
" '-AD-A11O$9 S E URVOPEAN RESEARCH OFFICE LONDON (ENSLANrn F/S 121
AN 95TIMATION 1HEOlty FOR DIFFERENTIAL ESUATIONS AND OYHER PROIL-CYC (U)
Nov $I .J sCOemogm

UNCLASSIFIEDM m u
EEEEEEEEEEEEL



1.25 ij1.8
1111111111 -6

MICROCOPY RESOLUTION $tST CHART

!NAII NAi 1 111 N " l



LEVEL

AD

AN ESTIMATION THEORY FOR DIFFERENTIAL
0EQUATIONS AND OTHER FROBLEMS, WITH APPLICATIONS

0
,Final Technical Report

by

Johann Schr6der

November, 1981

EUROPEAN RESEARCH OFFICE

United States Army

London England

GRANT NUMBER DA-ERO-78-G-013

Johann Schr6der

Approved for Public Release; distribution unlimited

A4j

-ft-

. * - -



SECURI, y CLA,'-[I IA'( . *F THIS PAGE (',.n P.t. FnI.,rd)

,'I_'O:,I DOCUTIFNTATIION PAGE KM

4. TITLE (end Suhtitle) S. TYPE OF REPORT & P:RIOD COVERED

An estimation theory for differential equations Final Report
and other problrms, with app)lications A981

6. PERFORMING ORG. RN,-ORT NUMfFR

7. AUTHOR(a) S. CONTRACT OR GRAN-rNUMBrR(a)

Johann Schrder DA-ERO-78-G-013

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PlHOGRAM ELEMENT, I-'kO.I:T, TASK
AREA & WORK UNIT NUMBERS

1TI61102EH57-05

II. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

Nov 1981
USArmy European Research Office 13 NUMBER OF PAGESthirty Seven

14. MONITORING AGENCY NAME & ADDRESS(I different from Controlling Office) IS. SECURITY CLASS. (of thile report)

Unclassified

ISa. DECL ASSI FIC ATION/DOWNGRADING

SCHEDULE

16. DISTRIBUTION STATEMENT (of thle Report)

Approved for Public Release; Distribution Unlimited

17. DISTRIBUTION STATEMENT (of the abstract entered Ii Block 20, If different from Report)

IS. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverese aide It necesary and Identify by block number)

Solutions of equations, estimates, matrices, nonlinear functions,
ordinary differential equations, systems of ordinary differential
equations, elliptic partial differential equations, parabolic partial
differential equations, abstract operators.

2d' ABSTRACT ("Coei- am reverse sid IH n ay mrd Identify by block number)

The research described here is concerned with various methods to estimate
solutions of equations, in particular differential equations. These methods
can be used to obtain information on the qualitative behavior of solutions, and
they can also be applied for numerical estimates. This report provides a
survey on the results obtained.

DD 1JAN"73 147 ECO% OFI OV SI OSOLETE UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (Wrm Dale Entered)

/I __

.. ... . .. .. - -... . ... . -_ . _.. .. - , ., - .... .



AN ESTIMATION THEORY FOR DIFFERENTIAL
EQUATIONS AND OTHER PROBLEMS, WITH APPLICATIONS



Abstract

The research described here is concerned with various methods
to estimate solutions of equations, in particular differential
equations. These methods can be used to obtain information on the
qualitative behavior of solutions, and they can also be applied
for numerical estimates. This report provides a survey on the
results obtained.

A ' - -"

-.. .jva l d/or

A' Special

..... r,,, l ............. .



-3-

Table of contents

1 General survey 4

I. OPERATOR INEQUALITIES 7

2 Inverse-positive linear operators 7
3 Two-sided bounds for second order

differential operators 8
4 An estimation theory, range-domain

impl1i cat ions 9
5 Estimation and existence theory for

vector-valued differential operators 11

II. SHAPE-INVARIANT BOUNDS AND GENERALIZATIONS 13

6 Description of the operators and

estimates considered 13
7 Elliptic operators 17
8 Parabolic operators 20

III. NUMERICAL APPLICATIONS 26

9. Approximation methods and a posteriori
error estimates for two-point boundary
value problems 26

Literature cited 30

Appendix: Contents of "Operator Inequalities" 33



-4-

1. General survey

The research reported herein is concerned with estimates for
solutions of equations, and related topics. The estimates are often
combined with existence statements. A series of applications is in-
vestigated. Particular attention is given to numerical applications.

The equations considered are described by operators M of the
following type:

(1) matrices, and nonlinear functions in ,n

(2) Ordinary differential operators of the second order, together
with boundary operators.

(3) Ordinary differential operators of higher order, together
with boundary operators.

(4) Ordinary differential operators of the first order, together
with an initial condition.

(5) Vector-valued ordinary differential operators of the first
and second order.

(6) Vector-valued elliptic differential operators of the second
order, together with boundary operators.

(7) Vector-valued parabolic differential operators, together
with boundary operators and initial conditions.

(8) Abstract differential operators of the first order.

(9) More general abstract operators.

Thus the quantities v to be estimated may be vectors, real-
valued functions, vector-valued functions, functions with values in an
abstract space, or more generally, elements of an abstract space. The
estimates (inclusion properties) which are proved state that v be-
longs to a certain set K . In particular, we consider inclusion
properties such that v E K is equivalent to one of the following
relations (a) through (e').

Estimates for abstract elements v (with applications to matric-
es, functions, etc.)

(a) S v 5 r (two-sided bounds)

(a') 0 : v (positivity)

(b) v E K (K subset of an abstract space with
certain properties)
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Estimates for vector-valued functions v

(c) IIv(x)II < :(x) (pointwise norm bounds, = < , A)
(d) v(x) E 4(x)G (shape-invariant bounds, 4(x) E :I , G E ]Rn )

(d') v(x) E G (invariance statements)

(d") v(x) E 4£(x)G£ (9=1,2,...,N) (generalization of (d))

(In these estimates the variable x E 3Rm  is to be replaced by
(x,t) E)Rm +l for parabolic problems.)

Estimates for functions v with values in a Banach space:

(e) v(t) E (t)G (G a subset of a Banach space X , in
particular, X = Cn())

T0
(e') f v T(x,t) H(x) v(x,t) dx < 42 (t) (special case of (e))

The basic statements proved are of two different types (U) and
(E)

(U) Range-domain implications:

Mv E C - vEK . (1.1)

Here the estimate v E K of the unknown quantity v is derived from
certain properties of the known image Mv of v under an operator
M . For example, if M is a differential operator, the term Mv E C
in general, represents a differential inequality, or a set of differen-
tial inequalities. Hence, we are concerned here, in particular, with
a theory of differential inequalities.

