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ABSTRACT

A theoretical analysis is developed treating the '"Pump-~Jet'' pro-
pulsive unit comprised of stator, rotor and enshrouding nozzle by using
the unsteady lifting surface theory. The analysis takes into account
accurate geometry, realistic flow conditions and hydrodynamic interactions
between all lifting surfaces of finite thickness distribution. The system

is assumed to be immersed in a non-uniform flow of an incompressible fluid.

Expressions have been developed for loadings on all interacting
surfaces and corresponding resulting forces evaluated at proper frequencies

dictated mainly by those of the rotor.
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‘ NOMENCLATURE

K(IN’V’;) coefficients of chordwise loading distribution on duct
a QQD/U = 1n/J (for rotor)
3 l/pstaneps(ps) at Pg = 0.7rRo (for stator)
CD semichord of cylindrical duct
c expanded chord of rotor or stator
D subscript index of duct
d° semithickness of duct at trailing edge
Fx,y,z rotor or stator hydrodynamic forces
FDx,y,z duct hydrodynamic forces
I(ﬁ)(x) defined in Appendix A
|m(x) modified Bessel function of order m of first kind
i index of control point
Jm(x) Bessel function of order m
J U/ano , advance ratio
j index of loading point
Km(x) modified Bessel function of order m of second kind
Ké(x) = BKm(x)/ax
Kji kernel of integral equation
Rji kernel after Oa- and ¢a-integrations

) k variable of integration

... Lj loading, 1b/ft

L;zNR%xD) chordwise loading distribution on duct at rotor blade frequency
L;qk%rk) spanwise loading distribution on rotor blade at frequency IR
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spanwise loading distribution on stator blade at rotor blade
frequency

coeffictents of chordwise loading distribution on rotor blade

LS R,n(ps) coefficients of chordwise loading distribution on stator blade
£ integer multiple
Dy,z duct hydrodynamic moments
m order of 1ift operator mode
m index of summation
N number of blades
n ‘ order of chordwise mode
n blade index
Qx,y,z rotor or stator hydrodynamic moments
q order of harmonic of inflow field
R Descartes distance
R subscript index of rotor
RD radius of cylindrical duct
r radial coordinate of control point
RO rotor radius
S subscript index of stator
Sj lifting surface
t time, sec
t, maximum thickness of blade section or duct section
u free stream velocity, ft/sec
u variable of integration
V(q)(r) Fourier coefficients of onset velocity normal to blade of

rotor or stator

W downwash velocity distribution normal to rotor at control
point

£

sy

-y




f_‘
¢

&(m)

®Ro,50

downwash velocity distribution normal to stator at control
point

downwash velocity distribution normal to duct at control
point

cylindrical coordinate system of control points

conicity angle of duct

axial distance between rotor plane and duct midchord (positive)
axial distance between rotor plane and stator plane (negative)
chordwise modes

angular position of loading point with respect to midchord
line in projected plane

angular chordwise location of loading point
projected semichord length of rotor or stator, radians
(2n/N) (n-1), n=1,2,...,N

geometric pitch angle

defined in Appendix A | 1
positive integer

index of summation of Fourier series

order of peripheral mode

cylindrical coordinate system of loading points
radial coordinate of loading point

fluid density, slugs/ft®

angular measure of skewness, radians

variable of integration

velocity potential
orthogonal functions used in generalized lift operator

angular position of control point with respect to midchord line
in projected plane

angular chordwise location of control point
magnitude of rotor angular velocity

xi
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INTRODUCT I ON

Previous investigations at Davidson {aboratory have been concerned
with the adaptation of linearized unsteady lifting-surface theory to the

%*
cases of a marine propeller operating in a nonuniform inflow fie]d,l’z

5,6

*" and of ducted propellers,

of counterrotating propeller systems,
where the exact geometry of the systems, the realistic inflow conditions

and the mutual interaction of all lifting surfaces are taken into account.

In the case of the single propeller with enshrouding nozzle, both
accelerating and decelerating ducts were discussed, the accelerating (Kort)
nozzle offering the advantage over conventional propellers of increasing
the flow rate through the propeller, reducing the loading and thereby in-
creasing the efficiency, and the decelerating type of reducing the flow

rate, thus delaying cavitation inception and lowering noise level,

The present study treats the pump-jet configuration, which is a
type comprised of stator, rotor and enshrouding nozzle. The stator vanes,
in addition to their structural support of the nozzle, are presumed to
homogenize the inflow to the rotor blades, reducing further the vibratory
loading and resulting forces and the radiated noise. To assess the advan-
tages or disadvantages of the system, a theoretical analysis and correspond-
ing computer program are developed which will reveal the steady state and
vibratory characteristics of this propulsive device as a function of various

geometric parameters of the system.

This study was co-sponsored by the Naval Sea Systems Command Explora-
tory Development Program and General Hydromechanics Research Program under
Contract NOOOIL-77-C=-0298, administered by the David W. Taylor Naval Ship

Research and Development Center,

*Superior numbers in text matter refer to similarly numbered references
listed at the end of this technical report.
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STATEMENT OF THE INTERACTION PROBLEM

A pump-jet configuration comprised of stator, rotor and enshrouding
nozzle is immersed in a nonuniform flow of an ideal incompressible fluid.
Figure 1 shows the relative location of each member and the corresponding
coordinate system., Figure 2 exhibits the definitions of the angular

measures of the rotor.

The kinematic boundary conditions on all interacting lifting surfaces
expressing the impermeability of the boundaries can be written in the gen- * )

eral form as

Wp = ££ LRKRRESR * gg LpKprdSp * gj LSQ;stS (n
S
Wg = {f LeKrs@Sp *+ T LpKpsdSp * If LgKggdSs (2)
SR Sp Ss
: ©),
Wp = {f LeKepdSe * [3 LpKppdSp * {1 LsKgpdSs (3)
SR SD SS

where subscripts R, 5, D, refer to rotor, stator, duct lifting surfaces,

respectively.

The kernel function Kij represents the induced velocity on
element j due to an oscillating load L; of unit amplitude on ele-
ment i . The kernel function ij is the self-induced velocity at a C
point of the particular lifting surface due to unit load at each and
every point on the same surface. The kernels with two different sub-
scripts represent the interaction effects from neighboring surfaces. The
s’ and SD’

stator vanes and the enshrouding nozzle, respectively.

integrations on surfaces SR’ S are over the rotor blades, the (

The terms wj on the left-hand (L-H) side of the equations are the
known velocity distributions normal to the lifting surfaces, nondimension~
alized by the free stream velocity U. The velocities normal to the
respective lifting surfaces are the perturbations from the basic flow due




to nonuniformity of the flow field (wake), camber, incident flow, and
thicknesses of the respective lifting surfaces. In the linear theory,

their effects can simply be added.

We consider two basic flows: a) one generated from the hull wake and

measured in the plane of the stator in the absence of all interacting sur-

faces, and b) the other generated by the presence of the hull and stator
together, measured at the plane of the rotor in the absence of duct and
rotor. Thus, any harmonic content of the viscous and potential wake

generated by the presence of the hull and the stator will be included as

an input to the interaction problem. (See Note at end of this section.)
The flow disturbances considered in the present study are:

1) The basic flows (hull wake and combinations of the hull and
stator wakes) both of which will affect the steady and unsteady
loadings of all interacting 1ifting surfaces. |In fact, the
former will be utilized to calculate the steady and unsteady
loadings on the stator and the latter will be used to determine
the loadings on the rotor and enshrouding nozzie, as will be

demonstrated later on in the development.

2) The thickness distributions of all lifting surfaces affect, in
principle, both steady and unsteady loadings of the interacting
surfaces as will be seen in the analysis. These effects somé-
times are omitted because of the presence of the axisymmetric
duct configuration and sometimes because the effect is very
small in magnitude, e.g., being at the blade-blade crossing fre-

quency.

3) The camber and flow angle (i.e., incident angle) of the respec-

tive surfaces will affect their steady-state loadings only.

Thus, wR, the velocity nornal to the rotor, is due to basic flow dis-
turbances in the presence of hull and stator wakes, which affect both
steady and unsteady loacings; the rotor blade camber and incidence angle
affects only the steady state rotor loading whereas the effects of duct and
stator thickness distributions may be present in both steady and unsteady

state rotor loadings.

The flow disturbances ws are made up of the normal velocities on
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the stator due to the hull wake, stator blade camber and incidence angle,
and duct and rotor blade thickness distributions. Details of these con-

tributions will be seen later on in the development.

In the linearized version of the interaction problem, the duct is
assumed to be a cylinder with zero conicity angle (i.e., a=0). The flow
disturbances WD are those due to non-zero o (conic form) and to duct
camber, both of which affect steady-state duct loading only,and those due

to rotor and stator blade thicknesses.

The surface integrals of Equations 1, 2, and 3, are reduced to line
integrals by approximating the chordwise loadings on stator, rotor and
duct by appropriate mode shapes, as in References 1, 5, and 6, The blades
of stator and rotor are divided into small spanwise strips and the span-
wise loading coefficients of the chordwise modes are assumed constant over
each small strip so that only the kernels need be integrated over the span.
The collocation method is used together with the generalized 1ift operator

7

technique,’ as in the references cited, to determine the spanwise loading
coefficients. {n the case of loading on the duct of circular section, the
peripheral loading is expressed in terms of a Fourier series so that the
peripheral integration is easily performed, and the chordwise loading
coefficients are obtained by the collocation and generalized 1ift operator

methods.

The kernel functions are derived by means of the acceleration po-

tential, KRR as in References 1 and 2 for the propeller alone, and K

KRD’ and KDD’

kernels KSR and KRS representing the interaction of stator and rotor will

be developed following the approach of References 3 and L for the counter-

DR’
as in Reference 5 for the propeller-duct interaction. The

rotating propeller system. The remaining kernels KSD’ KDS’ and KSS’ will

be derived following References 5, 6 and 1,

The three integral equations are solved by an iteration procedure,
it will be assumed at first that duct and rotor have no effect on stator
loading which will be obtained from Equation (2) by ignoring the first and

third integrals. On substituting that value of L_ in Equations (1) and (3),

S
those equations will be solved by the iteration procedure outlined in

References 5 and 6, thus obtaining values of LR and LD. The values ob-

tained for LR and L, are then substituted in Equation (2), which is solved

D

4
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for a new L The new LS is next used in Equations (1) and (3) which are
put through the iteration process again. The procedure is repeated until

stabilized values are secured,

The first set of iterations will yield first approximations of the

loadings by solving

Wg = J] LgokesdSs
Ss

Ve = I LsoksrdSs = I LaoKra®Si

Wp = JI Lookspdss = I Laokrp®Sg * J§ Logkppsy
Ss SR Sp

Second approximations of the loadings will be obtained from

| Ws = ] LeokrsdSg = JI LpokpsdSp = JI LgiKegdSs
SR Sp Ss

We - gf Lg1KggdSg = gf Lr1Krr9Sg * gf Lp1Kpr9Sp
S

R D
Wp = [J LetXspdss = [T Lrikrp®Sa * I LorKppdSp '
Ss SR Sp

and so forth,

NOTE: |f measurements are not available of the flow generated by the
presence of both hull and stator at the plane of the rotor, in
the absence of duct and rotor, corrections to the velocity on
the L-H side of Eq.(1) must be introduced to take into account
T the effects on the rotor, which operates in the race of the
stator, due to both viscous and potential wake of the stator.
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THE VELOCITY DISTRIBUTIONS

1. wR, Normal to the Rotor

At g=0, the steady-state velocity distribution normal to the R-H" rotor
on the L-H side of Equation (1), after the 1ift operator of order m has

been applied to both sides of the equation, is made up of

(0,m)

'(O’E‘) "(0951) W] =
W (r.)) =W (r,) +W - (0,m)
R R W R Resg  (FR) *+ Vp g (re) (4)
The wake component ﬁw (nondimensionalized by U) is derived from 1,5
(@) (ap)
Qs T v ~iq @
= "R _ 1 = W R'RO
W (rg) ng:@(m) — (rple de, (5)
where
(ap)
Vw = qR-harmonic of wake velocity normal to the rotor blade in
the presence of the hull and stator
@RO = OR-ebR cosyp , angular position of control point with re-
spect to midchord-line, radians
% = angular position of midchord-line of the projected blade
from the reference line through the hub
ebR = projected semichord-length of the blade in radians
¢(m) = 1ift operator function
() LS ixcoswa
With | (x) = = j ¢(m)e dp, (see Appendix A), the wake harmonic com-
o
ponent is defined as
- (ag) _
.(ag.m W “19R% (A
= e
and
_ L0
= (0,m) - (/)
Wy o (re) 7 (rp) 177 (0) (7)

*Right-handed
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The nondimensional normal velocity component W , due to

R
c+f
effects of camber and incident flow angle, which is present only in the

steady state (qR=0) since the blades are considered rigid, is given as

the sum ch+-wa , where

i (0,m) N rraars " ] (o 8
R¢ (rR) = -+t | PR(rR) - B(rR) 1477 (0) (8)
where
a, = Q rRo/U
Q = magnitude of angular velocity of rotor
rRo " radius of rotor
ePR = geometric pitch angle of rotor blade
B = tan"(l/aRrR = hydrodynamic pitch angle of assumed helicoidal
surface
- Mi+aZ 2 m of(r,,S,)
- (0,m) R_R - R’"R
W (rg) = ¢(m) —ge— d¢ (9)
Re R ncR(rR) g SR o
where

f(rR,SR) = camberline ordinates from the face pitch-line

Sg = (l-cosqz)/z , chordwise location as fraction of chord
length Cr
CR = chord length

(This component is derived in Reference 8 for arbitrary camber shape.)

The nondimensional normal velocity component due to the effect of
duct thickness on the rotor is derived in Reference 6 for a modified

lenticular chordwise section (see Figure 3 represented by

f(8y) = %{[to-dolsin®eg+ d (1-cosby)} , 0 < 6 =< n)

as

—
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- 2R _r_a ®

ﬁoig.m)(rR) - ﬁ j;Lk lo(krR)Ko(kRD)J
RR o .
‘- . '“‘(3'& “¢p) - ke
R [(28,-2d ) F(K)+i dg G(K) je R .("‘)(.a_:"‘»dk (10)
where

RD = radius of cylindrical duct
to = maximum duct thickness
d° = semi-thickness of duct at trailing edge
€ = axial distance between rotor plane and duct midchord

(eD is positive)
and F(k)=[sin(kCD)-kCDcos(kCD)]/(kCD)2
G(k) = sin(kCp)/kCp
Cp = semichord of cylindrical duct
o ) and Ko( ) are modified Bessel functions (see Eq.(19) of Ref.6)

When QR # 0 (unsteady cases), the velocity distribution normal to
the rotor on the L-H of Eq.(1), after the 1ift operator has been applied
to both sides of the equation, is made up of

- (qR,f?‘)(rR) =Qw(qR-’?')

W (r.) ()

R R

where the ﬁw is given by Eq.(6).

As shown in Reference 6, for an axisymmetric duct, with do = constant
over the circumference, (as in the pump-jet system), there is no effect of
duct thickness on the rotor when AR £0,.

As noted in the preceding section, if the wake of the stator has not
been measured, additional normal velocity components must be included due
to the potential and viscous effects on the rotor of the race of the stator.

These are derived in Appendices L and M as suggested by Dr. John Breslin,
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WS’ Normal to the Stator

In the steady state (qs=0), the nondimensional velocity distribution
normal to the stator on the L-H of Eq.(2), after the 1ift operator of

order m has been applied to both sides of the equation, is

0 () =GO () +w (° "‘)(r )+l (° ™ (rg) +WR£2’E1)(rS)

(12)
] 4(©) _
qw(o’m)(rs) = _%__ (rs)|(m)(0) (wake of hull alone in plane of stator)
(12a)
ﬁéi'ﬁ)(rsp - S [8,c(rg) - B(rg) 1™ (0) (12b)

at rS = 0.7rRo

14a° 2 T of (r¢,sg)

i (0’-) -
wsc m (rg) = _CsT_sT EE 8(m) —T_ dg,,

(¢f. Eq.(9) for details.)

The velocity due to the effect of duct thickness on the stator can
be shown (see Ref. 6) to be equal to

(0,m 2R
08" o ST e, (ke )

- -|k(—s- - eo+e )
'R.P.{L(Zto-Zdo)F(k)+id°G(k)]e  m )( bs)}dk (13)

W

which is £q.(10) with stator geometry substituted for rotor geometry. Note

the factor exp(-ikes) which is the result of the substitution x}

s P50 % *e

S'
where € is the axial distance of the stator from the rotor and
*The stator has the geometry of a left-handed propeller.

9
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Pp = os-ebscosqa (see Eq.(5)). In this case the stator being forward

of the rotor € is negative,

The component W due to the effect of rotor blade thickness on

R.S

the stator can be shows (see Appendix B) to be given in the steady-state
by
- La2a _N_r p t ®
- (0,m) RSR S R o 2 2
Wo'e? () == —=—2 [ 2= = (p) V143205 [ u Fu,p ) (1K)
R¢S S o2 qugi;g P bR R R"R s R o
! O, © .
-i\-§ ~R4e )u
% % (@)
. R.P.{e | (uebs/as)}dudpR (14)
where
(K. = {IO(UPR)Ko(urS) for Pp < g
o f
INCLA LN CEN) for ro <p. ;

F(u,pR) = {sin(uGbR/aR) - (uGbR/aR)cos(uebR/aR)} /?

N number of blades of rotor

R

In the axisymmetric duct case, which is presently under consideration,
there is no effect of the duct thickness on the stator or rotor for the un-
steady flow case, i.e., qS#O (see Eq.(2) of Ref. 6), so that the velocity
distribution normal to the stator is

_ (ag,m) _ (ag,m) (N, m) )
WS (I‘S) =Ww (FS) +th5 ("S) , £=1,2,3, ... (15)
where
_ (ag,m)
Wy (cf.Eq.(6)) is due to the wake of the hull only measured
- at the plane of the stator (15a)

and the effect of the rotor thickness (see Appendix B) is
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c o 7 %R
_ (aNg,m) ha;NRrs FaNgl o6 1+ E;)* aRes]
W (r.)= - e
RS s —_——
t 2 l+a§rz

pR to N 2.2 T
. j‘ T (pR) 1+ acPr j‘ F(u,pR)[Gz(u)-Ga('U) ]dUdpR
(o]

(L =+1,+2, ... ) (15b)

| = ‘NRQu+aR£NR|pii)'.(ﬂNR('u*aR”NRl rs) 20 * eeg2 - rl_i)]

iu(o /ac-0, /a, +€.) = >
. elu s/8g=0p/3g *&g ,(m)[(-zNR(l+ ;f) - %;)ebS]

3. W Normal to the Duct

D’

In the steady state (q=4=0), the nondimensionalized velocity dis-
tribution normal to the duct on the L=H of Eq.(3), after the 1ift operator
of order m has been applied to both sides of the equation, is

"—J(O,m)= a|(m)(0) 0 (O,m)+ i (0, m) + (0,m) (16)

D De R¢ StD
where the first component is due to conicity angle o, the second to duct

camber, the third to rotor blade thickness, and the fourth to stator

blade thickness.

It should be noted that in the linearized version of the interaction
problem, with the duct assumed to be a cylinder with no conicity angle,
it is assumed that there is no contribution to the normal velocity on the
duct surface (i.e., in the radial direction) due to the wake generated in
P the presence of both hull and stator together.

Reference 6 shows that for axisymmetric ducts, and assuming a modi-

fied lenticular camber distribution, namely,

‘ do\ . 1
c(wa) s (mx 4--f951n2¢a -3 do(l-cos¢a) y 0@ =T

—
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where m is maximum camber and d° the semi-thickness of the trailing
edge of the duct, the component due to duct camber (see Eq.54 of Ref.6)

iss

wgg m - - Ll +a)1,™0) - 21 ™0} (17)

(||(m)(0) is defined in Appendix A.)

