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Local improvement algorithms are widely used to solve a variety of problems,

including linear programming, integer programming, and linear complementar-

Ity. One reason for the popularity of local Improvement methods is that

they tend to run quickly for problems encountered In practice. On the other

hand, for some particular optimization problems, worst case examples have

been constructed whose performance grows exponentially with 
the size of the

problem. It Is natural to ask whether these are characteristics of local

improvement algorithms In general, and to seek a more exact description of

the performance of these algorithms.

-The subject of this report Is an analysis of the expected, or average case

performance of local Improvement algorithms. The first chapter presents the

basic model, defines the combinatorial structures which are the basis for

the analysis, and describes the randomness assumptions upon which the

expectation are based. The second chapter examines these structures In more

detail, Including an analysis of both best and worst case performance. The

third chapter discusses simulation results which predict an approximately

linear average case performance, and proves an O(n? log n) upper bound for

two of the random distributions assumed. Chapter Four proves some

extensions and sharper versions of this upper bound. The fifth chapter

applies the model to principal pivoting algorithms for the linear

complementarity problem, and to the simplex method. Although local

improvement Is not guaranteed to find a global optimum for all problems,

most notably those that are NP-complete, It Is nonetheless often used In

these cases. Chapter Six discusses these applications.
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CHAPTER 1.
A MODEL OF LOCAL IMPROVEMENT ALGORITHMS

1.1 Introduction

Suppose you are at the base of a mountain in the middle of the night, and you

want to climb to the top. The moon is dim, so all you have to to light the way is a

flashlight, which lets you see the ground within a ten foot radius. What do you do?

You sweep the area around you with the flashlight, find a nearby spot that is a little

higher than where you are standing, and move there. Then you repeat this process,

always increasing your elevation, until you reach a peak- a point higher than the

area around it. If the mountain has only one peak, you are guaranteed to get to

the top. Such a method is called a hill climbing or local improvement algorithm.

Hill climbing methods are used in algorithms for linear programming, linear

complementarity, artificial intelligence applications, and many other combinatorial

optimization problems. Most of the analysis of these methods has dealt with the

worst case performance of a particular algorithm. More recently, there has been

some work concerning the average case performance of the Simplex Method (Ross,

1981) which, however, fails to take into account the combinatorial structure of the

problem. We present a general model which overcomes this difficulty and which can

be applied to a variety of local improvement algorithms.

In an optimization problem, the horizontal cross section of the mountain cor-

responds to the domain, or search space; the height of a spot of ground cor-

responds to the value of the objective function we wish to maximize over the domain.

Suppose, then, we have a real valued function f whose domain is the set of vertices

of the n-cube (i.e., the set of n-tuples of zeroes and ones), and that we wish to

maximize 1(x) over this space. We can assume that all the values oh f are distinct,

for if f(x) = f(y) we say f(z) > f(y) if x is lexicographically greater (see Dantzig,

1963) than y. For example, if f(0110) f 1(0101) we say that f(0110) is the larger.

"" ' ...... ~1 IIlI I I1



The domain of the function can be thought of as a set of boolean decision variables:

many optimization problems may be cast in this form (see Cook, 1971). If f is to

be minimized, we maximize -f. In some applications such as the simplex method,

not all vertices of the hypercube correspond to feasible points. If a vertex x is not

feasible, we apply penalties for constraint violation to the value of f(x).

There is a natural notion of distance between two vertices of the n-cube: the

number of components in which they differ. This distance is a metric and is known

as the Hamming distance (it equals the square of the Euclidean norm). If z and

y are at a distance of zero, then x = y; if z and y are at a distance of one, they

share an edge and are said to be adjacent or neighbors. A vertex whose function

value is greater than any of its n neighbors is called a local maximum. If f has the

property that a local maximum is a global maximum we say that f is Local-Global

or LG for short. The LG property is of course reminiscent of the property that a

local minimum of a convex function is a global one; see also (Dearing, 1976).

If f is LG, a local improvement algorithm will solve the problem of maximizing

f over the stated domain. In particular, we define the Optimal Adjacency (OA)

algorithm as follows:

Optimal Adjacency Algorithm

0. Start with any vertex z.

1. ff z is locally optimal, stop with z the solution. Otherwise proceed to 2.
2. Let y be the optimal vertex adjacent to z. Set x equal to V and go to 1.

Since the domain is finite and has only one local optimum, the algorithm must

terminate after finitely many steps with the correct solution.

Note that every vertex has only n neighbors and that the diameter of the space

(the maximum possible Hamming distance between any two vertices) is also n. A

single iteration of the OA algorithm requires at most n function evaluations, and

it is quite possible for the number of iterations to be a low order polynomial. The

next section deals with the problem of how many iterations the algorithm can be

2
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expected to take for a particular instance of an LG problem.

1.2 QArL

If we are given a particular LG function f, we can construct a directed tree to

show how many iterations the optimal adjacency algorithm will require:

i) Each vertex of the n-cube corresponds to a node of the tree.
ii) The father of a vertex is its optimal adjacent vertex; if a vertex is a local

optimum, it has no father.

The tree is called an Optimal Adjacency Tree, or OAT. Its root is the local

(hence globally unique) optimum. The OAT displays the path followed by the algo-

rithm by going from son to father on the tree (a biologically backwards progression.)

It should be emphasized that for any instance of any local-global problem there is

a unique OAT which describes the action of the OA algorithm on that instance.

Figure 1.1 shows four possible OATs for n=2,

n 01 10 1 11 0 Figure 1.1

11 1 01 01

and Figure 1.2 shows a possible OAT for n 3.

110 00 0  Figure 1.2
110 101 Oil

111

21 The set of OATs of order n has a 2"-fold symmetry. Any of the 2" vertices

could be the root; from here on we always assume for notational convenience that

the origin, 00.. .0, is the root.

3
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Suppose that we were going to run the OA algorithm on a particular instance

of a problem, and we knew that this instance had the structure shown in Figure 1.2.

How many iterations would we expect the algorithm to take? If the starting vertex

is chosen at random, there would be an equal probability of starting at each of the

8 vertices. In general for each starting vertex, the path to the root in the OAT is

by definition the path the optimal adjacency algorithm will follow. Thus the height

or pathlength of each vertex in the tree is the number of iterations the algorithm

would need to reach the optimum from that vertex. The mean pathlength of the

tree (the mean of the pathlengths of all the nodes in the tree) is precisely equal to

the expected number of iterations of the OA algorithm. Thus for a problem which

has the structure of the tree in Figure 1.2, the OA algorithm would be expected

to take (1 X 1 + 3 X 2 + 3 X 3 + 1 X 4)/8 = 21 iterations. As another example,

the expected number of iterations required for any LG problem with n = 2 is two,

because all OATs for n = 2 have a mean pathlength of two.

If f is not local-global, the rules for producing the OAT will instead produce

an OAF, or Optimal Adjacency Forest, with one tree per local optimum.

There exist classes of OATs which are exponentially high, which implies that

the mean pathlength is also. (Note: the height of a tree is the maximum height of

the vertices in the tree. A class of trees is exponentially high if the heights of the

trees in the class grow exponentially in n.) The study of worst case OATs is closely

related to the study of snakes-in-boxes; results from the latter can be applied to the

former with little change. In the next chapter we show that a lower bound on the

maximum height of an OAT of order n is given by

7X2 n

4(n-1) - 1

for n > 6. This comes from a lower bound on snakes-in-boxes due to Victor Klee

(Klee, 1970).

Since there exist OATs that are exponentially high, any strict bound on the

performance of the OA algorithm must be exponential in n. If the worst case OAT

4



is in some sense rarely encountered, it is of interest to ask, what is the expected

performance of the optimal adjacency algorithm? Or, equivalently, what is the

expected mean pathlength of an OAT of order n? This question is of course not

well defined without a notion of an underlying probability distribution of OATs.

There is strong empirical evidence that under a variety of underlying distributions,

the expected mean pathlength of an OAT is linear in n. The next section defines

the necessary terminology for describing these underlying probability distributions.

1.3 LG Orderings and the Boundary .

When we construct an OAT from the function f, we are not interested in the

specific numeric values of f, but in the ordering of values of f on the vertices. Since

functional values are distinct, the vertices can be uniquely ordered from high to low

function value. Such a list of vertices is called an ordering. For our purposes, the

ordering of the vertices defines f. If f were as in Example A,

000

001

100

010 Example A, 101
~111

110

011

then the rules for OATs would produce the OAT we looked at in Figure 1.2. In this

case we say the ordering produces the OAT.

Not every ordering produces an OAT; many produce OAFs instead. For instance,

Example B,

00
1101 Example B

10,
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is an ordering for n = 2 which produces the OAF

/0 11

10 01

because 00 and 11 are not adjacent.

If an ordering produces an OAT it is said to be an LG ordering. An obvious

necessary and sufficient condition that an ordering be LG is that every vertex except

the first have an adjacent vertex that is located higher up in the ordering. Example

B fails to be LG because all of the neighbors of the vertex 11 are located below it

in the ordering.

Each LG ordering produces only one OAT, but given an OAT, there can exist

many orderings which produce it. For example, if the bottom two vertices in

Example A traded places in the ordering, the resulting OAT would still be Figure

1.2.

How can we test an ordering for LG? We verify that each of its vertices except

the top one has at least one neighbor above it. How can we produce an ordering

that is local-global? One method would be to generate orderings at random until

one is reached that passes the above test and is therefore LG. This method, though

simple, has the disadvantage that the proportion of orderings that are LG becomes

vanishingly small as n increases. There is a better method that produces only

orderings. However, before presenting it, we need one more concept: the boundary.

