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ABSTRACT

A theoretical analysis is developed treating the "Pump-Jet" pro-

pulsive unit comprised of stator, rotor and enshrouding nozzle by using

the unsteady lifting surface theory. The analysis takes into account

accurate geometry, realistic flow conditions and hydrodynamic interactions

between all lifting surfaces of finite thickness distribution. The system

is assumed to be immersed in a non-uniform flow of an incompressible fluid.

Expressions have been developed for loadings on all interacting

surfaces and corresponding resulting forces evaluated at proper frequencies

dictated mainly by those of the rotor.
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NOMENCLATURE

coefficients of chordwise loading distribution on duct

aR C1r /U = Tr/J (for rotor)

a s  I/Pstan0Ps(Ps) at PS = 0.7rRO (for stator)

CD semichord of cylindrical duct

c expanded chord of rotor or stator

D subscript index of duct

do 0semithickness of duct at trailing edge

F rotor or stator hydrodynamic forcesx,y,z

FDxyz duct hydrodynamic forces

I (r(x) defined in Appendix A

Im(X) modified Bessel function of order m of first kind

i index of control point

Jm(X) Bessel function of order m

J U/2nro , advance ratio

j index of loading point

Km(X) modified Bessel function of order m of second kind

Km(x )  aKm(X)/ax

K.. kernel of integral equationji

Kji kernel after o- and p 0-integrations

k variable of integration

L. loading, lb/ft

L RD Rx 0 chordwise loading distribution on duct at rotor blade frequency

(q R~
LR (rR) spanwise loading distribution on rotor blade at frequency q

ix
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LR (r) spanwise loading distribution on stator blade at rotor blade

S S frequency

L R  (pR) coefficients of chordwise loading distribution on rotor blade

R~ R

LS  (PS) coefficients of chordwise loading distribution on stator blade

integer multiple

MDy,z duct hydrodynamic moments

morder of lift operator mode

mk index of summation

N number of blades

n order of chordwise mode

n blade index

Qx, yz rotor or stator hydrodynamic moments

q order of harmonic of inflow field

R Descartes distance

R subscript index of rotor

RD radius of cylindrical duct

r radial coordinate of control point

rRO rotor radius

S subscript index of stator

S. lifting surfaceJ

t time, sec

to maximum thickness of blade section or duct section

U free stream velocity, ft/sec

u variable of integration

v (q)(r) Fourier coefficients of onset velocity normal to blade of
rotor or stator

WR downwash velocity distribution normal to rotor at control
poi nt

x
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W S  downwash velocity distribution normal to stator at control
point

WD downwash velocity distribution normal to duct at control
point

x,r,y cylindrical coordinate system of control points

conicity angle of duct

e D  axial distance between rotor plane and duct midchord (positive)

e S  axial distance between rotor plane and stator plane (negative)

S(n) chordwise modes

SRO,S 0  angular position of loading point with respect to midchord
line in projected plane

801 angular chordwise location of loading point

eb projected semichord length of rotor or stator, radians

en (2r/N)(n-l), n=1,2,...,N

ep geometric pitch angle

A( n)(x) defined in Appendix A

Xk positive integer

index of summation of Fourier series

V order of peripheral mode

gpO cylindrical coordinate system of loading points

p radial coordinate of loading point

Pf fluid density, slugs/ft3

a angular measure of skewness, radians

T variable of integration

velocity potential

c(m) orthogonal functions used in generalized lift operator

IPROSO angular position of control point with respect to midchord line

in projected plane

cp angular chordwise location of control point

0magnitude of rotor angular velocity

xi
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INTRODUCTION

Previous investigations at Davidson Laboratory have been concerned

with the adaptation of linearized unsteady lifting-surface theory to the

cases of a marine propeller operating in a nonuniform inflow 
field, '2*

of counterrotating propeller systems,
3 ,4 and of ducted propellers,5'

6

where the exact geometry of the systems, the realistic inflow conditions

and the mutual interaction of all lifting surfaces are taken into account.

In the case of the single propeller with enshrouding nozzle, both

accelerating and decelerating ducts were discussed, the accelerating (Kort)

nozzle offering the advantage over conventional propellers of increasing

the flow rate through the propeller, reducing the loading and thereby in-

creasing the efficiency, and the decelerating type of reducing the flow

rate, thus delaying cavitation inception and lowering noise level.

The present study treats the pump-jet configuration, which is a

type comprised of stator, rotor and enshrouding nozzle. The stator vanes,

in addition to their structural support of the nozzle, are presumed to

homogenize the inflow to the rotor blades, reducing further the vibratory

loading and resulting forces and the radiated noise. To assess the advan-

tages or disadvantages of the system, a theoretical analysis and correspond-

ing computer program are developed which will reveal the steady state and

vibratory characteristics of this propulsive device as a function of various

geometric parameters of the system.

This study was co-sponsored by the Naval Sea Systems Command Explora-

tory Development Program and General Hydromechanics Research Program under

Contract N00014-77-C-0298, administered by the David W. Taylor Naval Ship

Research and Development Center.

*.-4

I,

Superior numbers in text matter refer to similarly numbered references
listed at the end of this technical report.



TR-2173

STATEMENT OF THE INTERACTION PROBLEM

A pump-jet configuration comprised of stator, rotor and enshrouding

nozzle is immersed in a nonuniform flow of an ideal incompressible fluid.

Figure 1 shows the relative location of each member and the corresponding

coordinate system. Figure 2 exhibits the definitions of the angular

measures of the rotor.

The kinematic boundary conditions on all interacting lifting surfaces

expressing the impermeability of the boundaries can be written in the gen-

eral form asW= LKdS+J L K dS + S RdS

Rd + R RR R D LS S (S)
R RLRKRRdSR S D SS

s= s LRKRSdS R +  LDKDSdS D + IS L SKssdSs (2)
S R  SD  SS

oD 0 0
w D = sLRKRDdSR + L DKDD dS D + 1 LSKsD dSS (3)

SR SO SS

where subscripts R, S, D, refer to rotor, stator, duct lifting surfaces,

respectively.

The kernel function Kij represents the induced velocity on

element j due to an oscillating load L, of unit amplitude on ele-

ment i . The kernel function K.. is the self-induced velocity at aiJ

point of the particular lifting surface due to unit load at each and

every point on the same surface. The kernels with two different sub-

scripts represent the interaction effects from neighboring surfaces. The

integrations on surfaces SR0 SS, and SDo are over the rotor blades, the

o. 4 stator vanes and the enshrouding nozzle, respectively.

The terms W. on the left-hand (L-H) side of the equations are the
J

known velocity distributions normal to the lifting surfaces, nondimension-

alized by the free stream velocity U. The velocities normal to the

respective lifting surfaces are the perturbations from the basic flow due

2 C
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to nonuniformity of the flow field (wake), camber, incident flow, and

thicknesses of the respective lifting surfaces. In the linear theory,

their effects can simply be added.

We consider two basic flows: a) one generated from the hull wake and

measured in the plane of the stator in the absence of all interacting sur-

faces, and b) the other generated by the presence of the hull and stator

together, measured at the plane of the rotor in the absence of duct and

rotor. Thus, any harmonic content of the viscous and potential wake

generated by the presence of the hull and the stator will be included as

an input to the interaction problem. (See Note at end of this section.)

The flow disturbances considered in the present study are:

1) The basic flows (hull wake and combinations of the hull and

stator wakes) both of which will affect the steady and unsteady

loadings of all interacting lifting surfaces. In fact, the

former will be utilized to calculate the steady and unsteady

loadings on the stator and the latter will be used to determine

the loadings on the rotor and enshrouding nozzle, as will be

demonstrated later on in the development.

2) The thickness distributions of all lifting surfaces affect, in

principle, both steady and unsteady loadings of the interacting

surfaces as will be seen in the analysis. These effects some-

times are omitted because of the presence of the axisymmetric

duct configuration and sometimes because the effect is very

small in magnitude, e.g., being at the blade-blade crossing fre-

quency.

3) The camber and flow angle (i.e., incident angle) of the respec-

tive surfaces will affect their steady-state loadings only.

Thus, WR, the velocity normal to the rotor is due to basic flow dis-

turbances in the presence of hull and stator wakes, which affect both

steady and unsteady loa6ings; the rotor blade camber and incidence angle

affects only the steady state rotor loading whereas the effects of duct and

stator thickness distributions may be present in both steady and unsteady

state rotor loadings.

The flow disturbances W are made up of the normal velocities on

-AS
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the stator due to the hull wake, stator blade camber and incidence angle,

and duct and rotor blade thickness distributions. Details of these con-

tributions will be seen later on in the development.

in the linearized version of the interaction problem, the duct is

assumed to be a cylinder with zero conicity angle (i.e., C = O) . The flow

disturbances WD are those due to non-zero c (conic form) and to duct

camber, both of which affect steady-state duct loading only,and those due

to rotor and stator blade thicknesses.

The surface integrals of Equations 1, 2, and 3, are reduced to line

integrals by approximating the chordwise loadings on stator, rotor and

duct by appropriate mode shapes, as in References 1, 5, and 6. The blades

of stator and rotor are divided into small spanwise strips and the span-

wise loading coefficients of the chordwise modes are assumed constant over

each small strip so that only the kernels need be integrated over the span.

The collocation method is used together with the generalized lift operator

technique,7 as in the references cited, to determine the spanwise loading

coefficients. in the case of loading on the duct of circular section, the

peripheral loading is expressed in terms of a Fourier series so that the

peripheral integration is easily performed, and the chordwise loading

coefficients are obtained by the collocation and generalized lift operator

methods.

The kernel functions are derived by means of the acceleration po-

tential, KRR as in References I and 2 for the propeller alone, and KDR,

KRD' and KDD, as in Reference 5 for the propeller-duct interaction. The

kernels K SR and K RS representing the interaction of stator and rotor will

be developed following the approach of References 3 and 4 for the counter-

rotating propeller system. The remaining kernels KSD, KDS, and KSS , will

be derived following References 5, 6 and 1.

The three integral equations are solved by an iteration procedure.

It will be assumed at first that duct and rotor have no effect on stator

loading which will be obtained from Equation (2) by ignoring the first and

third integrals. On substituting that value of LS in Equations (I) and (3),

those equations will be solved by the iteration procedure outlined in

References 5 and 6, thus obtaining values of L R and L . The values ob-

tained for LR and LD are then substituted in Equation (2), which is solved

R
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for a new LS. The new Ls is next used in Equations (1) and (3) which are

put through the iteration process again. The procedure is repeated until

stabilized values are secured.

The first set of iterations will yield first approximations of the

loadings by solving

Ws = LSoKss dSS
SS

WR "- LsoKSRdSs =  S LROKRRdSR
SS  SR

W D I- LSOKSDdSS - S LROKRDdSR + LO0KDDdSo
SS  SR  SD

Second approximations of the loadings will be obtained from

WS - 55 L ROK RSdSR -S LDOKDSdSD = SS LslKssdSs

SR  SD Ss

WR - 5S LSlKSRdSS SR LKdSR + So LCD KEDdSD

SS  S R  SD
W D - 55 LSIK SDdSS =1 5L LRIKRD dSR + 5S L DIK DDdSD~

and so forth.

NOTE: If measurements are not available of the flow generated by the
presence of both hull and stator at the plane of the rotor, in
the absence of duct and rotor, corrections to the velocity on
the L-H side of Eq.(I) must be introduced to take into account
the effects on the rotor, which operates in the race of the
stator, due to both viscous and potential wake of the stator.

5
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THE VELOCITY DISTRIBUTIONS

1. WR, Normal to the Rotor

At q=O, the steady-state velocity distribution normal to the R-H* rotor

on the L-H side of Equation (1), after the lift operator of order m has

been applied to both sides of the equation, is made up of

,rR )  = W( O ' ) ( rR) + _R (rR) + WD(Or) (4) 4

The wake component WW (nondimensionalized by U) is derived from 1,5

(q R)

- ( r a) VW r e- q (Od)e (Ww (rR) w' S (rR)e dc)

R) R) 0

where (q) = qR-harmonic of wake velocity normal to the rotor blade in

vW R
the presence of the hull and stator

'PRO = R- bR cos C , angular position of control point with re-

spect to midchord-line, radians

a R angular position of midchord-line of the projected blade
from the reference line through the hub

ebR projected semichord-length of the blade in radians

§(i5 = lift operator function

V) 1T xcosyc
With I (x) S §()e dyp (see Appendix A), the wake harmonic com-

0

ponent is defined as

(qR)
(qRF )  VW "iqR a (Rin)

WW (rR) = --- (rR)e I (qRbR) (6)

and v(0)
W(0'm)(rR = WU( (rR) I(M) () (7)

Right-handed

6
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The nondimensional normal velocity component Q due toWRc+f

effects of camber and incident flow angle, which is present only in the

steady state (q-R=O) since the blades are considered rigid, is given as

the sum WRc + WRf  where

R(O') (rR) +- l aR rR LePR(rR) - 0(rR)] l(07 (8)

where

a ( r Ro/UaR R

= magnitude of angular velocity of rotor

r RO = radius of rotor

ePR = geometric pitch angle of rotor blade

= tan-1 l/aRrR) = hydrodynamic pitch angle of assumed helicoidal
surface

./l + aR3 r! 7T 6f(rRSR

- VTTn)(rR R RPR d~a(9)
Rc (rR) TTCR(r R) o as R

where

f(rR,SR) = camberline ordinates from the face pitch-line

SR = (l-cosyp)/ 2 , chordwise location as fraction of chord

length CR

CR - chord length

(This component is derived in Reference 8 for arbitrary camber shape.)

The nondimensional normal velocity component due to the effect of

duct thickness on the rotor is derived in Reference 6 for a modified

lenticular chordwise section (see Figure 3 represented by

f(eo) Jj{[to-do]sin 2 e+ do ( l -coseOo)1 , 0 a o T TI)

as

7

7 . . . . . . . ... . .. . - ' " " _ _ _ 7 . . . . . . . . . . . .
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W (O)(r 2RDr Ra Lk Io(kr )K(kRD)]
t 0 ri~2

R R

(ik() keb
-R.P (2 to-2do) F(k) + ido G(k) je aR D) (m)(kbR)Idk (10)

where

RD  w radius of cylindrical duct

to = maximum duct thickness

0do 0 = semi-thickness of duct at trailing edge

CD = axial distance between rotor plane and duct midchord
(eD is positive)

and F(k)=[sin(kCD)-kCDcos(kCD)]/(kCD)2

G(k) = sin(kCD)/kCD

CD = semichord of cylindrical duct

Io( ) and K0 ( ) are modified Bessel functions (see Eq.(19) of Ref.6)

When qR 0 0 (unsteady cases), the velocity distribution normal to

the rotor on the L-H of Eq.(1), after the lift operator has been applied

to both sides of the equation, is made up of

WR ( q R' ) ( r  = W(qR'm)(r R)  (11)

where the W is given by Eq.(6).

As shown in Reference 6, for an axisymmetric duct, with d = constant0

over the circumference, (as in the pump-jet system), there is no effect of

duct thickness on the rotor when qR 0.

As noted in the preceding section, if the wake of the stator has not

been measured, additional normal velocity components must be included due

to the potential and viscous effects on the rotor of the race of the stator.

These are derived in Appendices L and M as suggested by Dr. John Breslin.

8

L . . " '...' . . . . . .- . . .. .



TR-2173

2. WS, Normal to the Stator

In the steady state (qs-O), the nondimensional velocity distribution

normal to the stator on the L-H of Eq.(2), after the lift operator of

order m has been applied to both sides of the equation, is
)(0,) +r (o,;)

(r = ) + W-(0 ) + - Dt ( O)(r) + w~ts  (rs)
S S '5 W S Sc+f 'S DtS S R tS s

(12)

Here (0)w (0 i v(w ~
(rs) -- (r -- (rs)I (0) (wake of hull alone in plane of stator)

(12a)

S ,/i+ a 2 r 2 L r) - 0 (r ]I (Mn) (0) (12b)
Sf (r5 s)'s

where

a at rs  0O7ras r stan6p4 rs) "7RO

= 0PS (0"7rRO)

-_______ f(rs,s)
S( r +)r C ((r) ass  d% (12c)
s° (r)

(cf. Eq.(9) for details.)

The velocity due to the effect of duct thickness on the stator can

be shown (see Ref. 6) to be equal to

Q (0,M) 2R D r SasD =) r SkI 0o(krs )K (kR D)

DtS = -i(: -- a o SoC
a CD+S) (-(k

.RP{(2t0 -2d0 ) F(k)+dG )e S m)(%'bS)}dk (3
S (13)S /

S

which is Eq.(l0) with stator geometry substituted for rotor geometry. Note

the factor exp(-ikes) which is the result of the substitution x',SO/aS+eS,

where eS is the axial distance of the stator from the rotor and

*The stator has the geometry of a left-handed propeller.

9
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SPSO - bs bS0cos (see Eq.(5)). In this case the stator being forward

of the rotor eS is negative.