The same reference derives the velocity component due to the effect
of rotor (propeller) thickness on the duct (see Eq.43 of Ref.6) as

ha N GTRL t
R D ﬂa CRe o, ¢ 'R
pR o
© -iu(e -0 Ya_, .
e D R"R (m
. g ulo(upR)K“(mkD;rA«,O,pR)Im Part{e ( )(uﬁ)}dudpR
(18)
where
) snn(uebR/aR) - (uGbR/aR)cos(uebR/aR)
F(uvorpR) = 2

u

By analogy with the above, the component due to the effect of stator

thickness on the duct would be

La® p t
T B I S eyt S
¥s.D o g T+agPg R (pg)
S
® -iu(e,~e_ -0 /a -
. j u o(upS)Kl(uRD)F(u,O,ps)'lm Part{e p™% I(m*ucoﬁdudps
o
(19)
where
sin(ud, ./a.) - (ub, ./a_.)cos(ud, ./a.)
F(4,0,5,) = b’ ° °° bs’3s bs’ s

u

When £#0 , unsteady flow, Reference 6 gives the nondimensionalized

(zNR,ﬁ) P ANp@p  TANOt
velocity component as wR 0 e e , where
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- 2
(4Ng,m) _ FhapNg | Wieats? PR %o
= 1+abp 5— — (p,)
R,D 2 Pe RPR B . © ‘PR
@ =i o ~ iu(e -0, /a ) ,-
. R™R D "R"RY (m)
g‘ ulzNR(upR)KzNR(uRD)e e P (=uC ) F(u, - aNp, 0p)
-iu(e =0, /a ) ,=
-e D "RTR I(m)(uCD)F(u,LNR,pR)]dudpR (20)

and
F(u) BN, p) = sin((u-aRzNR)GbR/aR)-<u-aRENR>(9bR/aR)cos<(u-aRzNR)ebR/aR)
S (u-aRzNR)2

(ZNS’a)
S D » which however can only be
t

A similar formula can be derived for W

effective when £ =NR (blade crossing frequency), since N

S is usually
| not an integer multiple of NR » and thus is negligibly small,
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! COMPONENTS OF THE SYSTEM OF INTEGRAL EQUATIONS J

1) Kernel Function Ker

F From References 1 and 2, the first integral of Eq.(1) can be shown

() .

; to be equivalent for each frequency QR to
: iqft n = (qg,n) \
: .. R R 2 ( .
i h=e ga Z ozt (ke 'R"PRO"’R’GRO'QR)‘“’R
% »
‘ where
|
|
5 'IqRAU
[ e o 5. fyo-rjadm,
RR 2 =- { ﬂ u
E f RO R ]+aRrR m = qR+ NR
| (21)
where
, . u
“ i E—R‘ fies
u = (1K B(uje
gy(u) = (1K)
r g (Pt dyNplop)Ky (JutapbyNpirp)  for g <rp g
m
lm1(§u+aR£]NR|rR)Km1(|u+aR£1NR|pR) for re < Pr
2 m 2 m
B(u) = (aRu+aR£]NR * 3 ) (aRu+aR£|NR + i~ ) ]
R R et
(m) U Tya(R) oy o UygP
1™ (g 18,08 ((ap- $98.)
R R
b Pe = fluid mass density, slugs/ft® }
U
. FRO = rotor radius, ft
bo=oc"-0" = difference between skewness of the blade at control
point r and skewness at a loading point p , radians
f ap = 9] rRo/U and p and r are also nondimensionalized by o
¥ Q = angular velocity of rotor, radians/sec, U= freestream
velocity, ft/sec
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r
eb,ez = subtended angle of projected semichord of blade at r,
at p, radians

Im( )sKp( ) modified Bessel functions of the first and second kind

and 4, =0, 1, %2,

(agsn)
The LR R (pR) are the unknown spanwise lo?ding coefficients after
approximation of the unknown loading function L R (pR,BRo) in the

chordwise direction by Birnbaum mode shape

(ag) © (qg,n)
R - R N =
L N(pps8pg) = Z L ° (p8(R)
n=]
1) 6 = (qg,n)
1 (qR’ o R’ . =
= F{LR (pR)cot 5 + }D L (pR)sun(n-l)ea}
n=2
where GRO = cp-egcosea and after the subsequent chordwise integration
over eRo
- LN o3 )
n _ 1 - 1ycos o .
A(y) == £ 8(n)e sind db,

(see Appendix A.)

The ¢R0(=or-9;c05¢a) dependence is eliminated by operating on both

sides of the integral equation by the ''generalized' lift operators &(m).
The factor I(m)(x) in the kernel function is the result of this:

- T R
I -, ixcosg
1M (x) = = [ &(m)e @ dp
o
(See Appendix A.) Equation (21) has an integrable singularity at u=0, the
value of which is determined by L'Hospital's rule as shown in Appendix C.

2) Kernel Function KR

When the control point is on the rotor and the loading point is on
the cylindrical duct, the induced velocity, nondimensionalized by U ,
normal to the rotor blades, is

«° N
= 1(02) Azt . .
'2 E_O gf Lp " (5psPpsBple Kor (XRe "R* %R0’ Sp+ Pp+ Bpita) oy
D

or

15
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XR-gD lxzaR(T-xR+§D)

form

|m2(+GD-QR0+Qt) o

i s

I
- e
DR mo=-x

1 .
R

(rR < pp in the limit as Pp = RD.)

2T i (m,-u)6 2n for m,-u =0
Je(z)odeo'{ 2
0 otherwise

(o]

e (Az) ikzQt
= & [ Ty e KprPp9®pdSp
k2=0 o 2C
D
A A
where Lé 2) = LB( 2)-pD = duct loading, 1b/ft (see Reference 5).
] 3 e
Kng= - limit I
DR
kmp (U® xp=po/2g SRy L i
Pp R
e - L)
]
BnR l+a§ri R Oxg r; Pro
3 _ =8
oy %%

1
3
. = 2 2 . -
R {72 + r° 4+ Pp ZerD cos(+eD Pro * Qt)}

| DR R
®ro0 = R " ebRcosva , 0= Py s
The loading will be expressed in a Fourier series as
© -inb
(A2) - (Az,u) D

at pD=RD. The reciprocal Descartes distance 1/R can be expanded in the

itk
L ng kg (kg etk

From the GD-integratiOn, it is determined that m, =N, since
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Also, since the L-H of Eq.(1) is an exp(iqRQt) function of time and l,
is an expli(Az+me)Qt] function,

kz +my = qp (26)

where qR 20, KZ 2 0. The double series can thus be reduced to a single

infinite series. Equation (22) becomes

® iqRQt
b= L _ 2e Timit s L (Kz,ma)(g ) 3 52—
2 —_— - -
A2=0 L}ﬂprZ XR (PR({aR 2c0 D D EI'I_R- nD
mz=qp-Az pD'-'RD
-im ¢ . i(m,-q )a_(x,-E.) xR-gu
27RO 2 'R"RYR "D
‘e e
-0
-i(m,-q,)a_T @ .
e 2 RTRIT (ke )k, (kley) e Tdkdrdey (27)
=~ 2 2

After the T-integration is performed and the derivatives and limits
are taken,5 the generalized 1ift operators7 are applied. Equation (2)
becomes

( iqpflt _ -
l,=Z Z { Lbkz’mZ)(ED)e R Kége’m)d§0
m=1 >\.g= ZCD

Me=qp=Ag

-(ma,ﬁ) . - . .
where KnR is the modified kernel after the $,-integration:

R(me,a) - 1 'R e-imzdR
DR

“"prZrRo Vi air;

m

_I. - ) _ _27 _ y -
Limeglmy-ag I 2p(my-ap)+ ,.i.,"mz(aal"‘z qurR)Lsz"(aleZ aglRp)

- -iag(my=q ) (8,-0./ar) (=
+K'“2+l(aR|mz'quRo).J e RERTORR l(m)(qRebR) o,
r - {rm \ "k(§ - )
@ Kl (el e ) K g (LR #K e (kIR 1 (= 598, Je 0 %R
+ap )
- k - aR(mZ = qR)
(Cont'd)
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[
r - -ik(gD - a_R)
— Ime(lklrR)LKma_I(IkIRD)+sz+](lklRD) I(m)((mz- ’;‘;)ebR>e R gk
+—§ {
rR-= ) k - aR(m2 - qR)

(28)

The rotor radius Fro is introduced in the
R’ RD!
of TR0 and ag= rROQ/U . The k-integrals have integrable Cauchy-type
singularities. There is no other singularity, as can be seen from the

evaluated at m2=qR-k2 .

denominator of the first factor because now r and §D are fractions

original kernel of £q.(22) since TR is always less than pD=RD .
If the chordwise loading on the duct is approximated by the Birnbaum

mode shapes

9
ey LD s £ D, ) o

where 6, is defined by § €y CD cosf, , 0 <8, s (see Figure 1), then

the integratnon over § IS eaSIly accomplished.

XLOQ mz)(g )K(ma’m)dg (la,mz,n)g( )K (mz’m)c Slne de

1
m

2]
ZCD n=1 o
£ 0

’mE'n) (mZ:E‘,a) (30)
DR

n=1
where ©(n) are the chordwise mode shapes given in Eq.(29),

and ,'\()\B-mzvr-;) = CDA(Mvmzv';)

- - - r -im_ o m
and Kl(;;a’m,n)= ! : e R; iﬁalez'qu[a:(mz'qR)"' _é ]
hﬁpfuero N+ air: R

Img(aR|m2-qurR)[ng—l(aR'mz-qRiRD)+Km2+l(aR|m3-qRIRD)]
-ia_(mz-q ) (e.,-0,/3,) = -
- e R : R DR R | (m) (qRebR)A(n) (-aR(mz-qR)cD)
O
|k(e--——)
}( W LIPS (|k|rR)U(m -1 UklRp) +Ke, +‘(|k|RD)]I(m)((m2 g—)ebky\(“)(*c[)e Rak
+1\ a_k+ ——

rR k - ag(my - q R) (31)

Then letting u =k - aR(mz-qR)

--maoRe-laR(me -ap)(ep- 37

(Cont'd)

iy e g
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- {im g (0) + I La,(6) = 5,(-0)] = (312)
where c
_iu(CD- a—:—)

T 2 27
5240 2} (e 2] 1o+ agim, - a!
‘mz('““ak("‘z'qa) ' ’R) Lng-l(lu*aR(mz'qR) | RD)+Km2+I(Iu+aR(m2-qR) ' RJ]

(m)((_ ;; + qR)ebR)A(ﬁ)((-u-aR(mZ-qR))CD)

See Appendix D for the evaluation of the singular part of Eq.(31a).

3) Kernel Function KSR

When the control point is at (xR,rR,wR) onh the rotor and the loading
points are at (§é,ps,eso) on the stator, the nondimensional induced velocity

normal to the rotor is,®°

® T (Xs) i Qt V1+a%p2
= Z Le (.8 )e 2 k! ——=25 5ing do dp (32)
3 Aa=0 g S s ‘Ps SR agPe o oS

S

where

= P _ P
eso = cs ebscosea

N X oy ‘v VB
o] s lim 3 fR o M3L2R(T mxp) Bn) 3 (= Jars
SR bp U ne) 8gg=0 Bl Y dng Rep

Rer™ {(T' - §§)2 + IRt - 2ra°s°°s(es - ‘PR)}%

= {(70 - 51) + r2 + pS - 2erscos(-eso-¢Ro+ ot - éSn)}%

- -y |
and 6SR 0 means that Xp chO/aR and §S Sso/aS + %

o
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The inverse Descartes distance I/RSR is expanded as
coimBoo @ i(T!-E)k
1 Lo "30sR S
—= = e e i (Iklp K (|k|r)dk (33)
Rsr nm3=‘” ‘£ e ST R

(for pg < rp) with Boo = -8, = ¢p0 + 0t - 6 .

The derivative

e e b )
4335 l+a§p§ R-13 ps eso
is the directional derivative normal to the stator blade.

After the T'-integration and derivatives are taken, the kernel

function KSR becomes
Ni+as =
K =Kl ———fp&
SR SR a.p
s"s
N . = . .
I "R Zf 55 -n()\3+m3)6Sn |m3Qt -|m3(eso+¢R0)
= o e e e
hnpfuzas J,+a;r§ n=l ma=-o

]

¢
m3- -iaRKB(Eﬁg - 3§g-es)
= s Yms (213 P5) K, (2g 2 5r)

(%ro _ %s0 )

m I (Ikledk (fklr) ikl— -
o e e R
- pS rR k + aRX3
(34)

From the time-dependent factors on both sides of Eq.(1)

Ayt mg = ag

and from the summation over the stator blades
- =
U -i(agtmy)8 ;N for (Ag#mg) = £3Ng
e Sn = <L
n=1 0 otherwise

k3 + my = qp = £3NS , £3 20
20

—



Thus the frequencies %R of the first equation are limited to zero and

positive multiples of the number of stator blades.

\ - _ > < .
Since h3 m3 0, m3 qR and the double series over x3 and m3

q
R
can be reduced to a single infinite series.

The unknown loading function Ls(ps,e is approximated as before in

)
SO
chordwise direction by Birnbaum mode shapes. After the chordwise integra-

tion over Ga and application of the generalized 1ift operator, I3 can be

written
q.0t =2 ,
;3— R D I > L( 2 )( ps)Kep (m,0) (1 m3=q =A) dpe (35)
k3—0 Pg m=1 n=1

where the modified kernel is

(m ) IR O Ng R

i o5 ) = | UrplPro B¢ ViraReE )

pf RO l+aRrR

c ’ ) |
.{Ia r(9g" 3)+ S ] La Ch 3) "R] m3(aR(qR-m3)Ps)Km3(aR(qR-m3)rR)
’e-im3os e-iqRoR eiaR(qR-m3)(es+cs/as)A(ﬁ)((§5 (agmg) -m3) 6 ) (&)(qRebR)

' | Ikl . -i(m—k—)c -i(m+‘;—-)c
Im3( k ps)Km3( k rR) -|keS 3 a’"R 37 3°°s

- TL(a k- —)(a k+ a) e e e

k + aR(qR-mB)

oA ke S ke
AT (-my as)ebs/' <("’3 aR)ebR)dk} (36)
where now, a,k,r, and p are nondimensionalized with respect to TRO*
. Let u=k+aR(qR-m3). The kernel may be written as |
(m n) "R -im3cS -ich ia (qR-m Y(e 4+ S§) 1
(m qR-)t3) { - e e R e R 3 S as } !
MWU% a_ Visasre
f RO S R R
., @ 93(“) - 53(-0) } 37
. {93(0)_ # j . du ( )
o
21
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TR=~-2173
where
- m - m
3'1
93(u)= Lasu-aSaR@R-mB)- EEJLgRu-ai(qR~m3) + :% ]
c c
-iu(e,.- R + —é) .
S aR aS ;
‘ .|m3(lu‘aR(qR-m3)|ps)Km3(|U'aR(qR'm3)'rR) e :
(R Ry R _u (m) ( '
A (('mS(‘ + 3;9 + 3 9% - as)ebs>' ((qR - aR>9bR>

for Pg < Tp- Note that for rr < Pg» these are interchanged in the modified
. Bessel functions.
‘ See Appendix £ for the evaluation of the singularity of KSR as u—0,

L) Kernel Function KRs

If the control point is at (xé,rs,ws) on the stator and the loading

¢2:3

points are at (§ GR) on the rotor, then following the developmen

,p 2
R’"R
for the other kernel functions it can be shown that the nondimensional

induced velocity at the control point due to NR-blades of the rotor will be

given by
F [ ™ (}\ . ,/l_’_ I
) iA Qt aRpR .
= 2o L. *'(p_,8)e * k! sin6_dé dp (38)
4 \, =0 g g R R’ o RS a.0p o "o TR
(N R
where N " -
1 oyt a
Vo] TB lim ¢ js e'k“[aR(T s eRn] ] ( l—) dr!
- T
RS ump o n=t %50 %NS s R ‘Res
UL S Co S I
e | T =
NS hEE S s %o
t o
.. x4 cpso/aS + € (eS negative)

a =———(—)- at r. = 0.7 radius
S rstanePS rS ) A

< = (s 2 -3 2_ - ~ - [ %
RRS {(T §R) +orot Pr ZrSpRcos[6R0+¢so Ot + eRn aR(T xs)]}

-t i ! - -~
and by 6RS 0 is meant X cpsolas + € and §R GRO/aR .

. 22
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Expanding the Descartes distance,

imB . = i(7'-E )k
11l 5 JTWRs R
—= e e by (TkE2 YKy (ki e ) dk (39)
Res my==® -£ " R S
for Pr < rg s otherwise Pr and rg are interchanged. Here
B

=0 + @ - = - ot
RS RO S0 - Qt + ekn aR(T xs) .

After performing the T'-integration and taking the derivatives in the
p g 9

proper order, and taking the limit

Vl+azp§
K.. = K! ————=
RS RS aRpR
N ) i -
- s =z e-lml’Qt H(my~h) O e'mb(eRo+”so)
bmptag Visazr 71 Met®
N7
SO RO
. .- . ma‘-l.'- > mh? laR(mL")\L.)( + es- _a_R_
{LgsaR(mh-Ah)- :EJLéR(mh-kh)+ ;EJe
s R
. lmh(aleh - lhlpR)Kmh(aleu - Xh|rs)
® )
o (S0 RO
vy my, m,, lmu(lklpR)Kmh(lklrs) lk(;;— + €g- E;:ﬁ
° T S\ask- iy (aRk+ -?) k-2_(m, A ) e dk
- ’s PR RUML Ay

(ko)

The time-dependent factor on the L-H of Eq.(2) is exp(iqSQRt) and the
time-dependent factor of |4 on the R-H side is exp[i(ku-mu)ﬂt], therefore

95 = kb-mu.
N ;; i(mb-hu)eRn-{ Ng for (my=h) = fNg, &, =0, 21, ...
so e =
n=1 0 otherwise
so that
qg = EANR’ zh =0, +1, 42, ... and xh-mh 20 .
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After the chordwise integration over ea is performed, by represent-
ing the chordwise loading distribution by the appropriate mode shapes
®(n) (see 1,) and the generalized 1ift operator 2(m) is applied, the
integral |, becomes for each 4> m and n

qcft & (AHR)  _ (m,n)
I, =e ° Z L (p.)K dp (41)
4 \ =0 R R’ RS R
PR My
where the modified kernel is
1 K m, n)(mh - h'qs) - - R S e R™S
bmpcagres Visagrg
o o
_S R
/ mu\( 2 ™ a5 (o 3 3 aR)
'{\asaRqs+ :37 ¥R " ;596 hm,, (2595 PR) Kmy, (2395 7s)
R

% 9%
: © mL* mh k(€s+ % - a—R-
-i7 (agk- r_2)(aR|<+ p—QR) e g (161 2Ky (1l 7g)
s
. Aln) -k (m) ko gk
A <(mh aR)ebR) l ((_mh S)ebs> k+apqg } (42)
let u =k + aRqs, then
_(m,n) N r im, (0,43, )
Krs (M = My-ag) = - L Rz S VRS
. TPeU"2p Ro VT:EE:E
(o} [}
.. S - _R_
‘ lagas(es* 3 aR) @ g,(u) -g,(-u) N }

€ : {oy@ -1 ] S
(o]
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-

o c
m, m. iu(es+ —a: - _a:)
2
94(“)= (aSu-aSaRqS- :3>(aku-aRqs+ ;3) e

S R

. 'mh('”‘agqs|pa)KmuQ“'aRqsl"s)

- - a
- 2 (- enl¥ (D (e + 35 % ° g;)ebs> (43)

(for pp < rs). See Appendix F for the singularity of Kgg 3t U = 0.