Statements of the form (1.1) can be used to obtain estimates
for all solutions of a given equation Mv = r

r E C - v E K for each solution of Mv = r . (1.2)

From this result, one can often derive the uniqueness of the
solution. This, however, is not the main object in proving statements
of type (U) .

(E) Existence and inclusion statements:

r E C - there exists a solution v E K of Mv = r . (1.3)

In addition, modifications of (1.1) are considered, where certain
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properties of v (such as positivity) are assumed to be known. Then
we have an implication of the form

(Mv E C , v E KO) * v E K (1.4)

Most of the results are contained in the monograph "Operator
Inequalities" [1] and the papers [2,3,4,5]. Certain numerical re-
sults have not yet been publi.-'ied.

This report is divided into three chapters. Chapter I gives a
brief survey of the contents of "Operator Inequalities". This book
is mainly concerned with estimates of type (a), (a'), (c). In addi-
tion, methods for obtaining results on more general estimates (b)
are described. The operators treated are abstract operators (9),
matrices (1) and ordinary differential operators (2) through (5).
Chapter II of this report describes the results on estimates (d),
(d'), (d"), (e), (e') for vector-valued differential operators (5),
(6), (7) and abstract differential operators (8), obtained in
[2,3,4,5]. Chapter III is concerned with numerical applications. The
appendix yields a detailed table of contents of [1].

-4

4
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I. OPERATOR INEQUALITIES

The book [1] is concerned with inequalities that are described
by operators or, briefly, with operator inequalities. As the title
suggests, abstract terms are used in developing the theory and
methods. Abstract results, however, are not considered as ends in
themselves, but as means to obtain results for concrete problems.

The book concentrates on matrices and (scalar-valued and vector-
valued) ordinary differential operators. Because of size-limitations
on the book, partial differential operators essentially had to be
omitted. We point out, however, that most of the results of type
(U) for ordinary differential operators can be carried over without
any essential difficulty to elliptic-parabolic partial differential
operators of the second order.

More generally, a main purpose of the book is to provide
methods of various kinds which can also be used for problems other
than those treated in the book.

The Sections 2 through 5 below are concerned with Chapters II
through V of [1], respectively.

The book contains more than 330 references, which will not be
listed here.

2. Inverse-positive linear operators

The second chapter of [1] provides a unified theory of linear

operators M in an ordered linear space R such that for v E R

Mv 0 - v Z 0 (inverse-positivity)

This implication is of type (1.1) where Mv E C is equivalent to
Mv 2 0 . The basic result is the monotonicity theorem (Theorem 1.2).

From this theory most of the known results on M-matrices and
inverse-positive second order differential operators are derived, as
well as many new ones. The abstract formulation used here allows one,
for example, to recognize the common properties of these two differ-
ent operator classes. This leads to a theory of abstract M-oper-
ators. Certain general methods for proving Inverse-positivity are
applied, for example, to differential operators of higher order.

Inverse-positivity (strict inverse-positivity etc.) is related
to a series of other theories, and it can be used in many applications.
Here, we can only indicate briefly some of the topics which are
treated in [1]:

Eigenvalue theory for M-matrices, second order differential
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operators and M-operators, in particular, the Perron-Frobenius theory
and generalizations.

Convergence theory for iterative procedures involving matrices

or abstract operators.

Oscillation theory for second order differential operators.

Boundary maximum principles.

Convergence theory for difference methods for boundary value
problems.

Error estimation for approximate solutions of initial value
problems and boundary value problems.

Let us mention some typical statements of the corresponding
theories, which, of course, hold only under certain assumptions
which we cannot formulate here:

"M is inverse-positive if and only if each real eigenvalue of
M is positive" (see Corollary 2.14b and Theorems 3.24, 4.19).

"The iterative procedure for Mv = r converges if and only
if M is inverse-positive" (see Theorems 2.19, 4.20).

"M on 10,1) is inverse-positive if and only if [0,1] is an
interval of non-oscillation" (see Theorem 3.22).

"The difference method converges if the differential operator
is inverse-positive" (see Proposition 5.5).

These statements show that each of the sufficient properties
for inverse-positivity which are proved in Chapter II can also be
used in other theories and applications.

3. Two-sided bounds for second order differential operators

Chapter III of [ 1 1 treats the theory of two-sided estimates
S v : 5 for solutions v of two-point boundary value problems

of the second order. (Initial value problems of the first order are
included as a special case.)

First we describe a theory on inverse-monotone differential

operators M , which have the property that

MT ! Mv ! Mt :5 v :5

Here, : denetes a pointwise inequalitiy, and M is an operator of
the form
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a(x)u"(x) + f(x,u(x),u'(x)) for 0 < x <

Mu(x) go(u(O),u' (O)) for x = 0

gl(u(1),u (1)) for x = 1

Secondly, we treat a generalized inverse-monotonicity, where
the pointwise differential inequalities Mqp 5 Mv ! M are replace
by weak differential inequalities. It is shown, for example, that
differential operator which is monotone-definite, i.e. monotone in
the sense of Browder-Minty, is also inverse-monotone (see Theorem
3.9).

Furthermore, Chapter III of [ I J deals with the theory of con
ison functions, where statements of the following form are proved:

M there exists a solution v of

Mv=O with 95v5 ,

and, in addition, estimates 4 S v' 5 T for the derivative of the
solution are obtained. The theory is derived in a way which makes
consequent use of the theory of inverse-monotone operators.

Finally, the theory of generalized inverse-monotonicity is use
to develop a theory of weak comparison functions,where the pointwise
differential inequalities M9 ! 0 5 Mi are replaced by weak differ-
ential inequalities.

The examples treated include singular perturbation problems,
bifurcation problems, existence proofs for positive solutions and
numerical error estimates.

In developing the theory, we explain (several) methods of proof
and show also, how these methods can be applied to other problems,
such as problems with periodic boundary conditions and certain sin-
gular boundary value problems.

