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The amhony have evtended the thaory of stimubated Raman scattening to include the cffects of Liser
bandwadths, in both the tranvent amd steadyestate regimes. The ease of two imteracting laser beams, a pump
laser and a probie (Stehes) laser, iy treatal. Uung e phase-ditfusion madel for Lisee bandwidth, the authors
demonstrate that in the absence of dipervon, the forwand Raman gan i essentially independent of the laser
bandwidths an the hugh-gam sty v lule i the low-gam lint the gan cocthiaient 18 wversely proportional to
the sum of the bandwidths, It s fusther <hown that when the pump-laser bandwidth is much larger than the
linewidth of the Raman medium, the staufated Stokes entput assumes the same spoctrum as the pump laser
in the high-pam liemt. A po.sible nterpre ation of these results is discussed assuming & “phase-locking™ of
the Stokes phase to the fluctuauons in the pump-laser phase, due to the nonlinea. interaction of the two

beams through the Raman medium.

1. INTRODUCTION

The elfects of finite laser bandwidth are being
recognized as important in the study of nonlincur
optical processes. Resonance fluorescence,'"®
two-photon absorption, ™" second harmonic genera-
tion, * multiphoton ionization, '®** and stimulated
Raman scattering are all arcas in which key ele-
ments of understanding depend on the ability to
modcl the laser, not as a monochromatic wave of
definite phase and amplitude, hut as 2 multimode
broad-band wave wih fluctuating phase and ampli-
tude. The problem ¢’ stimalated Raman scattering
(SRS} is cspecially timely in light of ongoing ef-
forts to use it as mcthod for developing new co-
herent light sources'* as well ac compresring
high-cnergy laser pulses to achieve higher peak
powers for use in laser fusion.!® [n applications
of thcse types a detailed understanding of all the
factors influencing the efficiencias of the process-
es is obviously desirable. Howuver, one import-
ant factor, lascr bandwidth, has not yct been fully
explored.

Recenlly, two groups'®!'® have observed a large
forward-buckward asyamcetey of the Raman gain,
which they attribute to the broad-band nature of
the pump lascr used  These were in the absence
of other cffects, such as sclf-focusing or extran-
eous fecdback, which i known to produce anom-
alous gains.'” These asy nmetries arc consistent
with several theorefical  redictions'™ ' that in the
backward direction (counterpropagating pump und
Stokes wave:) the galn cuelficient is proportional
to(C+1',)', where I' and I'y arc the spectral
widths of the Ruman medium and the pump laser,
respectively, while, in the forward direction, n
the wbsence of dispersion of the Stukes wave re-
lative to the pump wave, the gain cocflicient is

proportional to I'*! alone, Carman ef al.'* relcr
to this as “the rather startling conclusion. .. that
the Stokes gain is independent of the {requency
spectrum of the (pump) laser... cven if this
spectrum is much broader than I'.” Thus when

I, is much larger than T the forward gain is much
larger than the backward gain. These rcsults go
against intuition based on the idea that gain should
depend on the number of photons per unit {requency
in the pumip beam. Apparently, the concept of
photons as indepondent incoherent bundles is in-
adequate to describe the subtleties in the SRS
problem.

The purpose of this paper is to further develop
the thcory of SRS, including the cffects of finite
lager bandwidths, in a way that allows explicit
calculation of the gain and spectrum of the Stokes
wave. We consider, as in Fig. 1, a medium of
three-lcvel atoms iateracting with two classical

FIG. 1, Three-level atom interacting with & pump
lasor with frequency wy and a probe (Sokes) lascr with
froquency wg. ‘The cumulative detunings are Ag and &g,
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clectioma uetie wave:s, wne a pump (laser) wave
and the vther o Stobes wave, diffening m trequeney
by the Batan st of the medium,
have constant amphitudes, but phases which flue-
tuate rindomly, gaving nise to bandwidths 17, and
Py, This is the “phase-diffuston moedel, ” wlich
has been used recently as a means toanctude
bandwidth etfects into the calvulation of hoaht-
seattering speetra, ™ as woell as multiphoton
tomzation.' *'* The calculations are pertormed

as statistical averages over the random phase
variables of the two waves, Previous treat-
ments'™ ' of SRS attempted to accommodate both
fluctuating phases and amphitudes, We will discuss
later why the inclusion of amplitude fluctuations

in this problem is such a difficult task, Within

the stated model, we verify the independence of

the forward gain from the pump width I'; and the
Stokes width Uy, in the high-gain limit, Further
we will show that in the case that the width of the
pump laser 'y is broader than the Raman line-
whdth I', the amplified Stokes signal zssumes the
spectral width of the pump laser, regardless of its
initial width.

Akhmanov, D'yakov and Paviov'® have separated
the problem into four regimes of interest: (i) 'y
«I', with no dispersion; (ii) 'y <, with dis-
persion; (iii) Iy >, with no dif persion; (iv) I'y
» [, with dispersion. Case (i) was considered
by Bloembergen and Shen, * who predicted an
enhancement of the forward gain for a multimode
lascr. In this paper we trecat mainly case (iii),
where (he laser linewidth is broader than the
atomic linewidth. Here there is no enhancement,
but neither is there a significant suppression of
the gain, compared lo that calculated in case (i)
in the limit I'y = 0. Carman ef al.'® have also
treated case (iii), and they reached essentially
the same conclusions by calculating numerical
sotutions to the problem. Cases (if) and (iv) treat
the cffects of dispersion. There is a consensus'®
%2 that broadening of the laser in the presence
of dispersion does result in a lowering of the gain,
duc to the inability of the Stokes wave to stay
correlated with the pump fluctuations as they pro-
pagate. However, Akhmanov ¢f ol.'* have shown,
further, that there is a critical pump intensity,
above which the cffccts of digpersion are overcome
and the gain cocfficient increases again (. acirly
the narrow-band value,

Dzhotyan ¢f al.** have treted the problem by
assuming the pump and Stolkies waves to be come
posed of many monochromatic meades, with uniform

Hoth waves

Arcquency spacings large compared to the Raman

linewidth L', This results in significant interaction

“only hetween certain resonant pairs of modes (une

pump and one Stokes). This approach can be
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thought of as complementary to the present ap-
proach, in whoch the encrpy i the waves s taben
to be spread continuously over o small frequency
mterval, The molttmode approach of Dzhotyan

et al. is a penerabization of andea developed by
Giordmiune and saser” (and discussed by Byer
and Herbst™), in which the pomp and Stokes waves
cach consist of two modes, Vs treatment 1llus-
trates the relattoaship of SRS with four-wave
paramctric interactions.  Another related dis-
cussion is that of llarrs, *? in which the threshold
for parametric oscillation with multimode lascers
is shown to depend caly on the total power in the
pump laser.