Suppose we had an LG ordering written down somewhere, and all we could

remember were the first five vertices. What could we deduce about the sixth? The

sixth vertex would have to be adjacent to one or more of the first five, and distinct

from them. If S is a subset of the vertices of the n-cube, we define the boundary

of S to consist of all vertices z such that z is not in S and such that for some y

in S, z and y are adjacent. It is obvious that the sixth vertex in any LG ordering

must belong to the boundary of the first five; in general the i + 1st vertex in an LG

*ordering must be an element of the bouidary for the first i vertices. To recursively

6



enumerate all LG orderings, then, we use the following procedure.

Procedure Enumerate (When this procedure is called it is passed the values of
n, i, and the first i values of an array A[1,...,n of vertices.)

0. Begin
1. If i=n, output A and go to 5.
2. Compute the boundary, B, of A[I], ... ,Ali]
3. Set i :- i+1.
4. For each member x of B, Do

Begin
Set Ali] := x
Call procedure enumerate
End

5. End

If we want to produce one LG ordering randomly, we change step 4 to "For

some member x of B". Then at each step of the random generation process, a vertex

z is selected from the boundary, assigned a father, and attached to the tree.

How we select x determines what the underlying distribution is. We could

(theoretically speaking) choose z so as to give each LG ordering an equal chance

of being produced: this distribution is called "all LG orderings equally likely." We

could let each member of the boundary have an equal chance of being chosen: this

distribution is called "boundary members equally likely" or just the "boundary"

distribution for short. It can be thought of in the following way: if we know what

the i best points are (best in the sense of best objective function value), then if the

function is going to be LG, the i + 1st best point must be a member of the boundary

set of these i points; saying that these boundary points all have equal probability

of being that i + 1st best point is exactly what is meant by "boundary members

equally likely."

Note: "boundary members equally likely" is not the same as "all LG orderings

equally likely," because the size of the boundary at stage i varies depending on

what the previous choices have been. Thus, an ordering that has an unusually large

boundary in the early stages would be more likely to occur under the LO-orderings-

equally-likely distribution than under the boundary distribution.

7
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Every boundary member has at least one neighbor that has already been

selected, but some have more such neighbors than others (n at most, since each ver-

tex has n neighbors). An alternate criterion would be to give each boundary member

a weight proportional to the number of chosen neighbors it has; thus vertices with

more chosen neighbors are more likely to be chosen themselves. For reasons that

will become clear later, this distribution is called the coboundary distribution. This

notion of randomness may seem slightly preferable to the boundary distribution

if one thinks that one can judge a vertex by its neighbors (not an unreasonable

supposition for a local-global problem).

1.4 BATS

We have now defined three different possible distributions on local-global prob-

lems. From an ordering we can deduce the OAT which tells us exactly how many

iterations the OA algorithm will take. Unfortunately, it is hard to analyze OATs

theoretically because an OAT is so tightly constrained; what nodes can be attached

in one place often depends on what nodes are atached somewhere else. For instance,

the tree in Figure 1.3 is not an OAT:

01
Figure 1.3

The tree implies f(11) < f(01) < f1(00), so f(11) < f1(00). By the optimal

adjacency rule, the father of 10 must be the member of the set (00, 11} which has

the larger function value. The above inequality implies that 00 should be the father,

but in Figure 1.3 the father is 11, instead. This is a contradiction, so the tree is not

an OAT. To make it an OAT, the node 10 would have to be moved and attached to

8



the node 00. A more subtle example is shown below in Figure 1.4.

l(p 010 001
10 101 Figure 1.410111 Oi

111

Consider the node 101: its three neighbors are 100, 001, and 111. By definition

of the optimal adjacency rule, the one of these with largest function value must

be the father of 101. Looking at Figure 1.4, we see that the father is 100. This

implies that f(100) > f(001). However, we can deduce by the same reasoning

that f(001) > f(010) and that f(010) > f(100). Together these relations yield

f(100) > f(001) > f(010) > f(100), a contradiction. The tree in Figure 1.4 is

therefore not an OAT. The problem is that the OA algorithm must choose the best

neighbor to go to. Suppose we relaxed this condition, and only required that the

algorithm proceed from a vertex to a better adjacent vertex. The trees in Figures

1.3 and 1.4 are consistent with the action of such an algorithm. Formally, we define

the Better Adjacency (BA) algorithm as follows:

BA (Better Adjacency) Algorithm

1. Start at a random vertex z.
2. Search through x's neighbors until a better one, y, is found or all neighbors

have been tried. In the former case set x equal to y and iterate (2.); in the latter
case stop with x optimal.

This algorithm is valid for the same reasons as the OA algorithm; its repre-

sentation is the Better Adjacency Tree, or BAT. Given any LG ordering, we can

pick a higher valued neighbor for each vertex (except the origin) and make that

neighbor its father. The resulting tree (it is a tree since it has no cycles and there

is a path connecting all nodes to the origin) is a BAT.

For example, the tree in Figure 1.3 could have been generated from the ordering

00

01
11

" 10.

9



The tree in Figure 1.4 could have been generated from the ordering

000

100

010

001

101

110

011
111.

Of course, the set of BATs properly contains the set of OATs.

An OAT can be thought of as a directed graph H = (V, F) whose vertex set V

consists of the vertices of the n-cube, and whose directed edges consist of the son,

father pairs in the OAT. Suppose we have an OAT and an ordering which produces

it. If we assign to each vertex x a value 7r, equal to its position in the ordering, then

for every edge (X, y) in the graph, it must be true that 7r, > 7r.. This property of

the 7r values is well known to be a necessary and sufficient condition that a directed

graph be acyclic, i.e., that the graph has no directed cycles. Note that this property

is necessary; if the graph H is acyclic we can derive an ordering that corresponds

to it. The fact that we can "go the other way" and derive an ordering from the tree

allows us to define OATs and. BATs in graph theoretic terminology without explicit

reference to function values. These definitions have the advantage of clarifying the

distinction between OATs and BATs.

Let G -- (V, E) be a graph of the n-cube so that the nodes of G are the vertices

of the n-cube, and there is an edge joining two vertices iff they are adjacent. Let

H _ (V, F) be a directed subgraph of G with outdegree 1 (no node has more than

one edge leaving it) and with IFI = IVI - 1 edges. Then H is a BAT iff it is
acyclic. (The directed edges correspond to {son, father} pairs of the BAT.) Now
define H' = (V, F) so that F is contained in F' and for every directed edge (u, v)

in F and edge (u, w) in G, the edge (wv) is in F'. Note that H' is not a subgraph

10
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of G, because it contains these neighbor-to-father edges. Then H is an OAT iff H'

is acyclic. The intuitive meaning is that when building BATs the only information

in a (son, father} pair is that f(son) < f(father); when building OATs, a {son,

father pair) also implies that f(f ather) > f(any other neighbor of the son's). In

both cases a cycle means there is a contradiction via transitivity of ">".

Since only one OAT can be generated from an ordering, the expected mean

pathlength of an OAT from, say, the boundary distribution is well defined. This

is not true for BATs because usually many BATs can be generated from a single

ordering. To resolve the ambiguity, we adopt the convention that a BAT is to be

randomly generated from an ordering by choosing from among the possible fathers

with equal probability, for each vertex. We can now discuss the expected mean

pathlengths of OATs and BATs from the coboundary and other distributions.

11
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CHAPTER 2.

SOME PROPERTIES OF OATS AND BATS

2.1 Best Case Trees

The purpose of this chapter is to explore some combinatorial properties of OATs

and BATs. The later chapters do not depend logically on any of this material, but

we hope that it will serve to give the reader more familiarity with the structures

defined in Chapter 1. The first topic we deal with is the best case for a local

improvement algorithm.

In an instance of an LG problem with best possible structure, the algorithm

would decrease the Hamming distance to the optimum point at every iteration. If

the origin were the optimum, we would always change ones to zeroes but never zeroes

to ones. Since on the average the starting vertex will have half of its coordinates

equal to one, we would expect the average number of iterations to be about n/2.

We have defined the pathlength of the root to be 1 (it takes one iteration to verify

optimality), so the exact value of the lowest possible mean pathlength is in fact

1 + n/2.

One tree structure which reflects this best case situation is the binomial tree

(see Knuth, 1973). The binomial tree of order n is constructed inductively by

appending the binomial trees of order n - 1, n - 2, ,0 to a root vertex. Figure

2.1 shows the binomial trees of orders one, two, and three.

0

1 1? 01 100 010 001 Figure 2.1

U 1 101 011
111

One of the orderings that generates a binomial tree can be found by listing

the vertices in the tree level by level (starting at the root), and going from left to

12
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right on each level. There are of course other orderings that would yield the same

binomial tree. In general one can employ the topological sort method (as described

in Knuth, 1973) to produce other orderings which yield the same OAT as a given

ordering.

The binomial tree is ni-, the only possible OAT with smallest mean pathlength.

In Figure 2.2 we show an OAT with mean pathlength I + n/2 for n = 3 which is

not a binomial tree.

A' TS0OI Figure 2.2
110 101 Oil

The best possible mean pathlength of a BAT is of course also 1 + n/2. The

example of a BAT that fails to be an OAT, Figure 1.4, is one of many such trees. The

total number of best case BATs is fairly large. Since there are () nodes positioned

k levels below the root, and each of these nodes has k possible fathers on the next

level up, there exist

k 1

best case BATs whose root is 00... 0, and there are 2 " times as many altogether.

2.2 Worst Case 'Trees

In contrast with the best case, the problem of finding the largest possible height

or mean pathlength of an OAT is an unsolved combinatorial problem. Even for

small values of n it is not a trivial problem to find an OAT of greatest height; to

give an idea of how quickly OATs become complicated we show a worst case OAT

of order 4 in Figure 2.3.