4. An estimation theory, range-domain implications

Chapter IV of [I 1 describes some general principles which can
be used to obtain sufficient conditions for statements of the form
(1.1):

Mv E C - v E K , (4.1)

where C and K are subsets of certain linear spaces R and S ,
respectively. The results can be used to obtain sufficient conditions
on M such that (4.1) holds for given sets C and K . They may
also be used, however, to find a set C such that (4.1) holds, if
M and K are given.
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The main tool is a continuityprinciple which can be app]ied

in the following way. One constructs a family of sets KA

(O : X < 5y -) with Ko = K and KX * K for X > O such that

there exists a minimal X with v E K and that for A > 0 the

element v belongs to the boundary (or some other distinguished

subset) F of K . Then, from some general properties of the

elements v E , one deduces certain relations for Mv . If these

relations contradict Mv E C , the statement (4.1) is proved.

This continuity principle is here applied to obtain results on

range-domain implications of the following type:

Inverse-monotonicity: Mv Mw - v w ; (4.2)

Two-sided bounds (with Mu = H(u,u))

H(q),h) : Mv ! H( ,h) q v c (4.3)

for all h with 5 S h 5

In the theory on these two properties for operators in ordered
spaces we use sets

KX {u E R : u 5 w + z }  (O ! < )

and

K {u E R - X < u : 5 + zX} (0 ! X <,

respectively, where zX and zX denote elements in R . The
results on inverse-monotonicity are applied to nonlinear operators
in 3Rn and vector-valued functional differential operators of the
second order.

For initial value problems of the first order a second approach
is described, where the sets Kl are defined differently.

The object of this chapter is not only to derive sufficient
conditions for special statements of the form (4.1), but also to
provide methods which can be used for operators and problems not
treated here. The derivation of results for infinite systems of
differential equations and abstract differential equations in this
chapter are to be considered as further examples for the application
of these methods. (See also Section 5.)

Chapter IV of [1] contains also a special theory on statements
of the form (4.1) for linear (and concave) operators. This theory
is applied to obtain statements of the form

- 9 -
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- : SM v !5 Y 5 v ! 5

for second order linear differential operators which are not inverse-

5. Estimation and existence theory for vector-valued differential
operators

Chapter V of [ 1 1 is mainly concerned with vector-valued

differential operators M of the form

- a(x)u"(x) + b(x)u'(x) + f(xu(x),u'(x)) for 0 < x <

Mu(x) = - ' (O) + f0 (u(O)) for x = 0

:Iu' (I) + f1 (u(1)) for x = 1

with u(x) =(ui(x)) E Rn and diagonal matrices a(x) , b(x) , ao
[ I . Part of the theory is also formulated for functional-differen-
tial operators, where, for example, f(x,u(x),u' (x)) is replaced
by g(x,u(x),u'(x),u,u') . Again, operators of the first order can
often be treated as a special case.

Operators as described above are inverse-monotone only under
very restrictive assumptions. In general, one requires the following
two conditions on the components fi of f

(i) M is weakly coupled, i.e., fi does not depend on any
uk (x) with k * i

(ii) M is quasi-monotone, i.e., fi is an antitone function
of each uk(x) with k * i (antitone = non-increasing).

If both these conditions are satisfied, the theory of inverse-
monotonicity and the theory of comparison functions for scalar-
valued ocerators can be generalized to vector-valued operators,
without iajor modifications. The question arises what kind of results
can be obtained without requiring both these conditions.

Chapter V of [ 1] contains results of type (U) and (E) with
estimates of the form

(a) T 5 v 5 , i.e.,

Ti(x) 5 vi(x) ! 41 (x) for all indices i and
all x E [0,1]

and
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(c) Iv.(x)ll < 4(X) for 0 !5 x :5 1

real-valued, 11 1 < , < an inner product in]Rn.

First, these estimates are derived from differential inequali-
ties involving v (results of type (U)). In the case (a) one
obtains 2n coupled differential inequalities, which, in addition,
contain two parameters h,k E Rn . For example, for a fixed
x E (0,1) , the differential inequality for 4, assumes the form

(Mv)1 (x) < - a 1 1 (x)4'Cx) + bj 1 (x)4 1 (x) + f1 (x,h,k) . (5.1)

This inequalitiy has to be satisfied for all h,k E jRn such that

h = (hi) , h, = CF1(x) , (i(x) _<hi !< 4'i(x)

k = (k i ) , ki = '(x)

The occurrence of k leads one to require assumption (i) , in gener-
al. If i) is satisfied, the parameter k can be completely elim-
inated. Then, the corresponding theory can be derived from the
abstract theory on property (4.3). Assumption (ii) need not be
required. If (ii) is also satisfied, then h in (5.1) may be
replaced by ,(x) , so that no parameter occurs.

For estimates (.c) one obtains a differential inequality for

q which again contains two parameters q,n E ]Rn

- 4(x) + <q,q> cx) + f(x4(x)n, c'(x)n + Cx)q)>

for 0 < X < 1 , <n.n> 1 , <n,q> = 0

Here none of the assumptions (i), (ii) need to be required.

There are other essential differences between the theories of
the estimates (a) and (c). For example, if f(x,y) = Cy with a
matrix C , certain eigenvalues of matrices related to C play
an important role; in case (a) the smallest eigenvalue of the

matrix B = (b. -b ci. ,b. = Ic. i ; in case (c) with

<y,y> = y y the smallest eigenvalue of j(C+CT)

The methods used to prove these results on range-domain
implications can also be applied to estimates different from Ca),
(c) .

In addition to these results, Chapter V yields a theory on the
existence of solutions v which satisfy estimates of type (a) or
(c). Here, differential inequalities similar to those described
above occur.
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II. SHAPE-INVARIANT BOUNDS AND GENERATIZATIONS

In this chapter we describe results on estimates for differential
operators which were presented in [2-5]. These estimates are more
general than estimates by two-sided bounds and pointwise norm bounds.
On the other hand, the sufficient conditions derived are still
comparibly simple. In order to obtain such estimates, one essentially
has to construct one (or several) real-valued functions satisfying
certain differential inequalities.

The papers (2] and [3] treat ordinary differential operators
and elliptic-parabolic partial differential operators, respectively.
[4] describes a different approach to parabolic operators, which
yields somewhat stronger (and additional) statements. [5] is a
brief survey with additional results.

Here, we shall describe the basic ideas and results of the
theory by considering certain elliptic and parabolic operators
of a special form. The papers mentioned treat more general differen-
tial operators. Moreover, we explained in [5), that the results can
easily be generalized to certain functional-differential operators.
Furthermore, the methods used in this theory may also be applied
in proving more general inclusion properties.

