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ABSTRACT

We consider the problem of approximating the Hessian matrix of a smooth
non-linear function using a minimum number of gradient evaluations, particularly
in the case that the Hessian has a known, fixed sparsity pattern. We study the
class of Direct Methods for this problem, and propose two new ways of clas-
sifying Direct Methods. Examples are given that show the relationships among
optimal methods from each class. The problem of finding a non-overlapping
direct cover is shown to be equivalent to a generalized graph coloring problem
- the distance-2 graph coloring problem. A theorem is proved showing that the
general distance-k graph coloring problem is NP-Complete for all fixed k > 2,
and hence that the optimal non-overlapping direct cover problem is also NP-
Complete. Some worst-case bounds on the performance of a simple coloring
heuristic are given. An appendix proves a well known folklore result, which
implies as a corollary that another class of methods, the Elimination Methods,
includes optimal polynomially-bounded algorithms.
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Section 1 lntroduction

1. Introduction

The problem of interest is the approximation of the Hessian matrix of a
smooth nonlinear function F : RI - R. In many circumstances, it is difficult
or even impossible to evaluate the Hessian of F from its exact representation.
Under these conditions, an approximation to the Hessian can be computed
using finite differences of the gradient. When the Hessian is a dense matrix,
this approximation is usually obtained by differencing the gradient along the
coordinate vectors, and hence requires n evaluations of the gradient (which is
the minimum possible number; see Appendix 1). However, if the Hessian has a
fixed sparsity pattern at every point (i.e., certain elements are known to be zero),
the Hessian may be approximated with a smaller number of gradient evaluations
by differencing along specially selected sets of vectors.

For example, consider the following sparsity pattern, in which 0 stands for
a known zero and 1 stands for a possible non-zero of the Hessian:

1 0•)
011

If the gradient is differenced along the directions (1, 1, O)T and (0, 0, 1)T, the
Hessian may be approximated with only two additional gradient evaluations.

When n is large and the proportion of zero elements is high, the number
of gradient evaluations needed to approximate the Hessian may be only a small
fraction of n. This result is particularly useful in numerical optimization algo-
rithms.

Let g(z) denote the gradient of F, and H(z) denote the Hessian. Assume that
g(z ° ) is known, and that we wish to approximate H(z° ) by evaluating g(z°+hdl),
1 = 1,..., k, for some step size h and a set of k difference vectors { di }. For

each I and sufficiently small h, we obtain n approximate linear equations

hH(z0 )d' , g(zo + hd') - g(z°), (1)

so that there are a total of nk equations. Note that many of the components of
/ di and H(z ° ) are usually zero.

Schemes for evaluating a Hessian approximation have been divided into
three categories, depending on the complexity of the subsystem of (1) that
must be solved for the unknown elements of the Hessian (see e.g., Coleman and
Mord (1981)). Direct Methods correspond to a diagonal subsystem; Substitution
Methods correspond to a triangular subsystem; and Elimination Methods cor-
respond simply to a nonsingular subsystem. There is a tradeoff here; as we move
from Direct Methods to Elimination Methods, we are less restricted and thus
expect fewer evaluations to be required, but we lose ease of approximation and
possibly numerical stability.
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Once a class of methods has been selected, the problem is to choose a specific
method that minimizes k for a given sparsity pattern, without requiring too much
effort to determine the vectors { dI }. This paper is concerned primarily with a
partial solution to this problem for direct methods. (The solution for elimination
methods is well known, but seems never to have been published. Appendix 1
gives a proof of the theorem behind the solution in this case.) Section 2 gives a
new classification for direct methods, Section 3 reduces one of these classes to a
graph coloring problem and shows that problem to be NP-complete, Section 4
gives some heuristic results for the same class, and Section 5 points out possible
future avenues of research.

2. Classifying Direct Methods

Let H denote the Hessian of F at the point z°. Any element of H that is
not known to be zero is called an unknown. An illuminating interpretation of a
direct method is to regard the non-zero components of a given d' as specifying a
subset S1 of the columns of H; S1 is called the 0h group of columns; by a slight
abuse of notation, a column index j is said to belong to S1 when its column does.
When two columns belonging to S, both have an unknown in row i, there is said
to be an overlap in S1 in row i.

By definition of a direct method, the family of subsets { S1 } must satisfy
the Direct Cover Property (DC):
(DC) For each unknown hej, there must be at least one Sj containing column

j such that column j is the only column in S, that has an unknown in
row i.