The component WR S due to the effect of rotor blade thickness on

the stator can be shows (see Appendix B) to be given in the steady-state

by

~ (~r) = -
4a~a N r to

R c R R R S u F(up )(K)
RtS~~~~~ (r)S-( ia

S R
-- + C Ju

R.P.{e S R () (uebS/aS)JdudpR (14)

where

I (uPR)Ko(ur s) for pR < rs(1K)°  0
10 (urs)K0 (up R) for rs < PR

F(u,PR) = {sin(uObR/aR) - (U9bR/aR)cos(uebR/aR)} /u 2

N = number of blades of rotor

In the axisymmetric duct case, which is presently under consideration,

there is no effect of the duct thickness on the stator or rotor for the un-

steady flow case, i.e., qs#O (see Eq.(2) of Ref. 6), so thac the velocity

distribution normal to the stator is

W S s  (rS ) W (rqs ) + 9(NR r) , = 1,2,3, (15)

(r s ) = 0 (r ) +RtS '(r)

where

(q5 ,)
WW (cf.Eq.(6)) is due to the wake of the hull only measuredW at the plane of the stator (15a)

and the effect of the rotor thickness (see Appendix B) is

i0

" . . .. .. . . . . . . .. .. . . ..i mm -Ia Hill..... . . . . . "-
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r a

I.NR) 4a~ N rS e I SN 7aO5(lR S1WRtS (r)-- RR e

RS

fRt 2_2_ c

-a RP) I a P~ I F(u, R)G2(U)-G,?(-u) ]dudR
PRabR o 0 P)P

= +l,+2, ... ) (15b)

G2(u)=IN(Iu+aRINRIPR)KINIu+aRNRI rS) LaSu + ANR(asa R "r)]

S S

3. WD, Normal to the Duct

In the steady state (q-J-O), the nondimensionalized velocity dis-

tribution normal to the duct on the L-H of Eq.(3), after the lift operator

of order m has been applied to both sides of the equation, is

Q(O, )= "' (m) (0) + o(0';) + Q (O'm) + Q (0,M-) (16)
D Dc RtD StD

where the first component is due to conicity angle c, the second to duct

camber, the third to rotor blade thickness, and the fourth to stator

blade thickness.

It should be noted that in the linearized version of the interaction

problem, with the duct assumed to be a cylinder with no conicity angle,

it is assumed that there is no contribution to the normal velocity on the

duct surface (i.e., in the radial direction) due to the wake generated in

the presence of both hull and stator together.

Reference 6 shows that for axisymmetric ducts, and assuming a modi-

fied lenticular camber distribution, namely,

c (C,) A m + d)s i n 2oil x o 0 d(o11-cos) o 0 SPa T
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where mx  is maximum camber and d the semi-thickness of the trailing

edge of the duct, the component due to duct camber (see Eq.54 of Ref.6)

is:

)do m () (17)
Dc f( 2mX +d) )(O) (17

(,( )(0) is defined in Appendix A.)

The same reference derives the velocity component due to the effect

of rotor (propeller) thickness on the duct (see Eq.43 of Ref.6) as

to0

RtD TT Rb

u l O(uPR)K:, ( D .,0,p.m Part{eRR (I)(u )dudp
0

(18)

where

sin(ue bR/aR) - (UebR/aR) cos(uebR/aR)
F(u,O,pR) = 2

u

By analogy with the above, the component due to the effect of stator

thickness on the duct would be

S(O,) 4aNp t
SD+ p2 L... _2(p)

St DT2PS bS S

SuI O(ups )K,(uR D)F(uO,pS)*Im Partfe ue~Sa~ I u~}udp S
0

(19)
where

sin(u bS /a S) - (uebS /a S)cos(ue bS/a S)
F(u,O,p) = 2_________________

When 100O unsteady flow, Reference 6 gives the nondimensionalized

( INR1I~ iAN RCPD iAN R Ot
velocity component as W RD e e ,where

R12

129
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(2NR,) -
4a2NRf /j7 ()

WRD -1+~2 -- to
t i 9  R R R T C R

S1 U IN (UPR )K N (uR D)e -iZ ueDaR/a R (-ucD)F(u,-eN,
0 R R LDRP

-e ~ D oRaR) 1(m) (uc D)F(u,ZN R~PR)]dudp R(20)

and

F~u-eNROP)=sin n( (ua R IN R)6 bR /a R)-(u-a R )(eb/a )cos( (ua R M R)8 bR/a R)
F(~NR p ) u -aR YN )2

A similar formula can be derived for W (.N,), which however can only bes t
effective when I =N R (blade crossing frequency), since NS is usually
not an integer multiple of N R and thus is negligibly small.

13
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COMPONENTS OF THE SYSTEM OF INTEGRAL EQUATIONS

1) Kernel Function K RR

From References 1 and 2, the first integral of Eq.(]) can be shown

to be equivalent for each frequency qf to

i q fit n Lqn
f e R L R ( -

PRFfl=l 6=1 R RPt KRR (r R "~PR' ROeR ,q R)dp R

where

ui Aa

K R~~~ R () d

g,(u) =(IK) m B(u)e R

I (tu+a R 11N RIPR )K ml (u+a R L IN R jr for p< rR

m, I (Iu+a e NR r )K (u+a i NR~R for rR <

B(u) - ( a Ru+a R I IN R + )(a Ru+a R IN~ R P
R Rt

Pf =fluid mass density, slugs/ft 
3

r RO = rotor radius, ft

,cr_,P difference between skewness of the blade at control
point r and skewness at a loading point p , radians

a R a r /O U and p and r are also nondirnensionalized by r0

0 angular velocity of rotor, radians/sec, U- freestream
velocity, ft/sec

14
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r p

eb, b subtended angle of projected semichord of blade at r,
at p, radians

Im( ),Km( ) modified Bessel functions of the first and second kind

and A1 = 0, ±1, ±2,

(qRPn )

The LR (p) are the unknown spanwise loading coefficients after

approximation of the unknown loading function L (R)(PR,0) in the

chordwise direction by Birnbaum mode shape

(q R) cc (q RP,"

(PR,0R0) = L nPR n =
n=1

I (qRtl) - (qRnP
R (PR)cot + L (PR)sin(l)GJ

n=2

where e = a -ePcose and after the subsequent chordwise integration
RO b ce

over eRO
n l n -_iycoseot

An(y) = E)(n)e sinede
0

(See Appendix A.)

The cp o(=ar-@bcosCSe) dependence is eliminated by operating on both

sides of the integral equation by the "generalized" lift operators (m).

The factor 1;)(x)"" in the kernel function is the result of this

I

)= L -) e' xcoscPl dcp

0

(See Appendix A.) Equation (21) has an integrable singularity at u=0, the

value of which is determined by L'Hospital's rule as shown in Appendix C.

2) Kernel Function KDR

When the control point is on the rotor and the loading point is on

the cylindrical duct, the induced velocity, nondimensionalized by U

normal to the rotor blades, is

a SS LD( X2 )  0~ l~ t
12, F, SD PD0D) K DR (XR9 r R'£RO;{D'PD'D;'2 )dS D12"1

42-0 S D

or

15
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12 = r, S I L( 2)e KDRP de d D  (22)
X 2=0 0 D e

where L D =D pD = duct loading, lb/ft (see Reference 5).

1 a 1 iR-tD iX2aR(T-XR+ D)

K limit e dT
4= p fU XR pRO/aR R D DR

(D R D

rR

aR + rR R r "RO OR R R

D D

RR = {r2 + r2 + p2 2 rRPD cos(+ieD - CRo + Cot)}

ROR bR D D
CPRO 

=  a R - 8 bRC° c ' O 0 ¢ :5 Yo Tr

The loading will be expressed in a Fourier series as
cc -ipeO

L(x2) (§D,PD,eD) = F" L(X2,11) (9D)e D (23)

at PD=RD o The reciprocal Descartes distance I/R can be expanded in the

form

R_ TT = imI (+M2DRO+ tR )K M(I pD)ekdk (24)RDR ~ ~ ~~SIm (Ikl rRKm(klD ei kd

DR m2=-C -

(rR < PD in the limit as pD ' RD*)
S4

From the 9 D-integration, it is determined that m 2 = , since

2Tr ei(m2"4)eDdeD = { 2n for m2 - =0 (25)
0 0 otherwise

16
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Also, since the L-H of Eq.(l) is an exp(iq R t) function of time and 12

is an exp[i(X2+mr )C2t] function,

42 + m2 = qR (26)

where qR 0, X2 Z 0. The double series can thus be reduced to a single

infinite series. Equation (22) becomes

= 2e limit (x2 ,m2 ) a
12 ,e x -ycpa L L D ) Tn'! T*n**2 X2=0 4Tpf X RR R 2C R D

m2=q--RX2 PD-RD

-im 2cPRO i(m2 -q R)a R (XR-§ D) X R-§D

-e e

-i( (2 -q R)a RT = Tk•e i.I I m(IkIrR)K m(IkIpD) e dkdTdgD (27)

After the r-integration is performed and the derivatives and limits

are taken,5 the generalized lift operators7 are applied. Equation (2)

becomes

2 ,M2) iqRQt -(

m2 D) (De K DR D
12 m=I X-=O 2CD

ft =q R-

where m) is the modified kernel after the cp -integration:

R t ,r) = I r R eim2 jR

DR 4TPfU~rQo /l+ a~rR
2

DRR
inp 2 2- r 'II

L iR2 .Rm2"R) r 22Rl (a 2- l 2"R D

"iaR(m2-q
R)(D- R/aR) I()

-- ,K2+ ( Rlm-q~ "D eI ,q~R

kkIm2 (IkIrR)LKm2 l (kIRD)+Km2+ (IkIR D)]I ()( (m2- i8) bR)e

k - aR(m 2 - R)

(Cont 'd)

17
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C R-ik(g RD aR

k,.Im(Ik IrR)L _,(,kR+K,* l (IkIRo)]I(m)((m 2- kR e -

r k - aR(m 2 - ) (28) 

evaluated at m2=qR-X2 * The rotor radius rRD is introduced in the

denominator of the first factor because now rRP RD, and §D are fractions

of r RD and a R= r Ro/U . The k-integrals have integrable Cauchy-type

singularities. There is no other singularity, as can be seen from the

original kernel of Eq.(22) since rR is always less than PD=RD.

If the chordwise loading on the duct is approximated by the Birnbaum

mode shapes

(X22 m2)( D) C 02 Mcot

L (,+ nT2 ALArt+nAsin(n-1) (29)

where 0. is defined by §D = e - CD cosOc , 0 < ea S TT (see Figure 1), then

the integration over §O is easily accomplished.

S LD DO DR D = l - J -, DR ( C Os ine deoc
0 ID

2CD D R D0 R D (

= 3 A(X 2 'm 2 n)R (, 2mmn) (30)

n=l 
DR

where G(n) are the chordwise mode shapes given in Eq.(29),

and -(X 2 ,m2,n) = CDA(X2,m2,n)

and R(ma,,n)= 1 rR e im2CR iTa Im -qRI aR(m -qR)* L2
a DR 4TTpf 2 r Ii1+ aRr 2  

2 R

R R
2(a R Im-qRIr R )[Km 2_ (a R m2-q RIR D)+K M2+1 (a R m-q RIR D)l

e -ia R(ma-q R)( D- R/a R) l(;)(q-RebR)A(n)(_aR(mqR)C D)

oR

-ik(c -~
(-) k D" a'R

m rR k - aR(m - R) (31) "

Then letting u = k - (m2-q
R 2oR

(ma~qR " =,r e ,n) I r imaR i-)
KDR X2 -n)e- e R(M2R D

DR4np U 22fURO /+ a r (Cont'd)
R R18
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r1T g2(0) + T Eg2 (u) - g2(-u)] - } (31a)

0 U-

whe re

m ~ ~ -iu(C 0
r +a4])+m2 [Iu + aR(m2  q ~) e D aR

r2u-R ~2 R rRjR2 R1
R

• '=( U~R~2-q) rR L .. (Iu~R(m- R) I D)+Km+(lu+a -m2q) I RD

See Appendix D for the evaluation of the singular part of Eq.(31a).

3) Kernel Function KSR

When the control point is at (xR, rR,PR) on the rotor and the loading
points are at (t ,pseso) on the stator, the nondimensional induced velocity

normal to the rotor is, 2,

T (X3 ) iX Qt a sineI3 I LS  (ps,O,)e K iOddp(2

k3=0 oP S SR aspS5  e (32

where
= aP- p cOse

N S XR eik 3L "TI n]

lim a eI3LaR( 'XR);Sn] aS (-+- dT'KSR 4TT pfU2  n=l W nT S SR

R T 2 + r2 + p2 - 2rRPCOS .S0tS R= S' R S R S -CS )

To {Q' 2 + r 2 + p2 - 2 rRPS\o SOJR +1 -tR + rR RO S

and 6 SR 0 means that xR -c CpRO/aR and tS - Iso/as + S

19
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The inverse Descartes distance I/RSR is expanded as
I Icc im3s R i(- SR)k

1 - 1 e Se IR (IkIps)Km (IkIr )dk (33)
RR 3M 3  5 m3  RSR m3m- -m

(for PS < rR) with SR = eo " - Sn .

The derivative

7nS ,,ri+a~ 2 U SO

P2

is the directional derivative normal to the stator blade.

After the T'-integration and derivatives are taken, the kernel

function KSR becomes

K KSR SR aSP S

r -i(k34m3)3Sn im 3 t -im3(0O soRO)
e e e

4-TpfU2 a S  Ra r n=l m3 -+R r R  m='

-ia % RO 0
.{(asaR 3 + m3 , -e R 3( Rm 3 (aR) 3 Ps)Km (aX rR)

SR3p 2 /R 3 r P R 3 RS R

I(IkIp )Km (I kIrR) \a-R !S
S M 3 m 3 m 3 S m3 Re R aS - S

ia k- 7-(ak ) e dkf
-TF SR R3,

(34)

From the time-dependent factors on both sides of Eq.(1)

X3 +m 3  R

and from the summation over the stator blades

N Ns for (X+M - , NNS -i (k 3+m 3)e Sn r (3 m3) 3

Ze -L
n1I 0 otherwise

X3 + m3 - q R 13 NS A 3 k O

20
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Thus the frequencies q of the first equation are limited to zero and

positive multiples of the number of stator blades.

Since X3 
= qR-m 3 ' 0, m3 < qR and the double series over X and m3

can be reduced to a singl e infinite series.

The unknown loading function Ls(Ps,so) is approximated as before in

chordwise direction by Birnbaum mode shapes. After the chordwise integra-

tion over 6. and application of the generalized lift operator, 13 can be

written

I iqRCt O G L (X3 I ) m(

=e Z PS = LS (ps)Ks R (m3=qR-X 3 )dps (35)3 k3.0 PS ffi=1 6=1

where the modified kernel is

K rnm, n) =N s___ rR
R; (m3= qR-X3 ) = {" N}

SR m3' R 3 4TTPfU r RO a S  I+a 2 r2

RR

am 3 ] m3 ]
"e asaRi(q m3 ) LaR (qR m3 ) " r/ )l ((a R (qR ) m 3 a)m3  ) ( R)(q

SR

"e im 3s a "-iq R aR eia R(q R-m3)(CS +a S/aS) A(n)((aR (qR'm )-m)bsl ( ( q b R

k k
" i- p- )(~k_) "ks"m" -RR"i(m3+ k')°

(akm:)( m3" m3( ls)Km3(IklR) e e R S

PS Ls R k + aR(qR-m 3 )

)((M R)dk } (36)

S R

where now, a,k,r, and p are nondimensionalized with respect to rRO.

Let u=k+aR(qR-m 3 ). The kernel may be written as

,)Ns rR 3 S -iqor° ia (q -m3)( +"'SRnn(m=qR'X 3 )j- N -,"e e e
4pfUrRO as

{ g3 (u) - $3 (-u) du (37)

0

21
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where M 3- 2  1
-m " - a (q n m3 :

g3 (u)- LsUsRR3 p2 JLaRu- m3 ) -] 3 2 5

S

(1 - (q R S

aR a
-,,(n) R + )

• l3(U-R~R-m) P )  3( uaRqR m)(R L rR) e

_ a aR u

for PS < rR' Note that for rR < PS$ these are interchanged in the modified

Bessel functions.

See Appendix E for the evaluation of the singularity of KSR as u -* 0.