6. Description of the operators and estimates considered

In this report on the results in [2,3,4,51 we restrict ourselves
to considering certain special classes of elliptic and parabolic
differential operators.

The elliptic operators discussed in Section 7 have the form

Mu(x) = - D(x) Au(x) + f(x,u(x),u x)) for x E n (6.1)

Mu(x) = - a(x) a(x) + B(x) u(x) for x E aQ (6.2)

where Q is a bounded domain in Im , x = (xk) , u(x) = (ui(x)) EJRn

Ux) = (aui/ax (x) E jAn,m , a/av denotes the interior normal

derivative (or some other directional derivative into 0 ),

D(x) = (di(x) 6 ij) E mn,n ,d(x) 0 , f = (fi) • n x n x ]n, m n.

cx) = (a i(x) 6 ij) E JRnn , ai(x) 0 0 , B(x) = (bik (x)) E n , n

and Rn 'm denotes the set of real nxm matrices.

.. .- .. . - -.__ _-_ _. . . .._ _. ., .... - ,. . .. . . . -. .. -
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In the following sections we shall often use a simpler notation,
where the independent variable is omitted in some places. For
example, we may write (6.1) in the form

Mu=- D Au + f(x,u,u) on the set 0?

We point this out because such relations will be combined with
side conditionswhere the independent variable cannot be omitted.

For operators (6.1), (6.2) we consider estimates of the form

v(x) E (x)G for x Ei (6.3)

v(x) E W(x)G£, (£=1,2,...,N) for x E ? . (6.4)

In (6.3), G denotes a given closed set in Rn , v E R = Sn

is the unknown function to be estimated, % E S a function to
be constructed, and S = Ci () n C2 (o) (for simplicity).

In order to obtain practicable conditions, we assume that the
set G c JRn is described by a real-valued function W on Rn
such that

y E G - W(y) 5 1

This function has to satisfy certain smoothness conditions and
other assumptions, which imply that G is star-shaped with respect
to 0 and that G has a smooth boundary r = {y W(y) = 11 . It
is also required that the normal vector W'(y) at a boundary point
y of G must not be orthogonal to y , i.e.,

W'(y) : = W' (y)y > 0 for W(y) = 1 . (6.5)

The estimate (6.1) is equivalent to

V(v(x)) ! %(x) for x E Ti

where V is the Minkowski functional of G , which, however, need
not be known (see [2]).

For constant 4(x) 4 o one obtains results on invariant sets.
For variable 4(x) , the size of the set 4(x)G depends on x ,
but its "shape" remains invariant. We speak of shape-invariant bounds.

For estimates (6.3) analogous assumptions are made: the sets
GZ are described by functions Wk , etc.

The parabolic operators M considered in Section 8.1 have the
form

[ .-
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Mu(x,t) = ut(x,t) - D(x) Au(x,t) + f(x,t,u(x),u x())
X (6.6)

for x E Q , 0 < t < T
au

Mu(x,t) = - c(x)- (x,t) + B(x) u(x,t) (6.7)

for x E Q , 0 < t < T

Mu(x,O) = u(x,O) - r(x) for x E n . (6.8)

Here, the notation is essentially the same as above. (In
particular, Q c ]JR' is bounded, A and 9/@v are differential oper-
ators with respect to x .)

We prove estimates of the form

v(x,t) E F(x,t)G for x E 0 5 t <_ T (6.9)

and

v(x,t) E c£(xt)Gk (Z=1,2,...,n) for x E i , (6.10)
0 <5 t 5 T.

Here, G and G are sets as above, v E R = Sn , c ES

E S , where now S is the set of all real-valued functions on

Q x (O,T] which are continuously differentiable with respect to t
and twice continuously differentiable with respect to x on
x (0,T] . (Of course, these smoothness conditions can be weakened.)

In Section 8.2 estimates of the form

v(t) E c(t)G for 0 < t 5 T (6.11)

are treated, where
v(t) E Cn(f) is defined by (v(t))(x) = v(x,t) ,

Co(m) = (CO(O)) is the set of continuous functions on -
with values in JRn

E E Co[O,T] n C1 (O,T]! n
G c Co (T) satisfies conditions similar to those described

above for G c n[.1
In the basic results for estimates (6.11) of v E R the

boundary terms (6.7) do not occur. However, in verifying the
assumptions, in general, certain boundary conditions are needed for
all components vi for which the coefficient di does not vanish.



-16-

In particular, we discuss estimates of the form

(f v T(x,t) H(x) v(x,t) dx)+ (t) (0 5 t T) (6.12)

where H(x) = (hi(x) 6 ij) with hi E COO) , hi(x) 0 0 on .

This estimate is equivalent to (6.11) with

{y Cn(?) W(y) 11
T (6.13)

W(y) <y,y> , < > f y T(x) H(x) n(x) dx

In particular, one may choose H(x) = I or H(x) = (d (x) 6 ik)

assuming in the latter case that all coefficients d. are strictly
positive.

The results in [4] on estimates (6.11) for parabolic operators
are derived from a theory on corresponding estimates for a first order
differential operator in a Banach space:

v(t) = v ' ( t ) - F(t,v(t)) for 0 < t 5 T

v(0) - r for t = 0

These abstract results will not be described here.

Analogously, estimates on abstract differential operators
of the second order can sometimes be used to derive estimates for
elliptic differential operators (see [5]).

The various estimates described here require different
assumptions on the form of the matrices D(x) and a(x) and on
the coupling of the function f , where both types of assumptions
are related to -ch other (see the discussion below).

In [4) we proved also estimates which are obtained when the
sets G and Gk in (6.9), (6.10) and (6.11) are replaced by its
interior. The corresponding theory is similar, but somewhat simpler.

As mentioned above, the estimates proved yield invariance
statements, by choosing constant functions (4k) . Invariance
statements (of type (U) and (E)) have been proved for elliptic
operators in [6-12], for parabolic operators in [7,8,9,13-16], for
abstract differential operators in [17-20]. In [21] certain
estimates are proved which can be considered as special cases of
(6.11) with j(t) n const. . The paper [22] treats estimates (6.12)
with H(x) a I and F(t) = exp(-xt). In [23] estimates v(t) E Gt
are derived. For further references see [2-4].La
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7. Ellj _ip4_operators

7.1 Shape-invariant bounds

For deriving estimates (6.3) we have to assume that all functions
di are equal and all functions ai are equal:

di = d , a. =  (i=1,2,...,n) . (7.1)

We shall explain below, that this inconvenient assumption is not
necessary for more general estimates (6.4).