Any family of subsets of columns satisfying (DC) is called a direct cover for
H, and naturally gives a scheme for approximating H. That is, if ej is the i'l
unit vector, differencing along

d'- I= k
jES,

is the scheme associated with the family { St }. The problem of interest is thus
that of finding a minimum cardinality direct cover for a given H (an optimal
direct cover).

Since it is difficult to find a general optimal direct cover, the problem is
often approached heuristically by restricting the acceptable direct covers and
attempting to choose an optimal or near-optimal direct cover from the restricted
set. We suggest a new classification scheme for types of permitted direct covers.
From most to least restrictive, the categories are:
(1) Non-Overlap Direct Covers (NDC): No overlap may occur within any group
of columns, i.e. every group has at most one unknown in each row. The best-
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known heuristic, the CPR method, belongs to this class (see Curtis, Powell and
Reid (1974)).
(2) Sequentially Overlapping Direct Covers (SeqDC): A less restricted class may
be defined by observing that overlap within a group of an ordered direct cover
does not violate the direct cover property if the values of overlapping unknowns
can be resolved using preceding groups. In a SeqDC, columns in group I are
allowed to overlap in row m only if column m belongs to some group k such that
k < I. This definition implies that (DC) is satisfied: Consider an unknown hij
and let k = min{ I I either i or j belongs to group I } (k is called the minimum
index group of h.j); note that hi" cannot overlap with any other unknown in its
row in group I. Powell and Toint (1979) propose a heuristic of this class.
(3) Simultaneously Overlapping Direct Covers (SimDC): This is the most general
class of direct covers. Any kind of overlap is allowed, as long as (DC) is not
violated. In particular, an unknown may overlap in its row even in its minimum
index group as long as the overlap is resolved in some succeeding group. Thapa's
"New Direct Method" (1980) falls in this class, though he adds several other
restrictions.

Note that NDC C SeqDC C SimDC; these inclusions are strict, as the
following examples show. Consider

1 1I 0 1)
1I 1 0 0
0 1 110

\1 0 0 1 1)

Since every column overlaps with every other column, an NDC must use at least|

fi-e groups (and of course, five suffice). But { { 3 ), { 2, 4 ), { I1}, { 5 } ) is a SeqDC
of cardinality 4 < 5. Now consider (from Powell and Toint (1979))

'1 1 1 1 0 0)
I1 1 0 1 0
1 1 1 0 0 1
1 0 0 1 0 0
0 1 0 0 1 0
k0 0 I 0 0 Ij

It is easy to see that any SeqDC requires at least four groups, but {{1, 5 },{2, 6 }
{3, 4 ) ) is a SimDC of size only three.

The above discussion glossed over whether a column can belong to more than
one group. This consideration leads to an independent classification scheme for
direct covers into:
(1) Partitioned Direct Covers (prefix P): These require the direct cover to be a
partition of 1 , 2,...., n },i.e., every column must belong to exactly one group.

. .. .. . . .. .. . . .. ..11 0. ..i | " ' " ... I,'
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(2) General Direct Covers (prefix G): These allow either columns that belong to
no group, or columns that belong to more than one group.

All heuristics proposed so far known to this author restrict themselves to
partitioned direct covers. When hi1 is an unknown, column i must belong to
at least one group, for otherwise hii would not be determined. Since hii is an
unknown for all i in most unconstrained problems, it seems natural to restrict
our attention to direct covers in which each column belongs to at least one group.
However, sometimes the optimal direct cover is larger under this restriction. For
example, consider an NDC for

0 1 1
110

Since all three pairs of columns overlap, a PNDC must use three groups; however,
{ { 2 }, { 3 } } is a valid GNDC of smaller size. But such problems rarely occur in
unconstrained problems, and we shall henceforth consider only direct covers in
which every column belongs to at least one group.

From the remark in the definition of SeqDC that the definition of a SeqDC
implies (DC), it is easy to see that in any GSeqDC, we can delete a column from
all groups in which it appears except for its minimum index group, without
violating (DC) (i.e., since any hi, is always determined directly by some column
in that column's minimum index group, any later occurrences of that column are
superfluous). Thus in the SeqDC case, and so also in the NDC case, it suffices
to consider only partitioned direct covers.

But, unfortunately, PSimDC's are not optimal in the class of GSimDC.
Consider '1 0 0 1 1 1 1)

0 1 1 0 1 1 0

0 1 1 1 0 0 1
10 11 10 0 (2)
1101 10 0
11 00 01 0
1I 0 1 0 0 0 1

Laborious calculations verify that any PSimDC must have more than four groups.
However, { { 1, 2 ), { 1,3 , { 4,6 ), { 5,7) }is a GSimDC of size four where column
1 appears in two different groups. (The matrix (2) is the smallest possible such
example in terms of number of columns.)