5) Kernel Function Kps

when the control point is on the stator and the loading point is on
the cylindrical duct, the nondimensional induced velocity normal to the
stator blades, the second integral of Eq.(2), is

2n

® .

=z [ J Lide) I8ty 4o qe (Lk)
5 — D DS DD

A=0 o 2¢
5 D
where
x_-E ixsaR(T-xs+eD)

=] limit 2 2 ? D . dr

DS hﬂpfua xs~¢s/as+es ng pD 3 RDS

PD* RD

1
2
= 472 2 2 -
Rps {T +rg * P ZrSpDcos(eD @s)}
= {Tz +r2 4+ p2 - 2r_p cos (8 +p )}%
s Pp sfp D" ¥s0
The loading will be expressed in a Fourier series as

® -jnb
Ll())\S)(gb’pD’eD) = 2 L()\S:u)(go)e e D

(45)
ME-O D

at pD = R

0 The reciprocal of the Descartes distance can be expanded in
the form

img (8. Hp. ) ® .
51 DS0T g lms(lklrS)KmS(lklpD)e'dek (46)

L]
] ] D
——— I em e
RDS n Mg W=
since rs < pD in the limit as pD - RD .
25
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From the GD-integration it is determined that m5=u, because

21 for mg=-p=0

[ elms+)% 4o (7)
D 0 otherwise

Since the L-H side of Eq.(2) is an exp(iqSQRt) function of time and |5 is
an exp(ilsQt) function of time

Ag = qg = £NR (48)

With the substitution of (45, (L6),(47) and (48), and after the T-integration
and the derivatives and limits are taken and the generalized lift operator

is applied using the complete orthogonal set of functions designated as

&(m), |5 becomes for each m, order of 1ift operator,

® ™ Qe ,mc) gt _ (m ,m)
5= I | LI()S ge ° Ry ® dE, (49)
qs=0 m5=-w ZCD

| where the modified kernel (after the ¢a-integration) is ‘

z (ms,m) ) ! Fg elmscs
DS 2 1anZ 2
hnpfu Fro I+asrS
%
r m ianR(gD-SS- 3—) i
. 1-|ﬂaRqs<asaRqs + :g e lms(aRqus) i

- a
. [Kms-l(aaquo) * Km5+l(aRquo)]'(m)<('m5 * 3? ) 8s)

k(g megm =)

@ ms DS C‘S -
+ jlkl(ask- %) lms(lklrs)Lgms_](lkIRD)+Km5+,(IkIRDﬂ
. - s
.. m k
f ((omg - o)
. S dk } (50)
k+aRqS

The expansion scheme has introduced an integrable Cauchy-type singularity
in the k-integrals. There is no other singularity,
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|f the chordwise loading on the duct is approximated by the Birnbaum

mode shapes as in l2

(qe>m) ‘ (q..m.,1)  © = (aq.,m,n)
" gy 2 L{p S ot ZL 4 S

D sin(r—l-l)ea,}

L

(see EQ.(29)) then the integration over §0 is easily accomplished.

) (msom) ® (m5 sm)

T
(§)KDS 2 6“

=1
T &=l

(qs,ms,n)

(ac»
j Ly 5"s (n)K c sineadeq

ZCD

® (qstmssn) (mstr—n:;)
= 2 A KDS

n=)

(51

where A () = o A("') (see Eq.(30))

and

(msrﬁ"s) _ 1 rs imsos

K = e
DS hnpfuzr Vi+asr

z
RO s's

%
iggap(€p=es™ 3.)
: 5 s

‘ {"”aaqs( 3g2g9s * = e 'ms(akqs's

- a -
' [K"’s—l(aaquD) * Kl“5+1(aliqs"L))]'('“)((""5 * 'af ag) 85 A" (agegty)
[+

=)
D S (o]

-ik{€e.~
S |m5(lklrs)i:xms_,(IkIRD)+Km5+](IkIRD)]

+.zlk|(ask- ?§>e

o : 5 ok } (52)

PREUPSNE JROWE O
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3 t =
Let u k + aRqS

o4

- i P 1
_(mg,m, ) ] re imgo tagag(ep-es as)
K = e e
DS 2 2 .2 (3
hﬁpr TR0 «/l+asrS
e du
{imag(0) + [ Lag(w) - g5(-u] du} (522)
f
where
g
. -iu(e, ~€.- —§)
- | ( %) Ps %
95(u) = lu - apagl \agu - agagaq - =)e t
S

‘ .
. . |m5(|u - aRqSIrS)[KmS_I(‘u ~ aRqSIRD> + Km5+|(|u - aRqSIRD>J )

1 O((- :_5 ! -:;R %~ ’"s)ebs) A(C aRqs>°D)

Equation (52) has an integrable singularity at k= -3p9 - The value of
the integrand at that point is determined by means of L'Hospital's rule as

shown in Appendix G.

6) Kernel Function K¢

The third integral of Eq.(2), the nondimensional self-induced velocity

" at a point (xg,rs,¢so) on the stator due to the loading at points (Eé,ps,eso)
of all NS blades of the stator, is given as f
-4
® (Ag) iAght v 1+a55 pg
= ] H
lg P=o { Lg ~ (pg.8)e Kis ~ors sin8 d8 dp (53)
6=° Ps s's
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where

N x! . =
C S vimie a8 M8 5 g Jar

K' = —
SS bp P o= 8ss

3— e g'—
-0 ns' -4 ns RSS
Ree = {(T'-g')2 +r2 4+ p2 - 2r_p.cos(-Bep +* Popy - © )}%
SS S S S s'S SO SO Sn

— 1 o | S
655 0 means that xs cpSO/aS + es and §s Bso/as + es

The inverse Descartes distance is expanded as

© imB.. i(T'-E)k
Z=)- e 655_:[ lm6(|k|pS)Km6(|k|rS)e 57 dk - (54)

mg ==

(for ps < Fgs otherwise pS and rg are interchanged in the modified Bessel

functions) with BSS= GSO - Do t GSn. The summation over the blades becomes

NS for ms‘)\s = 6NS, £6 = 0,:1:],12, cvs

i(m.-A.)8
S e'(ms 6) Sn ={ (55)

0 otherwise

Also, since the L-H side of Eq.(2) is an exp(iqSQt) function of time and
Ig is an exp(ih60t) function of time, :

}‘6 = qq = LNR , 4=0,+1,42, ... (56)

With these substitutions, after the T'-integration and the derivatives are
taken in the proper order, the kernel function KSS = Kés”l+a§p§/asps be-

comes

-

K..= - -0 e
S5 e prZaSrRo "/I+a§ e Sss m6=-;
[cont'd]
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m m,.. =iq.d,(x!-E!)

. 6 6 s7RY*s 7>

{n(aSaRqS- :i)(aSaRqS - ;E)e |m6(aRqspS)Km6(aRqsrS
. ' S

e mg mgy  ik(x{-€2) Im6(|k|pS)Km6(|k|rs)
- kK + — k + —=
|-£ (a S)(as 92) e <t aRqS dk}

(57)

where a, k, r and p are nondimensionalized by RO the rotor radius.

. . H H = - p =
After taking the limit and substituting eSO ebscosea and Ps

r 0 L .
cos®,, (07 skew), the chordwise integration over ¢, can be performed by

“Ops
representing the chordwise loading distribution by the appropriate mode

shapes ®(n) (see 13) and the generalized lift operator &(m) can be applied.

The integral becomes for each g m and n

(9 »n) iq 0t _(m,n) ;
'e = gs Lg ° (pgle ° Rg dpg (58) |

where the modified kernel is

_(m,n) N r o m m
Kgs =~ : > 2 {(asaags' "g>(asaaqs' ~§)
l{ﬂpr asrRo ~/1+a§ r: m6=;” l‘s pS
Mg =dg+ 4N

-lme(aRqsps)Kme(aRqsrs)'(a)((m6+ ;? qs)°;s>A(ﬁ)((m6+ §§qs)9§s)

I (|k|pS)Km6(|k|rs)

4 Hooa38) o P P (e )
Let k + a.q. = u, then
LG S, S S
58 bipPagrey V15T m6T2=:ZeNs
s

{5400 - & [ log) - sg-01 % }
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where

p

9 () = (as” " 35%Rds* m:Xas” T 8397 22') (59)
: s

+ I (1 = agagleg)in (lu - agaglre)

Bl RO 2

Evaluation of the integrable singularity of K_. at u=0 is shown in Appendix H.

SS

7) Kernel Function Kep -

When the control point is on the duct and the loading point is on the
rotor the nondimensionalized induced velocity normal to the duct, the first

integral of Eq.(3), is shown in Reference 5 to be equfvalent to

@ } X (X ) |X7Qt Vl+aip;
=2 Le 7 (6.0, )e K. ——D2_ 5in6 db_dp (60)
k7=0 5 p R” RO RD aRpR o o "R
where
N
R P
] limit o R 3 1 3 )
Kep™ - Z . a - Y- S
RO ump® =1 g7 eRO/aR ) V1+aZp2 (R;TR PR RO
R
"o Rp
xD-ER e|h7[aR(T-xD+§R)-eRn]
’f dT
-e ReD

{2, 2, .2_ r - - \] }
Rpp= 17 * T+ P~ 27 PReos( 8po=Pp-t+ 6o, aRKT xp + §R)

On substituting

© im .
=g e T [ (kg (ke ™k (61
RD m7=-° -0

-9 - Qt + 6 - aR(T - Xp + §D) ,
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<r

and pR D

the kernel becomes
N

¢ mel_p Mimie 3 PR (3 1 2 )
RD ,_mepfua n=1 gRaeRo/aR 5rD f'_‘]+a2p2 ROE, Pp 96pg
r =R R™R
DD

= imy(Bpgm 9pm AE) -i(hgmm ) By, e'i(k7'm7)ak(xo‘§n)

L e e
m7=-w
xD-gR i(A-m,)aT @ )
e TR j|m7(|k|)pR)Km7(|k|rD)e'dede (62)

The n-summation yields

N, _. _ = = =0 +] +
R l()\7 m7)9Rn NR fOI‘ )\7 m7 f'7NR, £7 0, l, 2,-.- (63)
1 € )

n= 0 for all other values

From the time t relationship of Eq.(3), h7-m7 = £7NR =g = k9 =q,
where 9 is the order of the frequency in the second integral of Eq.(3).

The integral I7 can be written as a single infinite series

() P4NQt (m.)
7 7R Y A
£ Ly * (PpoBro)e Rep sind,d8.dpy (64)

R

[}
Ms
Qc 3

7
A

evaluated at my = k7-£7NR , and after the T-integration and taking derivatives

0

and limits, the modified kernel is

() e T ’
m N.e - m =12 N a_ x
-RD7 S . S {iﬂaR|£7NR|Lai(E7NR)- 2] e 7°RRD
b p U 2g reg "R
ix.0
7°RO !
e |m7<aR|£7NR|pR>Ké7(aR|£7NR RD>
\ . k
- Y lm7(|k|pR)Ké7(|k|RD> ik, i (m)= ;;)eRo
-j(a K + —17 e e dk }
R™ 92 k +a 4N
= R R“7R
(65)
32
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where

and all linear dimensions within the braces and ap are now fractions of

(o} i .
rotor radius rRO

| f the Birnbaum modes are assumed for the chordwise loading, i.e.,

() (A1) o = (A, i
A7 (pR,BRO) = %-{LRA7 (pR)cot-ég +38 7 (pR)sin(n-l)ea }

LR 2 'R
(66)
(3;.0)
where L (pR) are the spanwise loading coefficients, then Eq.(6l4) can be
written as
o P4 N Qt (%,;,n) _(m ,n)
;= Z e 7R LR)7 (P Rep!  dPg (67)
A,=0 p. n=l
7 R
o
where KRD is the modified kernel after the Ga-integration.
Thus,
. -im,¢
(m5,n) Ne P -
o (Mpen)  Nge { r ™1 "' 5NR%R*D
R AP G o UL S LR
W p U ag g PR
e A (el 4N fe)KE (a | 2N, |R ) u7°’R,\(r'w)
m, t2R1“7NR1 PR K, (3R] %7 Ng I Rp) € (A,8,)
: Ikl o (|k|p )K' (IkIR)
im0, < m m R . -
-e 7R I(agk +_% 7 m, D e|k(xD OR/aR)A(a)((mfk/aR)ebR) .-
-cn DR k + aR'e?NR dkj
(68)

Letting u = k + aRL7NR' it can be shown that
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- -im7¢D
K(m7,n) _ NR e elk7cR e-|£7NRaRxD
RD =
L WP agr o
. r du
+ {ing,(0) + iy (8,00 - 5,(-0) |2} (682)
where - - m7
97(U)= L‘aRU + aRE7NR - ;ij . ‘u - aRE7NR|
'
. Im7(|u - aRL7NR|pR)Km7(|u - aR£7NR|RD)
iu(x,-0,/a.) =
0 °R"°R’  (n u_
€ A )<()‘7 i aR)ebR>
Since pp < Ry » there is no singularity in the original kernel Eq. (60)

The expansion of the inverse Descartes distance introduces an integrable
Cauchy-type singularity.
Considering the L-H side of Eq.(3) in steady or unsteady case,

certain relations will exist between 17, AS’ and Ag and m7, mg, and m9.

These will be discussed later,

8 .
) Kernel Function KDD

When both control and loading points are on the duct, the nondimen-

sionalized velocity normal to the duct at the control point ;55

= (Ag) iAgQt
Ig= g~ gf Ly (§pppi€ple KDD(xD,rD,wn;ED.pD,eD;xB)dsD
D
-] 2“ (A ) ixsnt
=% [ L, Oe K..d6_d& (69)
where tp = duct loading in 1b/ft (i.e., Ly (ED))
34
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and

xD—§D ei)\saR(T-xD+§D)

] . . .) P.)
K., = - limit 55 dT
00 Lmp U2 r ™ °Pp e RDD
pr D

k)
z
2 2
oD {72 + 15+ Pp 2erDcos(GD ¢D)}

P
]

The loading can be expressed as before in a Fourier series

(Ag) ® (Ag:k) -ine,
Ly~ (8p0Ppe8p) =n§_w Ly (§y)e (70)
at pD=RD, and
TR oms(eo-cpo) @ iTk
'ig'ﬁ,%:., _nj; |m8(|k|pD)Km8(Iker)e dk (71)

Then the GD-integration involves

i - 2n f =
2m e|(m8 u)GD o = { n for mg =y (72)
° . 0 0 for all other values
Since Ag = £7NR 2 0, Eq.(69) becomes
® 4N Ot ©  (£,N,,mg) (mg)
g=2 e 'R [ 2 TR8 (g )KDD8 dg, (73)
8 £_=0 2C Mo == D D
7 p 8
where
v K(ms) = 2 limit 9 g—- e-imB(PD e-it7NRaR(xD-§D)
bD bmp U° r EF; )
f D}"R
PD v}
*-%p itNaTe -

e 7TRR L |m8(|k|pD)Km8(|k|l’D)e dkdT
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After the T-integration and the successive derivatives with respect

to pD and "o’ and nondimensionalizing the linear dimensions with respect
to rRO’ the kernel becomes
~img®y .
-ia & -
(m8)_ e &' B 2422 'R 7NR(XD §D)
K = - - = a%IiNT e
DD ynp U r 2 "R7R
f~ "RO

. [lms-l(aRz7NRRl)+ 'm8+l(aR£7NRRD)]

. [Kma-l(akl'?NRR[) + Km8+l(aR£7NRRD):]

T - ] ik(xp-5p)
L= k [lms_l(|k|RD)+lm8+](lklRD)]LKma_l(IkIRD)+Km8+I(|k|RD) e dk
+E£ )
k + ap 7NR
(74)
Examination of the original integral reveals that it is singular
since RDD can go to zero when Xp = §D and pD = rp = RD' The singularity is ;

of the Hadamard-type (see Reference 2) whose principal value can be obtained:
Furthermore, the expansion scheme for the reciprocal of RDD has introduced

a Cauchy-type singularity in the k-integration.

The peripheral integration over % and the duct chordwise integra-
tions over ea and Py (using the mode shape expansion of the loading LD

and applying the generalized 1ift operator) will be done later after the

last integral of Eq.(3) is derived.

9) Kernel Function K.,

Wwhen the control point is on the duct and the loading point is on the

stator, the nondimensional induced velocity normal to the duct is (cf. Ref.5

for KRD)
® 7 ("9) inght | “/l+a:p§ )
I, = 2 L (p.,0..)e K sinB_d8 dpg (75
9 19:0 £ Bs S S’ S0 SD acPg
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where
' ‘ ;;S g ”mi; . xp=8s e-xg[aR(T-xD+gS)-eSnJ o
Ken= = -6_./a_+¢
SD lmpfu"’ n=1 s_.os s °S Fr;&g . Rep
'~ Rp

1
- 2 2 2 - - - _' 2
Rep = {T +rp *+ Pe Zerscos[ eSO P GSnJ}

on substituting

n

| ;2 imgBgy @ itk
F;; T m;Eia € _l "ﬂg(lkh’s)"mg('kl"D)e'T dk (76)

Dl

where BSD = —950 - ¢D - 5, it is seen that

N . -
S =i (A #m,) 6 N. Tor (Ag+m,) = 2Z.N., £, = 0,%1, ...
S 9™ %0 _ 1 s Ag*mg) = FoNss % (77)
n=1 0 otherwise
Also from the time relationship 6f Eq.(3),
Ag = (78)

9_qD .
After the T-integration, the derivatives and limits are taken. Then

if the Birnbaum modes are assumed for the chordwise loading on the stator,

1. can be written for each 9y @s

9

iq.Ot (ap,n)  _(n)
lg=e © J Z i P (bgRgy dog (79)
Pg n=1

where Rg;) is the modified kernel after the ea-integration
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LS S
SD

m, ==

mg=4gNg -q,

{'aRq ( 29 * '?) : A(n)((gf 9 - mg)ebs)

Lmp U¥agr ey

]
. 'mg(aaqnps)ng(aRquo)

ik(xD-e- ;S.)

e ngy® s A(E)((-gk; - mg)o ) RUINR(EINES
= |k|(a k- —=
m 'L 2/ k + 29,

(80)

The expansion of the inverse Descartes distance introduces an integrable

Cauchy-~type singularity. There is no other singularity since P < RD .

