
Ar-AO 832 MASSACHUSETTS INST OF TECH CAIWtIDGE DEPT OF OCEAN E-ETC F/6 9/2
AN INVESTZOATION INTO THE USE OF DATA BASES IN COMPUTER-AIDED N--ETC(U)
JUN a1 R C CELOTTO

UNCLASSIFIED lL

I 3

1111181.0 5
1100

IIII1 w II E

MICROCOPY RESOLUTION TEST CHART

NATIONAL BUR[AU Of STANDARDS 1963 A,

saCUUITY CL&SOagC*TION of T1616 004a fo b Do* etoo

REPORT DOCUMENTATION PAGE 3310HZ COMPLZT'N(G FORN
I MMOTNU111UP 3. asg me. SI. laipN CCLO MoUUI

4, TIT 1. row s.*"Iftes S. TYPIE 0F RPORT G PfttO COVE*PO

N ESTGATIM~ =0 = USE OF DATA, BASES IN TmSis
CCtURE -AIEED NAVAL SHIP CESIGN (VOL M&I) ___________

6. 'UoamrfNU e.G. qgvomtT Numeaf

r 6a. COMNACT 00 GUMANT 0061ADCR~a

CELI'TO, RIMAPD C.

PCOS~"Q0GANIZATIGN MAUC AUG AO011ESS1 10- 0.NoeAWuLIMENT..
0

0J1CT. TAN.

V 1AS. NST. OF TiEcHILG AI 05aNT U=S

O0063 iaDGE, MA 02139

~COTLLI@ COPld "4A6" AND AOURSS Is EO-TOATS

NAVAL POSTGRADAM1 SCHOOL Is. MUsiUEN OP IAGES

I'O1IMIMY, CA 93940 ______1_____________

41000ITOIM AGENCY MAME 6 aOOUESUeil 4001000 01 C404MOOMS OlfI@*I IN. SECUSII'V CL:ASS. (fi tel e '

IN& OCCLASSIVICATIOUi oOSMGRAING

SCUCOULit

APPFVME FOR PUBLIC IELEASE; DIST=rIOI'Nt t1TITE A T El-i- r-,- o L

E

IN. supotLEmaITAli MOTEKS

it. 16Y WOOSEM (calmomwe ... 410 Ilww sods mv alftf 0 o rn inSmm

NAVAL SHI MSIGN
CCt1'=R--AIZ SHIP MSIGN

-. cOTACT rCWmo ow mves . e s ...Itm~ ma~ filolI O inO..

52FILE Copy 800 6

WO 'joft 1473 cS~ome 001 v 'so to GoLa @ege.

149VOIT C6AMOICATWO OF TM,. PAGE (NINI 000

UNCLAS

ABSTRACT

A design-oriented, interactive computer system which
makes possible the dynamic loading of programs at the
user's request throughout the operating session has been
developed. This system, which is referred to as DEX, also
allows the user to select various types of files as the
source and destination of information during the session.
With respect to one type of file, databases, DEX introduces
a more versatile form of organization and use. -.

An extended DEX library of subroutines is developed
which enables the user to read and write integer scalar,
real scalar and one-dimensional real array variables and
to edit from the terminal integer and real scalar values.
It also enables the user to employ during input and out-
put sequences the unit system of his choice.

A proposal is offered for the organization of DEX
databases for the preliminary design of naval ships.
Suggestions are made, based on a demonstration computer
program, for employing existing ship databases to support
a generalized ship synthesis model.,

Accession For
NTIS COA&I:

DTIC TAR

D strluti o:/

bic _Availnti tty Codes

rny " Avnl ,' Zld/or
'Nsfcry Dist spoci J

E '4-6601 leum', A, ow,. , S.

Api~-- pl'bllC relsMgdistrioution unI1iti~e"

AN INVESTIGATION

INTO THE USE OF DATA BASES

IN COMPUTER-AIDED NAVAL SHIP DESIGN

by

RICHARD CHARLES CELOTTO

Lieutenant, United States Navy
B.S., Webb Institute of Naval Architecture

and Marine Engineering
(1973)

SUBMITTED TO THE DEPARTMENT OF
OCEAN ENGINEERING

IN PARTIAL FULFILLMENT OF THE
REQUIREMENTS OF THE DEGREES OF

OCEAN ENGINEER

and

MASTER OF SCIENCE IN
NAVAL ARCHITECTURE AND MARINE ENGIEZRING

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 1981

Z Richard Charles Celotto 1981

The author hereby grants to M.I.T. permission to reproduce and
to distribute copies of this thesis document in whole or in part.

Signature of Author r 1f (Z-

Certified by

Accepted by _

Chairman, Departmental Graduate Committee

*WNW-

AN INVESTIGATION

INTO THE USE OF DATA BASES

IN COMPUTER-AIDED NAVAL SHIP DESIGN

by

RICHARD CHARLES CELOTTO

Submitted to the Department of Ocean Engineering
on May 8,1981 in partial fulfillment of

the requirements for the degrees of
Master of Science in

Naval Architecture and Marine Engineering
and

Ocean Engineer

ABSTRACT

A design-oriented, interactive computer system which
makes possible the dynamic loading of programs at the
user's request throughout the operating session has been
developed. This system, which is referred to as DEX, also
allows the user to select various types of files as the
source and destination of information during the session.
With respect to one type of file, databases, DEX introduces
a more versatile form of organization and use.

An extended DEX library of subroutines is developed
which enables the user to read and write integer scalar,
real scalar and one-dimensional real array variables and
to edit from the terminal integer and real scalar values.
It also enables the user to employ during input and out-
put sequences the unit system of his choice.

A proposal is offered for the organization of DEX
databases for the preliminary design of naval ships.
Suggestions are made, based on a demonstration computer
program, for employing existing ship databases to support
a generalized ship synthesis model.

Thesis Supervisor: Chryssostomos Chryssostomidis

Title: Associate Professor of Ocean Engineering

2 .4

ACKNOWLEDGEMENTS

The author wishes to express his appreciation to

Professor Chryssostomos Chryssostomidis for his guidance,

advice and unfailing encouragement which made this thesis

possible. The author is especially grateful for the gen-

erous sharing of his time throughout the undertaking.

The author would also like to thank his lovely fiancee,

Kathy, for her patience and perspective.

3 K

TABLE OF CONTENTS
Page

ABSTRACT 2

ACKNOWLEDGEMENTS 3

TABLE OF CONTENTS 4

LIST OF FIGURES. 8

LIST OF TABLES 9

CHAPTER I INTRODUCTION TO DEX. 10

1.1 Background 10
1.2 Description of DEX 12

.. 2.1 Theory 12
1.2.2 Organization_ 21

1.3 The Extended DEX Library. 25
1.3.1 Environment. 26
1.3.2 Readers 26
1.3.3 Editors 27
1.3.4 Writers 27
1.3.5 Units 28

1.4 DEX Databases 30
1.4.1 Philosophy 30
1.4.2 Format of Database Entries. . . 30

CHAPTER 2 THE CUBE MODULE SAMPLE PROGRAM . . 33

2.1 General Description 33
2.1.1 Function of the Module 33
2.1.2 Module Subprograms 33
2.1.3 Typical Operation. 34

2.2 Frequently Used Subroutines. 42
2.2.1 BLOCK DATA 42
2.2.2 MAINPG 45
2.2.3 MODIO. 47
2.2.4 XX~NIT and the "All" Logic 47

2.3 The Input Series 51
2.3.1 INPUT. 51
2.3.2 DIMENS 51

2.4 The Output Series Subprograms 56
2.5 General Programming Comments . . 56

CHAPTER 3 THE EXTENDED DEX LIBRARY ENVIRONMENT
SETTING ROUTINES 59

, i4
Im p '". 2 , , ,,::.

i

TABLE OF CONTENTS (cont'd)

Page
3.1 Introduction 59
3.2 Subroutine DIALOG 59

3.2.1 Menu and Calling Parameter . . . 59
3.3 Subroutine SOURCE 62

3.3.1 Menu and Calling Sequence . . 62
3.3.2 Operation of SOURCE 64

3.4 Subroutine DESTIN . 65
3.4.1 Menu and Calling Sequence . . . 65
3.4.2 Operation of DESTIN 65

3.5 Subroutine MDMODE 66
3.6 Subroutine CHKRNG 67

CHAPTER 4 THE EXTENDED DEX LIBRARY READING
ROUTINES 68

4.1 General Description. 68
4.1.1 Function 68
4.1.2 Organization. 68

4.2 Integer Scalar Series 70
4.2.1 ISCLDR 70
4.2.2 ISCPMP 73
4.2.3 ISREAD 75

4.3 Real Scalar Series 77
4.3.1 Brief Description 77
4.3.2 RSCLDR 77
4.3.3 RVAPMP 79
4.3.4 RSREAD 80

4.4 Real Array Series 82
4.4.1 Brief Description 82
4.4.2 RAILDR. 82
4.4.3 RAIRED. 83

CHAPTER 5 THE EXTENDED DEX LIBRARY EDITING
ROUTINES 87

5.1 General Description 87
5.2 Logical Function ISCEDT 88

5.2.1 Calling Sequence 88
5.2.2 Operation. 90

5.3 Logical Function RSCEDT 91
5.3.1 Calling Parameters. 91
5.3.2 Operation. 91

A, , m - m m m mm

TABLE OF CONTENTS (cont'd)

Page

CHAPTER 6 THE EXTENDED DEX LIBRARY WRITING
ROUTINES. 93

6.1 General Description. 93
6.2 Integer Scalar Series 95

6.2.1 ISCDMP. 95

6.2.2 ISDSCR 97
6.2.3 ISRITE. 98

6.3 Real Scalar Series 100
6.3.1 RSCDMP. 101
6.3.2 RVDSCR. 102
6.3.3 RSRITE. 103

6.4 Real Array Series 105
6.4.1 RARDMP. 105
6.4.2 RARITE. 108

CHAPTER 7 THE EXTENDED DEX LIBRARY UNIT ROUTINES. 112

7.1 General Description. 112
7.2 The I/O Unit Specifiers 113

7.2.1 General Description 113
7.2.2 Characteristics of a Typical

Subroutine 117
7.3 The Basic Unit Series 117

7.3.1 General Description 118
7.3.2 Calling Parameters. 118
7.3.3 Execution. 120

7.4 Derived I/O Unit Series 121
7.4.1 Series Description. 121
7.4.2 UPRESS Calling Parameters . . . 123
7.4.3 UPRESS Operation 124

CHAPTER 8 DEVELOPMENT OF A CRUISER-DESTROYER
DATABANK AT M.I.T. 127

8.1 Considerations in Database Design . . . 127
8.1.1 Function 128
8.1.2 Types of Databases. 128

8.2 Organization of the MIT Cruiser-Destroyer
Databases 131

8.2.1 General Databases 131

8.2.2 Mass Properties Databases . . 139
8.3 Independent and Dependent Variables . . 1428.3.1 Concept 142

6 __

TABLE OF CONTENTS (cont'd)

Page

8.4 Application of DEX: An Example. • 145
8.4.1 Function of MACHWT. 145
8.4.2 List of Subprograms and Menus . . 146
8.4.3 Description oZ the Subprograms. . 148
8.4.4 Results from the MACHWT Module. • 153
8.4.5 Future Develcpments 154

CHAPTER 9 CONCLUSIONS AND RECOMMENDATIONS . . . 157

REFERENCES. 160

APPENDIX A CUBE MODULE LISTING 162

APPENDIX B LNIT SUBROUTINES ABBREVIATIONS AND
CALLING SEQUENCES 201

APPENDIX C SAMPLE GENERAL DATABASE LISTING . . 205

APPENDIX D GENERAL DATABASE ENTRY CODES . . . 2r0

APPENDIX E SAMPLE WEIGHT AND VERTICAL CENTER
OF GRAVITY DATABASE LISTINGS . . . 219

APPENDIX F MACHWT MODULE LISTING 226

7

LIST OF FIGURES

Page

1-1 Menu "LEN.UNIT" 16
1-2 Two Consecutive Operation Menus 16
1-3 DEX Menus 23

2-1 Cube Module Menus 35
2-2 Cube Module Subprograms Access Routes. 36
2-3 Sample Cube Module Input Session 33
2-4 Sample Cube Module Output. 42
2-5 Comparison of Module Input/Output Flow 58

3-1 Menu "MOD.ALTR" 60
3-2 Menu "SOURCE" 63
3-3 Menu "DESTINAT" 66

8-1 General Database Variable Relationships . 144
8-2 MACHWT Module Menus. 149

8'4

LIST OF TABLES
Page

7-1 I/O Unit Specifier Subroutines, Menu
Names and Units Available 114

7-2 I/O Unit Specifier Calling Parameters . . .116

7-3 Basic Unit Calling Parameters 116
7-4 Derived I/O Unit Series.122
7-5 Special Unit Names.126

8-1 General Ship Characteristics Database
Variables. 133

8-2 Input for MACHWT147
8-3 Sample MACHWT Results.154

B-i Angle Unit Abbreviations.202
B-2 Force Unit Abbreviations.202
B-3 Length Unit Abbreviations202
B-4 Temperature Unit Abbreviations.203
B-5 Time Unit Abbreviations.203
B-6 Calling Sequences of Derived Unit Subroutines.204

D-1 Payload Shopping List211
D-2 Supplemental Payload Shopping List 217
D-3 Index to Non-Payload Reed Code.218

9
7 7 3 17

CHAPTER 1

INTRODUCTION TO DEX

1.1 Background

Significant improvements in the capability and

efficiency of computer-aided design systems have been

achieved in the past decade by the introduction of

interactive computer programs. This development was a

major advance in providing more flexibility to the user

at the input end of the process. However, too many of

the innumerable design programs, and the design systems

that incorporate collections of them, suffer from several

bothersome problems:

(i) Less, but still excessive, restrictions
on the flexibility of the programs to
respond to the individual user's needs.

(ii) Incompatibility of input and output
amongst programs and especially between
programs and databases.

(iii) Excessive training time required for users
to learn how to use the programs.

(iv) Inability to be transported to different
facilities.

In 1974, researchers at the Massachusetts Institute

of Technology and the University of Michigan felt that an

investment in the "front end" of computer-aided design

(1 systems could eliminate or reduce these characterstics

10

|

and result in design tools of greatly enhanced capability

[1], [2], [3]. One of their goals was to develop a sys-

tem that provides the designer almost as much flexibility

at the computer terminal as he/she* has when sitting at a

desk with pencil, paper, calculator and imagination at

their disposal. The system would be easy to use because

of a consistent approach to the interface between the

user and the programs. Further, it would incorporate a

more intelligent approach to the use of databases. They

named this concept "DEX", for Design Executive System.

DEX is a self-contained software package that can

be adapted to almost any computer system that supports

Fortran. It provides an environment for running task-

oriented programs, called "modules". It supports pri-

marily, but not exclusively, interactive programs where

there is communication between essentially five "parties":

the user, the computer, the computation program, the

source of input and the destination of output.

The purpose of the work reported in this thesis was

to continue the development of the system at the inter-

mediate level in the DEX hierarchy between what is refer-

red to as "(the) DEX" and the "module". This intermediate

*The use throughout this thesis of the proper pro- A

noun "he" and its derivatives when referring to the pro-
grammer, user or designer is for the smoothness of the
text and is not to imply any presumption of those persons'ssex.• r

SOX. k-4I

category of subprograms is called the "extended DEX

library". (The collection of all the design program

modules is called the "DEX library".) The function of

the extended DEX library is to enable the user to accom-

plish the following:

(i) Establish an environment in which the type
of dialogue and the source and destination
of information is defined.

(ii) Specify the system of units to be used for
input and output.

(iii) Read information.

(iv) Edit information.

(v) Write information.

This investigator's motivation was to advance the

development of an extremely capable tool for the field

of ship design, but it should be stressed that DEX can

be employed by any discipline involving computer-aided

design.

1.2 Description of DEX

1.2.1 Theory. Reference [3] provides an original

and excellent description of DEX, but this writer felt

that some discussion should be presented here to assist

the reader in relating to the information offered in

(this thesis.

12

There are five characteristics of DEX which reflect

the design philosophy of the system:

(i) The user is in the design loop.

(ii) The system allows the design process to be
executed in more than one sequence.

(iii) The system talks with the user in plain
English.

(iv) The system is foi.7iving.

(v) The system has multiple capabilities for
input and output.

1.2.1.1 The user in the design loop. Design

processess are typically iterative ones. This is especially

true in the ship design process as vividly illustrated by

the ship design spiral. Computer programs allow many and/

or complicated calculations to be performed quickly. The

faster that the results can be analyzed and a new set of

calculations initiated, the better. Even more advantag-

eous is the ability to do only part of the calculations and

analyze those results to decide whether or not to proceed.

DEX extends the degree of spontaneity characteristic of

interactive programs by enabling the dynamic starting of

modules of the user's choice, by providing more options

for sources of information immediately available to the

user and by allowing theuser to edit and insert information

before it is used in calculations or written to its final

(I destination.

13

-.

1.2.1.2 Flexibility. The increased flexi-

bility offered by DEX manifests itself in two ways. The

first, implemented to allow any computer program accept-

able to the operating system to be operated in a system

incorporating DEX, is that the degree of involvement with

DEX is completely within the prerogative of the module

author. The term "module author" was introduced in

reference [31 and will be adopted here for consistency.

It applies to the person who writes the particular appli-

cation program and who chooses which DEX services to use.

As a minimum, the module author can arrange for the user

to issue only the following commands to execute the

program:*

" start main (this activates DEX)

" begin module2 (this starts the user's program)

There would not really be any point to such an exercise

but it can be done by fulfilling only two requirements.

First, the name of the file containing the module name

(e.g., module2 above) must be introduced in the DEX's

The symbol "." will be used to indicate user-
typed commands, "$" will indicate DEX messages and U*"

will indicate module messages. These symbols are auto-
matically inserted by DEX.

14

library file. Secondly, the main program of the module

must be a subroutine appearing first in a listing of the

module.

The second aspect of the DEX's flexibility is the

use of "menus" to provide the user with a wide choice of

paths to follow to accomplish his goal. A menu is a list

of options (a maximum of twelve per menu is possible)

from which the user chooses to either define a value or

proceed onto the next step of the operation. Some

examples should prove helpful.

Figure 1-1 depicts a typical units menu which

illustrates the first type of menu. The user would type

in sufficient characters to identify the length unit to

be used for input or output, e.g., "foot" (or just "f"). I
The subprogram which includes this menu would accept

the choice, if proper, and return control to the sub-

program which called it.

Menus are normally not displayed. The user will

likely be aware of the menu options and is simply

prompted to make a choice. For this example, one would

see:

*ENTER AN ITEM FROM MENU - LEN.UNIT

However, if the menu choices are unknown, the user can

type

$ -4

$ + MENU +
$ + LEN.UNIT +
$ 4 .- -

$ + INCH +
$ 4 .- +

$ 2 + FOOT +
$ 4 .- 4

$ 3 + STATMILE +
$ + - -

$ 4 + NAUTMILE +$ 4.--------+

$ 5 + MILLIMET +
$ 4.--------+

$ 6 + CENTIMET +
$ -----------
$ 7 + METER +
$ + -------- -
$ 8 + KILOMET +
$ -+---------

Figure 1-1. Menu "LEN.UNIT"

4----------------------- -4

$ + " MENU + MENU +
$ + MOD.IO + INPUT +

-4--------------------- -4

$ 1 + INPUT + ALL +$ 4.--------4.--------4
$ 2 + OUTPUT + UNITS +
$ ---------- - ---------
$ 3 + DONE + CA +
$ + + +
$ 4 + + WATER +
$ -------- - --------- -
$ 5 + + SULLFORM +
$ 4- -------- -- 4---------- -
$ 6 + + SPEEDS +
$ + ---.- + +
$7 + + DONE +
$ -4-------- ------ + 4

Figure 1-2. Two Consecutive Operational Menus

16

.E

- - - e

.$display menu len.unit

to have the menu displayed by the DEX. Note that in

this case the user himself types "$". The word "dis-

play" is a selection from menu "DEX.MAIN". After re-

viewing the menu, by typing

.continue

he is returned to the prompting message for the length

unit menu.

The second type of menu option directs the program

to proced to the next operation. Figure 1-2 shows two

successive "operational" menus from a theoretical program

that estimates horsepower from the Taylor Standard

Series. The user would select item "input" from menu

"MOD.10" in order to pass onto the subprogram containing

the menu "INPUT". Any of the items from that menu would

pass him onto another subprogram.

There is a subtle difference between the menus of

Figure 1-1 and 1-2. Observe that the second shows the

item "done" in both menus which is absent from the first.

A subprogram with a menu containing "done" returns con-

trol to the subprogram which called it only when that

entry is selected, whereas for the other, without a

(1 -MOOR

(r

"done", control returns automatically once a selection is

made. The latter is used in menus where only one choice

would be made at any time.

The user is free to choose any item from a menu

that is meaningful to him. There is, therefore, no one

predetermined path that must be followed when executing

a group of menus. Logic, however, may dictate that one

specifies units before reading in water properties.

1.2.1.3 Plain English. The messages and

queries to the user provided by DEX have been designed

to be as clear as possible. The instructions or re-

sponses that the user must supply are natural and logical

words that would be used in an oral dialogue. An impor-

tant aspect of these practices is the uniformity of

dialogue encountered by the user under DEX. This reduces

the effort required to learn how to operate a new

program, which is not an insignificant advantage.

1.2.1.4 Forgiving. By extending the

capabilities of the conventional design programs with

DEX, the user can accomplish more during a session, but

this entails more thinking on his part. The probability

that errors will occur is therefore higher.

Even the most experienced user makes mistakes. It

(may be as simple as depressing the wrong key when typing I
a menu selection or as improper as supplying an integer

18

when the program wants a real number. When developing

the DEX and extended DEX library routines, and the

Machinery Weight Estimating Module of Chapter 8, as

many potential errors as possible were anticipated and

diagnostic messages, in plain English, wetr provided.

In some cases they advise the user of Z rror and allow

him to try again at that same point. ._O 4ters, especially

where a problem is caused by a prcqTwz4g error, control

is returned to the usdr several sequential subroutines

prior to where the error occured, with a message issued

to assist in determining where to search for the mistake.

1.2.1.5 Input/Output Capability. DEX enables

the communication of information by the dynamic allocation

of databases and files, which are the only two storage

locations it recognizes. In practice we distinguish

between two types of files, such that the list of loca-

tions is as follows:

(i) databases

(ii) input locations (which are the terminal
for alphanumeric characters and a graphics
screen for x-y coordinates) and output loca-
tions (the terminal screen in the form of
menus)

(iii) disk files.

Now, for the ease of understanding of the user,

the environment in which he operates is described as

19
~____________

having a total of five "sources" of information and four

"destinations". The term "information" is preferred here

to "input" and "output" to preclude a limiting misconcep-

tion by the reader. The tendency to think of input as

data read and output as answers written should be avoided.

In fact, the user may need to "write" input to the term-

inal for inspection, or "read" an output value from the

terminal in order to "write" it to a database. For this

reason this writer will often apply the term "information"

to both input and output variables as values that have a

source or destination.

The sources and destinations provided for in the

operating environment of the DEX system described in this

thesis are listed here:

(i) DEX-created databases

(ii) the terminal using DEX routines to read or
write alphanumeric characters

(iii) the terminal or a plotter using graphics

routines to read or create x-y plots

(iv) sequential files

(v) module default data (source only)

The third capability does not yet exist in the

present version of DEX at MIT because all the necessary

enabling routines have not yet been implemented. If the

user tries to employ it, error messages advise him of

this situation.20

4-

The user is not confined to using the same type

of destination as source, or the same source for all the

information of a program. He may read information from

one or more databases, for example, and write it to

another, or to the terminal or to a file, or all three

in succession. The only restriction is that the module

can be pointed toward only one source or destination at

one time.

1.2.2 Organization. The hierarchy of DEX consists

of three levels of programs: the DEX, the extended DEX

library and the module. The first two categories com-

prise a permanent, portable set of subprograms which

provides an interface between the computer and the user-

supplied module.

1.2.2.1 DEX. The category called DEX con-

sists of several hundred subroutines, each with a very

specific function, which provide the foundation, or

"umbrella" if you will, for the DEX System. The employ-

ment of these subroutines by the module authors results

in a uniform appearance of the system to the user of the

various modules exercised. The DEX services provide in-

put/output and data utilities and, eventually at MIT,

graphics utilities for the module authors. Although the

module author and user need not be aware of most of these

subprograms, in two areas they draw directly on the

features of routines in this category.

21

The first area, of interest to the module author,

is a set of 37 subroutines and functions which the pro-

grammer may incorporate into his module to perform cer-

tain tasks. References (4] and [5] describe these sub-

programs and how they are used. Briefly, they are grouped

into five categories: control of execution, input, output,

database management and character manipulation. Subsequent

chapters will refer to these as "DEX routines".

The second area of overt involvement with the DEX

category is encountered by the user during operation of

a module. When the command

.start main

is issued, the user enters the DEX environment and is

presented with a prompting message for menu "DEX.MAIN".

There are six menus at this level of DEX, and these are

listed in Figure 1-3. The first instruction given to

the user is: j

SENTER AN ITEM FROM MENU - DEX.MAIN 4
These items are listed in the rightmost column in the

table. Note menu "DEX.DISP" which allows the user to

display any menu by typing

(. .display menu menuname

22

----- - ---------- - 4

ME NU P E *tU 4 MENU + MENU + MENU +

S + 08-TYPES+Z : :'40 S 'OxYE-NO 4 ~E A .A LT OEX.0ISP * OE X. VA IN *
S *4 - -- 4 ---- *------ - ----- -9

S 1 * INTEGER 4C CEArE 4 YES 4 TERSE + MENU ' LISRARY +
4

S ----- ---- -------- ------ 4,
S2 *REAL STORE NO VERBOSE NE~WS H ELP +

5 3 + ARRAY-RL 4 CELETE 4 4 4EYSOARO + MODE D 1ISPLAY 4

S -------- -4 -- - -- - -- -

S 4 CC*,IMENT G 4 RAPHIC 4 4 AITER 4-

S 5 4 EAPLAIN 4 4 ECHO-ON * TDY

S 9 ECO-F +" OE-PT , E!4,

S 4 -------------- -------- ------ 4

S Rlll Nr 4IEIIO-OF * ' OP'-0
5 7 * 0 4 4" CONE + * ECT|-O

---------- - - -- - - - -- - - - -- -

S S + • * CLOSE-0

S 9 * GET-rT + + BEGIN UO
3 #-------------------------------
S 10 CTIE 4. + + CONTINUE4
S---------------------------4---- -*---

S511. + 4 SYSTEM +

I + ---------------------- - 4- -

1 12 + 4 UIT-OEX +

Figure 1-3. DEX Menus (as printed on terminal)

23

The user's module is activated when he types,

from menu "DEX.MAIN",

.begin modulename

He then enters the environment of the module, but he

can return to the DEX level by using the symbol "S" and

then an item from "DEX.MAIN". Similarly, he can transfer

temporarily from the DEX level to the local computer

operating system level by the option "system". To get

back into DEX he uses the command

.return

and then to get back to the module he uses the menu

option "continue".