4) Kernel Function KRS

If the control point is at (x',rs,Y0S) on the stator and the loading

points are at (§R, PR,R) on the rotor, then following the development
2'3

for the other kernel functions it can be shown that the nondimensional

induced velocity at the control point due to N R-blades of the rotor will be

given by

= ) , RR sinOedOdpR (38)
14=0  LR (PR, er)e KRS aRPa

where NR xi a(T) ]
1 R lim a 4R ' 1 "Rn (K2 , S- e ,R 0) dT'

RS 4Trp U2 n-I RS S -wnR RS

S s

xS=' pS 0 /aS + S (CS negative)

IIa s r= a~p~ at r$ = 0.7 radius

RS=(T'-R )2+ r' + PR - 2 rSPRCos[eRO+pSP0t+ e Rn a R(' x )]Rn R OS S .
and by 6R' 0 is meant x + C and R /a

6RS x5 95 0 aS RO R

22
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Expanding the Descartes distance,

_I _ ' im4 RS g I(T'-{R)k

Re ReR rm4 (kfrm R )Km 4 (Rk s)dk (39)
RS m4=-m -O

for p R < rs, otherwise pR and rS are interchanged. Here

ORS RO + 9 so - Ct + e n a (TO'x')

After performing the T'-integration and taking the derivatives in the

proper order, and taking the limit

+K' RPR _

KRS KS aRPR

NR m -im4Qt i(m4-X4)aRn im4 (eRO+'Pso)

- Z Z e e e

4npfU
2 aR - n=1 m 4=-O

iaR(m4 _4)(a + S_ 77)
K a a~ m -4 -m4..V 2 rn. - R

'2SaR X4)- -2 j LaR( X4)+ - e 

SPR

1m4 (aRIm4 - X41PR)Km4(aRIm4 - X4 rs)

m4  Im (IkIPR)Km (fklrs) ik(- + e e-RO

/ak--)a k _- e a5
n \S r2 Rk 2) 4R R

" lR kaR(m4 X4)
(40)

The time-dependent factor on the L-H of Eq.(2) 
is exp(iqS0Rt) and the

time-dependent factor of 14 on the R-H side is exp[i(X 4-m4)C tj, therefore

qs= X4-m4 "

NR i(m4- 4)ORn NR for (m4-X4) = L4NR, 14 = 0, ," " A lso F, e -
n=! 0 otherwise

so that

qs a £4NR, C4 " 0, +1, +2, and X4-m4 a 0

23
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After the chordwise integration over e is performed, by represent-

ing the chordwise loading distribution by the appropriate mode shapes

0(;) (see I) and the generalized lift operator §(i;) is applied, the

integral 14 becomes for each qs, m and n

iq s t (? 4,f)

14 = e i LR (PR)RRS dpR (41)

PR 4

where the modified kernel is

(nS) NR rS  e m4 (aR+aS)KRS (m4 = X4- s e
4TrpfU2 aRrRO a2

rSI Ia PiKfl(aq i5

(n ~ m + qo)e) () I(-m4+ a qs e)s
SI

-iaq C C

S( ) Rk( S R

S a aR R- e R ImR(Ik PR)Km(IkrS)

- r P R

A(nl)((mn4 + q&)e) 1( M) ((-m+ Rq k)e dk

aR ~ ~ ab/k+a~q 5  42

Let u -- k + aaq, then

.(m, n) N r S m4(N R 4s )

KRS (in4  14-qS) e - R S q

4npfU~aRrRO V~

RS  SRR

CRC

-ia{ g4u) "g4 (Ou)

0

where

24
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°S  o R

a a

iu(C + - --
g4() ~m M q S a )

a * A f)( 4 q- 2 a..)Gb (a (-4 e SR R
r S SR

(for pR < rs) See Appendix F for the singularity of KRS at u - 0.

5) Kernel Function KDS

When the control point is on the stator and the loading point is on

the cylindrical duct, the nondimensional induced velocity normal to the

stator blades, the second integral of Eq.(2), is

cc 2rr 05 X0
5 T S s e DSd (44)

X =0 0 2d
5 D

where

I _ l im i t a X s . e i x 5 a R (-X S + C D )

K D X- /a+e r e dT
DS 4TTpfU2  S S S nS p0 _ RDS

PD" RD

R {T2 + rs + P2 - 2r P cos(e

= {2 + rs + p2 - 2r P cos(e +YS)I

The loading will be expressed in a Fourier series as

LXs) (tD,PDeD)- 1 L ('t(D )e' (45)

at pD = R The reciprocal of the Descartes distance can be expanded in

the form

I= -I k eims()DYSO)  (Ikmr) 5 (Iklp)e iTkdk (46)
DS MS mO -  . m S

since rS < PD in the limit as PD-D RD *

25
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From the e D-integration it is determined that m5=ji, because

2n i(ms lOeD { 2rT for m5- =O (47)
S deD { 0 otherwise

0

Since the L-H side of Eq.(2) is an exp(iqs QRt) function of time and 15 is

an exp(iXsQt) function of time

X 5 = qs 
= "NR (48)

With the substitution of (45,(46),(47) and (48), and after the T-integration

and the derivatives and limits are taken and the generalized lift operator

is applied using the complete orthogonal set of functions designated as

(1), 15 becomes for each ;, order of lift operator,

O =(q m) i q s t (m5, m)
1 = ' LDsm(S D)e DS d9D  (49)

qs=Om
5  

2CD

where the modified kernel (after the cp a-integration) is
(m5 'm) 1 rs ims

KDS 4rru 2r J S e

Pf RO S S

iq Sa R(§D' -  --_r mas"
*iia qs(asaq S + ml

) e Im (aqsr )

a R

[Km (aqR) + Kr (a q R )]I(M- 5 + a5 q

+ek(a k- m5) I m (Iklr s)LKm 1(IkIR D) +Km +l (kIRD)]

Sr e 5 S 5- 5 Dl

- kS()((-m5 - aS7) bS

kaRqSS dk }(50)
k+a~qS

The expansion scheme has introduced an integrable Cauchy-type singularity

in the k-integrals. There is no other singularity.
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if the chordwise loading on the duct is approximated by the Birnbaum

mode shapes as in 12

(qs'm 5 ) q A(qsfmS, )
LD (§) = 1 {A cot + A sin(n-l .

DD 2 nF=2

(see Eq.(29)) then the integration over C D  is easily accomplished.

(qs~ms D)-,MS51 m  1 "  5' (q 5 n),() (m 5,m

S LD ()Ks D S=0 5 A C(n)KDS CDsine doa

D

A(q (m
KDS  (1

where A CD A((see Eq.(30))

and

(m s ,n) r s im 5____

DS 4npii'r 1 T 7r -I
K~s - Pf 2 RO s e

iqf C S

r 5
. {.iaqaaqS + -fS) e Si(aqr $)

a R

[Km 5 1(a'RD) + Km 5 +(aR q SR )]I(n) ((ifm 5 + 
8 RsqS)o e)A(;)(a RqSc )

a

+ SjkI(ask- m2)e D S ) ms(IkIrS)LKm5I(IkIRD)+Km +I(IkIRD)

Da )b) dk (52)

k+a Rq2S 7
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Let u k + a q

ia q (e-C C S
M ;,) rim aY R S DS_

5' S 5 S
KDS2 rRO l+a2r e

f RO S S

{irr95(O) + ~'[g5(u) - g5() u.}(5a
0

where

g5(u) = u - a q I (a~u - aaq - m5 ) e D aS

S

I (ICYu a q I rS)[IK .(Iu - a qSIR) +l a aq IR~)
m5  RS L5 )+K5+ )

I, !L(. ~ + 'R S S (fl)((u + a q5)~

Equation (52) has an integrable singularity at k= -aRqS The value of

the integrand at that point is determined by means of L'Hospital's rule as

shown in Appendix G.

6) Kernel Function K SS

The third integral of Eq.(2), the nondimensional self-induced velocity

at a point (xS',rS,cpS0) on the stator due to the loading at points ('SP 5,950)

of all NSblades of the stator, is given as

.* 42

CO (X6) iX6 Dt Wl+aSp Si ded

X6=0 PS aSPS
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where

Ns

KI N - ______ limit a XS i X6 [aR(T'-XS) eSn(
6SsnO -% 7,R-s)dT'

417 p f L n=1 SSo -0 - RS

R = + r + - 2rSp cos(- 0  + YSO -RSS ) s S ('0S

6 SS- 0 means that x - yso/as + S and §S "0so/as + S

The inverse Descartes distance is expanded as

I 1 0 im61PSS oi k

=S I F e pI (IpS)Km 6 (IkIrs)e dk (54)
%SS = m -- c- 6

(for PS < rs, otherwise PS and rS are interchanged in the modified Bessel

functions) with 0 SS= oSO -'SO + Sn" The summation over the blades becomes

NS  i(m6-X6) 5Sn Ns for m6 -X6 = Z6Ns -6 = 0,±],±2, ...
2 e = (55)

n=l 0otherwise

Also, since the L-H side of Eq.(2) is an exp(iq s 0t) function of time and

16 is an exp(iX 60t) function of time,

=6 = qs = INR , (=0,+],+2, ... (56)

With these substitutions, after the TI-integration and the derivatives are

taken in the proper order, the kernel function K K~S'1 +a! /asP s  be-

comes

NS rs limit a m6(e50 -9 5 )
KSS =  -4T 2 pfUaSrR0 A 6S0 e

ROm6"as+r!6N6

[Cont'd]

29



TR-2173

ri m6\/ m6.~iq a~ (xl-§S) (a q s)(O ° q s -,s XSS(aqP aqr
{TTa( aq S R S r a2aR p 2)Im 6(aRq5P5)K 6  R 5r5)

S S

(k + 6) S 1m6(Ikp)Km 6(R )-is (slO + 'X 2, k
-ear 2 S k + a qs

- ~ S PS R4aq dk

(5')

where a, k, r and p are nondimensionalized by rRO the rotor radius.

After taking the limit and substituting S80- cos and 'S0

-bS cosy0 (0 skew), the chordwise integration over 'o can be performed by

representing the chordwise loading distribution by the appropriate mode

shapes 8(n) (see 13) and the generalized lift operator §(m) can be applied.

The integral becomes for each qs,' m and n

(qs Sn) iq s t _(m, n)

16 S (ps)e KSS dPs (58)

PS

where the modified kernel is

(e,n) N rs  m m6)

K --- {(aS qS- -2. 2
?4PfUas rRO If] +aa r2 m6=-O rs s S

S Sm6-qs+6Ns

Ir6 (a qsPs)Km6 (a qsrs)I (re m6+ :1 q S)eS)A(-)((m6+ aSq .S5

am 6 6 1 m 6 (Iklp Ps)Km 6(IklrS k r)A( )k p d j_T ma k+4.amk+6 mrk I ( )((m6- 3_$)A( )((m6- 3-)bs)}

-Cc rs S SS  k + aRqs

Let k + aRq S
= u, then

o-n g ,) _ NS r s a

i Z u
SS 4ip 2ar +a2 r2 =C

Srf aRO S S 6

{6(0) - 1 [g6 (u) - g6(-u)] u}
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where

g6 (u) = au - asaqs+ .) (asu - asa qs+ S (59)
rS P S

m d1 u - a(RIqsIPs)Km6(Iu - aRqsIr S )

a_. aR u -P+6  R q 06 SSm)((m6 a s  - a bs(k + -

Evaluation of the integrable singularity of KSS at u=O is shown in Appendix H.

7) Kernel Function KRD 1W

When the control point is on the duct and the loading point is on the

rotor the nondimensionalized induced velocity normal to the duct, the first

integral of Eq.(3), is shown in Reference 5 to be equivalent to

(x7) i 7 t l+aRPR
17 = jj LR (PR'RO)e KRD RPR sine de dp (60)

X 7=0 o PR aRPR

where

K 1 NR
__ limit B R

RD ~PU 1 -e /a +;7- ROR P RO-K 4 2,RpfU 
2 n= 1 R"ORO R D /1- 2 a R  PR

rD -RDR

xo-tR iX7[aR(T-xD+gR) -6Rn]

-S RRD

RD + rDPR 2 rDPRc SLORO-'"D&t+G Rn - XD R)

On substituting

I c im 71 7

__ l 7 e(IkIp )K (Iki eiTkdk (61)
RRD m 7=- m7 ( Rm( rD)

where 0 eRO - YPD "c2t + eRn aR(T XD +  D)
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and PR < rD

the kernel becomes

RND1 limit PR
K (ae/a~~

4iT2 pfU R RO R D VR aR 7a R2R RO
r D-#R

= im 7 (0R0- Y D - 0 t) - i(X,7-m 7 )6Rn - i(k 7-m 7)a R (XD-9R)

• iD e e e
m7-

XoR i(X 7 -m)aT k* _S e- Im7(IkI)pR)Km7(IkIr )eiTkdkdT (62)
S ~ I I 7 R 7 D

The n-summation yields

NR -i(X 7-m 7 )eRn =NR for X7-m 7 = A7NR , A7=0,±I,±2,...

Z e = 0 o ' 1R (63)
n=l for all other values

From the time t relationship of Eq.(3), X7-m7  7 NR = X8 = 1,= qD

where qD is the order of the frequency in the second integral of Eq.(3).

The integral 17 can be written as a single infinite series

cc I (X 7) i 1 7 NRat _(m7)

= x Z S LR (PR' e R)e KRD sine cie dpR (64)
7 k=0 o PR

evaluated at m7 = x7- 7NR , and after the T-integration and taking derivatives

and limits, the modified kernel is

-i m7YD
(inM Ne -m -ie N a xKRD( 7 = .4a arR {iTabe NRI .aR ( 7NR).. ] e - £ 7R a R xD

RD R 7 2 LR 7

N I Im a N )R R 7R 27

- 7 7R D ikxD 7 7) RO
-Sak+ e'7 e R dR P2 k + aRI7N

R R7 R

(65)
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where

K' (Z) Km7(Z) [K 
(Z)

m7 .= az 7_l1(Z) +m 7+i

and all linear dimensions within the braces and aR are now fractions of

rotor radius rRO

if the Birnbaum modes are assumed for the chordwise loading, i.e.,

( )- ,( 7,) c o (k 7'n)L (pR,RO) L L (PR)cot + , L (pR)sin(n-l)0 }
{)R R 2 5=2

(66)

where LR(X7'n)(p ) are the spanwise loading coefficients, then Eq.(64) can be

written as

= it 7NR Ot (X7, n) K (m7,d)
7 = Z; e RR OR )RRD dpR (67)

7=0 P R = 1

(m79)
where KRD is the modified kernel after the e a-integration.

Thus,

(m7, n) -- NRe'7 0 i D ~NR~( -i 7NaRx0

RD 4T1 pU2aRil

I m( 1N(aix ka R 66

m7  RI 7RIPR) K 7 (aRIL NRI RD)e I A(x)(7ebR)

eim T7aR (aRk +n I 7(IklPR)Km7(IkIRD)

-e k (-+ I DaR/a R)A()((m k/a R)'b R) "Nk-=R 2)' k + a R 17 N R

(68)

Letting u - k + aR17NR, it can be shown that
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-i m7q2 * Na

R (m7 1n) N R e eI1 7NRaRXD

RD 4T 2pfU2aRrR

Ing7 (O) + 3 [g 7 (u) g 7(-u)] . } (68a)
0

where 2 - "
g7(u)= L-aRu + aR 7 R PR 7 R

R

Im7(Iu - aRe7NRRIPR)K 7 (lu - R17NRIR D)

ue 
uu(x 

DR/aR) ()

Since pR < RD ' there is no singularity in the original kernel Eq.(60).

The expansion of the inverse Descartes distance introduces an integrable

Cauchy-type singularity.

Considering the L-H side of Eq.(3) in steady or unsteady case,

certain relations will exist between 7, X 8' and 9 and m7, m8 , and m 9 .

These will be discussed later.

8) Kernel Function KDD

When both control and loading points are on the duct, the nondimen-

sionalized velocity normal to the duct at the control point is5

18= SS LD (CD'PDB)e KD( cPD ,)dSD
X8

=0 SD

S 2 n1 (X 8) i %8t
IM X " 0Sj LOD e KoDOd6 Ddg D (69)
t8'=0 o2CD

(x8) X8
where LD  duct loading in lb/ft (i.e., LD (
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and

XD- D  i aR (-xD+ D)

K C limit e 7 F R dT
4TrpfU 2  r DD R D D DD

R = + P2 -2rDPDcos(eD -

The loading can be expressed as before in a Fourier series

(X) = (XS,P) - ie D
LD (D PD) = L LD  (§D)e (70)

at pD=RD, and

I c m8(%-Y) iTk
RDD L Z e D (IkIpD) klrD)e dk (71)

R mn=-W _=D
DD m c 8 JI 8 I~Kr)

Then the D-integration involves

21n i(m8-p) )GD de 21T for m8 = (72)

e D 0 for all other values
0

Since X8 = 7NR : 0, Eq. (69) becomes

W it 7 NR Dt C ( 7NR,m8) (m8)

18= - e S C LD (tD)KDD d D  (73)
1 7=0 2CD m8=.

where

(m8) 2 a -im8yD it 7NRaR(XD'D)

K - limit e
CID 4TTpfl? rr=DD

XD'tD it N aR T

e • R R Ime(IkIpD)KmB(IkIrD)e
i dkdT
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After the T-integration and the successive derivatives with respect

to pD and rDo and nondimensionalizing the linear dimensions with respect

to r RO' the kernel becomes

KmN) e" 'm8cp D a_ 2nR2 N .2 e" i aR 1 7 NR (X D-YD

DD 4 1pfU2 rRD 2 R7R

• 8ImsI(aL7Ri Rd + Im8+I(a RL7N RRD)

• KM8_1(aRL7NRRd + K m8+(a R7N RRD)]

SkLm_ (k 8 +i(IkIRD) LKm i(IkIRD)+Km (IOkRD)]e D)dk

-O k + a 7N

R7R (74)

Examination of the original 
integral reveals that it is singular

since RDD can go to zero when xD = D and pD = rD = R The singularity is

of the Hadamard-type (see Reference 2) whose principal value can be obtained.

Furthermore, the expansion scheme for the reciprocal of R DD has introduced

a Cauchy-type singularity in the k-integration.

The peripheral integration over Y0D and the duct chordwise integra-

tions over e and qP o (using the mode shape expansion of the loading LD

and applying the generalized lift operator) will be done later after the

last integral of Eq.(3) is derived.