In Scc. [l we derive the equations of motion for
the Raman problem in it novel way by using the
“two-photon vector model” of Takatsuji®' and
Grischkowsky ¢f al.*® InSce. lllwe review the
general solutions of the equations, following
Carman ¢! al.'*and evaluate the gain with mono-
chromatic pumping for both the transient and
steady-state limits. Then we apply the phase-
diffusion model to evaluate the gain under ar-
bitrary broad-band pumping conditions, again in
both the transient and steady-state limits. In
Scc. 1V we calculate the spectrum of the amplified
Slokes wave by considering its autocorrelation
function in the steady-state lintit, In Sec. V we
discuss a possiblc interpretation of the results
obtained, and in Sece. VI we summarize the main
results of the paper.

1. EQUATIONS OF MOTION

Here we give a novel derivation of the usual
equations of motion for the Raman problem and a
discussion of the phyrical model leading to them.
For simplicity, we tre.t the casc of near-reson-
ance Raman Stokes scaticring, in which only three
atomic levels need to be considered. Thus we con-,
sider a vapor of atoms with encrgy levels shown
in Fip. 1. A pump laser is tuncd near (but not «on)
the 1-2 transition and a probe laser is tuned near
(but not on) the 2-3 transition. It is sufficient o
treat the pump laser as a prescribed field as long
as it is not depleted. The probe laser will ex-
perience gain in a manner dependent on both the
amplitude and phase structure of the pump laser.

Consider the ficlds By (pump laser) and Eg
(Stokes, or probe laser) acting on the three-level
atom of Fig. 1. Let

Bo-8, 8 conlwpt=byz1¢,): 8,8, cosdy, (1a)
E;y =8485 cos(wsl¥kgz+ 0g) = 8,2, cosps, (1b)
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where & and 8¢ are the freal) amplitudes of the
waves, with livear palariation veetors € and Ry,
carrier frequencies o and @, propatation
vectors hy k&0 Ky kg2, and slowly varyimg
phases oy and ¢, The state of the ators can be
wrilten
¢ =al(.~lﬁw|0:.l 'a“.ol(n,heL)-'y:z
,,,“.-ﬂu,nn-o;)g“ (2)

where a,, a,, and a, arc the slowly varying co-
efficients in a “doubly rotating frame, "' and ¢,
¥, and §, are the stationary eigenstates of the
atomic Hamiltonun, with encrgics liw), kw,, and
Nw,. Att=0 the atom is in the ground state (a,
=1, a,=a,=0) and afterwards the coefficients
evolve according to Schriodinger’s equation

'.(.'I 2 '%nla: ’ (33)
iny = (A = ¢y)a, ~ 100, - 104, (3b)
i&,=(A$ "¢l¢d” )a,-%ﬂ,n, N ' (3(:)

where the detunings are &; = w,, = w, and &g = w,,
+wg —w;. The Rabi frequencies for the two
transitions are given by @ =d, 8 /% and Qg

=d, 85/, whered,,=4,," % andd,, = 4,, * ¥ are di-
pole matrix elements. The rotating-wave approxi-
mation®® (RWA) has been invoked in writing Eq. (3).
This is valid whea the detunings are small enough
(8, < w,,, a5 <w,).

Several authors®'?® have discussed the case in
which level 2 may be eliminated from the Egs.
(3a)=(3¢). When 4, is much larger than &g and
the ficlds have no appreciable Fourier components
at the atomic frequencies, we may set a,50 in
Eq. (3b) and get (neglecting @)

a,~ (30,0, +1050,)/8, . “w

This approximation is the basis of the "two-photon
vector model” of Takatsuji** and Grischkowsky

el al.,” ad is discussed more fully in Appendix
A. Using this appronimation in the Schridinger
equation [Eq. (3)], one may obtain two equations
for a, and a,, which are identical in form to those
of a onc-photon transition with cffective Ratu fre-
quency £, 380 05/3, and cifcetive detuning 3,
=854 4(R,7 = 05%)/4,, which shows the elfect of

ac Stark shifting, We write the resulting equations
in the convenient Bluch form, ¥ using U +iV - 2a,a;,
and W-aa) -a,a!,

U=a(d, -0 s p5)WV=TU, (5a)
“/; (Aa = ‘l"L i “”S W+ Q.“’ =V ’ (5b)
W--q,V. (5¢)

Here we have included the phenomenological col-

lisional dephasing rate U, which is the halfwidth
at half maxawum (HWHM) in rad see”™ for the
(Kaman) transition between levels 1 and 3.
Tou deserihe aman amplification, one must
solve the wave equation for the Stokes wave
¥ 1 0F 4r 2P ©
P T TLE T
where v is the velocity in the medium, and P is
the polarization of the medium. Considering only
Fouricr components close to the carrier frequency
wg, and only the linear polanization £g, leads to
a polarization

PN (p|d- 2, |9)=2Nd,, Rea,ng) cosds
+2Nd,, Im(a,a}) 5inds , @

where N is the atomic number density. Making
use of Eq. (7) for the polarization, Eq. (4) to again
eliminate a,, and the slowly varying envelope
approximation, #* one can write Eq. (6) in the form

38, 138
T o

8;(&%01%§)=—Kﬁ,_U-t-;iAlrzss(W« 1),

v 12 (8b)
where &, = atNwgvd,,d,,/¢’lia; and the plus and
minus signs are for copropagating and counter-
propagatiry; pump and probe beams, respectively.
Equations (5) and (8), along with a similar one for
the pump laser &,, completely describe the pro-
pagation and material response for the Raman
problem, including the effects of phase modulation
(&r, @s). They have been derived by Takatsuji’*
and by Courtens®™ in esscntially the same form and
used for considerations of optical transient
phenomena.