When a module execution is complete, the user

returns to the DEX level and issues the command

* quit

to return permanently to the operating system.

1.2.2.2 Extended DEX Library. The extended

DEX library is not a level of operation like DEX on the

module, but rather a collection of 45 subroutines and

functions which the module author can adopt in con-

(structing his module. The bulk of this investigator's

work involved the development of this library, and it I
will be discussed further in Section 1.3 and Chapters 3-7.

24

1.2.2.3 Module. A module is a complete set

of subprograms written by the module author and executed

by the user to perform a specific task. A module may

consist of only one program which does the actual calcu-

lations, or it may have many additional subprograms

employing menus to take advantage of the flexibility

offered by DEX and the extended DEX library. Chapter 2

describes in detail an actual module used during the

testing of the extended DEX library subprograms, and

Chapter 8 describes the Machinery Weight Estimating

Module written to demonstrate the use of the cruiser-

destroyer databases.

1.3 The Extended DEX Library

In order to convey information from a storage

location to the program doing the calculations and from

there to another storage location or display, five

capabilities are required by the user. These five,

listed here, are provided by the extended DEX library:

(i) Setting and reviewing the module environ-
ment for type of dialogue and sources and
destinations of information.

(ii) Reading information.

(iii) Editing information.

(iv) Writing information.

(v) Converting the user-preferred input/output
units to the module author-preferred units
and back again.

25

8AP .I w * - ,. -

The five categories will be briefly outlined here and

described in detail in Chapters 3-7.

1.3.1 Environment. Four subroutines provide or

display the module environment defined by the user.

They are:

DIALOG: enables user to specify terse or verbose
dialogue

SOURCE: enables user to specify source of infor-
mation, either a DEX-created database,
the terminal, a sequential file or the
module's default data.

DESTIN: enables user to specify the destination
of information, either a DEX-created
database, the terminal or a sequential
file

MDMODE: displays the status of the module environ-
ment, including type of dialogue, reading
source, writing destination, and reference
numbers for files to be read from or written
to.

1.3.2 Readers. Eight logical functions allow the

user to read information from the designated source.

They are:

ISCLDR: invokes ISCPMP and ISREAD

ISCPMP: prepares a prompting message for reading

an integer from the terminal

ISREAD: reads an integer value from the source.

RSCLDR: invokes RVAPMP and RSREAD

RVAPM: prepares a prompting message for reading
a real scalar or a real array from the
terminal.

26

RSREAD: reads a real scalar value from the source

RAILDR: invokes RVAPMP and RAIRED

RAIRED: reads a single one-dimensional array from
the source.

1.3.3 Editors. The editing routines are still

undergoing development. Eventually they will enable the

user to perform various editing functions on the working

variables of the module. Two preliminary routines were

completed during this investigation:

ISCEDT: enables the user to change the value of
an integer scalar variable from the
terminal.

RSCEDT: enables the user to change the value of a
real scalar variable from the terminal.

1.3.4 Writers. Eight logical functions allow the

user to write information to the designated destination

They are:

ISCDMP: calls ISDSCR and ISRITE

ISDSCR: prepares a description message for
writing an integer to the terminal

ISRITE: writes an integer scaler to the desti-

nation

RSCDMP: calls RVDSCR and RSRITE

RVDSCR: prepares a description message for writing
a real scalar or a one-dimensional real(array to the terminal

27

RARDMP: calls RVDSCR and RARITE

RARITE: writes one-dimensional real arrays to the
destination

1.3.5 Units. The units subprograms are divided

into three categories. The first category contains five

subroutines which read, edit or write the input/output

units that the user wishes to employ. There is one for

each of the five basic types of units adopted by the

system: plane angle, force, length, temperature and

time. The names of these subroutines are:

AUNIT

FUNIT

LUNIT

TPUNIT

TUNIT

The second category contains five logical functions,

one for each of the five basic unit types, which deter-

mine the conversion factors for converting to i/o units

to the program standard units and vice versa. Additionally,

they prepare unit names and abbreviations of unit names

which are used in database comments and prompting and

description messages. The names of these functions are:

28

28L

UNITAF

UNITFF

UNITLF

UNITMP

UNITTF

The last category contains twelve logical functions

which perform the same function as those in the second

category, but for derived units formed by combining

basic units. They are:

UAACC: angular acceleration

UACCEL: linear acceleration

UAREA: area

UFREQ: frequency

UKVISC: kinematic viscosity

UMASS: mass

UMPOWER: mechanical power

UPRESS: pressure

UPSPEC: power spectrum

URHO: density

USPEED: speed

UVOL: volume

29

1.4 Dex Databases

1.4.1 Philosophy. The DEX philosophy includes as

a fundamental feature a new and more capable approach

to database manipulation. This revolves around the

concept of identifying a variable within a database by

its name and not by its location. For example, if a user

needs the value of an entry in the database signifying

the ship's draft, he retrieves that value at the address

"DRAFT', or whatever name it has been assigned by the

database creator, and not by specifying that the value is

the fourth or twentieth entry in the database.

In order to use the capabilities of DEX a database

must be constructed via either the commands of menu

"DBEDCMDS" or the database management routines in

reference (4]. These entail a specific format for the

entry of the variable, but there is no sequential order

required for arranging the different variables in the

database.

1.4.2 Format of Database Entries. In the present

version of DEX a database can contain up to 200 variables.

Three types of variables are allowed: integer scalars,

real scalar, and one-dimensional real arrays. A real

array can contain up to 200 elements.

A variable entry in a database consists of four

parts. First is the database name, which is formed by

30

up to eight alphanumeric characters (including blanks),

e.g., "LBP", "WEIGHT17", "TYPSONAR". Second is the type

of variable - integer, real scalar or real array - and

third is the value of the variable itself. The final

part is the database comment statement, a string of

words up to 64 characters long which describes the

variable. If the variable is either a real scalar or

real array and has units, the comment statement contains

a twelve-character (including blanks) version of the units

enclosed in parentheses. Appendix B contains edited

listings of a warship general database which illustra-

tes database entries.

Accompanying each database will be a database

dictionary which lists for each variable its database

name, type, array size, if applicable, and official data-

base comment, including units, if applicable. Future

versions of DEX will separate the units from the comment

as a distinct fifth part of a variable entry. Further,

development has started to create positional databases

which will allow database elements to be related to each

other, e.g., a database containing a ship's compartments

where two compartments are adjacent.

This chapter has attempted to give a brief intro-

(duction to the concept and organization of DEX. For the

31

reader who is confused at this point by the large number

of new ideas, terms and subprograms mentioned, Chapter 2

has been included to provide an example of a simple

module which employs many of the concepts and subroutines

described. It should give the reader a practical aware-

ness of how this all ties together. This will prove

helpful in reading the next five chapters which discuss

the design of the extended DEX library subprograms.

Chapter 8 discusses an application of DEX to computer-

aided ship design. Finally, Chapter 9 offers recomenda-

tions for future work.

32

CHAPTER 2

THE CUBE MODULE SAMPLE PROGRAM

2.1 General Description

2.1.1 Function of the Module. The Cube Module

was developed to test the subprograms of the extended

DEX library written during this investigation. The

module calculated the volume and weight of a block of

salt water given the length, width, and height (note

that "cube" is a slight misnomer). while that function

itself was elementary, the combination of single, scalar

values for length and width and an array for height (and

also, therefore, for volume and weight) permitted the

testing of the reading, editing and writing routines

for real scalars and the reading and writing routines

for real arrays. The subprogram for specifying input

and output units employed the routines for integer

scalars. The subroutines for determining the conversion

factors for length, force and volume were also exercised.

Finally, as a matter of course, the environment setting

routines were also tested.

Appendix A contains a listing of the module.

2.1.2 Module Subprograms. Although no single,

correct sequence of operating the module subprograms

Cexisted, there was a logical path one would follow to

33

execute the program when not attempting to test every

available option of the module. This path is a convenient

order in which to list the module subprograms and those

extended DEX library subprograms involving menus:

MAINPG (C-M)
DIALOG (DL-M)
SOURCE (DL-M)
DESTIN (DL-M)
MDMODE (DL)
MODIO (C-M)

INPUT (C-M)
MXUNIT (C-M)

LUNIT (DL-M)
FUNIT (DL-M)

DIMENS (C-M)
COMPUT (C)
OUTPUT (C-M)

VANDWT (C-M)
BLOCK DATA (C)

The "C" indicates a Cube Module subprogram, the "DL"

indicates an extended DEX library subprogram and the "M"

indicates that the subprogram included a menu. Figure

2-1 illustrates the menus encountered in this model.

2.1.3 Typical Operation. A description of a

typical execution of the Cube Module should prove help-

ful. To assist the reader, Figure 2-2 shows the various

access and return routes of the subprograms. Once the

user entered the DEX level environment he activated the

Cube Module via the "begin" option of menu "DEX.MAIN",

~ that is

. begin cube

34

-I-- - _ _ _ _ _

MENU MENU MENU MENU MENU MENU
MOD.MAIN MOD.ALTR SOURCE DESTINAT MOD.IO INPUT

DIALOGUE TERSE DATABASE DATABASE ALL ALL

INMODE VERBOSE TERMINAL TERMINAL INPUT UNITS

OUTMODE SCREEN SCREEN OUTPUT DIMENSI0

MOD.MODE FILE FILE DONE DONE

READ DEFAULT

EDIT

COMPUT

WRITE

QUIT

MENU MENU MENU MENU MENU MENU
UNIT FOR.UNIT LEN.UNIT DIMENSIO OUTPUT RESULTS

ALL POUNDAL INCH ALL ALL VOLUME

LENGTH FPOUND FOOT LENGTH UNITS WEIGHT
TIME SHORTTON STATMILE WIDTH RESULTS DONE

FORCE LONG TON NAUTMILE HEIGHT DONE

PLANEANG DYNE MILLIMET DONE

TEMP NEWTON CENTIMET

KILOPOND METER

KILOMET

Figure 2-1. Menus Encountered in Executing the Cube Module

35

(7ETI _
36DI

where "cube" was the assigned module identification name.

This command placed him in module subroutine MAINPG

where he encountered the message:

*ENTER AN ITEM FROM MENU-MOD.MAIN

The user typed "mod.mode" and was presented with the

status of the module environment. The initialized

values for the dialogue, source and destination were

verbose, terminal and terminal respectively and he

found these satisfactory. He then typed

.read

which sent him to subroutine MODIO and the message

*SELECT WHICH MODULE VARIABLE SEGMENT TO READ

*ENTER AN ITEM FROM MENU-MOD.1O

From this menu he selected item "input" by typing it:

.input

Now in subroutine INPUT he received the instruction

*SELECT WHICH INPUT VARIABLE SEGMENT TO READ

*ENTER AN ITEM FROM MENU-INPUT

At this point, to save time, he made two sequential

selections. From menu "INPUT" he selected "units" and

anticipating menu "UNIT" he chose "length". He ac-

complished this by typing

.units length

DEX recognized the space between the two words as

a delimiter between two commands. It acted on the first

by invoking subroutine MXUNIT. It then located item

37 1

P MR V

"length" on that subroutine's menu and called subroutine

LUNIT which issued the command

*ENTER LENGTH UNIT TO BE USED DURING INPUT OUTPUT
*ENTER AN ITEM FROM MENU-LEN.UNIT

The user specified "foot". LUNIT then passed control

back to subroutine MXUNIT which printed

*SELECT WHICH UNIT TO READ

*ENTER AN ITEM FROM MENU-UNIT

Again to save time, the user typed in two sequential

menu selections:

.force fpound

This sent him to FUNIT and then back to MXUNIT. This

time from menu "UNIT he chose item "done" which returned

him to subroutine INPUT. Figure 2-3 illustrates this

sequence.

At this point the user had defined the length and

weight units he intended to use for input and output. In

response to INPUT's request for a menu selection he typed

* dimensio

This invoked subroutine DIMENS and caused the following

to be printed.

*SELECT THE DESIRED DIMENSION TO READ

*ENTER AN ITEM FROM MENU-DIMENSIO

The user intended to read in all three dimensions (he

(could have used any or all of the initialized values

built into the module in BLOCK DATA) so he typed item

38

*ENTER AN ITEM FROM MENU - MOD.MAIN
.mod.mode
*MODULE DIALOGUE : VERBOSE
*MODULE INPUT SOURCE : THE TERMINAL (ALPHANUMERIC)
'MODULE OUTPUT SOURCE THE TERMINAL (ALPHANUMERIC)
'REFERENCE NUMBER FORM MODULE
*FORTRAN READ FROM A FILE : 3
*FORTRAN WRITE TO A FILE : 4
'ENTER AN ITEM FROM MENU - MOD.MAIN
.read
*SELECT WHICH MODULE VARIABLE SEGMENT TO READ.
'ENTER AN ITEM FROM MENU - MOD.IO
.input
'SELECT WHICH INPUT VARIABLE SEGMENT TO READ.
'ENTER AN ITEM FROM MENU - INPUT
.units length
*ENTER AN ITEM FROM MENU - LEN.UNIT
.foot
'SELECT WHICH UNIT TO READ.
*ENTER AN ITEM FROM MENU - UNIT
.force fpound
'SELECT WHICH UNIT TO READ.
*ENTER AN ITEM FROM MENU - UNIT
.done
'SELECT WHICH INPUT VARIABLE SEGMENT TO READ.
'ENTER AN ITEM FROM MENU - INPUT
.dimensio
*SELECT THE DESIRED DIMENSION TO READ.
'ENTER AN ITEM FROM MENU - DIMENSIO
.all
*ENTER LENGTH OF CUBE (FOOT
'ENTER UP TO 1 REAL NUMBERS

.1.0
'ENTER WIDTH OF CUBE (FOOT
*ENTER UP TO 1 REAL NUMBERS

.1.0
'ENTER HEIGHT OF CUBE (FOOT)
'ENTER UP TO 4 REAL NUMBERS
.1. 2. 3. 4.
'SELECT WHICH INPUT VARIABLE SEGMENT TO READ.
'ENTER AN ITEM FROM MENU - INPUT

Figure 2-3. Sample Cube Module Input Sequence

(

39

"all". The computer responded with:

*ENTER LENGTH OF CUBE (FOOT
*ENTER UP TO 1 REAL NUMBERS

The user typed in "1.0" and the computer proceded to the

next instruction

*ENTER WIDTH OF CUBE (FOOT

*ENTER UP TO 1 REAL NUMBERS

The process was repeated, except that for height the

computer requested up to four real numbers (height was

defined as an array having up to four elements) . When

the desired number (say four) of heights were entered

control returned to INPUT. The user then typed in

.done done

to return to subroutine MODIO and from there to sub-

routine MAINPG.

In response to this subroutine's instruction the

user typed

.compute

This invoked the COWPUT subroutine to actually calculate

the volumes and weights. Control was then returned to

MAINPG as evidenced by the instruction

*ENTER AN ITEM FROM MENU-MOD.MAIN

By now comfortable with the operation of the

module, the user decided to display his results on the

(terminal. He decided to retain "foot" and "poundforce"

as the units, although he could have selected any desired

40

units by accessing MXUNIT again. The volumes and weights

returned by COMPUT were in metric units, that being the

system in which COMPUT was written. The conversions took

place at the input/output locations. More on this later.

Now observe closely. The user issued the following

commands:

.write output results all

These were selections from menus "MOD.MAN", "MOD.10",

"OUTPUT" and "RESULTS" respectively. The computer

printed on the terminal the four volumes and four weights.

Figure 2-4 is a copy of that printing.

Satisfied with his answers, the user responded to

the current instruction from subroutine OUTPUT with

.done done

to get back to MOD.MAIN. Choice "quit" at this point

caused him to leave the module level and return to the

DEX level, facing menu "DEX.MAIN". The "quit" selection

allowed him to exit DEX and reenter the operating system

level in order to log off.

The rest of this chapter will describe the sub-

programs of the Cube Module to assist the reader in

understanding how to write a module program.

(

°4

*ENTER AN I TEM FR-M AMENU - MOO.MAIN
We oUtaut P@sWlts aI'
-¢O.LUVE OF CUBE (FCCT -.3

I INOEX VA LJE
* o.999999E.oo

* 2 0.20000CS.Oi
* 3 0.299939E-01
* 4 0.399999E*-01
*WEI4T OF CUBE (PC'.'.3(FORCE))

* INDEX VAL.JE
* I 0.638763E-02
* 2 0.127?,5E.03
* 3 0.191629E.03
* 4 0.2SS50603

Figure 2-4. Sample Cube Results
(as printed on terminal)

2.2 Frequently Used Subroutines

2.2.1 Block Data. We will commence the discussion

of the module with the subroutines which may be used with

only slight changes in form and/or content in several

modules. The user may wish to refer frequently to the

listings of these subroutines in Appendix A.

First is a special subprogram, BLOCK DATA, used

as standard practice in Fortran to initialize all the

labeled common blocks used throughout the module. with

(respect to input/output variables, a typical labeled

42

common block appearing in BLOCK DATA and the pertinent

subprograms is as follows:

COMMON /VINFO/ V (4),VOLNAM,VOLCMT, NDEVF, DEFALV (4)

From this we can identify the following information

which should appear in BLOCK DATA:

Ci) the variable (dimensioned for its maximum

size if an array)

(ii) the variable database name

(iii) the variable database comment

(iv) the number of default values (if it is an
array)

(v) the default value (or dimensioned default
array)

These values would all be initialized in the BLOCK DATA.

Locating the initialization and dimensioning of all

input/output variables in one subprogram facilitates

checking and is a highly recommended practice.

The variables are grouped under the subroutines in

which they first appeared. MAINPG included four common

blocks - REFNOS, INOUTF, DIALFG and MDNCPW. All of these

are used in several other subprograms. REFNOS included

the variables RNRFIL and RNWFIL which represented

respectively the file reference numbers for reading from
a sequential file using the Fortram READ command and

writing to a sequential file via the Fortan WRITE

43

I I -i -

command. INOUTF included the variables IMODE and OMODE.

The first denoted the source of reading information (1 -

database, etc.) and the second denoted the destination

for writing information (1 - database, etc.). DIALGF

contained the logical variable MTERSE to denote the type

of module dialogue (terse or verbose). Finally labeled

common MDNCDW contained the integer variable NCPW which

was the number of characters per word assumed by the DEX

routines. This value was site dependent. For example

on IBM computers it was 4. For this reason it was flagged

in BLOCK DATA as site-dependent.

The other subroutines which represented the first

occurrences of labeled common blocks were LUNIT, TUNIT,

FUNIT, AUNIT, TPUNIT, DIMENS and VANDWT. Let us examine

DIMENS. It contained nine labeled common blocks. The

first four were mentioned above in MAINPG. LUNITS will

be described in Chapter 7. The remaining four were

listed under subroutine DIMENS in BLOCK DATA. LINFO,

WINFO and HINFO contained the variable, database name,

comment, default values and number of default values,

where applicable, for the length, width and height

dimensions respectively. H and DEFALH were dimensioned

because they were arrays. The type declarations and

(dimensions of all the variables were followed by the

44

data declarations of their values. The remaining common

block, DIMFRM, represented the formats to be used when

reading from or writing to sequential files. One format

was for real scalars and the other for arrays.

2.2.2 MAINPG. Subroutine MAINPG, via menu

"MOD.MAIN", allowed the user to select the environment

of the module and the desired paths to follow to operate

it. The capabilities it gave the user were:

(1) To set the style of module dialogue. This

choice invoked subroutine DIALOG.

(2) To select the source of module input. This

choice invoked subroutine SOURCE. Remember that "input"

here means any information to be read, even output

variables.

(3) To select the destination of module output.

This choice invoked subroutine DESTIN.

(4) To list the module flags. This invoked sub-

routine MDMODE which printed the status of the

dialogue, the source, the destination, and the file

reference numbers.

(5) To access the module reading routines. This

choice set the variable IOFLAG-1 and then called MODIO.

(6) To access the module editing routines. This

choice set IOFLAG-2 and then called MODIO.

45

451 b II

(7) To access the module computing routine by cal-

ling COMPUT to execute the calculations.

(8) To access the module writing routines. This

choice set IOFLAG-3 and then called MODIO.

(9) To return control to the DEX level and menu

"DEX.MAIN". It did this by invoking the DEX routine ENDIT.

The menu name and the items were declared in MAINPG

with data statements. DEX routine MENUIN was used to con-

vert the user's selection to an integer flag ITEM for

branching to the correct point in MAINPG. MENUIN was the

routine that actually printed the prompting instruction to

enter a menu item.

The user can make his subroutine MAINPG as simple

or extensive as desired within the constraint that the

maximum number of menu items (because of MENUIN) is twelve.

To show how simple it cou-d be, consider a user who has a

program called STRENGTH and for some reason he wanted to

start it with the DEX. All he would need in his module

besides STRENGTH is the following subroutine:

SUBROUTINE MAINPG
CALL STRENGTH
RETURN
END

If STRENGTH used menus, DEX routine ENDIT would also have

(to be called to clear tha buffer afterwards.

46

2.2.3 MODIO. Subroutine MODIO had one parameter

in its calling sequence - IOFLAG - which indicated if the

operation to be performed was reading, editing and writing.

MODIO had two labeled commons - DIALGF and MDNCPW - dis-

cussed in BLOCK DATA. DIALGF determined whether the ver-

bose or terse menu prompting message would be issued.

NCPW was needed for calling DEX routines STRPAK and

LMOVEC.

MODIO presented the user with the menu selections

shown in Figure 2-1. The "all" option allowed the user

to read, edit or write all the input and output variables.

The "all" option was implemented by a logical variable

"ALLFLG" which was set to .TRUE if that menu item was

chosen. This variable was subsequently passed on through

the module. If it was returned .FALSE. to MODIO, it would

cause the execution of the last command to be halted and

the prompting message for menu "MOD.IO" to be issued so

that the user could take corrective action.

2.2.4 MXUNIT and the "ALL" Logic. A subprogram

similar to MXUNIT will be needed in any module which

allows the user to specify i/o units different from those

in which the computing routines were written. MXUNIT per-

mitted the user to read, edit or write the module units he

wished to use for input and output. For example, if the(
user selected "force" from menu "UNIT", subroutine FUNIT

47

would have been called to present the menu choices for

force units. FUNIT and the others in that series will be

described in Chapter 7, but some detail is required here

because of all the calling parameters involved.

The calling sequence for FUNIT, typical for all

five in that series, was as follows:

CALL FU" IT (UIFUN,LOCALL, IOFLAG, IOMIODE, MTERSE,
NCPW, DBFUNN, DBFLNC, PMPREP, PMES,
RNFILE, FUNFRM, DEFFUN)

The first parameter was an output variable, LOCALL was

both input and output, and the rest were all input vari-

ables provided by MXUNIT.

UIOFUN would have been assigned a value between 1

and 7 depending on what force unit the user selected.

LOCALL carried the information concerning the

"ALL" option. One of the calling parameters for MXNIT,

CALALL, passed on the "ALL" option from subroutine INPUT.

If it was .TRUE. then LOCALL would have immediately been

assigned .TRUE. also, and the prompting for menu "UNIT"

would have been bypassed. Each of the i/o unit-defining

routines, such as FUNIT, would have been called and the

user asked to specify the desired choice of the particu-

lar type of unit. Even if CALALL was .FALSE., the user

could have selected "all" from menu "UNIT" with similar

results.

4

48

II I I VI.. I I ---

If any of the i/o unit-defining subroutines was un-

successful, LOCALL would have been returned .FALSE.. The

program would have checked the value of CALALL. If it too

was .FALSE., the menu "UNIT" would have been presented for

another selection. However, if CALALL was .TRUE., it would

have meant that there had been a change in the value of

LOCALL (i.e., a failure in the called subprogram). MXUNIT

would have set CALALL to .FALSE. and returned control

through subroutine INPUT back to MODIO. This was because

INPUT .corporated the same "ALL" logic as MXUNIT.

Note from the listing of MXUNIT that LOCALL is ini-

tialized as FALSE.. If CALALL was .FALSE. and the user

did not choose "all" from menu "UNIT", he would have been

asked to select from the menu each time after a unit was

specified, until he typed "done". This "ALL" logic was

used extensively throughout the module as a means of ex-

peditng the reading, editing or writing of many variables.

Returning to the calling sequence for FUNIT, we

have already mentioned IOFLAG, indicating the operation to

be performed. PMPREP was set locally by a data declara-

tion. It indicated to the subprograms called whether or

not a prompting message for the unit to be selected was to

be prepared by the program. If .TRUE., PMES would later

(be the storage location for the prompting message. If

49

" mm • mm l mnm mm nmmIumfimm nu*

PMPREP was .FALSE., PMES would already have to have the

prompting message in it. Since PMES first appeared here

in MXUNIT it was dimensioned here for the maximum allow-

able size of 16 "words". This number came from the limi-

tation on PMES to be at most 64 characters long, divided

into 4-character "words"

All the other variables were obtained by MXUNIT

from other subprograms, including BLOCK DATA, by labeled

common blocks. An inspection of the listing of MXUNIT re-

veals the large number of commons required because of five

types of units.

INOUTF passed the indicator of the source of in-

formation to be read (IMODE) and the destination of infor-

mation to be written (OMODE). Depending on IOFLAG, IOMODE

was set equal to one of these two. This told FUNIT from

where UIOFUN was to be read or to where UIOFUN was to be

written.

REFNOS passed the values of the file reference num-

bers for Fortran READ (RNRFIL) and Fortran WRITE (RNWFIL).

Depending on IOFLAG, RNFILE was set equal to one or the

other. These values are assigned to files during the ex-

ecution of extended DEX library routines SOURCE and DESTIN

by DEX routine SETDEV if the user had designated files as

(the source or destination.

The other labeled commons will be described in

Chapter 7.

50

- --. - -.--). - .-- '-. m- - -mm mmmimm

2.3 The Input Series

2.3.1 INPUT. Subroutine INPUT provided the user

with a menu by which he could access subroutines MXUNIT and

DIMENS and return control to subroutine'MODIO. It con-

tained the labeled common blocks DIALGF and MDNCPW for use

in calling STRPAR and LMOVEC for character manipulation.

INPUT had two variables in its calling sequence - CALALL

and IOFLAG - as did MXUNIT described above. The logic

for the use of CALALL and LOCALL was identical to that de-

scribed in 2.2.4. Briefly, if LOCALL was set to .TRUE.

when INPUT was invoked because CALALL=.TRUE., and it was

returned by MXUNIT or DrMENS as .FALSE., CALALL would

have been set equal to .FALSE. and control passed back to

MODIO. If CALALL was .FALSE., LOCALL would have been

.FALSE. unless the user selected "all" from menu "INPUT".