First, we consider the following

Special case: G is convex, f does not depend on ux  . (7.2)

Here the theory leads us to differential inequalities for # , which
involve a parameter n E ]Rn . These inequalities have the following
form (recall (6.5)):

- w(n) d A + W'(n)f(x,mn) W'((n)Mv (7.3)

on the set of all (x,n) with x E fl , W(n) = 1

- wr(n) a - + W' (n)Bn % W' (n)Mv (7.4)

on the set of all (x,n) with x E M , W(n) = 1

Inequalities of this type occur in results of both types (U)
and (E) , which we have proved for this special case.

The results of type (U) are derived by means of the continuity

principle (Section 4) using a family of functions = 4 + zX

(0 5 X < ) . One obtains differential inequalities for all these

functions . In general, one can choose functions z of the

special form z. = Xz with a strictly positive function z . Also,

one may split each differential inequality for , into a condition

for c and a second condition involving zl . Then, for z Xz

one obtains the differential inequalities for described above

and, in addition, the following inequalities:

- W(n) d Az + W' (n) [f(x, (+Xz)n) - f(x,#n) ] > 0

on the set of all (X,x,n) such that X > 0 , x E fl and
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W(n) = 1 , v(x) (d(x) + X z(x)n ; (7.5)

- W(n) a -L + W' (n)BBn z > 0

on the set of all (x,n) with x E M , W(n) = 1

The idea is to prove the existence of suitable functions z
for a certain class of operators M . Then, for each operator M
in this class the following statement holds:

If the inequalities (7.3), (7.4) are satisfied, then

v(x) E c(x)G for x E a . In particular, each solution v of

Mu = 0 satisfies this estimate, if (7.3), (7.4) hold with Mv

replaced by 0 .

In [3] the application of these results is explained in detail,
in particular, the use of side conditions on v such as the one
in (7.5).

Results of type (E) have been proved for the special case
(7.2) under additional assumptions on d , a , B , f , M , such as
d(x) do > 0 and smoothness conditions. For this case, the
statements have the following form:

If the inequalities (7.3), (7.4) are satisfied with Mv
replaced by 0 , then the boundary value problem Mu = 0 has a

solution v such that v(x) E 4(x)G for x E

For the general case, where f may depend on ux and G
need not be convex, we have proved results of type (U) . Here, the
differential inequalities on n become more complicated. In
particular, these inequalities involve two parameters n E Rn and
q E]Rn,m . For example, the condition for € which generalizes (7.3)
has the following form, where Q(x,n,q) is the trace of the mxm
matrix d(x)qTW ''(n)q :

- w(n) d A + Q(x,n,q) + W'(n)f(x,,¢n,q+n4x) x W'(n)Mv (7.6

on the set of all (x,n,q) with

x E n , W(n) = 1 , W' (n)q = 0

Observe that the parameter q is not bounded, so that
assumptions of this type may impose strong conditions on the depend-
ence of f(x,u,ux) on ux . We shall make some brief remarks concern-
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ing conditions on the coupling of f with respect to ux

If the set G is "strictly convex" and d(x) : do > 0 , then
the term Q(x,n;q) in (7.6) is strictly positive (for W' (n)q = 0 )
and W(y) depends on all components yi (i=1,2,...,n) . Thus, (7.6)
constitutes a certain quadratic growth condition on f as a function
of ux , but f may be strongly coupled.

If W depends only on some of the variables yi , say yi

with i E J , then Q(x,n,q) does not depend on elements q. of
jk O

q with j ( J . Consequently, the condition (7.6) cannot be satis-

fied for all q (with W' (,- - 0 ), if f depends on any derivative

auj/axk with j t I , F'... or very special nonlinear functions

f .

In particular, we investigated linear operators M with
Dirichlet boundary tc';-ms &-,r the case W(y) = yTy . These statements
on linear operators contain results on boundary maximum principles,
more general than those of [24,25,26].

7.2 Estimates v E n G.

For estimates of the more general form (6.4), where Gk is
described by a function Wk , condition (7.1) can be replaced by
the following weaker

Assumption A If there exists an k such that Wk(y)
depends on yi and yj , then

d. =d and a a

Example 1: If all di are pairwise different, then each Wk
must depend on one variable yj only. This is the case, for
instance, if

N = 2n , Wi(y) = Yi Wn+i(y) - yi (i=1,2,...,n)

The corresponding statement (6.4) is an estimate by two-sided bounds.

Example 2: In order to obtain an estimate

(V2(X) + V2(x))+ : cF(X), (V2(X) + V2(X))'

in the case n = 4 , one may choose

2H + 2 W 2 2
W1 (y) =Y, y2  , 2 (y) = Y3 +- y4

Here, we need to require that di = d2 ,d 3 = d4.
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Thus, the choice of functions W£ which do not depend on all
yi , has certain advantages; but it has disadvantages, too. Such a
choice, in general, requires stronger conditions on the coupliny of
f(x,u,ux) with respect to ux .

In Example 1, each component fi of f must not depend on any
derivative of any function u- with j * i , except for very special
nonlinear functions fi . In ixample 2, we must, in general, assume
that f, and f2 do not depend on any derivative of U3  and u4
and f3 and f4  do not depend on any derivative of ul and u2

For a better understanding of the conditions required see the
remarks concerning the coupling of f which follow formula (7.6).
For the more general estimates considered here one obtains differen-
tial inequalities for the functions qt analogous to (7.6), with
W replaced by Wk , etc..

We proved in [3] results of type (U) and (E) for the
special case (7.2), and results of type (U) for the general case.

As an example, we derived in [3] existence statements and
numerical error estimates for the steady state of a simple reaction-
diffusion problem, where

K: = n 4 (x)G£ is a non-rectangular quadrangle

This choice of the sets G£ is natural because of the special struc-
ture of such problems.

8. Parabolic operators

8.1 Shape-invariant bounds

The theory in Section 7 on results of type (U) can also be
applied to parabolic operators, as discussed in [3]. One obtains
somewhat stronger (and additional) statements, however, by the
approach described in [4]. We shall present some of the pertinent
results in more detail, since they have not been published in this
form. We use the definitions and notation in Section 6, and assume
in this section that (7.1) holds.