Let u =k + aRqD
%
- @ s . -ia_q (x.~e.- =)
R(m,n) . Ng = . img®y . LA . R'D*D S ag
> brp U agreg 9"
Mg=fgNg =y,
. 1 @ 99(U) = gg('“)
* {=i go,(0) - = du (81)
{ 9 ™ g u }
%
where m iu(xD-es- ‘;;)

-
= |u- - -2 ]
gg(u) Ju aRqD||_aSu acapay Pg e

. A(a)((-m9+ ;_SB. a,- :s) bS) (Iu aRqolps>Km ( u-acq, |RD)

and

' 3Km(z) ]
kn(2) =5z = = 7 (Kpa () + "m+|(’)]

38

et o it oo ARt tonssiosemsisnt s ssem el sam———




TR-2173

SOLUTION OF THE SYMULTANEOUS INTEGRAL EQUATIONS

1) Auxiliary Analysis of the Third Equation of the System

Relating the three integrals |7, Igs and I9, for each value of £7=2

(A5, ) -i(x7-zNR)ch N ()\7-£NR,E)
R e KRp

P AN Qt
R ZL
n=1

dpR

7 PR

2 (4hgomg)  -img@y  , (mg)
Ig= 82) e 0 Lp e Kpp  9%p
D

®  TINQOt (N,,n)  =img@n 1 (mg=LoN =4N_,n)
|9= 2 e R j“ R 9DK 9 95 R
9~ Ps

: Ls e ) dpg

n=

The @p-exponential factors have been detached from the kernels and the remain-

From the known onset velocities (see W, in

ders are designated by primes. D

an earlier section), Eq.(3) can now be written as

o (m,n) ~i(m=gN Yo, 1 (m-2N_,n)
A R'7D - R
[+ lg+ 1= 2 {E 2 L e K dp
7 8 9 m=—to { m A=l £R R RD R
(LN 1m) 'im“P (m)
+,j Lp R e D K;n d§o
2Cp
(IN_,n)  =imep. 1 (m=LN.=IN_,n) iIN_Qt
R D - 98~ ""R R
+2 ] L ¢ Ksp drg } e
n=} ps
_(AN,,m)  TAN . TN Qt
W R e RDG R for f#0 (82a)
R¢D
(82b)

Q80,5)= al(a)(0)4-ﬁoéo'a)+ Qsig’ﬁ)+ wRig’a) for £=0
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<
(A) L#0
Applying the ®p integral operator to both sides of Equation (82a) ¢
T ivp T (N,,m)  P(VvHIN ). PAN Ot
1 D _1_ps TR R’7D R
-z—ﬁ-:L e (|7+I8+I9)dch— 2”-1'5; thD e e dch
}
Now ‘
‘ m e(v-m+2NR)¢D g, = { 2m for v = m-INg
L -4 0 0 for v # m-2Ng
mi(vem)e 21 for v =m
X e D dep = { <
- D 0 for v#m
T ei(v+2.NR)(pD ] { 2n for v = -ENR
- dC‘PD 0 for v # -MR <
Then for a non-trivial solution for all v
c (v+2N_,n)  (v,n (&N_,v) (V)
R - b R? '
E Px L K do, + [ L K! dE
VRN 2 3 R RD RT,S O pD °°D q
R D
- - . (4Ng,m)
+ E X L(!'NR’n)'_(' (v_‘e’gNS-l’NR,n)dp - {thD for v = 'LNR (833)
A=l B S sb s Yo for v # -aN, (83b)

Comparing this third ?urface_integral equation with the first integral

V+4ANg, f
equation, it is seen that L R+ 1) is limited to the values L(qR’n) and
(ZNR,\)) e e . (A2, mz2) R {
LD is limited to LD where m, =qp - xz . Therefore
veEm =qp - INR .
) From this d
. £9NS = aQ 20 .
F ‘ Thus (83a) applies when qa=0 and (83b) when qR#O y i.e., q = £'N5:>0
(2N, V) (V) (ag,n)_y (v,0)
R ' . . R /=t V72
Lo Kpp dp == I [ Lo Ky e
hd 2cD n=l pR
(IN 15) (\) FI)
R =g
- b
& £ Ls Ksp 9P (8L)
S

Lo {
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For the solution of Eq.(B4) each term of the infinite v-series is taken

separately and v = qR-LNR.

' By analogy with I2 and |5’ the chordwise integration over §D
written as
¥ v v ,V,n v
e 1
¥ ZCD n=l

where

Eé;’a) ; I B8(n )K' ™) snne de .

Now the generalized 1ift operators are applied to the third surface

integral equation,

n (2N, ,V) (V) _(aNg,v,n) _ (v,m,n)
Lrs Ly, © Kb d d AR R 85
n { (m)zgo foo o T, i) oo (65)

‘ Then with the relations

ED =€ - CD cosecy

X -C coswa

p " %p

the kernel becomes

K = ] { L ING ['v (B gRp) + 1 I(aRZNRRD)]

. [Kv_l(aRlNRRD)+Kv+|(aRLNRRD)ll(a)(aRﬂNRCD)A(a)(aRlNRCD)

ka[lv_](|k|RD)+Iv+|(|k|RD)][Kv_‘(|k|RD)+Kv+](|k|RD)JI(a)(-kCD)A(E)(-kCD)dk

- =
2

le—8
8

k + a_ AN
.. ROR (86)
and letting u = k + aRl.NR
(v,m,n) ®
R = {Tgg(0) - & [ gglu) - gg(-u)] &

L
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where

= - 2" - -
93(U) (u aRLNR) le_l(|u aRLNR|RD)+ |v+l(|u aRLNR|RDJ
. (m)
[Kv_](lu-arLNRlRD)+-Kv+l(lu-aR£NRlRD)l ((-u+apan)C)

. A(E)((-u + aRINR)CD)
(86a)

For the evaluation of the finite part of the integrable singularity of

Eq.(86), see Appendix J.

On applying the 1ift operators to the first integral on the R-H side
of Eq.(8k)

1 (qR’a) <! (\’,E)
! = R

Q(a)[} }8 J L KRD dpRJdQW

n=| PR

Oe—

L(QR,E) _ (v,m,n)

R Krp dp

R

where

X c

ivo . R

- - R -ia N (e - =)
-(v,m,n)- NRe RR* D a

- (a2 _v_]
Koo =% P { i{gl2r Mg 2 A C
PfU rRo R

S 1 (@ NGp ) KY (2 IN R ) A(n)((v+£NR)ebR)l(a)(aRZNRCD)

o + 'I? (aRk+ ;";) [klr, (lklpp) K:’“k‘RD) klep= og/2g)
R
(- Do, i ()

a
' i ok } (87)
k+aR,¢NR
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or
- . ich
2
hﬂzpr 2 R0
T du

- {img, (0) + [lsy - sp-0] )

and

. _ r 2 Vv
g;(u) = [ -apu + ag i - ;5 ]- Ju -_aRLNRI
R

s Cumagenglo) k! (luma an IR )

RTR D
. eEU(GD-UR/aR)A(B) v+IN - <) '(5) -u+a_£LN_)C
R ap bR RR/D
(873a)

The integral term of Eq.(87) has an integrable singularity, the finite

part of which is evaluated in Appendix |I.

For the second integral on the R-H side of Eq.(84)

170 = (&N, ) _i(v,n)
L i ] - 2 R*V= d
Rk 2 gsLS Ry ars
(a,n)_ (v,m,n)
=-Z Z [t VK dp
a1 e By S sD s

where

L3
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-ivcs US
- - N_e a Sia N (€.~ =)
Rsév,m,n)= + _§___;_—- { -i 35 Iszl(asaRgNR+ ;é)e RTRED™ES™ 3
brpU5r oo s b2
- a IN -
~ (")((_ R R) ) (m)
T IR WP K (o MNgRp) ATV )8/t (2g g Cp)

[}

. s d } (88)

or ’ -ivg
e-laRLNR(eD-es- os/as )

lmpfuzas rRO

® gg(u) = go(-u)
-{-igg(o)-'F 2 u9 du} L
(s}

and

iu(e -e.- 0./a.)
= |u- - - DS 58S
gg(u) = Iu aRzNRI [asu aSaRLNR 2 ]e

S

. lv(lu - aRiNRlpS)K:)(‘u - aRmRIRD)

- 5 Ind
) A(n)((_\,+ _a_Ragﬁ ) :_S)ebs) ; (m) ((-u + aRmR)co) (88a) {

Equation (84), the third surface integral equation for qR#O, becomes

Lo ) (R LG (A
& & A K = - L L K dp .
m=] n=1 oD m=1 n=1 PR R RD R t
*- 4
(7Y _(v,7,7)
- Z & Ls Kep (89)
3 ()
_(v,m,n) _(v,m,n)
where  Kg, is given by Eq.(86) ; K ap is given by Eq.(87),
_(v,m,n) 88
and Ksp is given by £q.(88), for v = Qg = W . »

by
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When qR=0, 4#0, Equation (83a) is

It can be shown that for qR=0 and £=0 , and

_(0,0,n)_(0,m,n)  _(0,m) (0,n)_ (0,m,n)
A Kpp = ¥ =) ks Kgp
Ps
(0,n)_ (0,m,n)
e Kpp

L5

¢ n - n -f/ "L
PO R ) o)
< R RD R D DD D
Pg 2¢,,
_ L(MR’E) R'(-ZNR’E)dp -G (!‘NRJB)
n= 5 S SD S RtD
S
which becomes (see References 5 and 6)
» K(ZNR,-LNR,n)R (-£NR,m,n)= y (zNR,m)
DD R, D
t
- ~IN_,m,n) (0,n)  (4N_,m,n
- (0,n) = ( R . [ - R }
I {LR Ko + conjugate |Lp  Kpp dPg
PR
(!NR’E)' (-JZNR,r;,ﬁ)
- L Ksp dpg (90)
| ’s
(B £=0

for each m and n

dps

dp (91)

R




2) Formal Solution of the System of Integral Equations

The thr.. integral equations are solved by an iterative procedure.
At q = £'NS, £'=0,+1,+2, ... , for given order m of 1ift operator mode

and n of chordwise loading modes, Equation (1) will be

_(a,,m) (ag,n) ~_(m,n)
W N (r) = [ R (o) Re (Eq.Zl)]dpR
R
® _(ﬁNRy\)sr-‘)f‘_ (\),I’?‘l,ﬁ)
+é§g A DR (Eq.31)]
et (LNR’E) r-'_(V’E'aE)
+Z Q;Ls () Rsg  (Ea.37) Jdog (92)
vV = qR - I,NR , 4=0,+1,42,...
a = z'NS , &Y = 0,41,42

Equation (2) will be at qS=ENR, ~=0,+1,+2,..., for given g

(g (agom) . (%,70)
Ys (rs)=§2 gRLR (pg) [KRS (Eq.b3, mu=“)]d°R

_(MR’V!E) f'_(\))r'-";)

+ A LKDS (Eq.52, m5=v)]

(lNR’E) F’_(’;!’;)
+] 1 M lpg) [Reg  (Ea.59) Jap (93)
)

Equation (3) will be when qR#O, whatever £

_(NC,v,n) - (v,m,n) (a_,n)~_(v,m,n)
AR L¥pp (Eq’86)] =- [ " LKro (Eq'87)]dpk
R
(N, ,n)-_(V,m,n)
- L R Rep (Eq.88)]dps
Ps
(94a)
L6




when qR=0 and £=0

_(0,0,n) _(0,m,n) _(0,m) (0,n) _(0,m,n)
A K =

DD

When qR=0 and 4#0

_(Ng,=2Ng,n) _ (=ENg,m,n) (LNR.m) (g .n) (- 2Ng,m,n)

R'
A Koo j Ls Ksp deg
J‘ (095)_('£NR!;‘ ;) (0 n) (LNR'm n)
-p {LR KRD + conj L KRD pR
¥ R
(Ske)

i 3) lteration Procedure

As a first step, it is assumed that rotor and duct have no effect on

the stator loading. Note that LSo

is obtained for \J=qR_£NR’ L=0.I ,

First iteration

(0’;) - (ITI n) -1 _(0,!‘7\)
» ) Ly, (p) = Rgg (Eq.59 for z=0):] : [ws (rs)(Eq.lz)] for all pg

(NR!n) _(E‘!n) -1 I"' (Nle)
b) Lt (o) =R (.59 for £=1)] - (rg) (Eq.15) Jfor all p
' (qR.n)
cl) Then assuming that the duct has no effect on the rotor loading, L RO
) is obtained for all qR's:
(a .n)
Leo” [K o) €0.21 ] +{y K" (e (£ when age0,£q. (6
* g (O) | (Gufnf)
when g, # 0) ] - (85 2L, (p)Rgg"  (EQ.37 for £=0)+
[cont'd]
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(Ngs7) )K(qR'NR’m ™) (£q.37 for 4=1) ] }

*Llgo  (Pg)Kgp

and rotor.
_(0,a_,n)  _(qg,m,n) -1
A R = KDDR (Eq.86 for v = q, 4= o)] .
o K (0, o)
(q,=0,Eq.16) pF (q.,n) q,,m,n
D R R R
{ [ ]' PR) & Lro (Pp)&pp

0(qg#0)

d]) The loading on the duct is obtained in the presence of both stator

(Eq.87, £=0)

F (0,n) _(q ,m,n)
-(Aps)p%; )K R (Eq.88 for v=q, L=0)}

Lsg  (PsKsp

el) for qp = 0

(N s =N ,-) r ('N ’-’-)
A ROTRT (Rpp ™" (eq. 86 for v= N, z=1)]
o (N, ) oF [ n)_(=Ng,m,n)
{iLVR """ (Eq.20 for £—l)] (8¢ ) leo Knp © (EQ.87, v= =N, 4=1)
(0,n)_ (Ng,m,n
+ conj [L n)KRD R h)(Eq-87 for V= Nes L= 'l)] }
PF (N, ,n) _(-N ,m,n)
(80 21" (rRgy * (a8 for veuiy, =0}

for 9% £0

E(NR)qR-NR’n)

o

’_(qR'NRrﬁrn) =
= %, (Eq.86 for v = qp- N, z=|)]

(qun) '(qR-NR'a';)

{ ~{4p ) Z)L (p Pr)Kep (Eq.87 for v = ag-N
N ’n) (q -N ,5,5)
R =*7R "R
-(Aps) 23 L (e Ps Kep (Eq.88 for v qp-N
48
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Second |teration
(0,n) _(m,n) _(o,m)
a,) Loy (bg) = [Rgs (Eq.59 for z=o)] g ) (Ea.12)
PF (q,,n) (q,,m,n)
- 23 (Ap R 23 Lro R™ (o )KRSR (Eq.43, v = qp, £=0)
(O’q ’n) (q ’m n)
-R,RUR Y (Ea.50, v = ap, 20}
(NR,n) (m,n) ,m) ;
b)) Loyt (pg) = [Reg  (Ea.59 for z=1)'| R(rg) (Eq.15) |
PR (q ,I'-\) _(q =N Omin) |
-E% (APR)gQ LROR (pR)KRSR R (Eq.b3, v = ag=Ng)
(N, ,9.=N_,n) (q.=N_,m,n)
-Ko R?IR™MR “)RD:R AL (Eq.50, v = qR-NR’ 1;])}
! (ag.n) ~_(m,n)
) Lyt (o) = [Rep (aq) (Ea. 21)]
* (ag.m)
{[w (r ) (Eq.4 when qR=0 Eq.11 when q # 0)]
(0,n) _(ag,m,n)
-(Aps) Z[LS, (ps SRR (EQ.37 for #=0)
(Ng,n) _(qg=N_,m,n)
leR (b KSRR & (Eq.37 for ,0=l)]
- (oqurn) (qR’m n)
- LA Kor (Eq.31, v = q., #=0)
_(N »do =N ’F')_(q =N v;‘va)
+ AoR R R DRR R (Eq.31, v = qg=Ng, t-l)_,}
o _(O,Q ,I'.1) _(q ,E\,F\) -
dz) AI R = [KDDR (Eq.86 for v = A IFO)]
r( F (qy,n) _(ay,m,n)
. . { W qR-o Eq. 16)]- (8pp) Z)L R ?p )KRDR " r(‘Eq 87, 4=0)
0 !‘0
(a [cont'd]
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+ conj [L K
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PF (0,n)  _(qg,m,n)
R’ =
| (09 DLy (bR (£a.88, v = ap, =0 }
ez) for 9 = 0

]

_(N » =N ,E) _('N ’avﬁ)

AR e Ry b (Ea.86 for v = Ny, 1) ]

(o, n) _('NRvm n)

(N>
-{ 8. "(e9.20 for 1=1) -(ap) Z{LR, () ke

(Eq.87,v=-N_, £=1)

R’
(N, 7,F)

- 1y |
RD (Eq.87 for v +Nps i I)__i

PF  (No,n) _(-N,m,n)
R R
-(80g) 21" (), (£q.88 for v = -Ng, &= 1)}}
i
F for g $£0
(N.,q.-N 9;) (g,=N vaya) -1
~"R*TRTVR =\IR™VR L -
A Kpp (Eq.86 for v = Qp=Np> ) l)]
°F (q_,n) _(q -N_,m,n)
- \9ge RTR’ -
{ (ApR)pL L (Pp) Kgp (Eq.87 for v = q =N, 2=1)
“: (NR’n) (qR NR’m n)

(Eq.88 for veq =N, z=1)}

(pg)Ksp

.
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LOADING DISTRIBUTIONS

(q ) (4Ng,R)
The final values of rotor and stator loadings (r ) and LS (rs)

obtained in the iteration are used to determine the blade loadrng distri-

butions of the respective surfaces.

The chordwise distributicns over the rotor and stator blades are given

respectively at each radial position and at any designated frequency by

(a) For the Rotor

(q ) 17 (qR’l) e nmax (qun)

R (rR, OR) nLF (rR)cot 4-2: LR (r )sun(n 1)6 (952)

where qg = any rotor shaft-freguency and use has been made of the trigonom-
etric transformation xR=-6bRcos@a , eb = subtended angle of the projected
semichord in radians; and

(b) For the Stator

() - (an

= R’
s (Tg28g)= nLL

1 6. n (4N ,n)
)(rs)cot —2a+r;zz>:xLS R (r Ysin(n-1)8 ]

L (95b)

where £NR=stator frequencies for £=0 and 4=1; and xs=-ebscosea, Gbs = sub-

tended angle of the projected semichord of stator in radians.

The corresponding spanwise loading distributions (after integrating

over the chord) are given by

(agp) 7 (q,)
I.RqR re) =) LRqR s Cor )51 1890,
(o]
(a5, 1) (qg,2)
=N ) g Y (r) (962)
and
() ™ (4N,)
L R(rs) - g Lg R (rg»80s)51n8,d8,
(N )) y (Ng,2)
=Ll (rs) t7 L (fs) (96b)
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From proven relations,S'6 the loading distribution on the duct is
(4N,) = (Mg -ive
| Ly — (xp8p) = T Ly (xp)e
V=
v=qR-£NR
o % (gl 1) 6 Amex _(MN,v.R) _ i
= 3 v {A cot 7t A sin(n-1)0
V=- D n=2
v=qR-iNR
(972)

£=20,1, ..., where the A's are the final values obtained in the iteration.
The superscript ZNR refers to the frequency of the duct loading which is
zero or a multiple of blade frequency, v refers to the order of the circum-

ferential mode and n to the order of the chordwise mode.

After integrating around the circumference, the chordwise distribution

of the duct loading is

(&N,) ~2m  (4N.)
R _ R .
LDx (xD) = Lg Ly (xD,OD)dGD] siny
_(aNg,0,1) 8 nomax _(IN_,0,n) .
=-§-—{A R cot —£!+ A R sin(n-1)8, }sina
D n=2
(97b)

since the only non-zero result occurs at v = 0, q = INR.
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HYDRODYNAMIC FORCES AND MOMENTS

A) Rotor-Generated Forces and Moments

The principal components of the rotor-induced forces and moments are

listed below. (See Figure 4.)

Forces: F = thrust (x-direction)

F_ and F_ = horizontal and vertical components, respectively, of
Y the bearing forces

Moments : Qx = torque about the x-axis

Qy and Qz = bending moments about the y- and z-axis, respectively

The elementary forces and moments of the various components can be de-
termined by resolving the loading force L,:R (rR) acting on an elementary
radial strip, normal to the strip, and taking the corresponding moments
about any axis. The forces acting on a strip at radius "R of the NR-bladed

rotor will be given by]

N .
R (a.) iq, (Qt+d )
(R) - R R M osoR
aF é?l Le (rR) e cosep(r) bro
(R) g" (ag)  dag(ae+d) o :
AFy = =z LR (rR) e Slnep(r) cos (Qt+¢R0+ n) ArR
N : 3
R (qp) iqp (Qt+8.)
(R) . R R ™ sineR(r) si 8
oF, Z Le (rR) e S|n6P(r) sin (Qt+¢R0+en) are
R

where §P(r) is the geometric pitch angle of the rotor in radians.

Since
N2 ;ngn N when q = LNR, L=0,1,2,...