13



0000

S001r"-1000 0100 0001

1010 010

01 0 "111 Figure 2.31001 1111
IN

1100 0101

1110

Any path from a vertex to the root of an OAT must satisfy what we call the

grandfather clause: the vertex may not be adjacent to any vertices in the path

except its father. If the vertex were adjacent to its great grandfather, for instance,

it would not be the son of its optimal adjacent point, since the great grandfather

must have a better function value than the father. Therefore, a vertex in a path

of an OAT is adjacent to its father and its son, but not to any other vertices in

the path. This property is similar to the idea of a snake-in-a-box. A n-dimensional

snake-in-a-box is defined to be a tour, or circuit, of vertices on an n-cube with the

property that every vertex in the tour is adjacent to exactly two other vertices in

the tour (the ones immediately preceding and succeeding it). If we remove one

vertex from a snake-in-a-box, we have a path that satisfies the grandfather clause.

It is easy to construct an OAT which contains some particular path: for instance,

make the vertices in the path the first vertices in the ordering. The other vertices

can be placed below them in the ordering in any way that does not violate the LG

property, and the OAT produced from such an ordering will contain the given path.

4. Therefore, given a snake-in-a-box containing L vertices, we can always construct

an OAT whose height is at least L - 1. Victor Klee (Klee, 1970) has shown that,

for n > 6, there exists a snake-in-a-box of length

4(n- 1)"

(The greatest length .s unknown.) Subtracting one from this number gives the lower

bound on the maximum height of an OAT which was stated in Chapter 1.

14



BATs are less tightly constrained than OATs and hence are often easier to

analyze. In particular, BATs need not satisfy the grandfather clause. The worst

case BAT is a single path; its height is 2", and it is exemplified by the Gray code

(see Reingold et a, 1977, and Cottle, 1978).

2.3 The Local-Global Property

The total number of orderings of order n is (2")!. For very small values of

n the orderings can be enumerated to discover the number of them that are LG.

When n equals two, 2/3 of them are LG; when n equals three, 3/14 of them are LG.
As n increases, this proportion decreases rapidly. However, the sequence does not

appear to follow any simple combinatorial pattern. We can estimate the proportion

of orderings that are LG in the following way: an ordering is LG if every vertex in

the ordering, except the root, has a neighbor above it. Thus the probability of a

random ordering's being LG is the probability of the intersection of these events,

Prob f(the kth vertex is not a local optimum)]. (2.3.1)

We make the (false) simplifying assumption that these events are independent and

approximate (2.3.1) by

2iP(k), (2.3.2)

where P(k) denotes the probability that the kth vertex in the ordering is not a local

optimum. Next we approximate the P(k) by

P(2" - k) = 1 - n 1 1- (k/2-). (2.3.3)

The left hand side of (2.3.3) is one minus the probability that the n neighbors will be

arranged in the k lowest positions in the ordering, which is one minus the probability

that the vertex in the k + Ist lowest position is a local optimum. Substituting (2.3.3)

15

AL . 9



I

into (2.3.2), the estimate of the probability of occurence of the LG property becomes

2j 2 (1 - (i /2 )) = exp( 2 2 log (1 - (i/2n)n))

i=O s=O

- exp(- E (i/2) p" (2n)"

-e (2.3.4)

This estimate indicates that the LG . is quite special. The chances of a

random ordering's being LG become vaishiirly small as n gets large. Experimental

results suggest that the estimate is some what high. This makes sense because the

estimate is based on the assumption that the events, "the kth vertex is not a local

optimum", are independent. In fact these events are negatively correlated, for if a

vertex is not a local optimum, its neighbors have a slightly higher chance of being

one. The effect of the simplifying assumption, therefore, would be to increase the

estimate.

SWe should point out that the assumption that all orderings are equally likely to

* occur is not necessarily very realistic. In many problems, function values of adjacent

vertices tend to be relatively close to one another. A more realistic simplifying

assumption, then, might be that the function values of a point's neighbors are

independently distributed, each with an equal chance of being better or worse. In

this case, the probability that a vertex is a local optimum is 2 - n , so the probability

that the ordering is LG is approximately 1/e. Unfortunately this assumption is

not self-consistent, but it is interesting because it suggests a relationship between

problems that are LG and problems in which adjacent vertices tend to have similar

function values.

of the LG property: an ordering is LG if and only if its ith vertex is in the boundary

of the first i - I vertices, for i - 2,..., 2". Fix n. If B(i) is a number equal to the
16 i



size of the smallest possible boundary of a set of i points, then

2 B(i) (2.3.5)

must be a lower bound on the total number of LG orderings. In the next chapter

we derive the following bounds:

B(i) n j~ Pk :- i < Pk+, k < L-- --

P& iPi+2, k< -J

(k + 2> P _< <Pk+l,, - -

where Pk denotes the sum of the first k + 1 binomial coefficients. Substituting into

(2.3.5), we get

number of LG orderings > i ( X (k +1

>

> 22". (2.3.6)

Although (2.3.6) is a conservative lower bound, it is clear that even for n = 6 it

would not be feasible to perform an exhaustive enumeration of LG orderings.

17



CHAPTER 3.

BOUNDS ON EXPECTED MEAN PATHLENGTH

3.1 Empirical resulta

3.1.1 Linearity of expected mean pathlength

First we briefly present some empirical results. From imulations perform .d

by Craig Tovey, Frank Heartney, and Charles Fay, it appears that the expected

mean pathlength of both OATs and BATs is linear in n for n = 4,..., 15 under all

three notions of randomness: boundary, coboundary, and all LG orderings equally

likely (see the graphs on the following pages). Bad cases - large heights - appear to

be extremely rare. This is the fundamental empirical result. Though over 200,000

OATs altogether were generated, the largest mean pathlengths and heights seen were

just two to three times the average. The expected value of the mean pathlengths

appears to be linear in n although there exist cases that are O(2"/n). The "bad"

cases evidently are so rare that it doesn't matter much which underlying distributic

is used: the expected mean pathlength remains small. The empirical results lead us

to conjecture that expected mean pathlength is less than n.

Conjecture 3.1 Under any of the distributions, boundary, coboundary, and La

orderings equally likely, the expected mean pathlength of both OATs and BATs is

less than n. Equivalently, the expected number of iterations of an optimal adjacency

or better adjacency algorithm is less than n with any of these distributions.

18
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3.1.2 OATs versus BATs

The empirical results cited above allow us to compare the relative merits of

"optimal adjacency" and "better adjacency". Not surprisingly, OATs have a smaller

average mean pathlength: approximately .79n - .2 for OATs versus .92n -. 1 for

BATs. We can expect, therefore, that choosing the best neighbor rather than

any better neighbor will lead to about a fifteen percent reduction in the number

of iterations, on the average. This estimate is pertinent to the design of local

improvement algorithms for integer programming (Hillier, 1969). As we will discuss

in Chapter 5, to apply the model to the Simplex Method for linear programming,

the model can be modified so that it includes only a subset of the hypercube vertices.

When this is done, the difference between OATs and BATs increases to about fifty

percent, which is consistent with experimental results of 38 to 67 percent found

in (Cutler and Wolfe, 1963). Though more iterations may be required, the cost

of a single iteration is apt to be considerably less in the case of better adjacency

because fewer function evaluations are required. We face a tradeoff be.tween the

total number of iterations and the cost of a single iteration. It seems likely that

better adjacency (or some improved variant of it, such as the best gradient approach

used in the Simplex Method) will usually yield the more efficient algorithm. Which

alternative we choose will depend on the nature of the specific problem.

3.2 Theoretical Results

Theorem 3.2 For the boundary and coboundary distributions, the expected height

of a BAT is less than en2 log n. The same bound holds for OATs with the boundary

distribution.

Corollary. The expected number of iterations of the Better Adjacency algo-

rithm, with respect to either the boundary or coboundary distribution, is less than

en 2 logn. The same bound holds for the Optimal Adjacency algorithm with respect

to the boundary distribution.
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The rest of this section is devoted to the proof of this theorem. Since the proof

at times seems tc have little to do with the theorem, it may be helpful to give a

general idea of it first.

Imagine being at some stage of a process which randomly generates an LG

ordering and an associated tree (OAT or BAT). At each step a vertex is selected

from the boundary, assigned a father, and attached to the tree; the vertex has a

pathlength one greater than its father's. The height of the ith vertex in the ordering

is denoted by Hi. Then the boundary list is updated and the process iterates. We

want to know how high the tree is going to get. This depends on which vertices tend

to be fathers. For all we know, though, it could be that the vertices with greatest

height tend to be fathers. If so, then we will likely get a long, skinny tree. But

suppose we knew that, at each iteration, some number, say 100, of all the nodes

in the tree had an equal chance of being the new father. What would this piece of

information tell us? In the worst case the 100 nodes would be the 100 lowest nodes

in the tree generated so far. Thus it would imply that the expected height of our

tree could be no greater than the expected height of a tree produced by repeatedly

attaching a son to a node randomly chosen from among the hundred lowest nodes

in the tree. This new process is less complicated than the original one, and it turns

out to be possible, though not trivial, to compute its rate of growth, and thus a

bound on OATs and BATs.

The proof of the theorem, therefore, consists of three parts. The first part

derives a lower bound on the number of vertices in the boundary. This will yield a

lower bound on the number of potential fathers, because no potential father can have

more than n - I neighbors in the boundary. The second part proves the intuitively

obvious fact that the "new" process does indeed produce trees with greater mean

pathlength than the "old" BAT and OAT producing processes. The third part of

the proof is the computation of the rate of growth of the "new" process.

Recall that a hypergraph H is a set of points, called vertices, together with

a collection of subsets of the vertices, and that these subsets are called edges. In
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the case of a graph, all the edges contain exactly two vertices; in the more general

hypergraph the edges can vary in count, some possibly consisting of one vertex,

others with several. For example, a hypergraph on the 3 vertices a, b, and c

might contain the edges {a) and {a, b, c). As anothcr example, the hypergraph

on n vertices which contains all possible edges will have 2n of them, and will be a

representation of the set of all subsets of the n vertices.