Besides LOCALL, INPUT passed IOFLAG to MXUNIT and

DIMENS to indicate reading, editing or writing.

2.3.2 DIMENS. Subroutine DIMENS allowed the user

to read, edit, or write the value of the block dimensions.

It had two calling parameters, ALLFLG and IOFLAG. The

former carried the "ALL" option information and behaved

like CALALL. The "ALL" option was passed on to the called

logical functions by the usual variable LOCALL.

(DIMENS, like MXUNIT, also contained quite a few

labeled common blocks. Five have already been seen in

51

MXUNIT: DIALGF, INOUTF, MDNCPW, REFNOS, and LUNITS. LINFO,

WINFO, and HINFO contained the variable, database name, com-

ment and default values for the length, width and height of

the block. DIMFRM contained the format information for

reading from or writing to files.

Before menu "DIMENSIO" was presented to the user, two

actions occurred. The first was the calling of the logi-

cal function UNITLF by the statement

LOGVAL=NITLF(CONVLM,NAML02,NAML06,4A4Ll2,ALLFLG,
PSTLUN,UIOLUN,NCPW)

UNITLF, discussed in Chapter 7, produced the multiplicative

conversion factor CONVLM for converting the dimensions in

the input length unit to values in the program standard

length unit (meter). The second through fourth variables

in UNITLF's calling sequence represented various abbrevia-

tions of the length unit-the user had selected for input/

output. UNITLF was able to provide this information be-

cause of the values of PSTLUN and UIOLUN. The first in-

dicated program standard length unit, the second user i/o

length unit. As a pair they were an index to locating

the other information.

The other action which occurred immediately in DIMENS

was the setting of LOCALL equal to ALLFLG. If this made

LOCALL equal to .TRUE., 'nenu "DIMENSIO" was not presented

and DIMENS immediately started operating on all the menu

choices.

52

If the user selected "width" from the menu, the pro-

gram next referred to IOFTAG. If IOFLAG=- (reading), the

program branched to the statement

LOGVAL-RSCLDR(W,LOCALL,,MTERSE,IMODE,NCPW,WIDNAM,
CONVLH,CONVLA,NAML12,.FALSE.,.TRUE.,
PIES,WMORGN,RNRFIL,LWFRI,DEFALW)

Logical function RSCLDR is the first of three functions

for reading real scalars. The value read in for width,

in program standard units, was stored in W. IMODE indi-

cated the source of the reading. WIDNAM was the 8-charac-

ter database name for width. CONVLM and CONVLA were re-

spectively the multiplicative and additive conversion fac-

tors for changing the read in width to the value in program

standard units via the expression

W-W * CONVLM + CONFLA

CONVLA was locally declared 0. NAML12 was the 12-charac-

ter version of the i/o length unit and was used in prompt-

ing message preparation and database comment comparison.

The parameter .FALSE. represented the variable VITAL which

indicated if the variable W was essential for input con-

tinuation. The parameter .TRUE. was for PMPREP, indica-

ting that the reading subprograms would prepare the

prompting message PMES, at this point undefined. Since

PMES was a local variable not passed to DIMENS by the

calling sequence or a labeled common block it was dimen-

sioned "16" in DIMENS. WMORGN contained the description

53

of the width, including space allotted for inserting the

units. RNRFIL and LWPRM were the reference number and

format respectively for reaching width from a file.

DEFALW was the default value for width if the user wished

to set W equal to that.

If IOFLAG=2, the subprogram called the editing rou-

tines by the expression

LOGVAL-RSCEDT (W, LOCALL, MTERSE,NCPW, WIDNAM, CONVLM,
CONVLA,NAIM12, .TRUE. , P.ES ,WMORGN,
RNRFIL, LWFRM, DEFLAW)

This was very similar to the reading function except that

IMODE was not specified. This was because RSCEDT itself

defined and employed a variable EDMODE, of value 2, for

the terminal, in lieu of IMODE, when it called RSCLDR.

Finally, if IOFLAG=3, the real scalar writing rou-

tines were invoked by the statement

LOGVAL-RSCDMP (LOCALL,MTERSE, OMODE, NCPW, W,WIDNAM,
CONVL4M,CONVLA,NAML2, .TRUE. ,PMES,
WMORGN, P-M, IL, LWRFM)

Observe that OMODE was used to indicate destination of the

value of W for writing. Also note the use of RNWFIL to in-

dicate the file reference number for writing with Fortran

WRITE, using the format supplied by LWFRM.

Because the height variable H represented a four- 4

element array, the logical functions called were different.

(For reading (IOFLAG-l) DIMENS branched to the statement

54

LOGVAL=RAILDR(H,LOCALL,NGOT,:ITERSE,IMODE,NCPW,HEINAM,
MXTOGT, COUVLM, CONVLA, NAILl2, . FALSE.,
.TRUE. ,PMES,HMORGN,RNRFIL,HFRM,NDEFH,
DEFALH)

Several new variables appear here. MXTOGT represented the

maximum number of elements to extract from the source when

the source was a database or the terminal. NGOT represen-

ted the actual number of elements read from the source.

Both MXTOGT and NGOT were initialized as 4 in DIMENS. VITAL

was defined by the .FALSE. and PMPREP by the .TRUE.. HFRM

contained the format for reading the array from a file.

NDEFH and DEFALH were respectively the number of default

values and a four-element array containing the default

values for height.

Because the array editing routines had not yet been

written, provision for calling a dummy routine, RAREDT,

was included in DIMENS.

For writing (IOFLAG-3), the program branched to

LOGVAL-RARDMP (LOCALL, MTERSE,OMODE, ICPW,H,HEINAM,
NFROM, NGOT,CONVLM,CONVLA, NAMLI2,
.TRUE.,P ES,HMORGN,RNWFIL,HFRM)

NGOT, mentioned above, and NFROM, were initialized as 4

and 1 respectively in DIMENS. NGOT could have a value

different from 4 only if less than four elements were read

in when RAILDR was called.

55

mine in• • e- i___ -i- nn-i

2.4 The Output Series Subprograms

The output series consisted of two subprograms -

OUTPUT and VANDWT - for working with the volumes and

weights calculated by COMPUT. These had direct parallels

to INPUT and DIMENS and need not be discussed in detail.

OUTPUT offered the user the capability of invoking MXUNIT,

via the menu item "unit", in case the user wished to

write the volume and weight in different units from those

he had used for reading in the block dimensions.

2.5 General Programming Comments

This chapter will conclude with some comments about

writing modules. It is hoped that the reader has some

understanding of the calling parameters used by module

subprograms when invoking extended DEX li'rary routines. [
In some cases large numbers of variables appear in the

calling sequences. This is due to the fact, as will be

pointed out in the next chapter, that the library rou-

tines use no common blocks.

One suggestion already emphasized is the use of a

BLOCK DATA subprogram to initialize all input/output

variables and their associated variables. This adds some

extra work by increasing the number of common block vari-

ables, such as the database names, comments and default

values. However, the improved efficiency for checking

values and dimensions is considered to outweigh this dis-

advantage.

56

II

When writing a module, to determine the menus required

it is easiest to work backwards in the opposite direction

to the order of use. Identify the input and output vari-

ables and place them in menus. Then establish a supervis-

ory input menu and a supervisory output menu. For example,

one may contain the group name for the input variables, such

as "dimensions" in Cube, plus a units icem to allow the

user the choice of i/o units. At this point the module

author may be almost done with the module design phase,

because he can frequently incorporate the standard routines

MAINPG and MODIO to complete his set. MXUNIT is also

offered as a very adaptable, comprehensive routine for

handling units. In a situation like the Machinery Weight

Estimating Module in Chapter 8, one menu suffices for both [
input and output variables. Figure 2-5 illustrates the

difference in flow between the main subroutine and the

i/o variables for the two modules. Yet both use identical

MAINPG and MODIO subprograms and only slightly different

versions of MXUNIT.

When establishing menus a few rules must be kept in

mind. The maximum number of menu items is twelve. When

constructing the eight character menu item names, no

blanks are allowed between characters but are acceptable

after all the characters. If each menu item begins with

a different character, only that one character has to be

57

entered by the user to enable DEX routine MENUIN to

identify the selection.

Cube Module

MWCHRT

Machinery Weight Estimating Module

Figure 2-5. Comparison of Module Input/Output Flow

CHAPTER 3

THE EXTENDED DEX LIBRARY ENVIRONMENT SETTING ROUTINES

3.1 Introduction

Upon entering the module level of DEX operation, the

user needs to establish or verify the environment which

suits his requirements. Four extended DEX library subrou-

tines give him the capability to do this. They are:

(1) DIALOG, which sets the type of module dialogue

(2) SOURCE, which defines the location of informa-

tion to be read

(3) DESTIN, which defines the location to which in-

formation is to be written

(4) MDMODE, which displays on the terminal the cur-

rent status of the type of dialogue, the

source, the destination and the file ref-

erence numbers for Fortran READ and WRITE

to sequential files.

Each of these will be discussed in this chapter. Logical

function CHKRNG, revised during this investigation, is also

discussed here, although it will eventually become a DEX

routine and not an extended DEX library function.

3.2 Subroutine DIALOG

3.2.1. Menu and Calling Parameter. Subroutine DIALOG

would normally be called by a subroutine similar to the

59

subroutine MAINPG of the Cube Module. In that specific

case it was done by selecting item "dialogue" from menu

"MOD.MAIN". DIALOG has its own menu, and this is illus-

trated in Figure 3-1. Note the absence of an item "done",

$ +- ---------
$ + MENU +
$ + MOD.ALTR +
$ - ---------
$ 1 + TERSE +
$ + +
$ 2 + VERBOSE +
$ - ---------

Figure 3-1. Menu "MOD.ALTR"
(for Subroutine DIALOG)

60

which appeared in most of the Cube Module menus. This is

typical for the subroutines of this chapter. Since the

user only makes one choice from these menus, the subpro-

grams automatically return control to the calling program

(e.g. MAINPG) without further action by the user.

It should also be called to the reader's attention

that the DEX library subroutines employ no labeled common

blocks. Rather, all variable values are transmitted by

means of the calling sequences. This was done to minimize

the possibility of inadvertently passing improper values

among the many subprograms which share the same commons.

The calling sequence presents a readily-checked format for

tracing errors.

The only variable in the calling sequence for DIALOG

is the logical variable MTERSE. If MTERSE-.TRUE., the

dialogue type is terse; it is is .FALSE. the dialogue is

verbose. These two types of dialogues are offered to sat-

isfy the needs of the individual user. For the new user,

the verbose dialogue provides longer messages from the

module or DEX to facilitate learning how to use them. The

terse dialogue allows more rapid operations by the experi-

enced user.

Initialized in BLOCK DATA, MTERSE can have its value

changed by the correct selection from menu "MOD.ALTR".

(This is accomplished by subroutine MENUIN. MENUIN is a

61

DEX integer function (see reference (5]) which converts a

menu selection into an integer value. In DIALOG, the fol-

lowing statements are involved in this process:*

DATA LMS/8/
DATA MENUNt4/4HMOD.,4HALTR/
DATA NITEMS/2/
DATA ITEMS/4HTERS,4HE

1 /4HVERB,4HOSE /
CALL STRPAK (MESS,LMS,4H< ,29HSELECT TYPE OF MOD
IULE DIALOGUE<)

ITEM-MENUIN (MENUNM,NITEIS, ITEMS,MESS)

MENUIN prints both the prompting message MESS shown

above and the message

*ENTER AN ITEM FROM MENU - MOD.ALTR

MENUIN sets ITEM equal to 1 if the user selects TERSE and

2 if he selects VERBOSE. ITEM is then used to branch to

statements which make MTERSE either .TRUE. or .FALSE.

as appropriate. Both branches return control to the cal-

ling program.

3.3 Subroutine SOURCE

3.3.1 Menu and Calling Sequence. Subroutine SOURCE,

normally accessed from a subprogram like MAINPG, allows

the user to select from the menu shown in Figure 3-2 the

source of information to be read. Subroutine MENUIN

assigns a value between 1 and 5 to IMODE depending on the

user's choice.

* STRPAK is a DEX routine which inserts character strings
(into an integer array in the DEX format of four charac-

ters per word. See ref [5].

62

- B

The calling sequence for SOURCE is as follows:

SUBROUTINE SOURCE (IMODE,DBFNME, IFILNM,RNRFIL,
MTERSE, NCPW)

DBFNME is the database filename when the source is a

database. IFILNM is the name of the sequential file if

the user intends to read from a file. RNRFIL is an input

variable defined in BLOCK DATA which represents the

device number to be assigned to file IFILNM. The infor-

mation in the file will be read in by one of the reading

routines using the statement of the form

READ (RNRFIL, FORMAT) X

where X represents the variable being read. MTERSE and

NCPW are required here for the preparation of the menu

prompting message and other error messages supplied by

subroutine source.

$ ------- 4

$ + MENU +
$ + SOURCE +
$ - ---------
$ 1 + DATABASE +
$ - +---------
$ 2 + TERMINAL +$ + +--------4

$ 3 SCREEN +
-.4---------- -

4 + FILE +
$ - +---------
$ 5 + DEFAULT +

-4---------- -4

(
Figure 3-2. Menu "SOURCE"

63

3.3.2. Operation of SOURCE. SOURCE commences execu-

tion by calling MENUIN to prompt the user to make a menu

selection. MENUIN assigns an appropriate value to IMODE

for branching.

If IMODE=l, the subroutine requires a database via

DEX logical function DBOPEN. If there already is an open

database, DBOPEN asks the user if he wants to use it, and

if so, if he wants to save it ("save" has the usual mean-

ing of writing a copy into memory from the buffers) be-

fore using it. If a database is "active", meaning a copy

is in the buffers but there is also a saved copy in mem-

ory, the user is asked only if he wants to use it. If the

user answers "no" to either of these questions, or if there

is no active or open database, DBOPEN Prompts the user for

the name of either a new one to be created or an existing

one to be opened. DBFNME is assigned that name. When

this is done control is returned to the calling program.

If IMODE-2 (terminal) or 5 (default values) control

simply returns to the calling program. If IMODE-3, indi-

cating that the user hoped to employ DEX routines to read

X-Y coordinates from a screen plot, he is informed that

this mode of module input has not been implemented yet.

IMODE-4 causes the calling of subroutine GETFLNM

which asks the user the name of the sequential file to be

64

read. Then logical function SETDEV assigns RNRFIL to

IFILNM before control returns to the calling program.

3.4 Subroutine DESTIN

3.4.1 Menu and Calling Sequence. Subroutine DESTIN

is similar to SOURCE except that there are only four pos-

sible choices, as seen in the menu illustration in Figure

3-3. The calling sequence contains six parameters:

SUBROUTINE DESTIN(OMOD1 _,BFNME,OFILNM,RNWFIL,
MTERSE,NCPW)

OMODE is assigned a value between 1 and 4 by MENUIN.

DBFNME is the same as in SOURCE. OFILNM is the name of

the sequential file to which output is to be written.

RNWFIL is an input variable defined in BLOCK DATA which

represents the file reference number to be assigned to

OFILNM for Fortran WRITE.

3.4.2 Operation of DESTIN. This subroutine behaves

very similarly to SOURCE. If OMODE-l, DBOPEN checks for

and opens as necessary a database and assigned DBFNME its

name. If OMODE-2, control simply returns to the calling

program. If the user selected the screen in order to do

plotting, he is informed that this mode of output has not

yet been implemented and is asked to make another selec-

tion. If OMODE-4, the user is asked the file name and

it is assigned to OFILNM. Then logical function SETDEV

(assigns RNWVIL to the file and control is returned to the

calling program.

65

$ + +-------4

$ + MENU +
$ + DESTINAT +
$ +-------- -
$ 1 + DATABASE +
$ + -------- -
$ 2 + TERMINAL +
$ +.--------+

$ 3 + SCREEN +
$ ++---------
$ 4 + FILE +
$ +.--------+

Figure 3-3. Menu "DESTINAT"
(for Subroutine DESTIN)

3.5 Subroutine MDMODE

3.5.1 Function. Subroutine MDMODE informs the user

of the current value of t. _e following variables:

(1) MTERSE, which denotes the type of module dia-
logue

(2) IMODE , which denotes the source of information
to be read

(3) OMODE , which denotes the destination of infor-
mation to be written

(4) RNRFIL, which denotes the file reference number
for module Fortran READ from a sequential
file

(5) RNWFIL, which denotes the file reference number
for module Fortran WRITE to a sequential
file

- 66

After displaying this information, or an error message if

a failure occurs, MDMODE returns control to the calling

program.

3.5.2 Operation of MDMODE. The calling sequence for

MDMODE contains only variables already discussed.

SUBROUTINE MDMODE(IMODE,OMODE,RNRFIL, RNWFIL,
MTERSE,NCPW)

MDMODE does not display the numerical values of IMODE and

OMODE but rather, for the user's convenience, it prints

character strings defining the source and destination, e.g.

"a dex created database". imilazly, for MTERSE, it prints

"terse" and "verbose" vice ".TRJE." or ".FALSE.".

3.6 Logical Function CHKRNG

Logical function CHKRNG determines if an integer num-

ber is within the range defined by two other integer num-

bers. If not, an appropriate error message is issued and

CHKRNG is returned .FALSE.. The calling sequence is as

follows:

LOGICAL FUNCTION CHKRNG(NUMBER,MNEMON,MINNUM,
MAXNUM,NCPW)

The rout'.ne checks if NUMBER is between the lower number

MINNUv and the higher number MAXNUM. MNEMON is an 8-

character memonic for NUMBER used in the error message.

The use of CHKRNG avoids the need for the module author

to include a message in his program.

67

CHAPTER 4

THE EXTENDED DEX LIBRARY READING ROUTINES

4.1 General Description

4.1.1 Function. Information, which includes both

input values and previously calculated output values,

resides in four locations: DEX-created databases, the

user himself, requested files and default data stored in

the module. The user actually presents two distinct

sources of information to the computer because of the two

ways in which he can transmit data at the terminal: the

first in the form of alphanumeric characters and the other

by the location of a pen-pointer or cross-hairs on a plot

on the screen. The latter method has not yet been imple-

mented in DEX at MIT.

The function of the extended DEX library reading

routines is to permit the transmission of that infor-

mation to the module so that it can be written to other

locations, such as the terminal for inspection, and/or

used as input for the calculations being performed.

4.1.2 Organization. Eight logical functions

comprise the reading routines group. They are listed

here by the type of variable on which the operate:

68

Integer Real Real
Scalar Scalar Array

ISCLDR RSCLDR RAILDR
ISCPMP RVAPMP
ISREAD RSREAD RAIRED

The real scalar and array categories share RVAPMP.

These routines could be categorized horizontally

by their specific jobs, as evidenced by the similarities

in their names. The top three are called "loaders".

These are the functions that appear in the module sub-

programs where it is desired to read variables, and to

the module author, for all intents and purposes, they are

the reading routines. He does not need to be aware that

they actually call the others to do the work.

If the user intends to input from the terminal he

needs to be prompted for the correct information. This

prompting message can be supplied by the module or it

can be prepared by two routines in this group called

"prompters". The loaders call the prompters as they are

required. Having ensured that a prompting message exists,

the loaders then call the third category, the "readers",

to actually read in and assign the values to the input.

output and working variables.

69 -[

4.2 Integer Scalar Series

4.2.1 ISCLDR

4.2.1.1 Calling sequence. The calling

sequence for logical function ISCLDR includes 17 vari-

ables listed here:

LOGICAL FUNCTION ISCLDR (IVAR, ALLFLG,
MTERSE, IOMODE , NCPW, DBNAME , VITAL
NENUFL,MENUNM,NITEMS,ITEMS,PMPREP,
PMES,PMORGN,RNFILE,FORMAT,DEFALT)

From the point of view of the function, IVAR is an output

variable, ALLFG is both input and output, and the remainder

are all input variables.

IVAR is where the value of the integer sought will

be stored. VITAL should be discussed next. An essential

input variable, that is one required when reading input

so that subsequent values can be entered correctly, is

indicated when the logical variable VITAL has a value

.TRUE.. This is important to the value of ALLFG. ALLFLG

indicates the status of the calling program wall" option

(active when ALLFLG-.TRUE.). If both VITAL and ALLFLG

are .TRUE. and IVAR is not read successfully, or the

prompting message is not prepared successfully, ALLFLG

will be changed to .FALSE.. ALLFLG's value can also be

changed to .FALSE. during a reading evolution if IOMODE-4

(file source) and a premature end-of-file is encountered.

(Otherwise ALLFLG will retain its input Value.

70

MTERSE indicates whether the module dialogue is

terse or verbose. IOMODE denotes the source of input and

corresponds to IMODE in the calling program. NCPW is the

number of characters per word assumed by the DEX routines.

DBNAME is where the database name of the integer is stored.

Eight characters (including blanks) must be defined for

this variable.

MENUFL is a logical variable which indicates if the

integer sought will be a menu selection. If it is .TRUE.,

the next three variables must be defined. MENUNM is the

eight-character name of the menu from which the selection

will be made. NITEMS is the number of items in the menu.

In the current version of DEX, the maximum number of menu

items allowed is 12. ITEMS are the menu choices. Each

choice is described by a name of eight characters (in-

cluding blanks). Therefore, with four characters per

word, ITEMS must be dimensioned as twice NITEMS where it

first appears. The reader may wish to refer to the AUNIT

series routines of Chapter 7 as examples of where menus

are used to define integer values.

PMPREP is a logical variable which, when .TRUE.,

indicates that function ISCPMP will prepare the prompting

message for the menu or INTIN. INTIN is a DEX routine

(which reads integer values entered from the terminal.

71

, ~ ~ ~ ~ ~ ~ ~ =7WV7 7-7 _ mJLIIl l -

If PMPREP-.FALSE., the calling program supplies the

prompting message in PMES.

PMES can be up to 64 characters long, and if less

than 64 characters it must include the trim character,

"<", last to signal the end of the string. Note that

if PMPREP-.TRUE., PMES is undefined in the calling se-

quence of ISCLDR.

PMORGN ("prompting message origin") is a character

string, usually the database comment, which identifies

the variable sought. Like PMES, it must be 64 charac-

ters or less long and must include the trim character at

its end if less than 64. When IOMODE-l, PMORGN will be

compared with the database comment and differences brought

to the user's attention.

RNFILE, corresponding to RNRFIL of the calling

program, is the device number for Fortran READ if the

integer is to be read from a file. FORMAT is the format

for reading from the file. DEFALT is the default value

of the integer sought when IOMODE-5.

4.2.1.2 Characteristics. When the source

of the integer is the terminal, ISCLDR invokes routine

CEKRNG to verify that NITEMS is between 1 and 12 inclusive

when MENUFL-.TRUE.. If PMPREP-.TRUE., ISCLDR invokes

ISCPMP to prepare the prompting message. If ISCPMP is

returned .FALSE., ISCLDR is also set to .FALSE. and

72

• -------.---I m m n nlummn

control returns to the calling program. Otherwise, for

terminal input, as well as database, file and default

value input, ISCLDR calls logical function ISREAD to do

the reading. ISCLDR is set to .TRUE. or .FALSE. depending

on the similar value of ISREAD and control returns to

the calling program.

ISCLDR 'becomes .FALSE. if ISCPMP or ISREAD fails.

It also becomes .FALSE. if the programmer has bypassed

previous checks and set IOMODE-3. The user is informed

by ISCLDR that integer scalars cannot be read in from a

screen supplying x-y coordinates. The subprogram then

checks VITAL and if .TRUE., it advises the user that the

variable is essential for program continuation and must

be corrected. Then, if ALLFLG-.TRUE., it is changed to

.FALSE. and the user is advised that the calling program

"all" option is aborted. ISCLDR is set to .FALSE. and

control returns to the calling program.

4.2.2 ISCPMP

4.2.2.1 Calling sequence. Logical function

ISCPMP is used to prepare a prompting message suitable

for identifying the integer being sought when the source

is the terminal (IOMODE-2) and PMPREP-.TRUE.. The

calling sequence for this function is as follows:

LOGICAL FUNCTION ISCPMP (PMES,ALLFLG,MTERSE,NCPW,
DBNAME,VITAL,MENUFL,PMORGN)

73

These parameters have been described in section 4.2.1.1

PMES is the output variable where the prompting message

sought is stored. MTERSE is needed here to determine

whether a brief or long message is to be prepared.

MENUFL is included here but presently it is not used by

ISCPMP.

4.2.2.2 Characteristics. ISCPMP creates

the prompting message by insering the word "ENTER",

followed by a short or long description of the variable

depending on MTERSE, into PMES. When the dialogue is

verbose, PMORGN is used as the indentifying string. The

program scans it for the location of the trim character

-to determine its length. If the string is 51 characters

or less, the message can be fit on one line. "ENTER"

and "PMORGN" are copied into PMES. If, however, PMORGN

has more than 64 characters, the prompting message must

be two lines long. The word "ENTER" is printed imediately

and PMORGN alone is copied onto PMES, to be printed by

ISREAD.

When the dialogue is terse, PMES is created from

"ENTER" and the database name, DBNAME, with a trim

character added at the end.

If a failure occurs in preparing the prompting

(message, an error message is used. Then, when VITAL- I
.TRUE., the user is advised that the variable is

74 4

necessary for program input continuation and the

problem must be corrected. When both VITAL and ALLFLG

are .TRUE., the later changes to .FALSE. and the program

advises the user that the calling program "all" option

is aborted. Finally, ISCPMP is set to .FALSE. and con-

trol returns to ISCLDR. If the message preparation is

successful, ISCPMP is set to .TRUE. before returning

control to ISCLDR.

4.2.3 ISREAD

4.2.3.1 Calling sequence. Logial function

ISREAD actually does the reading of the integer from the

source defined by IOMODE. The calling sequence for I

ISREAD is as follows:

LOGICAL FUNCTION ISREAD(rVAR,ALLFLG,
MTERSE, ZOMODE,NCPW,DBNAME,VITAL
MENUFL,MENUNM,NITEMS,ITEMS,
PMES,RNFILE,FORMAT,DEFALT)

It is almost identical to TSCLDR, the difference being

that PMPREP is no longer needed. PMES should be defined

here and it must include the trim character if not 64

characters long.

4.2.3.2 Characteristics. ISREAD branches

depending on the value of IOMODE. If the source of the

integer is a database (IOMODE-l), ISREAD extracts the

value using the DEX integer function IGET (see reference

" (51). IGET provides error codes which, if other than

75

It

success, cause appropriate error feedback messages to ;e

issued.

