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1.0 ABSTRACT

A previous report described a higher-order three-dimensional panel method
that represents the body about which flow is to be computed by means of curved
four-sided surface panels having linearly varying source and vorticity distri-
butions. The method of accounting for 1ift was incomplete, and the main purpose
of the present work was to remedy this defect. A number of other modifications
to the method were also made to improve its efficiency and accuracy.

The modifications documented here are: formulas for the edge-vortex
influences, which previously had been neglected; new surface vorticity formulas
that express its influences in terms of source influences; a modified global
vorticity algorithm to improve continuity over the surface, and, an extrapolated
Kutta condition.
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3.0 PRINCIPAL NOTATION

derivative of the equivalent dipole strength along an N-line
constant governing the equivalent dipole term quadratic in n

used as subscripts to denote quantities associated with the
first and second N-lines of a panel, respectively
arc length along an N-line from the trailing edge to the n-axis

unit vectors along the axes of the panel coordinate system
functions defined by equations (6.3.1), (6.3.2) and (6.3.4)

total arc length of an N-line from lower surface trailing edge

panel "curvatures," i.e., second derivatives of the shape of
the curved panel at the origin of panel coordinates

vector from a point on the curved panel to a point in space

vector from a point on the projected flat panel to a point in

coordinates of a point in space where velocity is to be
quadratic surface approximating the curved panel, eq. (5.3.2)
coordinates of the first and second N-lines, respectively, in

equivalent dipole strength. When used with subscripts x and
y it denotes the corresponding derivative of u at the origin

A area of the flat projected pane! (Figure 1)
B
c
F,S
h

of panel coordinates
>
1e"]e’ze
Jmn
L(total)

to upper surface trailing edge
P,Q,R
r magnitude of ¥
¥

where velocity is to be evaluated
->
s

space where velocity is to be evaluated
S surface area of the curved panel (Figure 1)
T slope of an N-line, eq. (6.2.3)
v velocity vector
u,v parameters in the pavametric cubic fit
W width of a panel between N-lines
X,_y ,Z

evaluated
.7;2
n] ’n3

panel coordinates
u

of panel coordinates

3
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1391194 coordinates of a point on the curved panel in panel coordinates.
Setting ¢ = 0 gives the corresponding point on the projected

flat panel

source density
vorticity vector, used with various subscripts

(=24

— — e s e e
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4,0 INTRODUCTION

Reference 1 describes a so-called first-order panel method for calculating
potential flow about arbitrary three-dimensional 1ifting bodies. The program
deck corresponding to this method has been distributed widely and indeed has
become a standard design tool for subsonic aerodynamic analysis throughout the
country. Recently a higher-order version of the panel method was constructed
as described in reference 2. Compared to the first-order method of reference 1,
the higher-order method achieves greater calculational accuracy for a given
panel number and thus has the potential to reduce cost substantially for a given
accuracy and to calculate flow about more complicated configurations. The
initial nonlifting version of the higher-order method, which was documented in
reference 3, has already been used in design applications, for example refer-
ence 4. However, complete formulas and logical procedures for the method were
first presented in reference 2, which also included provisions for lifting
effects. The 1ifting method described in reference 2 to a large extent has
the nature of a pilot method for proving the approach, rather than a final
general procedure.

The work described in this report consists of modifications to the method
of reference 2 that greatly increase its accuracy and numerical efficiency.
To make the present document self-contained would require a complete description
of the higher-order panel method and thus a duplication of large portions of
reference 2. Since reference 2 is generally available, the consequent large
increase in the length of the present report seems neither necessary nor
desirable. Accordingly, reference 2 is reliedupon toprovide the general ideas
and philosophy of the higher-order method, as well as detailed formulas and
logic. Indeed references will frequently be made to sections and even indiv-
idual equations of reference 2. A few features of the higher-order method
that bear directly on the modifications described in this report are mentioned
below. But the intention is one of emphasis not of completeness.