3. An Equivalent Graph Coloring Problem; NP-Completeness

We show that the problem of finding an optimal NDC (which can be assumed
to be partitioned) is equivalent to a graph coloring problem, which is then shown
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to be NP-Complete. Our notation and terminology for graphs follow that of
Bondy and Murty (1976). Our way of writing a sparsity pattern as a (0, 1)-
matrix, call it S, could just as well be interpreted as the vertex-vertex incidence
matrix of an undirected graph. That is, the symmetry of the sparsity pattern is
reflected in the undirectedness of the graph. A partition of the columns of the
sparsity pattern naturally induces a partition of the vertices of the associated
graph; the vertex partition can be considered to be some sort of coloring on the
graph.

Two columns in the same group, i.e. two vertices of the same color, cannot
"overlap'. Column i overlaps column j if oA = sjt = 1 for some row k, i.e.,
if vertex i and vertex j are both adjacent to vertex k. Thus the restriction on
our graph coloring is that no two vertices of the same color can have a common
neighbor. If distance from vertex i to vertex ." in the graph is measured by
&minimum number of edges in any path between i and f , then we require that
any two vertices of the same color must be more than two units apart. In the
usual Graph Coloring Problem, we require that any two vertices of the same
color be more than one unit apart. This leads to defining a proper distance-k
coloring of a graph G to be a partition of the vertices of G into classes (colors)
so that any two vertices of the same color are more than k units apart. Then we
want to solve the

Distance-k Graph Coloring Problem (DkGCP) on a graph G: Find a proper
distance-k coloring of G in the minimum possible number of colors.

Then the usual Graph Coloring Problem (GCP) is D1GCP, and the optimal
NDC problem is equivalent to D2GCP. We shall use this equivalence to show
that the optimal NDC problem is NP-Complete by showing that D2GCP is NP-
Complete; in fact, we shall show the stronger result that DkGCP is NP-Complete
for any fixed k> 2.

First we review the definition of NP-Completeness (see Garey and Johnson
(1979)). The fundamental NP-Complete problem is the Satisfiability Problem
(SAT), which we use in a slightly simpler, but equivalent form:

3-Satisfiability (3SAT): Given a set of atoms u1 , u2, ... , u, we get the set of
literals L {u,Ux,U2,U 2 ,..., un, U4}. Let C { C1,C 2 ,...,Cm} be a set of
3-clauses drawn from L, that is, each C, C L, and 1C.1 = 3. Is there a truth
assignment T: { u2, ... , un ) --o { true,false} such that each C. contains at least
one ui with T(u,) = true or at least one Ui with T(ui) = false?

The set of clauses is really an abstraction of a logical formula; imagine the
clauses as parenthesized subformulae whose literals are connected by 'or', with
all the clauses connected with 'and'. Then a satisfying truth assignment makes
the whole formula true. 3SAT has been shown to be "at least as hard as" a whole
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class of hard problems. Thus, if 3SAT can be encoded into any other problem X,
then X inherits the 'at least as hard as" property and is called NP-Complete.

In order to encode 3SAT into DkGCP, DkGCP must be recast as a decision
problem. As is standard with optimization problems, we re-phrase DkGCP to
'Is there a distance-k coloring that uses p or fewer colors?" Our encoding is
a generalization of the one found in Karp's original proof (1972) of the NP-
Completeness of GCP. The theorem about the encoding requires the exclusion
of the case in which a clause contains both an atom and its negation. But such
clauses are always trivially satisfied, so we henceforth understand '3SAT" to
mean '3-Satisfiability without trivial clauses".

Given a 3SAT problem P, we construct from it a decision problem on a
graph Gk(P). If P has atoms u1 , u2 ,..., u, and clauses C1, C2 , ... , Cm, let h =
,k/21 and p = 2nk + m(k - 1). Let V and E denote the vertices and edges of
Gk(P), and define them by

Sui, Ui n literal vertices, false ver-
F, T, r -- 1)...,k -Itices, true verticesr•l...k} =1..-

C, r 0,...,k - Ia . clause vertices, intermediate
, l -1vertices

{u,,U1 } alli ui, Ui different colors
{ F ,F + }
{ T,T +

{ Ft, T} } all r, all i ; j all F's, T's different colors
{F, F}}
{Tr},T;}

I allr
It-*, Cos alls C° different color than its

{I', ui } if ui E C| literals
{I1,Ui} if Ui E C.)