If we think of the vertices of the hypergraph as corresponding to each of the

components (or dimensions) of the n-cube, an edge of the hypergraph as being a

vertex of the n-cube, and adjacent pairs of hypergraph edges as corresponding to

edges of the n-cube, then we see that the Kruskal-Katona theorem that follows is

a statement about sets of vertices of the n-cube with minimal size boundaries. We

define a minimal boundary set of cardinality i to be a collection of i vertices of the

n-cube whose boundary is as small as possible for a set of i vertices.

If H is a hypergraph on n vertices having M edges, then the boundary of H

is the set of all edges not in H that differ from members in H in only one vertex.

Order the vertices of H from 1 to n and denote an edge e by a sequence of zeroes

and ones, the i-th entry being one when e contains the i-th vertex. Define w(e) to

be the n + 1-digit number which is this sequence with a leftmost digit appended so

that the sum of all the digits equals n.

Theorem 3.3 (Kruskal, Katona) A hypergraph on n vertices having M edges that

minimize its boundary can be formed by choosing the M edges having largest w

values.

Proof. See (Kleitman, 1979), pp. 47-48.

1Boundary Theorem 3.4 Let Pk denote

264
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the sum of the first k + 1 binomial coefficients and let

i= Ph.

Then the size of the smallest boundary of a set of size i is (k+); f i instead satisfies

P < i < Pk+1

then a lower bound on the boundary size of a set of size i is given by

G n if k< n 3

(n if k> n-3

k+2)' -- 2

When k 23, the bounds for the two cases are equal.

Proof. According to the construction of the minimal boundary set given by the

Kruskal-Katona theorem, all vertices (of the n-cube) with j ones must, be picked

before any vertex with j + 1 ones, because their w values have a larger leading digit.

That is, if the minimal boundary set given by the theorem contains a vertex with

j + 1 ones, it must contain all vertices with j ones. Since the number of vertices

with j ones equals (7), the minimal boundary set of cardinality i is the set of all

vertices with k or fewer ones when i equals Pk, the sum of the first k + 1 binomial

coefficents. The boundary of this set consists of all vertices with exactly k + 1 ones.

There are (h n) such points, so we have proved the first part of the theorem.

We need the LYM (Lubell, Yamamoto, and Meshalkin) inequality to prove the

rest of the theorem. The possible edges of a hypergraph form a partially ordered

set by inclusion. Recall that an antichain F is a collection of these edges such that

no member of F contains another. If we denote the number of members of F of

cardinality j by fj, then the LYM inequality (Kleitman, 1974) states that

27



Now suppose that i is some intermediate value between Pk and Pk+,. The Kruskal-

Katona set contains all vertices with k ones and some vertices with k + 1 ones.

The set's boundary obviously includes all vertices with k + 1 ones - called "k+l-

vertices ' for short- that are not in the set itself, as well as those k + 2-vertices that

are neighbors of the k + 1-vertices in the set. Let s be the number of k + 1-vertices

in the set, so s = i - Pk. Let z equal the number of k + 2-vertices not in the set's

boundary. The k + 1-vertices in the set, together with the k + 2-vertices not in the

boundary, form an antichain. Then by the LYM property,

8 z+ - < I.

n (,n,)

If k is less than or equal to (n - 3)/2 this implies that

k + Z > 3 T -4 -> 8

The left hand side of the above is the number of k + 2-vertices in the boundary,

so the total number of elements in the boundary is at least (kGI)" Similarly, if

k > (n - 3)/2, the LYM inequality yields

-
(k + 1) - - h 2 >--

The left hand side of this relation is the number of (k + 1)-vertices in the boundary,

and therefore the size of the boundary is at least (h+2). Note that when k equals

2. ! , the number n must be odd, so

n n( 1) = ( I n+
and the bounds for the two cases coincide. I

Consider the process which randomly generates an OAT according to the

boundary distribution, and let the random variables Hl,..., H2- denote the heights

of the nodes in the ordering. By convention the "height" of the top node or root is
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1. Then HI and 112 always take the values 1 and 2 respectively, H 3 takes the values

2 and 3 with equal probability, and the distributions of the later Hi are increasingly

complicated.

If X and Y are two random variables with cumulative distribution functions

F2,(t) and F,(t) respectively, then X is said to stochastically dominate Y, written

X >- Y, if F(t) :5 Fjf(t) V t. It is obvious that stochastic dominance is transitive and

that if X >- Y then EIX] > E[Y] where El denotes expectation. To extend this

concept to sequences such as the Hi we say that the sequence of random variables

X = X 1, X 2 ,... stochastically dominates Y = Y1, Y2, ... iff Xi >- Y Vi, and we

write X >- Y.

[ We will now describe a stochastic process whose outcomes will stochastically

dominate the Hi. The process is called the largest k process and is denoted by

Lk. Let k - k1, k2 ,.- be a sequence of positive integers. The sequence of random

variables Lk Lk,L2,... is iteratively produced in the following way: Lk = 1;

given the values of 1..., Li, one of the ki largest of them is selected at random

(each with equal probability) and its value plus one is given to L. For example,

if k is a sequence of ones, that is if ki = 1 V i, then L4 will equal i for all i. As

another example, suppose that k, = k2 = 1, and k 3 = k4 = 2. Then Lk will

equal 1, Lk will equal 2, LA' will take the values 2 and 3 with equal probability, and

4' L4 will take the value 3 with probability 3/4 and the value 4 with probability 1/4.

(It is sometimes convenient to let ki be greater than i - 1; in these cases we are

interested only in the long term behavior of the Li and we will be able to assume

the existence of Lo,L-,L-2 ,...• each with value zero.)

We now return to the random OATs produced by the boundary distribution

and the random heights of its orderings H,...,H 2 -. Let V = V1,...,V 2. be

random variables which are the vertices in the ordering generated, so Vi is the

ith vertex in the ordering. Consider any partial realization of the OAT generating

process: suppose the first i vertices in the ordering have been chosen and denote

the list of vertices by V - v,. . Vi.
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Suppose further that the random variables HI,... ,Hi have values h1 ,.. ,hi

respectively. For simplicity of notation, we use V - v to denote the condition

and similarly, we let H = h denote the condition

Hi= h; j = 1,...,i.

What can we say about the conditional distribution of Hj+i, given V = v, H = h?

When i is greater than one, any vertex vi, 1 < j < i, can have at most n - 1

neighbors in the boundary of v. Let B(v) denote the boundary of v. According

to the boundary distribution, every member of 5(v) has an equal probability of

becoming the value of Vi+. Therefore, for any particular j, the probability of vi

being the father of vi+I is less than or equal to

n-1 n-1

IB (v) I - (i)

where B(i) is the lower bound on the boundary size given by the boundary theorem.

Assume inductively that we have constructed a sequence L = L 1,..., Li, such

that Li Hi, for all j= ,...,i, and such that L is distributed as a largest

k process with ki = -- (j). Given H = h, V = v, it is easy to construct Lj+j _

Hi+ Iso that L +i takes the largest LB(i)/(n - 1)] values in the L sequence with

equal probability. This completely defines the distribution of Li+1 since we have

defined its conditional distribution for all conditions H = h, V = v. Of course, the

distributions of H and L are not independent. We may not know the probability
of a particular event H = h, V = v. We do know, however, that L is distributed

as a largest k process with ki = [B(i)/(n - 1)J. This is true because all of the

conditional distributions have that characteristic. We have therefore proved the

dominance lemma below for OATs.

Dominance Lemma 3.5 Suppose B(i) is a lower bound on the size of the

boundary of i vertices. Let k - kl,..., k2 - be the vector of integers such that
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ki = max[1, LB(i)/(n - 1)] J and let H denote the sequence or random variables

which are the heights of the nodes in an OAT from the boundary distribution. Then

L >- H. Moreover, the same result holds for a BAT from either the boundary or

coboundary distribution.

Proof. The case of BATs from the boundary distribution is almost exactly the

same the above. The key fact, again, is that the probability of vi being the father

is not more than

n-I
B(i)

for any particular j. The only difference is that in this case, it is necessary to specify

the events by V = v, H - h. In the case of OATs, it would have sufficed to specify

only V = v, since with OATs the choice of vertices in the ordering completely

determines the pathlengths.

The case of coboundary BATs is similar. If S is a subset of vertices of the

n-cube, we define the coboundary of S as the set of all pairs (z, y) such that x is

in S, y is not in S, and x and y are adjacent. In this case we let S equal v, so

the coboundary consists of all pairs (, y) such that x is in the partially constructed

ordering, y is in the boundary, and x and y are adjacent. To generate the BAT

we choose among the coboundary pairs with equal probability. Again, no father

can appear in more than n - 1 pairs, and since there are at least as many pairs

as boundary elements, the result must be stochastically dominated by Lk. This1I
completes the proof of the lemma. |

Now we find the expected behavior of Lk. The value of B(i) and hence k*

remains the same as i ranges between two consecutive partial sums of the binomial
coefficients. While the value of ki is constant and equal to say, m, the largest k [

process can be thought of as a climbing process, where there are m balls distributed

contiguously on at most m levels. There are infinitely many empty levels above for

the balls to climb up to. At each iteration, a ball is selected at random: a new ball

is added to the level above the selected ball, and one ball is removed from the lowest
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non-empty level. imulation results by the author suggested that this process climbs

at a rate approaching e/m (where e is the natural logarithmic constant) for large

m. Incomplete proofs were given by (Keller, 1980; Wiener, 1980). This conjecture

was finally proved by David Aldous and James Pittman:

Theorem 3.6 Let Pm denote the expected rate of growth of the climbing process

when there are m balls. Then mpi is less than e and asymptoticaly approaches e

as m -1 oo. Equivalently, let m be a positive integer and let M be a sequence of

m's. Then the expected rate of growth, jn, of the sequence LM, is less than e/m

and mp, --+ e as m --+ oo.

For a complete proof of this result, see (Aldous and Pittman, 1980). Here we

present that part of Aldous and Pittman's work which shows that the expected rate

of growth, pm, is less than or equal to e/m.

