement of the amount of data that can be
trans ferred between two ports during a given period of time. Data communica-
tion bandwidth can therefore be analyzed by determining the raw bandwidth of
the XBUS (bus bandwidth) and the effective rate at which two ports can ex-
change data (port-to-port bandwidth).




o Bus bandwidth is a measure of bus cycle rate and the number of bits
of data transferred per bus cycle. (Cycle rate X number of bits

trans ferred per cycle = bus bandwidth)

o Port-to-port bandwidth is a measure of port-to-port transfer rate
and the number of bits of data trans ferred per cycle. (Port-to-bus

trans fer rate X number of bits transferred = effective port-to-port
bandwidth)

Process coordination bandwidth is a function of the number of control dia-
logues a port can perform in a given period of time. Process coordination
bandwidth can there fore be determined as the reciprocal of the time required
for one control dialogue. This figure will represent the number of control
dialogues a port may engage in during the period of one second. (1/total

time for a control dialogue = process coordination bandwidth per port per
second)

5.2 Improved Microprocessor Design. This design addresses the per formance

limitations inherent in any distributed parallel architecture - interprocess
compunications. Interprocess communication is required to ensure the coor-
dination and integrity of parallel resources in a distributed architecture.
The time required to perform interprocess communication will ultimatelvy
reduce the overall performance of a parallel processing system. Section 4
presented several ways to improve the current MPC architecture by decreasing
the time required to per form interprocess communications. The realization of
these architectural improvements will significantly increase the system per-
formance of the MPC by achieving interprocess communications per formance for
single processes comparable with today's serial mainframe systems while pro-
viding for a relatively unrestricted number of simultaneous processes. The
following paragraphs delineate each of the major MPC design improvements con-
sidered during the Improved Microprocessor Design contract. Table V-01, Im
proved Hardware Per formance Characteristics, presents a comparison of the

currently operational MPC with the new design.
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5.2.1 Exchange Bus (XXBUS) Improvements. The most significant design change
in the XXBUS will be the demultiplexing of the data and address lines. This
improvement will increase XXBUS bandwidth by allowing the concurrent transfer

of 16 bits of data and a 14 bit address (2 bits for path, 6 bits for bus, and

6 bits for port identification) using a single phase bus cycle. 1In the cur-
rent architecture a two phase bus cycle is required to transfer 16 bits of
data because the address lines are multiplexed through the data lines. The

improved XXBUS will therefore use half as many bus cycles to accomplish this

trans fer.

5.2.2 Exchange Bus Control Port (XXBCP) Improvements. The most significant

design change in the XXBCP will be the simplification of bus cycle arbitra-
tion logic. This improvement will increase XXBUS bandwidth by allowing the
maximum bus cycle rate to increase to 5 million cycles per second. Bus cycle
duration will therefore decrease to a minimum of 200 nanoseconds per cycle.
XXBUS bandwidth will thereby increase to 80 megabits per second which is five
times greater than the current XBUS bandwidth. The improved arbitration will
also remove the priority demand scheme from the request/grant process and
service all bus cycle requests equally. This will allow the XXBUS to sustain
loading where all of the connected ports are contending for bus cycles with-
out serious degradation to any individual port-to-port bandwidth. In the
improved design, an XXBCP will reside on each individual XXBUS therefore, the
addition of several XXBUS's into a network will not limit the per formance of

any single XXBUS or the network as a whole.

5.2.3 Exchange Bus Inter face Hardware (XXBIU) Improvements. The most sig-

nificant design change in the XXBIU will be the decoupling of the Primary
Port Processor Unit (PPPU) from the XXBUS, This improvement will increase
the port-to-port and process coordination bandwidth of each MPC port by re-
leasing the PPPU from the overhead processing required to initiate and
sustain dialo-guea. Port~to-port bandwidth will increase to 10 megabits per
second using DMA transfers across the XXBUS, a 50 fold increase over the
current MPC. Process coordination bandwidth will increase to allow 4,000

control dialogues per port per second. The effect of expanding these




bandwidths will ultimately allow each MPC port, and collectively the MPC, to
address larger and more complex problems by providing more processing power

directed toward to its individual requirements.

