"=« AD-A110 840 STANFORD UNIV CA SYSTEMS OPTIMIZATION LAB F/6 12/1

AN ADAPTIVE IMPORTANCE SAMPLING PROCEDURE, (U)
NOV 81 J H FRIEDMAN: M H WRIGHT NOODI“-TS-C-OZGT

UNCLASSIFIED SOL-81-23

\

N




,, "m 10 % h pzs
M= £ =z
| S NEEEI

L

R R e

P ® ’ MICROCOPY RESOLUTION TEST CHART | ‘
9 NADONAL RUREAU o VVAN[;‘AN[‘H 19 A& ‘




" WL 0 -

Systems
Optimization
= L_aboratory
Qz
0 o)
(-
|
oy
T
Q
™

0T FiLE copy

Department of Operations Research

Stanford University
Stanford, CA 94305

82 02 08 013

L

P
‘¥
> - 7— - N P -



SYSTEMS OPTIMIZATION LABORATORY cj
DEPARTMENT OF OPERATIONS RESEARCH

STANFORD UNIVERSITY /(\ ‘g,
STANFORD, CALIFORNIA 94305 Ve R QQ:
y Dy
N L
IS
< ~2’
/

AN ADAPTIVE IMPORTANCE SAMPLING PROCEDURE
by

Jerome H. Friedmant
Margaret H. Wrighttt

TECHNICAL REPORT SOL 81-23 .
November 1981

tThe research of Jerome H. Friedman was supported by the U.S. Department
of Energy under Contract DE-AC03-76-SF00515 at the Stanford Linear
Accelerator Center.

ttResearch and reproduction of this report were partially supported by
the Department of Energy Contract AM03-765F00326, PA# DE-AT03-76ER72018;
Office of Naval Research Contract'N00014-75-C-0267; National Science
Foundation Grants MCS-7926009 and ECS-8012974; and Army Research Office
Contract ‘DAA29-79-C-0110, at Stanford University,

Reproduction in whole or in part is permitted for any purposes of the
United States Government. This document has been approved for public
release and sale; its distribution is uniimited.




An Adaptive Importance Sampling Procedure

Jerome H. Friedman
Stanford Linear Accelerator Center

Margaret H. Wright
Systems Optimization Laboratory
Department of Operations Research

Stanford University
Stanford, California 94305

ABSTRACT

Monte Carlo calculations often require generation of a random sample of n-
dimensional points drawn from a specified multivariate probability distribution.
We present an importance sampling technique that can often greatly improve
the efficiency of an acceptance/rejection generating method. The importance
sampling function is defined as piecewise constant on a set of subregions, which
are obtained by adaptively partitioning the sampling region so that the variation
of density values within each subregion is relatively small. The partitioning
strategy is based on multiparameter optimization to estimate the maximum and
minimum of the original density function in each subregion.
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1. Introduction

In Monte Carlo calculations, it is often necessary to generate a random sample
of n-dimensional points drawn from a specified multivariate probability density
function f(z). Such sampling can not generally be done directly, except in a few
important special cases (see, e.g., Everett and Cashwell, 1972).

When direct sampling is not possible, a method that can always be applied
(at least in principle) is the acceptance/rejection technique. Let R denote the
sampling region of interest (which will be assumed to be hyper-rectangular), and
let fup be an upper bound on the value of f in R. The sample is generated
by a sequence of trials, as follows. A random number g is uniformly sampled
in the interval (0, fup], and a random point r is sampled with uniform density
within the sampling region R. If f(r) > p, the point r is accepted; otherwise,
it is rejected. With this technique, the accepted points constitute the desired
random sample drawn from the probability density function f.

The efficiency of an acceptance/rejection procedure is defined as the ex-

pected number of points accepted per function evaluation, and is given by

e= I (1)

fue’

where f is the mean of f over the sampling region. From (1), it can be seen that
the efficiency improves with the quality of the upper bound. However, even at
best a large number of function evaluations may be required for every point that
is accepted.

An improved efficiency can be achieved if a lower bound f.p for the function
/ in R is also known. If p < f.p, the corresponding point r can be accepted
without evaluating f. In this case, the efficiency is defined as the ratio of the

probability of acceptance to the probability of a function evaluation, and is given

by

(2)
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The optimal efficiency e* is achieved when the upper and lower bounds are
attainable, i.e., when fyp = f1 (the maximum of f in R) and fip = f—

(the minimum of f in R). Thus,
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where I is the integral of f over R, and vol(R) is the volume of R (by definition,
I = fvol(R)).