When IOMODE-2 (terminal input), and MENUFL-.TRUE.,

routine MENUIN is invoked to obtain IVAR from the menu

selection. When a menu is not employed, DEX routine

INTIN prompts the user to supply the integer value and

reads what is entered at the terminal.

For IOMODE-4 (file source), ISREAD uses a Fortran

READ statement, involving RNFILE and FORMAT, to read from

the file. The program issues a warning if a premature

end-of-file is encountered.

Whenever an error occurs in the reading, or if the

user insists on trying IOMODE-3, VITAL and ALLFLG are

checked. A warning that the variable is essential for

program continuation is issued when VITAL-.TRUE.. ALLFLG

will then be set to .FALSE. if not already. ALLFLG's

value will also be changed, even if the variable is not

essential, if either no open database was found (IOMODE-l)

or a premature end-of-file is encountered (IOMODE-4),

since further attempts at reading from these sources

would be fruitless. In all cases of errors, ISREAD is

set to .FALSE. and control is returned to the calling

program. When the reading is successful, ISREAD is set

(.to .TRUE..

76

4.3 Real Scalar Series

4.3.1 Brief description. The function of this group

of routines is to permit the user to read real scalar

values from any of the designated sources. Three logical

functions make up this series: RSCLDR, RVAPMP and

RSREAD. RVAPMP prepared prompting messages for reading

both real scalars and real arrays from the terminal.

4.3.2 RSCLDR

4.3.2.1 Calling sequence. Logical function

RSCLDR is invoked from the module. Its calling sequence

is as follows:

LOGICAL FUNCTION RSCLDR(RVAR,ALLFLG,
MTERSE,IOMODE,NCPW,
DBNAME,UNITFM,UNITFA,UNITNM,VITAL
PMPREP,PMES,PMORGN,RNFILE,FORMAT,
DEFALT)

Many of these variables are identical to those used in

ISCLDR.

RVAR will be assigned the value, in program standard

units, of the real number to be read. UNITFM and UNITFA

are respectively the multiplicative and additive conver-

sion factors which convert the real scalar read from the

user input/output units to the program units. The con-

version occurs in RSREAD. UNITNM is a 12-character ver-

sion (including blanks) of the user i/o units, which is

used in preparing the prompting message. If the real V

77

scalar is not dimensional, UNITFM must be equal to 1.0,

UNITFA must equal 0.0 and UNITNM is undefined.

PMORGN contains a string of 64 characters or less

which identify the variable sought. If it has less than

64 characters it must have the trim character at the

end of the string. If the real variable has units,

PMORGN should contain the string "(????????????)" into

which UNITNM is inserted at the appropriate time. PMES

must be dimensioned sufficiently large to accomodate

PMORGN plus 6 characters (for "ENTER ") or 64 characters,

whichever is less.

4.3.2.2 Characteristics. RSCLDR behaves

similarly to ISCLDR. If the source is the terminal and

PMPREP-.TRUE., it calls RVAPMP to prepare a prompting

message. When the preparation is unsuccessful, RVAPMP

is returned .FALSE.. RSCLDR becomes .FALSE. also and con-

trol returns to the calling program. If, however, the

message preparation is successful, or for IOMODE-1, 4

or 5, RSCLDR calls RSREAD to read the real value. RSCLDR

is set to .TRUE. or .FALSE. depending on the success or

failure of RSREAD.

When IOMODE-3, RSCLDR informs the user that reading

x-y coordinates from a graph on the screen in inappropiate

for real scalar input. If VITAL-.TRUE., it issues an

78I _ _ _ __

~ ~ ~4

advisory message to the user that the variable is essential

for program continuation. ALLFLG is changed to .FALSE.

if not already, with a warning that the "all" option is

aborted, RSCLDR is set to .FALSE., and control returns

to the calling program.

4.3.3 RVAPMP

4.3.3.1 Calling sequence. Both RSCLDR and

RA1LDR invoke RVAPMP to prepare a prompting message for

real scalars and real arrays respectively. The calling

sequence is:

LOGICAL FUNCTION RVAPMP(PMES,ALLFLG,
MTERSE,NCPW,DBNAME,UNITNM,VITAL,
PMORGN)

These parameters are identical to those for ISCPMP ex-

cept for UNITN14 which carries the user i/o unit to be

inserted into PMES.

4.3.3.2 Characteristics. When RVAPMP is

invoked, PMORGN is scanned for the location of the trim

character and for the string "(????????????)" called

UNITPT. The presence of UNITPT indicates that the vari-

able is dimensional.

When the dialogue is verbose, the prompting mes-

sage will be one line long if the trim character is

found before the 59th position. The word "ENTER " and

(PMORGN are copied into PMES, and UNITNM is inserted

79

into UNITPT if applicable. This is why UNITNM must be

12 characters long. If PMORGN is longer than 58 charac-

ters, the prompting message will be two lines long. The

string "ENTER" is printed immediately and PMORGN alone

is copied into PMES, corrected by UNITNM if necessary.

PMES will be the second line of the prompting message.

When the dialogue is terse, PMES is created from

the word "ENTER ", followed by DBNAME, UNITPT adjusted

by UNITNM, and lastly a trim character.

If the message preparation is successful, RVAPMP

is set to .TRUE. and control returns to RSCLDR or RAlLDR

as applicable. If, however, an error occurs, VITAL is

checked. The user is advised that the variable is es-

sential when VITAL-.TRUE.. If ALLFLG also is .TRUE.,

it is changed to .FALSE. and the user told the "all"

option is no longer in effect. In all cases of error,

RVAPMP is returned as .FALSE. to the calling program.

When successful, RVAPMP is set to .TRUE. before returning

control.

4.3.4 RSREAD

4.3.4.1 Calling sequence. Logical function

RSREAD reads the real scalar sought from one of the four

valid sources of information. It includes 13 parameters

in its calling sequence, almost all of which are identi-

cal to those in RSCLDR. The sequence is listed here:

80

LOGICAL FUNCTION RSREAD(RVAR,ALLFLG
MTERSE,IOMODE,NCPW,DBNAME,
UNITFM,UNITFA,
VITAL,PMES,RNFILE,FORMAT,DEFALT)

Note the absence of UNITNM, PMPREP and PMORGN. These

variables have either been used or incorporated into

PMES, which is defined at this point.

4.3.4.2 Characteristics. If the source of

information is indicated to be the user hoping to input

x-y coordinates from the screen, he is informed that this

mode of input is inappropriate for real scalar input.

The usual checks of VITAL and ALLFLG and messages occur.

The DEX routine RGET is used to read the real

scalar from the database and it returns error codes for

either success or the problems which can occur. The

latter are brought to the user's attention. DEX routine

REALIN (referen-e (5]) is used to read the real scalar

from the terminal.

In cases where an error occurs, the user is informed

if the variable is essential for input continuation.

When VITAL and ALLFLG are both .TRUE., ALLFLG is set to

.FALSE. and the user is informed. Further, if IOMODE-1

but there is no open database, or IOMODE-4 but a pre-

mature end-of-file is encountered, ALLFLG is set to

.FA.LSE. regardless of the value of VITAL.

81

RSREAD is set to .TRUE. if successful and .FALSE.

if an error occurs, and control is then returned to the

calling program. When successful, prior to returning

control, the value read is converted into program stan-

dard units by the expression

RVAL-RVAL * UNITFM + UNITFA

4.4 Real Array Series

4.4.1 Brief description. The real array reading

routines include RA1LDR and RAIRED, plus RVAPMP which is

shared with the real scalar series. Their function is

to read one dimension real arrays, up to the current

DEX limit of 200 elements, from any of the four valid

sources of input. The reading of x-y coordinates from!

the screen, while legitimate for an array since it can

store a pair of real numbers, has not been implemented

yet and the user is advised of this. The next generation

of DEX at MIT will include routines for reading and

writing two arrays simultaneously for graphics tasks.

4.4.2 RAlLDR.

4.4.2.1 Calling sequence. Logical function

RAILDR invokes RAlRED to read a real array from the

designated source. It also calls RVAPMP as necessary to

prepare a prompting message for terminal input. Its

calling sequence, listed here, has a few parameters not

seen in RSCLDR:

82

LOGICAL FUNCTION RA1LDR(RIARR,ALLFLG,NGOT,
MTERSE,IOMODE,NCPW,DBNAME,
MXTOGT,UNITFM,UNITFA,UNITNM,
VITAL
PMPREP, PMES, PMORGN, RNFILE, FORMAT,
NDEF, DEFALT)

RlARR is the real array that will store the elements, in

program standard units, that are read. MXTOGT repre-

sents the maximum number of elements to be read into

RlARR, and is the dimensioned size of RlARR. NGOT is

the number of elements actually read and can be less than

or equal to MXTOGT. NGOT need not be defined when RA1LDR

is invoked. NDEF is the number of default values and is

provided to allow the default condition to be smaller

than the maximum capability of the array.

4.4.2.2 Characteristics. When IOMODE=2

and PMPREP-.TRUE., RAILDR invokes RVAPMP to prepare

PMES. When RVAPMP is successful, and for the other

valid sources of input (IOMODE-l, 4 or 5), RAILDR calls

RAIRED. If either RVAPMP or RAIRED are not successful,

RAlLDR is set equal to .FALSE.. This also occurs when

IOMODE-3. It is set to .TRUE. otherwise and control is

returned to the calling program.

4.4.3 RAIRED

4.4.3.1 Calling sequence. The calling

sequence for RAIRED is as follows:

(

83

LOGICAL FUNCTION RAIRED(R1ARR,ALLFLG,NGCT
MTERSE,IOMODE,NCPW,DBNAME,MXTOGT,
UNITFM,UNITFA,VITAL,
PMES,RNFILE,FORMAT,NDEF,DEFALT)

Like in RSREAD, UNITNM, PMPREP and PMORGN are no longer

required. MXTOGT represents the maximum number of ele-

ments to be read into RIARR, always starting at position

1. NGOT is defined in RAIRED.

4.4.3.2 Characteristics. RAIRED first

employs DEX routine CHKRNG to verify that MXTOGT is not

greater than the maximum DEX array size (currently 200

elements).

If IOMODE=3, the real array is not read and the

appropriate checks of VITAL and ALLFLG and message

issuing occur.

The reading of an array from a database is accomp-

lished by DEX routine AGET, which seeks MXTOGT elements

from the database array. AGET returns six possible re-

sult codes. RCODE=0 is simple success, that is, there

were MXTOGT elements stored in the database array. NGOT

is set equal to MXTOGT. If RCODE-l, there was no open

database. This causes ALLFLG to change to .FALSE. if

it was .TRUE. and RA1RED to be set to .FALSE.. RAIRED

is also set to .FALSE. if the variable does not exist in

the database (RCODE-2), if it is not an array (RCODE-3),

of if it was undefined (RCODE-4). When the number of

84
_ _ --- -~t

elements requested exceeds the number stored (RCODE-5),

the extra elements in RlARR are set equal to 0.0 but

NGOT is set equal to the number stored. When the number

of elements requested is less than the number of elements

stored (RCODE-6), the first MXTOGT elements are read into

R1ARR and NGOT is set equal to MXTOGT. The user is ad-

vised in these circumstances of what has occurred.

When reading from the terminal, DEX logical function

REALIN is invoked with the following statement:

LOGVAL - REALIN (MXTOGT,NEED,RIARR,PMES)

A prompting message asks the user to input up to MXTOGT

values. NEED represents the difference between the

number of elements read in and MXTOGT. If no elements

are read (NEED-MXTOGT) the reading is considered a failure.

The reading is considered successful if at least one num-

ber is entered. NGOT is set equal to the number of ele-

ments entered.

The user is advised if a premature end-of-file is

encountered when reading from a file.

When failures occur, VITAL and ALLFLG are processed

as usual. Then RAIRED is set to .FALSE. and control

returns to the calling program. If the reading is

successful, the elements are converted into program

85

standard units by a DO loop for NGOT iterations with the

statement

R1ARR (I) RARR (I) *UNITFM + UNITFA

Then RAIRED is set to .TRUE. nd control returns to the

calling program.

86

86 r

CHAPTER 5

THE EXTENDED DEX LIBRARY EDITING ROUTINES

5.1 General Description

At some point in the operation of a program the

user may decide that he wants to change the value of one

or many variables. It may be that the value read as in-

put is incorrect, or he wants to see the effect of changing

one variable on the output. He may even decide he does

not like the answer given by his program and, before

storing it in a database or file, wishes to exchange it

for another value he has. For whatever reason, the user

requires the capability to enter the new value at the

terminal. The editing routines were developed for this

purpose.

Currently there are two logical functions in this

category, ISCEDT and RSCEDT, with a third RAREDT,

scheduled to be developed for the next version of the

extended DEX library. ISCEDT allows the editing of

integer scalar variables, RSCEDT allows the editing of

real scalars, and RAREDT will allow the changing of

elements in a real array.

87

5.2 Logical Function ISCEDT

5.2.1 Calling sequence. Logical function ISCEDT

would be invoked by a module subprogram, normally when

IOFLAG is set equal to 2 in a subroutine like MAINPG

described in Chapter 2. The calling sequence includes

15 parameters listed here:

LOGIAL FUNCTION ISCEDT(NEWVAR,ALLFLG,
MTERSE,NCPW, DBNAME,
MENUFL, MENUNM,NITEMS, ITEMS,
PMPREP, PMES, PMORGN, RNFILE,
FORMAT, DEFALT)

For ISCEDT, the first parameter is an output variable,

ALLFLG is both input and output, and the remainder are

all input variables.

NEWVAR will store the new value of the integer

variable being changed. ALLFLG indicates the status of

the calling program "all" option. Its value may be

changed from .TRUE. to .FALSE. during the editing

sequence.

Logical variable MTERSE indicates the type of mo-

dule dialogue: terse or verbose. NCPW represents the

number of characters per word assumed by DEX routines, 4

and is dependent upon the particular computer in use

DBNAME is the 8-character database name of the integer

sought.

(When MENUFL-.TRUE., the integer being sought is a

menu selection. The eight-character menu name is stored

88

V .-- -----. aim i m -• --- ru

pl

in MENUNM. NITEMS is the number of menu items, and it

cannot exceed 12. ITEMS is where the menu choices are

stored. Each item is described by an eight-character

name (including blanks), so that, at four characters per

word, ITEMS should be dimensioned as 2*NITEMS.

Since the new integer value will be entered at the

terminal, a prompting message is required. PMPREP is a

logical variable which indicates if the program is to

prepare the message (.TRUE.) or if it is supplied by the

calling program (.FALSE.). PMES is where the prompting

message is stored. It can be up to 64 characters long,

and if less it must include the trim character, "<", at

its end. If PMPREP-.TRUE., PMES is undefined in ISCEDT.

PMORGN stores the information describing the vari-

able in question. It is typically the database comment.

PMORGN can be up to 64 characters long and requires the

trim character if less. Because PMORGN is used to pre- I
pare the prompting message when the dialogue is verbose,

if PMPREP-.FALSE., it need not be defined in ISCEDT.

RNFILE is the reference number for reading from a

sequential file using Fortran READ and corresponds to

RNRFIL in the calling program. FORMAT stores the for-

mat for reading from a file. DEFALT is the default

(value of the integer in question.

89

5.2.2 Operation. The task of ISCEDT is actually

quite simple. In order to read a new integer from the

terminal, ISCEDT merely invokes ISCLDR, using the vari-

able VDMODE, which has a value of 2, in place of IMODE.

ISCLDR then prepares a prompting message, if necessary,

and calls ISREAD to read the value entered, ISCEDT is

set to the same value with which ISCLDR is returned

(i.e., .TRUE. for success), and control returns to the

calling program.

In calling ISCLDR, ISCEDT defines the parameter

VITAL as .TRUE. in all cases. This stems from the policy

that if the user wishes to correct a value, he really

wants to correct it for program continuation. Failure

of any of the integer reading routines would change

ALLFLG if it was .TRUE. when ISCEDT was invoked.

It may not be readily apparent to the reader, but

because the source will always be defined as the terminal

by ISCEDT, the calling parameters RNFILE, FORMAT and

DEFALT, used only when tMODE-4 or 5, need not be defined

here. In fact, dummy variables could have been used. It

was decided to use the correct variables in the calling

sequence to avoid potential errors by creating more

variables. The ones used should al:eady be available in

the module, being needed for reading and writing integer

values.

90

5.3 Logical Function RSCEDT

5.3.1 Calling parameters. Logical function RSCEDT

is invoked by the module to permit the editing of a real

scalar variable. Its calling sequence is as follows:

LOGICAL FUNCTION RSCEDT(NEWVAR,ALLFLG,
MTERSE,NCPW,DBNAME,
UNITFM,UNITFA,UNITNM,
PMPREP,PMES,PMORGN,RNFILE,
FORMAT,DEFALT)

All of the parameters except NEWVAR are input variables,

and ALLFLG is both an input and output variable.

Most of these parameters are identical to those

used in ISCEDT. Three are new. UNITFM and UNITFA are

respectively the multiplicative and additive conversion

factors for converting the real scalar read in user i/o

units to the value NEWVAR in program standard units.

UNITNM is a 12-character version (including blanks) of

the user input/output units of the variable, and is used

in preparing the prompting message when PMPREP-.TRUE..

5.3.2 Operation. RSCEDT behaves very similarly

to ISCEDT. It calls RSCLDR with the variable EDMODE,

defined as 2, in lieu of IMODE (terminal source) and

VITAL specified as .TRUE.. The real scalar reading

routines accept a value entered at the terminal, convert

it to program standard units and store it in NEWVAR. If

(a failure occurs, ALLFLG changes to .FALSE. if it was

.TRUE. when RSCEDT was invoked.

91

IF

RSCEDT is set to the same value as RSCLDR (.TRUE.

if NEWVAR is successfully read in, .FALSE. if an error

occurred in the reading sequence) and control is re-

turned to the calling program.

One can see that the editing routines are essen-

tially another version of the reading routines. Current

plans for the array editor anticipate extending this

capability to include reorganizing the entries and in-

serting new values for whichever element or group of

elements is specified by the user. Further, it is hoped

that throught the editor, it will be possible to execute

the calculation subprograms only for those elements

changed in order to reduce computing costs. It may be

that these options will be operated by the user by means

of editing menus also. In short, the goal will be to

simulate the editor capability of an interactive system

such as CMS at MIT.

(9

92

CHAPTER 6

THE EXTENDED DEX LIBRARY WRITING ROUTINES

6.1 General Description

Once information has been read, edited or computed,

unless it is to be used as input for computations, it is

necessary to transmit it to one of three possible desti-

nations: a DEX-created database, the terminal or a sequen-

tial file. Further, for our purposes, a distinction shall

be made between writing alphanumeric characters on the

terminal screen via DEX routines and plotting the infor-

mation on the screen as a graph. In the current version

of DEX at MIT the plotting option is not yet implemented.

The function of the extended DEX library writing

routines, described in this chapter, is to permit the

transmission of the information to the three. valid desti-

nations. Eight logical functions comprise this group of

routines, and, like the reading routines, they can be

categorized by either type of variable handled or by

function. They are listed here by the first method:

Integer Real Real
Scalar Scalar Arra

ISCDMP RSCDMP RARDMP
ISDSCR RVDSCR
ISRITE RSRITE RARITE

Both the real scalar and real array series share RVDSCR.

93

The top routines, called the "dumpers", serve a

function similar to that of the loaders of the reading

routines. They screen out requests to perform plotting,

call the "descripters", if necessary, to prepare descrip-

tion messages for identifying the values when writing on

the terminal, and invoke the "writers" to do the actual

writing to the destination.

One general observation concerning the writing

routines which is best made here is that the concept of

"essential" variables, which was introduced in the chapter

on the reading routines, is not employed. This affects

the execution of a calling program all option. The

premise is that when writing all the values from a menu,

the failure to write one should not prevent the writing

of the remainder. The user can go back and analyze why

the one was not successful without having to rewrite all

of the variables from the menu. The only case where the

all option is aborted is where the destination is a data-

base and no database is found open. Rather than getting

a string of similar messages announcing this fact, the

writing sequence is halted.

944

(•

- AD-Al10 839 NASSACHUSETTS INST OF TECH CANRIO OPT OF OCEAN C-ETC F/B 9/2AN ZNVESTISATION INTO THE USE OF OATA BASES IN CONPUTER-AIDCD N--ETC(U)
JUN 81 R C CELOTTO

UNCLASSIFIED NL
2 '3

EI-,hh
I-" •h

Il'1 II~ 1 '-2

MICROCOPY RESOLUTION TEST CHART

NATIONAL HURIIAU OF STANDARDS 1963-A,

W --
1

6.2 Integer Scalar Series

6.2.1 ISCDMP

6.2.1.1 Calling sequence. Logical function

ISCDMP is the supervisory subroutine for writing integer

scalar values and is the subroutine which appears in

module subprograms. The calling sequence contains eleven

parameters and is listed here:

LOGICAL FUNCTION ISCDMP(ALLFLG,MTERSE,IOMODE,NCPW,
IVAR,DBNAME,DMORGN,
DMPREP,DMES,RNFILE,FORMAT)

In accordance with DEX practices, the output variables

come first in the calling sequence. ALLFLG is both an

input and output variable for ISCDMP, being defined at

the invocation and capable of having a different value

when ISCDMP is returned to the module subprogram. ALLFLG

contains the information about the calling program all

option.

The remaining parameters are exclusively input

variables from the point of view of ISCDMP. MTERSE indi-

cates the type of module dialogue. NCAW is the number

of characters per word assumed by the DEX routines.

IOMODE corresponds to OMODE in the module calling program

and represents the destination of the information to be

written. As a reminder, its values are repeated here:

ZOMODE-: a DEX-created database

95

IOMODE=2: the terminal using DEX routines

IOMODE-3: the screen using plotting routines

IOMODE-4: a sequential file using a formatted
WRITE statement

IVAR is the integer value which is to be written.

DBNAME is the 8-character database name of the variable.

DMORGN is a string of up to 64 characters which describes

the variables. It is usually the database comment. If

it has less than 64 characters it must include the trim

character "<". The routines in this series assume that

integer variables have no units.

DMPREP is a logical variable which, if .TRUE.,

means that the description message is to be prepared by

ISDSCR. In this case, DMES is undefined. DMES is where

the description message is stored. If the dialogue is

verbose it can be up to 64 characters by, whereas if the

dialogue is terse it will only contain DBNAME. If

DBPREP-.FALSE., DMES must be provided by the module and

must include the trim character if it is less than 64

characters long.

RNFILE is the file reference number for writing to

a sequential file. It corresponds to RNWFIL in the

calling program. FORMAT contains the format to be used

to write the integer available to the file.

(

96

I

6.2.1.2 Characteristics. ISCDMP first

checks the destination pointer. If IOMODE-3, the user

is informed that plotting is an improper mode of output

for an integer scalar value and ISCDMP is set to .FALSE.

before returning control to the calling program.

If IOMODE-2 and DMPREP=.TRUE., ISCDMP calls ISDSCR

to prepare the description message for identifying the

integer when it is written to the terminal. When this

is successfully accomplished, or when IOMODE-l or 4,

ISCDMP invokes ISRITE to actually perform the writing.

If either ISDSCR or ISRITE is returned .FALSE.,

ISCDMP is also set to .FALSE. and control is returned to

the calling program. Otherwise, it is set to .TRUE.

prior to returning control.

When invoking ISRITE, a new logical variable,

DBCHNG, is introduced. It is included in anticipation

of future capabilities of DEX and indicates when a change

is made to a database value. This will alert the user

to check other variables which are dependent on the value

of the integer being written. Currently DBCHNG is

initialized as .FALSE. in ISCDMP.

6.2.2 ISDSCR

6.2.2.1 Calling sequence. Logical function

ISDSCR prepares a description message suitable for

97

identifying the integer available when it is to be written

on the terminal. Its calling sequence lists the perti-

nent parameters provided by ISCDMP:

LOGICAL FUNCTION ISDSCR(DZ4ES,MTERSE,NCPW,DtBNAME,DMCRGN)

The value of logical variable MTERSE dictates whether the

description message, to be stored in DMES, will be brief

or long. NCPW is used by the DEX routines which manipu-

late character strings to produce the message.

6.2.2.2 Characteristics. If the dialogue

is verbose, DMORGN, which contains a string of up to 64

characters describing the integer variable in question,

is inserted into DMES. For terse dialogue, DSNAME is

copied into the description message. If the insertion

is successful, ISDSCR is set to .TRUE. and control re-

turns to ISCDMP. If not, an error message is issued

and ISDSCR is returned .FALSE..

6.2.3 ISRITE

6.2.31. Calling sequence. Logical function

ISRITE actually writes the integer available to the

specified destination. Its calling sequence is as

follows:

LOGICAL FUNCTION ISRITE(ALLFLG,DBCNNG,MTERSE,IOMDE,
NCPW,
IVAR,DBNAME,DMORGN,DMESRNFILE,
FORMAT)

(

98

Logical variables ALLFLG and DBCHNG are defined when

ISRITE is invoked. DBCHNG is always .FALSE., and will

become .TRUE. if a change is made to the integer variable

DBNAME in the database. DMES is always defined when

ISRITE is invoked so DMPREP is no longer needed. DMORGN

is required because it may be used for comparison with

the database comment.

6.2.3.2 Characteristics. If the destination

of the integer available is a database, ISRITE first

attempts to extract an existing value by DEX routine

IGET (reference (5]). If no database is open, ALLFLG

is changed to .FALSE. if it was not already, with an

appropriate message being issued to the user. If the

variable is defined in the database, and it is different

from the integer available, both are presented for the

user's inspection. The user then specifies which is to

be placed in the database. The new value is inserted by

DEX routine IPUT (Reference [51) and DBCHNG becomes

.TRUE.. If the variable was not defined, the new value

is automatically inserted. Once this is accomplished,

the database comment is compared to DMORGN and, if dif-

ferent, they are presented for the user's inspection.

Again, he specifies which is to be the final database

(comment.

99

IJ
When writing to the terminal, an output message

is created from DMES, the string " - " and the integer

value. The entire message is then printed by DEX

routine MESOUT.

If IOMODE=3, the user is informed that plotting is

an improper mode of output for an integer scalar. In

this case, and other cases where the writing is unsuc-

cessful, ISRITE is returned .FALSE. to the calling

program. Otherwise it is set to .TRUE. prior to re-

turning control.

6.3 Real Scalar Series

6.3.1 RSCDMP

6.3.1.1 Calling Sequence. RSCDMP is the

subprogram that normally appears in the module for

writing a real scalar value to the designated source.

Its calling sequence includes 14 parameters:

LOGICAL FUNCTION RSCDMP(ALLFLG,M4TERSE,IOMODE,NCPW,
RVAR,DBNAME,UNITFM,UNITFA,
UNITNM,
DMPREP,DMES,DMORGN,RNFIL,
FORMAT)

All of these parameters are input variables with respect

to RSCDMP except ALLFLG, whose value may be changed

during the writing sequence. RVAR stores the value of

the real scalar available to be written. UNITFM and

(UNITFA are respectively the multiplicative and additivc

100

conversion factors for converting the real value in

program standard units to input/output units prior to

the writing. UNITNM is a 12-character version (including

blanks) of the input/output unit name. DMPREP indicates

.f the description message, DMES, is to be prepared by

RVDSCR.