A panel method discretizes the body about which flow is to be computed,
representing it by a large number of small four-sided surface panels, on
each of which are distributions of source and dipole or vorticity. A control
point is selected on each panel where the normal-velocity boundary condition
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is enforced and where flow quantities are eventually calculated. In 1ifting

cases a Kutta condition is applied to insure smooth flow off wing trailing

edges. In essence the source strengths on the panels are adjusted to satisfy

the normal-velocity boundary conditions, and thus each panel has an independent

value of source strength. The variation of dipole or vorticity strength over

the surface is fitted by certain global algorithms to obtain expressions con-

taining a number of adjustable parameters equal to the number of locations

where the Kutta condition is applied. ;

The key calculational unit in a panel method is the set of formulas
giving the velocities induced at a point in space by the source and dipole or
vorticity distributions on a panel. In the first-order method of reference 1
the panels are planar and the required induced velocities due to constant
source and quadratic dipole distributions may be obtained exactly by means of
analytic integration over the panel. When the point in question is far from
the panel, approximate “far-field” formulas are used to reduce computing time.
In the higher-order method of reference 2, the panels are conceptually curved.
Since analytic integration over a curved panel is not possible, the induced
velocities due to linearly varying source and vorticity distributions on the
curved panel are expressed as expansions about the effects of the flat panel
that is the projection of the curved panel in the tangent plane. Integration
over the "projected flat panel" of the various terms in the expansion can be
performed analytically. The validity and consistency of the expansions are
discussed in reference 2. Approximate expressions for the terms of the
expansion are used at distant points. The errors due to using these far-field
expressions are independent of and can be made small with respect to the
truncation errvor of the expansion about the projected flat panel.

The analytic expressions in reference 2 for the effects of panel vorticity
are extremely cumbersome. Moreover, they do not lend themselves to efficient
far-field approximations. The result is long computing times for the method
as presented in reference 2. This situation has been remedied by relating
the vorticity-induced velocities to the source-induced velocities and thus
obtaining the former in essentially no additional time. The far-field problem
no longer arises because the source far-field approximation is all that is
required. This modification is discussed in section 5.0.

,,,,,,,,,
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As discussei in reference 2, vorticity has been employed on a panel rather
than a dipole distribution because it leads to a simpler expansion about the
projected flat panel. Thus the effects of line vortices around the perimeter
of the panel are neglected. Over the portions of the surface away from any
physical edges the effect of the line vortex along each edge of a panel is
cancelled, at least to some order, by that of the line vortex along the edge of
the adjacent panel. The result is a relatively weak 1ine vortex. At physical
edges of the body, e.g., a wing tip, there can be no such cancellation, and
indeed a strong edge or tip vortex is known to be present. It turns out that
it is the trailing edge vortices that are important. Section 6.0 presents form-
ulas that account for the effects of such edge vortices.

So-called global vorticity algorithms are used to relate the vorticity
strengths on the panels and thus reduce the variation of vorticity over the
surface to analytic expressions depending on a number of parameters equal to
the number of locations at which the Kutta condition is prescribed. Section 7.0
describes two improvements to the global vorticity algorithms of reference 2.
One is concerned with minimizing spanwise vortices at interior panel edges
(previous paragraph) and the other with an improvement in the spanwise vorticity
fit that eliminates extraneous wake vorticity.

The Kutta condition used in all versions of the panel method is an equal-
pressure condition applied at the upper and Tower trailing edge of a wing. In
references 1 and 2 the pressures set equal are those at the upver and lower
control points nearest the trailing edge for each spanwise location. Thus the
equal-pressure condition is applied at a distance of half a panel length from
the trailing edge. This is an acceptable approximation for a first-order
method, but it penalizes a higher-order method unnecessarily. Section 8.0
describes an improved Kutta condition that -extrapolates upper and lower surface
pressures to the trailing edge before setting them equal.