The improved XXBIU will preserve the basic architectural characteristics
of the MPC while reducing the processes required to access the XXBUS and
trans fer data to a lower level thereby applying hardware resources in a more
e fficient manner. The redesign of the XXBIU will require many changes to the
Inter-Port Communications firmware subsystem in order to maintain consistency
with the improved MPC hardware architecture. It should be noted, however,
that redesign of the XXBIU and IPC will not necessitate the redesign of any
other MPC subsystem such as ECM, EDR, or MACE.

5.2.4 Inter-Port Communications (IPC) Subsystem Improvements. The most sig-

nificant design change to IPC will be the separation of IPC into two logical
levels. 1IPC Level 1 will be responsible for the control and execution of altl
XXBUS data trans fer operations and will reside in the Microprogram memory of
the XXBIU in each MPC port. IPC Level 2 provides the inter face between other
MPC software subsystems and IPC Level 1. IPC Level 2 will reside in the ROM
of each port and be executed by the port processor. This improvement will
consolidate design changes in the XXBUS and XXBIU. IPC will provide port-to-
port communications in an environment totally asynchronous to the PPPU at the
bandwidths mentioned in the previous sections. The result of 1IPC
improvements, will preserve the proven functionality of the current IPC,

while providing a faster more efficient communications inter face.

5.2.5 Inter-Bus Linking Port (XXBLP). The design of the XXBLP will allow

large networks of MPC XXBUS"S to be configured to resolve problems that
require more than 24 (minimum) to 64 (maximum) MPC ports per XXBUS, depending
upon MPC cabinetry. The most significant aspect of the XXBLP design will be
the asynchronous connection of XXBUS's at the bus cycle level. The XXBLP
will operate at the 80 megabit bandwidth of the XXBUS and support networking
growth to allow asynchronous interconnection of up to 64 XXBUS's. Such a
network would offer 4096 MPC ports to allocate for resolution of system

problems. In addition, the XXBLP will gsupport multiple routing between




XXBUS's using the 2 bits of path identification in the 14 bit address. This
will provide the system planner with a powerful tool to prevent possible

bottleneck that can occur in large, integrated networks.




APPENDIX A

Terms and Abbreviations

ACK /NAK Acknowledge /Not Acknowledge (error).

ACK/NAK Response Two bytes displayed by Passive IPC in the
ODHR in response to a Transfer Termination

Request received from Active IPC.

ACTEN ACTIVE ENABLE. Mode control line of
microprogram control module of XXBIU used

to enable the active channel of the XXBIU.

Active Completion Routine Code called by the Active Direct or Active
Indirect Driver when Active IPC returns to

EDR for a processing break between DCWs.

Active Direct Service A routine which 1is directed towards one
specific port and in which the EDR Port
plays the active direct role in any

dialogue. An Active Direct Service 1is

executed as a result of a dispatch bit

being set in the Port Configuration Table.

Active Indirect Service A routine oriented towards one sgpecific
port and executed by EDR in the active
indirect mode as a result of an indirect

request from the specific port.

Active Port (1) An MPC Port that contains the hardware
necessary to request exchange bus usage.
(2) The port which drives an IPC dialogue

by sending interrants to the passive port.




ACTRDY

DCCP

ADMAP

ADMAWC

APMPAR

APPR

AQ

ARC

ARU

ACTIVE READY. Interrupt request line
connecting XXB1U to PPPU interrupt

handling hardware.

Advanced Data Communications Control

Protocol

Active DMA Address Pointer. Located in
DMA module of XXBIU. Used during active
DMA transfer to point to next word to be

transferred.

Active DMA Word Counter. Located in DMA
module of XXBIU. Used to determine end of

active DMA block transfer.

Active Port Microprogram Address

Register. Register of Address Queue.

Active Page Pointer Register. Points to
the page that contains a block to be

transferred during active DMA.

Microprogram Address Queue. Registers
located in microprogram module used for

addressing the microprogram memory.

Active Redundant Check word generator.
Located in XXBUS module of XXBIU. Used to

generate check word during DMA operations.