DBNAME is an 8-character name of the real scalar

and DMORGN is a string of up to 64 characters which

identifies the variable. If the variable is dimensioned,

DMORGN contains the string "(????????????)", referred to

as UNITPT, into which UNITNM will be inserted. DMORGN

must include the trim character if it is less than 64

characters long. RNFILE, corresponding to RNWFIL of the

module calling program, is the file writing device number.

FORMAT contains the format for writing to a file with a

formatting Fortram WRITE statement.

6.3.1.2 Characteristics. RSCDMP has three

tasks: to screen out requests to plot a real scalar, to

call RVDSCR if DMPREP-.TRUE. and IOMODE-2, and to call

RSRITE to perform the actual writing. If IOMODE-3,

RSCDMP issues a message informing the user that this is

not possible. In this case, of if either RSDSCR or RSRITE

are returned .FALSE., RSCDMP is set to .FALSE. and con-

trol is returned to the calling program. If the called

101

functions are returned .TRUE., RSCDMP is also set to

.TRUE. before returning control to the calli'ng program.

In invoking logical function RSRITE, the logical

variable DBCHNG is introduced. It i4 initialized in

RSCDMP as .FALSE.. If, when executing RSRITE the vari-

able value is changed in the database, DBCHNG is returned

to RSCDMP as .TRUE.. In future versions of DEX, RSCDMP

will pass the value of DBCHNG back to the calling program

to alert the user to check other variables which are

dependent on RVAR.

6.3.2 RVDSCR

6.3.2.1 Calling sequence. In the same man-

ner as RVAPMP, RVDSCR is shared by both the real scalar

and real array series. Its function is to prepare a

description message suitable for identifying the values

being written on the terminal. It is invoked by either

RSCDMP or RARDMP using the following calling sequence:

LOGICAL FUNCTION RVDSCR (DMES, MTERSE, NCPW, DBNAME,
DMORGN, UNITNM)

DMES is undefined when RVDSCR is invoked. The other

parameters are all input variables from this function's

point of view. They have all been described in either

section 6.2.1.1 or 6.3.1.1.

(1

102

(I

6.3.2.2 Characteristics. If the module

dialogue is verbose (MTERSE-.FALSE.), the description

message is formed by copying DMORGN into DMES. If the

real scalar being written has units, RVDSCR inserts the

12-character unit name UNITNM into the string UNITPT,

"(????????????)", which is now in DMES by virtue of

having been in DMORGN. If the dialogue is terse, then

RVDSCR copies DBNAME into DMES. It then scans DMORGN

for UNITPT, and if it finds it, copies UNITPT into DMES

following DBNAME and replaces the question marks with

UNITNM. If DMES is successfully prepared, RVDSCR is

returned .TRUE.. Otherwise it issues an error message,

is set to .FALSE., and returns control to the calling

program (either RSCDMP or RARDMP).

6.3.3 RSRITE

6.3.3.1 Calling sequence. Logical function

RSRITE is used to write a real scalar to the valid

specified destination. Its calling sequence is as

follows:

LOGICAL FUNCTION RSRITE(ALLFLG,DBCHNG,MTERSE,IOMODE,NCPW,
RVAR,DBNAME,UNITFM,UNITFA,UNITNM,
DMORGN,DMES,RNFILE,FORMAT)

This is similar to RSCDMP with three exceptions. DBCHNG

is a logical variable which is always .FALSE. when RSRITE

(is invoked. OMPREP is no longer-needed since in all

103

(II

cases DMES is now defined. DMORGN is still requried

because it will be compared with the database comment.

6.3.3.2 Characteristics. RSRITE first

converts the real scalar value from program standard

units to user input/output units, stored in variable

TVAR, by the statment:

TVAR - (RVAR-UNITFA)/UNITFM

If IOMODE-1, the database is first checked to see

if a value in question already exists. If the database

is found closed, RSRITE alerts the user and changes

ALLFLG to .FALSE. if it was not already so. If the

variable does not exist in the database, it is inserted

using DBNAME, TVAR "nd DMORGN (corrected for units if

applicable) as its name, value and database comment.

If the variable exists but is not a real scalar, RSRITE

informs the user and is set to .FALSE..

If the variable exists and is defined, its value

is compared to TVAR and the user is presented with both

if there is a difference. He then is asked which value

he wants in the database and the chosen one is written

(or left) in. RSRITE then compares the exist..ng data-

base comment to the one specified by ""RG ,nd writes

them both for the user's inspection if they are dif-

ferent. The user then specifies which one is to be the

104

database comment. This step is crucial in insuring that

the correct units for TVAR exist in the database comment.

When writing to the terminal, an output message is

constructed using DMES, the string = " and the real

value. This message is then printed by DEX routine

MESOUT.

If IOMODE=3 despite the previous checks, the user

is informed that a plot cannot be used for writing a

real scalar value, and RSRITE is returned .FALSE.

RSRITE is set to .FALSE. in all cases where the real

value is no,. 3uccessfully written and control is then

returned to the calling program. Otherwise it is

returned .TRUE. to RSCDMP.

6.4 Real Array Series

6.4.1 RARDMP

6.4.1.1 Calling sequence. Logical function

RARDMP is used in the module subprogram for writing a

real array. It has the same three functions as RSCDMP

and ISCDMP: to screen out requests to plot graphs, to

call RVDSCR if needed to prepare a description message,

and to call RARITE to actually do the writing. It has

the following calling sequence:

(

105

LOGICAL FUNCTION RARDMP(ALLFLG,MTERSE,IOMODE,NCPW,
R1ARR,DBNAME,NFROM,NTO,
UNITFM,UNITFA,
UNITNM,DMPREP,DMES,DMORGN,
RNFILE,FORMAT)

A few new parameters deserve explanation. RlARR

stores the array elements, in program standard units if

they have dimensions. The array corresponding to RIARR

in the module should be dimensioned as large as the

value MXTOGT used in RAILDR for reading the arnay.

NFROM represents the position in the array at which

writing commences. It should always have a value of 1,

specified in the module calling program, except possibly

when writing to the terminal. If the user is in the

"editing" versus the "writing" mode of operation, he may

desire to write only part of an array on the terminal.

In this case the editing routine specifies NFROM to be

a value from . to NTO inclusive prior to invoking RARDMP.

NFROM should be 1 when writing the array on the terminal

when not in the "editing" mode.

NOT represents the number of elements to be written

in all cases but one. This exception occurs when writing

to the terminal in "editing" mode, when NTO indicates the

last element in the array to be written. Other than

this case, NTO corresponds to the value NGOT obtained

when reading the array with the reading routines (i.e.,

106

the actual number of elements read into the array repre-

sented by RIARR), and may be less than MXTOGT.

The other parameters in the calling sequence are

the same as those in RSCDMP.

6.4.1.2 Characteristics. If IOMODE=2 and

DMPREP-.TRUE., RARDMP invokes RVDSCR to prepare a

description message suitable for identifying the array

being written to the terminal. If RVDSCR is successful,

and for IOMODE-l and 4, RARDMP invokes RARITE with the

statement

LOGVAL=RARITE(ALLFLG,DBCHNG,MTERSE,IOMODE,NCPW,
RlARR,DBNAME,NFROM,NTO,UNITFM,UNITFA,
UNITNM,
DMORGN,DMES,RNFILE,FORMAT)

In this version of DEX, DBCHNG is initialized .FALSE.J

in RARDMP. If a change is made to a database array by

RARITE it will be changed to .TRUE.. In future versions

RARDMP will pass the value of DBCHNG back to the user

via its calling sequence, to alert the user who may wish

to verify other variables dependent upon this array.

If IOMODE-3, RARDMP informs the user that it cannot

be used to write a real array. In this case, or if

RVDSCR or RARITE is returned .FALSE., RARDMP is set to

.FALSE. prior to returning control to the calling program.

If the two called functions are successful, RARAMP is

also set to .TRUE..

107

6.4.2 RARITE. Since the calling sequence for

RARITE has been described above, this section will only

discuss RARITE's characteristics. The task of this

logical function is to write the real array elements

available to the proper specified destination. The first

action it takes is to convert the elements in program

standard units to input/output units and store them in

a temporary array. This is done with a DO loop from

NFROM to NTO and the statement

RTARR(I) - (RlARR(I)-UNITFA)/UNITFM

The elements in RTARR are in the units described by

UNITNM.

If the destination is a database (IOMODE-l), it is

desired to compare the existing array with the new one.

RARITE first attempts to extract the existing array and

store it in a working array RXARR using DEX routine AGET

by the calling sequence

LOGVAL-AGET(DBNAME,RXARRNTO,NSTORD,RCODE)

There are six possible result codes returned by AGET.

If RCODE-0, AGET was completely successful in that the

number of elements stored in the database array (NSTORD)

is equal to the number requested (NTO), which is also

the number of new elements to be stored. If RCODE-l,

the database was not open. This will cause ALLFLG to

change to .FALSE. if it was not already, aborting the

calling program all option.

108

It

If DBNAME does not exist in the database (RCODE-2),

it is created with DEX function DBVINS, and RTARR is

stored in it. RTARR is also immediately stored if the

array DBNAME exists but has no datum stored in it (RCODE=

4). If DBNAME is not a real array (RCODE-3), the user

is informed.

The final two result codes are more diabolical.

If the number of elements stored in the database array

is less than the number requested by AGET (RCODE-5), the

elements that do exist, plus zeros up to NTO elements,

are stored in RXARR. The user is advised that this has

occured, that comparison of the existing values in

RXARR and the new values in RTARR can be accomplished,

but that the new values cannot be stored if the user

decides. they are the ones desired. This is because the

storing of an array is performed by DEX routine APUT via

the statement

LOGVAL-APUT(DBNAME,RTARR,NTO,NSTORD,RCODE)

Unless NTO-NSTORD, the storing will not occur. All is

not lost, however! The user can proceed back to the

module calling program, exit to the DEX level via the

"$" command and delete the array with the DEX editing

capability. He can then return to the module and write

(the array into the database when AGET returns RCODEm2.

109

.2.rs - .--. -- _______________- -

The other problem occurs when the number requested

is less than the number stored (RCODE-6). In this case

NTO elements are stored in RXARR for comparison, but for

the same reason as above, the user is advised that storing

the new values will not be possible.

Once RXARR is established (RCODE-0, 5 or 6), a

comparison between its elements and those of RTARR is
-6

conducted. The criteria for difference is 1.0x106 .

The user is informed of how many differences were found

and asked if an inspection of all the values is desired.

A partial review is not possible. If the user responds

affirmatively, the values are listed. UNITNM is printed

in the heading. RARITE then asks the user to specify

which group of values (all old or all new) is desired.

If the user chooses to insert the new values, DBCHNG

is set to .TRUE. and APUT is called to store the values.

Error messages will be issued if NTO does not equal

NSTORD.j

If the writing is successful, or if the old values

are retained, RARITE proceeds to compare the database

comment to DMORGN, corrected for units, if applicable.

When not the same, it prints both and asks the user to

decide which is correct, storing the one chosen as the

database comment. If there was no comment already in

the database, DMORGN is automatically inserted.

110

When the destination is the database, the writing

is considered successful only when all the new values

are successfully stored or the old values retained. All

the other possibilities result in RARITE being returned

to RARDMP as .FALSE..

If IOMODE=2, the description message, DMES, is

printed on the terminal, and then the array is listed

from position NFROM to NTO. If IOMODE=3, the user is

informed that plotting the array cannot be accomplished

and RARITE is set to .FALSE..

When IOMODE-4, the array is written to a sequential

file by a DO loop from 1 to NTO with the statement

WRITE(RNFILE,FORLMAT) NTO,(RTARR(I) ,I=,NTO)

In the cases where the writing is successful RARITE

is set to .TRUE. and control is returned to the calling

program.

111

CHAPTER 7

THE EXTENDED DEX LIBRARY UNIT ROUTINES

7.1 General Description

The module author will invariably write the compu-

tational subprograms of the module in the unit system

with which he is most familiar. Frequently, it is not

the system that the user of the module prefers. The

tenet of the DEX philosophy to make modules convenient

to use dictated that this problem be addressed. The

result was the development of a group of subprograms in

the extended DEX library which allow the user to choose

from a reasonable selection, the units for input and

output purposes for five basic types of measurement,

plane angle, force, length, temperature, and time -

and combinations thereof.

The twenty-two extended DEX library unit routines

can be divided into three categories:

(i) Five subroutines which enable the
user to choose from the options
available the preferred input/output
(i/o) units.

(ii) Five logical functions which enable
the module to obtain conversion
factors which convert the five basic
user-specified (i/o) units into the
program standard units (p.s.u.) and
to obtain the unit names of the i/o

(units for use in prompting and des-

112

ioi

cription messages on the terminal and
database comments.

(iii) Twelve logical functions which enable
the module to obtain the conversion
factors and unit names or special
names for combinations of the basic
units.

This chapter will examine each category.

7.2 The I/O Unit Specifiers

7.2.1 General Description. The extended DEX

library includes five subroutines which enable the user

to read, edit, or write the five basic units he wishes

to use for input and output. These are listed here:

AU41T (plane angle)
FUNIT (force)
LUNIT (length)
TPUNIT (temperature)
TUNIT (time)

The user must choose from the units offered by the

particular subroutine menu options. These choices were

included in anticipation of the possible needs of most

users. Table 7-1 lists the choices available.

7.2.2 Characteristics of a Typical Subroutine.

In execution, the five subroutines simply call ISCLDR

to read the input/output unit indicator, ISCEDT to edit

the i/o unit indicator, or ISCDMP to write the i/o unit

(indicator. Because all five subroutines are structured

identically, only one, AUNIT, will be described in detail.

113 j
TO P -P

E-

0.4
0 40

E-4 0 0 1
E- -4 4.

54 r-4 0) V~~1

4E-
E41

-4 * Vz
(n .V Z 0*

-45E4 4
4. 4 CO "4 4 *4~

41~~ ~ 4) 4a 1 U 41
E-4 P- 4J. 4J

44 Q m (D 4
E-4 44u

1-4 2" -P .4 44ra 41 A. 41 41
0 4 .4 . 4j'
c 41 (a 4 N1..

P4 44 w " "4~ 4

E-4 w. 0 V
41 F-4 0 .b1 0

E-5 Z 'U 4 44 0
1. 0 414 U 1 ..

'-41

94 2 ~ 41 114

Its calling sequence is listed here:

SUBROUTINE AUNIT (UIOAUN,CALALL, IOFLA . :'DE,
MTERSE, DBAUNN,DBA 'NC, i EP,
PHES, RNFILE, AUNFT$:Yi)

The calling sequences for the others are smi*

Table 7-2 lists the comparable distinctive parameters.

UIOAUN denotes the i/o angle unit and can be

either an output variable (when reading or editing) or

an input variable (when writing). It has the following

integer values depending on the specific i/o angle unit:

1: cycle
2: radian
3: degree (angular)
4: minute (angular)
5: second (angular)

CALALL is a logical variable which indicates the status

of the calling program "all" option. Recall from the

Cube Module that subroutine MXUNIT was the calling pro-

gram for this series. IOFLAG indicates whether the

operation is reading, editing, or writing (IOFLAG = 1,

2, or 3 respectively) and dictates whether ISCLDR,

ISCEDT or ISCDMP will be invoked. IOMODE indicates

the source when reading and the destination when

writing. MTERSE, NCPW, PMPREP, PMES, and RNFILE ful-

fill the same roles as described in previous chapters.

DBAUNN is where the database name of the angle

unit, "UIOAUN", is stored. DBAUNC is a character

115

Table 7-2. I/O Unit Specifier Subroutine Calling Parameters

Subroutine

Parameter AUI1T FUNIT LUNIT TPGNIT TUNIT

I/O Unit Indicator UIOAUN UIOFUN UIOLUN UIOTPU UIOTUN

Database name DBAUNN DBFUNN DBLUNN DBTPUN DBTUNN

Database conmment DBAUNC DBFUNC DBLUNC DBTPUC DBTUNC

File format AUNFRM FUNFRM LUNFRM TPUFRM TUNFRM

Default variable DEFAUN DEFFUN DEFLUN DEFTPU DEFTUN

Table 7-3. Basic Unit Series Calling Parameters

Subroutine

Parameter AUNIT FUNIT LUNIT TPUNIT TUNIT

Conversion factor CONVA CONVF CONVL CNVTPM CONVT
CNVTPA

One letter abbrev. NAMTP1

Two letter abbrev. NAMF02 NAML02 NAMT02

Three letter abbr. NAMA03 NAMF03 NAMT03

Five letter abbrev. _AMTP 5
Six letter abbrev. NAMA06 NAML06 NAMT06

Eight letter abbr. NAMA08

Twelve letter abb. NAMAl2 NAMF12 NAML12 NMTP12 NAMT12

Program standard PSTAUN PSTFUN PSTLUN PSTPUN PSTTUN
unit indicator

I/O unit indicator UIOAUN UIOFUN UIOLUN UIOTPU UIOTUN

(11

116

string which identifies the angle unit variable. It

is used as the database comment and in the preparation

of the prompting and description messages. AUNF4M is

the format to be used if the angle unit indicator is

to be read from or written to a sequential file.

DEFAUN is the default value of the angle unit indicator

if that is chosen as the source.

In operation, AUNIT branches depending on the

value of IOFLAG and calls ISCLDR, ISCEDT, and ISCDMP.

When the user wishes to read the angle unit, AUNIT

provides menu "ANG.UNIT" with its five choices to

ISCLDR. This is an example of when a menu is used to

input an integer value. The reader should understand

that is is not the name of the unit which is read or

written by these subroutines, but rather an integer

value which denotes the i/o unit to be used.

7.3 The Basic Unit Series

7.3.1 Series Description. Since the module

author knows and provides indicators for the units in

which he has written his program, once the user

specifies the units he wishes to use during input and

output, it is possible to determine the conversion

factors for relating the i/o units to the program

117

standard units. These conversion factors can then be

passed on to the loaders when reading variables (real

scalars or arrays) to convert their values in i/o units

to p.s.u. for the module computing subprograms. Sim-

ilarly, these factors can be passed on to the dumpers

when writing variables to convert their values in

p.s.u. to i/o units. The determination of the conver-

sion factors for the five basic types of units is

accomplished by five logical functions listed here:

UNITAF (angle units)
UNITFF (force units)
UNITLF (length units)
UNITMP (temperature units)
UNITTF (time units)

These functions accomplish one other task: they pre-

pare various alphabetic character versions of the in-

put/output unit names, up to twelve characters long,

which are used in database comments and prompting and

description messages. This is explained further below.

7.3.2 Calling Parameters. Once again, because

all five subroutines are essentially structured the

same, only one, UNITFF, will be described in detail.

The calling sequence for UN:TFF, as it would appear in

a module subprogram for reading, editing, or writing

input/outpu, variables, is as follows:

(LOGVAL-UNITFF (CONVF, NAMP02 , NAMFP3 , NAMFI2,

-- i _ • -- i i6S

ALLFLG,PSTFUI ,UIOFUN,NCPW)

The sequence is similar for all five functions with two

exceptions. The number of versions of the unit names

for some is different and UNITMP includes two conver-

sion factors instead of one. Table 7-3 lists the com-

parable calling parameters for the five functions.

The first four calling parameters are defined by

tT'TFF and the four are input variables to the function.

CONVF is the multiplicative conversion factor which

partially converts the force values from i/o units to

p.s.u. when reading or editing and does the reverse

when writing. The conversion also requires an additive

conversion factor which, in all cases except with

temperature units, is equal to zero and is provided to

the loader, editor, or dumper by the module. The con-

version that takes place in the reading routines is of

the form:

VARIABLE(p.s.u.)-VARIABLE(i/o unit)*UNITFDI+UNITFA

where UNITFM is the multiplicative conversion factor

determined by one of these functions and UNITFA is the

additive conversion factor.

NAM402, NAMF03, and NAMF12 are respectively two-,

(three-, and twelve- character abbreviations of the

119

force unit used during input and output. NAMF12 is

used as UNITNM in prompting and description messages

and database comments for force variables (recall that

UNITNM must be a twelve character version of the rele-

vant unit). Tables B-1 through B-5 in Appendix B list

the various abbreviations of the five basic units.

PSTFUN and UIOFUN denote the program standard

force unit and the input/output force unit respectively.

They can each be an integer between 1 and 7 inclusive,

corresponding to the seven permissible force units

listed in Table 7-1.

7.3.3 Execution. When invoked, UNITFF calls

routine CHKRNG to verify that PSTFUN and UIOFUN are

within the permissible range 1-7. UNITFF then uses

the pair (PSTFUN, UIOFUN) as an index to a data table

included within the function to locate the conversion

factor appropriate for converting an input value in

the i/o force unit denoted by UIOFUN to the program

standard force unit denoted by PSTFTN.

UIOFUN is also used as an index to another data

table in the function which contains the various

abbreviations of the seven force units. UNITFF employs

DEX routine LMOVEC to copy the characters from the data

table into the strings NAMF02, NAMF03, and NAMl12.

120

If a failure occurs in defining either the force

unit conversion factor or the unit name, the user is

informed that the appropriate variable has not been

defined, is essential for i/o continuation, and must be

corrected before continuing. ALLFLG is changed to

.FALSE. if it was .TRUE. and UNITFF is set to .FALSE..

If successful in accomplishing both tasks it is set to

.TRUE..

7.4 Derived I/O Unit Series

7.4.1 Series Description. The third series in

the units category contains twelve logical functions

for defining conversion factors and unit names for

units of measurement formed by combining basic units.

These are listed in Table 7-4.

In order to operate these functions, the module

author must first have either specified or allowed the

user to specify the basic i/o units which are building

blocks for these derived unit functions. The module

program must then have used the appropriate basic unit

series function or functions to obtain the various

multiplicative conversion factors and abbreviations.

These are then used as calling parameters for the

derived units in this series.

121 ______

Table 7-4. Derived I/O Unit Series

Function Type of Measurement Units of Measurement

UAACC angular acceleration plane angle/(time)2

UACCEL linear acceleration length/(time)2

UAREA area (length) 2

UFREQ frequency plane angle/time
UKVISC kinematic viscosity (length) 2/time

UMASS mass force-(time) 2 /length
UMPOWR mechanical power force-length/time

UPRESS pressure force/(length)2

UPSPEC power spectrum (length) 2-time
24URHO mass density force-(time) /(length) 4

USPEED speed length/time

UVOL volue (length) 3

122

There is considerably more diversity in the call-

ing sequences of the twelve functions. Appendix B,

Table B-6, lists them for reference. In these functions

only multiplicative conversion factora are used to

determine the combined conversion factors because none

involve temperature units. It should, therefore, be

easy to identify CONVA, CONVF, CONVL, and CONVT as the

angular, force, length, and time multiplicative con-

version factors. The abbreviations of the basic units

used in the calling sequences were shown in Tables B-1

through B-S.

One of the functions, UPRESS, will be described

in more detail as an example of how they operate.

7.4.2 UPRESS Calling Parameters. UPRESS allows

its users to define the unit conversion factor and name

for a variable that has the units of pressure (force/

area). The calling sequence for UPRESS is as follows:

LOGICAL FUNCTION UPRESS (UFPRESS, NPRESS, ALLFLG,
CONVF,CONVL, NAMFY3,
NAMF02, NCPW)

The pressure conversion factor UFPRESS converts the

input/output pressure unit to the program standard

pressure unit by multiplication when reading or editing

and converts the p.s. pressure unit to i/o pressure

(unit when writing by division. The unit name UNPRES

123

is used to identify the units of the variable in

question for messages and the database comment. UNPRES

is a twelve-character string (including blanks).

ALLFLG indicates the calling program "all" option.

NAM703 is a three-character force unit abbreviation and

NAML02 is a two-character length unit abbreviation.

7.4.3 UPRESS Operation. PRESS first defines the

pressure unit conversion factor by the statement

UFPRES = CONVF/CONVL**2

In order to form the pressure unit name, UPRESS

defines a twelve-character dummy name variable UXPRES

printed here:

/ * * 2

UPRESS inserts, via DEX routine L MOVEC, NAMF03 into

the first three blank spaces and NAML02 into the fifth

and sixth spaces. The three "words" (four characters

per word) of UXPRES are then set equal to the three

words of UNPRES. As an example, if the force unit was

poundforce and the length unit was inches, the final

version of UNPRES would be

"LBF/IN**2 "

If a failure occurs in preparing the unit name, a

message advises the user and informs him that the problem

must be corrected, because it is essential for input/

124

output continuation. If ALLFLG was .TRUE. it is set

equal to .FALSE. and the user is informed that the "all"

option is aborted. UPRESS is then set equal to .FALSE.

If it is successful, UPRESS is set equal to TRUE..

Certain combinations of basic units have special

universally recognized names used to identity the

measurement unit. Where possible, the logical functions

provide these names rather than creating a name by its

contituents, such as UNPRES was formed in the above

example. Table 7-5 lists these special names.

Although there are only twelve types uf measure-

ments listed the derived unit series have more versatil-

ity than first meets the eye. They can be used for

units that have different names but the same basic units.

For example, UPRESS can be used for stress units as

well as pressure. In addition, they can be used for

units that have different basic units but the same for-

mat. An example is provided by UAACC and UACCEL, which

could be used for any unit type requiring one basic

unit in the numerator and a basic unit squared in the

denominator. The module author must be careful to

supply the correct special parameters in the function

calling sequence in the module calling subprogram.

(

1 25

zzz z z z z z

0 0-4 0 - - -

M zz oz oz z zz m
o IV V18 I 8 18 18 Ic ~ = c~ C

0 0 0 0 0 0 0

z

--4

0

0 ~ ~ 1)N . .

C CN N G

U;' .0 4.) u

-4-

Em 0

z

-P4)
-414.

U212I

CHAPTER 8

DEVELOPMENT OF A CRUISER-DESTROYER DATABANK AT M.I.T.

8.1 Considerations in Database Design

8.1.1 Function. When designing a database, the

developer must not only consider for what immediate

function it is intended, but must also try and anticipate

other future demands and organize it accordingly. One

solution to this problem, in a sense an avoidance of it,

is to create very specialized databases containing in-

formation about only one aspect of the overall project

involved. The project has a databank comprised of many

databases. Physical limitations on the database size,

such as the limit of 200 variables in a DEX-created

database, suggest this practice. These smaller data-

bases may be more efficient from the point of view of

computer costs when it comes to manipulating them. How-

ever, the situation can arise where a computer program

requires as input data from several different databases,

entailing the time consuming effort of opening and

closing them all. Only experience in using the data-

bases can reveal the deficiencies in their design.