In contrast, we arc intercsted in the special
case that the atoms are weakly excited and the
pump laser is a prescribed, external field, Thus
we take for the inversion W=~1, W=0 in Eq. (5).
We also assume cxact resonance (A, =0). The
remaining four cquations, (5a), (5b), (8a), and
{8b), can be combincd into two complex equations.
Defining the quantitics

E =8¢, E;=-8;e"s;

Q=(U+iViehri-es, ®)
we obtain dircetly
8E, 10K
,_&:. ;'ﬁ ==i0,Q°E,, (20a)
b .
_‘:‘_= -IQ* +ix,E3E, , (100)

where &, =d, d,,/21'8,. These two coupled equa-
tions arc the starting point for many theories uf
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stimulated Waman seatterice, They have usuatly
been dertved in the coupled wave approach of non-
hnear optics © for the case of molecular Haman
seattering, where @ s the sormal-made coourdinate
of a molecular vibration and is often catled an
optical-phonon wave,  In those treatments, (e
turbation theory was used from the beginnine and
the couphing constants &, and £, were given in
terms of molecular polarizadnhities, Here we have
provided a connection between the “two-photon
veetor model” and the standard theories of Raman
propagation. We have puven the explicit relations,
Eq. (9), between the variables used in the carlier
nonlinear-optics theories and the more tmodern
optical resonance or Bloch vector picture, which
has been used here, and continues to give insight
into many laser-related problems.

). EVALUATION OF RAMAN GAIN

General solutions of Eq. (10) have been obtained

in the case of copropagating waves by Carman

et al." Inthis case the prescribed undepleted
pump-laser licld £, depends onty on the local
time variable 7 =¢-2z/v, It is assumed that the
waves travel with equal velocity (b, = kg), ic.,
there is no dispersion, Denoting by Eg(0, 7) the
Stokes ficld at the input of the cell (z=0), the
solution for the Stokes output ficld is**

L2 Tl er)
E,(z,r):E,(O, f)&(K|Kzl)l,2-[ (Tf)-p(f') [Y£]
x 1 {4x, k2l p(r) = p(r )
XE (T)EL(T)EL (0, 1")dr' $9 1]

where /,(x) is the Bessel function of imaginary
argument, ™ and

pn= [ 1E 0 ar

is the integrated power in the pump laser up to
time 7,

A. Stokes gain for monochromatic pump and input waves

It is instructive to review the propertics of the
solution (11) for the case that the pump wave and
the input Stokes wave are constant and monochro-
matic, In this case we have E (1) =E3(1')=8, and
Eg(0,7')=84,. This lcads to

/2
Eg(z,7)=850485, ‘(g‘z)l

x [ (@en
| 7= azy) X, (12)

where we have used x = T =1/, p(7)=8i7 and @
=4xx,63. Following Wanir™" we present analytic

approxunalions and numerical evaluations ot the
Stoboes output, paven by Fa. (12), for tw difterent
himats,

1 Teanusicns binit

The transient limut occurs for times much short-
cr than the reciprocad of the Raman Lincwidth
(U7 << 1) After replacgt ¢7® by 1in Py, (12), the
integraleanbedoneto mve Eg e, 7) = 8/, [ (a-7)' 3,
which for large cnough az27 leads to the asymptotic
form for the output Stokes intensity
G;n ‘,Nun'”

3 (2, 7)'—"-2-;- QapTe

(high zain, Tr«1). (13)

We have used the property I,(v) = ¢*/(2av) 2, for
x-w, for any i,** Equation (13) is the usual re-
sult for the transicnt Raman cffect.®” It is inter-
esting to note that, in the transient limit, the
Raman gain given by Eq. (13) does not depend on
the Raman linewidth I,

2. Steady-state limit

The steady-state limit occurs for times much
larger than the reciprocal of the Raman linewidth
('t >>1). Extending the upper limit to infinity,
the integral in Eg. (12) can be done exactly™ to
give for the Stokes intensily

E}(z,7)=83,0" (arbitrary gain, [7>1), (14a)
where

a sNwgvdl 4l 8}
E=r" " wa, T - CE)

The steady-state gain coefficient g is the usual
one derived for stimulated electronic Raman
scattering.® It does depend on the Raman line-
width I, in contrast to the transient case.
Equations (13) and (14a) for the output Stokes
intensity, along with numerical cvaluation of
Eq. (12), are plotted in Fig. 2, as a function of
g2, or cquivalently, pump laser intensity, for
both a transient case (I'1 = 10°°) and a steady-state
case (I't 210%), Ilere we interpret T as the pulse
duration of the pump laser. Equation (13) for the
transicnt gain ('7=107) is seen (o agree well with
the exact numerical results when log, (E3/83,)
>1, while Fq. (142) for the steady-state gain (I'1
=10%) agrees everywhere. Note that the valuces
below togo(F3/85,) = 0 are unphysical. The other
four curves in Fiy. 2 show the effeets of laser
bandwidth on the gain, as desceribed in Sce. HIB.

B. Raman gain fur broad-band pump and/or input waves

We now cvaluate the ltaman gain in the case that
the spectral width of cither the pump laser or the
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Stokes input wave (o both) as greater than the
Raman boewehth (B Py > T can be ac-
complished by perforomng an averase of the
peneral solution, Eq. (11, ever a statistical en-
semble chosen to model the bandwidths, An
especially useful model is that ot phase diffu-
sion, > in which the ficld amplitude 5, 18 constant,
but the phase suffers abrupt chanpes at an average
rate 21, (see Appendix B). The field autocorrela-
tion functions are then

UELNIE (N =} eTetrr! (15a)
and
(Es(0,TIES(0, ') = 82! ™" | (15h)

which tcad direcetly to Lorentzian line shapes with
halfwidths (HWHM)equalto Iy for the pump laser
and T4 for the input Stokes wave. The brackets  ))
indicate an ensemble average over the statistical
fluctuations of the field.** This model describes
a stabilized laser operating far above threshold,
but it also proves to be very convenient mathe-
matically.