R
e = {
n=| 0 when R o zNR
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N, when 9g = £NR+I

N +1\ 3
R (qR.l)Bn { R
0

when R #1

Reference 1 shows that the total forces at frequency INR acting on the

NR-bladed rotor will be given by

PN Ot 1 (aN)

FiR) = Re{NRrRO e R g LR R (rR)coseg(rR)drR} (98)
N mﬂt] - (EN )
f() o e R0 wro T p o 1M e

o n=]

IN +1,n -
+L( R+ n)(rR)A(n)(GER)]sineg(rR)drR}

(99)
and
N r PN Ot ] - (4N_=1,n) -
FiR)= 'Re{T%TBQ [ Z[Lg ' (rR)A(n)(-e;R)
o n=l
(AN_+1,n) -
L (rR)A(")(e;R)]sineﬁ(rR)drR}
(100)
The moments are determined by:
iAN Ot T (IN,)
QiR) = -Re {NRrio e R j L R (rR)sinSE(rR)errR } (1o1)
o
TAN Ot ] (4N_-1,n)
Q(R) Re{ R RO R {_ [LR R (ry )A(n)( ebR)
rel
(AN, +1,n) - ~ (ANp= ,n)
+ LR R (rR)A(n)(e;R)Jcose (r )4-Z)LL (r )A(n)( ebR)
(N_+1,n)
-t R (r )A(“)(ebR)](.ebR)sme (r)taneR(r)} rodr, }
(102)

and

i
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and
NP2 PN ot | - (&N -1,n) (M+1,n) (=
QiR)= ref{ e U {Z " (r)d Al (- )Ly (rg )l kebR)]

(2N =1,n) (2N_+1,0)
cose:(rR) +g§% Le (: )A(“)( e )+L R (r )A(“)(SbR)J

(leR)S|n9 (r )tane (r )} redTr }} (103)

where A(n)(o--) and Agn)("°) are given in Appendix A,

Thus the rotor-generafed transverse forces and bending moments are
evaluated from rotor loadings associated with wake harmonics at fre-
quencies adjacent to blade frequency, i.e., at qR=£NRil, whereas the
thrust and torque are determined by the loading at blade frequency. The
steady-state thrust and torque are determined at zero frequency. The
corresponding mean transverse forces and bending moment would be determined
at first shaft frequency; in this case, Lé-l)(r) = 0 and only the second
terms L(])(r) of Eqs.(99), (100), (102), and (103) are present.

R -
(ag,n)
However, in the case of the pump-jet system LR is determined
only when qR=£'NS , £' =0, 1, 2, ... . Hence, thrust and torque will

exist only at £NR = L'NS (steady-state when £ = £' = 0 and vibratory

when £ = NS' AN NR) and transverse forces and bending moments only in the
1 = +1 .
event that £ NS zNR 1
For example, if N, =5 and N_. = 7, thrust and torque will exist at

R S
9 " z'NS = zNR equal to 0 (in the steady state) and equal to mNCNe

integer multiples of blade-crossing frequency. Side forces and moments
will occur at L' = 2, £ = 3, so that L'NS = ENR -1 or 14 =15-1 and
at L' =3, 4= 4 so that L'NS = zNR + 1 or 21 = 204},
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B) Stator-Generated Forces and Moments

In a similar fashion the elementary forces acting on a strip at

radius rS of the Ns-bladed stator can be shown to be i

N . =
S (£N,.) PZN, (Qt+6 )
(s) _ R R n S
OF Z) Le (rs)e cosGP(r)Ars
with
Ne 1an 8 N when &N = £'N
e RN ={ S R 7S
n=1 0 otherwise
and

N . = - N =
S i(4N :t])qn N. when !,NR LNS.,.]

S
e - {
n=1 0 otherwise

The total forces and moments generated on an Ns-bladed stator at fre-

quencies 'eNR will be

i .%NRQt LN

1
F§5)= Re{NSrRo(rgo)e “SL (" )cosep(rs)drs} (104)

iaN Ot ) (£N -1,n) (m +1,n) =
S P22 [P A )2 (- ofeg " (M)

ro(fsole
[o] I"I=

N
F)(,S)= Re{—zS r
sinei(rs)drs } (105)

AN 0t 11 (Ng-1,7) (4N+1,7)

(S)__ Re{z RO o)e _EI[:LS (r )A(")( e)-L ( s)A(")(ebs)]
o n=

sinez(rs)drS } (106)
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where

]
r

SO

See comments on relation between

N iIN Ot )
s s R
o= -ref{z} Zp(ripFe £ {ﬁ=

(£NR+l,n)

-LS

(£N +1,n)

+Ls (r

50

RO

)A
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The moments are determined by:

- (LN +1,n)

[_L

(r )A(")(ebs)]coses(r )+-Z)LL

4 and A4' in Section A.

(rg)A™ (-

(£N -l ,n)

) - ‘?e{Nsrﬁo("s'o)aemNRQt iLszN('s)Si"ei('s)rsdrs} (107)
%y ) - Re{{':'s' '?{0('%0)2‘3i A ;:Y {E] [L:E,ENR-I’ )(' 4l (- “6ps)
+LS(ENR+]’E)(;-S)A(E)(Bgs)}:ose (r )+Z[L(£N zrn%!\(")( -B;c)
MLt "§A<n)(ebs)] (1675 sin6S(rg) tane}(ro) frodr}}  (108)

bS)

F O™ (or )

(ﬂ)(ebs)_1 (.ebs)scne (r )tane (r )}r drsj} (109)

(nondimensional with respect to the rotor radius).

(110)

C) Duct Forces and Moments
The axial component of the force acting on the duct at the frequency
£NR is given by,6
(4N,) (LN )
R
..y Fox = o j Dx (x )dx
ZCD
or
(4Np) T (4N,)
- R’ o R :
F ox ro Cp £ Lox (xD)S|neadea
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where Xp and CD are nondimensionalized with respect to rotor radius RO’

(4N)
With Lox given by.Eq. (97b), the axial force or thrust from the duct is
(AN ) - (zNR 0,1) ® _(zNR,o,E) )
Fox rol X (1+cos® )+-Z) A sin(n-1)6,sin8, dea]sina
(o} n=2
_(4N0,0,1) | _(4N,0,2)
= -Zﬁro {A +3 A } siny (1)

The lateral components of the hydrodynamic force acting on the duct

are derived as follows. The horizontal (y) component is

(40) o ()

F =r C. cosx J L j D

Dy oD (xD,GD)5|nGDdGDJS|n6ad6a

and the vertical (z) component is

‘ (LNR) r-ZTT (LN ) - .
Foz = roCp cos f L I L (xD,GD)coseDdGDJs:nGQdea
()
L where LD (x ,6 ) is given by Eq.(97a). Since
21 -ivGD 0 for v #x1}
{e sing de, = { ~im for v = 4]
+im for v = =]
and
m -ive, 0 for v # %}
j e cosb _dé_ = {
' o D™D ™ for v = %]

the horizontal and vertical components of the force become, respectively,

(ANG) Rele 1) ) (NG, 1,2)q - (N -11) IN_,-1,2)

| e LT Y )
and (112)

(4N) ~_(IN_,1,1) (NG, 1,20 - (AN=1,1) (AN, =1,2) -

T Y S L T S i)
(13)
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The hydrodynamic moments about the y- and z-axes, respectively, are

(ﬁNR) T~ 27 (ﬁNR) W
My = C pCOS g L X Ly (xD,BD)coseodeD](eD-CDcosea)s;neadea
and
(4N,) T~ 271 (/zN) .
R _ 2 . _ .
MDz ry C pCOS¥ g g LD ,GD)S|n9DdGD](eD CDcosea)S|n6ad6a

-

where eD-CD cosea is the nondimensionalized moment arm. On integrating, these
become
(&N) - (&N, 1,1) (&N ,1,2)  (#N_,=1,1) (£N_,-1,2)
MDy R ﬁrzcosa{ DLA R + %-K R + R + %-K R 1
~ (.@N I) (zN ’1’3) (ZN :"") (I'N ’ 193)
i 1=""R 1 <*""R ] =Y7R
oLz A *+ A *3 *g A ]
(114)
(AN ) - (JN 1,1) ( AN 2) (4N_,-1,1) (£N -1,2)
s ' - RJ - R’ 1 l »
MDz --mr cosa{ +-2-A -A -.i. ]
(NG, T, (AN, 1,3) _(aN, -1 1) _(&N,-1,3)
-CDL—;-A R +7_!;A R -%A R La R ]
(115)
When £ =0
- (0,1, (0,1,2)
(0) | oS, _( |-
Dy Re{-lﬂrocosaLA +3 A ] }
(0) - "_(09]9]) 1 _(0,‘,2)
FDz Re{-mro cosozLA + 3 A ] }
(0)- - (09]9‘) 1 _(0 1,2) (0 1,1 1 _(ovln3)-u N
MDy Re{ﬂr cosay{e IA + 7 A ] DLZ + E»A J f
40 v R0y (0,1,2) ‘-,_(o,r,l) | (o 1.3)4
Moz ’Re{""ro”s“ { €pLA +7A ]'CDLEA tpA }

(116)
Note that the second index of A s equal to qQp*- ﬂNR. See comments under
Section A as to limitations.
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(@
When £ = 1
(N ) - (N »q-N =]’]) (N q-N ='v2> 9
R _ . 8 . =R R ] =VR R \y
FDy = -iTir cosa {LA +7A ]
i '-A(NR’q-NR=-]")+ _],,_‘\(NR’q-NR=-"2)]}
2
»
(N ) (N »9q=N =l’l) (N »q=N =]’2)
RY _ =*"R R 1R R
FDz = rrrocosaf {[A + > A ]
r‘_(N »q=N ="|,l) _(N »q-N ="’2)
+[A VR s+ ROR 1} 4
(N,) ~ (N,,q,=N_=1,1) (N.,1,2)  (N_,-1,1) (Ng,=1,2)
R_ 2 - R’ ’ R .!. - R, ’ - R ] l - R’ ]
MDY —ﬂrocosa{€Dl—A + 3 A + A + 2 A .
N (N 1,3) (N L) (N, =1,3)
-C ﬁ + 6. + & + A -I }
L2 L 2 I 4
(N) e (N v] I) (N 1 2) (N ’ l,]) (N ,"] 2) é
R = _ 2 . T R H -!- - R’ ’ - .l_ - R l - R ] '1
MDz = nroco; LeDLA + > A > A -3 A
=y (N 1)y (N, 1L3) ) _(Ng,=1LT) _(NR,-I,3)J} d
<7 *RA -z A " A
(nmz
when q-NR= 1 q =NR+1 C
When q-NR=-l q =N_ -1
60 q
IO AT it eet s . — — . o i




TR=-2173

SUMMARY

A theory has been developed in treating the ''Pump-Jet'' propulsive
unit comprised of stator, rotor, and enshrouding nozzle by taking into
account accurate geometry, realistic flow conditions and hydrodynamic
interactions between all the lifting surfaces of finite thicknesses of
the system. The system is immersed in a non-uniform flow field of an ideal

incompressible fluid.

The unsteady lifting surface theory has been utilized throughout the
analysis and a numerical solution has been outlined using an iteration pro-

cedure guided by physical considerations,

Expressions have been developed for the various loadings on the
interacting lifting surfaces and for the corresponding resulting forces

and moments evaluated at the proper frequencies.

f The analysis has been brought to the point where the suggested
numerical procedure can be coded. The treatment of numerical difficulties, l
such as singularities, has also been studied and expressions for their

finite contributions have been determined (see Appendices C-K). This
numerical procedure is at present being used in developing a computing pro-
gram which is adapted to the CDC-6600 or Cyber 176 high-speed digital com-
puter, The various components of the evolved analysis are being coded for
arbitrary values of time-dependent and space-dependent frequencies and other
parameters as the theory indicates. Then by combining these components at
the proper frequencies as the iterative procedure requires, the correspond-
ing loading of all interacting surfaces will be determined. This part of the
synthesis remains to be completed and tested for a realistic pump-jet con-

figuration, details of which have not yet been provided by the proper Agency.

Until this program is completed and systematic calculations are made,
no conclusions can be drawn as to the relative merits of this propulsive

configuration as compared with a single screw. Nor can judgment be made as

to the relative importance of the stator-rotor-duct components or on the

- effect of various parameters, such as number of blades, distance between
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stator and rotor and their relative locations with respect to the duct,
blade area ratio and pitch angles, on the steady state and vibratory

forces and moments.

The present study is considered to be a complete reporting require-
ment of the theoretical analysis of the pump-jet propulsive device. The
numerical coding when completed will be considered as a supplement of this

report.
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BLADE REFERENCE LINE

MIDCHORD

FIG.2. DEFINITIONS OF ANGULAR MEASURES

: THE BLADE REFERENCE LINE IS THAT CONNECTING THE SHAFT CENTER WITH
THE MIDPOINT OF THE CHORD AT THE HUB
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LENTICULAR CROSS~SECTION
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RESOLUTION OF FORCES AND MOMENTS
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T Fig. 5: Expanded view of two propeller blades at a
' particular radial position, g«
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APPENDIX A

EVALUATION OF THE Ga- AND ¢a'INTEGRALS

1 ) = %'T 3(m)e X<05Pge (A-1)
o]

where for m=1

(1) 1 ixcosp, _ _
B (x) =5 I (1-cos@)e do = Jo(x) IJI(X)
0
form =2
I(Z)( _ 1 p ixcoseg, _ .
x) = X (1+2cosyp)e do = Jo(x) + |2J](x)
o

and form > 2

cos(m=-1)¢y eixcoswdw L Jﬁ-l(x)

Oc 3

1l
n
where

Jn(x) is the Bessel function of the first kind.

A(E)(Y) = %’ @(a)e-iycosesinede (A-2)

Oc— 4

where for n=1

-iycosb

A (y) =

cot % sind e

Oc— 3

: 48 = Jy(y) = i, (¥)

and for n > 1

sin(n-1)6 sin e 170594

A () =L

Oe 3

()" :
= 7 a2 *+ 9z

Al
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To evaluate
- T _ ix cos®
|§m)(x) = % S &(m)e cospdeyp
. o
- L -iy cos6
Afn)(Y) = % j ®(n)sinbcosd e dé
o

lgl)(x)='—l2 [Jo(x) - Jz(x)] + iJ](x)

for m=2
2 r
lg )(x) = LJo(x) - Jz(x)] + iJl(x)

and form > 2

- 2 o
'gm) (x) = 5= |- 500 + Ja-z(")]

b) For n=)
A(])( 17 ] ,
1 Y) =7 LJO(Y) - Jz(Y) - 'J](Y)

and for n > 1

- .+l -
Af“)m G A N R I Ol

A2




APPENDIX B

EFFECT OF BLADE THICKNESS OF ROTOR
ON THE
VELOC!TY FIELD OF THE STATOR

The thickness distribution of @ blade section is represented by a
source-sink distribution assumed to be smeared over a projection of the
section in the rotor plane. The velocity potential due to the rotor blade

thickness at a point (xé,rs,¢s) on the stator is given by

N, © 2.2
R "bR M(E.,p,,0,,) V1+a,p
1 R’ "R’ RO R"R
B (xlr,ust), === 2 é p.dp,db
NN H P e ; Res a Py 'R RRO
bR FR
(8-1)
e af(gR’pR,eRo) . .
where M(§R,DR, Ro) = 2U —agR the source strength density determined
in accordance with the ''thin body! approach,
f(§R,pR,SR0) = thickness distribution over one side of the blade
section at radial distance Pr in the rotor plane
{(x: )2 2y g2 ‘6 at + 8 ]}%
Res = \Xs™Sg/ *+ Tg * PR = 2rgPReos 9pg * P5o = HE * Oy
1 = = - = s
Xq cpSO/aS + € (cS ebscoscpd)/aS + e 0=g¢g sm
= = - e S
§R eRo/aR (cR bR cosea)/aR , O By =T
= yAlf _
eRn (W (n'l) ’ n"]sza-o-yNR
Since of . -——iﬂ———— of Eq.(B-1) can be reduced to
SE; ebRS'nea 35;
Nem  af(p,,08 ) Vitalp?
(8), = - %= Z [ [ —5p—2 2R 4o de, (8-2)
t =l 5% o RS

R

B

—— R
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The thickness distribution f(pR’ea) will be approximated by a

lenticular section, i.e.,

T(Pg)
R . 2
f(pR,Ga),V 7 — sin Ga
t_(p,)
. _© 'R . 2 -
~— pRebRsm Ba (8-3)

where T is maximum thickness in the projected plane

t
1? is ratio of maximum thickness to chord of the expanded section

pRebR is projected semichord
Therefore
of . 2 :3 (p.): P,8, .5iNn0 _cosB (B-L)
36,7 e VPR OFROBRTT T

The nondimensional velocity normal to the blades of the stator due to

the velocity potential (%.) is
S R,

1 "s I - DY
W) === 3 =- a -— ¢ (8-5)

Substituting Eq.(B-4) into (B-2), and (B-2) into (B-5) and, in addition,

expanding the reciprocal of the Descartes distance RRS as
® s g @ i(xd-E )k
Ll z J™®ran e TR (B-6)
Res Tm=—= 2

where B = eRO + Pgy " Qt + eRn

lm(lklpR)Km(Iklrs) for Pr < Ts

and 1K =
( )m { Im(IkIrS)Km(IklpR) for P>

]

yields

B2
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| / s 2 1 3 ° "R to Ny
W ) = — (a ;- — —(p.)p.6 WN1+a%p sint cosb
\s/Ry T&/""—Hazrz s 3x r§ S‘Pso nel H,R c YRFR'BR T RTR oo
® im(6,.+p, -Qt+5_ ) i(x)-E. )k
. RO 7SO Rn SR
z -:E(IK)"‘ e dk dp, o, (B-7)
N . = .
R imb N, if m=IN_, £=0,%],%2,..,
With T e "Ma=q R R
n=1 0 otherwise
imb -im6,_cos8é imoc ime -im8_.cos¢_  imS
and e RO - bR @R Ld e SO _ e bs @, s
and taking the derivatives with respect to xé and Pso
N, T © -im@,__cosp_  imo_, -imlt
[ <WS>Rt = RS Z e bS % e S e
2o, 22 M=
u I+asrS m-lNR
T ot imo, <-im6 __cos6
) NLEPE) R bR o .
- (PR) P8y V1+apep € e sind cosd,
o P
-] . i(x‘-§ )k
im S "R
._£ (nask - ?2-> (lK)m e dk dpR do,, (8-8)

On substituting the values for x! and §R given before

S
iN T = -im6,_.cos@  imo, -imCt
<"’S>Rt= RS @m o bS a, S,
m==
2 2 2 _
n l+asrS m=£Ngp
mooy ©
- -2 2,2 -n
. . jj 5 (pR)pRGbR 1+a3 pR j‘(ask I_:',>(|K)m
o p -®
R S
- k/aS ebscoswa |k(oS/as+es) +|(m-k/aR)cR -u(m-k/aR)ebRcosea
. e e e e
* sinB cosb, dk dp db, (8-9)
B3
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The ea-integral involves

.o k
- |(;; - m)GbRcosea
§ e snneacoseogea

Let u=k-a_m in (B=9)

R
.
_— ;; GbRcosea iZai
Je sinf,cos8,d8, = —= F(u,p,) (8-10)
° ®br
where
T sin(u GbR/aR) - (u GbR/aR)cos(u ebR/aR)
F(uva) = L u2 .
Then
_ 2 s . 2R .
<w ) } 2NRrSaR 55 imQt  im(1+ 3 )cS ima e
S/Ry ————-__22_ e e e ) e
™ «/l+asrs m=£NR
. X 22 (p.) Eﬂ-‘Vl+a2 2 T (a u + a_a_m- ll)(lK) F(u,p.)
c ‘PR’ B rRPR S s%R™ E m Y Pr
P bR - r
R S
o o) a
. S R .o U R
|u(s; e +es) -|(3; +(1+ E;)m)ebscos¢a
e e @ dudPR (B-]I)
where

(IK)m = Im(|u+alepR)Km(|u+aRm|rS) for Pr < re -

On applying the generalized 1ift operator, the nondimensional velocity be-

comes, for each 1ift operator mode m,

a
- i R
(m) -2a%r N ® -imQt |m(cs(l+ a ) + aReS)
- - R'S R S
wR S(rs) = ————————— Z e e
t n2 Wleacr? ==
$S m=2NR

t P
gty R e 1) (16) - F(us
| 20 g R s :g)“'ﬂm Flusey)