The function of the cruiser-destroyer databases

(developed and/or envisioned in the Department of Ocean

127

Engineering at MIT is to support the naval architect

during the concept and preliminary design phases of a

ship design. During these phases a variety of products

are developed, including the overall vessel dimensions

and hull definition, hydrostatic and Bonjean curves,

weight and volume estimates, longitudinal weight distri-

bution, propulsion and electrical powering requirements,

transverse stability and floodable length checks and

general arrangements. The tasks to produce several of

these, notably the determination of ship dimensions,

weight and volume estimates, powering requirements and

transverse stability, can be accomplished with the aid

of a computer synthesis model. The REED Model (61 used

at MIT is an excellent example of this design tool, and

it was the anticipated support of that model that

strongly influenced the databases designed in this in-

vestigation. The naval architect who chooses to use a

synthesis model must carefully determine his input if

he desires to use the model efficiently. Being able to

draw upon a supply of existing ship information is in-

valuable to this effort, and this was one of the reasons

for developing the cruiser-destroyer databases.

An effective database is one that can be shared by

(many different engineers involved in the ship design

128

project, each of whom has a different task to perform.

Data should be stored in a form that allows each one to

extract the information required and use it directly

without having to pass it through some form of inter-

pretation process. An example is a table of offsets

database. Ideally, it contains sufficient offsets pro-

perly organized such that each one of the programs for

hydrostatics, Bonjean curves, cross curves of stability,

floodable length, structures and seakeeping can directly

access it and obtain the input required without having

to go through a "black box" interface program.

The development of a comprehensive computer-aided

ship design system that ensures such program/database

design requires a "top down" approach to the problem,

as described in reference (7]. One starts with the

overall objective and works down through functional

specifications to complete system design. If success-

fully accomplished, as a result of strict discipline

during the process, no unnecessary capabilities need be

developed along the way. One proceeds from each level

to the next lower by answering the question of how to

provide for the needs of the higher one. This contrasts

directly with the traditional method of many individuals

(writing programs for their specific task, and only after-

129

wards determining if these programs can be integrated

for some higher objective.

8.1.2 Types of Databases. Accepting the concept

of a bank of databases to describe a ship, either exist-

ing or being designed, we can list the types which will

be useful:

1. General description
2. Weights and centers of gravity
3. Longitudinal weight distribution
4. Volumes, areas, and centroids
5. Offsets
6. Equipment specifications and locations
7. Power-speed data
8. Seakeeping data
9. Internal arrangements

10. Topside arrangements

This list is similar to that of the computer-aided

ship design system implemented in the Ship Department

of the British Ministry of Defense (8].

Storing in a computer databank several of these

databases for many classes of ship is extremely helpful

as a research resource during the concept design of a

new vessel. Taking this one step further, as described

in reference (8], is to establish "base" ship databanks

made up of all of the database types. If a new vessel

is similar to one of these, a copy of the databank pro-

vides an excellent starting point to begin defining the

(new design and can save much redundant work. This is

130

predicated on the assumption that all the databases of

a particular type for all ships are identical in struc-

ture and differ only in content. Such a practice is

essential to the efficient use of the databanks.

8.2 Organization of the MIT Cruiser-Destroyer Databases

8.2.1 General Databases. During this investigation

work was conducted to establish the first two types of

databases listed in Section 8.1.2 for eleven classes of

U.S. cruisers, destroyers, and frigates. These classes

are as follows:

FF-1040 DD-931 CG-16
FF-1052 DD-963 CG-26
FFG-l DDG-2 CG-47 f
FFG-7 DDG-40

This section will describe the organization of the gen-

eral databases and the next section will describe the

weights and centers of gravity databases.

The general databases are so named because they

provide a general and not-too-detailed description of

the ship class which would be useful to a researcher

seeking to determine first estimates for a new design.

The information was gleaned from various sources in the

open literature, and the respective weight and moment

reports and booklets of general plans (9,10,11,12].

131

The database contains eight categories of variables.

These are:

1. Hull characteristics
2. Propulsion and powering
3. Transverse and directional stability
4. Weapons payload
5. Electronics, fire control, and sensors
6. Aviation capability
7. Complement
8. Gross mass properties

Appendix C is an example of a general database. The

individual entries are what would appear if one issued

the "dump" command from the DEX level with a particular

database open. The order of the listing would not be as

they appear here because of a "hashing" function built

into the DEX which distributes entries to a database in

the memory randomly in order to store them more effi-

cently.

There are actually 78 variables, listed in Table 8-1

which constitute the eight categories. Each one has a

number assigned on the left hand margin. These serve

as a convenient indicator for the creation of Fortran

names for the various variables associated with each

element used in a DEX program. For example, in the

module MACHWT described later in this chapter, the pro-

gram names for the default value and comment statement

for propulsion plant type (Item 020) are DEF20 and

132I

t" _ L: __ It + m -A '

i-I 4J4J4 JA 4~I

Zj W 4.)J0

0

0

U E- E

E-0
E--

'Jj u &

0%(- C4 C
:4 c w034I =

r- &4 9)

Aj -W3 LW -40 -.)U .w

CD 'D '. u 3 -M I (a U e

.104Z j .34 L.E- z

a n Z U 4A

Q w u u w c.-1 -4 -.40 2 0-k &
0 a .f 1 V -4 4

323 j 0

E- 4J' -W J Aj Ai

4

. 4 4 >-

-4 C 41 41 -4 oc 4.

-W -. O 7 . 1) 1

-~ 0 CJ)J4 04

u Ac
v 4 l -4 - 4 A

>0 -> 'VW 4

; 4 Ai00.d4

41 z 01~4 .h-

= .4.0

E- ~ ~ ~ ~ ~ l 0 i41) ww C)

w 1.4 1)..4

0 IV) 0 >J) m 0 0 0
'.4 4 44J -. #., 44

.4 0 4 1 - - 410 O 1.4

E Z - 44 Z U:4 :-

0,

U) rid tn.

134

4.A -4

:2 >

Lot 0 4)>10 >

61 w '.4 w 1au.4 c

0 4. 0 0004 $4le U

-W J2 u. . V'A4

a ea00>

2. 4.4 :n -o 'U 0 JJ 0 nJ

66 A.J *-1. .4*' . 4. .

w4 '0 0 z zCj~..-. .. 0 .4 0 .0

u 0C. e J -k" 44 NU 44 %a kw.4 -k 4.4 4 4 4.4 4

o 40 0w0 0 0w 0 0 0

22

ix) 0 Ax W.~*4 4*~

1.4~ a. a. . ad .. A

41 1

>. .

I AJ

*-(

4w -4 rfl to..

U U
441 -.

.4W A- U 4 .
E--

4. - - A- w

-- *.4 -4 -4 .4 dw 4

~ I~Pbd A Ij4 a Su w

5~. So~- ~ ,
z z zZ~ z z j.J>3

= W4

ao z- *. 4. 0 ~l.~.J 0

~C136

CMNT20 respectively.

In each category some space has been left for

additional variables. Further, experience with the

databases may indicate that some items are not needed

and can be deleted.

An inspection of both Table 8-1 and Appendix C

reveals that certain items referring to the types of

plant or type of equipment have integer values where one

would expect a name. The reason for this is because

only three types of variables are allowed in the DEX:

integer scalar, real scalar, and real array. Alpha-

numeric words in the "value" part of a database entry

are not allowed. A code of integer values was needed to

solve this dilemma, and it was decided to adopt the pay-

load shopping list of the REED model because of its

comprehensiveness and its widespread use at MIT. Appen-

dix D contains the payload list from reference [6], with

some additional items included for this application.

The restriction on arrays that they contain only

real values poses a minor problem because they sometimes

contain information from the code which should be stored

as an integer. It should be obvious to the user from

the array name that an integer value is implied. Arrays

are used in some not very obvious cases in order to

137

accommodate the most information. An explanation of the

array variables should prove helpful.

TYPMATL has two entries to distinguish between the

type of material for the hull and the type of material

for the superstructure. The integer values are 1 for

steel and 2 for aluminum.

The type of sonar carried (TYPSONAR) is an array

because some ships have two systems installed: a bow

or keel-mounted sonar, plus a towed array or variable

depth sonar.

NGUNS and TYPGUNS are three element arrays to

accommodate the most number of distinguishable gun

mounts in any of the classes, which exists on the

DD-931 class. Not only does this destroyer carry two

calibers, 5" and 3", but the REED payload code allows

the distinction between a 5" gun mounted on the main-

deck (93) and a 5" gun mounted on the 01 level (94).

The emergency or secondary electrical plant in-

cludes three array variables: EMETYP, NEMG, and KWPEMG.

The CG-26 class cruiser has both a gas turbine-driven

and diesel-driven emergency generator. Therefore, the

first entries of the three arrays describes the one and

the second entries describe the other.

(Unfortunately, a great amount of the data available

138

from the various sources for the general database was

conflicting. Where such descrepancies occurred, this

investigator made choices based upon the most original

source, or the value upon which the most sources agreed.

Whenever possible, the original ship equipment is listed

in order to correspond to the weights and centers of

gravity databases, whose information comes from the

original class weight and moment reports.

Any value that was either classified or unavailable

was left undefined.

8.2.2 Mass Properties Databases. The general

databases include a gross mass properties category which

includes two arrays, WEIGHT17 and VCGI7. These contain j
respectively the overall weights and centers of gravity

of weight groups 1 through 7. The weight groups conform

to the U.S. Navy BSCI organization of ship weights. Al-

though the BSCI system has been replaced by the SWBS

(Ship Work Breakdown System) in recent years, it was

used for the databases because only the FFG-7 class is

sufficiently recent to have its weight and moment report

organized with the new system. Further, the REED model

is based on BSCI.

The gross mass properties are included in the gen-

eral databases because they are more frequently used for

139

estimations than the individual weight items, and their

inclusion may save the user from inspecting two different

databases.

There are about 150 items comprising the eight

weight groups of the BSCI system. Therefore, the com-

bination of weight and center of gravity for each item

exceeds the limit of 200 entries in a DEX database.

Although the use of arrays offers an apparent solution

to this problem, the idea was discarded after careful

consideration for several reasons. First, if one wished

to store the weight in long tons, the vertical center of

gravity in feet above baseline and the longitudinal

center of gravity in feet aft of the forward perpen-

dicular or from amidships in a three element array, not

only would it be difficult to identify the information

in the 64 characters of the database comment, but only

one of the two unit names could be stored there. An- A

other possibility was to store all of the weights (or

centers of gravity) for one weight group in an array.

There would then be eight weight arrays, eight vcg

arrays and eight lcg arrays, with the proper units in

the database comment. The limit of 200 elements per

array would not be a problem because the largest index

S (in any weight group is 51. This was considered

140

unsatisfactory because it was not felt that the one

database comment for the array was sufficient to iden-

tify the individual weight items and an extra index

would have to be provided to the user. Further, an

additional process would have to be developed for ex-

tracting the particular weight item out of the array,

and avoiding the need to know where a value was stored

in the database was one of the driving principles for

developing DEX databases to begin with.

Instead, it was decided to create a weight data-

base and a vertical center of gravity database, with

each item listed separately. Appendix E illustrates the

listing of each type. No need was felt by this invest-

igator for a longitudinal center of gravity database

for existing ships. The estimating of the transverse

stability of a new ship design can be done effectively

using data from existing ships because the vertical

locations of most items is restricted to a reasonable

degree by physical factors or proven arrangements. The

REED model demonstrates that dependable parametric

equations can be developed for estimating vertical

centers of gravity. However, there is far more flexi-

bility in both theory and practice for the longitudinal

(locations of many of the same items. Therefore, it is

141

II

more difficult to correlate into acceptably accurate

parametric equations the information available on lcg's

in existing ships. This does not preclude the need for

a database containing the longitudinal weight distribu-

tion of a ship design in order to support longitudinal

strength and seakeeping analyses. Nor does it preclude

the use of a longitudinal center of gravity database for

a new ship in order to support longitudinal stability

(i.e. trim) analyses.

8.3 Independent and Dependent Variables

8.3.1 Concept. Databases can be both the source

and destination of information. A particular program

may read its input from a database, calculate values for j
other variables in the database, and write the new val-

ues into those entries. This would be disastrous if

uncontrolled. When administering a ship design project

that involves multiple uses of the same databases, the

ship design manager must have a system whereby he can 7

control changes to the databases that occur as the

design progresses around the design spiral. Further,

the system should allow all design team members to be

alerted to changes which may affect them. It is planned

in future versions of DEX to implement a system that

(supports the concept of independent and dependent

142

variables.

Certain variables will be defined by the user as

independent variables which, either by fact or intention,

can not be changed despite changes in other variables.

The remaining variables in the program or database are

dependent on the former or each other for their values.

Each entry in a database will be provided with an index

of those variables whose value would be affected by a

change in its value. When causing a change to such an

entry (i.e. DBCHNG becomes .TRUE.), the user can query

this index to determine which other items should be

checked.

This task is extremely difficult in ship design

because of the interaction of almost all of the variables.

Ship design is not a linear process but a spiraling one.

Figure 8-1 illustrates an attempt to group the variables

of the general database into five levels of dependence.

The first column represents those variables which can

be considered independent. These might appear as

specifications in a Top Level Requirement or they might

be the result of trade-off studies during the design

phase.

The second group consists of those variables which

(are most directly affected by the independents or which

143

Primary Secondary Tertiary Fully
Independent Dependent Dependent Dependent Dependent
Variables Variables Variables Variables Variables

Weapons Payload fKWSSER - NSSG
Electronics, etc. KWEMER WEIGHT17
Aviation Cap.) KWPEMG --... mNEMG VCG17

LCB
LC F

[NOFFNFLAGOf NCPO
NENLSTF INCREW
NTROOPS .

TYPMATL X (LBPZ O CWP DISPTOT
BEAMIDWL BEAMMAX C
T IDRAFTSON

GM ESR
FINSTBL

NRUDDER

VSUS SHP - PROP RPM

VEND

Figure 8-1.I GeeaFOtUseV rL e eainhp

(SPY

EME144

are estimated first in the design process. The third

column is dependent upon values in the first and/or

second columns and the fourth column on values in the

third and possibly first and/or second column. This

table allows the database designer to determine what

indices to put on each variable to alert him to check

dependent ones.

For example, the dependent variables entry for

ENDUR may include the following: WTLOAD, LBP, BEAMDWL,

T, CP. A check on LBP will than add to the list of

affected variables DISPMLD, DISPTOT, LOA, CWP, CI, LCB,

LCF, etc. Although this system requires more work by

the database designer, it willmake the job of the

design manager easier.

8.4 Application of DEX: An Example

8.4.1 Function of MACHWT. The Machinery Weight

Estimating (MACHWT) Module was written to demonstrate

how DEX and the cruiser-destroyer databases could be

used in the preliminary design of a new ship. MACHWT

has a fairly limited computation capability since it is

only a demonstration module. It enables the user to

estimate weight items 200, 201 and 203 based on certain

(existing parametric equations and parametric equations

145

developed by the user during the module execution.

These three weight groups are respectively the

weight of boilers, weight of propulsion units and weight

of the propeller, shafting, and bearings. An analysis

of 9 ships for which weight data is available reveals

that the sum of these three items constitute between

58.0 and 65.5% of the total Group 2 weight.

The first two weight items are estimated by

assuming that they are linearly related to installed

horsepower. The program fits a straight line to data

extracted from the databases chosen by the user and pre-

dicts the new ship weights based on the new specified

installed SHP. The program calculates the three com-

ponent weights of item 203 from the input supplied by

the user from any of the valid sources, using parametric

equations from the REED model. A summary of the input

required for each weight is provided in Table 8-2 (the

actual database names are used).

8.4.2 List of Subprograms and Menus. The Machinery

Weight Estimating Module includes ten subprograms. They

are listed below in the order in which they are most

(

146

likely encountered during the execution of the module:

MAINPG
MODIO
INPUT
MWUNIT
MWLIST
MWCHRT
MWCOMP
OUTPUT
MWCOEF
BLOCK DATA
LINFIT

There is actually no one correct sequence of listing the

subprograms in the module, other than the requirement that

MAINPG be first.

TABLE 8-2

INPUT FOR MACHWT

W200: W200 and SHP from at least two steam ships and
SHP of new ship

W201: W201 and SHP from at least two ships and SHP
of new ship

W203: LBP, PPTYP, NSHAFT, PRPTYP, VSUS and DPROP
(optional) of new ship

147

Seven of the subprograms employ menus in their

operation. These are illustrated in Figure 8-2. A

listing of the modul- -ubprograms appears as Appendix F.

They are described in next section.

8.4.3 Description of the Subprograms. A descrip-

tion of a typical execution of the module will serve as

a backdrop for the subprogram descriptions. The user

leaves the DEX level and activates the module by using

the "DEX-MAIN" menu item and module labeled

.begin machwt

Subprograms MAINPG and menu "MOD.MAIN" are en-

countered first. MAINPG is identical to the subprogram

of the same name used in the Cube Module described in

Chapter 2, as is subprogram MODIO, which would be the

next one encountered. The menu selections from these

two subprograms are

.read input

These place the user in subroiltine INPUT. This

subroutine provides the user with a menu permitting him

to read, edit, or write the following:

1. All the module input variables.
2. The module input and/or output variables
3. The machinery weight item to be estimated
4. The data from existing ships to be used I

for curve fitting for weight items
(W(200) and W(201).

148

MENU MENU MENU MENU
MOD.MAIN MOD.IO INPUT UNITS

DIALOGUE INPUT ALL ALL

INMODE OUTPUT UNITS FORCE

OUTMODE DONE WT.ITEM LENGTH

READ CURVEPTS TIME

EDIT NEWSHIP DONE

COMPUT DONE

WRITE

QUIT

MENU MENU MENU
WT.TTEM CHARACT. OUTPUT

W200 LBP UNITS

W201 DRAFT WT.ITEMS

W203 PPTYPE COEFFICI

SHP DONE i
MAXSPEED

O SHAFT

TYPSCREW

DIAM.PRP

W200

W201

W203

Figure 8-2. Machinery Weight Estimating Menus

149

5. The characteristics of the new ship
design needed as input for the weight
calculations.

The machinery weight item must be read first to

establish the proper value of a variable WFLAG needed by

the subsequent subprograms. This will permit the cor-

rect prompting messages to be issued to the user for

proper input sequencing.

The user can access MWUNIT to specify the length,

force and time units to be used for input and output,

but he will normally just use the ones initialized in

the module in BLOCK DATA. These values are respectively

foot, long ton and second, and were chosen to conform

with the units of the database variables used. MWUNIT

is a shortened version of MXUNIT from the Cube Module.

Returning from or bypassing MWUNIT, the user types

.wt.item w200

to access MWLIST and set WFLAG to indicate weight group

200 to be estimated. MWLIST returns him to INPUT and

he selects "curvepts". The following prompting message

is issued.

*SPECIFY THE SEQUENTIAL NUMBER OF THIS PAIR OF DATA POINTS
*ENTER UP TO 1 INTEGER NUMBERS

He types "I" and is presented with menu "CHARACT." from

subroutine MWCHRT.

150

Subroutine MWCHT allows the user to read, edit, or

write the characteristics of the ship in question listed

in the menu in Figure 8-2. For data points, the in-

dependent variable must be read first and the dependent

variable next. In this case the user specifies SHP and

then W200 and they are read from the open ship database

and then inserted into the first positions of an in-

dependent variable array and a dependent variable re-

spectively. The user then issues

.done done done

to get back to MAINPG. Using the "inmode" menu selec-

tio. the user closes the open general database for one

steam warship and opens the other one. He then types

.read input curvepts 2 shp yes w200

to input the second pair of data points into the two

arrays. The "yes" responds to a question posed by

MWCHRT to ascertain if the user is employing horsepower

or kilowatts to measure SHP.

This process is repeated for as many ship class

databases from which the user wishes to read data for

curve fitting, up to a limit of 10. For the purpose of

demonstration, the three weight items were stored in

the general databases so that only one database for

(each ship would have to be opened. Normally they re-

151

side in the weight dataoases.

When the user is satisfied with the data points

read, he specifies "newship" from menu "INPUT" which

causes the following message to be issued:

*TO ESTIMATE W(200) OR W(201) INPUT NEW SHIP SHP.
*SELECT WHICH CHARACTERISTIC TO READ.

The user then selects SHP from menu "CHARACT." to com-

plete the input required. He returns to MAINPG and

executes the computing program MWCOMP by the following

command:

.done done done compute

Once it completes its calculation, MWCOMP returns control

to MAINPG, which issues its menu prompting message.

In order to first inspect the coefficients of the

straight line fitted to the data, the user (after en-

suring that the destination is the terminal) types

.write output coeffici

These commands invoke MODIO, OUTPUT and MWCOEF succes-

ively. The last one causes the two element coefficient

array to be printed. The two values which appear are

the slope and y-intercept of the straight line.

The user then selects "newship" from menu "OUTPUT"

and then "w200" from "CHARACT." and the new estimated

boiler weight is printed on the terminal. The user

(can them return to MAINPG, choose the new ship database

152

as the destination, and write the estimated W(200) into

it. Now, in order to estimate W(201), the user must

first exit the module via the "quit" selection from

"MOD.MAIN" in order to clear the independent and dapen-

dent variable arrays. This is unnecessary if he is go-

ing to use at least the same number of data points as

for W(200). It is also unnecessary for W(203) which

does not require curve fitting.

For W(203), subroutine INPUT prompts the user with

the following message when "newship" is chosen:

*TO ESTIMATE W(203) THE FOLLOWING INFORMATION IS REQUIRED:
*LBP PPTYPE SHP NSHAFT PRPTYP VSUS DPROP(optional)

If DPROP is not specified MWCOMP estimates it.

Simple as it is, MACHWT is more sophisticated than

the Cube Module. It is hoped that the listing in

Appendix F can serve as a guide to readers preparing a

module for use on the DEX.

8.4.4 Results from the MACHWT Module. The module

was exercised to estimate W(200) and W(201) for a nominal

new ship design having a 40,000 SHP 1200 psi steam plant

installed. In order to estimate the weight of boilers,

data from the DDG-2, DDG-40, and FF-1052 classes was

used. For estimating the weight of the propulsion units,

(data from the DDG-2, DDG-40, CG-16, CG-26, FF-1052, and

153

FFG-l class databases was used.

The REED Model algorithms for the respective

weights are as follows:

W200-.00234*SHP+48.09
W201=.00143*SHP+17.92

The MACHWT Module fits the following equations to

the data used:

W200=.002585*SHP+31.94
W201-.0017665*SHP+6.66

The respective estimated weights for the new ship

appear in Table 8-3.

TABLE 8-3

WEIGHT ESTIMATES FOR 40,000 SHP SHIP DESIGN

Reed Model MACHWT

W200 (tons) 141.7 135.3
W201 (tons) 75.1 77.3

8.4.5 Future Developments. MACHWT represents a

starting point for what is hoped will be a major ship

synthesis program incorporating DEX databases and the

REED Model. The model as written contains hundreds of

parametric equations for estimating weights, volumes,

(areas and centers of gravity which were derived from

154

d -- _ III I l~ , ,

the data available to its author at that time. As new

ships are designed by the Navy, say every 4-5 years, a

problem arises with respect to incorporating them into

the model. It would be a major undertaking to perform

the regression analysis for all new equations. Such a

task would have questionable merits since it would pro-

bably be found that many equations change only slightly,

and others that change drastically have insignificant

effects on the overall design. Further, the user would

still be confined to using equations of a form chosen

by some other designer and derived form those ship

classes chosen by him, to which the current user may

object.

MACHWT demonstrates a program that allows the user

to specify the ship data upon which he wishes to perform

a regression analysis. There is no reason why the co-

efficients obtained could not be written into a database

which would be accessed by the REED model in order to

estimate that weight item. Expanding on this idea, a

program could be developed which allows the user to

derive his own coefficients for parametric equations for

the large, but not all inclusive, set of variables

(weights, volumes, etc.) which impact significantly on

(the ship design. When a new naval ship class design is

155

finalized, databases could be produced and stored in the

design library at MIT. Only after, perhaps, 3-4 designs

and 10-15 years would a major revision of the REED model

become worthwhile. The cycle could then begin anew.

Not only would this approach avoid frequent rewriting

of the REED model, but more importantly, it would allow

the individual designer much more control over the tool

at his disposal. This would greatly support the function

of the department to train naval architects.

(
156

CHAPTER 9

CONCLUSIONS AND RECOMMENDATIONS

With the completion of the work of this investiga-

tion the first truly capable version of DEX at MIT has

been implemented. Current plans call for the adaption

to DEX of many of the computer programs in the depart-

ment and the indoctrination of students to the system.

These programs cover a wide range of the calculations

which occur during the preliminary design phase.

Two areas of the extended DEX library require

development. First is the creation of routines for

editing real arrays. Several editing capabilities,

similar to those of the operating system, are being

considered for implementation, possibly operated by the

user by means of an editing menu.

The second area is the task of introducing graphics

to the DEX at MIT. An idea to develop routines capable

of reading or writing a pair of one-dimensional arrays

is under consideration as the means for handling plots.

One problem that also must be solved is how to allow the

plctting of two curves on the same graph on the screen

without any intermediate dialogue between program and

(user. Although some terminals permit both plotting and

157

dialogue to occur simultaneously on the screen, many do

not, and for DEX to be portable it must be suitable for

both types of terminals.

For the purpose of performing ship designs at MIT,

this writer perceives the most immediate and imperative

need to be the development and implementation of pro-

grams which will allow the creation of a table of offsets

database. Once the hull form can be defined, the existing

programs for hydrostatics, cross-curves of stability,

floodable length and Bonjeans, adapted to DEX, can be

operated using a common offsets database. Actually, with

a hull definition database, the door is open for a sig-

nificant expansion of the use of the computer in the

preliminary design phase including seakeeping, general

arrangements, longitudinal strength, etc. Therefore,

this task is strongly recommended as a fruitful area

for further research.

The adoption of the DEX System entails a change in

philosophy on the part of the individual author and user.

Heretofore, the programmer required the user to learn

how to provide the input, to restrict himself to the

design path chosen by the author, and to use the units

preferred by the author. With DEX, the user should ex-

(pect some standardization in the means of input,

158

I. _________________

flexibility in the path to pursue, and choice in the

unit system with which to work. It means more work for

the module author, but his job is only performed once,

while the advantages he can offer by using DEX will be

available to countless users.

(

15S9

REFERENCES

1. C. Chryssostomidis, "Computer-Aided Ship Design Educa-
tion at the Massachusetts Institute of Technology,"
Computer Applications in the Automation of Shipyard
Operation and Ship Design -, eds. Jacobsen et al.,
Amsterdam: North-Holland Publishing Company, 1976,
pp. 65-71.