9) Kernel Function KSD

When the control point is on the duct and the loading point is on the

stator, the nondimensional induced velocity normal to the duct is (cf. Ref.5

for K RD)

(D 9) ix 9t % +
= SJ; L_ (P5 )e KS DsinG dO d (75)

9 X9= o PS so sps S
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where

NS limit XD-S i 9[aR(T-XD+ S) Sn
KSD= z - nD S-. /a+s S n e dT
KSD 2 1 SO40S S S R R

f rDR n r -m RSD

RSD T2 + rD + PS- 2r pS ES]

on substituting

R_ = m e YSDS IklpS)Kmg(IkIr )eiTkdk (76)RSD  m mg--CD I9 9 rD)()

where SD = -so - CD - Sn it is seen that

NS -(x9+M9) 99Sn . NS for ( 19' 9 ) = 9Ns, 29 =O,±,

e =9Sn(77)
n=l 0 otherwise

Also from the time relationship 6f Eq.(3),

9 = qD (78)

After the T-integration, the derivatives and limits are taken. Then

if the Birnbaum modes are assumed for the chordwise loading on the stator,

19 can be written for each q D as

SiqDOt S (qD') (n) (79)

S -- (Ps)KSI) dpS

Where K D is the modified kernel after the e -integration
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K(n) NS e m99D  e- im90

SD 4Trp UaSRo _ m .S- a

00
{ i(ao " e qD(x .Sa

m9 q q( I L9 eS

R DS'RD P 7 maSD 9)GbS)

e a A( - m)ebS)I (Iklps)Km(IkIRD)dk

I cc mg) a S9) ) S 9 }
- S k + a Rq D

(80)

The expansion of the inverse Descartes distance introduces an integrable

Cauchy-type singularity. There is no other singularity since PS < RD

Let u = k + aRqD

aS
= " -ira o ia qD(XD'S a's

(mn) NS  -im 9 PD e-im 9 S S
KD = - e eeS

KSD 4TTUar 9=bpf as ROmggsq

I N 9 ( u)  ( - U){-i 9 (0) ga u du (81)

0

a

w h e r e K m(u ) =-Iu -a q + ]in + e

PS

m+ aR q R.-)eb) (uaqolpS)I ' (Iua q IR)

and

'K(z) [K

m
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SOLUTION OF THE SIMULTANEOUS INTEGRAL EQUATIONS

1) Auxiliary Analysis of the Third Equation of the System

Relating the three integrals 1l79 18, and 19, for each value of I =

Co i IN R t %L7 9) 1i(%7 -IN R)cpD if (X7 -LtN R )
1= % Ex e S Z- R e KRD dp R

7
7 -CC 7 PR n=lI

where

7 1, x 7  t

o iIN R at LN RPm 8) I'm8cPD (in8 )
E8 e R D e K d
18n M8=-Cc2C DD

00 iZ t SIN ;) im9 p (m9=L9qN,-LNRn)

19=Z e R L P e ' RDR'dS
9 =-Go P5  ;=I S

The (PDexponential factors have been detached from the kernels and the remain-

ders are designated by primes. From the known onset velocities (see W D in

an earlier section), Eq.(3) can now be written as

I + I + I= W {Er L (m,;) -i(m-AN R) CPD R' (m-LN R n)

7 8 9 Z- =1~ R e CRD d

+SL(IN Rm) e-imcp (in)

2CD D

+(L N R, e-I cp D -,(m= 9 NS-eN R d SI) ILN R t

PS LS eSD d 5

-(IN RP) i N RPD i IN R t
W R e e for 1#0 (82a)

Q(O,m) =. (0) + Q(,; + (0 ) (0,;) for A=0 (82b)
D DC SOD RtD
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(A) 1 0

Applying the cpD integral operator to both sides of Equation (82a)

'T ivy D LT Q (INR,'m) i (v+tNR) D iIN R t
r S 7I8I9IYDc= Sr PTr eT 78 DWeRdt

Now
IT (v-m+LNR)PD 2TT for v = m-LNR

J" ed 0D = 0 for V m-.tNIR
-I

T i(v-m)CPD d 2T for v = m

-Tr e 0 for v m

TT i(v+ANR)CP ={ 2T1 for v = -ANR
_ dcPD 0 for v 0 -INR

Then for a non-trivial solution for all v

E (v+INR,n) "(v,n) dpR L (INR,V) (v)

v+N R KRD R D D d{D
R R 2CD

(LNR'n)., (v= gNs-2N,) - (£NR,m)
K (=P ;S LS WRD for v =- (83a)

n=l pSD dS= for v 0 -INR (83b)

Comparing this third *urface integral equation with the first integral

equation, it is seen that LR is limited to the values L (q R ' ) and(AJN R 'V) R R. ,

L R is limited to L where m2 = qR " Therefore

S=m2 = q R " N R "

From this
1 9Ns = q R z 0.

Thus (83a) applies when qR=O and (83b) when qR00 , i.e., q R -'N S>0
( IN Rv) r(v) (q RPn).1 (V,;)

S L0  KDD dtD = | R LR KRD dpR
2CD n R

- L ( Ls  dps (84)
PS

40
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For the solution of Eq.(84) each term of the infinite v-series is taken

separately and v =qR NR

By analogy with 1 2 and 1 9the chordwise integration over ~D is
written as

L LD KD dC DX K D2C DDDD

where

R =~ 8 (n-)K I sine~de,
DD T Dv

Now the generalized lift operators are applied to the third surface

integral equation.

Tr~ (IN R PV) K'(v ANcP (R,),n)- V;;
0 2CD D ml n=lDD(5

Then with the relations

9D =CD - C D cose C

xD =CD -CD cosyl

the kernel becomes

K vri a { e. a2N~ [2 -l_(8R + I~ (aRIN RR]

DD 4rPfUr R ARD 0

[Kvl(a RN R RD) +K,(a R AN RRD)l( ) (aR AN R CD)A ;(a RAN R CD)

*k 2 LI V- (IkIR D)+I v+l (I ki RD)]LKvl(IkR)+Kl(IkIR ) I'Mn) (-kC)A(l)(-kC D)dk

k+aR INR (86)

and letting u =k + a RLNR

{ g8 O 5 g(u) - g8 (-U)] }
DD TrPfUr RO 29()- 0
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where

g8 (u) -- RNR)LIVIu-aRLNRIRD)+ I X)+ (Iu-aR NRIRD"I 

[K,_(Iu-arINRl R) + K+l (Iu-aRINR RD) I (M) ((u+aRINR) CD)

A(n)((-u + aR LNR)CD)

(86a)

For the evaluation of the finite part of the integrable singularity of

Eq.(86), see Appendix J.

On applying the lift operators to the first integral on the R-H side

of Eq.(84)

L (q R K R p,n - jdn

0 n=1 R RD dpR

where

i VR -ia .IN ( D -R

-(v,m,n) NRe _R R D- aR
KRD 4pU2 r Ii(eNRLaR ~~R -fR R+ R4ITIPfU rRO P

V (aR M RPR )K(aR NRRD) A( ) ((v+L.NR) ebR) I (') (aR2NRCD)

+ S (aRk+ L) iktIv(IkIPR)Kv(IkIRi) D -R/aR

a~~ ~ R Y R P N RD
RRR k• RI - dk} (87)
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or

i oa R

and

7 ( u)  R RRu  R R p( R R

R

" IV(lu-a R IN R PR) K< (lu-a R N RIR D)
. eUD-R/R)A(n) v+IN a.R (mROu+aRIN

{In7() T 9 ~ R) - (-)] bR R})C

(87a)

The integral term of Eq.(87) has an integrable singularity, the finite
part of which is evaluated in Appendix 1.

For the second integral on the R-H side of Eq.(84)

(IN R ,  ) ' (lu- s]dcp. I

i(IN R) (V,;,,n)

where

43
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-ivoS  aS

(Vm,n-)= Nse a IN-ia N

SD 4TrpfU 2 r a a R R R .

asI

1'(ag INRP )Kv(a IN RR) A _((v + a-R eb) (;)(aR ,NRCD

o-ik(c -

(v~m~) Ns -iaR NR(D- aS  )

+ (- s IV(IkepS)Kv(IkI)R

KS~ ~ D 4pfUas Ak 0 u((88
k + a R NR

or K e (l S iaRNR(C D- aS-RR/as

KSO 4t pf La sr RO e

( {N -i g9( ) L 9 n (u) - g R(-u) dun
0 U

and

9 R N au-a a N - 2 e~ ] u( e -Cs aS
99 u lu-a R I R LS S R R-

I I(u - a =N p)K'(Iu a IN IR )
V nRRSv R R D

(, ,,a 8N)
* 1v+ aR R .)bS ((.-u + aR1N)D (88a)

Equation (84), the third surface integral equation for q RO0, becomes

.(, N) .(vn) (,; ; (m' )n(,;)

K L K dp

m1I n1l RDrl~

Li ( INR 9 )(VOITIAl (89)

where KDV is given by Eq.(86); KRD is given by Eq.(87),

_.(v,mn,n)

and K is given by Eq.(88), for v R " £R
44
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When q RO, LO, Equation (83a) is

Z(0,;) (-NR, n) Rm -d( N R)  (- mR)J "LR KRD R LD DD d Dn=l R 2 CD

"r-- pS5  KSD dps WRto

which becomes (see References 5 and 6)

.( R,),N , ).(-INR m,;) (INRM)

A KDD = WRtD

S L (0 n " (-INR m n (0,;) . R m n7-0 R KRD m pn) + conjugate L KR n dP

PR

IN R R) (-LN RKm n)

- SL K SD dPS (90)
PS

(B) = o

It can be shown that for qR=0 and iM0 , and for each m and n

A(0,0,n).K(o,m,n) (0,M) L(0,n)_K (O,m,n)
A KDD =WD " S LS KSD dPs

PS

(0,n). (0,m-,n)
- j" LR KRD dPR (91)
PR
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2) Formal Solution of the System of Integral Equations

The th-_ integral equations are solved by an iterative procedure.

At q R = ' 0,+',+2, ... , for given order m of lift operator mode

and n of chordwise loading modes, Equation (1) will be

(q R';) (q R,;) (;,;)

WR (rR) LR (PR)LKRR (Eq.2l)]dP R
PR

+0 A LKDR (Eq.31)]
1-0

CO ( AN R~n _ mn

+ L (Ps)LKsR (Eq.37)]dP s  (92)
1OPS S (SLS

vR= q R- IN R P 1=0,+l,+2...

q ='NS , 11' 0,4-],42

Equation (2) will be at qs=N ,  0,+, 2,.... for given qR
IN ;2N~ ) ( qR n ; -)v n

' (r s LR(R) LKR (Eq.43, m4v)]dpR

-(INR,v,;) - (v,m,n)
LRDS (Eq.52, m5 =v)]

(XNR,) r.(,) ( E 59)]d(9
+ I Ls  (PS) LKss (Eq. 5

PS

Equation (3) will be when qR , whatever I
_( l ,V~ )  - (= -n)(q R ) - ( ~ m n

)KD n (Eq.86)]- ( qLR LKRD (Eq.87) ]dp RL DD ~PR R LR

SLS R'nLKSD (Eq.88) jdp$
P S

(94a)

46



TR-2173

When qR=O and L=0

(0,0,;)(0,M-,;) (0,M) (0,;)(O,;,;)

K KDD =WD - LR KRD dpR
PR

(0,)(o,,n) (94b)
- LS  KSD dpS
PS

When qR=O and 10

(LN R,- LNRen (-YN NR'mn) .(,N R M) L( INR n)_ (-INRen)

KDD WRtD " K SD L

f(0, n)_(-LN Remn (0, n) _(INR m, nP-

{L R KRD + conj LR KRD dpR

(94c)

3) Iteration Procedure

As a first step, it is assumed that rotor and duct have no effect on
(2NR,ni)

the stator loading. Note that L is obtained for v=qR- NR, L0-,|

m m3= m 5 = V.

First iteration
(0,;) r (;,n) -I (01m-) v) o

aI) Lso (ps) -LKss (Eq.59 for LC0)] • s (rS)(Eq.12)] for allPS

(NR ) (mn) -1 r(NRem)
bI) Lso (Ps ss (Eq.59 for 1L=)] • s (r )(Eq.15)]for all p5

cl) Then assuming that the duct has no effect on the rotor loading, LRO

is obtained for all qRIs:

(qR ;)  r" whenLRo  (PR LKRR (RR r)(Eq.2lL| .r.(RL RO (R KR qR)E .21 LWR (r R )(Eq.4 when q R=OEq. (6)

] _(&P) r- (O, ) .(q Rem, n)

when q 0)]- (%P) LLso (Ps)KSR (Eq.37 for L=0)+
[Cont 'd]
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(Not;) ,-(q R-NR ' ; ';) ( Eq . 3 7 for L=I)]

+ LSO so ( KSR

dl) The loading on the duct is obtained in the presence of both stator

and rotor.

A ;'DD (Eq.86 for v = q L = 0)]

(0,;)
(O,)PF (qn) _(qRP

O(qR=O, E (A PR Z LRO (PR)KRD (Eq.87,1-0)

(APs) P L R' (Eq.88 for v=qR,

e1) for qR = 0

.(NR,-NR,n) (-NR,mn)
A 0 LRDD (Eq. 86 for v= -NR, 2=)]

Srr-(NR'm) I-( p ' Fr (0,;)_ (-N Rs m~

{. R :WD for(Eq.20 ZorR tLRo KRD (Eq.87, v--NR, £1)
- 0Wt) (R,)PR

+ conj [LRo 'RD (Eq. 8 7 for v= NR, L.-1)] }
PF (N R'n) _(-N RO ;,;)  I

-(APS) Z~ L so (PS )RSD (Eq.8 8 for V=-NR,

for q R 0 o

A( R qKo N (Eq.86 for v = -NR' e=l)]

PF {N (qR-N,
Sp RD (PR)KRD (Eq.87 for v - q R-NR,

pF (N, ) (q-ND,,) RI
-(APS) Z LSO (PS), SD (Eq.88 for v - q R-NR,
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Second Iteration

a2) Lsi (Ps) =L~ss (Eq.59 for 1-a)] {s (rS)(El. 12)

( ZL Io (PR) KR (Eq.43, q L -0)

-A K D (Eq.50, 'v - q Rp

b 2) L (P) EK (Eq59 for i=])] !1Ws (r ) (Eq.15)

PRi (p)q.,; ( -NR;;

(4, R Z ~LRON (PR )K RS (Eq.43, q R-NR

0 DS RR

C2) L Rl (PR) LKRR (q R) (Eq.21)]

* R {[ ( R ) (Fq.4 when q =O Eq.11 when q 0)]

-(Ap s)Z L~S,(PS)K SR (Eq.37 for L-0)

(N Rp ) _( for A-i)])

+L S1  (PS)KSR (Eq.37 fr11

- AO~ Kp ( pm9; (Eq.31, V=q L=A-)
LODR Rp

+- A (NRqR-Rp n(qR-NRp (Eq.31, v- q - A-i)]

d2) A, ER LDD (Eq.86 for V - q Ap -0)jI

{ (q RaD q.6 (Ap R ZL Rl' (PR )K RD (Eq.87,A-0)
0 (q R 0£ Cont'd)
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P F (O,;) q( R M,;f)(q 8 VqO)

e 2) for q RO

(N R,_NRI ) (-N R ;,;) (E.6for v -N LNIt
A 1  = LDD RE.6P1)

LR D (Eq.20 for R )1)]F(pR)LiR) (PR)KRD

+ coni [LlKR (Eq.87 for v = +NR 1-i"

(apsZ Li KS (Eq.8 8 for v -N~sL=1}

for q I 0

(I 4q_ R ) ( q R) N LRl M,; K Eq. for vV= qq-NNA A)
DD R P1RDR

(LPs) Ls Rvps Ks0R (Eq.88 for v q_
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LOADING DISTRIBUTIONS
(q RF . N R, )The final values of rotor and stator loadings LR  (r R and LS  rS)

obtained in the iteration are used to determine the blade loading distri-

butions of the respective surfaces.

The chordwise distributicns over the rotor and stator blades are given

respectively at each radial position and at any designated frequency by

(a) For the Rotor

L(q R) 1 (q R'l ; max (q R' n)si(-

R ROR WLLR (rR)cot 2E +nZ LR (rRsn(-lo (95a)
n=2

where qR=any rotor shaft-freq ,ency and use has been made of the trigonom-

etric transformation XR=- ebRcose 0 b, subtended angle of the projected

semichord in radians; and

(b) For the Stator

(IN R) 1 7 (N R9 1) n nmax (IN R, n9~tL sIe r)ot- LS  (rstsin;IO (95b)
Ls  ( s S) = *L s  (s) 2o -S +

n=2

where N R=stator frequencies for L=O and I=1; and xS=-0bScosea, ebS sub-

tended angle of the projected semichord of stator in radians.

The corresponding spanwise loading distributions (after integrating

over the chord) are given by

(q R) TT (q R)

LR  (rR) = 1 LR (rR,OR)Sin601 dGo
0

(OR, ) (qR,2)
= LR (rR) + L LR (rR) (96 a)

and
( INq R) Tr (LNR)

LS  (rs) = LS (rs,Gs)sinecdec

(,NRP , ) 1 (ANR,2)
" LS  (rS) + T LS  (rS) (96b)
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5 6
From proven relations, ' the loading distribution on the duct is

(INR) - (NR,v) iveD

Rq R Di

L D  (x D o D  .= D L D  (x D )e

v=q R" INR

RR= -- trCD ig cot + Z A(s-ln I e
n=2

v=q -" N R:

(97a)

= 0,1 .... , where the A's are the final values obtained in the iteration.