{ui,T } al *i, U, can only be F! or

C', Ft ) r>h
C, F+' hI C , r > 0, different from
CTr - all 8 $ t, all i each other' and F's and
{ST +-- h T's

TC . }F} allu 1  } all sk odd C ' can only be F1 colors
{C 1 ,T,) } l alli all 8, k even itslers
{CE,~ J ofitilteal

- -- -- - --- ~ .- - ~~~~7*
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Note that we consider G(P) only for k > 2, implying that h + 1 < k, so h + 1
makes sense as a superscript for the F's and the T's. The global structure of
Gh(P) looks like:

J. _12 .. _.-__ .... c-, c
J~2. j-i C0 -**--Ce C-CA

0*0

To----- T - T__
(3)

We need three propositions about the structure of a proper distance-k color-
ing of Gk(P).

Proposition 1. The vertices F , T , and C, i n 1,..., s - 1,...,m, r =
1, ... , k must all have different colors, thus using up all p colors.

Proof. Consider the length k paths

T !JtT}-T ... F

which demonstrate that all F's and T's must be different colors. Now consider
the length k - 1 paths

CO,.,, F+IT+ F+2 - - F (4)
C* -- h+- - -T

which show that no Cq , 0 < q < h can be any F or T color, r > h. The
length at most k - 1 paths

_F + - F+ 2  -- Ft
C.-.c.- 2  . .- c- +l + 2 -

IT, -T 2 -- T

show that no C~q , h < q < k can be any Ft or T! color, r > h. Let I be an
index such that ul 0 C, and 9r E C,, and consider the length k - I paths

(T4 T-T .- T! k odd

lC - 74 -- T, k even

w.ich show that no CJ, 0 < q < h can be any Tt color, r _< h. The length k
paths

- C Fh-Fh -Fh-* ..- Fl k odd
3 lC ,--Fh - F -... -FI k even

(6)
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show that no C, , 0 < q < h can be any F! color, r < h, The length k paths

C- 2  ... C,- h+, r% - .-- F

show that no C,, h < q < k, can be any Ft or T, color, r < h. The length
k - 1 paths

_C2 h- -C -C - -2 ..- C1 k odd1 2l ,,',4-1 J-i "'

{.. . "" C ' .- C' k even
(7)

show that no can be the same color as any C', 0 < q, r < h. Finally, the
length k - 1 path

C,1_C2 • _... C,_ _C--.._C-C a-c -. ... - (8)

shows that no C, can be the same color as any C', h < q, r < k. 0

Since F!, T. and C q, q > 0, use up all the colors, we subsequently refer to
the colors by these vertex names.

Propoition 2. Vertices ui and Ui must be colored F! and T! in some order,
i--l,...,n.

Proof. Let j $4 i and consider the length k paths

_IP -Fk-1 -1 .- P

3- " -F- 2 -.

. .. ... - T ? (9)
|Ok-- Ck-2 _.
6-- _ C- . . . cl

which show that ui and U cannot be any color other than F! and T'. Also, u,
and Ui certainly cannot be the same color. 0

Thus a proper distance-k coloring of Gk(P) induces a truth assignment on
the literals.

Proposition 3. If the literals in clause C. have indices a, b, and c, then CO must
be colored F.I, F 1 , or F 1, s = 1, ... , m.

Proof. We can add C O to the beginning of the paths in (4), (5), (6), (7) and
(8), thus excluding all colors except F! from CO.. If I is an index such that
U1 I C,, U1 E C,, then we can drop the edge Fh-F from (6) and add CO. to
the beginning to show that CO cannot be any Ft color either. 0
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Now we are ready to state and prove the NP-Completeness theorem, which
then immediately implies that finding an optimal NDC is NP-Complete. This
theorem is a symmetric version of a result in Section 3 of Coleman and Mor6
(1981).

Theorem 1. For fixed k > 2, DkGCP is NP-Complete.

Proof. Since the size of GA(P) is a polynomial in m and n, it is clear that the
above reduction of 3SAT to DkGCP can be carried out in polynomial time. We
must show that there is a satisfying truth assignment for the 3SAT problem P
if and only if the graph Gk(P) has a proper distance-k coloring in p or fewer
colors.

First suppose that Gk(P) is properly distance-k colored. If 1, 1b, and 1, are
the literals contained in C,, then the length k path

shows that CO cannot be the same color as any of I., 1b, or I. But CO must
be colored F.1, F', or F1 by Proposition 3. By Proposition 2, each i is colored
either F% or so each clause must contain at least one true literal under the
truth assignment induced by the proper coloring, i.e., the clauses are satisfiable.