The intensity of the output Stokes wave is given
by ({!Es(z,7)}")). To evaluate the intensity of the
Stokes wave we first introduce some notation:

S = e/ x M [(azx) 7], (16a)
ELMELTY) Es(O.71) 1,

F(f):f j(T —-T')—-L—-TL._—
(] SL $o (]Gb)

Then {rom Eq. (11), using p(r) =837 in accordince
with the phase diffusion model for the pump taser,
we have

Egz,7)=E5 (0, 1)+ 85 (il (@z) *J Fir),  (17a)
((|Es(2,7)]) = 83, ¢ Egolaz)!?
X ({E2(0, T)F (7))
LS anUF@ . (aw)
The secoud term in Eq. (17b) can be easily
evaluated using Eq. (15),
t
B3O, IFEW =6, [ fir =1
. (]
X g Ttrripfstrr g, (18)

where we have assumed statistical independent of
the waves at 2=0; that is

{EL(MENTES(0, T )EZ(0, T))
=((EL(MENT' MUES (0, T)EZ (0, T))

(sce Rel, 32). This integral is identical to the
integral in Eq. (12), but with §* replaced by V' o 1)
+g. Thus when Fp o I'g > 17, this term grows
with a very small gain coelficient, ‘This is in

»
I

-
!

STIMULATED STOKES OUTPUT log (<< |Eg|25/€24)
g

FIG. 2. Norm ilizcd Stokes output intensity as a func-
tion of gain coc!fictent gz (or equivalently, pump laser
intensity) under various physical conditions and differ-
ing levels of approximation. The curve labeled “NB, S35
{s the narrow-band steady-state rcault obtained from
Eq. (142), or Eq. (12) with I'r=10%, where T is the
Raman linewidth and v is the laser pulse length, The
“NB, TR” curves are the narrow-band transicnt results,
obtained exactly from Eq. (12) with Tr=10"? (solid
curve), or approximately from Eq. (13) (dashed curve),
The curves labeled “BD, S8 are the broad-band steady-
state results obtained exactly from Eqs, (17b), (18),
and (20b) with Tr=10% (solid curve), or approximately
from Eq. (25) (dashed curve). The “BB, TH” curves
aro the broad-band transient results obtained exactly
from Liqs. (17h), (18), and (20h) with Pr=10"? (solid
curve), or approximately (rom Fq, £22) {(dashed curve).
The broad-band curves are for a bandwidth ratlo (T
+T5)/T=10% where 'y and Tg are the bamhvidths of
the pump and probe (Stokes) lusers,

contrast to the third term in Eq. (17b), which, as
we will see, grows with essentially the narrowband
fain piven in Eq. (14a). Thus we expect the third
term of Fgq. (17b) to be dominant in the high-gain
limit. Using the corcelation functions given by

Eq. (15), once can evaluate this third term as
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(LAt f _['I(T—T’)I'(T-

u,

]
:j f Fit ~T’y(1_1')l.-(l",’-|‘s)lv'.v-l'l.‘,:’h-'
(N

where we used the Laet that £ (TER(T) = 83 i in-
dependent of the statistical averaging, To evaluate
the douable intepral in Eq. (19b), we note that the
exponeanal factor is much different from zero
only near the line 7. 7%, In the fimit that fiv)
changes very slowly in a time (Fp s Ig)! (e,

I, @z« 4 ), we can repliace the exponential
factor by the property normalized § function

AL, +T5) ' (7' =T%). We then get

o2 [ -mar

2 j; Pt
Tpels s x
In similar fashion to the integral in Eq. (12), this

integral can be evaluated analytically as well as
numerically, in the two limits:

(20a)

Pl(azx)/?)dx. (20b)

1. Transicnt linir

As before, for 't << 1, the exponential can be
replaced by 1 and the integral done {in this case
asymntotically, using the asymptotic form for
1,) tc give

eteent/?

o 1
((IHﬂI’)FWT-

Thus, in the high-gain limit where Eq. (17b} is
dominated by the last term, we (ind that the Stokes
oulput intensity in the transient limit is

(21)

‘ ez(uﬂ'“
2: 2, +Tg)

I'r«1),

«Ibs (z, T)lz» E
(22)

Because of the form of the exponential, this result
for the broad-band transient witl be nearly indis-
tinguishabte from the result, Eq. (13), for the
narrowband transient.

(high gain,

2. Stcady-statc limit
To evaluate the steady-state limit of Eq. (20b),
we cxtend the upper limit of the intexration to
infinity, and do the integral to give'!

),.l-‘..(f:.l;z.s.gé). (23)

where , F, is the generalized hypergeometric
function, which can be evaluated asymptotically
for large argunent as®

,F,C:. 1;2,3,x) = /Y1) /x1,

KIFEID - g u

24)
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drtdr” (19a)

°.\n

(191)

r
This leads Lo an asymptotic form for the Stokes
intensity under broad-band steady-state high-gain
conditions:

‘Jl

r
(] Esiz, =) - 6‘"1 L (ae2l®

(high gain, I'r>1). (25)

It can be seen by comparing the Stukes intensitics
given by Fgs. (25) and (14a) that under the condi-
tions assumed (copropagating waves, no disper-
sion), the growth of a Stokes wave, in the steady-

- state high-gain limit, is virtually unaffected by

elther its input bandwidth or that of the pump
laser. We can demonstrate this result by writing
the output Stukes intensity as

((IEs(z)m)liz»=6;nccy (26)
G =Gy = In{[{T, +T5)/T)(nG g ) 2}, (27)

where Gyg = gz i8 the narrow-band gain coefficient
from Eq. (14b). Thus for large gain the difference
between G and Gy becomes relatively insignifi-
cant. We will present a pussible interpretation for
this result in Sec. V. Equation (27) is similar to
the result, conjectured by Carman ef al.,'® that
G =Gyy=[(I,/T)Gys). The difference between
our result and theirs (whea I'g = 0) may be due to
the fact that they allowed also for amplitude
fluctuations of the pump laser, whereas we have
restricted ourselves to phase modulation alone,
in order to make an explicil calculation tractible.
The calculation becomes intractible when ampli-
tude fluctuations are present because, then, p(r)
in Eq. (11) is a random variable which makes the
statistical average difficult to perform.