Address Recognition Unit. The element of
each XXBUS receiver which determines if
the XXBUS receiver should engage a bus

cycle.
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ASM

ATC

ATO

Attention Bit

Availbility (or Passive

Availabilty)

AXMPAR

BAR

BIM (or BIMA)

BMMB

Algorithmic State Machine. A type of
sequential state machine used to implement

hardware control logic.

Active DMA Terminal Count. Connects &
microprogram module with a DMA module.
Used to indicate the end of an active DMA

block transfer.

Active Time Out. Control line comnecting
the microprogram control module to the

dialogue timer.

(Curent MPC). One of the status bits
which is used to synchronize the active

and passive ports in a dialogue.

The passive communication modes and passive
service groups which some channel within a

port has requested.

Active XXBUS Microgram Address Register.
Register of Address Queue.

Current Exchange Bus Address Register.
(Current MPC). Exchange Bus Interface
Module. The BIM grants a bus cycle to a
requesting port through the XIM in that

port's cabinet.

Branch Microprogram Module Bus.




BR-90

BUS ID

CCT

CCu

Channel

CLu

CMPR1

CMPR2

COMCND

Completion Routine

Control Word

Bunker Ramo Graphics Console.

6-Bit field of XXBUS address used to

specify Bus of destination Bus.

Channel Control Table. IPC Table.

Channel Control Units. Used to interface
BR~90 (PRE-MPC) with PACER

A long-term interface between IPC and the

user-level program.

Conditional Logic Unit. Located in XXBUS
module of XXBIU. Used to decode data

control words.

Compare Register One. Located in XXBUS
module of XXBIU. Used with CLU operations.

Compare Register Two. Same as CMPRI,

Compare Condition. Status line connecting
XXBUS module to microprogram control

module. Used with CLU operations.

A routine called by Passive IPC at the end
of a header or segment transfer, or at the

end of a dialogue.
The last word in a DCW which provides

information concerning the data block
described by the DCW.
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Control Interrupt

CPU

CRC

cSs

Data Block

Data Interrupt

DCwW

DDCMP

DDE

DEC

DECX

Dialogue

(Current MPC). A command written across

the bua at the interrupt seven level.
Central Processing Unit

Cyclic Redundancy Check.

Chip Select.

A contiguous block of memory to be
transferred by IPC.

(Current MPC). A command transferred
across the XBUS at the interrupt five
level.

Dialogue Control Word.

Digital Data Communications Message

Protocol.

Data Decoding Elements. Elements of XXBUS
module that support XXBUS data decoding.

Digital Equipment Corporation.

Decode and Execute Function Code. Control
line connecting queue controller with
XXBUS command unit of the MCM.

An interaction between IPC in two ports
which establishes a connection, transfers
the desired data and directives, and

terminates the connection.
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Dialogue Termination Code

Dialogue Termination Request

Direct Communication

DMA

DMAM

DMAMCU

DXEX

DXRDY

See Termination code.

Two bytes written by Active IPC to the
connected passive port when a dialogue is
successfully completed or when a dialogue

is terminated due to error.

An inter-processor communication in which
IPC in the requesting processor is granted
bus usage and sends a message to a desired

port.

Direct Memory Access

Direct Memory Access Module. Located in
XXBIU. Contains address registers and
control 1logic that supports DMA between

the port memory and the XXBUS.

DMA Module Control Unit. Control logic
that executes DMA module MI directives.

Department ofi Defense.

DMA and XXBUS Modules Execute. Control
line connecting XXBUS, DMA, and
microprogram control module. Used to tell
XXBUS and DMA module to execute MI

directive.

DMA and XXBUS Modules Ready. Control line
connecting DMA, XXBUS, and MCM modules of
XXBIU. Used to indicate DMA and XXBUS

modules ready for next MI directive.




ECM

EDR

EXPARQ

EXPPRQ

EXRQ

EXXARQ

FEP

FMC

FIFO

FMDB

FUNCTION CODE

External Control and Monitoring Software

Subsystem.

Error Detection and Recovery. MPC

Software Subsystem.

Electromagnetic Interference.