Now we need only show that Gk (P) can always be colored in p or fewer colors
if P is satisfiable. Let r be some satisfying truth assignment for C1, C2 ,..., C,.
First color the Ft's, T!'s and C"'s, r > 0, as decreed by Proposition 1. Color
ui with T. if r(ui) = true, color ui with F; otherwise; color U,. with the
complementary color. Each C, has at least one true literal, say L. Color C, with
color Fl. Finally, color I with C'+ 1 , r =- 1,..., k - 1, where the subscript on
C' is interpreted modulo m.

We now show that this coloring is proper. The colors Fr, T', 1 < r < k,
each appear on only one vertex and so are proper. Color C', 1 appears on exactly
two vertices, itself and 1'. A shortest possible path between these vertices in
GA(P) is

,+I (-Ck- k-2_. C

6-18 ~ ~ ~ 8+1-xh61 +

and is of length k + 1. This is a shortest path because at least k edges must
be used to get from layer I' to layer C, and one extra edge must be used to
get from an F or a T to a C. Also, any alternative path between these vertices
that goes through a Co has at least k + 2h edges because of the difference in
subscripts, and because the C's do not interconnect for r < h; thus color C' is
proper. Color T! also appears on exactly two vertices, itself and one of ui or Ui.
A shortest possible path between these vertices is the third one in (9) with T
added at the end. For j 0 i, at least k edges must be used to get from the u.
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layer to the T.1 layer, and an extra edge is necessary to go from an i vertex to
a j vertex. Any other path between these vertices through the I's uses at least
k + 2h- 1 edges (see (3)), so T! is proper. Finally, F! can appear in three places:
on itself, on ui or Uj, and on any number of COs whose clauses contain neither
u1 nor u,. As with u, or ii and T; above, ui or Ui and Ft do not cause a conflict.
Some shortest possible paths between F! and any CO are those in (6) with CO

added to the beginning. Again, at least k edges are necessary to go from the CO

layer to the F. layer, and an extra edge is necessary to go from an I vertex to
an i vertex. In (3) we see that any other path between these vertices through
the I's uses at least 2k edges, so no CO, F; pair causes a conflict. Between a u,
or Ui and a CO, some shortest possible paths are

of lengths k and k + 1 respectively. The first cannot exist because of the truth
assignment and because there are no trivial clauses. Once again, the second must
use k edges going from layer u. to layer CO, and an extra edge going from an
F or a T to a C, so no ui or U,, CO pair conflicts. Finally, a shortest possible
path between CO and Co is (7) with CO added to the beginning and CO added
to the end, of length k + 1. In (3) we see that any other path between these
vertices through the I's uses at least 2k edges, so no F; color conflicts. Thus
the coloring is proper, and the theorem is proved. 0

4. Heuristics for Finding Non-Overlapping Direct Covers

Theorem 1 is, unfortunately, a negative result, since it implies that finding
an optimal NDC is very hard. On a more positive note, much work has been done
on finding near-optimal, polynomial-time, heuristic algorithms for NP-Complete
problems (see Garey and Johnson (1979), chapter 6).

In the present case, the most obvious heuristic approach is to reduce D2GCP
to GCP and then apply known heuristic results on GCP to the reduced graph.
Given a graph G = (V, E), define D(G) (the distance-2 completion of G) to be
the graph on the same vertex set V, and with edges E = { { i, j } I i and j are
distance 2 or less apart in G }. Then it is easy to verify that a coloring of V is a
proper distance-2 coloring of G if and only if it is a proper (distance-i) coloring
of D2 (G) (note that this reduction also implies that DIGCP is NP-Complete).

If there were a "good' heuristic for GCP, then we could compose it with
D 2 (6) to obtain a "good" heuristic for D2GCP. Coleman and Mor6 (1981), Section
4, gives a good overview of the present state of the art in GCP heuristics, which
is not 'good". In fact, if cK(G) denotes the number of colors used by the best
heuristic on graph G, and X(G) denotes the optimal number of colors necessary

. ..... . . IIl . . ... - - - ... . ..-- . ,--- -- - .... . .. .... ..- l- "-.. .I :" " -
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for G (its chromatic number), then in the worst case

max - = 0 o (10)

' ao=n,,c, X(G) log

(this best heuristic and the bound (10) are due to Johnson (1974)). Two facts
mitigate the unpleasantness of (10). First, the range of D 2(0) does not include all
graphs, and hence a better bound than (10) can be obtained for D2GCP. Second,
average-case results have been obtained for GCP heuristics that are considerably
better than (10).