Theorem A . The estimate

v(x,t) E 4,(x,t)G for x E f , 0 < t 5 T (8.1)

holds under the following assumptions (I) , (II)

(1) Suppose that
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(i) w(n)( t-d A4) + Q(x,nq) + W' (rj)f(x,t,n, q+rjx)

> W' (n)Mv

on the set of all (x,t,n,q) with

x E fl 0 < t : T W(n) = 1 , W'(n)q - 0 ; (8.2)

(ii) w(n)4 + W' (n)Bn 4 > W' (n)Mv

on the set of all (x,t,n) with

x E DQ 0 < t < T , W(n) = 1 ; (8.3)

(iii) v(x,O) E 4(x,O)G for x E

(II) Suppose that there exists a function z E S such that

z(x,t) > 0 on x [0,T] and

(i) W(n)(zt- d Az) + Q(x,n,q)z

+ W' (n)[f(x,t,v,vx ) - f(x,t,v-xzn,Vx- Zq-Xnzx) ] > 0

on the set of all (x,t,X,n,q) which satisfy (8.2), 0 < X !5 E and

v(x) - Xz(x)n = 4(x) , v(x) - Xz(x)q - x) = x)

(8.4)

(ii) W(n)z + W' (n)Bn z > 0

i on the set of all (x,t,n) which satisfy (8.3).

Assumption (II) can be verified under rather mild conditions.
For example, if G is bounded, the following statements (a) , (b)
hold, where

q,p EJ Rn ' m and I1P1I = (mik (Pik)2) :

(a) Assumption (II) (i) is satisfied, if there exist

constants z, > 0 , c0 > 0 , c1 , c2 , such that

w(n) I

Q(x,n,q) : colq J2

W'(n)[f(x,v,v x ) - f(x,v-an,vx-p)] > Cc - c2 1fpII (8.5)

on the set of all (x,t,n,q,a,p) which satisfy (8.2), a 0 and



- 22 -

v(x) - an :(x)n , v xW) - p = n x) , (8.6)

and if, in addition, there exist a function p E C2 (i) and a
constant x such that

>0 on £ - d AT + g 0 on n

(b) Assumption (II) (ii) is satisfied, if

a -( + W' (n)Bn 9 > 0

on the set of all (x,n) with x E DO , W(n) = 1

(One verifies by formal calculations, that under the assumptions
made above, the function z(x,t) = q(x) exp(Nt) satisfies (II)(i)
and (ii) , respectively, if N is sufficiently large.)

Remarks. 1) Assumption (8.5) essentially is a local Lipschitz
condition on f , due to the side condition (8.6). Observe also that
the constants ci and c2 , which may depend on v , need not be
known numerically.

2) In the case of a Dirichlet boundary operator

Mv(x,t) = v(x,t) for x E 30 , 0 < t 5 T

one may choose q(x) - 1 . In may other cases a function of the form
(x) = r2 - r2  can be used, where r is the distance of x from

some point in Q and ro is sufficiently large.

3) If Assumption (II) is satisfied, then the estimate (8.1)
follows from the conditions on # described in Assumption (I)
Assumption (I) (i) constitutes conditions on the dependence of
f(x,t,u,u x) on ux , as described for elliptic operators.

4) In (4] we explained in more detail, in which way the results
can be used for an error estimation, if f(x,t,u,ux) satisfies a
certain quadratic growth condition with respect to ux . (See
Corollary 1.c in [4] and the text succeeding this corollary.) In
particular, one can obtain in this way estimates (8.1) with

(x,t) = O(x) + q(x) exp (-pt)

which yield statements on the stability of solutions.

In some of the results in [4], we did not use the side condi-
tions (8.6). For this reason, we formulated there an assumption which
is obtained from (8.5), when cla - caliphj is replaced by
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c1a- c2 !IPI - c31P112 . (See Corollary lb.)

8.2 More general estimates

In [4] we described also results of type (U) on estimates

v(x,t) E £(x,t)G£ (£=1,2,...,N) (8.7)

for parabolic operators. For such estimates condition (7.1) can be
replaced by Assumption (A) in Section 7.2.

In addition, [4] contains results of type (U) on estimates
of the form (6.11):

v(t) E (t)G (0 5 t ! T) , (8.8)

where (6.12) is a special case. These estimates have the following
important advantage to estimates of the form (8.1) or (8.7):

The coefficients di (and ai ) may all be different and, at
the same time, there is no restriction on the coupling of f

The basic results on estimates (8.8) contain conditions on
certain function z (or a family of functions zX ) which are
analogous to those in Theorem A . We shall not describe this
general theory here. Instead, we formulate a more special result
on estimates (6.12).

Here, we define < , > as in (6.13) and use abbreviations such
as

<n,f(VVx)> (t) J nT(x)f(x,t,v(x,t),vx(x,t)) dx

n
Moreover, for sufficiently smooth n E Co(d) let

I(n) =f n T(x) H(x)(- D(x) An(x)) dx (8.9)
Q

and denote by JJnIi some semi-norm of the matrix nx (see the
example below).

Theorem B. The estimate

(f vT(x,t) H(x) v(x,t) dx)' <_ (t) (0 :5 t :5 T)
1

holds under the following assumptions (i), (ii), (iii):

(i) Suppose there exist constants 6 > 0 , 1, V > 0
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CI , C 2 > 0 such that

2(1) _ I f11 112 + pllIIIlII + po (8.10)

and

<),f(vivx) - f(v-xn,v x-anX) (t) > Cla - c=cxlnll (8.11)

for all
n

E (0,6] , t E (0,T] , E Co(s) (8.12)

which satisfy

<qn> = 1 and v(x,t)= ( (t) + a )n(x) for x E . (8.13)

(ii) Suppose that

t(t) + I(n)(t) + <n,f(01 ,n x)>(t) _ <n,Mv> (t) (8.14)
under the side conditions (8.12), (8.13).

(iii) <v,v> (0) < 2 (0)

Remarks. 1) Due to (8.13) the function n occuring in (M)
and (ii) is sufficiently smooth.

2) Estimates of the form (8.10), in general, can be
obtained, if v satisfies certain boundary condition. One uses
partial integration and the eigenvalue theory of elliptic differential
operators.