Execute Port Active Request. EXRQ line.
Execute Port Passive Request. EXRQ line.
Execute Request. Internal control lines
of queue controller used to request execu-

tion of microprograms.

Execute XXBUS Active Request. EXRQ line.

Front End Processor.

File Management System.

File Management Control.

First-In, First-Out

First-In, First-Out Memory Data Bus.
Located in XXBUS linking port.

Used to specify function of XXBIU to be

executed,




GETPB

GRANTED

GROUPRQ

HANDSHAKING

HBGPAP

HCR

HDLC

Header

HIS

1/0

1BC

IBL

Get Port Bus. Internal Control line of
IMA module.

Control Line Located in XXBUS Control
Port. Indicates that arbiter is in
granting state.

Control Line Located in XXBUS Control
Port. Used by port arbiter to wmake

request to group arbiters.

Method of transfering information between

asynchronous control structures.

High Byte of General Purpose Address
Pointer. Located in DMA module.

Header Completion Routine.

High Level Data Control Link.

A segment which contains information

describing the desired dialogue.

Honeywell Information Systems.

Input /Output.

Inter-Bus Communications. MPC Software

Subsystem.

Inter~Bus Link. Hardware link used to
network XXBUS.




IDHR

IDHS

INACK

Indirect Communication

INRQ

Internal port

Interrupt

Interrupt-Level Processing

IOR

0ld Exchange Bus Ioput Data Handling

Register.
Intelligence Data Handling System.

In IP ACKNOWLEDGE. Control line used to
acknowledge INRQ from XXBUS receiver.

An inter-processor communication in which
the requesting processor enters the
request in its ODHR and waits for this

request to be read by the desired port.

In IP REQUEST. Control line used by XXBUS
receiver to request transfer of IP from
XXIR.

The hardware by which an Intel 8080A CPU
communicates with other parts of the

microprocessor or port.

A | command by' which ofe port reads or
writes the bus interface registers of
another port and attempts to cause the
target port to execute at a location

determined by the bus interface hardware.

Program execution caused by the receipt of
an  interrupt and which causes the
user-level program to be temporarily

suspended.

Input/Output Read.




Iow

1P

1PC

IPC L1

IPC L2

LBGPAP

LBUS

Linking Bus

LLLP

LOB

Input/Output Write.
Information Packet. Basic unit of infor-
mation exchanged Dbetween MPC ports via

XXBUS.

Inter~Port Communication. MPC Software

Subsystem.

IPC Level One. 1IPC microprograms that are
executed by XXBIU.

IPC Level Two. IPC residing in firmware
of PPPU.

JUMP. Branch operation.

Low byte of General Purpose Address
Pointer. Located in DMA module of XXBIU.

Used to make single word DMA accesses,
Linking Bus.

XXBUS containing only XXBUS Linking
Ports. Used to link XXBUSES.

Last-Looked-at, Lowest Priority.
Lock On Request Bit. A bit within the

function code wused to indicate that

function code is lockon request.
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Lockon Request

Lockon Response

LORQEN

LSB

MACE

Machine State

MCM

MCMCU

(Current MPC). Two brtes <written by
Active IPC to a target port requesting a

dialogue.

(Current MPC). Two bytes displayed in the
ODHR by Passive IPC to indicate that it
has accepted an active port's Lockon

Request.

Lock On Request Enable. Enable line used
by IPC Ll to indicate willingness to
accept lock on request to the XXBIU.

Least Significant Byte or lower byte of a

two-byte grouping; least significant bit.

MPC Asynchronous Coutrol Element. MPC
Software Subsystem.

The current state of all registers in a
CPU, including the processor word,

instruction counter, and stack pointer.

Module Branch Register. Located in the
MCM of the XXBIU. Holds target module
address during execution of branch micro-

instructions.

Microprogram Control Module.

Microprogram Control Module, Module

Control Unit.




MDAR

MEMRD

MEMWT

MI

MICROINSTRUCTION

MICROPROGRAM

Microprogram Control Module

MICROPROGRAM MEMORY

Module Control Unit. Logic contained
within the XXBUS, DMA, and MCM modules
that control the fetch and execution of

microinstructions.