A8 in the narrow-band case, we plot the broad-
band Stokes intensitics, Eqs. (22) and (25), i
Fig. 2, along with numerical evaluation of the
Stokes intensity from ({[Fs(2, 7)), defined by
Eqs. (170), (18), and {200). Since Eq. (20b) is
valid only for [y + I's » T, az, we have plotted the
extreme case that (I + I'g)/F = 10%, in order to
demonstrate the validity of the asymptotic forms
Eqs. (22) and (25). Apain we have plotted the
transient and steady-state cases: £7:107 and
10°. Again we sce apreement of the asymptotic
forms with the exact numerical results when
log (] Eg z, 1){?)/ 85, 1.

We may now compare the narrow-band and
broad-band results. For this extreme steady-state

case, (Ip «Fg)/T =10°, we sec a significant sup-
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pression of the pain i the turn-on revion for bath
transaent and steady=tate Lot However,
aceovding to by, (27, atvery igh pans the dif-
ference between the naerow- and brogad-band
stimulated outputs becomes less and less, refative
to their absolute woemitudes, U s interesting that
the broad-bad output exlianits o threshold-type
behavior, in contrast (o the exponential behavior
of the narrow-band output,

Although the principad tuterest here is in the
bigh-gain limit, some comments can also be made
about the low-gun steady-state limit, important
{o such experimental techmques as CARS (coher-
ent anti-Slokes Raman seattering). Thus we will
find the terms in Eq. (17b) which are of lowest
order (lincar) in a2, It can be shown™ that the
third term, containing ((|F(r)|*)), is quadratic
in @z as az -0 and can thus be neglected. The
first and sccond terms in Eq. (17b) are cvaluated,
using Eq. (18) with the upper limit 7 taken to in-
finity, to give®® ’

(|Eslz, =) [ =8 ,(2etmnt/2 2 1), (28)
Eap=0/2(C+; +Ty). (29)
In the limit az -0, this reduces to

«‘Es (‘.”)lz» = 8;0(1 "J.'a")
(low gain, I'r>»1), (30)

We see that in the low-galn steady-state limit,
the SRS grows linearly with the (“broad-band”)
gain coefficient ggp. This is the resull that would
naively be predicied on the basis of photons per
mode, as discussed in Sec. I

C. Raman gain for arbitrary bandwidths

Here we analyze, numerically, the propertics
of the stimulated output when the condition I'y + T
» I, az is nol necessarily upheld, as was assumed
in Sec. l1IB. First notc that if we take (I'y + T )/T
= 10%, rather than 10* ag used in Fig. 2, the analy-
sis of Sec. 111 Bis valid only for gz < 10?, makingpre-
diction of the broad-band transient above gz = 10?
fmpossible by those methods. However, also note
that the solution in Eq. (19b), before approximation
to obtain Eq. (20), contains the information we are
sceking in the general case. Thus we evaluated
Eq. (19b), by a nuncrical methid discussed in
Appendix C, and obtained the output Stokes in-
tensity ((|E(z, 7)) defined by Fqs, (1Tb), (18),
and (19b). These results arc shown in Fig. 3,
where we have covered a lariie region of the in-
teresting parameters: U7 and (T + £4)/T both
vary between 107 and 10%,

Beginning with Fig. 3(a), we sce that the laser
bandwidth has little effect on the pain in the
transient limit (1'7 = 10°°).  This is not surprising,

as a short lasee pulse of duration 72 10771 has a
spectral width f 10 1 vithout phase dqiffusin

(') 0 Thus ve see no effect of additional
broadrinng by paase difusion until 3 Iy~ 10°0,
at whiel pomnt the gaan becomes shiphtly depressed,
Progressmg in Figse 3M) and 3(e) to longer pulse
duration 7, we sce the general result that no effect
of phase diffuston broad ning is apparent until

I« Ig= 1/7, The steady-state limit occurs in
Fig. 3(), where no difference is scen between
Fr=10 and ['t=10%,

IV. SPECTRUM OF THE STOKLS OUTPUT IN STEADY STATE

In Sccs. I=111 the input Stokes wave has been
taken to have a width I'g. But because al. of the
power in the broad-band pump laser is effcctive
for amplifying the Stokes wave, it is interesting
to ask what becomes of the spectral distribution
of the Stokes wave after it has been amplified. In
this section we calculate the spectrum of the
Stokes wave in the steady-state high-gain limit,
in two different cases: Iy =0and [y »T.

L]
IRAT-1:]]

-
T

w & » @&

STIMULATED STOKES OUTPUT iug (oc|E4l* mre5y1
»» L ]

FIG, 3. Normalizcd Stokes output intensity as a func-
tion of gz (or pump-lascr intensity), evaluated numeri-
feally using Eqs. (17b), (18), and (19h), for various
values of the bandwidth ratio (1, ¢ Tg)/T, wiere T s
the Raman linewidth, and 1, and g are the bahwidths,
tue o phase ditfusion broadening, of the yamp and probe
(Sokes) lasera, Four diffevent puise lenths 1 oare
shown: (1) Tr=10"2, transicnt Limit; 0) ©1=10"1; )
Tr=1; () U'7=10 und 10°, steady-state limit, Inall
cuncs the effect of the taser bamiwidtha becomes relas
tively unimgoriant at high gaing,
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For a stationary wave E(7), the definttion of the
power spectrum P2(w) 1s

P(w) -.,'-:- f e K (s hls (31)

where @ is the frequeney as measured from the
frequency of the carrier wave and (a0 15 the
Fouricr transform of the celectrie ficld autocor=-
relation function K(s),

K(s)-{(E@E*(T vs)). (32)

It is easy to show from Eq. (31) that P(w) is nor-
malized as follows:

As an example, when Fg. (31) i85 used to calculate
the Liser spectrum 2,(e), from the correlianon
function ¥q. (15), one finds
I') 2
» 1" S :

Py{w) u."‘ol'j_b"' (34)
a Lorent:zian, as stited in See, 1L We can use
the general solntion, Fq. (11), to deternnne K (s)
for the Stokes wave

K(s)> 83l caa)](FmF (s, (35)

where we have again kept only the term which
dominates in the high-gain limil, In steady state
(r ==) we expect that K (s) will depend only on s

]. Plwddw =K (0)- (| ET)]). (33) and not 7. K(s) can be cvaluated as
—
s 4 Te * . Ll ’ "
K6)=83, 5 [ are [ aropr v s - o SELOELECIELE B KEQ BTN g
° (3 L 30
‘ az L 4 reg
=85, Tf.. o [ dy Y §)Glr, y, s)efstrret (36b)
. L

where A= im(zrk.r,) fw+ Ty (38a)