3) The assumption (8.11), (8.13) describes a certain local
Lipschitz condition, which is satisfied for sufficiently smooth f

4) In the differential inequalities (8.14) for 4 , one
will use an estimate of the form (8.10) where, however, 1J2 need
not satisfy V2 > 0 . If P2 > 0 , the. (8.14) constitutes a certain
quadratic growth condition on f as a function of ux

Example: Suppose that

n{x E n  [i < 1 for all i },H(x) =D(x) =I

and

v(x,t) = 0 for x E 30

Then

(n) =I 11 2 with I1T ( a TI 2 () dx)



-25-

and Ir) p 4Mnr2 
, so that

I(TI) S s JrjTj2 + (1-S)p for each s E [0,11 .(.5

Thus, (8.10) holds, for instance, with Pa2 1 , PIJ UP0 0
In (8.14) any estimate (8.15) can be used. if f does not depend
on ux one will use I(n) p
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III. NUMERICAL APPLICATIONS

The results described above have many applications in numerical
analysis. For example, they can be used as tools to prove the

* convergence of iterative procedures or the convergence of difference
methods 'for differential equations. This was described for linear
problems in [1] (see Section 2 above). The application to error

* estimations is discussed in the following section.

9. Approximation methods and a posteriori error estimates for
two-point boundary value problems

9.1 Error estimates

L In principle, each of the estimation methods described in the
previous sections can be applied to obtain a posteriori error bounds
for approximate solutions of equations. (For the application of
inverse-monotonicity see [27,28).) The question arises, whether
one can construct algorithms of error estimation which on one hand
yield sufficiently good error bounds and, on the other hand, do not
require too much additional work. We investigated these possibilities
for the case of (scalar-valued and vector-valued) two-point boundary
value problems of the second order, as part of the research project
described in this report. (For methods of error estimation for
initial value problems see [29,30).) The work on boundary value
problems has not yet been completed. Nevertheless, it seems
worthwhile to report briefly on our experiences.

Let us first describe the general principle of error estimation.

For a given equation

Mu = r

denote by

u* a solution,

w an approximation solution,

v =u* -W the error of w

The error v satisfies the equation

Mv = d

with the known
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defect d = d[w] - Mw + r , and Mv = M(w+v) -w

After this reformulation of the given problem one tries to apply
one of the estimation methods described inthe previous sections,
in order to obtain an inclusion statement v E K for the error.

Some first results on the error estimation for two-point bound-
ary value problems are described in [1, Sections 11.5.2 , 111.6.3,
and Example V.4.12]. The example mentioned is a vector-valued
problem with a singular differential operator, and the estimate was
one by pointwise norm bounds. Here, we shall restrict ourselves to
considering scalar-valued equations of the form

- u"(x) + f(x,u(x)) = 0 for 0 < x < 1

with linear Sturm-Liouville boundary conditions, and estimates

[v(x)l = I u*(x) - w(x) 4(x) (0 x 1)

with E C2[O,1] . Suppose, for simplicity, that the approximate
solution w E C2 [0,1] satisfies the boundary conditions, and write

d(x) = d[w] (x) = w" (x) - f(x,w(x))

For continuous f (on [0,1] x 3R ) one obtains the following
statement:

If 2t 0 satisfies the homogeneous boundary conditions and if

- 4" + f(x,w+4) - f(x,w) d on (0,1)

and

- 4" + f(x,w) - f(x,w-4) > - d on (0,1) 1

then there exists a solution u* E C2 [0,1] such that Iu* - wi <
on [0,1]

The application of this result poses essentially three problems:

1) The computation of an approximate solution w

2) The estimation of the defect d[w] on the entire
interval [0,1]

3) The construction of a function 4 , which solves the
differential inequalities.

To 1: Approximation methods will be discussed in the
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succeeding section.

To 2: The defect d(x) usually is a function of a very
complicated form. One has to replace it by a simpler bound, say a
constant r

jd(x)j r (o - x ) . (9.1)

In the general case, the calculation of a good bound r , such that
this inequality holds for all x E [0,1] , is the most difficult
and time-consuming part of the procedure.

There are cases, however, where such an estimate is comparibly
easy. If d(x) is a polynominal, then r can be obtained by
calculating finitely many values d(xk) . Here, one uses a result of
[311. In such cases, the estimate (9.1) often requires much less work
than the computation of w .

This method of estimating the defect can also be used, if [0,1]
is divided into a few intervals and d(x) is a polynomial on each
of these subintervals.

More general cases are still being investigated.

To 3: In general, this is the easiest part of the procedure
(see [1, Section 111.6.1]).

9.2 Approximation methods

For carrying out the error estimation we need to calculate an
approximate solution w , which is defined for all x E [0,1] .
There exist several methods and programs to obtain such approximations
(see [32,33], for example).

In order to investigate the power of the estimation methods,
we first used polynomial approximations. A series of approximation
methods for obtaining such (global) polynomials were tested. We
finally arrived at the following

Method P : (Collocation using integrated Legendre polynomials
and Chebychev collocation points.) Write the polynomial w(x) in the
form

Mw(x) = 'OWx + Ja,9 (x )

where 90(x) is linear and the functions gi(x) are once (or twice)
integrated Legendre polynomials (depending on the boundary conditions).
Calculate the constans ai such that
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d[w](Xk) = 0 (k=1,2,...,m)

where Xk denote the zeros of the m-th Chebychev polynomial
(transformed onto [0,1] ).

We obtained excellent results (concerning accuracy and computing
time) with method P for a series of problems whose solutions did not
behave "too badly". For example, the problem

u" - [90 ctg -!Tr(1+x) + 60 tan 6(1+x)]u' - 630 u = 0

u(O) = 0 , u(1) = 5

could be solved without any difficulty. The solution u* increases
very fast from u*(O) = 0 to its maximal value s 224 , which is
attained at approximately x = 0.022 .

For a series of problems of this type we compared this polynomial
approximation with methods of spline approximation, using programs
of de Boor [32] and Ascher et al. [33]. It turned out that for such
problems of "medium difficulty" method P gave by far the best results
(see [34]).