Microprogram Module Address Register.
Register of XXBIU MCM address queue,

Memory Read. Control line wused by DMA

module to read from port memory.

Memory Write. Control line used by DMA

module to write to port memory.

Microinstruction.

A single word of the XXBIU microprogram
memory containing directives that are
executed by the XXBIU hardware.

A collection of microinstructions which
implement a function of the XXBIU. The

XXBIU can contain up to 32 microprograms.

A hardware module of the XXBIU which
provides for high level control of the
XXBIU and for the control of microprogram

execution.

Memory of the XXBIU which containg the
microprograms of the XXBIU,




MICROPROGRAM MODULE

Microsecond(s)

MI Directive

MIEL

MIELEX

MIELRDY

MIHR

MILU

A subdivision of a microprogram consisting
of up to 8 microinstructions. When the
XXBIU executes a module, the module main-
tains control of the XXBIU umntil it
terminates/subterminates. A microprogram

can contain up to 8 modules.

.000001 second.

Microinstruction field reserved for

directives of a XXBIU module.

Microinstruction Execution Logic. Control
logic located in the MCMCU that controls
the fetch and execution of microinstruc-~

tions.

Microinstruction Execution Logic Execute.
Control 1line connecting MCMCU and queue

controller of XXBIU MCM.

Microinstruction Execution Logic Ready.
Control 1line connecting MCMCU and queue
controller of XXBIU MCM.

Microinstruction Holding Register.
Registers associated with the XXBUS, DMA,
and MCM wmodule control wunits. Used to

hold microinstruction during execution.

Microinstruction Loading Unit. Control

Logic located in DMA module.

Microprogram Memory.
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MP

MPC

MPCC

MPMAB

MPMAR

MPMDB

ms

MSB

Network Direct Communication

NOP

ODHR

0J-38HV)/G

Microprogram

MICROPROGRAMABLE Controller.

Multiprotocol Communication Controller.
Microprogram Memory Address Bus. Circuit
path of XXBIU connecting address queue of

MCM to the microprogram memory.

Microprogram Memory Address Registers.

Registers of the XXBIU MCM address queue.

Microprogram Memory Data Path. Circuit
paths of the XXBIU wused to transfer
microinstructions from the microprogram

memory to the XXBIU modules.

Millisecond (.00l second).

Most Significant Byte or upper byte of a
multiple byte grouping.

A communication mode characterized, in
general, by the exchange of information
between user~defined channels.

No Operation. Null program instruction,

0ld Exchange Bus Output Data Handling

Register.

Sperry Univac Alpha Numeric/Graphics

Console.




OUTGT

PACER

PAS

PASEN

PASRQ

Passive Availability Display

Passive Port

Passive Servi:e

OUT GRANT. Control line located in XXBUS
control port ugsed by XXBUS cycle sequencer
to tell arbitration unit to output 3ueued

grant.

Program Assisted Console Evaluation and

Review.

Passive Active Switch. “ontrol bit of
function code used to specify the passive

channel of the XXBIU.

Passive Enable. Control line of micropro-
gram control module of XXBIU used to
enable the active channel of the XXBILU.

Passive Request. Interrupt request line
connecring XXBIU to PPPU interrupt

handling hardware.

(Current MPC). Two bytes displayed in a
port's ODHR when that port is available to

enter a dialogue.

(1) An MPC Port that lacks the hardware
necessary to request XXBUS usage.

(2) The port which 1is driven through a
dialogue by the XXBUS interrupts received

from the active port.

A routine executed by EDR in the passive
role as a result of a request written to

EDR by an external active port.




Path ID

PBAU

PBAVL

PCOM

PCU

PCT

PCU

PDMAP

P DMAWC

Port

2-Bit field of XXBUS address field used to
specify the path that an IP is to take.

Port Bus Acquisition Unit. Control unit

of the DMAM.

Port Bus Cycle Available. Internal
control line of DMA module.

PACER Communication Modules used to
integrate PACER and MPC.

Port Command Unit. Located in micropro-
gram control module. Provides command

level interface betwen PPPU and XXBIU.

Port Control Table. 1IPC table.

Port Command Unit.