R

[cont'd]
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o c
R
iu(== -~ — +¢.)
a a S - a
. e S R . ((m)<<-'§—-(l+ 35>m ebs>dudpR (8-12)
. S R
On changing the doubly infinite u-integral to an integral from 0 to +» ,
(B~12) can be written as
a
. R
_(I'I-))( ) _zazrsNR . —imOt Im(cs(l'i' as)+aR€s)
W r.) = e e
R,S" S =
t 2 . 2 2 m=
i l+asrs m_zNR
t [+ ©
I 21p) 2= Visa2e® [ F(u,p,)
c R" 6 R"R R
Pr bR o
-{I (Yu+a_mlp YK (lu+a,mir.) (a U+ aam-= )
m RTR m RS S SR re
c Or S
(_) a iu(gs§ - 3-— +€S)
o my(u R ) ) R
(- 5= -0 En)ays) e
S S
m
+ lm(lu~aRm|pR)Km(|u-aRm|rs) (asu - asaRm + :§>
o 0,
@ (2 (1 28, )"ugg'a_hes)
m u R
- (—— -\1+ =—=)m )8, __ Je }dudp (B=13)
ag ag bs R

The integrand of (B-13) is zero when u is zero since F(O,pR) =0,

In the steady state condition m=4=0 ,the velocity on the stator due

to rotor blade thickness can be shown to be

_(0,m) ~4a%a_r_N t p
wR s (rs)= .__R_.S.S_FL _Cg (pR) .Q_L :\/]+azp;
t n® ”l+a§r§ Pr bR

[+ (¢4
st - R

L] a a S -, N
) afu Flu, pp) 1o (upg)K, (urg) ~R-P-{e s R 1("‘)(% ebs)} dudp,
(8-14)
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In the unsteady case, m = £NR, L= 41,42,
. aR
(2NR,?1 ) - ha reNp lﬂNRLG ( S>+ aRes]
Vl+a§
to PR NIEx) %
. X—g (PR) N l+a‘;p§ EF(u,PR) [Gz(u)-Ga(-u)]dudpR
p bR o
R
where
G,(u) =1
2 £NR(Iu+aRLNR|DR)KmR (|u+a AN |rs)
iu(z§ - 35 + € )
1 aS aR S
La u + ﬁNR( R " :g)] e ‘
S : k
(m) %RY _u
({14 ) 3‘)%5) (8-15)
S S :
|
i
b
3
B6 .
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APFENDIX C

Evaluation of Singularity of ERR as u=0

The integral of Eq.(21) is of the form

© _ -)\)
(c-1)
e
where
E%Ao
g(0) = 1, (IxrasNip) K (waaNir) B2 ~()e ° for g <r

B2 7 (1) = (an+a’shs i;)(ax+azzN+ J%OI(E)((Q- bory 2™ ((o- Yop)
P

| m=gq+ ¢N

By L'Hospital's rule the integrand at ) = O becomes

Tim  g(A) - g(-A) 9( A) o [fgLLL agé;x21 (c-2)
2y =0

=0
It is obvious that

B- =8 -
SOOI Y

[|m(|)\+alep)Km(l)\+azN|r)]Fo = [lm(l')\+azN|p)Km(|'}\+ale|’)-J

| kgo
i
and
i L AU' -1 % Ao'
e A=0=¢ A=20
Then

“The development is taken from Reference 2.

cl
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[ag(x) _39(=1)
o 2\

1 2i C-;—’- “K)"‘lpo 85 =(0)

. (1K) l [aaﬁ’;(x) i 385’5(-X)]
=0 oA dA A=0
aElm(IHalep)Km(lMaLNlr)] .
+ B;‘,E(O) Y
) a[nm(l-x+alep)Km(t-7\+azmr)] (c-3)
ar \e
Here (lK)m'1~0 = lm(lalep)Km(laler) for psr (c-4)
=385 5(-*) +BBE B(K) 2 m my . (m) -
—_— = — =-a(2a” e = 4 )| " (qer)A(")(qep)
-2 |x=0 )Y ix=0 r2 p2 b b

+ 3" B %o B 00t (0ol ™ (aofesps ™ qel1a ™ (as?) ]
p

(c-5)

and I§m)(x) and A§n)(x) are as defined in Appendix A.

The third term of ((c-3) is treated as follows:
a) For A = 0+ and a4N > 0

|m(|x+azN|p)Km(|x+azN|r) = lm(()\+azN)p)Km(()\+af,N)r)
and

lm(l-A+a£Nlp)Km(l~A+aler) = lm((azN-x)p)Km((azN-A)r)
so that the third term of (C-3) becomes

3 1_(O1a2N1p)K_((a+1a2N1)r)
28- -(0) Lm i ] ! (for p < r)
! OX A=0
[conttd]
c2
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= 256,5(0){% Km(laler)_le_‘(laLNIp) + Iml(lamlp)]

r
- L amig)k _ (asNir) + Ky (122N1T) ] (c-6)
(Note that for o> r, p and r are interchanged in Eqs. C-3, C-4 and C-6.)

b) For » = 0+ and afN < O

Im(lx+aLNIp)Km(lx+aler) = lm((lalNl-x)p)Km((lale-X)r)
and
lm(l-x+alep)Km(l~1+a£Nlr) = Im((Ia£N|+A)p)Km((la£Nl+k)r)

The third term of C-3 then becomes

3 1 lasNDp) K _((A+1aLN1)
[ m((}d- 2N m(( bl r)]l for psr (c-7)
A A\=0 .

- 285’5(0)

Therefore £q. (C-3) can be written as

3g(A) = d(g-\) = 27 & - -
[ (s ]k=o 2i &2 (IK)m|k=0 Bz =(0)

38= =(1) 1413
+ 2(IK) LT + 2B= =(0) (1K)

ml oA m,n A
A=0 A=0 . 2=0

where (IK)m is given in (C-k)
A=0

B 5(0) = (aZ N+ J%)(azzN+ J%ou(ﬁ)(qe;)A(ﬁ’(qeg)
r p

BBE’E(X)

—_— is given in (C-.S)
a ‘x=o

3 (iK),,
= ‘x-:o is given in (C-6)

and the upper sign is taken when £ > 0 and the lower sign when £ < 0.

-~ g = - , -
‘ acaminaine. W s sl

(c-8)




When ¢ =m=q = 0, by the limiting process, it is easily shown

Tim 8= =(0) ~ Tim £2 = 0
=0 ™ 40

A=0 (-0

I = lim (2+42)Togs = 0
A=0 40

Tim
-0

When 4 = 0 but m=q#0, it is easily shown that

1 py Im)
-Z-Tm—l- (l") for o s r

lim (1K) | =
Iml
-0 m=0 1 r
STRT (-5) for pz r
lim a(IK)m I -0

-0 3 A=0

for 4 =0, m=q#0

tim g(A)=g(=1) _, , {lim (K0 ;
A=0

A=0 Y )L.o

- - B} 2 '
: %n‘"‘) @ep)a™ (@of)[1 & G+ am (4 ) ]
P r o™

.-'

.2 . - - -
- s [9;1 ,(m) (QBL)A(") (qet‘,)-eil (m) (qe;)Afn) (qeg)] i
ar p

M (c-10)
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When q = 0 and Eq. (C=9) is used for the kerne! functions, the value
of the integrand at A = 0 Is zero for m= 0. For m # 0 it can be easily
shown that the integrand at A = O when q = 0, m = gN Is

Lm? , 2

i —(a"+ -;'-2-) (a2+ -;'z-)lm(amp)Km(amr)

: {Aol('T‘) @M (o) - op |,('?‘) ©a®™ (0) 4 of @ (O)Af'-‘) (0)}(c-n)
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APPENDIX D
Evaluation of the Singular k-Integral of RDR
The integral term of Eq. (31) can be written*
[ = I" F(k) dk
k + afN (p-1)
-fn

where F(k) = (ak + -L;-') | k| Im(lkl rR) [Km_l(l k| RD-) + Km+l(l ul RD)]
r
R

-ik(e_ -c/a)

e ™ (o - X)0,) A(E)(-kco)e D

This integral exists in the sense of a Cauchy principal value. Therefore

F(K) - F(-aZN) ® _dk
s o) 9k + Fl-ath) -L k + alN
- [ HER (0-2)

where F(-afN) = (-aZzN + ‘r‘"i‘—)(a.%N)lm(aZNrR) [Km_l(aLNRD) + Kml(azNRD)]
R
- - iatN(e.-o/
. g(m) (q8,) (M (eumco)ela (ep-oe)

and -F{-afN) is equivalent to (-1_';) times the closed term of Eq. (31).

AR

~ For large | k] 2| M|, | M| > asn

-y " ke k|r -ik(e-0/a)
’ F(k) ~ (ak+ 1‘5) | k] &

r JZnI Kl r ‘qki R/T

e

() k) A Cic)e

-| 4 (R-r) K
r rR @

E . x~ (ak + _m_z_) e 1(;’) (- k eb) I\(;) (_kc)e'ik(c-o/a)

T3 AN = aR£ Np throughout Appendix D. The development is taken from Reference 5.
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The factor

(ak + ﬂ%) e-lk[(R-r) -0as k—o
r

since R > r. The product of the other factors also tends to 0 as k becomes

large. Therefore

M -M -] .
- -alN d
| [ kL= FCatM) gy [j‘ + ]__k+§zn (p-3)
-M k +aN -o M
Since
-M @ @
dk dk M - aiN.
[+ ] 3250 = 2ot | 55 = log H=2MM,
‘e f; k+3 LN IF kz-aZLZNZ M + afN
~ -M k + afN @ °9 M + aiN
Therefore
X (m,m,nzv 1 "R - imo
DR =~ Tmp Ur 2 €

f. 2 m
. {lﬂaEN(-a AN+ r2) lm(aLNrR) [Km_](atNRD) + Km+l(a£NRD)]

R
iafN(e_ -o/a) ,- - . :
D (m) (n) [ 1 joq Moath
. e 1777 (q8,) A (achD) 1+ og o7y
. | . J-" F(k) - F(atN) dk} 4
T ke an ) (0-4)
"f The singularity in the k-integral
The integral in (D-4) can be rewritten as
. MoET) - F(aaw) |
, = J dk - (0-5)

o (k+aZN) (k-atN)

where
D2
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FrOk) = ki (ke ) [ (kR + K (k)]

- ~. ~ik(e,~0/a)
- {(ax +-r-';—-)(k-am) 1™ ((m - £ye,) A (ke e 0
R _
-y - ik(e.-a/a)
b (k- ) (i) 1P (e o) AP ey e O}
R ‘
and
F'(atN) = ZaZLZNZIm(alNrR) [Km_l(al.NRD) SR, (aL.NRD)]
-\ - iatN(e -0/3a)
. (ale - '—;""‘) l(m) (qeb) A(n) (aLNCD)e R
r
’ R
At the singularity
1im FYk) - F'(a!N)} —-E.—(—-) I + 2afN | (D-6)

k=afN L(k+atN) (k-aLN) k=aiN

It is easily shown that (D-6) equals

(m)( 5 ) A(n)( INC ) lazN(e - o/3)

. {[%(%zm- %)+ iatN (e, - —;’—)(azw- _r%)] lm(aerR)[-ZKl;(azNRD)]
R R

+ aLNrR,(a LN~ —-—) 1! (aLNr ) [ 2K (a£NR )]

2 m
+ - — ' t
aINRD(a /N 2) | (aLNrR.) [Km_‘(alNRD) + K l(a!NRD)]}

'R

; .
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+h4amrQ[4g“ama@]

- - -iaiN(e,~o/
{‘ (a2on+ ) (M) ( (q-2.4) eb)A(")(-amcD)e (ep=o/)

!,N(e -/ )-e
+iazn(a2/m- -:“—R) ‘e ) La ("')( 8 )A( )(ach p) ~C |("‘)(qeb)A n)(afmc ):]}
(D-7)
31,(2) 3, (2)
where | (Z) _—8-_' , Kb(z) =—
and |§6)(x) and Aga)(x) are given in Appendix A.
When £ = 0 (m=q) and k - 0
(rg)
OF ' (k } _ R - - )
__sﬁ_l‘k=azN + 2aiN = z;;;a:T f(m,n) (0-8)

where

(67 =201 e - 1 5 Lo 511 e, aM )
R

+ f} [CDI ) (g8 )A( )(0)
R

) - -
- 211 (q8,02M (0) ]

Whenm=q =0, £ =0, k =0, the integrand is equal to zero.

oL
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APPENDIX E
Evaluation of Singularity of RSR When u-0
The singularity of RSR (see EQ.37) can be studied in a fashion similar
to that used in Appendix C by making use of L'Hospital’s Rule.

The K singularity at u=0 is obtained through the limiting process:

SR
92 (U) - go(-u) 9g5(u)  Bgy(-u)
L 3 3 = [ . 2 ] (E-1)
- u du du u=0
with
qS = faNR , m3 = qR- ‘GNR (o} (=)
~iu(e_- £ '-ib
\ S % 3
g5 (u)= 'm3<|”'aRqs|°s>Km3<|“'aRqs|rR)'Bﬁ,ﬁ(”)e
for Pg < "R
where
m m
~ 3
9 = o - s -2 o
(M ((o 2R b (m) u
. A (( m3* 3 I as)ebs>l ((m3+ 9 - 3;>ebk>

{‘393(‘1) 5g3(-u)_1

o o
o ~ T& -lu=0= -2i(es+ Ei' - ?:)[“K)m3]u=osri,ﬁ(o)

385 7 (W) aBa,a(‘”)]

+ ( |K)m3'u=0 L éu ?u u=0
+ 8. -(0)[a'ma('“'akqs|ps)Kma(lu'aRqs|'R)
m,n - du

- 31, (|-u-agag|Pe) K, (| -u-apagfry ]
du

u=0
(-2)
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(1K) ' = (aRquS)Km3(aRquR) for Pg < Ng
3lu=0 3 1 (otherwise,
J
= m3 aRzNRpS)Km (aRzN r ) Pe and r are (E-3)
interchanged)
(ag = Np)

Bz 7(0) = (asaRqs + Sf)(agqs 3>A(ﬁ)<('m3+ ;5 qs>ebs>'(a)((m3+qs)eba>

r

R
(E-4)
- = 3B~ =
[BBrﬁ,ﬁ(u) j aBm,n(U)J -5 Bm’n(u)
ou ou u=0 ou u=0

L}

fosoisst D eilrsntsr 2P (e 2 el Pmgegy)

a

+(-asaRqS- ;%)(-a§q5+ ;%)[-i azR (m)((m +qs)6bR) ")k<-m3+ X2 qS)ebs>
S

%
0 - a . .
+ %s_ '(m)(('“B’“qs)ebR)Agn)(("“f Z?' qs)ebs>_U
"3 2R3 D O (w008, Ja P ((n s R o)
- 2{<as e 2ag3Rag )l \(m3+ag) By a7 (L s 3, 95/7bs
m

+i (""sar<“s+ o'%)(aﬁqs- m_g){_ %_ '(m)<(m ’\qs)ebr<>/‘(a)<("“3+ Z_S qs>ebs>

+ 25’3 '(a)((“‘qu)eba)“l \( aR ) bS>]}

S
(E-5)

3 Y (
g:{'m3<'”'aaqsl95>Km3<|“'aRqs|'R>]' 33L'm3(|'”'aRqslps)Km3K"”'aRqsl'R)],ugo
P - -
= '2{75' Km3(anqsrR)L'm3-l(aRqs°s) + 'm3+l(aRqs"s)J - [cont'd]

E2
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r

-7 Im3(aRquS)[Km3"(aRquR)+ Km3+'(aRquR)] } (E-6)

for p. < r;. For p. > r., P. and r_ are interchanged in Eq.(E-6) above.
S R S R S R

Then Eq.(E-1) yields

2a,(u)  dg,(-0)
- %

u=0

%

-Zi(es-l- a—s- - :—:){lm(aRLNRpS)Km(aR!,NRrR)}
- AN
. {(aSaRLNR+ ﬁ%)(aﬁENR- f%)A(n)(<-m+ azs R)ebs)

S
.l (m) \<m+LNR)SbR)}

a.m a.m -
S R 2 (m)
+2lm(aRLNRpS)Km(aRzNRrR){r2 Pg ZasaRzNR>l ((m + lNR)BbR>
R
- 7 a LN
(e 22, )

aS "“bS

i m ) (s2en, - 2o)
+ |(asaR£NR+ pg)(aRzNR rz

-8 - - N
- L Zﬁﬂ l$m)<(m+zNR)ebR)A(n)((-m+ a:S R)ebs)

1 a

+ §§§ I(a)<(m*£NR)ebR)A(E)<(-m+ aR:NR )ebs)] }

a_AIN

-|(5)((m+ZNR)9bR)A(;)((-m+ :s R)Gbs) (asaRLNR+ %g)(aELNR- ?§>

.{pSKm(aRLNRrR)['m-I(aRLNRpS) + 'm+|(aR‘NR°s)]

-rle(aRINRpS[Km-l(aRzNRrR) + Km+l(°R"NRrR).] }

(E-7)
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£=0 , then the integrand at u=0 becomes

PoM Nle) [¢)
(;iD {'i<es ¥ Zf ) SE><‘ rgpg >A(n)('"‘ebs)'(m)(me
* (%s ) %9 ® (00,4 (-ney)
R Ps

6 - -
1 ) 2 o g g 22
SR

£=0 and m=0 , the integrand is zero.