To improve on (10) for D2GCP, consider the specific heuristic called the
distance-2 sequential algorithm (D2SA). Define )I(i) = {j 3 i I j is distance <
2 from i }, the distance-2 neighborhood of a vertex i in a graph. Thus, if i has
color c in a proper distance-2 coloring, no j J/(i) can be color c. Then D2SA
assigns color

min{ c 1 no i E A(i), i < i, is colored }

to vertex i, i - 1,..., IVI. That is, D2SA assigns vertex i the smallest color
not conflicting with those already assigned. (This is just the distance-2 version
of the best known GCP heuristic, the sequential algorithm, which is called the
CPR method in its applications to approximating sparse Jacobians (see Curtis,
Powell and Reid (1974)).) Let c5 (G) denote the number of colors used by D2SA
when applied to G.

In order to obtain bounds on cS(G), we require two definitions. The maxi-
mum degree of G, A(G), is defined as

A(G) = maxl{j I , E E(G)}1.
I,

The distance-2 chromatic number of G, X 2 (G) is defined as the optimal number
of colors in a proper distance-2 coloring of G, i.e.

x2(G) m min{ k I G has a proper distance-2 coloring with k colors }.

The following theorem bounds X2 (G) and cS(G) in terms of A(G), and a
corollary improves (10) for D2SA:

Theorem 2. Let d = A(G). Then

d+ 1 _ X2(G) < cS(G) < d2 +1 (11)

for all graphs G.

Proof. Let i be a vertex incident to exactly d edges, and note that i and its d
nearest neighbors must all be different colors in a proper distance-2 coloring; this
proves the lower bound in (11). The second inequality in (11) is trivial.
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To prove the upper bound in (11), note that for any vertex i, I.W(i) I -- d +
d(d - 1) = d2 . Suppose that D2SA assigns color I to vertex i; by definition of

D2SA, this can happen only if at least one vertez of each color 1,..., I - 1 is
in J((i). Thus, if i were assigned color I > d2 + 1, then U./(i)l - d 2 -+ 1 (a

contradiction). (This proof is essentially a constructive proof of Corollary 8.2.1

of Bondy and Murty (1976).) 0

Corollary 1. For all n > 1,

max -S- < vrte I + I = o)<v/( . (12)
Connvtics 2(G)

Proof. Clearly, cS(G) < n. Let k = X2(G). Applying the first and third

inequalities of (11), we obtain

cS(G) (k- 1)2 + 1. (13)

Consider separately two cases:
Case 1: If n < (k - 1)2 + 1, this implies that -n - 1 < k and so

C(G) <n < n = 'n-- 1- 1- 2- + < V-- + 1.k - - --+ I On -I + I

Case 2: If n > (k - I)2 + 1, then k < %v'Wr + 1, and so

S(G) < (k-1)2 + 1 2+2 v
k - k _

Graphs that attain bound (13) for a certain ordering of their vertices exist for

k = 1, 2, 3, 4. The cases k = 1, 2 are trivial. For k = 3, consider Gs = (V 3,E 5 )

defined by
V 3 =z j i=1,2,3, j=1,2,3,4,5,

E3= { Z, Zi+1,"+ } all i, j (subscripts modulo 3 and 5).

Then D2SA assigns zi. color i when the vertices are ordered by i (which is

optimal by (11)), and assigns zjj color j when the vertices are ordered by j"

(which is the worst possible, by (13)). For k = 4, consider G4 =.(V4, E4) defined
by

V4 = Z jj i= 1, 2,3,4, j"= 1,...,1I0,

{{zij, Z+2,j'+5 } all i
E4= { Zij, Z,+,j+2 } all odd j all i (subscripts modulo 4 and 10).

{i.,Z +,,j+4 } all even jTJ



Section 5 Conclusions and Further Questions 13

Then D2SA applied to G4 also colors zij with i when ordered by is, and with
j when ordered by j (which are again respectively optimal and worst possible).
However, this construction seems difficult to extend. Even if it can be extended,
the number of vertices -is given by n = k((k - 1)2 + 1) so that

cS(Gh) - 0(.1/s)
k

which is a better result than (12). Thus, while (11), (12) and (13) are better
results than (10), 1 believe that the associated bounds are not the best possible.