The superscript I NR  refers to the frequency of the duct loading which is

zero or a multiple of blade frequency, v refers to the order of the circum-

ferential mode and n to the order of the chordwise mode.

After integrating around the circumference, the chordwise distribution

of the duct loading is

(INR) (x -2"r (INR) (x )de] i
ODx D) LS LD D'DDJ I no

0

2 r RO'l) 0 a max INRO,n)

tA cot "2 + E sin(n-)e sins
D 2 n=2

(97b)

since the only non-zero result occurs at v = 0, qR N R'
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HYDRODYNAMIC FORCES AND MOMENTS

A) Rotor-Generated Forces and Moments

The principal components of the rotor-induced forces and moments are

listed below. (See Figure 4.)

Forces: Fx 
= thrust (x-direction)

F and F = horizontal and vertical components, respectively, of
y z the bearing forces

Moments: Qx = torque about the x-axis

Qy and Qz = bending moments about the y- and z-axis, respectively

The elementary forces and moments of the various components can be de-
termined by resolving the loading force L(qR)(rR) acting on an elementary

LR (R)
radial strip, normal to the strip, and taking the corresponding moments

about any axis. The forces acting on a strip at radius rR of the N R-bladed

rotor will be given by
1

N R (qR) iqR(t+6 n )

AF(R) = Z L R (r) e Cos&R(r) Lr
X n= R R R

(R) NR (qR) iqR( 2t+5 n )  R -(R LR(R sine (r) os( 2t+ PRO+efn) R

LFy = RZl LR  (rR) e sine (r) s (0t+P +0 ) ar

Z n=1 R R P RO n R()=N R (q R) i q R (t+; n) n(R) r
6F z R  Z ~ L R  (r R e sin (r sin (ot+c0RO+6n) A

R
where ep(r) is the geometric pitch angle of the rotor in radians.

Since

NR iq N when qR NR 1 0,1,2,...

Z e R ni{R R R

n-l 0 when qR 0 ANR

and
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NR (q Rl) n R when qR= LNR;I

nE e0 when q 1

Reference 1 shows that the total forces at frequency IN R  acting on the

N R -bladed rotor will be given by

FR) = Re{NRrRO ei'"R~ S LR(rRR) Cos8(rR)drR1 (98)
0

(R) RNRrRO i'Rt 1 (LNR'I,n

F ( Re1  2 e R R (r )A J r

o nL R bR

+L (rR)A(n)(R)]S inR(r)dr

(99)

and

(R) N RrR i LNRlt 1I (I~N lf0) (
- Re NRrRO e R 21 LLR (rR)A(

-LR (LNR'+,n) (rR)A(nb)(.Js ( R r) drRJ

(100)

The moments are determined by:

Q(R) = -Re N r 2 e LN Qt I LR (rR)sinOp(rR)rRdrR } (101)
o R oIR

NR) 0  iALNRDt 1 (N R'I,n)

Q(R =Re {{ e R F- LLR (rR)A(n) (-beR)Qy 2

+ L (LNR+ I,;;) (rR)A(;) (r R)coseR(rR)+FILL (AN R' (rR)A(;) (_Rr

- + ( r ( ) er ],R
L (.Lrl )A ib)sinep(rR)tane(r I r dr~}
R R I 'bR' p R1 RR

(102)

and
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and

Q(R) N r 2 iINRYt I) I (MR+1 )A~kr
e L LR (rR)A(-) (bR)-L R  (rR)A(nIebR)

0 fl

R + (-IN (R' - (INR+1, )

cos0P(rR) [LNRl i+T r b-R)+LR (r ) ( bR)
n=l R RIRI

(iebR)sine( rR)taneR( rR)I rRdrR (103)

where A( n) ( .  and A () are given in Appendix A.

Thus the rotor-generated transverse forces and bending moments are

evaluated from rotor loadings associated with wake harmonics at fre-

quencies adjacent to blade frequency, i.e., at q R=LR ±, whereas the

thrust and torque are determined by the loading at blade frequency. The

steady-state thrust and torque are determined at zero frequency. The

corresponding mean transverse forces and bending moment would be determined
at first shaft frequency; in this case, L (r) = 0 and only the second

terms LR)(r) of Eqs.(99), (100), (102), and (103) are present.
(q R9; )

Howdever, in the case of the pump-jet system L R is determined

only when q= 0, 1, 2, .... Hence, thrust and torque will

exist only at INR = LIN S  (steady-state when I = V' = 0 and vibratory
when I = NS, = N R) and transverse forces and bending moments only in the

event that L'N S = RN+ .

For example, if NR = 5 and NS = 7, thrust and torque will exist at

qR a LNs IlNR equal to 0 (in the steady state) and equal to mN RNS

integer multiples of blade-crossing frequency. Side forces and moments

will occur at 11 2, 2 - 3, so that A'NS  A1R - 1 or 14 * 15-1 and

at A' - 3, , - 4 , so that 'NS - ,NR + I or 21 - 20+1.
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B) Stator-Generated Forces and Moments

In a similar fashion the elementary forces acting on a strip at

radius rS  of the N s-bladed stator can be shown to be

S NS ( NR) iZNR( 2t+Bn) S
AFX = LS  (rs)e cosOp(r)Ar Sn=l

with N5  iN N

NS Ri n n{NS when INR = 'N 

'

n=l 0 otherwise

and

Ns i(NR±)n N S when INR =V Ns
P e n-{

n=l 0 otherwise

The total forces and moments generated on an N s-bladed stator at fre-

quencies I NR will be

F(S)= Re{NSrROr'O)eN LS (rS)csGS(rs)dr (104)S L RO(r S) Po S1
0

r( S ) =  iN Rt 1 r(INR! " r + )((I + -

F Re r0(rs'O) e  nR LLs (r)A(n)(bs)+Ls (rs)A()( r
y o n I

sineS(rs)dr s } (105)

(, Ni.NRM t I (IN-I,)- (IN +1,;)

Re4  R' rF R (n) (rS
Res__ .o{ r (rsO)e o  S Z L (rs)A(n)(_es).L S  R(rs)A~n (8b)

z - LS o n(lr 5 ) b

sineS(rs)drs } (106)
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The moments are determined by:

Q(S) Re{Nr 0  Lr0)e 1 N( sns( rd (107)
x SR S L5 (r~ie( S 1rd

Q(S) N R{ i AN RQt 1 (N LR-)0

Y L r2RO SOo n=l b~ -S

(NR+l r " (jNR-1,;n) (n)erLs  ( 8sAn (bs)]COS p (r s)* +F, LL (r S)A I (-b s )
n=l

- NL r) ( 5)] (108)
-L (r ) (iebS)sne(rs)taneS(r)r drS} 0

N iLN Qt I - L(NR,

r2 (rS'2)2 e R Lr R (_r)
Q -Re{{72i rD e 1, ~ ( rS)A (- )z R SO0 n=

-s(rs)A(;')( )1s _ (r U-+Ls (rs) ('b)

(.AN R+l l r) ( 5)] (,er eSt Srrd (109)
+LS  (r n)A ( (0bs)Sn p)rSin@SJ

where
, rs

ro= - (nondimensional with respect to the rotor radius).
So rRO

See comments on relation between I and 11 in Section A.

C) Duct Forces and Moments

The axial component of the force acting on the duct at the frequency

AN is given by,
6

( NR) (ANR)
FDx aro I LDx (XD)dxD

2C D

or

(INR) T (N R)
FDx inr ° CD LDx (xD)sine dof (110)
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where x D and C Dare nondimensionalized with respect to rotor radius r RO.

Dx

F DNR 2r L S A (l+cose 0 )+ ~ si~-) i8d io

-Tr A~N R1,1) +1 I~NR ' 0,2) sia 11

The lateral components of the hydrodynamic force acting on the duct

are derived as follows. The horizontal (y) component is

F(IN R) = sl -271 ( IN R) (ei esnd
FDy 0rOD coc L S L D (xD 0D snD DJsin,,G

0 0

and the vertical (z) component is

F (MR r 0C Dcosci Iy LR (xe D cose de D sinecde
0 o

where LD ( NR x ,e0 ) is g iven by Eq. (9 7a).- Since

2Tt -ive 0 for v l
S e Dsin@eD dD { TT for v= +1
0 +irr for v =-1

and

27T -ive D oed for v 0 ±
Se D DeD
0 D TI for v= ±1

the horizontal and vertical components of the force become, respectively,

*6F y -iTr0 cosoQ+

and (112)

(IN R) _ r(LN R' Il) I IN R P 1 2) (~,1 1 AY ' )
Fz Tr 0cosc'{L A + A T-L + LR~12

(113)
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The hydrodynamic moments about the y- and z-axes, respectively, are

N r 2  CTCS T' , 2TT (LD d D 

MDy r o D L I LD (xDo eD)CosDdD(e D-CDCos) s ine dbe
o o

and (INTr ,- 2Tr (INR

(M R) r2 CC° L () - cosa sine de
Dz o D D D' DD (D. D_ D O a neo o

where e D-CD cos is the nondimensionalized moment arm. On integrating, these

become

(INR) 2 % ( INR'1I,) 1 (INNR'1, 2) (INR,'lI) (I R'-1,2)_1
M rrrcose I A + T + 7

SI _(2eN R,,) 1 -NR' 1,3) 1 (INR,'l, R 0 -I R'' ,-3)
-C0L'A ++0 +f"DL7 +" 7j

(I14)

IN~~ ~ R-(NRI,) i (NR,2) AN R,-' 12

( T ir2rCoscDL r (LNR'I I -A I R
Dz 0 D T

rI -(LNR '1 3) I (ANR'-l,) 1 (LNR -1,3)

(115)

When £ = 0

(0 r(0',,) (0,1,2)F(O) = Re -iT~r osce + A
FDy 0 LA T

F(0) f R+(0,1,1) 1 (0,1,2)

Dz 0e+r csLA + ] A

(0) r 2- (o,1,1) 1 (0,1,2) _ (0,1,1) 1 (0,1,3),.
MDy -Re lr2Cos JA + CL7A + t A

Dz 0Reuir oC°SDLO+ 2 A DCDLYA + A

(116)
Note that the second index of A is equal to q See comients under
Section A as to limitations.
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When I 1

F (NR) A (NiR'qNR= I +rI A (NRfq-NR= 1 , 2 )

Dy 0 L1

- (NR q-NR=- I ) (NRq-NR }2 )

+LA R + A

(NR) TN RC1oNRsa)(N (NR'q' NR---=2) ,2

+ Rpr~OSeL R~ + IA Rp -R

LA LV A A
m (N R) T~r (N R , R1 , ) +_ (NR v 1, ) _A(NR - I, ) +A(N-, 2)

Dy =+cstDA2 2 ]

=- (N R'1I,) 1 A (NR,,2) 11(NR 1, ) (NR,-1 )

(NR) 2 o DLA '+ I-A 2(NR' I l 2)7MDz 2r 2 T

- 1 (N R' I') + I (N R'1,3)_ T ,( R''I'I)_ I (N R''I3
CDL72  +1A -A -- A R

(117

When q-NR= I q --N R +1

When q-NR=-I q =NR-I
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SUMMARY

A theory has been developed in treating the "Pump-Jet" propulsive

unit comprised of stator, rotor, and enshrouding nozzle by taking into

account accurate geometry, realistic flow conditions and hydrodynamic

interactions between all the lifting surfaces of finite thicknesses of

the system. The system is immersed in a non-uniform flow field of an ideal

incompressible fluid.

The unsteady lifting surface theory has been utilized throughout the

analysis and a numerical solution has been outlined using an iteration pro-

cedure guided by physical considerations.

Expressions have been developed for the various loadings on the

interacting lifting surfaces and for the corresponding resulting forces

and moments evaluated at the proper frequencies.

The analysis has been brought to the point where the suggested

numerical procedure can be coded. The treatment of numerical difficulties,

such as singularities, has also been studied and expressions for their

finite contributions have been determined (see Appendices C-K). This

numerical procedure is at present being used in developing a computing pro-

gram which is adapted to the CDC-6600 or Cyber 176 high-speed digital com-

puter. The various components of the evolved analysis are being coded for

arbitrary values of time-dependent and space-dependent frequencies and other

parameters as the theory indicates. Then by combining these components at

the proper frequencies as the iterative procedure requires, the correspond-

ing loading of all interacting surfaces will be determined. This part of the

synthesis remains to be completed and tested for a realistic pump-jet con-

figuration, details of which have not yet been provided by the proper Agency.

Until this program is completed and systematic calculations are made,

no conclusions can be drawn as to the relative merits of this propulsive

configuration as compared with a single screw. Nor can judgment be made as

to the relative importance of the stator-rotor-duct components or on the

effect of various parameters, such as number of blades, distance between
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stator and rotor and their relative locations with respect to the duct,

blade area ratio and pitch angles, on the steady state and vibratory

forces and moments.

The present study is considered to be a complete reporting require-

ment of the theoretical analysis of the pump-jet propulsive device. The

numerical coding when completed will be considered as a supplement of this

report.
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BLADE REFERENCE LINE

I.E.

R.H. RbTATION

FIG. 2. DEFINITIONS OF ANGULAR MEASURES

NOTE: THE BLADE REFERENCE LINE IS THAT CONNECTING THE SHAFT CENTER WITH
THE MIDPOINT OF THE CHORD AT THE HUB
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LENTICULAR CROSS-SECTION

MODIFIED LENTICULAR CROSS-SECTION

FIG. 3. THICKNESS DISTRIBUTION APPROXIMATION
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z

F F

FIG. 4. RESOLUTION OF FORCES AND MOMENTS
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R

0
Cr

Li -Sin(B+
__ __V P P

N

.3 u/ /
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V//

Fig. 5: Expanded view of two propeller blades at a
particular radial position, r5.
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APPENDIX A

EVALUATION OF THE e e- AND Ycp-'INTEGRALS

I. x W e ()CCdy (A-I)
0

where for m1I

1) Wx S j (l-coscp)e IXOSPdcp - J(x) -

0

for m=2

W(2 Ix (1+2coscp)e xosdcp = J (x) + i2j1(x)
0

and for m- > 2

1(r x) = -5 cos('-loq e dcp i Jm1(xW
0

where

J (x) is the Bessel function of the first kind.

Ii., S~~y - 9 (;)eilycosesined@ (A-2)

0

where for n=]

Am y)- T ct 0s en e-1 ycose de - J (Y) -i(Y
0

and for > I

A (y) = 5sin(n--1)8 sine e' iycose d8
0

_,)n-2+

Al
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II. To evaluate
I 1 ix cosyp

R(X) = § (m-)e cosydt
0

Tr -iy cose

A n)(y) = e(n)sinecose ede

a) For m=I

'I(x)z- - JJ + iJ(x)

for ;=2

(2) (X) J +

S(x) = Lo " 2(x)] IJ1 (x)

and for m > 2

0 ) 2
I (x) = 2 L- Ji(x) + Jf_ 2 (x)]

b) For n1

A 1) ()iY
1 (y) 2 LJo (y) " J2 (y)] - iJ 1 (y)

and for n > I

A () ()
4=  LJ-3 ( y ) - ",l

A2

.....- ?i ...... .. ....
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APPENDIX B

EFFECT OF BLADE THICKNESS OF ROTOR
ON THE

VELOCITY FIELD OF THE STATOR

The thickness distribution of a blade section is represented by a

source-sink distribution assumed to be smeared over a projection of the

section in the rotor plane. The velocity potential due to the rotor blade

thickness at a point (x IrrSYS) on the stator is given by

RN b M(§RP~R) lap

S(xS',rS,cpSt) 1 Rb RRSR 8 R R P p deR
n1l _bRPRSRR

(B- 1)

where M(t RvP RP eRO) 2U RR O the source strength density determined
R'R

in accordance with the "thin body" approach,

f(tRPPRP eRO) thickness distribution over one side of the blade
section at radial distance p R in the rotor plane

RS 2 x-~ + r 2 + p2 2rSP CosLR + ot + R 7
RS cp §R /a +e = - csc) +c 'P O cp

xS yS OS S =(S GbScoa a S + S 0' 5YeS

tR eRO/a R = (a R- abR cose,,)/a R 90 :5 eC 5.T

~Rn = ~NR l

Since 77 Tosne - , Eq.(B-1) can be reduced to
R bR

N R TT af(p~f 2 lap
- 2r r n-~l 66 RR dRdO (B-

0 P R 01 R
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The thickness distribution f(pR, ) will be approximated by a

lenticular section, i.e.,

f ( e a ;ztT(pR) 2fR,' sin

to(p R)
o PR e bRsin2 (B-3)

where T is maximum thickness in the projected plane

t
- is ratio of maximum thickness to chord of the expanded section
c

PRebR is projected semichord

Therefore

t
-0 (p). pRebsine cose (B-4)

0- c R R bR~

The nondimensional velocity normal to the blades of the stator due to

the velocity potential ( S)Rt is

( W r s a B  l S (B-5)
S Rt U l x2  S S0  t

S S

Substituting Eq.(B-4) into (B-2), and (B-2) into (B-5) and, in addition,

expanding the reciprocal of the Descartes distance RRS as

1 00 $ m e' (XIR )k
R E elm (IK)M e dk (B-6)