Of course, this does not mean, that one should use polynomials
instead of spline functions in general differential equation solvers.
For example, method P failed for certain singular perturbation
problems with very small perturbation parameters, while the other
methods still were applicable. Our results suggest, however, to
construct programs for the approximation by piecewise polynomial
functions where the polynomials in the subintervals can have dif-
ferent orders and very high orders. Then one may not need many
subintervals, after one has found out, where the boundary layers,
transitions layers etc. occur. Such a procedure would also simplify
the a posteriori error estimation.
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Appendix: Contents of "Operator Inequalities"

Chapter I Some results on functional analysis

1 Basic concepts of order theory

1.1 Ordered spaces
1.2 Ordered linear spaces
1.3 Positive linear functionals and operators
1.4 Convergence and continuity

2 Convex sets

2.1 Basic concepts
2.2 Description by functionals
2.3 The special case of cones

3 Fixed-point theorems and other means of functional analysis

3.1 Compact operators in a Banach space
3.2 Iterative procedures in ordered spaces

Notes

Chapter II Inverse-positive linear operators

1 An abstract theory

1.1 The concept of an inverse-positive operator,
general assumptions

1.2 Basic results
1.3 A more detailed analysis
1.4 Connected sets of operators
1.5 Noninvertible operators

2 M-matrices

2.1 Definitions and notation
2.2 General results for square mF.trices
2.3 Off-diagonally negative matrices
2.4 Eigenvalue problems
2.5 Iterative procedures

2.5.1 General remarks
2.5.2 Regular splittings
2.5.3 Majorization
2.5.4 Monotonic approximations



- 34 -

3 Differential operators of the second order, pointwise
inequalities

3.1 Assumptions and notation
3.2 Basic results on inverse-positivity
3.3 Construction of majorizing functions
3.4 Sets of inverse-positive regular differential operators
3.5 Inverse-positivity under constraints
3.6 Stronger results on positivity in the interior
3.7 Strictly inverse-positive operators
3.8 Equivalence statements
3.9 Oscillation and separation of zeros
3.10 Eigenvalue problems
3.11 Differential operators on noncompact intervals

3.11.1 The method of generalized boundary operators
3.11.2 Approximation by compact intervals

4 Abstract theory (continuation)

4.1 The method of reduction
4.1.1 Global reduction
4.1.2 Local reduction
4.1.3 A differential operator of the fourth order

4.2 Z-operators and M-operators
4.2.1 Abstract operators
4.2.2 Quasi-antitone vector-valued differential

operators
4.3 Operators XI - T with positive T

4.3.1 Inverse-positive operators XI - T
4.3.2 Iterative procedures
4.3.3 Irreducible operators

4.4 Inverse-positivity for the case KC =

5 Numerical applications

5.1 A convergence theory for difference methods
5.1.1 The difference method
5.1.2 Sufficient convergence conditions
5.1.3 Boundary value problems
5.1.4 A generalization and its application

5.2 A posteriori error estimates
5.2.1 General description of the method
5.2.2 An initial value problem
5.2.3 Boundary value problems

6 Further results

6.1 Differential operators of the fourth order
6.2 Duality
6.3 A matrix theorem of Lyapunov

Notes



- 35 -

Chapter III Two-sided bounds for second order differential equi,tions

1 The concept of an inverse-monotone operator

2 Inverse-monotone differential operators

2.1 Simple sufficient conditions
2.2 More general results
2.3 Miscellaneous results

2.3.1 Inverse-monotonicity undcr constraints
2.3.2 Operators of divergence form
2.3.3 Estimating derivatives
2.3.4 Periodic boundary conditions
2.3.5 Noncompact intervals

3 Inverse-monotonicity with weak differential inequalities

3.1 Description of the problem
3.1.1 Properties IM* and IP*
3.1.2 A different formulation
3.1.3 Generalized boundary value problems

3.2 Monotone definite operators
3.3 Further constructive sufficient conditions
3.4 L, - differential inequalities
3.5 Stronger positivity statements for linear problems

4 Existence and inclusion for two-point boundary value problems

4.1 The basic theorem
4.2 Bounds for the derivative of the solution
4.3 Quadratic growth restrictions, Nagumo conditions
4.4 Singular problems
4.5 Different approaches

4.5.1 A priori bounds for the derivative
4.5.2 The degree of mapping method
4.5.3 A simple approach for a special case,

iterative procedures

5 Existence and inclusion by weak comparison functions

5.1 Application of Schauder's fixed-point theorem
5.2 Existence by the theory on monotone definite operators

6 Error estimates

6.1 Construction of error bounds by linear approximation
6.2 Initial value problems
6.3 Boundary value problems

Notes



- 36 -

Chapter IV An estimation theory for linear and nonlinear
operators, range-domain implications

1 Sufficient conditions, general theory

1.1 Notation and introductory remarks
1.2 A continuity principle

2 Inverse-monotone operators

2.1 Abstract results using majorizing elements
2.1.1 The main theorems
2.1.2 A special class of abstract operators,

order-quasilinear operators
2.1.3 Pre-inverse-monotonicity and related concepts
2.1.4 An application

2.2 Nonlinear functions in finite-dimensional spaces
2.3 Functional-differential operators of the second order
2.4 A different approach for initial value problems

2.4.1 Description of the method for a simple
special case

2.4.2 Abstract differential equations
2.4.3 Differential equations for sequences (ui(x))
2.4.4 Maximal and minimal solutions

3 Inclusion by upper and lower bounds

4 Range-domain implications for linear and concave operators

4.1 Abstract theory
4.2 Applications to non-inverse-positive differential

operators

Notes

Chapter V Estimation and existence theory for vector-valued

differential operators

1 Description of the problem, assumptions, notation

2 Two-sided bounds by range-domain implications

3 Existence and inclusion by two-sided bounds

3.1 The basic theorem
3.2 Simultaneous estimation of the si ution and its derivative
3.3 Growth restrictions concerning u'
3.4 Application of the methods to other problems

3.4.1 First order initial value problems
3.4.2 Mixed problems, a differential equation of the

third order on [O,o)
3.4.3 A singular problem



- 37 -

4 Pointwise norm bounds by range-domain implications

4.1 Notation and auxiliary means
4.2 General estimation theorems for Dirichlet boundary

conditions
4.3 Special cases and examples
4.4 More general operators and other boundary conditions

4.4.1 A more general differential operator
4.4.2 Sturm-Liouville boundary operators
4.4.3 Periodic boundary conditions

4.5 First order initial value problems
4.5.1 A priori estimates
4.5.2 Estimation of solutions, stability

5 Existence and estimation by norm bounds

5.1 The basic theorem
5.2 Simultaneous estimation of u* and (u*)'

5.3 Quadratic growth restrictions

6 More general estimates

6.1 Estimation by two-sided bounds and norm bounds
6.2 Estimates by Lyapunov functions

Notes

References



1~i~