El4

I(a)(mebR)Agﬁ)(-mesi]}

(E-8)

—
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APPENDIX F

Evaluation of the Singular Part of ERS at u=0

The singularity of Eq.(43) is determined in a similar fashion as
before by performing the limiting process of the following expression:

(u) - g, (-v) 3g,,(u) gy (~u)
]iz-°0 [ - u - ] [ gu - gl‘u - ]u=0

gu(u) = lmh(,u - aRqslpR)Kmu(lu B aRqSIrS)

gy, (u) Iu__,0= gy, (-u) |u=0
dg,(uv)  23g,(-u) ] O % \[/
S - —%g ]u=0 = 2|(es + Pl )[\|K>mh]u-o Ba,7(0)
3B, o(u) 9B+ =(-u)
m,n ,
+(IK)m1,|u_0 [ ou - ma: ]u-o

ralm“(lu-aRqS'pR)ng‘lu-aRqslrs)
85,700 | =

B|mu(l-u-aRqslpR)Kmu(l-u-aRqslrs)

) du u=0 (F-2)

Fl
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(1K), = 'mh(aRquR) Kmu(aRquS)

u=0

= h ap RpR)Km (ag2Ngre) for pp< r (F-3)

B,7(0) = (o2 s?9s ¥ %Xaiqs i 'p_> A(n)(("‘u * qS)ebR>|(El)«-mh+ ':f qs)%s)

R
(F-h) |
aBﬁ’ﬁ('u) _ -aBl?l ﬁ(u)
ou u=0 u u=0
~3B. =(u) 3B- =(u) 3B~ =(u)
RA . EE ] mo—RA—

’2{ 3 ( 2R9s* pR )A( )((mh + qs)eba)'(m)<('ml4 * :_: qs)-ebs>

+aR<-aSaRqS'%>A(E)( ) )ebR)'(a)« " )ebs)

- - -
"'('a 2r%s” ?)( aRd * :?:)L'i 3:_5' 'sm)«’"‘h* :_:' qs)ebs>A(n)(("‘u+qs))ebR>

1t 28 (s 2 oy (i 09)s)]

R

= zr(as ;% - a ;ﬂ -2aSaRqS) (ﬁ)((-mu+ ;E qs)ebS)A(a)((mh+qS)ebR)
S

%] - -
* ( 3g%% * m:x R%s ~ ':'5:')[' = 'f"')((-"m* 25 qs)ebs>"(n)((’“h+qs)eba)

e -
B0 2 o P (o]}

(F-5)

F2
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{gi |:'m4(|” - agdg|Pp)Kmy (U - aRqSIrs)] -

- g’u‘ ['mu(l'”'asqs”R) Ky, (1 -u=2pag | 's):] }

u=0
gl ]
17 Kmq(akqsrs)l.'mh-l(aRqs"R)+ Im‘*+l(aRquR)
|
rg \
e 'ml;(aRquR)l:Kmu-l(aRquS)+ Kmh+1(aaqs's)] J
for pp < rg (F-6)
For PR < Ts» Pr and rg are interchanged in (F-6) above. (See l
singularity of KSS.)
Then Eq.(F-2)yields (for £ # 0 m ¥ 0)

[agu(u) agl’(-u)]

3u au U=0
% %
Zn(es + -a—s - ¥>'m(aR£NRpR)Km(aRLNRrs)

- - W
r my 3, _mMm (n) (m)({(_ #r™ R
. LaSaRLNR-n- -'-_g]‘_aRENR ?R-] A ((m+ I.NR)ebR | (( m+ o >6bs)
21, (apg WNepp) Ky (ap INpre)

- - N
. {[as :—ﬁ " %R :‘_Z -zaSaRLNR]A(n)(("‘”NR)ebR)' (m)((-m a—:s_vebs)

. 0 = - AN
o e B 1210 o) 9 (o 00,

+ ':':_R Asﬁ)(("‘*ma) %R/ (5)«‘“‘* a::NR)ebs)]}

'(asaR‘wR+ %)(aimk' %)A(a)(("‘“"a) ®r ) ! (5)(("“ * ‘::Na)ebs)
s R

(cont'd]




TR-2173

)
. {pRKm(aRLNRrS)L|m=I(aRzNRpR) + |m+l(aRzNRpR)]

rslm(aRLNRpR)[Km-l(aRLNRrS) + Km+l(aR£NRrS)] }

(F=7)
When £ = 0, the integrand at u=0 becomes (for m#0)
p m . [} (o} - -
(—B.) {- _”l. (G + —S. - ._R)A(n) (me )| (m)(_me )
r 2 \'S a a bR bs
s refa s °R

a a - -
+<p—s - r—g)A(") (mebR) ] (m)(-mebs) +

. 8 - - € n m
e L+ 522 A7) mo, )1 (moy ) - 2R M (n 31 () (ome )] }
s’ S :

and when m=0, £=0, the integrand at

u=0 becomes =zero.

Fl

b~
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APPENDIX G
Evaluation of Singularity of EDS at u=0
Equation (52) has an integrable singularity at k=-aRqS . The
integral term of Eq.(52) can be written as
-] pwee PRI (6-1)
k+aR NR A k+aR£NR

(see Appendix D) where

Fk) = (ask - ?é' DIkt 1 (kI e) K (kIR + K (1K189) ]
s

- - |k(e - g./a.)
(- P s
F(-aRzNR) ( aSaRLNR 2)(aRLNR)Im(a AN rS)LK ,(aRLN RD)+Km+l(aR£NRRD)
S
. I(E')<(-m . ﬂ 6, >A(;,)<a e ) +ia N (ep-¢c = 0/ac)

and -F(-aRLNR) = % times the closed term of Eq.(52)

For large Ikt 2 IMI , IMI > aRLNR
ikir ~1kIR .
S D - - -ik(e.-e. ~o./a.)
F(k){(agk- )ikt —2 2 Mk g I (igye PSS
r v N S
: S Zﬂlklrs ZIkIRD/ﬂ
' =1ki (Ry- - -
~ (a k- m—) & (m) ( >A(n)(-kc Ye 'k(e €s cIS/aS)
-4 S 2
; rs «/l’SRD
which tends to zero as k —=® ., Therefore,
~ M F(k) - F(-a IN,) -=M =
R
~ ] dk-F(~agsN )| [ + j]-——-— (6-2)
-M k+aR£NR RTRIS < M k+aR£NR
G!
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Since
M ® © (M-a_2N_)
-
L+ IJ k+ad:N = 28 [ Fom = o RR
- +M R™R M KT-aldoNg (M+a_ 2N.)
M F(k) - F(-a_ 4N,.) M-a_£N
R 'R R R ;
1=~ [ dk -~ F(-a_4N,)log { ————m . |
M k+aR£NR R™R ( M+aRLNR .
Therefore é
i
-(m,m,n) 1 rs ims |
DS - 2 € }
’-}Tlpr rRo "/14-—8;7:2— !
ia 4N, (e.-€. = O /a.)
. m RR'Y'D S $S
{-:naRzNR(asaRzNR + ;z)e ‘ |m(aR£NRrS)

aREN

’[Km-l(aRzNRRD)+Km+I(aRzNRRD)]I(a)((-m+ -;'5>eb$)A(a)(aR£NRCD)

- M-a_ 4N M F(k) = F(-a_2N_)
ol 1 +'— log ————R R + R_R dk (G'B)
L m (MHRI’NR)] -h'g k+aR£NR }
The integral in Eq.(G-3) can be rewritten as
M F'(k)-F'(a aN_)
R R
e =1{ dk (G-4)
k 2_, 292y 2
o k aR £ NR
where
FU(K) = (k = ag N )F(K) = (kebag ING)F(~K)
and
' - -
F (aRLNR) ZaRI.NR F( aRlNR)
At the singularity
. ' = F'(a 4N,)
tim r FH(k) - Filaging 3F ! (k ,
k= 2 N L (k+aRENR)(k-aRINE7} - S + 2ap INg (6-5)

k=aR£NR

with

FI(K) = ki (krg) (K (KR)) + K¢ (kR ) ]

(cont'd]
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g B P o, P e s T

s

o B)voih (el i Pcye T )

After some lengthy manipulations, Eq.(G-5) becomes

fo. 4#0 m#0
- AN - ia AN (e,-€. - 0. /a,.)
1Nk _ (. . RTR (n) RMRYp™%s T %/%
Za N, ok ! ((-ms )ebS)A (agMgCple
R™R s
r E 3m .. s m_
'{‘m(aR”NRrs)L'ZKJa(aR’ZNRRJ:]L'E 353Nt 2 E* 'aRzNR<eD & as)(asaRmR+ r;)]

-
' 2ol m
+'m(aRENR?QL ZKm(aRzNRRD)J(aRzNRrs)(asaRLNR + rz)

1 ! m_ )}
+lm(aR£NRrs)[Km_l(aRENRRD)+Km+](aRI,NRRD)](aRlNRRD)(aSaRzNR + '25

- : - N
+|m(aRLNRrS)L_ZKr:l(aRzNRRD)}{.(JZ 3g3g Ng- ';'%>' (m)(("’" a:s R>9bs)

r

- ~ia_IN_ (e.-e. - c./a_)
LA (n) "apMNplep=€s = Ig/8g
AV ( aRlNRCD)e }
r . NG mY agNg(ep-eg = Og/ag)
+|m(aRLNRrS)L-ZKé(aRLNRRD)]('aRLNR)(aSaRLNR+ :g)e

£

. {f':% ' @(('"‘ +aisﬂ>°bs)ﬂ(ﬁ) (g fNgCp) =Cp! (m) (("“‘ + a:s NR)ebs)Aga) (aRLNRCD)}

(6-6)
for 4=0 mg0
(rs)m - . O’S - (..)
L0 g+ 15 (o - 2D PP

- s n e m n
2 [ P P02 Pas 0]} e

63
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When m=0, k=0, £=0, the integrand is equal to zero.
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APPENDIX H

Evaluation of Singularityof ESS at u=Q

The singularity of Ess(see £q.59) at u=0 is evaluated by means of
L'Hospital's rule

1im 96(0) - 96(‘U) 396(u) ags('”f] :
u=0 u du  du =0 (K=1)
96(U)= |m6(|u'aRqslps)Kms(lu'aRqslrs)' Bﬁ’ﬁ(u) (fOl‘ ps < rs)
£
Here 9 = LZZ mg = Q¢ + IGNS (26 =0, =1, 2, ...), and

Ba,a(u) = (as” T 8% * m6)<as“ T 8% * :6)
s S

(m)(( Mg+ 3 -; 9~ ">9b5>A(E)(<m6+ gf % ~ 5;)825)

It is obvious that

+96(U), = + 96('U)|

u=0 u=0

396(U) 396(‘U)ﬂ 3,
[ Su  du Ju 0= ('K)m6'u=0 L du T

+Bﬁ,ﬁ(0){ %U [Im(|u—aRLNR|pS>Km(|u-aR£NR|rs>]

= ’
-5 le |-u-aRlNRlps)Km(|-u-aR£NR|rs)] }u=0
(H-2)
(1K) g . 'mg (3R NgPs) Kmg (2pMNgrg) = I, (295 Pg) K (3gagrs)  for pg < rg
u’
(H=3)

H1
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a
aBﬁGE(U) u=; as(-asaRqS+ ;§>I(m)((m + 35 q )6;S>A(n)((m6 + a: qs)ezs)
+ ag(sgagact %). B(mg + 32 a5)oge 1 ((mg + 2 ag)efy)
+ ( aSaRqS + ':g)( asaRqs-l- :—2)
) S
eI‘
[ 325 1 ((og + 22 ag)efs) ] 4P ((ng + 3 aet)

+ (-asaRqs + ;%)(-asaRqs+ ;§>I(a)((m6 + Eﬂ qs>6;s)

r ep oy
. L+i sfi A](")((m6 + ;5 qs)egs)]

(See Appendix B of Reference 2.)

s a(-w)| %85 (u)
du u=0 du u=0

Hence

- 3= =(u)  3B= =(-u) 2B ~(u)

m,n ___mn - n
L du Qu ] 2 Su
u=0 u=0

Thus

98~ =(u) 9B~ -(-u) m n
i Yy —- Y u ];ozas(:_g ’ % - 253, )1 ™ (205 )0 (a6 )

(cont'd]

H2
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. m6 m6 N r m n P
+ o2 (_E %5239 ) (= 2 252q35) 001 " (z0p )2 (™ (207 )

+e§sn(5)(ze;S)A(")(zegs)]

%R
where z = mg + ;; qS

The first term of Eq.(H-2) is therefore given by the product of
(H-3) and (H-5).

The second term of Eq.(H-2) is treated as follows:

Since u=0+ and aRqs >0

'm6(|u = aRqslps)Km6('u - aRqslrs) =
m6((aRqS = u)pS)Km6((aRqS = ‘u) rs)
and
Img (170 2595195k (] =u= 2gag]re) =
Img (359 + 9)Pg K (350 + u)rg) for g <rg

The second term of Eq.(H-2) then becomes

p -
S {
285 =(0) {3 Kmg (2R35"s) LI m -1 (2R%Ps) * .1 (3r%5Ps) |

r

Ing (319579 L Kn -1 (3g579) + Kniapagr) ]} 4-6)

Thus the singularity of K u=0 , when 4£¥0 m6#0 , Is given by

$S at

u=0

~3g¢ (u) g (-u)
ou du ]

m

m
- 5,8
'me(aaqsps)quaaqs’s){zas(pg + =

(™ (5 A(a)(zezs)

“Zasanqs> bs)

ag

M6 M6
+ 2 (;:' asaRqs)(r_g Rqs)l_ ebs (m)( % )A(n)( ebs)

[cont'd]

H3
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+ Gﬁs' (m) (ze;S)AS’-‘) (29§s>] }

m
6
Aoy Doy - O Py
( Ps
17 Kms(aaqs's)['ms-l(akqs"s) * 'm6+1(aRqs°s)]

l"S r
"7 'mg(3R35Pg)  Kmg -1 (3R%s ") * Km6+l(aRquS)j}
a

z = m6 + a—z qS (H"7)

When £=0 m#0 , i.e., qS=0 m6=£6NS £ O

3 g (-
{96(“) N 96( ”)] =.;_ {Za (-— > ® ebs)A(n) ("‘ebs) (sign m)

iz::g'al_ ('")( of )A(”)(me o) +0f /™ (m % )A(n)( o]} 0B
S%'s

When £=0 m=0 , it can be shown that

dgc(u)  8gg(-u)
e 2], =
u=0

b
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APPENDIX |

Evaluation of the Singular k-Integrai of ERD

The k;integral of Eq. (87) can be written as (see Appendix D)

= G(k) - G(-azM)
= eyl

where subscripts are omitted and

() = - g (ok +5) | ] ke ) ko ARy + K, (K R) ]

R

ik(e.-0/a)

. A(;)((v - E)eb)l(a)(-kco)e 0

and

G(-atN) = - & {closed term of Eq- (87)}

(1-1)

it can be shown (following Appendix D) that for Iarge‘ kl 2[ HI > alN,

G(k) is aspproximately zero. Therefore

M
| = G(k} - G{-aLN) - 6(-atN) 1 K - atN -

) 22l g - G(-atN) Tog (o) (1-2)
and
_ (v,m,n) Neivo L IN
Krp =~ { (a N - ——-)I\gaLNp )[K\, I(atNRD) + K, l(aLNR )]
. lmp URO

-nazN(e -0/a) H 2N

. afe )((£N+ )8, )I(m)(aLNC )e

M
G(k) - G(-afN)
+J reraryTEEL }

The singularity in the k-integral

The integral in (1-3) can be rewritten as

“The development is taken from Reference 5.

1=

et - s e i T A

[1+ 1o

H+aLN

(1-3)

Tl

V

B

Jor, W

£
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M
_ 6'(k) -.G'(afN)
I = Io (k+a2N) (k-a£N) dk

where
6'(K) = = gnz 1, (kop) [Kv-l(kRD) * Kv+|(kao)]
- - k(e ~o/a)
- ok + %) (catm) Al (v - X)e,) 1) (ckep)e LA

PR

+ (ak - —ii)(kﬁaLN) A (v f)eb)l(a)(kco)e’ik(eo'°’a)}

and

2.2
G'(afN) = - aLﬂN

lv(aLNPR) [Kv_l(azNRD) + K;+|(aLNRb)]
n . -iatN(e -o/
a2 - 5 (e 1P e (cg70/2)
)
R

At the singularity k = alN the integrand is

Vim 610 - 61 (ath) 36" (k) | + 221N
keatN 1 (k+a2ZN) (k-afN) 3k L

It can be readily shown that (1-5) is equal to
-iaLN(cD-o/a)

% I(a)(aLNCD) A(;) (kv + zN)eb)e

. { [gaLN - % ;fi - TatN(ey- J) (aen- :%5)]|v(aLNpR)KL(aLNRD)
R R

+ alNpg (afN - —35) 1! (atNog) K! (a£NRy)
ap
R

|=2

(1-4)

(1-5)
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I "
+ athR (st = ) 1, (athp,) Kv(azNRD)}
R

R '
+ =1 (aszR) Kv(aiNRD)

mw Vv
| -, - fasN(e ~0/a)
) {% (ath + %) g (m) (-atic ) A(n)((v-!,N)eb)e A R
apg
- iatN(e,-a/a) -~ -~
v ramme T -ai’;) (oo™ amncy) A ((wrame,)
R
) - -
) ;9 () (azncy) Al(“)((w_m)ab)] } (1-6)
: 3l (2)
where 1:(z) = ;ZZ
3K _(z)
K2 = =3
and azkv(z)
ko(2) = —3
3z

Il(m)(x) and Ax(n)(x) are as defined in Appendix A.

when k = £ = 0, it can be shown that the integrand is

v
() .. (1-7)

g(m,n)
n(RD had

where

—
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(-0 1= e P}

P P
g(m,n) A n (Veb)L LV +i Zapz 2t

\%

2] - -
Zap‘; a 1 (\J b)

When V=0, £=0, k=0 the integrand is equal to zero.
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APPENDIX J ;‘
|
"Evaluation of the Singular k-integral of'EDDJ
The integral.term of Eq- {86) is ?
® :
.,-%f £l gx (-1)
o k+aiN
' 2
where f(k) = K [lv_l(_lklno) + 1, (K RD)] [xv_l(l KIRy) + K, (I« RD)]
(m) (. (n) .
- (ke IAT (-kep)
This integral exists only in the sense of a Cauchy principal value.
If it is rewritten as
L[ ¢ f(k) - f(-atH > _dk
= -4 f£() - f(-atH) - _dk __
b=-2 { -_L kv atn 9k + fl-ath) -L ket aN
it can be shown that
Lop £ - f(-aeN)
= - - i 4 - H - |
! «_L k¥ atn 9K (3-2) |
!
. ) i
For large | k| = |H|, |M| > alN ‘
f
lklr  -[klr - -
f(K)  bi2 £ = 1™ ey 4 (-ke) 'i!

, JZHIkIR {zlkl R/

2Ll ™ iy 2B (i) (9-3)

For various m and n and large k, the approximate values of the | and A

functions are tabulated below.

*The development is taken from Reference 5.

JI

. —_— e ; - : L. e W M . ——
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] Table J-1 )
m.n RTAIY, J-n—,—iﬁ |2 @l /‘jn—[%?
l cos (] klc- ) * isinCkle- 1) | cosClkle- T isin(lklc -
2 cos( | k- ) 3 2isin(x]c- P | #cos(xle- I,;'); cos(kf c- D] = 0

3,57+ cos(IKlc = 1 [sinCde- - sindlicle- ] -0

4,6,8...] ¥ i sin(lk]c - 0

Thus, for k large, f(k) is nonzero only when n=1. The values for

f(tl k|) are given below.

Table J-2
" ; f¢ k)
1 cizlkle
! 1 'l'lﬂRce
b3+ -|2|k|c]
1 2 b r3si,
+
! 3,5.7... | == [L3d Sizlkic]
1 4,6,8... F;L(:' %:%e-.zlk[c]
>1 all 0

Equation (J-2) is now rewritten as,

. M
f(k) - f(-afN)
I=- E' I k + al.Na dk

[cont?d]

Jz
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. -M -3
-.%[I *’-E f(k%; :i(;aln) dk

k + aiN k+afN

-4t oA T o

RPTH M - afN
+ 5 F(-atN) log(7—an) (J-k)
where in the second term f(k) is given by Tible 4-2 and where
f(-azN) = azlzNz [I (aZNR.) + | . (aLilR )]
v-1 D v+ D
1™ (as (") ’
. [gv_‘(azNRD) + Kv*l(azNRD)] 1777 (atNc) A7 (aNe))
In-the case n > | where f(k) - 0 as k = =, _the kernel becomes
(\a,r;,r-w\
= 1 (m 2,22 ][ , ]
KDD ’-mprro {2 a4 N [lv_'(éLNRD)+le(a£NRD) Kv_l(alNRD)-er_l (aZNRD)
(m) Q) [1+ 4 10g (2]
. | (aLNCD)A (aZNCD) 1+ log (N+a£N)
i fM F) = Fleam) gy ) | .
2 ¢ k+aN ] (4-5)

when n = 1, there are additional terms which may involve.

- -M @
dk__ _ M-a N ]
const. {_a + rﬂ ] ey const. [IOg(m

and

J3

. 2 i -

£ T S o

wad

[,
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-M @ .
g(k)dk _ {
const. [I + f J KiaiN - const. - r
— M M
. -i12kC i ; odd
where g(-k) = { —i2ke -
» M even
i2kC , m odd’
g (k) . -
L +e'2kc , m even

The integrals are evaluated
A = 2C(k+atN)

. -] .
" e%%dk _ -i2camN e*ar
‘y kot 2c(Msath) M

sinx

* cos AdA
- f X ~

where Ci(x)
x

- Iw sin Ad\ -CcOSX
A

si(x) = TR x

(See Jahnke and Emde:

below.

Tables of Functions, Dover Publications, New York,

1945.)