2. An Importance Sampling Technique

The technique of importance sampling can sometimes improve the efficiency
of sample generation. The idea is to find a second probability density func-
tion g(z) — an importance sampling function — for which the trial points in
R can be generated efficiently. Points with the original probability density
function f(z) can then be produced by using the ratio function f(z)/g(z) in
an acceptance/rejection procedure (with a suitable choice for the interval from
which p is drawn). For an appropriate g(z), importance sampling can yield sub-
stantial improvements in efficiency compared to simple acceptance/rejection.
In practice it is usually difficult to find an effective importance sampling
function g(z) for the particular problem at hand. We present an adaptive
algorithm that, given f(z), constructs such a suitable g(z). For this purpose, we
initially make two assumptions: (i) that R has been partitioned into a set of M
disjoint simply-bounded subregions {R;}, ¢ = 1,..., M, such that R = |J, Ry;
and (ii) that f ;" and f; (the maximum and minimum of f in Ry) are known for
each R;. We then define an importance sampling function J(z) as the piecewise

constant function
oz)={rF |z € Ry}. (4)

In order for J to be useful as an importance sampling function, it must be

possible to generate random sample points with this density function. This is




achieved by randomly choosing a region R; with probability

+ .
pi = f vol(Ry) (5) ‘

E f; 'y VOI(RJ)
’.—
and then generating a random point r in R; with uniform density. Applying the

accept/reject procedure, a random number p is generated in the interval [0, 1]
with uniform density, and the point r is accepted if f(r)/ f;" > p. Note that
fp< f7/f ;*' , r is accepted without evaluating f. The accepted points are a
random sample from f(z).

In order to calculate the efficiency of an importance sampling proecdure
based on §(z), we first consider the probability of acceptance in each region. The
probability of choosing the ¢-th region is, by construction, p; (5). Given that R;
has been chosen, the probability of accepting a point r uniformly chosen in R;
is fi/f7, where f; is the mean of f in R;. Hence, the overall probability of ac-
ceptance (denoted by Pr(A)) is the weighted sum of the acceptance probabilities

for all the subregions, i.e.

fEvolR) f;
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where I is the integral of f over the entire region R.

The probability of a function evaluation, denoted by Pr(F E), is the weighted

sum of probabilities that f(r) exceeds f;~, given that r is in Ry, i.e.

M
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The efficiency of the importance sampling procedure (denoted by e,,), is
; then Pr(A)/Pr(FE), or

= ! . (©)

M
St — 17)vol(R)

t=1
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If we define the spread associated with the s-th region as

Si= (£} — 17)vol(Ry), M
| then (6) can be written as
| 1 o
! 8=
35 '
=1

The efficiency e;4 of the importance sampling based on J(z) will exceed the

efficiency e* (3) of the original acceptance/rejection procedure if any S; is less

than the spread of the entire sampling region R. Furthermore, the efficiency

increases as the sum of subregion spreads becomes smaller.

This analysis suggests that an importance sampling procedure based on §
could be extremely effective if the sum of spread measures over {R;} is small.

In order for this observation to useful, we must show how to contruct a set of

e

subregions {R;} such that ) S; is small. In the next section, an adaptive par-
titioning technique will be described that produces a suitable set of subregions.

2 8. The Adasptive Reflnement Procedure

The adaptive partitioning procedure used to construct the subregions {R;} was
originally developed in the context of multidimensional quadrature (Friedman
and Wright, 1981a), and is intended to produce a set of subregions with *similar”
spread measures (i.e., to minimise the sum of spreads). Since this is precisely

|
| the quality sought in the case of importance sampling, the same procedure can
|
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be applied to construct J(z). This section gives only a brief summary of the

adaptive refinement procedure. A detailed description is given in Friedman and :
Wright (1981a); the associated software is documented in Friedman and Wright
(1981b).
Consider a typical hyper-rectangular region R, defined by simple bounds on
each coordinate:
R={z |z} < z; < 2V}, (9)

where z is the vector (z3,Za2,...,Za)T. Let S(R) denote the spread measure
associated with R:
S(R) = (f* — 1) vol(R), (10)

where f+ and f— denote the maximum and minimum of f in R. The implemen-

tation of the adaptive strategy for partitioning R includes three steps:
(1) calculation of the sprezd measure S(R);
(2) subdivision of R;

(3) processing the new subregions and terminating the partitioning when

appropriate. q

In order to obtain S(R), the volume of R and the extrema of f in R must
be computed. Because of the simply-bounded form (9) of R, the volume is easy
to calculate:

vol(R) = f[ (z¥ —z5).
f=1

This simple expression for the volume is the main reason for partitioning R into

simply-bounded subregions; even for a region defined by general hyperplanes, cal-

culation of the volume is extremely corplicated. Furthermore, efficient uniform
sampling within a region of the form (9) is straightforward.