RS T- M=-

where - eRO + so - Qt + 6 Rn

Im(lklp R)Km(IkIrs) for pR < rs

adL, Im(Iklrs)Km ( IklI R)  for PR >  rs

yields

B2
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r a Wj -S j -.(P )p e N'Il+a',P sine cose
n2V_ nS lOPESR R R R a

Rt I v+a!r2S r5 7SO n0P

e IR~S n'(K) e SRdk dp dG (B -7)
M= m R C

NR imO R N Rif m=.N Ry =O,±],±2,....
~4ith Z e Rn RR

n1l 0 otherwise

ine O -ime bRcose Ceima m o -m bS coyt m S
and e e e and e ~ e e

and taking the derivatives with respect to x and s:
S 'S

_"S N RrS c ime bS cosc 01 ima S -i mrt

()Rt 2 2~i~ IMhLN ee

TI t ~ i Ma -ime bRcose C

0 S- PR P ReRbR~/~ R bR sie c

im~~ i(x'-§)
(ia Sk - )(K)me dk dpRRdG (B-8)

On substituting the values for x I and given before
SR

RN r S ime bS coscp, in - imCnt
W -e e e
)Rtm=0

IT 2 _-2 MLNR

c R R ~ ~ ~bR 1ap5(a -

0 
PR -Ca S

-i k/a5 e bS cosy ik(cS/aS+eS) +i(m-k/aR)GR -i(m-k/a R)ebRcosect
e e e

*sine acos e~ dk dp R de a (B-9)

B3
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The e -integral involves

i (.L - m) bRCoseo
TI a b

s e R sineCcose zdOc
0

Let u=k-a Rm in (B-9)

i- e Cose i0
ir auR bRC°Y i2aR

je sinOoOd0 ' F(u,PR) (B-10)
o ebR

where

F sin(u ebR/aR) - (u ebR/aR) cos(u bR/aR)

F(u,pR L bR ]
Then

-2N r a c -imat im(l+ ima C

Rt RS e e S e

SA /l+a 2 r 2
S S m=ANR

* 5 -S (pR) ~~T~ i~a~p j(a u + asa m iKsmF(UPR)

RbR " r
as  0 u_ aR

a R RCIS( - +6 ) -i(-- +(I+~)e copa~ a R S a a-)m b S co (B-IlSe e dudp R  (B-11)

where

(IK)m I m(Iu+aRmiPR )Km (u+aR mir s) for pR < rs

On applying the generalized lift operator, the nondimensional velocity be-

comes, for each lift operator mode m,

a

( -2a2 rSN -imnt im(0s (1+ R + aRCS)

r RSR Z e eWRtsrs = 72 ]+ , n=-=C

S S m=ANR

t P to
- (1 R/ + 41 kasUasaRm- F,(I K)m . F(u.p)

PR R bR "R

[Cont'd]

B4
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i u ("S  'R

*e aS aR I()( a-(r -~m S)dudP (B-12)
S R

On changing the doubly infinite u-integral to an integral from 0 to 4=,

(B-12) can be written as
a_(m "2~rN R  -i~tim(a S(1+ aR )+a CS

-2aS = 2  ri W
(r R SR Zein~ S RS

t Trm=IN
RR SSR

t 2 22R 2 W

S--2 ( p 6- ]1 +a p2 S F(u,p)
PR bR o

{I (Iu+aRmIPR)Km(ju+aRmirS) (aSu+ aSaRm-

a ~ .u aR +
-A"m) S  7'R +

aS a-)m bS)

+ Im RmlPR)Km(lu-aRmr) (a u - asaRm +

S

- "iu(s S +E S)
M (m(( -(I+ m)ebSe a S R dup(B-)3)

S S

The integrand of (B-13) is zero when u is zero since F(O,pR) = 0.

In the steady state condition m=t=O ,the velocity on the stator due

to rotor blade thickness can be shown to be

Om) -4a R a Sr SNR  to PR

_r! p1a bR
W~tS (rs)= S R P) -

a- a

-iu(---+ )

S uF(u,PR)Io(upR)Ko(urS) . R . P . e a aR I ()(,L ebS) dudPR
0

for pR < rs (8-14)

B5
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In the unsteady case, m =Z R9Z=,2

(NM) -4a r N iLNIc - + al
RS Rre S e S RS

t 7~T2 1+a! r!

t p c

S P I ~ +a2 p S F(u,pR [G,(u)-G,(-u)]dudpR
PR c R bR RR0 RR

where

G2(u) '1114 e~p K( (u+a £Nlp)K Ir)

R RS c

La u + YNR(aSaR - ) e a S R S

S

S S

B6
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APP'ENDIX C

Evaluation of Singularity of KRR as u - 0

The integral of Eq.(21) is of the form

gf x - 1x (c-i)

where

g() Im(+aNp) Km(IX+aLNIr) B-,;(X)e a for p < r

B- , (x) = (aX+a 2 2 N+ ) (a)X+a2IN+ - )I(r)((q- )Br) h(f)¢(q- 6) 9)

SP 2 ab ab

m q+ £N

By L'Hospital's rule the integrand at X = 0 becomes

Im g(x) 9())= Fbg(x) g-X (C-2))-0 - Lk 6 Xb '= 0

It is obvious that

a Im(IX+atNIp)Km (IX+a N I r)I = Lim(I -x+aeN I p) K( I -X+aLCN Ir)

and

iaj - aj

e X=0=e x=O

Then

*The development is taken from Reference 2.

Cl

. .. .. . . . .. _ . .
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[ax) - gl-xV 2i LE (IK)mj_ B; -(0)

6- CxW -(x

+ (IK)I [ m,n - mn 1 =

+ 13- -0 'Lm(I X+atNIp)K(IX+atNIr01

Here (1K)) 1iv0 (Iajj) ~aNr for p -. r (C-4)

-I- ( X 6XB -( X) Or 2 bm

+ (a IN+ aLN pa 2)_ m) (q r )A(;) Cq9P)+elI in (q r )Al) (qeP)]

(c-5)
and 11M(x) and A1 C(x) are as defined in Appendix A.

The third term of (C-3) is treated as follows:

a) For % =O+ and aN >O0

1 CIX+aCNIp)Km(I%+aINIr) = IM(CX+aAN)p)K M((X+atN)r)

and

so that the third term of r)-3 becomes

C2
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=2BM,;(0){P K m(INlr) L" M 1 (lINp) + tIm,(IaNlpI

-r Im(laNIp)[KmilaLNIr) + Km+(IatNIr) (c-6)

(Note that for p > r, p and r are interchanged in Eqs. C-3, C-4 and C-6.)

b) For X - 0+ and aAN < 0

1im(i),+aINlp)K m(IX+aIllr) - I m((laZ NI-X)p)K m((Iat NI-k)r)

and

Im(I -X+aNaI p)Km(I-X+aNIr) = Im((laINl+X)p)Km((laINl+X)r)

The third term of C-3 then becomes

2%--(0) 6[Im((X+IaLNl)p)Km(+IaANI)r)]- for p r r (C-7)
mn = 0

Therefore Eq. (C-3) can be written as

( - x)l =2i & (IK) m  B- (0)
L=O a m,n

__B___ ( I IKml
+ mn2( m 2B--(0) - 1 -8)

mlX=O X=O n, (0 X X=O(

where (IK)mj X is given in (C-4)

8- -()=(aA+-j(aI+ )1 (q)()q P
m ,nr bb

'X =0 is given in (C-5)

B(lK) m
x=0 is given in (C-6)

and the upper sign is taken when A > 0 and the lower sign when I < 0.

C3
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When I m q -0, by the limiting process, it is easily showin

that

lim B--(0) - lirn 2 -0

a2-.0 m n

lim l;m--'0

limB () 0 m 2 1o'm- n x=x= -0

l-0 (IK)0  I rni m~. l(g,-. 2)og

Arn ( IK)0  ( ) '= -~ urn0

Hence when A

urn q(x) - g(-%) 0 (c-9)
X-0 x

When I~ = 0 but m =q 0, it is easily shown that

1I I ..)m

lim (IK)Irln fr r

YJ -Mfor p zr

lim bj(IK -'

1-'0 1X Ix=O 0

Hence for 2 = 0, m q J0 0

lxm9 -9 ~ 2 (IK)m

, (r) (q j )A(; (qP)[l Cr + am (.+ 4)
r p r P

.m2 r-;(, )qr,;
2 2 [er I~ (e)A(;) (qe 9) -OP I q~)~ (q9P)]

ar I

(C-10)
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When q 0 and Eq. (C-9) is used for the kernel functions, the value

of the integrand at X -0 Is zero for m =0. For m 0 0 It can be easily

shown that the integrand at X - 0 when q =0, m -ILN Is

I-(a + -L2 (a+-y)I m(amp) K(amr)
a r ' p

{AaI(rn)(O)A(fl)(0) j e 1 (;)(O)A(l) (a) + OP lI;()A()(o)(c-I)

C5
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APPENDIX D

Evaluation of the Singular k-Integral of K DR

The integral term of Eq. (31) can be written'

cc F(k) dk(D)

where F(k) =(ak +. mj- k I Idk rR) [Km~ (I ki R ) + K 1 (k1 R1 )
r R

I(M ((M 1 a)e A(lU-kC )e D

This integral exists in the sense of a Cauchy principal value. Therefore

F(k) - F(aN ! k+ (aN dk
k k+ atN N) )f k + L

r F(k) - F(-atN) d D2

where F(-a1N) (-a 2 N + m ) (a1N) Im(atNr ) [K_1 (aINR) + K 1. (atNR0))]

l(rn)(qe ) A(;)(aLNC D)e ia.IN De0 -a/a)

and -F(-a1N) is equivalent to (-j) times the closed term of Eq. (31).

For large Ik 2t I M, M I > aIN

I ki r 2e1kIR k-ik(e-a/a)
F(k) 2r (ak+ )kI 2e _(__A__k~

r 2jkirj k! R/Tt a b

(k+M - k -R0 (n;) (ke ik(c-a/a)
r r

*a1N -aRL N R throughout Appendix D. The development is taken from Reference 5.

Dl
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The factor

(ak + -2) e- I k l (R-r) -0 as k-
2r

since R > r. The product of the other factors also tends to 0 as k becomes

large. Therefore

M - F(-aN) [rK ' + dk( -
I f" dk - F(-aLN) U + J k+aIN-Ha N aD-H

-M k + a N -

Since

S= -2a-,N dk = log M alN.)
Sk+ k 2 _  2 H + atN

JM F( F(-aN) dk - F(-aLN)log (M -aN

H k 4aLN (M + aN

The re fore

- (m,m,n) rg -ima
KDR 4 flpUr F-TT e

{iTaLN(-a 2 IN+ 2) |m(aINrR) [K -(aLNRD) + Km+ (aLNRD)]
rR

laiNc (Da/a)()(ni M-N7

e D a I(M)(q9 b) AN (aNC) [i + og-aN

M F(k) - F(atN) dk 
(D-4)

+M k+ aLN

The singularity in the k-integral

The integral in (D-4) can be rewritten as

M F'(k) - F' dk (D-5)
o (k+atN) (k-atN)

whe re

D2
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F'(k) =ki (krR LmK M- k + K m.. (kRD)]

* (ak +- --)(k-a]N) 1(n) ((M 9)~ A()(-kC )e D

rR

+ (ak - -- )(k+a)N) I(((m + 1) A ~(kC) e ik(c 0-a/a)}

rR

and

F'(alN) =2a 2 12N2I1 (atNr ) [K_, (a14R) + K atNRj

m R Lm- D) r+1D

(a IN - .2 q()b) A l(aNC D)e D
rR

At the singularity

Jim F'(k) - F'(afPN)} - BF' (k)2N(D)

k-a/,N t(k+a4N)(k-atN)" k~a.LN

it is easily shown that (D-6) equals

I rn(qG b) A (n) (aINC D)e iaIN(cD - a/a)

2 a 2 2 m
* rR DaR m' m D J

(a tLr 2 N- mL I' (aLNr) [-2K'(aLNRD~

aLNR (a 2IN- -M)I(afNr,) [K I_(L' + K;+(aiNR)I
D 2 m A aRDJ ,

D3
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r- -l
+ I m(aINrR)L-2Km'(aNRD)

J { (a 2LN+ m )I (M) ((q2,eN)eb)A(nf)(aNCD)e D

+iaLN(a22N " r2  a-I (q)A (aNCD)-CDb )
R

(D-7)

al,(z) aKv(z)
where I,(Z) = , K,(z) =---

and I, (x) and A, (x) are given in Appendix A.

When L 0 (m=q) and k - 0

W~k) (r R)q

akk i . 2aeN = f(lm,n) (D-8)ka2,N D +

where

f(m,n)= 2al(rn)(qb)A(n)(0) - i [eD- 1(m)(qeb)A(n)(o)

Sr ( ) (qeb) (0)

R

I (MI (qOb)A(;) (0)]

When m q = 0, A = 0, k 0, the integrand is equal to zero.

D4
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APPENDIX E

Evaluation of Singularity of RKS When u -0

The singularity of R R (see Eq.37) can be studied in a fashion similar

to that used in Appendix C by making use of L'H-ospital's Rule.

The K SRsingularity at u0O is obtained through the limiting process:

limU- 93u)- 93(-u) r g3(u) bg3(-u)I(E1
liuDg 3  u u6 u a u ] =(-l

with

q5 = LNR Im 3 = -L

g3(u)= Im(1- q a- j -FR

for pS< r R

where

B- () (u - a aq - 1)(a u - a 2q + -mff,n~ \S S RS \ R R S r 2
S R

3 - a )ebS)i (m)((m3+ qS -i-@R
S SR

-t-u- - uu- O -2i(c 5  -~§ - ![Km
lu=O S aS aR K~ 3 jBO rn A(i

(IK)mI LRu

+B 1(O) L7 a u Ou J

(E-2)

El
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(IK) m3j U= Im3 R 3 f PS ~ R
u0 ~ (otherwise,

= a YNP)m(a YN r) and r are (E-3)

m 3 R R S 3 R RR ~ S R

nterchanged)

(q5  I NR

/~~) 2 .. 3)A (n))I()m~qL

B-qSaa~ + .)(a q5  rn)) 2 -m3+ - bSuR/(m+q)8l
Si R

(E-4)

6___ mf. ]U 'as- -(2 j Fu)I

2{ a2~~5  4) a3~~~q k)7 A (( 3  R qSe bS )( q

S( Ra S- P2 aR S+ r 2)L 7-- 1 bR 3 a qSbS)

SR R

+i6- :(;)((m +q N AR ) ((-m + aR qje }

- 2{a p3 a 2 R Sq)I ( )((m3+qS)e8b)A )(-m 3  a S q5 ObS)
R

S R R

+- Ob ';(m+q )A( ;)(-m3+ -a q5 vJf
aS ~3 SbRvi 3 SS

(E-5)

uj I I j- SO) u- ~rRl - M (I-UaRqSPS)Km (uR SR)]J u0

p S~ Km( Cont'dJ
-2{ 2 3 R Sr R)L' 3-(a Rq5PS) +Im 3+1(a R 5P5)J

E2
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rR
2R Im3( P ~ 3 aRqSrR) Km 3 +1(a Rq Sr R)] (E-6)

for pS < r k. For PS >  rR' PS and rR are interchanged in Eq.(E-6) above.

Then Eq.(E-1) yields

%3 (u) - g ('U)

-2ies+ "S  R'R){Im (aRNRPs) Km (aR2NRrR)

{(asaRINR+ m-)(a 2IN - rR)A(n)((-m+ a RNR
+ R R p 2)N R R r2  N

PS R

a R R

b( R m+A aR)bs)}

am a am-a )r
21 (a NmKaR(a NNrR2 2 aIN ) + IR)ebR)

R PS

+ i(aaRaNRs+ a. (aRINR -

M(E-7)

PS R

I [ M ~ ((+.e)e )A (n)((+ aRLR)

R a S

+ bS \()( a IN

+ R m+I n)N /(M mV2

(E-7

R .. a .. .. . I R. Rl Rl R. i
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When L=O ,then the integrand at u0O becomes

( _im -(~ e + - - ) )m ~ (me )( (mebR +

R S R rRPS b

+p(. (me )A (-Me )
r PS bR bS

PSrR aR S

(E-8)

When 1=0 and m0 , the integrand is zero.

E4
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APPENDIX F

Evaluation of the Singular Part of K RSat u-0

The singularity of Eq.(43) is determined in a similar fashion as

before by performing the limiting process of the following expression:

lim 9 4(u) - g4(-u) b g4(u) - 1g4(-u) I
u 0 U au B

g4(u) = m4(u - a Rq5IPR )Km 4C(u - a Rq5IrS)

B- ,(u) e 55-(o R S)r

(F-1)

where

B~ (a u a - -)a u aq +

R

M4 q LN R (Mi4 - % - qS, qS = LNR' X4 = qR

g4(u)10~o g4(-u)Iu.