For the average case, Grimmet and McDiarmid (1975) proved the following
theorem:

Theorem 3. Fix n vertices, and let vertices i and j" be independently connected
by an edge with fixed probability p, 0 < p < 1. Let cC(G) be the number of
colors used by CPR on G, and X(G) be the optimal number of colors (so that
cC(G) and X(G) are random variables). Then

C C G < 2 + e

X(G)

for all c > 0 with probability 1 - o(1).

Thus, on average, CPR almost never performs more than twice as badly as
the optimal strategy. This is a nice result, but for our purposes it has at least two
flaws. First, sparsity patterns in practical problems are not uniformly random as
Theorem 3 supposes. Second, even if they were, the density of sparsity patterns
tends to be 0(1/n) rather than constant with increasing n, so the theorem does
not apply anyway. It would be useful to determine a better random model for
sparsity patterns, or at least to prove Theorem 3 under the assumption that
p = 0(1/n).

S. Conclusions and Further Questions

As we move from Direct Methods to Elimination Methods, and from NDCs
to GSimDCs within Direct Methods, we are less restricted, and so can find
potentially more powerful methods. We also move from an NP-Complete problem
(finding an optimal NDC) to a polynomially-bounded one (a general Elimination
Method) (using Theorem 1, and Theorem 4 of the Appendix). It would be
interesting to know what intermediate point divides NP-Complete methods from
polynomial methods (if indeed there is a continuum at all).

In particular, it is usually easy to remove some restrictions so as to change
an NDC method into a SeqDC method (see Powell and Toint (1979)), and to see
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what properties a graph coloring must have to be a SeqDC. Can this be used
to prove a version of Theorem 1 for SeqDCs? SimDCs are harder to deal with
because of their simultaneous nature, but they can still be shown to be equivalent
to a form of graph "multi-coioring. Is the corresponding Theorem 1 still true?
The expectation is that these graph coloring problems are also NP-Complete,
which, if true, means that we must rely on heuristic algorithms to construct
SeqDCs and SimDCs. Can the bound (12) be significantly improved, or, more
importantly, can a provably better heuristic be found?

Other interesting questions involve the observed performance of heuristics.
Even CPR, one of the simplest possible heuristics, seems to give good results on
practical problems (see Coleman and Mor6 (1981), tables 3, 4 and 5). Can this
behavior be proved under some convincing randomness assumption, as suggested
at the end of Section 4? Much work remains to be done before we know whether
we are approximating sparse Hessians efficiently.
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Appendix 1. Elirination Methods

Assume that we approximate the Hessian of F : RI - R using an elimina-
tion method by evaluating the gradient of F at z0 along directions di, d2 ,..., dk.
If no entry of the Hessian is known to be zero, there are n(n + 1)/2 unknowns,
namely hij for all 1 < i < j n. The following theorem is well known in the
folklore, but the present author knows of no published proof:

Theorem 4. The maximum n:-imber of unknowns that can be determined from.
a set of gradient evaluations along any k directions, 0 < k < n, is given by

rA = n + (, - 1 -+ (n - k + 1) = k(n - k + 1)
2

In particular, in the completely dense case, n evaluations are necessary to obtain
all n(n + 1)/2 unknowns.

Proof. Let g(z) denote the gradient of F at z, and H(z) denote the Hessian of
F at z. Evaluating g(z) along the k directions dl, d2,... , d produces the nk
approximate linear equations

(d)TH(zo) - #-(o + d') - #(zo), i = 1,...,k. (14)

We assume that H is symmetric, and so identify unknowns hii and hy, in (14).
The number of unknowns that can be determined from equations (14) is bounded
above by the rank of the nk by n(n + 1)/2 coefficient matrix of the hij's when
no hij is assumed to be zero. Questions of rank could be affected by dependence
among the di; we thus assume the Haar Condition, namely that every maximal
square submatrix of the matrix whose jt h column is d' is non-singular.

To describe the coefficient matrix, order the equations in (14) so that equa-
tions with left-hand side (di)TH.,, i = 1,..., k appear first, those with left-hand
side (d')TH.2 , i = 1, ... , k appear next, etc., and then order the unknowns as
h11, h2 1, h2 2, h3 l, h3 2, ... , h,,. Given this ordering, call the coefficient matrix in
(14) Ak; partition Ah row-wise into n blocks of k rows each, and column-wise
into n blocks, where the th column block has i columns. Let the i, jt h submatrix
of the partition be denoted by A,, i,j - 1,.. ., n. Define cj as the k-vector of

the jh components of the { di ), i.e., e = (d, d? d ) , , n. Each

A ,j is completely described by

of if i> j;At . ( , I , "2 if i = ji;
, (0,0$,... " ..',o), if i< ..