At any time t there exists a finite colony of particles among sites 0, 1, 2, ... ,

the sites forming some interval (0,11. The colony evolves by individual particles

independently giving birth at rate 1. The "daughter" particle gets placed at the

site to the right of the "mother" particle. Let X,(t) be the number of particles at

site i at time t. Let

X(t) = {XO(t), X 1 t),....

We can think of X(t) as a countably valued Markov chain. Note that the X(t) do

not give a complete description of the process since they ignore geneology.

The total number of particles at time t,

N(t) == X,(t)
i>o

evolves as a simple birth process. Therefore,

d N(t) N(t)
dt

and

----= et.
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The front of the colony at time t is the largest index i such that X1(t) 1, and is

denoted by f(X(t)). We will prove that

im sup f(X(t)) < e a.s. (3.2.1)
t-.O t

Let

m, Ct) = E(X, Ct))

equal the expected number of particles at site i at time t. Then mo(t) =1 if we

start with one particle at zero. Also,

dmni~t)d~t) mi-I(t); i > 1.
dt

Solving these differential equations gives

ts
M,(t) .(3.2.2)

Now let -y be some constant greater than e. We have

P(f(X(t)) > -t) = E(1{f(x(t))>.yt}) _ E Xi(t)). (3.2.3)

By definition and (3.2.2),

E i i ti/.

Combining (3.2.3) with the above yields

u P(X(t)) > "#t) <__E ti/!! <  t i

< + 1 1)i+ l  (3.2.4)
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By Stirling's formula, the summation term in (3.2.4) can be approximated by

eCil27r)' 12(e/_y)i .

Therefore, the sum in (3.2.4) converges. By the Borel-Cantelli Lemma,

fCX(t)) < -t

for all sufficiently large integers t, so (3.2.1) is true.1

We can now prove theorem 3.2, which we stated at the beginning of the section.

The expected height reached by the Li for i -- 2 up to the sum of the first [_AJ

binomial coefficients is ii
,,C,',- 1)/B(i) = ,,C,,- 1) E i /() = ,(,.,- 1)1 2 .

The expected increase in L4 as i then increases to 2n - 1 is

n-1

e(n - 1) - j( c; ) (n- 1)(n logn - n/2).

The expected increase in L as i increases from 1 to 2 and from 2n - 1 to 2n is

no more than 2. The sum of these three increases is less than en 2 log n, which is

therefore an upper bound on the expected height of boundary OATs and BATs, and

coboundary BATs. 3
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CHAPTER 4.

ADDITIONAL BOUNDS ON AVERAGE MEAN PATHLENGTH

4.1 Coboundary OATs

The proof of the dominance lemma fails in the case of coboundary OATs. Both

common sense and simulation trials suggest that coboundary OATs must have lower

bounds than coboundary BATs, but we have been unable to prove this is indeed

the case. It is not hard to see, however, that if m equals B(i)/n(n - 1) instead

of B(i)/(n - 1), the LK process must bound the Hi values of coboundary OATs.

This puts an additional factor of 1/n into the denominator of the summation term

in the proof of the theorem in the previous section. Therefore, the upper bound

given there can be multiplied by n to apply to coboundary OATs. This yields the

following weaker result:

Theorem 4.1 The expected height of an OAT from the coboundary distribution

is less than

en 3 log n.

4.2 An 0(n 2 ) Bound on Expected Mean Pathlength

I "r The height of a tree is the maximum pathlength of a node in the tree; the mean

pathlength is the average taken over all nodes in the tree. The bounds that have

been given are on the expected height rather than the expected mean pathlength

of the tree, though it is the latter that corresponds to the expected performance

of the algorithm. Since of course the former is always the larger of the two, it is

possible to compute a slightly better bound.
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Theorem 4.2 The expected mean pathlength of an OAT under the boundary

distribution or of a BAT under either the boundary or coboundary distributions is

less than en 2 .

Proof: The expected values of h1 ,..., h..., ht, where t - - 1) =
are all less than en 2/2 because en2/2 is greater than e(n - 1)Ln- Jj. For all values

of i greater than P1._-], we must add to en2 /2 at least an additional amount

1 n
e(n - 1)(LIt+ )/(1,3J)

In general, for any i which satisfies

19=3

the E(hi) gets an additional

for each j - + 1 J, n - 1. The total of all these contributions to the sum of

the pathlengths is

e(n - 1) -.+
N--2 l)-A; P < e(n - 1)n 1/kPk

k-2 k=2

.< e(n- 1)n E L: ( - en 2n - "

So2nen2/2 + en2 n- - 2"en2 is a bound on the sum of the expected pathlengths,

and therefore dividing by 2", the number of vertices, the expected mean pathlength

is bounded by en2 .2
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4.3 The Coboundary.

Recall that the boundary of a subset S of vertices of the n-cube is defined as

the set of all vertices y not in S such that for some z in S, (z, y) is an edge of the

cube. We define the coboundary of S to be the set of all distinct edges (z, y) where

x is in S and y is not. The coboundary is clearly at least as large as the boundary.

Now notice that in the proof of the dominance lemma for coboundary BATs, B(i)

could serve just as well as a symbol for a lower bound on the size of the coboundary

as for the size of the boundary. Our next goal is to find a better value for B(i), i.e.,

a lower bound on the size of the coboundary. This is provided via the following

Theorem 4.3 (Harper, Bernstein) For any i, 0 < i < 2n, a subset of the vertices

of size i with minimal coboundary size consists of the i smallest vertices, where the

vertices are thought of as n-digit binary numbers.

Proof. See (Clements, 1971, or Katona, 1974).

Theorem 4.4 If i is greater than or equal to 2 d and less than 2 d+I, where d is less

than n - 1, then 2d(n - d) is a lower bound on the coboundary of a set of cardinality

i. If i is greater than 2 a bound can be obtained by replacing i with 2" - i.

Proof. Let Si be the number of interconnections (unordered pairs) within the

minimal coboundary set of cardinality i. The coboundary has size ni - 2S. For

2 d < i < 2' + ' the members of the set are the same as for 0 < i < 2 d except

.- for the "1" in the dth place. Therefore, $i+I - Si equals Si+t-2d - Si-2d plus the

" 'number of points with a "0" in the dth place that are adjacent to the i + 1st point.

This obviously equals one. Letting Ri = Si+ 1 - Si denote the ith difference, we

have shown that

Ri=Ri_2d+1; 2 d <i< 2 +.

This relation gives rise to the following as the Ri sequence:

0
1
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1,2
1,2,2,3
1,2,2,3,2,3,3,4
1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5

The following proposition states some elementary properties of the R. and Si

sequences.

Proposition.

1) S2 - d2d-1

2) S2, + - S2 -d - (d + 2)2d- i

3) Ri = Ri-i; 2 d < i < 2d + 2d- 1

4) Ri 1+Ri-2-1; 2 d+ <21<i< 2 d+ 2 d-+ 2 d - 2

We prove the theorem inductively, assuming it is true for i less than 2d to show

it is true for i less than 2d+' . When i - 2d , the set is a d-dimensional cube and the

bound given by the theorem is tight. Letting j i - 2", it is therefore necessary

and sufficient to show that

nj> 2 Ri

where 2d < i < 2 d+1 < 2n.

For the range 2d < i < 2 d + 2 d-1, by the proposition above, we have Ri=

Ri_ 21-i and the result follows from the inductive hypothesis.

For the range 2 d + 2 d -  < i < 2d+ 1, we note that it is sufficient to prove

the result for the case where d equals n - 2. In this case the symmetry between

i and 2" - i allows us to prove the result for the range 2 d+1 < i < 2d + 1 + 2
d - 1

instead. The bound given by the theorem obviously holds for i - 2d+ '. But Ri

in this range equals Rj- 2d, and the bound has already been shown to hold for the

range 2d < i < 2d + 2 d- I . This completes the proof of the theorem 4.4. I
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4.4 An O(n log n) bound for coboundary BATs.

We are now able to compute a better bound for the coboundary distribution.

When d, the size of the partially constructed ordering, is ranging between 2' and

2i+1 for i < n - 1, the Hi values are growing at a rate bounded by a largest K

process with kd = 2'(n - i)/(n - 1). This range for d consists of 2'+ t - 2' = 2'

choices (iterations of the largest k process), so the increase in Hi values is bounded

by

(2')e/k = e(n - 1)/(n - i).

By the equivalence between d and 2' - d mentioned in the theorem above, the

increase in h values of the bounding process is mirrored as d ranges between 2 n'-

and 2'. Therefore, a bound on the last Hi value is given by twice the summation,

from i=0 to n- 1, of e(n- 1)/(n- i),

n-i

2e(n - 1) E /(n - i) - 2e(n- 1) log n.
i=O

Theorem 4.5 The expected mean pathlength of coboundary BATs is less than

2en log n. The expected mean pathlength of coboundary OATs is less than 2en 2 log n.

Proof: The bound for coboundary BATs has been proved. To see how to adjust
this bound to apply to coboundary OATs, we must examine the reasoning used in

the Dominance Lemma. Again, suppose the random generation of a coboundary

OAT is partially realized and that the ith vertex is about to be chosen. Fix j to be

" 'less than i and consider the jth vertex chosen. What is the probability that this

vertex will be the father of the ith vertex? The jth vertex cannot have more than

n - i neighbors in the boundary. Each of these neighbors has at most a probability

n/C of being chosen as the ith vertex, where C is the size of the coboundary.

Therefore, the probability of being a father cannot be more than n(n - 1)/C. This

puts an extra factor of n into the computation of the upper bound for the case of

coboundary OATs. |
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CHAPTER 5.