Glx,y,s)=exp{F (|s¢+x)+ [s-y|-|s-y+x]| w2, + 5 wol”’

-le] =] - IsiN. (36¢) we can write

Here Glx,y, €) Is the four-time correlation func- £, =2ReA e Tshrn
tion of the pump-laser field, assuming the phase 2 oL (yex)
diffusion model, and is cvaluated in Appendix B, “ARedr =kl
In deriving Eq. (36b) we have used x=7 -7’ and =2ImA_ e e ginw(y - x), © (38b)
y=T15=-7" In steady state the upper integration £.o=3(-
limits arc extended to infinity and K (s) becomes s =(-ReA, cqpuns tmA, siiiva)
independent of T, In order to simplify the absolute X g Tylrn-Tgy
values, the integral is transformed to the triangu-
lar region above the y =x line by use of the pro- 3(Red. cosuy + Imd, Sinay)
perty G(y, x,8)=G(x,y,=s). Then for the Stokes X g Tptvnilgs (38¢c)

spectrum we have

Pyl)= 3633

xL’@L'axfuy@)n(v,y.w), (37a)

where

&{x,y, w)=2 Ree FLivem f ds e

Xexp{Ty(|s e x|+ s -y| .
“ls-yex|=| s]) ~Tsls=yex|l.
(37b)
The transform £ can be caleulated under the condi-

tion xSy, We write £ as the sum of lwo parts
L-£,.L,. Delining

Equations (37) and (38) are now uged to evaluate
the Stokes output spectrum in two different cases.

b, v

A. Stokes [} > fora

pump Laser

Here we treat the case that the pump laser is
monochromatic (I'; = 0) and the spectral width of
the input Stolics is allowed to assume two different
limits; Fg =0 or I’y » I', The steady-state pain
for thesc two limits has alrearly been given in
Eqs. (14) and (25).

The spectrum is casily obtained by setting I°,
-0 in Eq. (38). Then, because A_=0, we have
£,=0 and

£, =4[Fg/(w ¢« T} coswiy - x). (39)

Transformiing back to the full x, v quadrant gives
for the spectrum of the Stokes output

e T s

5 . i
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1o a2 ‘“" B Stohes outpat spectenm for a Fuad-band puap dser
Pgiv) -9y
250504 W ls

l r :l\' .I\'f(\'[f(\')cubw(\- -v) (40a)

u._,

a2 I"/n

65T = . (400)
where?
1 = gy, v
Lc <) dv
2 g r
@’ [“""(Lzz o m)' ‘] : {405)

In the high-gain limit the Stokes output spectrum
is

Py(w) = 83gnssT cm(«z—,———r' ) “n
3 o Iy T\ et )

To put this result into proper form we must as-
sume one of the two above-mentioned limits,

The first limit is that of a monochromatic input
Stokes wave (I'g = 0). Ilere we can use Eq. (14a)
for the output Stokes intensity: (| Eg(z,<)|)
=8%,¢'. Then Eq. (41) can be rewritten, in the
limit I'; =0,

Py (w)= 8K | Eg (2, =)D . “2)

Thus we sce that the ouljut Stokes wave is mono-
chromatic when the input Stokes wave and the pump
laser are monochromatic, as expected.

The second limit is Ty > F. Here we again
cousider a monochromatic pump laser (I, =0)
and use Eq. (25) for the Stokes output ¢ | £ ¢(z, ©}|7)
to rewrite Eq. (41) for the Stokes output spectrum
as

x(|Egl, )}y, (43a)

I
Pyw)r (—-—r)l exp( ) ClEg(z, )|,
(43v)

where the Last step is valid because the halfwidth
(21?7221 of the exponential factor is much
Jess than T and Tg, Note that Lq. (43b) is nor-
malized as in Eq. (33). Equation (43) describes

a Lorentziam-shaped atomic line of width T that
has been ©in parrowed, The ideal that the center
of the line will experience more gain than the
wings {8 familiar idea in laser theory, A come-
parison of the atomie Vine and the gain-navrowed
Stohes line is shown in Fig. 4 for the case g2 =15,

Here we trest the case that the paap laser
width 1s larger than the atorme width (l", 1)
and the input Stokes wadth ' s arbitvary, The
spectrum s obtained by applying several approxis
mations to Fy. {38).  First note that in the high-
gain Hmit, only & will pive a sigmhcant con-
tribution to the spectrum because its exponentilds
dimp as (v —a), rather than (y « v). Thus along
the linc y =1, £, is large, while £, becomes neg-
ligible. Sceond, note that because ) 4 Uy s
assumed Lrpe (0« g > T, a¢), we may replace
the exponential factors by properly normalized
delta functions, as in the arpument leading to Eq.
{20);

c-(rlcrsi(r-xl‘(rb+rs)-lo(y__‘). (‘43)
L cogw(y = x) = [T, /(w? + T3)]6(y = x),
(44b)
e TLr P ginw(y « x) = [w/(w?+ T7)]8(y =)
(44c)
el- I'c:=0
re»r
- "
[
& 6~
"
3
a 5 3]
=
2
-
(3
w
a 3t—
7]
a
w
£ 21~
o
a.
[N —
{o)
0 | | ]
-a2r -r o r r

FREQUENCY, w

FIG. 4, Comparison of the Lorentzian Raman line
shape furve (1)] with atomic haltwidth T, and the gain-
narrowed output Stokes spectrum feurve @) with
haliwidth Qo212 )2 for gz =15, plotted from Eq.
43}, This Stokes speetrum narrowing results when the
pump lacer is monochromatic and the input Stokes laser
is hroad hand,

!
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Combining these results gaves
L=/, s T, (@ T]olr =), (45)

Now the spectrum of the output Stokes intensity
Pg(w) is easily evaluated from 1q. (37a)

s fo)s Log2 02 ¢ T
Ps(wl= 5 $%0 3 el walg
x / ALY (46a)
Tr,/n " .
l’s(“’)= F.LTT «!bs(l.-ﬂ)l'» " (46‘))
*5g

where we used Egs. (17b) and (20a) to define the
output Stokes intensity {|E ¢(z,=)|%). Note that
P(w) is normalized as required by Eq. (33). This
indicates that our ncglect of £, is justified.