Passive DMA Address Pointer. Located in
DMA module of XXBIU. Used during active
DMA transfers to point to the word to be

transferred.

Passive DMA Word Counter. Located in DMA
module of XXBIU. Used to determine the

end of passive DMA block transfer.
Port Memory Bus.

The physical device containing and execu-
ting the various MPC Software Subsystems.
Each is a complete microcomputer
consisting of Central Processing Unit,
memory, bus interface hardware, and (in

general) 1/0 device handlers.
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Port Data Bus

Port 1D

PORTRQ

PPMPAR

PPPR

PPPU

PRCG

PS RQ/GT

Circuit Path Connecting Port Memory to
XXBIU.

6-Bit field of XXBUS address wused to

specify destination port of IP.

PORT REQUEST. Control line of the XXBUS
control port's arbitration unit. Used by
port arbiter to make request to group

arbiter to issue grant.

Passive Port Microprogram Address

Register. Register of Addres Queue.

Passive Page Pointer Register. Points to
page that contains block to be transferred

during passive DMA.

Primary Port Processing Unit. The proces-
sing elements that perform the principle
tasks of the port. Includes the CPU(s),

port memory, and other support hardware.

Passive Redundant Check word generator.
Located in XXBUS module of XXBIU. Used to
generate check words during passive DMA

operatious.

Single, bi-directional handshaking line
connecting PPPU and XXBIU. Used to trans-

fer control of Port System Bus.




PTC

PTO

PXMPAR

QFULL

QUEGT

RADC

RAM

RCA

RCVE

RELPB

Pasgsive DMA Terminal Count. Connects
microprogram module with DMA module. Used
to indicate end of passive DMA block

transfer.

Passive Time Out. Control line connecting
microprogram control module to dialogue

timer.

Passive XXBUS Microprogram Address

Register. Register of address queue.
QUEUVE FULL. Control line of the XXBUS
linking port used by IP queue controller

to tell XXBUS receiver that IP queue is
full.

QUEUE  GRANT. Control 1line of XXBUS
control port connecting XXBUS sequencer
with arbitration unit. Used to tell
arbitration unit to prepare to issue next
grant.

Rome Air Development Center.

Random Access Memory.

Radio Corporation of America

Receive.

Release Port Bus. Internal control line
of DMA module.
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ROM

SAC

SCR

SDLC

Segment

SELECT

Service Group

SIU

Remote Network Processor.

Read Only memory.

Strategic Air Command.

Segment Completion Routine.
Synchronous Data Link Control.

A group of one or more data blocks which
is transferred across the bus in one
directioon and which 1is stored in a
cont iguous memory location in the
receiving port. A segment may contain

either header information or data.

Control line used by address recognition
unit to tell XXBUS receiver to engage in

bus cycle.

(1) A bit or number that indicates a port
type. (2) A number of corresponding bit
mask used in the active indirect communi-
cation mode to request or offer a group of
services, EDRs service group numbr is
zero, which translates to a bit mask of
80,.

Status Interface Unit. Unit of the Micro-
program Control Module. Used by PPPU to

read status of XXBIU and its microprograms.




SOW

SPLC

STARTIMER

Status Bits

Status Read/Write

System Direct Communication

Code

Terminate Bit

Termination Code

Statement Of Work.
Special Purpose Communication Link.

Control line located in XXBUS control port
used by the XXBUS cycle sequencer to time
XXBUS cycle.

(Current MPC). Four bits in a port's bus
interface hardware indicating if the port
is available for a dialogue, if the port
is executing, if the I/0 drivers are
enabled, and if the port is servicing an

interrupt.

(Current MPC). A command by which one
port reads or modifies the current state

of a port's status bits.

A direct communication mode generally used
in the execution of control functions and
which frequently involves the 1IPC -

maintained channel in the target port.

The highest bit in an ACK/NAK {or Dialogue

Termination Code.)

A code indicating either the successful
termination of a dialogue or the reason
for unsuccessful termination. The code
consists of a terminate bit and an ACK/NAK

code (lowest seven bits).
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TIMEOUT

Transfer Termination Request

Visibility

XIM

XXIDR

XXIFR

XXIR

XXIRC

Control 1line located in XXBUX control
port. Used by XXBUS cycle timer to indi-
cate the XXBUS sequencer bus cycle timed

out.