Therefore

a(-kldk ™ afk)dk
k - atN T J; k+aiN

By means of the substitution

e 12CafN {- ci \:ZC(M-l-aLN)] - isi [25(“*3‘")]}

for x >> 1

for x >>. 1

o €
M k+aiN

. _12CH
ie

~ 2C(M+aLN)

Jb

= o i2Ck,, -i2CalN { -sin [2C(M+a£N)J + icos [2C(H+a£N)]
' 2C(M+alN) '

(4-6)
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Similarly, if A = 2C(k-aZN), it can be shown that |

[ W

= e i2Ck -i2catN = B —je” 12CH
katn = A T (P -7y

2C(M-a£N)

For n = | and varying m the terms to be added within the. brace of

Eq. (J-5) are listed below.

Table J-3

| n m hﬂprro KDD(addltuonal)
. -i2CH i2CM
1| +— [e - S
TRC M-afN M+aiN
|
. -i2CM i2CM .
o o e _e 43 M - afN
2 prc2 [M-azn wrazn | = mre 199 (i)
/
-i2CM 12CM .
‘ i e e i M - aiN
: TR OO (RO B il B SO Y
: 2ﬂRC2 M-alN M+alN TIRC M+ aiN
s -i2CH i2CM . v -
4,6.8... ST :-atN - :+a£N J - n;c log (4% :ﬁ:)
2nRC™ -

The singularity in the k-integral

The k-integral in (J-5) can be rewritten as

. M
fl(k) - f'(aiN) )
he = - %’4; (k-aﬁN)(k+a;N) dk (4-8) 1
. where ' ]
'l : 9i2 '
*- . fl(k) = 2ik 'v(kRo)Kv(kRo)

B {'(k-azN) ) (m) (-kC,) A(P) (~kCp) - (k+ath) | (m) (ch)A('-‘) (kcp)}

and

J5
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- b (aan)3 5 (m) . ()
f' (aiN) Li(aLh) |;(aLNRD)K¢(aLNRD)l (aLNCD) A (achD)
It can be easily proved that

af' (k

- + 2afN =
%k T keatn :
: ' CaanR VK 2,2,2. 1 \
-2l{?alva(alNRD)Kv(aLNRD)+a 47N RD |v(a£NRD)Kv(a£NRD)
+ aZLZNZRD|;(aLNRD)K3(azNRD)} {l(a)(azNCD)A(E)(aLNCD)}
+ 1afN {|¢(azNRD)K¢(szNRD)}
. {I(a)(-azNCD)A(n)(-aLNCD) - l(a)(aLNCD)A(E)(aLNCD)
+ i2a2NCy [l(a)(aLNCD)Afa)(aLNCD) - |fa)(azNCD)A(;)(achD)} }
(J-9)
" When £ = 0 -
-2vC - - - -
-g-‘fzﬂ‘l + 2afN = RzD [|‘("‘) @A™ (o) - y () (O)A‘(") (o)] (4-10)
I k=aiN D
Qhere (see Appendix A)
- | form= 1,2 - -z for-a =1
I(m)(O) = { 0 for m > 2 Ifm)(O) = 1 form=2
0 form> 2
. - |l forn=1 - 3 for n=1
A(n)(o) ={%forn=2 Afm)(o) = | Lforn=3
0 for n > 2 0 for all other n

Jé
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APPENDIX K

Evaluation of the Singular k-integral of RSD

The k-integral of Eq.(88) can be written as
e 6(k) - G(-a N

1= dk (k-1)
- k+aRLNR

. M G(k) - G(-aRLNR) aWNg

k+aR£NR dk - G(-2 J("NR)IOS’(M + aRZNR

M-aLN> (k-2)

where
600 = = 7= (3% = )1l 1, (IKIPIKLy (IKIRY) + Koy (IKIR) ]
S

~ - ik(e e, =~ o/
. A(")((-v - §—>ebs)'(m)('kco)e' (eo € = 9 as)
S

and G(-aRLNR) = - % {closed term of Eq.(88)} .

Therefore

. (v,m,n) Nse-ivos ap N -ia AN (e ~e. -~ o./a.)

Ksp ~ __—m . {-i-?—z—R(asaRLNR+ f:-)e RTRTD S 5SS
PeV" ro

. 'v(aRzNRpS)[Kv-l(aRzNRRD) + Kv+|(aRLNRRD)]
- a_ AN -
A (v + 'EZ—E)ebs>'(m)(°R‘NR°o)

M- AN
[+ b ros Gt

G(k) - G(-a, LN
g INg) dk }
k+aR£N

M
+ X (K'3)
-M

R

K1

e ot s ittt s o b I~ SR AR
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M G(k) - G(-aRlNR) n G'(k) - Gl(aRzNR)
_g k+aR£NR k= o (k+aR£NR)(k-aRENR) (k=1)
where
G'(k) = - 2525 'v(kps)[Kv-l(kRD) * Kv+1(kRo)]
- - ik(e -e. = o./a.)
-{(ask- i;)(k-aRLNR)A(n)((-V '§;>ebs)'(m)('kco)e bs §S
S
- - -ik(e,-¢. = 0./a.)
+(ask+ ﬁ%)(k+aRLNR)A(")((-v-+§;)ebs>l(m)(kCD)e DS $°°S }
and
o
G* (ag #Ng)= Tagm 'v(aRzNRpS)[KV-I(aRzNRRD) + Kv+l(aR£NRRD)]

'{(asaRzNR+ §5>A(E)(<'“ + az:NR)ebs)l(a)(aRzNRcD)e-iaRINR(eD-eS ) °S/as)}

. G'(k) - G'(a_4N.)
lim R 3G ' (k
. - = -E—L-l +2 a_IN (K=5)
k aRLNR (k+aR£NR7(kaRLNR5} k k=aR£NR R™R
Equation (K=5) is equal to
- - AN -ia AN, (e.-€. - O./a.)
1 (m) () 2r*"R R“Nrl€p=€s = %735
= | (aRzNRCD)A ((-v + 2 )ebs)e
-{[-S-a £N+i A -iaLN(e-e-o—SXazN%L)]
2RR23p2 RRDSaS RRap2
S$’S S$'S
R '
lv(aRzNRpS)Kv(aRzNRRD)

—_ ' '
+ aRLNR(aRLNR + aspg>ps |v(aRLNRpS)KV(aR£NRRD)

v
+ aRLNR(aRzNR + ;;;§>RD |V(aR£NRpS)K3(aRLNRRD)}

[cont'd]

K2
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[}
+ = Iv(aRLNRpS)Kv(a EN R )

= i ( /a_ )
{ Kagmg- as‘;g)l(’")(-aRm e A (- aa:NR>ebs)e+ 2N ep=es™ %5/

~ia_  IN -0_/a

(e -€ )
+ia e RTR™D 'S S S(azN+ )

AN
A (- 4 2, )

2551 e i (= + 220, )] ) -

(m)

[Cply (agNgCp)

where 3 (z)
15(2) =

BK\,(Z)
k(@) = —7—

%K, (2)
Ky(2) = —37—

( )(x) and A§ )(x) are given in Appendix A.

When k=i=0 , it can be shown that the integrand is
(Pg )

v+
()™

g'(m,n)

A)—

where g'(m,n) =

-A( )(-ve ){ [l - i ;;—;5 (eD-eS - ;f)] |(a)(0)

+ 1 —— colga)(o)}
§'S
Py - -
bs ( -
+ i ;SEF (™ (e, 01 ™ (0) (k=7)
K3

NP Vasa U ¥ SO WS
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or g'(m,n) =
('7‘) 0 A(;) -v0 '_-] A - - O_S
17 (0) (-v bS) L Zaspz (GD €s as)]

~ ot n 0 m n
-3 \z)a_sngcblf"‘) (O)A(n)(-\’ebs) i a_c,ﬁ /™ (O)Asn)("’ebs)]

When v=0,64=0, the integrand is zero.
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APPENDIX L 3
EFFECT OF RACE OF STATOR (S) ON ROTOR (R)
In the course of a re-examination of the theoretical development of
Reference 9, it was found that the behavior of the velocity field for g
points inside the propeller race is quite different from that at any other
point in the field around the propeller. The existing theory and program
dealing with the propeller-induced velocity field have therefore been modi-~
fied to include the region of the propeller race. The wake effect of the ;
stator on the rotor, designated by AWR/U, has been developed and incorporated !
in the present program to be used whenever there is no available wake survey
at the rotor plane in the presence of the hull and stator.
The wR induced velocity at points on the right-handed after rotor
by the presence of a ''left-handed'' forward stator is given by
N
W s
R 1 (3) +inqgt |
_(X 2 Tos @ 9t)= - Z Ap e |
U TR’ TR’TR ‘mpranl gx— s (Bgpgit)e l
S's !
Ro-j T'- -8 i
_ 2 [ lk[aR( xg) eSn]( 3 12 . . \
Snt . 3 — " 5 . g /rgdrgdE 9T (L-1) 1
s Ps
where ) = MNp, £ =0,1,2, ...,
3 "R 3 1@
and = a - —
3n! R Ox. o ?
R V14222 R oxg ri ¢RO) :
RR
Since
X ='iﬁg and 8 L
R 2R %9r0 2R % X
{
9 1 ]
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3
- = L e 3 2- - 6 ]} .
In (L-1), RSR {(T §S) +rptos ZerScos[Sso+¢Ro Qpt +eSn

Let T'- xR= T, and ®==-0Rt. The 7T-integral then yields

o +|x[af 6 ]

12 1
I_= p.dp. dE dT
T ;[e (s o€ psz 36,/ \R ( 'SR) S 's"°S

where

I = - . 2 + 2+ 2_2 - }
Rer {(T+"R, §)° +rotR -2 P cos[8 + + 6+ eSnJ

R 'S R'S SO ‘RO
Then
ol o +ireg-8.) 2
T R Sn o 1
=le - p.dp_dE_dT
oxp 2 (asaxRB;S. 52 SXRBGSOXRSJ sdPdE
2 az
But e = - S_E
1 BXRBQS xR
Therefore
ol o +iA(a7-6..) 2 2 ;
T - R on d ] 3 |R> ) |
>, "~ J°® a, — + — — ) =—)p.dp . dE.dT (L-2) ‘
XR -i ( beﬁ PZ axRaeS°>(Rs $TSTS ;

Furthermore for points inside the propeller race, Laplace's equation

written in cylindrical coordinates takes the form

a2 (R> % (¢ 3 A %—':2? - -+ : e R ALICW . S

where §( ) is the Dirac delta function.

.- d Thus whenever the field point coincides with the helices of the wake,
| 22 (1. _bm 5[ 2 (s 2)(& L
S,E (R = pss(-r+xR gs)a(rR-ps)a(eso«.pRo + 0+ GSn) l.p Py Pg BTS- (R) |
+ ]
. Y23 (‘)] (L-3)
Ps
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2
The induction AW_ is the first term of a—z- (i_li) (see Eq.L-3)

R BxR
(1) 4
i S 1 (a o >
U mefua /———Hazri RR aprp
R
N . <
S (\) -ine @ +ak(aRT-es ) ‘
. Z 8 ,0.,0)e " " p.dp.d
n?;" {g{ R (81Pg06)e _‘l e pgdp dEe
sPs
hnas _
et B(rngg)B(rgop)8 85yt @ ¢ 5, dt} (L-b) ]

where since jbf(x)a(x-c)dx = f(c) as long as the range a to b includes x=c
a

(\) -i@ ) +i)\(aRT-§S )
{ } = g fzﬁ Bpg (85, Tgs0g)e " _J e " redt ¢
s

’-mas -
8(T + Xp = §S)6(eso + Do + 0 + GSn)d'r

: {

r

A -inla,(x,-€ )+E_ ] Lma
<1 D oV (g0 RORSen s
A=0 S S''R'S R rp
S =
. 6(650-1- ch0+® + eSn)dgs .
But eso =0 - abs cosea= as(gs—es) ﬂ

asd§S= ebS si neadea

®Ro T %R*R f
Lg = OPgrgbis
Therefore a
. R -
n N o TTM®o” 37 8507R%s*O5n)
{VewnT 2 Do : -
S A=0 S R’ o R

. 8(8

+0 + GSn)Sineadea | |

so * *ro

L3
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The induction can be expressed in a Fourier series expansion as

(1) (n
M LR e ¢ =L ‘} Mr__ -in0,g
U n==0 N ’ n 2m B U e

Let ©=6' ., Then

® ing!' m o . .
{ } - ééia ZerR j X )3 Lél)(rR’ea)e-l(l+n)9
90’=0 Bl=att

a
- - R - 5
')‘(‘Pao 5 %0 aReS+eSn)
L -

. 8 Yei '
6(950 + Ppg * O * © )suneadeqde

a
. R =
. . = - - — B8 € +0
@ L, ind' (A) T(x#n) (8¢ *op+Bg,) ')‘(‘PRO 3 S0 2R®s Sn)
=2 - j z LS e e
== TR g=0"*
o
-sineadea
a
. R 1
. . = A1+ -—)9 +a_¢€
® ing' T _ (A) in(8 . Rpp 0. ) '[( a./ S0 R SJ
=z Ze L, e S0 ROSRT S sing_do
=wl® r S o o
R o
Since
N ing = =) +
n=1 0 otherwise
Equation (L-4) becomes
(n
Mg’ N ] (ar- =) L 5 e
u 2mp AP Wisa2 2 R'R 3R "R nm-e
R'R n-,CINS
]
. . e, (=2 + €)
T o= () ing. T(AMn)6., R'a S s -
J T L (rg,0)e RO, SO, s sing d6  (L-5)
o A=0 S TR«

With ¢R0 = CR - ebR cos®,,

eso = cs - ebs cosea
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and assuming

R :
(rpot IR A )(r)@(n)

where ©(n) represents the Birnbaum chordwise modes, then the integral part
of (L-5) becomes

. R
. . . A—o
max n ira_e. ino, -inB, _cos®_ i(A+n)o, ‘Aa %
6 =2 3 L(k n)(r )e RS Ry bR a, Se S
o n=1 \=0
- a
A(“)((n+x(|+ sfa)ebs) . (L-6)

Taking the 1ift operator at each m-order and nondimensionalizing with

respect to ro(rotor radius), Eq.(L-5) can be expressed as
(n,m)

any, (rg) =N
( ? UrR l - anfzar : : )

‘2T L (r )e Rese SA(n)((n+K(l+ :))ebs) (L-7)

=0, %1, %2, ... .
A= ﬁNR , £ =0, 1, +2, ... .

where n = LIN , £

(1t can be shown by a similar approach that the second term on the right-
hand side of Eq.(L-3) does not contribute to Ba/axR( =).)

In the steady-state condition, zl-o, and retaining only the £=0 and |

N terms (i.e., A=0 and A-NR))- Eq.(L-7) becomes

' o,
-9 AwR rR NS 1 { l (m) (n)

; .. ) : 23 A 0

R'R
a
R
= (NR.R) iNa € iNR(‘+ 3‘>°s - a

L (rp)e RRS, S A(n)(NR(l+ Zf>°bs)} (L-8)
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APPENDIX M |
THE VISCOUS WAKE OF THE STATOR

In a pump-jet propulsive system the rotor, being located in the race
(wake) of the stator, operates in a real fluid and hence should include

both the potential and viscous effects. In the absence of wake measure-

ments in the plane of the rotor when the stator is in place, it is necessary
to take this into account theoretically. The potential contribution has
already been dealt with in Appendix L. The effect of the viscous wake is

approximately considered by the Kemp-Sears method described in Reference 10.

The configuration of viscous wakes of propeller blades is approxi=
mated from single airfoil experiments. The unsteady force-and-moment on a
downstream blade passing through such wakes is then calculated on the basis
of the theory of isolated thin airfoil in nonuniform flow. The same approach

has been adapted to the unsteady lifting surface theory.
Silverstein, Katzoff, and Bullivant,]l have shown that the half-width
of the wake, Y , may be calculated from the following formula

Y = 0,68 VQ'CD% c(x/c - 0.7)% (M=1)

where
¢ = airfoil half-chord

x = distance measured along the wake axis (free-stream direction)

rearward from the center of the airfoil

C, = the airfoil profile-drag coefficient

D

‘ ‘ NOTE: cD will be calculated according to Hoerner's method.Iz

L |

For convenience, a new coordinate x-"r along the wake axis is intro-
duced in Eq.(M-1):

x =x =0,7c (M-2)

Kemp and Sears'0 have shown that in terms of x* the wake half-width and

Ml
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the velocity at the center become
Y = 0.68 Jf'c(cox*/c)% (m-3)

u /v = =(2.820 8 7(x" /e + 0.3) (1-4)

and that the velocity profile to be used is

e m oo [0 Q)] (+5)

c

Since the propeller blade moves along a line oblique to the x
(or x°) axis, it is convenient to introduce oblique coordinates x',y' as

shown in Figure 5. The relation between x*, y and x',y' is given by

-ts
ray

x = x! - y'COSG: , y = y'sinB: (M-6)

(The superscripts § and R refer to stator and rotor blades, respec-
tively.) .

Since the wake is narrow in the region of interest, see Figure 5,

y'/x' is small in the wake itself, and one may write, approximately,

."“ ' 1 - S
X X y YmY snnep (M-7)

Then the wake half-width and centerline velocity are as follows:

¥, S\%
ol )] =

% - -(z.uzﬁ y(:—; +0.3) (M-9)

where cs is the total chord length of the stator.

The velocity profile from Eq.(M-5) is now

. aS
v . exp[-ﬂ (f—m—eg)z l2] (M-]O)
u. Y Y
and

M2
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Y'=r(9-“f,—e-Y)

. nS
e e (o 3 )] e

where
6 — angular coordinate of the stator
Y — angular coordinate of the rotor
r — radial position

Equation (M-11) can be expanded in a Fourier series in terms of (8-Y)

u . )
-‘: =Zn) (ancosn(e-'Y) + b sin n(G-Y)) (M-12)
or
.u_ = i M=
U %3 (ancosn¢ + b sin np) M=13)
where
¢ =90 -Y (M-14)
N 2n
a = Eﬁ £ (529C°5'“Pd¢ (Ng= no. of blades of rotor) (M-15)
ER 2 u . 6
b, = 78 £ (-l-_l-z)snnncpdcp M-16)

The velocity, u is in the direction of x“, which makes an angle

c ’
(9§+OPR) with the after propeller blade so that the component giving upwash

at the blade is

n

u u S
< - x— sin(ei-i-e’;) (M-17)
v
and since
ﬁ~ l
U ™ ging®
p

then from Eqs.(M-9) and (M-17),

M3
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n
UL GO RO, wo

c
v (?L'. + 0.3) sines
cS P
where
R S
x! _ R (e S . x v )
_ == c O +—- - 0. -19
S SVeRT B TRTR 7 (4-19) G
xR
3 Choose =R = 0, which means the point is at the mid-chord of the
3
c
rotor blade. Then
. e
' v
X = o t:sc,eS - 0.7 : (#-20)
c® P

(2)
° :

The viscous wake, then, can be expressed in the following form:

‘ y@ o . :
T o (ancos ne + bnsm n ) (M-21)
g
where ,
q =2n (M-22)
®=6-Y=20 (M-23)
The left-bhand side due to unsteady wake in the PPEXACT (Propeller- ¢
propeller Exact) program (Reference 1)is, in 1ift operator form,
~(a, ) (q) ro(z
W - u -ige’  (m), .r _
-5 (r)==g—(r) e 117 (q8)) (M-24)
where r
- , n iqb, cos®
m r 1 b o
1™ (q0) = JROK do, (M-25)
. 8(1) =1 - cosy,
» 3(2) =1 + 2cosq,
-y - - -
: &(m) = cos(m-l)cpa form > 2
Thus, the resulting unsteady force and moment or unsteady side force and
' 4

moment, at the specified blade frequency, can be determined as in the |
PPEXACT program. These viscous effects are then superposed on the results

from the potential flow.
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