/j4 aS _ F C R (O
a a /Lc mK mn

+(IK)mI L M RBfflu m
u-0

1u-aq 1(f-u- ua qr I

"'m4 ( 1 u - R q] uR. O ( - -R q S r S ( F -2 )

Fl I

-:
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(IK)mI 'mU-" (aRq SPR) Km 4(a Rq sr S)

- 4 (a RLN RPR )Km 4(a RIN R rS) for p~i< rS (F-3)

m4 R

(F-4)

- = 2 a

a R ( '~5  4 )A(fl)((m 4 + qS)e )~r)m 4 + a qeR

+a. )A(;)( ")eb)~n)( i )eb

m ~ a
( mLa .4-a 4-aq) '( -m4+ R)

R R sS

+i aeb 1) ((-m .t )e 5)A((m j+q )e ) ]}
R S

m 2L~a M4 N(Fa-R)

S 72- a -2aa q
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{u Lm 4(I1 'R a 'qj)Km4(lU - aq I] -

F I (-U-asq S  -u-a q S

-- 2 {.' Km4 (aRqsrs)[lSm 4 l(a q p )+ I m+(a qSpR)l
r S S

r- Im4(a qSPR)[Km .(aqs rs)+ Km (aqsr

for pR < rs (F-6)

For pR < rs' PR and rs are interchanged in (F-6) above. (See

singularity of KSS.)

Then Eq.(F-2)yields (for A 0 0 m 0 0)

[ag (u) -g (-u)] .

3u T u "u=O

2 i(eS + S- a)Im(aRIN pR)Km(aR NRrs)

aS 7R R R) R aA
m a INm

LaS8RLNR+ 4 A~NR _ ] A()(m+ .NR b)(r)((_m+ R R-)eS
SR

+21 m(a R NRPR) Km (a RINR rS)

a AN
• [a S 1- - aR R Mr -2a sa R N R n) ((mY"N R)ObR)l -m( ' -a e S R R

+i~a~R£NR+~r)(~£aR-£NR

;bS A(n)((m+LNR)ebR)I I)(m . ,OSS R S S

S- ) RbR 1  \\ A N

SR S

"(asaR£NR+ rs)(a £NR + L)A( b ) ((m+NNR)ebR )I ((m + R

-. S R
[Cont'd]
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{PR K m(a RIN R r S) rn-i (aR N RPR) + '+1 (aRIN RPR)]

-r SIm (a RN RPR)[Knl(aRLINR r S) + K +l (a RN R rS)]J (F-7)

When A 0, the integrand at u-0 becomes (for mO0)

SPR S Rm

+ -,_A~ (eR) ((me (-M+

im r e - - Rb

') n)(e R -~)(me + -~~)m

r2P bR bS a I bR b

and when m=O, L£=0, the integrand at u0O becomes zero.

4F
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APPENDIX G

Evaluation of Singularity of K DSat u=O

Equation (52) has an integrable singularity at k--a Rq S The

integral term of Eq.(52) can be written as

Fa~ d - F(k) - F(-aRANR)I
1S k+a AN 5 k+a AN k(Gl

-CD R R R, R

(see Appendix D) where

F~) aSk- IkI I (IklrS)L m(IkIR + K (IkIR )
Frk 2 - Lo- D + D

S

i(aA )(-~ 2 a (a A ))I(a A r _a INR aN RD)

and -F(-a RAN R) = times the closed term of Eq.(52)

For large Iki ;t IMI , IMI > aR IN R

rS iTIkIr5 S IkIRDrre c-a/

ak- 2-) k ~n (e 2e n ) (-k~.C 5 e DoS/a S

whc tns to T zeoa k .- /2.kI Thefre

2 e-Ik_(R -u r S) I A ( KD~ a k C'D C SRS

k-J
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S 1 nce

r-M = dk 2a IN dk log NaRNR)
_= + + k aRANR R R ka 2 (MR-a (M+a NR)

NM k-RAR R NR

M F(k)- F(-aRANR) ( N-a AN

- k+a RINR dk -('aRANR) log M+aRAN R )

Therefore

_(m,,n) 1 rS ira
KDS = e

4TPfUrRO N/l+a- r!

.{.iTaRINR(aSaRANR + m)e iaR INR(eD-CS a 0s/as)
rS

" aR NR D)+Km+I(aRRR ( as) aR R D  )

i (M-aRINRY M F(k) F F(-a RANR)dk(-)

L (.1 z:R o aNR) - k+aRAN

The integral in Eq.(G-3) can be rewritten as

M F'(k)- F'(aR ANR)
= S dk (G-4)
o k -a OA2 N2

R R

where

F'(k) = (k - aRANR)F(k) - (k+aR NR)F(-k)

and
FS(aR ANR) =-2aRNR F(-aRANR)

At the singularity

lim r F(k) - F(aRINR) B2a AN (
k- aR ANR "t (k+aR ANR) (k-aRNR)J k k-a AN RNR (G-5)

R R

with

- F'(k) ki m(krs)[Kml(kRD) + Km1 (kRi))]

[Cont'd]
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{(ak- - (k-aRJR)I m)((-m -a) )A n (-kCD)e -ik(CD-S - as/aS)

+ (a k+ -52) (k+a R ANR)I 1( a)(Qm -)bS)A(;) (kC D)e ikcDS - S5/aS)}
S S -

After some lengthy manipulations, Eq.(G-5) becomes

fo. A,#O mYO

I BI i(m)((_m aRNR) )A() C)e iaRINR(CD-CS - os/aS)2a RIN R  ak a + ~bs/ aR 'RC D)

• im(a AN r )'-2Km(a AN Rii a a LN + + Ta A+ N e- a a AN +
'.R R S)L mR R uJL2 SR R 22S R R(DS aSs S R R+

mInaL S)L-2K'(a LNR)](a AR rS)(aSaRN + Mrl~)R m RS

+ (aRN Dm+l (aRNRRD)](a RNRRD)(asaR NR + q. )I

-i aRaI(¢-+1 (a AN r -2mRDa LtNLR a R 2N _2' R^'

A() (-aRNRCD)e RRDs - aS/aS)}

+1 m aRNRrs) 2K0(aRNRRD) ](iaRNR)(SaR NR+ r N)ei a RNR(CD- eS - as/a s )

b I M+ R 'R" e (n) (aA - (M) (m +aRR' e ((aJ ANRCD)
C - a - m  a" bS/- aR-RD D at -bS/l

(G-6)

for 1=O m#O

(r- S 2a (S + i -D- S m(meb)A(;)(0)

(R0) s S )

-, I ) s  ((-Meb )()-_ I (-mOb)A()(O)]} (G-7)

G3
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When m-0, k-0, 1-0, the integrand is equal to zero.

G 4
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APPENDIX H

Evaluation of Singularityof K SS at u=O

The singularity of Kss(see Eq.59) at u=O is evaluated by means of

L'Hospital's rule

imu_ g6 (u) - g6 (-u) J ' g6 (u) g6 (u- (H-1)
u L Bu IU--

g6 (u)= Im6 (1u-aRqSPs)Km6 (Iu-aRqSrS). Bf,R(u) (for pS < rS)

Hereqs = £NR m6 = qs + 16 Ns (16 - 0, ±1, ±2, ... ), and
LmO0

BB(u) = (au - aa~qs + (au - asa q +

mn,n~ a S u aS aRqS + IXS S RS -2/
rS p S

a aR
.1- Im +.i - L ~e AJ LE qS -Up

m m6 aS q " aS ) bS/' A ( n ) ( m6 + 'aS"' a bsbS

It is obvious that

+g6 (u) u=O+ g6 (-u) Iu0

L[96(u) 6 (g6 (-u) u IK = -u) u

u0u =0 U-0

+B.,5(0) -u L M(U-a RN RIPs)Km(lu-a RINR Ir$)

- L [ (IaRLNRIPS)Km(uatR IrS) }=
(H-2)

(IK)m61u.O- Im6 (aRLNRPS)Km 6 (aRINRrS)- Im6(aRq sP)Km6(aRqsrs) for PS < rs

(H-3)

HI
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mn,60 (aSaR IN R -M- ")(a a INR +) AS)~6
rS P S S

n + a R N R Ip (H-4.)

m6 q 5 +£ 6N m6  NR +6 6 5

m -a aR \

~BT,5( U) = as(aaq 5 i -±)i(m)(( + R-- qS) qr)b )RqS) o S)
U Sa S ba b

+ a(-a a q 5+ f1) (~ ( + q )S r)A(n)(( qS)eO 5)

S S S

+ (-a Sa FqS + m6)(,aaqS+ '_6)
PS

r bS a()( +R )a)]Af)( 5 e5

S aS b(m +isSeS An)RS~eS

(- / q + 2) - ~ ~ 5  -) ~ ( m + R~ q S)er )
p5 s)()/m 7S bS

r ep a
* A A- n + R qS.e PS

+iaS S-(m

(See Appendix B of Reference 2.)

m~n - m,n

Hence

bB- -()4---)a--u

Thus

C)j-6(u) S(B- m6-
L ~ au 2a(4 + -42a a q S)I()ZrSA;

6L u u~o PS r S SRb 5  
s

[Cont'd)
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+ __2 (" -a a qS)(- - asa q'bSl (zebS) A )(Zeps

as PS2 S R r 2)[ R bS I)Sb
a b

a R

where 
z=m6  as q qs

The first term of Eq.(H-2) is therefore given by the product of

(H-3) and (H-5).

The second term of Eq.(H-2) is treated as follows:

Since u=O+ and aRqS > 0

Im6 (u - aRqsIPs)Km6 (ju - aRqsIr S ) =

Im6 ((a qS - u)P ) Km ((a~ qs - u)rs)

and

Im6(1-u- aRqSIPS)Km6(1-u- aRqsjr S ) =

Im6((aRq S + U)Ps)Km6 ((aRqs + u)rS) for S<r S

The second term of Eq.(H-2) then becomes

-2B;,;(O) {.- Km (a qsrs)lm S(a qsps) + lm +l(aRqsPS)]

-r Im(a qSPS)[Km _.(a qsrs) + Kmq+1 (a~qsrs)] } (H-6)

Thus the singularity of Kss at u=O , when 1#0 m6 O , is given by

[ag(u) ag6(-u)k-- - au Ju-0

u0 s

+~ ~~~p L2Q -r 5S a q)- qSIR(( A;(e

a s rs2 SR (r2  SR aL bs I bs bS

S S

[Cont 'd]

H3
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+ B~ p(i (ze r )A(;)(ze~)]

r PS +

LKm (a q r)I 1(a qP 5 p a S

r S (aqpr ' ~S + Km+ (a q~rS)]}

z 22M6 + aRq (H-7)
S

When L0f mAO , i.e., q5 0o m6 =L6 N s 00

u0 i(~m (2  (2. I.)r)(e)A me) (sign m)

= S s

+ i mi '_rmr (m))e r) P p
2- 1 L 5' (mb)A(;) (mebS)+6bS I (mb)AI(mb]} (H-B)

55s

When L0- M=O it can be shown that

~g() 0~u (H-9)

U=O

4H
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APPENDIX

Evaluation of the Singular k-Integral of K RD

The k-integral of Eq. (87) can be written as (see Appendix D)

G(k) - G(-a.*,') dk(I)

where subscripts are omitted and

G~k) -2I a 2k+ Iv(I k! P ) FK (I kiR) + K (I kiR

A()( V )[;(k )e ik(c D-a/a)

and

G(-atN) I - closed term of Eq. (87)}

It can be shown (following Appendix D) that for large Iki I MI > a1N,

G(k) is approximately zero. Therefore

Sf M G(k) - G(-a 'N) dk - G(-aLN) log( M - atN (1-2)

-M k + aN M + aIN~

and

-R 2vrn) N .&!' 2 LN - 2) I PRLN)[KV_ (aLNRft) + K 1l (aINRD)]
KRDp 2 DP

A ((LN+v)Sb ) I (aLNC D de l+ ITlog(Mai 1 )]

+fM G(k) - G (-a"N) }k (1-3)
- k + aLN d

The singularity in the k-integral

The integral in (1-3) can be rewritten as

-kThe development is taken from Reference 5.
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mG' (k) -. G'(aN) dk (1-4)
k f 0 (k~atN)(k-aLN)

where

G'(k) -- k I (kp ) [Kv_1(kR0  + Kv+I(kRD)

* f(ak + v )(k-aLN) A(;~) ((V Ib (M) (kCD e kcDc/a

p It

+ (a k - -V)(k4 aIN) A ; ((v + e) 6) I (M- (kC e)Cik(C DOC/a)}

and

G'(afN) at 2 aLN 2 1(aLNpR) [Kv I (aINRD) + vI(aN

(a2 IN - v ) A (;((v+ IN) 0b) I (M) (aLNC)e N~Da/

At the singularity k aLN the integrand is

urn f G' (k) -. G' (aIN) = WG(k) I *2aLN (1-5)
k-aIN I. (k+alN) (k-alN) 2ik k = a N

It can be readily shown that (1-5) is equal to

I~ (M aN A(;) (,v + IN) )e D

{ L2N - -v iLc -9 (a N- I(atp v(aNR
22 2p a

aR aPR

+ aLNpR(alN - 2a I'(afNpp) Kv' (aLN RD)
ap

1-2
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+aINRD(afN -v 1(atNpp) K"(atNR,
ajD R

+ I' I(aft~ ) Kv (aLNR)
v R D)0

MaNc-/) I r() (c a
+ a.LN +v (aNC-j ~~ NO A ((\*LNN~b)

aaPR

+*a~ -aINcCa) ~((v+N)B (i-6)(aN ()(vZ~

b () (n

K"(z) = 8
v

1 M(x) and A, ()(x) are as defined in Appendix A.

When k =£-0, it can be shown that the integrand is

where

1-3
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b~l 7 2 \ D a' 2a2 D 1
2aR 28R

2ap2 a8

When v=-O, 1--O, k=0 the integrand is equal to zero.

1 -4



TR-2173

APPENDIX J

"Evaluation of the Singular k-integral of KDD*

The integral term of Eq. (86) is

f(k) dk (J-1)
- k+aLN

where f(k)= k2 I IlV(IkRD) + Jv+l(IklRD ) [KvI(IklRD) + Kv,1.l (IkIR)]

I I(m) (_kC D (n) (_kC D)

This integral exists only in the sense of a Cauchy principal value.

If it is rewritten as

2 k - f(-al) a + til) dk

k + aIN k+aN

it can be shown that

I= i l  f f(k) - f (-atN) dk (J-2)

For large I kl 11, !1> a-N

42 e! e. R iI
f(k) : e ke 4 -- I() (-kC) A~n (-kC)

S 2 i kiR 2k R/TT

M- 1i (m-) (-kC) A(n) (-k<C) (J-3) I
R

For various ; and n and large k, the approximate values of the I and A

functions are tabulated below.

"The development is taken from Reference 5.

JI
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Table J-1
,n-,(Fn)- k ) " --- - ^' (.n -I klC) /'" '

13 I-;Ik I- Tr k C13 k

cos( I kIC- 1 - isin( IkIC- 1) cos(I kIC- 2)t isin( I ki C -4) 4 4 4'

2 cos(I k kt- -) + 2isin(IkIC- -) cos(IkIC- ) cos IkiC- o

3,5,7... cos(dkjc ) "7L[sin(kIC--- sin(Iki

4.6,8... ; i in(Ikl C- 0

Thus, for k large, f(k) is nonzero only when n = I. The values for

f(-+ kj) are given below.

Table J-2

n ; f(-I kI)

TIRC

et i2*= I kl C]

1 ~ r~c [. :;i e±i2 I k IC3,5,7 ... 4 [-L; -e

4 + i +2 IkIC]
4,6,8... RC-', e

>1 all 0

Equation (J-2) is now rewritten as

f k)- f(-aIN)

I - k + aN dk

4 -M

[Cont'd]

J2
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_ f (k) - f(-an) dk

- k + al-N
.m M

I f (k) - (-alN) d U f(k) d- H- "'k + aI.N + k dk

I M- aLNf(-atN) log( + atN (J-4)

2 M aIN"J-)

where in the second term f(k) is given by Irble ,i- 2 and where

f(-aN) = a2 L2 N2 [i .(aLNRD) + I V+l (aLfR)A

[K,.., (aRD) + ,,.. (aNRD)] I( ) (aNCD) A( ,(aINC )

In-the case n > I where f(k) - 0 as k-w , the kernel becomes

K DD 4TpU .f a L NIV (aiNRD,)+1V 4 (aINR D)[K V..1(aINR D)+K + (aiNR A]
KDD = 4TTpfUr 0 2O- K+

I (aLNC )A (aL NC) ! + 1 log (H;a N '

-M

When n = I, there are additional terms which may involve.

., fcost + r dk F ,M-afN

const. + k+aN = const. log(+aN

and

IA
33
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cn t [ 4 f g(k)dk = - r 9g(-k)dk (k)dk

cons t. - 'H k+aLN o k - aIN f k+a£N

-i2kC -
+e , odd

where 9(-k) = --i2kC --e , meven

i2kC m
g(k) -e modd

L i2kC -
-+e ,m even

The integrals are evaluated below. By means of the substitution

X = 2C(k+atN)

i2Ckdk -i2CaIN e idX

~aLN "2C(M+atN) X

= e2CaIN I- Ci f2C(M-IaeN)] - isi [2C(M+alN)j I

where Ci(x) = - f c os Xd% 9 sinx for x >> I
x

si(x) = - J sin X, -cosx for x >>.I
x

(See Jahnke and Emde: Tables of Functions, Dover Publications, New York,
1945.)