Comparing Eqs. (46b) and (34) shows that the
Stokes wave assumes exactly the same spectrum
as the pump laser during the amplification process,
regardless of the spectral width of the input Stokes
wave.

V. DISCUSSION

In the case just treated, that the pump laser
width is greater than the atomic width (I, > T),
our interpretation is that the fluctuations in the
phase of the pump laser dominate the time be-
havior of the amplification process. Indeed,
Carman et al.' found numerically, in the case of
a quadratic phase sweep in the pump laser, that
the Stokes phase closely followed this sweep after
a brief initial period. Our result for the Stokes

spectrum [Eq. (46)] is consistent with the conjecture

of Carman et al. that, when I'; > T, the Stokes
phase always follows the pump phase in the high-
gain limit, regardless of the phase structure of
the input Stokes wave. If correct, this effect,
which we will call “phase locking,” also explains
the fact that the gain is unaffected by the phase
flucutations which lead to the bandwidth. As Car-
man e/ al. pointed out, if the phases ¢g and ¢,
differ at all points by a constant |¢ (2, )= ¢, (2,1)
4+ @), the phases drop out entirely from Eq. (11),
leading to the narrow-band gain result, Eq. (14).
Thus, the idea of “phase locking” leads to results
consislent with our results for I', > I'. When both
I, and T'g are larger than I', we can say that the
amplified Stokes wave builds up from the broad-
band input noise in a way which automatically
satisfies ¢ g=¢, +¢,. That is, only that part of
the noisc which satisfies this relation will ex-
perience large gain.

To illustrate the idea of phase locking we have
compared, in Fig. 5, several steady-state gain
curves. We have reproduced curves from Fig.

RAMAN SCATTERING WATH. .., 2308

3(d), caleulated from the exact cquations (Labeled
“phase locked™). We have also plotted corves usine
Eq. (14a) (labeled “narrow band™), and also using
Eq. (142) with ;7 replaced by g, of Eq. (29 (labeled
“unlocked™). We see that at low gaans the exact
curve follows the “unlocked™ curve, consistent
with the idea that there 1s no correlation between
the output Stokes and pump laser waves, This
low-gain behavior was predicted at the end of
Scc. 111 DB. However, at high gains the exact curve
approaches the “narrow-band” curves, consistent
with the idea that it has become “phase locked,"
resulting in an enhanced gain. We thus sce that
phase locking appears to occur only above a cer-
tain (threshold) gain. In contrast to the behavior
found in the present treatment, Dzhotyvan ef al.™?
found in the multimode approach (see Sec. 1) that
the “narrow-band” gain was appropriate even at
low gains. This is a major difference between the
two models.

Finally, we point out that we have treated only
the case of Raman amplification, and not SRS
which grows from the initial Stokes photons spon-
tancously emitted with frequencies near wg, in
the absence of an external input Stokes wave at
that frequency. Here we wish to make some con-
jectures on the outcome in the latler case. We
may consider the spontancous photons as making
up the source term Eg(0, 7). Although here we
certainly cannot make the decorrelation of the
pump wave E,(7) and source term E (0, 7) that
we made in connection with Eq. (18), we still ex-
pect that, at high gains, the major results we have
obtained do apply to spontancously generated SRS.
That is, we expect the gain to be essentially in-

(v)
6 6
5 St
4 ap

-

3l NARROW
BAND

~

g PHASE
Locxto

log (& |EgI2 »/E20)

UNLOCKED

oL o VNS R ——
¢ © ! 2 3

STIMULATED STOXES OUTPUT

o

tog (g2)
FIG. 5. Normalized Stokes output intensity, in

steady- state, as a function of gz (or pump-laser inten-
sity), for two different laser bandwidth ratios: (a)
(T Tg)/T=1and () (T + Tg)/T=10. In both cases,
the exact results (labeled “phase locked”) are seen to
agree, at low gains, with the results one would expect
in the absence of phase locking (labeled “untocked™)
which were obtained Ly replacing Ty T+ Ty ¢ T in the
expression [Eq. (140)) for the gain coefficient . How=
ever, at higher gains, the exact results approach the
narrow-bhand curve [Kqs. (14a) and (14b)).
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dependent of pump-laser bandwidth, and whon the
pump bardwidth s preoter than the atoniae wudth
we expect the output SRS Lo assume the s pectrum
of the pump.
VI SUNAaRy

Using the phase difiusion model, we have ex-
tended the theory of stunulated Raman scattering,
in the case of two interacting classical waves
(pump and input Stokes), to allow for arhitrary
bandwidth of either wave. In the forward direction
if there is no dispersion, we showed that, in the
high-gain Limid, the gain of the Stokes wave is
essentially independent of the input bandwidth of
cither vave. In the low-gain himit the gain co-
efficient was found to be inversely proportional to
the sum of the bandwidths., We also calculated the
spectrum of the output Stekes wave, in the high-
gain limil, under various conditions. We found
that wiien the pump bandwidth I'; is greater than
the atomic width T, the Stokes wave assumes cx-
actly the spectrum of the pump laser, regardless
of the spectral width I'g of the input Stokes wave.
When both mput waves are monochromatic
(r',, I'g =0), we found that the Stokes spectrum is
unchanged by the ampliflication process. Finally,
when I’ =0 and > I, we found that the output
Stokes wave has a spectrum which is a gain-
narrowed atomic profile; that is, the Stokes width
becomes much narrower than the atomic width.

Note added in proof. A recent preprint by W. R.
Trutna, Y. K. Park, and R. L. Byer [to appear in
IEEE J. Quant. Electron. (July 1979)] has come to
our attention. Broad-band SRS was treated using
the coupled-wave approach (similar to that in Ref.
22) and qualitative agrecment was found with our
work in the high-gain limit. At low gains, how-
ever, their treatment indicates no suppression of
the gain, in contrast to our results [Eq. (30)].
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APPINDIX A

Here we discuss more carefully the elimination
of a, from Eq. (3). We first neglect O, in Eq.
(3b), as A, is assumed to be much larger thin
the pump luser bandwidth. The formal solution
of Eq. (3b) can then be written

MOSTCUWSKE, AND J. L.