12 i

16. . '.
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For example, when n = 4, Ak has the form

hll h21  h22  h31 h3 2  h33 h41  h,2 h43 h4

1 C2  C 3 C4

c 1 C2  C (15)€1  c1  c2  € (lS) ]

CI C 2 C3 C4

where zero elements are not shown.
To complete the proof, it must be shown that rank(Ak) = r.,k = (n + (n -

1)+..+2+1)-((n-k)+(n-k-1)+...+2+1). We show first
that the last n - k columns of column block n, the last (n - k - 1) columns
of column block n - 1, ... , and the last column of column block k + 1 can be
eliminated using linear combinations of the remaining columns. Note that the
complementary set of columns, denoted by C, is precisely the set of columns
whose non-zero entry of largest row index is c2 for some j < k.

Define X1 to be the solution of the system

(CIc €2  ... ck)X I = -c' ,  I = k-I- 1, k -'1 2,..., n

(XI must be unique under the assumption of the Haar condition). The following
computations show that linear combinations of the columns in C, using the X's
as multipliers, can be used to eliminate the columns mentioned above; since the
form of the linear combinations is complicated, the result is best understood by
referring to example (15) and assuming that k = 2.

To eliminate the last column of column block n from Ak, we add to it X7
times column j of column block n, j = 1, k, and XXn times column jof
column block m, m = 1,...,k, j = 1...,m. In row block n, the new last
column is cn + V - Xi, which is zero by definition of the X7. (all terms from
the first column block). In row blocks k < i < n, there is no contribution from
any column block. In row blocks i < k, the sum includes XC'" from column
block n, zero from column block m when k < m < n, XnAc k from column block
k, XW ck- 1 from column block k-i ... , X! 'ci'+X' 1 C 1)-
from column block i, and zero from column blocks m when m < i, for a total of
X (Cn + (XC 1 + XnC2 +... + Xnc)), which is again zero. Thus the last column
of column block n is dependent on the columns in C, and by symmetry so is the
last column of each column block k + 1, k + 2,..., n - 1.

Now we eliminate column n - 1 of column block n using the columns in C.
Add to it X'- I times column j of column block n, j 1,..., k, ),n times column

-:7
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of column block n-1, j = 1,...,k, and + X,-X.times column
of column block m, M = 1, ... , k I .. m,. In row block n the new column
n-i of column block n is - -" -  , which is zero by the definition
of the Xj- 1 (all terms from column block n). In row block n-l, the new column
is + =Z Xcjc, which is again zero (the first term from column block n, the
rest from column block n - 1). In row block k < i < n - 1, no contribution
is made by any column block. In row block i < k, the sum includes M'-c'
from column block n, ..C - 1 from column block n- I, zero from column block

when k < m < n - 1) (XnX" + X-l>I)c4 from column block k, ...xx x' - Yc + Xn-1 i- 1 + . n-1cl .- . . ,-
from column block i, and zero from column block m when m < i, for a total of
X(C'-' + (X-1ck + ... + )'c')) + Xil(Cn + ...h + + 0.
Thus column n -1 of column block n is also dependent on the columns in C, and
again by symmetry, so are all columns j in column blocks m with k < j < m.

By eliminating 1 +2+... + (n - k) columns we have shown that rank(Ak) <
r,,k. To show that rank(Ak) = r,1,k, delete the columns that were eliminated
above from Ak, an'd delete the last k - i rows from each row block i, i < k.
Then the remaining matrix is r,,y by r,, and is block upper triangular with
square, non-singular diagonal blocks. Thus this submatrix of Al is non-singular,
so rank(Ak) rn,t, and the theorem is proved. 0

A corollary to this proof is that the minimum number of gradient evaluations
necessary to approximate a Hessian (sparse or dense) can be found in time
bounded by O(n') by the following procedure:

1. Set k = 1.
2. Form Ak, deleting the columns corresponding to variables known to be

zero.
3. Evaluate rank(Ak) - tk, say. If t& > number of unknowns, then k is

optimal; otherwise, set k = k + 1 and go to (2).
Step 3 can be performed at most n times, on a matrix whose number of

columns is O(n 2 ). Evaluation of rank requires O(Icolumnsl 3 ) operations, giving
a total bound of O(n7 ). In practice, Theorem 4 can be used to get reasonable
bounds on k, making the work more like 0(n8). However, numerical difficulties
may make a general elimination method untrustworthy in any case.

LI
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