2. John B. Woodward, "Computer-Aided Ship Design Educa-
tion at the University of Michigan," Computer Appli-
cations in the Automation of Shipyard Operation and
Ship Design II, eds. Jacobsen et. al., Amsterdam:
North-Hollan-Publishing Company, 1976, pp. 73-78.

3. Bertram Herzog, "A Transportable FORTRAN Based Execu-
tive System for Computer-Aided Ship Design Education,"
Computer Applications in the Automation of Shipyard
Operation and Ship Design -, eds Jacobsen et al.,
Amsterdam: North-Holland Publishing Company, 1976,
pp. 79-87.

4. Bertram Herzog, Module Programmer's Guide for the
Interactive Computing System DEX at the University of
Colorado, (Rev. 1978).

5. R. P. Geize and J. Kelley, DEX Modulo Programmer's
Guide, Houston: Gulf Research and DeVelopment Center,
Oshore Technology Department, 1979 (under revision).

6. Michael Reed, "Ship Synthesis Model for Naval Surface
Ships." O.E. and S.M. Thesis, Massachusetts Institute
of Technology, 1975.

7. Craig M. Carlson, Robert A. Johnson and F. William
Helming, "Computer Aids for Ship Design, Integration
and Control." Naval Engineers Journal (April 1980),
pp. 73-87.

8. S. J. Holmes, *The Application and Development of
Computer Systems for Warship Design." Paper presented
at the meeting of the Royal Institute of Naval Archi-
tects, Spring 1980.

9. John E. Moore, ed. Jane's ijtng Ships 1974-75. New
York: Franklin Watts,=Inc., 1974.(_

10. Jean Labayle Couhat, ed. Combat Fleets of the World
1978/79: Their Ships, Aircraft and Armament. Annapolis:
;avalInstltut--"-e ss, 160

160

REFERENCES (Continued)

11. Samuel L. Morison and John S. Rowe, compilers. The
Ships and Aircraft of the U.S. Fleet. 0th ed. Anna-
polis: Naval Institute Press, 1975.

12. U. S. Department of the Navy, Naval Sea Systems Com-
mand, Naval Vessel Register/Ships Data Book, 1 January
1980.

(

161

[I
I

APPENDIX A

CUBE MODULE LISTING

162

, 1.-

.. . .''IC I . .,, B oI

-~ ~~~ -0 . 0 %0- - -~ -0 -1 -0 -C - CJ- 3 %3 Cj~ ' %3 ~O1-C

x Iu

3.I - - = - I

a--Z 3 Z Z=

z js- - -

C2 - 0 -3 Z

16313 ; Z% - c 0 ;;a 36ZO

92 - W
z ~I 3-3
5 J6

I 3 a 2 - - V2

3 I[I d 33 -31 3

I I 2 0 * 3 0 -163

00 0 00 0 00 0 00 0 00 0 00 0 000N0 0 00 000c

C6 u

< 4 d7 0%1 ;
-o. - z

0

(A 0

IL I - Z WI

0 ztw0 Z 1
;A -6 Z0. .4 .A 4 2

2. (-.14 - O 0 3
-~~. 0.. -z 1I 20

x 0 V)- Z0 .- N 6W

:z~ --- -- Z0

6w4 4
06 z z *z .

9 - fl

V%. 1= x.0. a I5

'K 0~j~ ~164

Q% ~ ~ ~ ~ 0-o N Ff 0 *0 0 ~~'- 0 0% 0 - N e" 7 43 a- 0% 0- 4 1' g ' 0% 0- N,- = 3n F-'
0%~~ ~ ~~ 0 0-0 0 0 - - - - - - - - '33

0------------- ------------

z 0 .6

- rCZ
Z

* 6':

WI :0 1% 6W
- z -' w -

S0 0 c

-. 0 ~ 3 ~ 31-5

6iIi

zz

-w
- 3c

t34

16

- ej~ ~ 0 o C - N "I Zi - '0 C% - N e" Z ,%'0o r- ZN' N 11- 4% 0CC -N 1

-Z==g= -o -- -oc -oo - - o -ooo - -ooo -oo

I - !~ z C

W- -Z . :7

=)I -WWII I 1 6

-K I zKI .

I 'ZZ z

N m ~ I 24 ,Z A96

j = z~. Z-. K I. = 0 -

IH Z. I is=~I-

..-. - -- ---

F- d az 0 .7 a t-=CZGRzzllm = a'%

a 0 % zccaa0cz

- z

A 33

-=O~~zW IU)0-

*~W - -4a

uuu uu~j u Q 0 r

- --) 1 3 *

-o u
- 0-j So

o4 -

* -0% 109

zzzzz~zzzgzzzzzzzzz~zzgzzzzzzzgzzzzzzzzzzzzzz

z a II WC
=zw I> I II

I I4 I - I II

I = CZ I = I 10'- 0- I< 1I- 1
;M - - N - 1 I~z I lI I

I I 0.d -= I IO Z I>

a ~ ~ s U- : . .a I I0 .;

0 Z m . IIf ICI

I I-U Z f -a I (z z ~ I
a -6 bji- -z a a-C zz zz. I

- 1 .= IC

A 6. V -- o . a - - -Z I ~ ~ o

I Y) Z w -t

-O - Z., Iw - IZ-w I -C
0c -Z- -=A=. .0 <~. zz -.;

~~-04-Z

4C- VI- 3 - --i - Z 6 00 .VC

I ~ I a 3 3I- a 5
-0..

I - - *.-= I ~ g .- I

a0AIz = VI 3..I.. 1 -A

Io J):I ;;- 0

170

M.A..~a 3.3. =a.LQ.*. Z.
zzzzz~zzzzzzzzz~zgzggaazzzzZI-..ZZZZzzzzrazgzzzzz=---- XZZ-------------z--- ------- a6

-- z
z

zI

-z

-- > 4(

zz z
z 220 z

0C
u z

z COO,~ z
I-- 2 Cf

z azo t0z
z -

< Z -

z -

a a

= =J 04 0

2 . z . . .6j -4.

-Ww = .- < 0

-Q U- - 02
-~~1 > 1 -

x Q 00Z "C-

4 .l - . - 2 .. (.. -aU 66 -- -4 4-~ ~~ ~ c~. - -. ~ I - ~) I 3 U
WW WWi-

ex 0A0(Z. z* 06I 0
> 1.7(. 0 fUz-a,~~

-zz.~:C -o~1~--- 171

.~.''0 ~~ 0-~ ~ 0 ~ - - - - - 0 - - % - -- % -

zzzzzzzzzzzzzzzzzzzzzzz~zgzzzzzz

z

0

-

Sz -

Z Z

U ,

2 172

1 -fi 19 5 < I Z

I~U Z 0A .

II -I =0 I i

z A<W Iz ZW I.4

A IZ Ia - 60Z.

I X61I I I:. ! .6=I.

I~z I- w 0
I > Z 1~. - - 6 - Z z I-

I - lo- s - -* - .

I~~~> OZ-ZZ Z(Z I
z =-=-O <Q= 01 c 06 -

z z z o 3 =<= I Z a 0

z = -C6

cm = --;Zo~

= =Z <~ 1! - IZ -... >
& II Z ZI-= Z x - A 0

;jz ;j !.. I~~ -IZ 0 -C" -=

1 A~ 2~ I-<JiR 0 0 1

Z- zzz
Z 00 0 (-AZ06 -

-I It- -- I I 0 2 .

IZ U -' I ... A, I

*IO -0. Z an..

'0 2 1 - '-1 I. I ZSZJ p-173.

c ZN N z- Iz6%, . , o
- V0000 0 C O %a% %ON

A 0z

<z 4

z >

0 Z0 - . Z i

z z x c 0 a 0 - Zs=
P5 -.-- U -== CJ -"0o Z<

a. 3.4 a Zo X 0 .1z -z Q~zo0

~~v z'. 0= >- =- z z 0z '

0Z Z -
0Z z z

z-

-~~ - =00a 9 1 0 oa

QN, h- p<

-'-0fZo 0 -Z(0-fI0 wZI-0 -Zo
030 X.0 0. C-0 = 0 - L

zz ._ ~ ' Z N, '-.1Z0
'A z. 0 -.C z Z %" tn~~-~;' -sI-.S .

z - = z---- OM- 0ZZ ZI-

Z - - - X Z a= z z

==Z

ZZ ----3 -*-z z z ~ I

zz - iiZi

1.74

M o oz-c'N Nell

OA

Et5

- A -

z -0

x -- <% -Z

-z -. '-.. z x IZ Z ZZ Z

- A

--- zz --

- -x - =Q-====222
Zz -0'- -4: z0% Z,00

- 1-5 --- -j f -
3 :0 L.2 I- -

46 -- Z. 0 0O I

-I-'-175

6 1 1 I 100112101 000==o oc
- Nj- ~'3-~ ' -~a~' 0 0 - ------- 3--

3 x\ x i ..x x %'3x 3 ' '3'3''3''3 3r' = S x " .'S X C C C Cxx xxxzzzxxxx xx x xxzz xxz'z

-- 0

X--

z z z<z

z 1.
i0

z cc 4c f

K -z .,a
Z N -(-4' 6.ZT

fum a - <0 .v A
-, - 6w -6w

A. Z

-zc; -izoo~ to U A

-. -. -c - - -- - - - - -

----- - -Z- - - -- -0 - -. . ' * -- -

> A'~0 0M~
**5 *A.... - QQQQ.-.. 0

.. 3* * .2 <.176A.0..

x~o o o~

z

z L

zzz
z z

0 Z 1

Z= Q U0

-z - - -
> 0 3 .

10 -. v;

x z t: z

- - 0- c- z- *o zfl - Z
CE:~ - C0 - = -- - I

J: ti. - 4 .Z -A Z - .

S < - i *-
f. f Z .. Z

EX .> u *-Q U< - fl

0<1 0~ ~ - - ~ O 177

N N N N NN NN NN N N N Nc z c% - N en CCN N

4" XN -6"41 0O%0%co44F- 3

- 2.
z2

x -,.2 .
=2 -Z < - C

2 6 Z a ., < r
62 z o- 2 2.

< 2
22 - =0z22=~~.2Z 3c§.Z - 2.l0'

8- -Z.' 8-_ -z.a' -c-

- :2 z '2
60- w2~ - -* - -* Z

22 *2 178 122'~

Ij Z
z

Q C 0 ri

~179

-~~~~ -9 O 00- -eiC O %0 N C ? %0- - -~ - -0 - %0 'C~%

1 IZ I

4 z I Z

It 2 :)0- I II - 9

I 9 1 1 E s , >.I

0 86 4- <4

t3 X I
< z A Z -Z u0 O

it 0- '4Z c---.
O'. a.. 4c >C. = SZ sI= g. =

-Z 6W . ~i
tI -... - * 0 I-

<Z -z =-- ,- Zss
I 0U75.50 I 10 - ZIII I I

I z ~ I * IzC 40j M- -

'40 I 14 !1 14- -~ !0,

=;jh ZflV 0 ~ A I Al0 = 0 6 O ; A

I 0::I -A I .j 1X 0

I I 1- I- I-- 0 ~ .

I 0 >0 I C. -Cs I-- -- 0 1 00

z z

z
- IE

C It

- zj
X Z

z - -CA0

- I - 0 -I

C -0

zA f I

oC -Z=- madj z~

I x
42, a

- 181

t It

z

z

z

Z 0 WAl m~>

z z z L

-- 7 Z .>
z z a- <

6. -z. -C -Tr -Za

>- - 0 0 W

=-= z z zz
> 60 A -0

-- Z

-~~ - (0 - 1

Z~~(-=- W)Z C6z

0 £1-182

Q r0-0 00000 00 C0 000 0601000 0f0 C%000000IN 0

-'0-wco

00000----------------------0 ---------------- 0

>0

;2~
0z

'96

C'C

>C >Lj Ij Ia
JN 3 10

- :~183

oz Zz

0

0 W== 4

zu96

7A In

ZZ3

0c "An^T l

~~QUU u - O

194~d~~*

0 '000 000 000 00 000 000 000 00 000 000 000 00

U 6- Mix< ~ ~ 0 . -N

5- z t
z

0Y N"A WI

NN
'4a

185

NNNNNN N N N N1 N N4 N N1 u 04 1.?

U N
-z I

N- M Jr 6

Z *~s44

2186

m rJNI. . a "- %o a0

2~o~ o:0000oooz~ o~ ooo Z

:Z U0%-z.v0%-j'j. 0'0%0-

>0 0 00 0

>00 0 0 00~ 0 0 00 0 0 0 0 0 0 ~

-z I >

c Z AIZ

fil 7- a' =1

a 0 ZIz: II
> >1 5"s

uu UQQ uuuj

a .0 187

- - - - - - - - -

I= z6oI0 1 I IO - I I

1- 0 -- ; - IZO-.I - Iff

*~ z.. z-, < I

a I 0 - U .- l 04I

lot - C0 0 0 -u.6o
IZ ZW wC Co--O >w~) I 0
0 >10 0 0 I ~ 0~

z -A~ 6. 6. .0i C Z ~C ZVI- I -

*Z 4.14o a~- '~0

> 00;=< -~~~a~)J- 00 -

> -C Zf -ZC f -46 =66 >- Z x 2 . . I I

fl ew .. i 0o -,Z - Qz = > 0 a go

C2 a0- 1.C6t- - c -I- I

Co. 1-2 0 o-00<~ 0
wa- ~ C > 01

.M. ---.. ~0-..- I ZC08Z

w C% N ~-C%00 Z Z-T - 0 C C N 7

6' 6 IMA' %6* U 10I I 0ICI 0 0 V00 r % , 4%0%(N C
ozz

.- ZO

IZ

-zo

-.. 0
Q <0 0 0

z 0 Z- 1 3 I
< '

'<C
A il

Q '

0 a -.- du,0189

z 0_

- .30o 0

z- - 0-i <

z> .*

- 0.-,(> 0-- '

. .J

I ""- l0ll 1

.AO-A11O 832 MASSACHUSETTS INST OF TECH CAWRIDGE DEPT OF OCEAN EE-TC F/S 9/2AN INVESTISATION INTO THE USE OF DATA BASES IN COMPUTER.AIDED N--ETC(U)~LASI~~ JUN 61 Rt C CELOTTO

IMII

1111116*

1.511111 . 1 .6IIIIIN ~II. I

MICROCOPY RESOLUTION TEST CHART
NATIONAL BURIAU IOf STANDARDS 1963 A.

4zzz zzz f ggzEEz z zzzzzz zzzzx

1 Z=. > z
= -- -

u 8 fl8 C Z z4 0
< Z~ I Z = *)

z00 <0 - 1- > 6 W

I~ 04- . - .4>~I

I ~ ~ ~ X 0-Q-I C <xaZ 4g

I 0-Z Z- 12 >2 C.
* ~ ~ ~ ~ O I== ~ -1. . -

6" z0 I 1<-<-n
.5z=I1 3: X= 0

< WC I I - I1 I Zs
= z z - I - - 96i- I

z .22 = =t : :21
==-Il 4_ I - < I <~ 2~U

ZI :Z U $20 . 4 -f : Z,0 z- Zi -:% 4= - _

I z- 0 0 2 IZZI>5I-._ :0 OO Z4 Z
I 2>fl ~ 1 I .. ~ 0~2 .~ - AZ< 01

I-O 46.- >C2 S. -. <- 8~- z2 , 0 Z
- " z _z z. 06-C ZZ Z W~c -<.

'C ~ ~ ~ ~ -O .i- u24 i .I Z f f

c Z-.fl < 4 i0- Szf 6aoS> %

4j6,1-fzx XAX -- - ~ -'
0 1'- UI <= 4 4 - w 2

Z~. Z_ 2- >C = 40. =-~ *ea.Z-.., -
i~ 4- V) .1i Z OZO Z<zi4 00-2 -0 -.. ;- 6

-U -Z-Z --

IM -_ L-

- II. 1M 62..I 0. PE - at z -

o- = >I _ -i * .. i ! A-

:~t> >

> -4 - S .- : ".33
I> a I -C c $-- >

191

0 61
Zs Z

z
- a I

If -

z 4: Z--
M WE

= I I -~Z

6. 0 . d

z HA nazzzczzzzz3

- :x

- 'C 21-2

..

z =

ZZ

a.

962ia, -Z 21
4cf -

Z-0
Z> z C X

:210- - N, Z- -

WW

I~~ s1ag ~~ILILI~>i ill; IIIii
193

co

--O -------- -- - - - - - - - - - - - - - - -

fl*;0%Ozzlz zz60%O-N U zga
>> Z> > > > > > >>t> > > > >> > > > > > >> >> ~ ~' 0~ 0' 0'' 0% ~ I~ ~ 666660 %0 %0 %

00 00 00 00 00 00 00 00 00 00 00 00 0

'C>

6.
0>

0Z

>C-

VI 0 -

2 ZC

- . N -z

z Z2 %- >2 -= u

> > z z

z --

-~ ~ 194

- - - - - - - - -

SS NNNNNN

I W'

zz

oz iSz-

z a-

a 0*1

N 6 .2..-
-.wi~~j >~ IijI I " ,

Xx. -- c QN

-2, 0 > - 1

6.0 I - U
f"~~ ~ ~ ~ A= YI rUz ra 0

195

I I I

>>>>> > >>>>>>>>>>>>> >

00000

'3°N °

%O'OI" 43 'M' '

(t(

xI

19-N

- 0-

I l i l l I I I i II - 1 I -- zI

N IZ IQ F- 0ZM IC- II" 10 % -

* I0

z I j I

* I I

z I.

I r I ~
zz 0 a~ -g ~w

6 -7 3 42.: 1

z-

-c - -
-5-11911;s'-o3

O~~~~ir -uQflIO Q : i

CflLi 0 I* ~197c.

6N 6N IN 6C 6N 6 ' 6a 0 0 '0 %Z ' 47 0 0 0 ~ Q P- 0 r. C CCCCC Ck~ C%' N 0% 0% C., C% a% C

z z z z

* ~ ~ L a C -30

-- 0 t~* - - * . . . 1. *
Z C 0 -. -z C *

z zz . 0 .3 .3

zz -C CC..4 -X - Cz. =0.

-ZZ ' C 0--=3 3CC-33Zzz C -1=.. .7mwA3mz z 6
"'I--

*40- *--Z az *- *-Z--M**C *-ZCZ-*4*g"
=IC~n - ICC 33 !-<3Z; - .. 0

z I- - -0- ft. ;N C; - -. -C C 3- *

-C fId0Cc - aC CCcI 4

. 1 ItN22 - - - $- N

198

~~= 0 0 -- - - - - - -0 - - l - - - - - - -

* 61.

* 0

-, -V j 0 . c

6* -~ I*a I q l .. o* <
0 0=Q 2- z- Z- (-.

61 ..* u* f*-

cc -0 6 0 w.

* - f% - .= r-.

0 0< - w 0

W= ifi 6j- -. r - > on
i .* . Af CYZV=- v)3

0 0 .NV . §... .0 Q

0 -. * - - . * .c .- 0 .>

.xg zs = = W- __0

w~~= jr 7&

3 .Zz.0Z 1 .- f 1-N J? - -C r ZN "N* l -S
0 . -0 oz -- - - -3- *Z 0 i*Z

OZO C6 I > >~h Z 0; ; 33N. 0x _-
00**NNN 6" *OO = N N N N* N -c0~ Z>~

Z0*Z z9i6 _j -4 296j" J

00* 0 N . %. NN - ~ - -

1.99

Q; 06N 0 N 0.7 UM % 4 -N

3 u -0 P - -~ %a

"=it

I.. 4".

4 _ -& =

i. e-

4'-* 1". -

4'.. on.

Z4'.- Ir.

.~ ~

APPENDIX 8

UNIT SUBROUTINE ABBREVIATIONS AND CALLING SEQUENCES

20.1

Table B-i. Angle Unit Abbreviations

NAMIA03 NAMA06 NAMA08 NAMA12

CYC CYCLE CYCLE CYCLE
RAD RADIAN RADIAN RADIAN
DEG DEGREE DEG (ANG) DEGREE (ANG)
MIN MINUTE MIN (ANG) MINUTE (ANG)
SEC SECOND SEC (ANG) SECOND (ANG)

Table B-2. Force Unit Abbreviations

NAMF02 NAMF0 3 NAMF12

PL PDL POUNDAL
LB LBF POUND (FORCE)
ST ST SHORT TON
LT LT LONG TON
DY DYN DYNE
N N NEWTON
KP KGF KILOPOND

Table B-3. Length Unit Abbreviations

NAML02 NAML06 NAMLi2

IN INCH INCH
FT FOOT FOOT
SM STATMI STATUTE MILENM AUTMI NAUT. MILE

MM MILLIM MILLIMETER
CM CENTIM CENTIMETER
MT METER ETER
KM KILOMT KILOMETER

202

i l I I

Table B-4. Temperature Unit Abbreviations

NAMTP 1 NAMTP5 NMTP12

C DEG-C DEGREES-C
F DEG-F DEGREES-F
K DEG-K DEGREES-K
R DEG-R DEGREES-R

Table B-5. Time Unit Abbreviations

NAT0 2 NAMT03 NAMT06 NAMT 12

SC SEC SECOND SECOND
MN MIN MINUTE MINUTE
HR HR HOUR HOUR
DY DAY DAY DAY
WK WK WEEK WEEK
MO MO MONTH MONTH
YR YR YEAR YEAR

203

Table B-6. Calling Sequences of Derived Units

LOGICAL FUNCTION UAACC (UFAACC, UNAACC,ALLFLG,
CONVA,CONVT,NAMAO3,NAMT03 ,NCPW)

LOGICAL FUNCTION UACCEL (UFACC, UNACC ,ALLFLG,
CONVL,CONVT,NAML06 ,NAMTO2,NCPW)

LOGICAL FUNCTION UAREA (UFAREA,UNAREA,ALLFLG,
CONVL,NAM06 ,NCPW)

LOGICAL FUNCTION UFREQ (UFFREQ,UFREQ,ALLFLG,
CONVAEPCONVT,NAMAOS ,NAMTO3,
t3IOAUN, UIOT UN, NCPW)

LOGICAL FUNCTION UKVISC (UFKVIS , ULNIVIS ,ALLFLG,
C0NVL,CONiVT,NAML02,N'AM-T03,
UIOLUN, UIOTUN, NCPW)

LOGICAL FUNCTION t3MASS (tFMASS, UNMASS ,ALLFLG,
CONVFCONVL,CONVT,NAMFO2,,NAMLO2,
NAMTO 2, tIIOFUN, UIOLUN, UTOTUN, NCPW)

LOGICAL FUNCTION tMPOWR (UFPOWE ,UNPOWE ,ALLFLG,
CONVF, CONVL ,CONVT, NAMFO2, NAMLO2,
NAMTO2 ,UIOFtN,UIOLUN,UIOTUN,NCPW)

LOGICAL FUNCTION UPRESS (UFPRES ,UNPRES IALLFLG,
CONV?,CONVL,NAMFO3,,NAMLO2 ,NCPW)

LOGICAL FUNCTION UPSPEC (UFPSPE,UNPSPE,ALLFLG,
CONVL,CONVT ,NAMLO2 ,NAMT03SPNCPW)

LOGICAL FUNCTION URHO (UFEHO, UNRHO ,ALLFLG,
CONVF ,CONVL,CONVT,NAMFO3 ,NAMLO2,
NAMTO2 ,UIOFUN,UIOLUN,UIOTUN,NVCPW)

LOGICAL FUNCTION USPEED (UFSPEE ,UNSPEE ,ALLFLG,
CONVL,CONVT,NAMLO6 ,NAMT02,
UZOLUN, UZOTUN ,NCPW)

LOGICAL FUNCTION UVOL (UFVOL,UNVOL,ALLFLG,

CONVL,NA4L06 ,NCPW)

(204

APPENDIX C

SAMPLE GENERAL DATABASE

Note: This is an edited version of the listing of
the database obtained at the terminal. The actual listing
of the items is in a random order due to the hashing func-
tion employed during the storing of the entries. Group
headings also would not appear at the terminal.

(2

_0 5

Qzv
- 0c

'-44

-x x

= P-Z4

206 WA u w0f -

t. ---. .6-0 z0

4=t 2

4 o - .1 =-. NI >n~ 6

-~9 a.. a

N NIN -CY Z* z N~lf N cy .7.-

--- --- -------- -' ~ ----- --- ---

0 - ~ -4 4 24.

4 ~ . ,-~ ; 0.~fl- 1) 4 .V0M

20600.

x1 z

opc V~~0 os(A

..cfl !- l =:~

U-;-

- . 0 -w

- ! It1Cf Z x g'lz- - - tn t" 4C'~~

- N - CyA- A r:

).A~A23...Ah. -

3.A w w 30 O I A Aj(~0 Z

ZZ

-~ ~ ~ - --------- -. A-~ - -'-
- ~N0 AAA-3A 9A 0

4. 96 4.6 2!x 049

0 0000 0 207

AW -Q

2. oa>

ca.

:=z .= ----.

IQ 4

coocooo - 0444

.C.C zo

- -- .-----

3'' zi ii

-I~-uI

<<= 10 -

I I w A -w

- " o~r. - C-lrll.. +- .

N -Z

60 0 0 z

080

I)-)IIIN % J 0 i

~~00 i C.i 0* j 0

|N

° 0
* e

0 0

o o

209

S '/

APPENDIX D

GENERAL DATABASE ENTRY CODES

" (

210

• Mom

C- 44 0 c- x

H- -F - >

lfl

z. In% - o0 0 r

00

>1 ?A4 U.)

o 80

- ~~41~ 4100~

-8 1. >9o.

-pqEY~ Q~u 4 Ck PM E 5
P' AU E' z W
*4 0c crmo "

Z ha

-I~ 14

941Y Z ,

0 In

#0f nh f 4Nf l l a 0%0 Nm I L n

04 P- 4P4F-.4v4#- OP4N

EU U200

-4 >

m 0a '0 1.;

u =.= =C..C im. i .4NN,

Q~ 0.- rz v - ,-'', - i -4J LN I 3333333:3o oI
Z in r ~ii0 00w a i C Ww4 w

1 a a i ~Ln o l *-4 mm m mm mw r- r-
E- '-4 UU 1-4m'.-.4. 4 u -ii I iI i I * I

- 4 co u U U .3iz u LU VU C.C'.M . . . *1 *.Z

u u

01
4

0 E- t- r- co ca wa oc %m0

swd

aP-4

3.4 1

E- j w I U E-

LU w ') x0 4) to u 05w4
(a V0 .. 1 -UU- 04

c2 a 0. F-4 s4c %% .
00 00m 0 l o)

ZI I~ 1 10

to -4 m %~ z) at

D 1 4 M1-4 .3 j -,4
U*>1F N N 0 y U-4 r '3cI2 m z

0
4~

0%4 0 - 4M r.0 %C.4 N

212j

21 2

3.44 co 00

0 01 F- (
n- - -~ - ..