APPLICATIONS TO PRINCIPAL PIVOTING AND THE SIMPLEX METHOD

5.1 LCP and BATs.

It is not essential to the concept of a BAT that there be a real valued function

defined on the vertices. All that is necessary is that one vertex be optimal in some

sense and that every other vertex have a father (a neighboring vertex) assigned

to it in such a way that the resulting structure is a tree, i.e. has no cycles, or

equivalently, traversing from vertex to father to father must eventually lead to the

root. Consider the linear complementarity problem: given q E R and M E RTX",

find w, z E R such that

-Mz + Iw -q

ZTw W 0Z > 0 (LCP)

The possible solutions to this problem involve choices of the complementary basis

B, an n by n matrix whose ith column is the ith column of either -M or the

identity matrix, I. When M is a P-matrix, principal pivoting methods solve LCP

by iteratively proceeding from a complementary basis to another that differs in the

choice of one column. We let the ith digit of our binary n-vector equal zero if the

ith column of B is taken from the identity matrix, and one if it is taken from -M.

(This notation is unambiguous because the ith column of a matrix with positive

principal minors cannot be the ith column of -I.) Then each choice of feasible

basis corresponds to a vertex of the n-cube, and the pivoting algorithms proceed

from one such vertex to an adjacent one. Thus the BAT model has features in

common with principal pivoting methods for the linear complementarity problem.

It is well known that such pivoting algorithms require 0(n) iterations in practice,

though there are exponentially bad classes of instances (see Cottle, 1978). This

accords exactly with the simulation predictions of expected BAT depth and with

theoretical worst case BATs.
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5.2 The Simplex Method

The Simplex Method solves the Linear Programming problem (LP) by passing

from vertex to vertex on the polytope defined by the constraining hyperplanes.

Suppose the number of variables to be k and the number of linear inequality

constraints to be n, where n > k. Then there are at most (") basic solutions, each

defined by the intersection of k hyperplanes. Each such point can be represented

by an n digit binary vector with exactly k ones in it, to indicate which of the

n hyperplanes define that particular point (or, equivalently, which variables are

non-basic). If the point exists and is feasible, we assign it a function value equal

to the objective function value; If some constraints are violated, we subtract the

appropriate multiple of M, where M is some suitably large value, from the objective

function value to get the function value. The Simplex Algorithm always proceeds

by taking one column (hyperplane) out and putting one column into the basis set;

so two of the binary vectors can be thought of as adjacent if they differ in two

components. Thus, by restricting ourselves to just those vertices with k ones, and

changing the definition of adjacency accordingly, we can apply the OAT and BAT

models to the Simplex Method for linear programming. We call the space of n-tuples

with k ones n,k space, and its elements, n,k-vectors. We say that two n, k-vectors

are adjacent if they differ in exactly two components. In the following it is assumed

that k < n/2 since the problem is the same for vectors with k ones as it is for

vectors with n - k ones.

Simulation results, as before, give a formula for expected tree depth that is

* approximately equal to the logarithm of the total number of points, (n), in the

space. For OATs with k/n - I- the average mean pathlength is roughly equal to

.5n -. 2, while for BATs it is approximately .75n - 1.

To get theoretical bounds, we need a lower bound on the size of the coboundary

or boundary of a subset of the n, k-vectors. Unfortunately, no such bound is known.

However, Kleitman and West have conjectured what the minimal coboundary sub-

sets are:
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Conjecture 5.1 (Kleitman, 1979) How can we choose a k-hypergraph H on n

vertices having d edges to minimize the coboundary? The conjecture is that there is

an optimal H for any d so that either H or its complement as a k-hypergraph or the

complements of the edges of H or the complements of these as an (n - k)-hypergraph

do not contain any edges containing the n-th vertex.

This somewhat confusing statement gives a complete answer to the problem

if applied inductively. We clarify it and describe the break points that allow the

inductive computation in the next section. Our goal, as before, is to derive numerical

bounds on the size of the coboundary for different ranges of valves of d. These

bounds are stated below:

Lemma 5.10 Let Mcob(d),,k denote the size of the smallest possible coboundary

of a subset of cardinality d in n, k space (according to the conjecture). Suppose

d K (and k < n/2. Let p be the largest integer such that k < !(n - p + 1),so

thatp=n-2k+ 1. Then

n-I"-

Case 1: If(f -) - d < 1(Q) then Mcob(d),k _ k()

Case 2:If (-) d - (-), then there is some i, 1 < i < p - 1, such that
(nj - -d ("), and

4(. . obd),,.k > X k + kC i- 1) k-

Case 3: If (If P2) - _ d < (-'), then

Mcob(d),k + 2k - 2) n-p -

Case 4: Otherwise, there exists an integer m such that 2 < m < k - 1, and

(2k -2m - I < d < (2k -2m +1)
k-m-l1 - k-M
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Then

Mcob(d)., (m -2)(2k -m + 2)+(5k -Sm +4+k(p- l)) 2k(-2m- 1 )

We defer the proof of Lemma 5.10 until the next section because of its length.

In the meanwhile we can now calculate an upper bound on the expected mean path-

length of a BAT from the coboundary distribution in n, k space. Since Mcob(d), ,,

equals Mcob(d')n,k where d' = ( ) - d, we do the computation for the range 1 <

d < (n) and multiply the result by two. We also of course multiply by ek(n - k)

because each point has k(n - k) neighbors. Case 1 of Lemma 5.10 yields

k)_--1) 1 n-2k() n- 2k -

In case 2 of Lemma 5.10, i ranges from 1 to p - 1. The size of the range of d

is (-i) - (n-i-i) (n-i-i)" Mcob(d)n,k is at least
k-1 k- k-2

k(n )+ k( ( 1) n- k(n - i)(1 + k(i -1)

Therefore, case 2 yields

,,.,-i- 1 k ,.),-, + k(i -' 1/)
.. = k-2 k n-+ i

The ith term in this sum equals

(n-k-i +<ik)( -i-c +1) - (k - 1) (ik)(n- -i)

- I Il

-(n-k) n-k-i S

The sum for case 2 is therefore less than

k - 1 ( - k - 1)(p- 1)k(n -k) log( ( - k ))
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Case 3 yields

_ n - 2 (p+2-2) k- - k(n - 2k + 1)"

Similarly, case 4 yields a summation with numerator

k-m k- m- I k- = 2(k-m +l)"

If we discard the (m - 2)(2k - m + 2) term that appears in the denominator, the

summation term increases, so it is less than

k- (2(k-m+l) )/(5k -5m+4+k(p-1))( k- l1

which turns out to be less than

3

5(k- m) + 4 + k(p- 1).

Changing the index of summation and using the fact that p - 1 = n - 2k, case 4

yields

k-2 3 3 5k- 3

5i+4+k(n-2k) (n-2k) - 2k

Let r = k/n < I and let n -- oo. Adding the contributions of the four cases

and multiplying by 2ek(n - k) = 2er(1 - r)n , we get

Theorem 5.2 2ernlog(n(l - r)(1 - 2r)/r) + 6enr(1 - )/(I- 2r)

is an O(n log n) bound on expected BAT height under the coboundary distribution.

Corollary. Let r = k/n < 1 be fixed, and suppose the minimal coboundary

conjecture holds. Then under the coboundary distribution, the expected number

of iterations required to solve LP by a simplex-type better adjacency algorithm, as

n --+ oo, is less than

2ern log(n(l - r)(1 - 2r)/r) + 6enr(1 - r)/(1 - 2r) se2ek log n.

.1 44LMI



5.3 Proof of Lemma 5.10.

We prove lemma 5.10 in several parts. Recall that Mcob(d),,,k is defined as the

minimum coboundary size of a subset of cardinality d in n, k space. We define the

1-part (respectively 0-part) of a set of n, k-vectors to be the subset of vectors with

nth coordinate equal to one (respectively zero). Thus (-) is the size of the 1-part

of n, k space. If k < n/2 and d < !(') then the conjecture says that if d is smaller

than the 1-part of n, k space, the optimal hypergraph is in the 0-part of n, k space,

otherwise it contains the entire 1-part of n, k space (Kleitman, 1979). Let II(d)n,k

denote the optimal choice of n, k-vectors specified by the conjecture.
Ck-,) -<C: -5,

Lemma 5.3 Suppose k < n/2; then "- 2 () (k-) < d < 2() thn

Mcob(d),k 
_ Mcob(( I

Proof. If we let Ad equal d - Q- 1), then H(d).,,k includes the I-part of

n, k space and Ad elements from the 0-part. We compute the number of directed

edges between these Ad elements and the 1-part: each member of the 0-part has k

neighbors in the 1-part, so the number is 2kAd. When we add a set of Ad elements

to the 1-part, we bring in Ad(k)(n - k) new edges; what we must show is that the

number of new interconnections between members of the set is not more than the

number of new edges brought in, so that the new coboundary is not less than the

coboundary of the 1-part. We claim that kAd(n - k - 2) is greater than or equal

to the number of interconnections (directed edges) within any set of Ad elements

of the 0-part of n, k space. Obviously, a proof of this claim will prove lemma 5.3.

Proof of Claim: The number of interconnections is maximized when the coboun-

dary is minimized. So the question is, what does H(Ad)n-l,k look like? We note

that Ad n - (n-1) = - (n-1)], so Ad < n-1(), and so if k < n- 1-- 2-- k-a ] k-o Ad k k-1 -- 22

we can use lemma 5.3 inductively. This is what we do in case (i).

Case (i): If Ad> (-) and k < "j, then inductively we know that
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Mcob(Ad),k >Mcob(( n-

It is easy to see that the number of interconnections in H((n-))n-l1, equals

n - 1)(n- k - 1). It is also evident that Mcob(a),,_lk + [the number of

interconnections in H(a)n-l,k] -= alk(n - k - 1), which implies that

kAd(n - k - 1) - [number of interconnections in H(Ad)n-l,k]

k n( 2)( - k - 1) - [interconnections in H((n

= [interconnections in H(Ad),,_I,h]

< (n - )(k - 1)(n - kc - 1) + k(n - kc - 1)(Ad -n-2

= (n - k - 1)(kAd - n-2

= (n - k - 2)kAd + kAd - (n - k- 1) n- 2

To prove the claim in this case, we must show that the right hand side of the above

is no more than kAd(n - k - 2). Equivalently, we must show that (n-2)(n - - I) >

kAd. Now

Ad < k[n1 (k1) k (n

and

(nT - 2' n - kc - 1 n-

k- 1) kc (k2

so we are done with case (i).