The other term in the expression (10) might seem, at first glance, to cause
calculation of the spread to be computationally intractable, since two optimiza-
tion problems must be solved. However, methods for optimisation problems with




simple bounds on the variables are well developed, and thus the sub-problems
associated with (10) can be solved quite efficiently if f is a reasonable function.
(A non-derivative quasi-Newton method for bound-constrained optimization is
used to compute the extrema of f in R; for details, see Friedman and Wright,
1981a.) More importantly, the substantial efficiencies in sampling that result
from a well constructed partition ultimately justify the function evaluations ex-
pended to compute the extrema.

The second portion of the partitioning algorithm involves dividing R into
disjoint simply-bounded subregions such that the sum of spread measures is
reduced. Let zt denote the value of z corresponding to f+, and z— denote the
value of z corresponding to f—. An “ideal” partitioning strategy might “split® R
into two disjoint subregions: R, which contains z+, and R, which contains
z—. These subregions would be separated by the boundary of points z such that
f(z) = f, where f is chosen so that the spread measures in Rt and R— are
equal, i.e.

(f+ — Hvol(RT) = (f — f~)vol(R™). (11)

The strategy just described is impractical — not only because of the difficulties
in defining the boundary between R+ and R™, but also because the subregions
could be of arbitrary shape (which makes calculation of their volumes intract-
able). Therefore, our partitioning algorithm uses a similar, but simplified motiva-
tion, to construct a set of simply bounded subregions. In particular, the bound-
aries of the subregions are defined by “cuts® along each coordinate direction
from one of the extrema. The desired cuts are the solution of a system of non-
linear equations similar to (11), and can be computed efficiently using a special
secant-like method for solving the associated nonlinear system (see Friedman and
Wright, 1981a).

Finally, after R has been partitioned, the daughter subregions are merged
into the list of all regions. If the global stopping criteria are satisfied (e.g., the
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overall sum of spread measures is sufficiently small) the partitioning terminates.
Otherwise, the list of regions is scanned for the one with the largest spread

measure, which is then considered for refinement at the next iteration.

4, Efficiency of the Adaptive Importance Sampling Procedure

The procedure described in Section 3 can be applied to define §(z) (4) by con-
structing a set of subregions { R;}, along with the corresponding values {f ;.*”}; the
resulting §(z) can then be used in importance sampling as described in Section
2. This technique will be effective to the extent that the function evaluations
needed to construct the partition lead to a sufficiently improved efficiency in the
importance sampling.

Let N, denote the number of function evaluations expended to construct
the partition of R. Although e,, (8) will tend to increase monotonically with
Ny, the relationship obviously depends on f. It has been found empirically that
¢ grows very rapidly with increasing Np for small values (N, < 15,000), and
then slows down to a nearly linear dependence for larger values.

Let N, denote the number of points to be sampled. The efficiency of the
suggested adaptive importance sampling procedure is given by

_ N, —_ Crs
Np+Nc/Cu' 1+(Np/N¢)¢ur'

As we would expect, E is always less than e,,, but will approach ¢;s as N,

E

(12)

increases,

From (12), we see that the number of function evaluations that should be
expended to perform the partitioning in order to obtain maximum efficiency
depends on N,. If only a few points are to be sampled, it is not worthwhile to
use many function evaluations in the partitioning phase. On the other hand,
a substantial investment in the partitioning will be worthwhile if a great many

points are to be sampled.
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In order to illustrate the effectiveness of this procedure, we present in Table

1 the results of applying it to severa! problems. For each example, we give the
simple acceptance/rejection efficiency e* (3), the value of N, and the resulting
number of subregions, and the efficiency e,s (8). The number N, was taken as a
“reasonable” value; as noted above, the best choice of N, depends on the number
of points to be sampled.

For each example, the number of sample points was computed for which the
work saved by using the partitioning method is equal to the work necessary to
construct the subregions. This “crossover” value N, is given by
—_ Ny

1/e*—1/e;s

4

Thus, for the first example of Table 1, allowing 250,000 function evaluations for
the partitioning would yield a sampling efficiency e,s =5 1.0, with a corresponding
crossover value of N, = 501.

As the results indicate, dramatic improvements in sampling efficiency can

be achieved by applying the proposed adaptive procedure.
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Table 1
Function e N, Regions ers N,
fa .002 50, 000 186 0.20 101
[t 1.1 x 103 152, 000 334 0.023 1.7
fa 0.008 50, 000 182 0.20 476
fa 0.0007 50, 000 181 0.10 35
fa 2.8 X 10”7 250, 000 589 0.0025 0.07
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