030 N4 N 0 0

en in3 a -4

z 0 Qr 0 0 a)4 3.
0 x. toNCU (A1.J u n au l2;L (

r. W -V 0 0.0 4* Q 0 ,.
1Z. 0 o W -P CJU101 U1 -P4W I4 N % Cj .0 V
z (a P4 m1mo1 Cm1 I Z ~ ~ U1

01 t Q-i -4 M- r.-qmX
W 4)s o0 o.cc

.. 2...1 o 4 t r
3. 4 a-wci - w 04wz a 0 3; 0100 .4 r- (v 04 to. g6 X zZ a044

C e"l nW r %co O 0 -4 N (n nW -W0 i0 -4 N M W ino C4 (N N NN N~ m m
U PO4-4- - 4 f4f4 - - - - F- - - F- -- I M4 -- 4 ~ F -4

o ~ ~ ~ ~ L 3.4 .- --- -

E-U

0o a d

3 > %Z oc to0 Fa
'" > -~ 0 31
> -w t1 Ou n

Cd C -%4 b 4

ow N. 41 N 0,

II 0 o0w00 mwf nI

> C.4

0ic 00 P-4~- 4 N

213

03 > c- Al 4 9

> > 0)C .C A

0 0 >1 CA
C V 39 (n2

(a0 01 A
U3 A 4J r-4

Al 0 I A z wi u
I' 0 S-d 0 4)

*4 0 C > - U 0 n lz
o 0 C 1 U -4 Al U

i- O N 0 ~ 0-~4 X a . 4 1 SI * l 4
E- u O 0i w 0 ~ Z~ c Al w- Wl n0

I C S4U W- W-i4 C F4 -e r- .94 u 0u w
z 4) 0 -1 00c (NC OA4 ad Vii 44

'IE- X(i 0Cl 4J 41.C~ N -"4 U *.M -A
0) .5 Al . I~.Cll M1i 4. M a) U -i 0

w .3 3 4 4 > . 0 0 m~ Nw w 0 4 U

IAl l U Z 0 E-"4"4A

m ei.e I I I I V II I 110
Al~~ w'~u 04U c

Al0

(a cj C ~ 0% 1 - 4 Nf"I iw n w. rO- % "~% l w 'lt

- - -- a w ,'- r -r-r - Ol r - r.a' w- o cw

04 N 4A -

Al~~~r CA SuC O CA4

C S-i Al~ '~ 0 1 41S- w.

C ~~ ~ ~ (to -I)9. .'

£ C C--C

4) 01% I= cn (Ca u
w. P-4 N N. gO -,C 0*-4 1-4 U 4

Z 4 Al %a L4 CO Pl4 0rz ON -
o 4 N r- -O P-4 (A C0 u - m
-. CA - *4I- 4 '" S-Ol- caN 93

0-4 c I x0 .)-- wu-C I2"I"cfI
z aU 004 w~~ a 0 w>0 4 >

Z ACO 4c 14 W4. E5. InOOO W n1 j

-P4 -0 v-4ur& Ca C I2 '
P4 IX P- S1l w 'a C In I S-aIU

S(A

214

4)

*0 M

4)S.a m& - (0

-4U 4.
P6 : 0 0

E- O r 0

cn 0f4 W f 0a0 . % 19-W
n 1 11114

0 0
40 440

(a (
Ln % .. crlqu. cc 0~ % 0 4 .en w n *,P4 .O r- W co4 P4~ -4 -q > P4 -4 N N N (N N N > NC

~J I~NN NN Neq C N CNJ N fnI N N N N N N C'' NN

941

4-4P-4

P- 4 41.c -4P

~n r_ V1

N9 F-4u

Q0- 0 -bo X - 4J

- -44

IIM

E-o
0 - - - P- 00 ~ r 4-4 4 o-4ef F-4-4N NN

(~ q~%Or. -215

0cI E--4

-4 ~4 14
04 0 0-4 44 t

z~ ~ ~ W 4 0 %44 .Ir41 N 0 0 u0 0 s.01

W , W-O3 4-J (~f0% W2

41~ 0 104 ,4
4 H -4 rI 4 41E

0 m -

LMlz lz 30444-41 4 Q)

-4 U1V (

r.4 > 4J r= o m ~ j -WL 0r 0 04c
0 z E-4 VnL n k 0U 0l W 4 .0 n%.

U "1 (14C*4 rA4 N N N 4 " M (N 1me

0 4J c0 1
-r 1 r-4 5 . 0 0 V..
0.- to ON M>>~ P-4 .

41 u 3) -4 t it

r. 0 0- U
-- 4 r-4 w. 0 a.4 - (-

E0 it - +P4
o 541 LLL4 to Lfl $.J -%fU(f 4 c a>

w -41 (NC14 3a. NN 0 0NC-P4'0($(N(N N0

54 Lto C 4 C 4 a=4
-n 4) 01 04 1

4 0- - 0 PA F4;

0E-4*

-14

0 4 NMq in ~ % 0G0 C 04NM D
r4 M Fn m 0 m ww w w

Z 0 -0'' NN0)

o ~ 0 *0 0-216

TABLE D-2

SUPPLEMENTAL PAYLOAD SHOPPING LIST

ITEM DEFINITION

Fire Control Radars and Directors

300 SPG-51C
301 SPG-55
302 SPG-60
303 MK-51 Gun Fire Control Director
304 MK-63 Gun Fire Control Director

Missile Launchers and Fire Control Systems

305 Tartar MK-11 GMLS
306 Tartar MK-22 GMLS
307 MK-11 MFCS
308 MK-76 MFCS

(

217/

TABLE D-3

INDEX TO NON-PAYLOAD REED CODE

ITEM CODE MEANING

Propulsion Plant Type 1 600 psi steam
(PPTYP) 2 1200 psi steam

3 1200 psi pressure-fired steam
4 nuclear
5 gas turbine first generation
6 gas turbine second generation
7 diesel
8 COGAS

Ship Service Electric 1 steam
Plant Type 2 gas turbine first generation
(SSEPTYP) 3 gas turbine second generation

4 low speed diesel
5 medium speed diesel
6 high speed diesel

Emergency Electric 1 gas turbine first generation
Plant Type 2 gas turbine second generation
(EMETYP) 3 low speed diesel

4 medium speed diesel
5 high speed diesel

Type of Material 1 steel
(TYPMATL) 2 aluminum

SOURCE: Michael Reed, "Ship Synthesis Model for Naval Surface
Ships" (O.E. and S.M. Thesis, Massachusetts Institute of Technology,
1975).

218

APPENDIX E

SAMPLE WEIGHT AND VERTICAL CENTER OF

GRAVITY DATABASES

Note: These are edited versions of the listings
of the databases obtained at the terminal. The actual
listings of the items in each database is in a random
order due to the hashing function employed during the
storing of the entries.

(

219

V

zo oc 0 0 oz
z - a C)

2 000 2O0 3 a - 0 0

*z _ z - a '2 z 0

0-w 20a=20a-=COn -0 _> -.
z .. 00 0 Z 2 - JZ 0 2-

22 a -- U 2 = ~ -0 Z.! Sf <
a0 0 =~ 00A -. - z zz< InnI 2 w~ a 0 Z

2- 00_Q - o- 2-Z 0 n2-
Ifl~~9 Z 00 0 C

in0 -~ 00 0 iA0o0~j 22 -- za - ..wn

El 1= .- w-Z=24 2i- 5 UQ.z

Z I =0 - 3Q 0~ - .a O.. 0I - 0 <

- Z -0 0 0 2 1-- 0 . -. 4 -3.z.
---- ----'l- 2I.0 .------- 0----0. -- <--- - ina

'N N v400 2 C Z>0 ' ~ 0- iN 002mW

- ----------------------------- -----

-0- - a - ------------- -~ - -----

- ~ 24 a.02~in -0-0w -- c 0 00 -0 0

IdlO

22

z 0 >. => 0o

a - Z -z

20z 122-z
> z 6. -- a z a

0 a <- 20-

0 U 0-). z z - >< C c~..i
20Z - Z2~- Z

_. 2 E Z I-0 C - 20-.g--- Z
0 n x *(cC - 0 .jJ

u 2 0 - Cfl - -

-z 0 0
0 zw~o ZZ 22 =- j6n- V) I -2z0 -2

ZZ -ocu ...- o c QMzzzW 2.0)-0
U *O - =0 -> z zt cZ. -C -0 C.Cf -t .

z I - oz.-N 6, 0'~ 0 -- 6. MA~ z 4o6 - *z -

65V -0.~) ZgZOW~ <-.- a>: az2o-c3

>w<4->z 96 z
Ch 1)l Z6- *)-0C aX(! . -- -X.. 0-

0- .. -

c ~ ~ ~ ~ ~ X-J wo 2-(3 -zn- -- fl0 -

-- ~~A -A C6. -6 C6- -Z -n- - . aa--- ZZ
V) Xu. ~ 0c :6 zfx2-C - 33=33-A

WM0

3232222 332 32 2 32313 3 2

=<;2 -ji-v

C6 Z t.)

~~- z X

Ar %A4

ZZN-t.

~~6~ 222

8 -

--< 00z -C z
- :- ;w Z' (Az-X 6

- --Q 6.z r4 0 ZI"i

zz"AZ 0 C-0

0 -= o
-- z -X(z- - -

-0.. > 8 4Z f 0.. Z

a>-. .ooztjooo

'N O Zl -z
W6J) 0) ~ 0 f

zpn = ! ; J; . 0Z.U a. 6

!7 - 7 7

C Cc

go m > suN--~-- N N H

4 *223

%w >. 6
-:; ac V2 u

zo > 41 Z *-. - 6.;n--'
' 6 -1 -.. Z0 9 - 2. ZA

2.fl- -=--z 'A - 8

60 (A). 0 4E 8 *t-

= 8 ZA A

2.C).~-~ -

3'AI 4c fl..U AA IA CJ.Cf.2~. -= ZZ- -
-~ ~ ~ W. - ='(..f 00 (A zf~..)> 0Z-

>>> >>>>>>>>>

zz --czc

-- 1. A 6%A 2. %N as 1^fl %Cs-- Z

ucuf 00 0000000000000000000000000000
J U U; u f

999M 999MMUMM>99> >.

000 00 00 00 00 00 00 00 00 002240 00

~J J

wA-z

(Il

>' .wg.uI

22

z :
'

--- ----

- -

22

APPENDIX F

MACHWT MODULE LISTING

Note: Subroutines MAINPG and M0D10 are included in the
Cube Module listing in Appendix A and do not appear here.

226

> -C

> ~ a. 6A . (I 13

C62 W3 4 1 3 3 z -= I

* u -~ (0~0 46 -j >C C
I~ ~ VI 40 ., 0 I ~ o0
I1 t . 0 = m 2 w 0- w'

<,a u- -U= a jo CE 3 9

0 6 Z"4 3. z- 0 il ll

N c 0 6. 6A z0 4 0a
33I 13 0 4=- - l

-0 Ic 2 x; 'c.0 O> -> z' H9 UQ Z- Z.

-3 5 3 1 -- i Az ow n
61I.w-x A

minL ;AwU -=I== >Z zn >0n

too I 49R = z-Z

<Z 'Z- o-'C Ca i-Z

LI = 0z > -- ' '

iO22H. I -z z

4 -~v : 3-It4 3W-

W -4 x :

m~o ~ 0227

r_ z

-d6

- CL

! ' > x-i1

zz
12: -. 6-

x. x x .iz -

f
=6

S-2 2

N me

----------- - 000 ~ 0 -------------------------

z

x z

0 4

::. -.. =m

-zr

a7.

" ,"

- -u- 9: U = u

-- 0 0 z z c , I

. 8

,- •- < 0 -- l

- .. ., a,, , : - p : :
- - * ;.:<: -- .

E- W N

-- + >- ' -" z Q- Q ci -" "< U c Q-u

29 . - -
(.a

* 2 - 0

----- --------000 00 00 0 00 00-0-0 0- 0

-z 3
4. ~.('C 4.

-9 0)

2 6 - -

3: z Z= Z

2~ ~ S z
2a4 0 U2 0

A- - -

fA 2!~ ='... 2~z -o

.C4.

=. 2 C-.. j 3 0

- C A - - Z -230

c N
a"kN _ = =t

- A.N NN

~o-231

a a afl a 0 I C

-6 aU z < I 0 0

I I t z W~Ja

I00 S z!0

a= Z A lzI iZ 0 a Z I OJ

a~~~~~~ zXa- a < a«I <

a~~ 04 0- a<xj Z '0 *
a~~~~~ 3. - azI0 a o

I =8= a2 a C5 5a3 Q- -

1-0 . a-.-a Z..~232 Z

O a~ a~I '-- --- 27'77

XS IN % IM 6n 0 IN X% 0 10'4 .0 IZ 10 10 SC r- 0 0 0 ='a r- 0 00% 0 C% C Ik (:% 0000 0- N e
z c 0 Cz co fcco = c = z z z -- c

zz0000000000z0 5 00000z0Z

00 0 0 0 0 0 0

6.0 L"

z -
0

z - a

I I0 ZZ2;:Z.

0 0 - -.

;; ga t a? .. Z0W

zzzzza.J
2..2 Z ZO Z

zz. 7. 7c -

=- = ~ -

zzzzzgzzz al- -c =4-
- ------ ! ----- gigs.~

> *~*: 0-0 ~ a aaao0>
u u U uW.~ 0i 0 Q u

~ 2 .0~O...2) .. 123- ZZ

onZ N4 -40: fof-c%jN N NN0-:Z .

- 2

-zz

0 4c 0

-. 5

-1 .1 !1 : -
-5

2~~ 35 *

- - - - - - - - - - -

0 .1- -=4
- 0 ~02, - (g ~nI~ 0

A O -1 CY f" ~0 (Y A.rg 6%

- 2 K..r-

- 0-.-~-0-. 235

0-

CJI I o L"

*~~ z

I I I:z I-

I w-Z <A I ZZI

==3 6W LW II A -C (A
= I= (A zw*-

; -
A ---- 'C - - -

33 ,

->Z 0 '

- -: XX

---A..I I I ->0 * * * A -

M - - -;;s -

Z zgI ZZ I I -- 11 0 -N

WI I C' >- a. Z

I II I I I

2361

00 000000000 0000 000000

v' 0 Z z ' ~ ' '' 0' 3'3' 3' 3 ~ -' -

W5 Z

,-=Z
Uz

U(- x ; -

~ I. 237

ox00 0 0 0 -~x :

... go I oz

IC I ..Af 6W Z fl i IL I I >- t
I~ I - -m AI~=~

I 6jW ZO O .

coo 0 W W

I~~~ <-Z XIOI>1I

-4-- j 2

0 -0 W-0I-t - --C6'- f -t

0'4f ZOO~ W-=2 4 ZO w ~ li
-H =x M :. Z> - -Z - - - - - 4jw C.(

x -Z-Zfl.-0h.. -= -I0i ~ :<. 05-5. 3.2.-=~~ zI~ >

16-(0 Zf Z wA. - -0 do

-c AS Z-<-Z W
-U (~A.... ..~a4 40 22 '- _<.;6 c~dw R-446C =0~..a -~o~o- -0 *- a~iO *~02!42-4 .

Z=-62 60.- h. 0I A. (0 U

I" I &0aIA3-.l- I. iZ~00 5 C .

~~~~~~~~~ Z~~ ~ I 0~ ( I (
I=_lzl

I8 M ,= :

*~~~ W '=1 -- .''

I I C ~.d

238



ZOO 0 0z

- z 6W~
2- 1

z 3

2 0 96

, = Z 6a J

4- z -40 2.

4- ig z 2. '- .S a:2.

a. = a a z z -0
0 so A- ~ 0'A0 =w= 0 (

4 MA 2600-2. . 'A6. 00 & wm6X6

- ~ ~ 7 zC z~= 20 000 z w .0.~0

Z ~-<C - - 0 C --- '( - '2IC-'.-'
(3~~~ w'-' 0 Z 61 C6 0 2. Z0-. QI~ ; -=0..

Z- I-C Oil i i~ X ~

~=!L

6w 36A

-- - - - - -------

'A- --- --- - -- -- - - - - -

I,-1 M= ~
091 *'A

239



C6

==.Z--=>. n

0, - z

a - .6( C6-0~=
0 ;n C6 - ZZ 0 =

S. - - .. - = z

0~A - A

CA * ZCA .. 4 CAi

2. 0 AO - e a.~-= z .

2. 2. 5. 2. ~ 6 S. A a 0
6W.A W A W 0 <,..w -

==o= = 10 00 A
C - I.. ~ 0 ..

0 a aC O ~ 0 22

W. 0CAW.CW.O-;t.2.

Q'- -- - -- - --g 0- --
> * C~2 ~ C=-9 =wow.

:4 *-;0w:i.*ICA X20- -

-~~ 0Z b* 4Ll 0*- W*

0-a- vK0-Z 00 Wxz
r" z 6W~

C,. f --------------- 2

- 20



0000 00 00000000 ^za 000 00 N0 a000 -00 N00 e000000
C~% 41" %n UN 4% %C a0 a0 0 ' 0 ' a '0 '0 '0 a- I~~~~ -I Cc C 0% % o 0 0 0%

33

z . 0 1 1

x- ZZO -0 .--

5 ZZNQ u' Nx
A 32- 00

AN CJ3 . 64
(14 ~ ~ 74 C3 N *XA! M 60

3-C .3 6A .... 4.

oz 0 A x NN 46 40- C -
zo cc -V6 Z-- ONA

0-0-3 3 N

. -6 x a.0 ZN
UU - 0 zO Z3- -

.. . .~ . .% .--. . I
s tO C . N - -- -z = = b

> .%".-C -'-==,0 - C). -'J ~ .

~ 0 .0 Ya -3e .^-WI- 0

-0- -.- - - --. N - -~ -. ~ - -g

- -~30 - - - 04 C -- .Y

33335 0~0 ~ - NN 0- 3 -241m~ f



CZZ ~ ~~ I- 2

a. Z . .

-Cl -2:

Z z cg

224



V > - A

90 C,

6A -j 0%
> 4c' -U

9 u Nz 0 3; zf

- .
- - ..- 03

-0 > W.C0

oz~ p;- -a ,0 O

tj Q 'r z -Z Z O

- .'A!-I. Z

-0 - 0Z- z 0
I - t~

>3 0 LW
z 3 NZ 3 N 'Uuu00

-~ -~ .0% N 30243



Z C-z --- -- ---- NNN N ----- _____t') In -.-- ------------ In(,$___

c0

z C
A o

o 2

-. 60 C

40 Z N < n W

- >ZZ:

om 0

3 i,

244

T.



goa " I %L~za11 ,%oaa% cc ac C NC

m, WTo~ m oFM r"m-I lm"mc4&' f "V me ' mo 0m i

wi .e 0 0 ~ ~ 0 0 0 0 00 0 0 0 0 0 0 0 0 0

66

ZZ ;n z z V)
Z

ZZ 0 4i
ut0 16- 51..z R..I8 I& E -~3 ul fz

-w c0 0M

Z ~I,245



- - - - - - - - --

- 0-C

Uz zz .

6z 0 - -2. 0c

S - - zJ z

Z Zf <. 0 0o I0-oo - - >-

*", 0 Q=: --7-a-

z z0 0 a 
-Z0 c s M I

Z 0 O 1 6 Z Z Z

0 z0

0 6A~

246- 0



NO SO NO1s NO S C =MCCC CC

z z

0a 0 0

'2

2 Z 2

2-z

A0 C4i CA c

5247



6N 6N 6A 6%. '0 6N0 X- I^ UM 4' A Ln XN 6N% - N tr' J 6'A X% 6"k 6- 6N X MIN 6M % 0 6N 0 . IA .4 % %n00

e" --

4c

- 0

tj B z t'

72 zz z Z

5115 58Z-M1111 R <u- U 4%(

5 3 0

~~248



acoo~ z5-~ ' -a~'o ~~a aa. - * ~'' ~ a 3 0- 'i . ~ o e -c' go"0-

al -

3' C VC

Zj z 49

> i-

Z z > <

-C <AC2 3

> 12 -2 6A -

3,~~ a-2N -

2490



iioioiooi iioooo~oooo-oooo

(
= z - --

'A ~ ~ U6%XA6NU ^ -%0%%QIZaa%%a1 Qaao coaaa %0%%0 %aa% 0N 01 0 ca

* I.*lh I IIIf )El

C% 96 6 3. A. CL 3. 6

>i >o~~~~ m .- -

-C ~ < ? - a 4 - -

250

-... q> I 1 1 . . 2 .0"-



zz

2 X

z z
t3

z

> > 2.

0.> - 6.

I. -04..1x a

25

- 3---.



z C2

~z
IA InI

0" 'OZ a

a a-!z - I - I i 0

ZC3
0O. 0> 9-=6i z = I = Z 0

;-C 8a< =-

0. A >-a
-. %. i:::Czi

I=X.- aw-.Z- ~ A

A~~~~ a- -aaUl.. 0
rz IA t.CCCC Z4 p -

2. V-604 =I~ -~ a.a-Z > >
-. "ZXM zz m

-: AS a - .. 3

-_; 2. ZJ' ZU(ZC

W I' - I: -

-(J I l~. la a A cc

Z0.AC C(..C~ a 252

C- A a C..Z 1Q,



-o IC

- W) - 2.

4..

Z8 4Z 0Z x
-6 Z.. 6. O.

x -

46
C-1 i

I -I"

-J ~ -253



- --------- - -N -- - -- f- ~- -- --

3 3

a fl

a -- 0

a aca

<= I z -

- - - 3 "

•4 = .7+ ,

'0 16

: 2- -a

'0
z Z*

.a !i , . -5-
A o

254

• "h al'aai i na.I



Nflv_76MC~ N -a to- o ;AsN O\J C N N M^76,%%O- a 0

6b I I I I
.flIz z :*

I - : a..aOI .I a
* ~~ ~Z Z -- <Z:~'

I 10 .. Z - ~~J, a a.~-

z C:.. > io >a

IU6f 0 OZ

4c =0 - 1
CA : 4c g Z

2.~~~~ UO. ( Quw5 a- .. a

_Z 0 -96I -w c I

U201.. W;"= .I .n.. W 0 64~ M- C a

> a 0=>464

Z - W
2

S 61 0 :

II A

255I



3:33oe~~~~~o:~~CO MCC=*030 33000300 330

~z

Z zC z

= A

u z

': 6- 0 -

A C6.
Z3

-z Z
u 38 - .0 - .;

zz U- -
Z -4

3Z t3 3
f - So KgR - ;

'C U. Zi > >

-6 Al *-a 3 K
-~~O F".7-AK

K ~ -256



00-

zI

_Z
C46J

j..j z

3uzS . zl

z tj I

V) 0

2S



00000~M HHHHHH100000000000000000000

A z < > Q
I ~~ 6I =Z Z 2 -

*~~~~, - 0 Z00 I -I- 3

:z ==2 1 I>(j 1O 2. -o < L
: 0 2 2 - -aIfI

1-06 ;n ! 1 6! -0 s 0 o I -

1. > 00".I i, f 60a -" 04 6 :z m(

4L 231- =0 0 0
lei < 6 -

X- I -

-~.. figa(...I ~ - -

~ I~I I~I~ U O ~ n~ Z-.Q -
0 I i I~- I 'C 2 C0~2 0

2O~cl s~ s~.0 -~ -(-U-- <c

O-- 'C <0I~< 1 < ' ..258-



6" 6 % N 6 % 6M4" X .C% 103 %0' '0 '3 '' 10 ' 'Z4 %0 f -- -- -- -- ' - - 0 C CC % %0%0% 0%7% % 

z

zz

2- '3

64 --

6- 6.

- 0- 0 ..
=Z - Z

0i 0 wJ

Z I -- s

z CC=- !. i 2 l

.- Z 2 Asa

> > - 0 = iC

UU QQU uu QU u

259~



O

I H

ZU -Z-

260

_______.l * .,,-............1
#Ak



-0000-00000- -- NNNN NN nN NN ~

z z Z 0 z

5 -- -3ea

a- zz 6IA W

2'~.

*~ 90

:08U 2911 aw 1!

uuuuu ou

0 * 336.261



-N 4%6N Ql % Jl JI C Uf Q a a so '= \z 0a m- F- c 0 0 a 0% CC0'0 N 0%~ '0 C% 0

CC

Z -N -0

Z

6,2 -0 0. N NC
:2 ON =m -

Z z

*z Z

J--o.
Z -j9 - ZNi ",-

K -- - - -C -

=2w*- -:3 NNNNNNNN -Z C 96
z N NN -. 2 N-------------------= ZZ x

*- C-- Z6 4A Z ~
Z*- -JZ = -- -C CC

- NN 0. *
-O N ZIA

ZCi tc -- -- IC O

-~~~~~~ ; 7Y .NN0-~

x C L ccz xzz2::w:-.zZ
26 aa r-I C~~ lv >Z KC6i 2 w*a

0- IKf00Z@ i**gx.
~4 O. 'U l C IZO ty~.N ~ . N. - (f'

~~-- ~ C; ~.C'O.-262O



00000 00 00 00 0 000 0z 000 000 c0 0000000000000z

01 G N 00. %a= 0 C% 0 0r-c o z l- oZ N CAo-oo N .- ~.

- --- - - ---- - - ----- ----.

Q0 A C- i. ~ e

- - - - .2 '*2* *2 W *4 *4' z 4 C2 44 * *4i

6W .' 4 *

. .s . . . . . .c. ,S. . 0~a 14Z 6

e 0 C6 2 C. . .0 N
3e.~ ~~ ~~ -e 0 . 4%. . e.
-- - - - - - 0 -3 ZN

% % , % 1 1. 1 - a4 S.

Me. -. a.. 4.. 4. -C 4c. -C Oc <. -C

Isas s 9 -e. ae a- I- .1- 9 .9 la 30!
-Ne e. . g ~ ~ O.

-- - 2 .~0 .O263

*4' *2 * *4' *4'All *' * *' *' *' 00 4
s-s.-..*.s 4'. .%. %.*.5 *~. 4IMAM..* %4 N



- 1:'o',,'

CY N

2264

.. .. .. ..



IF

0z0z

U I I w
w Ic I I

I -- - .I CA I "

I[,. -. ( ;fl , * -,. < s < [

66 0 -a < < = I -

I -I .. ... 0,+ : DI@ . . -

Ix

56w

St 
- It 

I 
=

Ic > - M Idto : C :: _11M =
0~RE 1(gII

I-u z( x0 > I

I~fl * e- 00

0~. ' *265



W --. "ZZZZZZ

ri Q

266

Ii.

o-- z -.



DAT

DI