Two bytes writtean by Active IPC to the
connected passive port when a data block

transfer is completed.

(Current MPC). A display in a port's ODHR
which initiates the port's passive availa-

bilty.

(Current  MPC). Exchange bus buffer
module. Each MPC cabinet contains a XIM
which forwards a port's requst for a bus

cycle to the BIM.

XXBUS Input Data  Register. Holding

register for data received from XXBUS.

XXBUS  Input Function Code  Register.
Holding register for Function Codes

received from XXBUS.
XXBUS Input  Registers. The holding
registers XXIFR, XXIDR, and in XXBUS

linking ports XXIAR.

Control Line used to strobe data into the
XXIR.
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XXIRLOCKED

XXODR

XAUFR

XXORC

XXPOAR

XBACK

XBCA

XXBUS 1Input Registers Locked. Used to
indicate to an XXBUS receiver that the
XXBUS input registers are locked; if
active, an XXBUS receiver will operate in

the LOCKED mode.

XXBUS Output Data  Register. Holding
register for data to be transmitted to
XXBUS.

XXBUS Output Function Code Register.
Holding register for function codes to be

transmitted to XXBUS.

XXBUS  Output  Registers. For  XXBIU,
includes the registers XXODR, XXOFR, and
XXAOAR/XXPOAR. For XXBUS 1linking ports,
holding register for Information Packets

to be transmitted to the XXBUS.

Control line used to strobe data into the
XXOR.

XXBUS Passive Output Address Register.
Ho:ding register for passive channel XXBUS

address to be transmitted to XXBUS.

XXBUS control line used by XXBUS receivers
in XXIR UNLOCKED mode to engage XXBUS
transmitters. Indicates Information

Packet was accepted.

XXBUS control line used to indicate when a

XXBUS transmitter has started a bus cycle,
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XB IRL

XBRESET

XBUS

XBM

XBMCU

XCu

XMITRDY

XR

XT

XXBUS control line used by XXBUS receivers
in XXIR LOCKED mode to engage XXBUS
transmitters bus cycle. Indicates Infor-

mation Packet was not accepted.

XXBUS RESET. XXBUS control line sourced
by the XXBUS control port. Used to reset
the MPC ports of a XKBUS during power up

and system reset.
Current MPC Exchange Bus.

XXBUS Module. Module of XXBIU that
perforas XXBUS data transmitting,

receiving, and error detecting.

XXBUS Module Control Unit. Control logic
of XXBUS module that controls the execu-
tion of XXBUS module MI directives.

XXBUS Cqmmand Unit: Unit of microprogram
control  module that’ provides the XXBUS
with command level control of a ports
XXB1U.

Transmit.

Transmitter Ready. Used by XXBUS trans-
mitter to indicate that it 1is ready to
transmit the next information packet.

XXBUS Receiver.

XXBUS Transmistter




XTB

XXAOAR

XXBCP

XXBIU

XXBLP

XXBUS

XXBUSGT

XXBUSRQ

Z1F

KX3LU Transfer Rus. A circuid path of the
XXBIU over which the DMA, XXBUS, and MCM
module transfer information betweon esch

other and pourt memory data bus.

KXBUS  Active Output  Al'resg Register,
holding register tor actyve  nanaei Xrsis

address to be transmitted to <XBUS.

XXBUS Control Port. Port  that controls
use of the XXBUS.

XXBUS Interface Unit, A microprogrammable
controller that interfaces a ports PPPU

with the XXAUS.

XXBUS Linking Porr. Port used to link
XXBUSES,

Improved MPC  Exchange Bus. A common
communications channel  over  which MPC

ports communicate.

XXBUS Grant. Control lines used by XXBUS
coutrol port to grant use of XXBUS to

requesting XXBUS :transmitter.

XXBUS Request. Control 1line used by a
XXBUS transmitter to request from XXBUS

control port use of the XXBUS.

Zero Insertion Force. Board connectors

bualt by AMP and usrd in the MPC cabinet.
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