CARLSTEN I

'
",.(’)‘-j (R DA (A1)
e =il 282, a()s 1 Qea ()] (A2)

Repeated intepration by parls pives

w() = "B (0) g0 =T 1(0)

e 000

a, T (iag)
20 = 8 14100) .
+ "”“(‘TI;)T"— -cee, (AJ)

Note that since a,(0) =1 and a,(0) =0, +(0)=i()2,.
When one assumes &, > &g, ¢, 0, 2, Qg, it can
be shown from 13q. (3) that £(0) - A, #(¢). Thus
when &, is large, one is left with

a,()= el =il emeLt/is, . (A4)

However, because A, is large, the exponential
term oscillates rapidly compared to g(/). Hence,
in the spirit of the RWA, we neglect the rapidly
oscillating part und retain only the slowly varying
part:

a,(N=g()/ia, =(1Q,a,(t) Rga,())/a,.  (A5)

It is interesting that the same result is obtained
by merely setting @,=0 in Eq. (3b).
)
APPENDIN B: PHASE-DIFFUSION MODLL

The phase-diffusion model for laser bandwidth
desceribes, to good approximation, a cw iaser
operating well above threshold, where the in-
tensity, 1(1) =1,+1’(), is nearly constant, with
average value I, and small fluctuations I'(;).*
However, well above threshold the phase ¢(/)
fluctuates randomly, in a way reminiscent of a
diffusing Brownian particle. Simple laser theory
gives the equations for the intensily and phase
as!\@

P == (0 1L, (B1)
S =F,0), (B2)

_gvWhere F (1) and F (t) are random Langevin forces
“ with correlation functions

CF (D8 (1)) =2D56(t, = t,),

(F DF () =216, = 1,),
and

F)r (t,))=0.

Here 1/X is the correlation time of the intensity
fluctuations, with mean value D/A, and I' is the
bandwidth of the light. These & correlations sim-
ply imply that the forces fluctuale on a time seale
shorter than any other interesting time scale.

The phase-diffusion model is based on the as-
sumption that the intensity exhibits no fiuctuations,
1'(1) =0, and that the phase fluctuates according
to Eq. (B2). The correlation function for the phase
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can be derived fram g, (82) as
1 .,
AN f dr [ e 0F 00

S SO S RIS (B3)

where we have taken « ()= 0, since the results
caleulated Later cannot depend on (0) for a
stationary process. In the present contesd, the
aim of the madel is to cateulate corvelation func-
tions for the ficld E(t) =8 ¢!, where we are
using the notation of Fq. (7). Heve we have as-
sumied that the ficld amplitude S {and thus the
intensity) iv a constant, So the correlation func-
tions can be written

CEQW) - E(IE=(,. ) ES L))
=87 ¢oexplioll,) ¢ oo 4iplt,)
—igllL) = em (O] (B4)

In order to calculate these corrclations it is
expedicnt to further assume that the phase (/)
is a Gaussian stochastic quantity, that is, cor-
relation functions of any order can be expressed
in terms of the two-time corrclation function of the
phase ¢ )0}, Speeifically,’ we have

«W('l) L "p('au») =0 [
it ol =3 olty Yoty ) - o
perm

Y CIUPN (9 )8 (B5)

where the summuation is taken over all unique
permutations of ¢, ...,1,. A usclul relation can
be derived from Eq. (B35), which makes it casy
to calculate the correlation functions in kq. (B4).
This is

()

-exp(—-;- .:dl'j.:dt'd(l')d(l')

X gl dettn). (n6)
where J(°) is an arbitrary function.™ This re-
lation can be proven, term by terin, after ex-
panding thc cxponentials and using the property
Eq. (B5).

We ciin now caleulate the desired correlation
functions. By letting /()= 8(t* 1)) in Eq. (BG)
we get

CEW)) = Sgexplivit M)

s8exp{-T1)=0, (p7)

where we have taken the stationary limit T/ ==,
where the initial transicats have died out. Thus
the average ficld is zcro, as expected for a fluc-

taating field. By Jetting JUY= 80t Y2 200 =1 )
i Eqg. (B6) we pet
CEUDE(Y = Excenplivl )Y =i ¢ )]
=8%exp(=Tr, 1.0, (138)
The power spectrum of the fidld, saven by the
Fouricr transtorm of the two-time correlation
functicn in Iq. (18), is thus a Loreatzian with

halfwidth T, The four-time correladion unction
used in See. IV can be calculuted by letting

JU)=d{t <1) 4 81" = 1)
~ (0 =1,) - 6{(t" =1),
which gives
CEWIEUIE (1 )E (1))
=8%expll([t, =t} + [t,=t,} = |t,-1,]
S IR AR TR A RN YR B (B9)

This result can be used to illustrate one of the
basic assumptions of the phase-diffusion mode!,
By letting £,=/, and /,={,, and defining the in.
tensity as /{1) = | E(1}|?, we can sce from Eq. (B9)
that the intensity correlation function is given by

U M))=8% <12, (B10)

f.e., the intensity is always perfectly correlated
with itself in the phasc.diffusion model, because
it does not fluctuate.

APPENDIX C

Here we describe the numerical technique used
to evaluale the double integral in Eq. (19b). Let
r=(r-v)2 su(r-17)'2 and a=(ag)'’/?. Then,
we have

o\/2 Y]
(Ir(r)l')uj. drf. ds e 1,(ar)

Xe"'"l,(ﬂs)c""l"""""' (C‘)
MY v
dse ™[ (ar)
-Sf. drj. s ¢ o
x c'"'ll(as)c'"'l"'l"""", (c2)

where we used the symmetry of the integrand in
Eq. (C1) with respect to interchange of » and s,
Now defining

ula)= 1[G (c3)
and

v{x) -r""'".r'mf'ds et rshdy (as),
[}

(c1)
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ve have

u(v) - [‘.h'l,(m')l (), (Cn)

from which we canobtan

W =1 ) (v, (C6)

() ==2(F s T e ' (\)¢:~'~'":'I|(:l\'). [(ok4]

Thus we have transformed the double antegral into

a sct of two coupled ordinary differential cquations,

Fqs. (C6) and (C7), which can be solved readily
by standard numerical techniques.
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