The refore

e i2Ck-k i2CaIN -sin 2C(M+aaN) I + icos 2C(M+alN)

K 12C(M+aLN)

i2CK

2C(M+alN) (J-6)

JL.
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Similarly, if X = 2C(k-aLN), it can be shown that

-i2Ck - -Ix. -i2CM
2e -i2CaIN "  e -ie

k-aLN dk"e 2 a s 2C(M-aLN) (J:-7);

For n I and varying m the terms to be added within the. brace of

Eq. (J-5) are listed below.

Table J-3

n mj 4npfUr° . DD (additional)

-i2CM i2CM
1+ 2 LM_.N ]- e

TT,2[I-aEN MaN TR M1C 2MM L

-i2CM i2CM
2ei [- ] i log M'atN

2TRC2 ' M+atN rRC ( + a, N

6 -12CM i2 CM i M- aIN
2nRC2

. -- i2CH i2CH .
4,6,8.. - 2 1 FL e ai lo M- aIN

2"RC M-aN M+aN nC log M + aIN"

The singularity in the k-integral

The k-integral in (J-5) can be rewritten as

i - 2 f(k) - f'(alN) dk (J-8)
k 2 (k-abI) (k+aIN)

whe re

f"(k) = 2ik 2'v(kR )Kv(kRD)

{(k-alN) (m)(-kCD) A (-kCD)-(k+afN)I ( (kCD)A~n (kCD)}

and

J5

- ... - -.. ...... ... .. .... .. .. .. . -7- - : L . . .. ,
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f'(alN) - -41(atij) 3 I,(aLNRD)K.,(aLNRD) l ( ) (aLNC ) A ( n ) (aLCD)

It can be easily proved that

bf' (k) 2atN
ak Ik=atN

-2.i{. ',aNI(a1NR) ,, o (aLNR)+a a2 L,2 N,2RD I ,(atNR)Kv' CaLNRD)

+ a 2 A2 N 2 R0 l'(aLNR )K"(aLNR R~f( (attic )A; (attic

+ ia1N {IV,(aLNR D)K.,(aLNR D)}

I ( ; ) (-atNCD)A (n) (-aCD) - 1(;) (aLNCD()(; (aLNCD)

+- i2a1NC~ [I (n (aINC )A~~ (atticD)- (atNC)A(~ (attic 0 )

(J-9)

When £ = 0

f 2aLN IRD() () (J- 0)

k=atN RD

where (see Appendix A)

-- form =I
RI for m =1,2 1 )1fo 2

o4 U(r)( O) = { 0 form > 2 I 1 (0) = 1 or m =2
10 for m>2

1 for n = I for n =

A ( )= for = 2 AR )()= for

0 for n > 2 0 for all other n

j6
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APPENDIX K

Evaluation of the Singular k-integral of KSD

The k-integral of Eq.(88) can be written as

I G(k) - G(-aR NR)
i k+a dk (K-)

M4 G(k) - G(-aR ,NR) M - aR NRR (K-2)

- k+a RN dk - G(-a INR)Og G + aR INR/
-M R R R R

where
Gk) 1 (ask - ikI Iv(Iklp)K_(IkIR) + K+(IkR)

G (k) =s -I) S D) + V+IDj

S

and G(~RLN) =- *i closed term of Eq.(88)}

Therefore

(;(_ N (;)(-k ae k14 D- CaLRee S - a/a 5

-S 4- a£1S +w

SS

and ~ ~ ~ l(aRI coe emo E(8 1

S(v, ';) N se-p U rRO S - a. a R 'N R  vaa ,R S)e ia R IN R (e¢D -eS - a S/a S)

SD a S a+ NR+-

IV I(a RP INRPs )Kv_ 1 (a RIN R RD) + K,+! (a RINR RD)l

A V + ~a R NR - I
,(n)((. + _ ,ebs)l (m)(aR RCD)

Tr \. M + a RI, NR/

+M dk (K-3)
k+a R£N R

K1



TR-2 173

M G(k) -G(-a RIN R) nl G'(k) - G'(a R IN R) k(-
I S aI dk S(5 N)k- Nd K4
-M k~RLR p (aR2NR)( RNR)

where

G'(k) k Ira vk s [K,_,kRD) + Kv (kR~D,

2.{( a S v Y..)ka~ N) () (( v -D.) )l n)~ c ik(c D S - a51a )

(a k- 2L (((kD-a~e~ - sNs

and

Gl~ RINR) -R a rR IV (a R IN Rp )LKV-i (a RLN R) + K V (a R N R D

nRR _vT + R " RRD R+ R DRD'Sas

.{(aSa INR+ 2.)A()(( = + aR )1(;)( Ia2NNCC -

R R 2 aebS}I R ~R De

lim G(k)aR-N)(aRkY N k' a ~N 2 aRINR (K-5)

Equation (K-5) is equal to

n - a R IN R -ia N R(c -CS - Saa)
I 1 m)(a .IN C)A()(v +~--~~RD b

TT R RD aS S

a IN+ -i a aN~ce j. N )(~+
L2R R 2 7v RNRCDS -X R R aV

IV (a RN RP S)K'(a R IN R RD)

+ a .IN (a AN v 1~ I, (aRL pS)Kv(RRDN
R RR R +a p2)S aLN RRD)

S

+ aIN ) RN RS)( ItN R)
8RLR(aR'R + (aa p2D vRR vRRDj

[corit'dJ

K2



TR-2 173

+ I1(aRLNRpS) K(aR NRRD)

i( ;) "- aR +ia RN R( eS - a's/a S )

2aRMR S; R ANRD a / bS.~

RR i aR.eNR(¢D-CS -os/as)( L +_ "

+ iaRINNe a R+ eo, I I (aRNCD)
S

+aRJNR))

bS (a ANC )A ; ) ( + aRAN K )

a5  (R R D I -)%S)J IK6

where BI V(z)'()= -z
ai(z)

K ,( z ) =

KK(z)
KJ-() = z

I (x) and A( (x) are given in Appendix A.

When k=iO , it can be shown that the integrand is

I (PS)V

(RD)V+ 1

where g'(rn) -

.,,(f) (.vebS{ [,. - (.o.-.-. §)], (r)(o)
vS

+, R (o)}
2a$p;

+ i .V. (C a( ( )
2a \ as I s

S

K3
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or -1mn

a

2 v p 2  D - S - ,s l

2 ~ ~ b +a 2  
' ' 2aveSS -i- 1

s

When viO,LA0, the integrand is zero.

K4
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APPENDIX L )

EFFECT OF RACE OF STATOR (S) ON ROTOR (R)

In the course of a re-examination of the theoretical development of

Reference 9, it was found that the behavior of the velocity field for

points inside the propeller race is quite different from that at any other

point in the field around the propeller. The existing theory and program

dealing with the propeller-induced velocity field have therefore been modi-

fied to include the region of the propeller race. The wake effect of the

stator on the rotor, designated by AW /U, has been developed and incorporated

in the present program to be used whenever there is no available wake survey

at the rotor plane in the presence of the hull and stator.

The W R induced velocity at points on the right-handed after rotor

by the presence of a "left-handed" forward stator is given by

WR -NS M + i Rt__(R0rRYRPt TPf J l  j1 S Z LID A S  (§ S, PS, eS)e

4fLp, mlU n p X=5

1 )L~dp sdT' (L-I)

where X, = NR, L 0,1,2, ... ,
2r 1 *

and l e-- R R Sn(a1 p F T
R -IjjD R R L)RO

RrR
S i nce

S R and aaR aR aR)a R r -

a R TY aRR xR

LI
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In (L-1), R = (T ,+ra -2r O +o Rt + oSn]
SR -S SO+ SO RO-

Let T1- XR= T, and e-- Rt. The T-integral then yields

o e+iXEaT- Ia j
T= (a [an- S FES- - SO.)(. SR

cSc P S SR

where

R = {(T+XR-s)2 +r 2+ -2r ps cos +o + } +
RR R S SO IRO + Sn

Then

al o +iX(a- ) 2 a2d

R S e S y-- - 2R, d T

R-c S ~ S YR eSO SIR

B2 212
But axRBgS -

XRS R

Therefore

T e RaSn ___QP +dpsdCsdT (L-2)

- ~(a 5Sj +X p2 ___e__ SS
xRR S RoSOS

Furthermore for points inside the propeller race, Laplace's equation

written in cylindrical coordinates takes the form

62  lIa ')+ 12 2S

- +L- L - 4-- 6(T+XRt )6(rRP-)o6+P Sn

aR R PP R 0G) PS R- S R S S+R n

where 6( ) is the Dirac delta function.

Thus whenever the field point coincides with the helices of the wake,

B2 R T1 Lt ~ ~~0-L 4
--xR  s -(rxR{)6(RPS) (S0+'PRO + ® + 6Sn) "LS -(!=- -~ -S)( ( P4ss m

+ G01 e (L-3)
SO

L2

SZ ,2., ,i f ,. -1L . . ..
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The induction AW is the first term of ~-() (see Eq.L-3)
R ax2

R

1 2 (-R'R 1 r

U 4rv~pf u IT+a2 RR
R R

N {S a,(%) (§S *P5, e )e i ke e i~ R T 6Sn) p d
n= is"s ~ S p -dO S dS

4TS6 ( +XR-CS)6(rRP M)(eCoPR+ a + 65n)d (L-4)

PS R R SOR nT

where since ?f(x)8(x-c)dx = f~c) as long as the range a to b includes xinc
a

{ r, 52 AP 01 (CsprR S)e- ke o e +ik(a RT-Sn) r dt

*-r S6(T +x - C)( 
dr rR R ~S)6(so RO + n

01) -i[a R (x R-tS )+;Sn 4TTa S

= Aps (gSprRGS)e rRr

But s Cr - 9bS Cs e, a SCs- S) (O so+ CP RO+ a + §Sn)d~S

a Sdt5= e bS sinO adG a

cpRO =aRxR

LS Ap Sr R 0bS

Therefore a

e-a 4 +
4T TT L W (rR,8 )e- i X9 e RO -a SSO R S Sn r

6( o+ y RO + 8 + Sn )sinO o de o

L3
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The induction can be expressed in a Fourier series expansion as

R_ e" -inGd
R~- e Ce , G

U n=- n -T -

Let G=e' . Then

meine' n Tr Mi(k+n)G'
n- 7 S 7 LS  (rR,ea)e

R e=0 '=-Tr

-ix 'pRO" aS S " -a RCS+eSn)

o8(e + RO + Sn+ e')sne dede
SORa SnR -i;( ROaR es-R.~Sn)

2eine I T (X) i (X+n) (eso+RO+Sn)o-R2  Le S R S e
r- R ~ X LSn- rR Oc =0

SS i n e de.,
aa

ix[(l OR a

2einO' TI (X) in(OasSoSRO+eSn)

n= L e sinadeo

Since

S inOsn ={ Ns when n = LT NS, I =0, 1, .2,

n=l 0 otherwise

Equation (L-4) becomes

Aw(1) NS 1 (aiS 1 n@

U 2TTpi /+ar R R ar rR

(M) ncpRO i(k+n)8S0 iXRa (a S sind6 L
"" L (rRe)e e e of o -; o~ X-O S0 R

With yRO = aR " ebR CosC°oS

eso - s  bS c o1

L4
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and assuming(x) 1 (x, ) -

L( (rRe ) = C d =! LS (rR)e(n)

where 8(n) represents the Birnbaum chordwise modes, then the integral part

of (L-5) becomes

aR

maxn O ixa i neb°cosp i(X+n)aS i a
leMZ Z L(X,n) ( e R S 0R bR S a S

01 n-i X0OS

A(;)(n+x(1+ aR (L-6)
S

Taking the lift operator at each r-order and nondimensionalizing with

respect to r (rotor radius), Eq.(L-5) can be expressed as

(n,m)

W R (rarN-
1. 2TrpfUro vr+ar- RR R rR rR

R R

e ine in(aR+aS) (;)
e• e I (-nabR)n=-m

( -(rR)ea R Se S A(;(n+k(+ ,R (L-7)

n-I X-0 S

where n = IINS , Li = 0, ±1, *2,....

X = ANR , I - 0, +1, +2,....

(it can be shown by a similar approach that the second term on the right-

hand side of Eq.(L-3) does not contribute to 2aXR)R )

In the steady-state condition, L1O, and retaining only the A-0 and I

terms (i.e., X-0 and X-NR)), Eq.(L-7) becomes

(0,;)
SR (rR) NS (0) (0 ),()rIL1(;(0 Z{S r )~n(0)+

U2Tp f12 ro 17'7 RR I R rR )R n-I RR R

S(NRn) iN aRsiNR(l+ a a

L (rR)e S R a S SA(;)(( - )ebS)} (L-8)

L5 C-



TR-2173

APPENDIX M

THE VISCOUS WAKE OF THE STATOR

In a pump-jet propulsive system the rotor, being located in the race

(wake) of the stator, operates in a real fluid and hence should include

both the potential and viscous effects. In the absence of wake measure-

ments in the plane of the rotor when the stator is in place, it is necessary

to take this into account theoretically. The potential contribution has

already been dealt with in Appendix L. The effect of the viscous wake is

approximately considered by the Kemp-Sears method described in Reference 10.

The configuration of viscous wakes of propeller blades is approxi-

mated from single airfoil experiments. The unsteady force-and-moment on a

downstream blade passing through such wakes is then calculated on the basis

of the theory of isolated thin airfoil in nonuniform flow. The same approach

has been adapted to the unsteady lifting surface theory.
11

Silverstein, Katzoff, and Bullivant, have shown that the half-width

of the wake, Y , may be calculated from the following formula

Y 0.68 12 C D c(x/c - 0.7) (M-I)

where

c a airfoil half-chord

x distance measured along the wake axis (free-stream direction)

rearward from the center of the airfoil

CD - the airfoil profile-drag coefficient

NOTE: CD will be calculated according to Hoerner's method.
12

For convenience, a new coordinate x along the wake axis is intro-

duced in Eq.(M-1):

x x - 0.7c (M-2)

Kemp and Sears have shown that in terms of x" the wake half-width and

Ml
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the velocity at the center become

y= 0.68 42 c(CDx /c) (m-3)

ut/V = -(2.42c D)/(x"Ic + 0.3) (M-4)

and that the velocity profile to be used is

. exp -n (M-5)

c-

Since the propeller blade moves along a line oblique to the x

(or x") axis, it is convenient to introduce oblique coordinates x1,y' as

shown in Figure 5. The relation between x , y and x',y' is given by

= x1 - y'cos85  , y = y'sine S  (M-6)
P P

(The superscripts S and R refer to stator and rotor blades, respec-

tively.)

Since the wake is narrow in the region of interest, see Figure 5,

y'/x' is small in the wake itself, and one may write, approximately,

x x , ty A y~sinBS
p (H-7)

Then the wake half-width and centerline velocity are as follows:

0.6 j- '(M-8)

u

S.
V. c

where c is the total chord length of the stator.

The velocity profile from Eq.(M-5) is now

me5 2E.- exp _n P)y,12 (M-10)

u I \ Y

and

M2
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' = r(e - W . Y)
y U

rsinGS 2 2MI1u=exp[ e) Y) (M-f1)
u-- y / --

C

where

e - angular coordinate of the stator

Y - angular coordinate of the rotor

r - radial position

Equation (M-l) can be expanded in a Fourier series in terms of (0-Y)

a (acosn(e-Y) + b sin n(O-Y)) (M -12)
u n nnc

or

u =Z (a cosnq + b sin n p) (M-13)
u c n n n

whe re

P =e -Y (M-14)

2rr

an 2 1 (U-)cosnpdyp (NR no. of blades of rotor) (M -15)
an 2 o cM15

N 2Tr
bn = J (IL) usinn dcp (M -16)n 2Tt ( c) s n n °

0

The velocity, uc , is in the direction of x , which makes an angle

(eS+eR) with the after propeller blade so that the component giving upwash
p p

at the blade is

un u S
C = c U sin(e +e R
U V S U ( 7

and since

VS

U -- sine s

p

then from Eqs.(M-9) and (M-17),

M3
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TR-2173

u - (2.42 R sin(SR+es) (M-18)

U' + 0. 3) pi~ p

whe re

X cR (e c eS+ V - 0. 7  (M-19)
c S  s C- P cR--

R

Choose x = 0, which means the point is at the mid-chord of theR

rotor blade. Then

C

X' To csc GS - 0.7 (4-20)
CS cS P

The viscous wake, then, can be expressed in the following form:

u (q) ucn

=u c (ancosncp + b sinncp) (M-21)U Un

whe re q = 2n 
(M-22)

= e - Y = 2e (M-23)

The left-hand side due to unsteady wake in the PPEXACT (Propeller-

propeller Exact) program (Reference 1) is, in lift operator form,
w(q , fi) (r =u(q) ( ) e i q ~r  [(;)(q ,b) (,M-24)

where

I( m) (qe) J0 (m) e b ' dya (M-25)
0

. (l) = 1 - cosp0

t(2) = I + 2coscp

0 =(m) cos(m-1)cp 0 for m > 2

Thus, the resulting unsteady force and moment or unsteady side force and

moment, at the specified blade frequency, can be determined as in the

PPEXACT program. These viscous effects are then superposed on the results

from the potential flow.

m4
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