Case (ii): Suppose k < n/2 and Ld < (k-,). Then k - 1 < - so the

conjecture says that H(Ad)n-l,k is in the 0-part of n - 1, k space. In this space,

the total number of neighbors a point has is k(n - k - 2), so the total number of

interconnections in H(Ad)n-,k can't be more than (n - k - 2)kAd, which is the

desired result.

Case (iii): The only case left occurs when Ad > (-) and k = n/2. However,
since Ad W[(l1) _ (-1)] and (n~1) = (k-') when k = n/2, Ad must be < 0

so this case is vacuous. Therefore, the claim and lemma 5.3 are proved. m
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Remark.

Mcob((n- ( n- 1 k_ =).

Lemma 5.4

If k < j-and 1n1 < ni

then

Mcob(d),k 1

Proof. Let d' (n - d. Then Mcob(d')_l,k - Mcob(d),l,k. Since

H(d),,k is in the 0-part of n, k space, Mcob(d)n,k = kd + Mcob(d),l,k and so we(n-2) -(n-k ' so either
need to know what HI(d'),,,1 , looks like. Note that (-) _ (n),seih

or

or :2 d' k

11
', .In the.first case, since k < Lemma 5.3 applies and

Therefore,IMcob(d)n,,. kd + k 2) t k(n1) +(n 2).

So we need to show that k( k P '), which turns out to be equivalent to

- k.
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In the second case, Mcob(d)n,,k - kd + Mcob(d')n_ l,k and, according to the

conjecture, H(d'),,,,k is in the 0-part of n - 1, k space, so Mcob(d'),l,k > kd'.

But then

Mcob(d),,,k = kd + Mcob(d),,-i,k >_ kd + kd'= k(- 1)

and Lemma 5.4 is proved. 3

Lemma 5.5 If k < !- and

then

Mcob(d).,_ k( n k

Proof. By Lemma 5.3, Mcob(d),lk > k("; 2). But since d < (k-), it follows

that Mcob(d),,k = kd + Mcob(d)nl,k and so the same argument for the first case

of Lemma 5.4 works. I

Lemma 5.6.0 Suppose

k-1 . .. .. i k

and i is such that k < ni. Then

Mcob(d)n,k !k[ + ( k -21)1

Proof. By Lemmas 5.4 and 5.5,

Mcob(d),-,+l,k _ k(n k
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Since d < (-), H(d).-,+t,,k is in the O-part of n - i + 1, k space; in fact, H(d),,,k
is in the 0-part of the 0-part of ... the 0-part of n, k space. Therefore,

Mcob(d)n,k = Mcob(d)n-,+l,k + kd(i - 1).

Combining this with the above gives

Mcob(d),,k : k ) + kd(i - 1) ! kf n i) + k(i - 1 )(n -: 1)

which is the desired result. 3

The reasoning used in the previous proof will be needed later; so we state it as

a lemma.

Lemma 5.6.1. Suppose d < ( w e 2 n dspo
(k-t) where k<and suppose

Mcob(d),,i I _k f

for some number f. Then

Mcob(d)n.k f + kd(i - 1).

Proof. Since k < n-i+l n -

P S2 and d < -, we know that H(d)n._i+l, is in the

O-part of n - i + 1, k space. Similarly, since k < n-i+2 and d < (n -ni+), we

know that H(d)f-i+ 2,k is in the 0-part of n - i + 2, k space, and so on - clearly the

last i - 1 coordinates of H(d)n,k equal zero. But any n, k-vector whose last i - 1
coordinates equal zero has precisely k(i-1) neighbors whose last i - 1 coordinates

are not all zeroes. Therefore,

dk(i - 1) + Mcob(d) _i+lkA Mcob(d)n,k

and the result follows immediately. I

Lemma 5.7.0. Suppose k = n/2 and
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Then

-%Cobd),,k > kd + (k- 1)

Proof. Since

it follows that H(d)n,k is in the O-part of n, k space. Therefore,

Mcob(d),,k = Mcob(d).l,k + kd.

Also, since k + (k - 1) =n - 1,

Mcob(d)., = .k Mcob(d)n- ,k-I.

Let d' =(-) - d. Then

Mcob(d)n-l,kl = Mcob(d)-l,k-l.

Since k - 1< (---, Lemmas 5.4 and 5.5 apply to various ranges of d and d'

giving

Mcob(d), I,k- Mcob(d')n-l,k-I > (k- 1)

for (:: :-3 , -( 1)-(n -3)( -) <(d-1

Mcob(d)n,k > (k - 1) n + kd,

the desired result. aII tRemark. Under the conditions of Lemma 5.7.0,
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Lemma 5.7.1. If k - n/2 and

(k -1) (k-2 z

then

Mcob(d),,,k ! (k-1 - - -

Proof. Using terminology from lemma 5.7.0, d' < (n-2), so H(d').-l,k-l is in
the 0-part of n - 1, k - 1 space. Therefore,

Mcob(d)n-lk- 1> d'(k - 1)

Mcob(d),k _ d'(k - 1) + dk = (k - 1) n + d,

the desired result. I

Remark. Under the conditions of Lemma 5.7.1,

n-3 -

Lemma 5.7.2. f" k = n/2 and (k-2) - d < (k-1) then

Mcob(d),,,k (3k - 2)( n- (!k - 1 -

Proof. This is just Lemmas 5.7.0, 5.7.1, and the Remarks. 3

Combining Lemmas 5.7.2 and 5.6.1 gives
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Lemma 5.8. Suppose d < 1(n) and k < n/2. Let p be such that k -- ' •

then

Mcob(d),k _ dk(p - 1) + (3k - 2)n -p 2)

- 2 np 2 )(kp + 2k - 2).

The only remaining case of Lemma 5.10 is d < ( k-2 ). If Mcob(d),_p+i,k

f then Mcob(d),,,k f + kd(p - 1), so the problem is to find a bound on
Mcob(d),+lk when d < (np-2). Let us express this in different terms. We

want a bound on Mcob(d)2k,k when d < (-Y) - !_-2). What does H(d)2k,k

look like? Clearly it is in the -part of 2k, k space, so

Mcob(d)2k,k = kd + Mcob(d)2k-l,k.

Also,

Mcob(d)2 kl,k = Mcob(d)2 k._t,- .l

The problem now is to find a bound on Mcob(d)2- 1,k-I where d < (k-2). Again,

H(d)2k-.l,k-t is in the 0-part of 2k - 1, k - 1 space, so

Mcob(d)2- ,k-t I= (k - 1)d + Mcob(d)t2 k 2 ,k.I

What is Mcob(d) 2 k_ 2 ,k.i? Recall that

d 2 k - 2 - 1

and k- = so applying Lemma 5.7.2, when

d > k-5
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we find that

Mcob(d)2 k-2 k-i I (3k - 5)(2k - 5).

Now

Mcob(d)2 k_ 2 ,kl + (k - 1)d = Mcob(d)2k-.,k

and

Mcob(d) 2kl,k + kd = Mcob(d)2k,k

hence

Mcob(d)2 - 2 ,k- 1 + (2k - 1)d = Mcob(d)2 1,k.

We have shown that in the case (-) < d < (k-2),

Mcob(d)2k,k (2k - 1)d + (21k - 5)(2k-5).

In the other case, d < (3 let k' = k - i we want a bound on Mcob(d)2w,,

when

d< (2k'-3

Therefore, repeated use of the preceding will solve the problem. We have proved

Lemma 5.9.0 Suppose d < (k-2) If d > (-3) then

Mcob(d)2 k,k (2k - )d + (3k - 5) k - 5

Otherwise,

Mcob(d)2k,k - Mcob(d)2k.- 2 ,k.-,I + (2k - X)d.

53t,~



To get d in ranges, we repeatedly apnly Lemma 5.9.0, and add a k(p - 1)d term

from Lemma 5.6.1, yielding:

Lemma 5.9.1. Suppose d < (2_-s3). Then for some m > 2,

12k - 2m -1I2 2k-M-1 )]<d < k-M

and

-2 (2(k- I)-lMcob(d),k kd(p - 1) + ' 2(k-i)+ l +(5k-5m+ 4) r-- 1)

2 (m -2)(2k-m+2)+(4k-5m+4+kp) 2k-,-1 "

\k-in-I/

This completes the last case of Lemma 5.10. 1
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CHAPTER 6.

PROBLEMS WITH MULTIPLE LOCAL OPTIMA

6.1 All Orderings Equally Likely

What happens when the problem is not local-global? For instance, what

happens in general with LCP, or with the clique problem? In this case, a local

improvement algorithm is not guaranteed to find a solution; recall that a forest

of trees may be generated instead of a single tree. There are algorithms for some

"hard" combinatorial problems, such as 0-1 integer programming or the travelling

salesman problem, which make use of local improvement, and are justified because

there is no known way to solve them exactly in a reasonable amount of time.

Many artificial intelligence applications employ hill climbing, although the problems

often turn out not to be local-global (Nilssoi., 1981, Winston, 1977). The obvious

questions to ask are, "what are the chances of a local improvement algorithm

working?", and "how long will such an algorithm take?". These are equivalent to

the questions, "how many trees are in the forest?", and "how high are the trees?".

Proposition 6.1 Under the assumption that all orderings are equally likely the

expected number of trees in the OAF is equal to (2")/(n + 1).

Proof. Let x denote a vertex of the n-cube. For z = 0 to 2" - 1, let the random

variable 1. equal one if z is a local optimum and zero otherwise. Then the expected

number of local optima equals

E(f2-1 \X 2"-1
E. E 12) = E(1 2). (6.1.1)

The probability of z being a local optimum is the probability that it is the highest

of n + 1 vertices in the ordering (it and its n neighbors). If all orderings are equally

likely, this probability is 1/(n + 1). Thus

E() =1/(n + 1); z 0,...,2"-1. (6.1.2)
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Combining equations (6.1.1) with (6.1.2) yields the desired result. 3

For problems with all orderings equally likely, tben, a local improvement algo-

rithm by itself has little chance of attaining a global optimum. This is true even

for parallel processing versions that use multiple starting points (unless there are

exponentially many). In view of the results for LG problems we might expect the

average pathlength of nodes in the OAFs to be small. This is indeed the case:

Simulation Result 6.2 Under the assumption, all orderings equally likely, the

average mean pathlength is linear in n.

Proposition 6.3 Under the assumption, all orderings equally likely, the average

mean pathlength is less than ;en2.

Proof. This result follows easily from a computation similar to the ones in the

proofs in the previous chapters.

6.2 Boundary Uniform Distributions

The assumption that all orderings are equally likely is appealing because it

is easily stated. However, it may not be realistic. In particular, it fails to take

into account correlations between function values of neighboring points. This is

evidenced by the conflict between the exponentially many local optima in Proposition

6.1 and the high probability of there being one local optimum (as discussed in 2.3)

when there is positive correlation. The boundary and coboundary distributions

naturally incorporate some positive correlation between function values of adjacent

points, but are of course not suitable for producing non-LG problems.

We now define two classes of distributions on non-LG problems which are ex-

tensions of the boundary and coboundary distributions. A probability distribution

on orderings is said to be boundary uniform if all members of the boundary set of

the first i vertices in the ordering have an equal probability of being the i + 1st in the

ordering. Similarly, a distribution is said to be coboundary uniform if the relative
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chances of boundary members are weighted according to the number of neighbors

they have among the first i points in the ordering. There are no restrictions on ver-

tices not in the boundary: their individual probabilities can differ widely, and the

overall probability that a non-boundary member is chosen (and hence that another

local optimum is introduced) can vary depending on what the first i vertices are.

Since the pathlength of a starting vertex which is a local optimum is one, we can only

decrease average mean pathlength by allowing additional local optima. Therefore,

the bounds calculated earlier for the boundary (respectively coboundary) distribu-

tion extend to the class of boundary uniform (respectively coboundary uniform)

distributions. We state this result in the following theorem.

Theorem 6.4 The expected mean pathlength of an Optimal Adjacency Forest

(OAF) or a Better Adjacency Forest (BAF), under any boundary uniform distribu-

tion, is less than en 2 . The expected mean pathlength of a BAF from any coboun-

dary uniform distribution is less than 2enlogn. The expected mean pathlength of

an OAF from any coboundary uniform distribution is less than 2en2 log n.

6.3 The Local-Global Property and NP-complete Problems4 There appears to be a considerable difference between problems that are LG

, and those that are not. In particular, it seems that the well known NP-complete

problems belong to the latter group. For instance, we have the following proposition:

Proposition 6.5 In the travelling salesman problem, if two hamiltonian circuits

diffef only in the order in which two consecutive cities are visited, they are called

adjacent. Then with this notion of adjacency, there exists a class of instances with

exponentially many local optima that are not global optima.

Proof. As the basis for our class of instances, we use a graph with six nodes

labelled a, a', b, c, d, and e. The nodes a, b, c, and d form a rectangle with lengths

ab = cd= 24, ad = bc = 10, and ac = bd= 26. Node e is located midway
between the short sides and a little closer to side cd than to side ab, thus ed = c --

12.5 and ea = eb = 14.5. The node a' is at some very small distance to node a,
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so its distances to other nodes are the same as for a. We remark that the circuit

a, d, c, b, e, a', a is a local optimum but is not globally optimal since its cost is three

more than the circuit a, d, e, c, b, a', a. The latter circuit is globally and of course

locally optimal. Now construct n copies of this graph, setting all distances between

nodes in different copies to 100, except that the a and a' nodes are at a distance

of 20. Any circuit that starts at some a, goes around that copy with either of the

two locally optimal circuits discussed above (leaving out a, a'), proceeds to another

copy and goes around it with one of the two locally optimal circuits, etc., will be a

local optimum in the n-copy graph. However, only one of these 21 circuits will be

globally optimal (the one that always used the second choice). We have constructed

a graph with 6n nodes which has at least 2n - 1 local optima that are not global

optima. J

We can further sharpen the apparent distinction between LG and NP-complete

problems by showing that LG problems are essentially in NP fl co(NP) (and hence

unlikely to be NP-complete). To be precise, we define the set recognition version

of the optimization problem

max /(x)
zEX

to be the following question: Given an instance and a number k, does there exist an

z E X such that f(x) is at least k?

Proposition 6.6 Suppose that, for some discrete optimization problem,

max f(x)
xEX

there exists a notion of adjacency which assigns neighbors to each point in such

a way that (1) the assignment of neighbors is independent of the instance of the

problem (independent of the particular data), and (2) each vertex has polynomially

many neighbors. Then if the problem is LG, its set recognition version is in

NPfnco(NP).
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Proof. If, given some particular data and number k, there is no z E X such

that f'(x) is at least k, this fact can be proved in nondeterministic polynomial time

by "guessing" the true optimum, showing its value is less than k, and verifying

its optimality by comparing its value with the values of its (polynomially many)

neighbors.

Theorem 6.7 The clique problem is not LG under any data independent, polyno-

mial assignment of adjacency. Also, under the ordinary notion of adjacency, (two

subsets S and T of vertices are adjacent if one is a subset of the other and their

cardinality differs by one), there exists a class of instances with exponentially many

local optima that are not global optima.

Proof. We play the adversary against an arbitrary fixed adjacency rule. The

instance we construct will have n nodes, though we will not specify what size n is

until later. Our target clique consists of the first n/4 nodes. It will be locally but

not globally maximal. We connect all of these n/4 nodes with edges so they form a

clique, and we do not make any more edges incident to these nodes. Consider the

next n/2 nodes: there are (n/2 subsets of order n/4 and (1+n4/ subsets of order

(1 + n/4). By assumption, there exists a polynomial p(n) which bounds the number

of neighbors a subset can have. We choose n to be large enough that np(n) is smaller
thn n/2

than /4)' Then there must be a subset of the n/2 nodes with the properties that

(i) it is of order (1 + 2), (ii). it is not a neighbor of the target clique, and (iii) it

contains no subset of order n/4 that is a neighbor of the target clique. We connect

the nodes of this subset so as to make it a clique; all pairs of nodes not in the

subset and not in the target clique remain unconnected. The subset is therefore

the global maximum, but any neighbor of the target clique will not be a clique or

will be of order less than n/4. Given an arbitrary polynomial adjacency rule, we

have constructed an instance which violates the LG property. This proves the first

statement of the theorem.

The ordinary notion of adjacency states that two subsets of the nodes of the

graph are adjacent if one contains the other and their cardinality differs by one. We
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start with a graph whose nodes are labelled 1, 2,...,t,..., n, and which is itself a

clique. That is, for all distinct nodes i and j, the edge (i, j) is in the graph. Now we

delete all edges of form (i,i+l). If a subset of the nodes contains i, it cannot contain

either i + 1 or i - 1 and still be a clique. We can build up cliques (vI,...,Vk, ...

by choosing v, equal to either node 1 or 2, and vk+l equal to either vi, + 2 or

vk + 3. Since the subsets (k, k + 1, k + 3), (k, k + 1, k + 23), and (k, k + 2, k + 3) do

not have all of their edges, the cliques we build in this way are all locally optimal.

There are more than 2n/3 of these because we made at least n/3 choices when

constructing them. Moreover, most of them (all but 2n, at least) are of order less

than n/2, the maximal order achieved by the clique (1,3, 5,7,...). We therefore

have exponentially many local optima that fail to be global optima. I

Note: Many known NP-complete problems, such as knapsack or three dimen-

sional matching, originated in the form of optimization problems, so the idea of

local optimality applies immediately. Some other problems, such as satisfiability,

3-colorability, or 2-partition, are ordinarily set recognition version (that is, yes/no)

problems, so the concept of local optimality may not seem to apply. However, we

have found that most such problems can be easily transformed into an optimization

version. For example, the Boolean satisfiability problem becomes the problem of

assigning Boolean values to the set of variables so as to maximize the total number

of clauses that are true. The 3-colorability problem becomes the problem of assign-

ing one of three colors to each node in the graph so as to minimize the number

of pairs of nodes that have the same color and are connected by an edge. With

2-partition we try to minimize the difference between the sums of the two subsets;

with subgraph isomorphism (given two graphs G and H, does H contain a subgraph

isomorphic to G?) we try to find a mapping from the nodes of G into the nodes of

H that minimizes the number of conflicts in the corresponding edge sets.

Using this notion of optimization versions of NP-complete problems, we can

now discuss local and global optimality. We believe that all NP-complete problems

have the property of exponentially many local optima. However, since this statement
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implies that P # NP, a proof will not be attempted. (If P = NP, then any LG

problem in P such as linear programming would be NP-complete). We do remark,

however, that many of the polynomial transformations used in NP-completeness

results preserve the "topology" of adjacencies in such a way that local optima remain

local optima. It is usually easy to show that some particular NP-complete problem

is not LG.

The implications of the above results are that local improvement algorithms

will work quickly but have little chance of finding the true optimum. Even with

polynomially many different starting points, chances of success become small as n

gets large. This assumes that the starting point or points are chosen at random; a

heuristic that finds a good starting point or points, for instance, can of course make

quite a difference. This is the case in algorithms for solving integer programming

problems, where local improvement is an inexpensive way to improve a "good"

solution (Hillier, 1969).
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