Finally, the geometric procedure described in reference 2 for calculating
panel curvatures, control points, and normal vectors has been found to ve
unsatisfactory (in some cases). Accordingly, it has been replaced by a more
elaborate procedure. Although this modification is outside the scope of the
work reported here, it seemed that for completeness a description of it should
be included. Thus it is presented in Appendix A.

e
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5.0 CALCULATION OF VORTICITY INDUCED VELOCITIES IN TERMS OF
SOURCE INDUCED VELOCITIES

5.1 Background

As has been mentioned, the expressions for induced velocity due to any
polynomial distribution of singularity can be analytically integrated over a
flat panel. Moreover, the only trancedental functions that occur are the
Togarithms and inverse tangents that are already present in the first-order
constant-source formulas. Thus, the expressions for higher-order effects, which
are obtained by integration over the projected flat panel, can, at least
potentially,be evaluated in computing times only modestly larger than those for
the first-order formulas. This was certainly true for the two-dimensional
higher-order method of reference 5 and to a lesser extent for the nonlifting
version of the present method (reference 3). However, there are Timits to
the insensitivity of computing time. The formulas for the vorticity effects
that are presented in section 6.3 of reference 2 are so elaborate that they
add substantially to the required computing time. Most of the complications
arise from the curvature-dependent terms. Moreover, these formulas are not
suitable for efficient far-field approximation. Thus the 90% or so of the
velocity influences that are calculated by far-field formulas require consid-
erably more computing time for the vorticity effects than for the source effects,
the latter of which do have efficient far-field approximations.

5.2 General Theory

The calculation of the vorticity influences can be made much more efficient
by expressing them in terms of the corresponding source influences, which of
course must be calculated in any event. The use of this procedure was put
forward in reference 6. The portion of the theory that is needed for the present
purpose is quite easy to state.

Suppose there is a variable source density o on a portion of a plane or
curved surface S. The velocity due to this at a point (x,y,z) is

V (source) =_[[ 25 od$ (5.2.1)
g T
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where (xq, Yos zq) is a point on s and where

Q
¥ = (x —-xq)T + (y -yq)3 + (2 —-zq)F (5.2.2)

As usual r 1is the magnitude of ¥ (see Figure 1). If there is a vorticity
distribution of S of strength
@ = ot (5.2.3)

the Biot-Savart law gives the resulting induced velocity as

V (vorticity) = [f %—1‘-3-'1“5 (5.2.4)
S r

Then if T 1is a constant vector and if ® has the same spatial variation
as o, the velocity due to the vorticity distribution may be expressed in
1 terms of the velocity due to the source distribution as

V (vorticity) = T x V (source) (5.2.5)

since @ can be resolved into components, each of which has a constant direc-
tion, the restriction to a constant T 4s not serious. Although the above
results apply to a curved surface S, it is far simpler to apply to a flat
surface. In the present context the above is applied to the flat projected
panel.

5.3 Calculation of the Velocity Induced by a Panel H

Figure 1 illustrates the projection of a curved panel S on the surface
to a flat panel A in the tangent plane. In particular, Figure 1 illustrates
T as given in (5.2.2) above and the vector ?f from a point of the projected
flat panel to the point (x,y,z)

- Fe= (x=e)T + (y = n)J, + 2k, (5.3.1)

| where Te, 3e’ Fe are unit vectors along the axes of the panel coordinate
system. The vertical distance ¢ between the curved panel and its projection
is approximated by its leading term %9 which represents a surface of

second degree

A ——s oy ——— o o cmi e e

—— e —————
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2 2

2y = PE™ + 2Q&n + Rn (5.3.2)
where P, Q, R are the second derivatives of ¢ at the origin of panel
coordinates — the so-called surface curvatures.

The aim is to parallel the development of section 5.3 of reference 2 and
express the results in terms of source effects. From equation (53) of refer-
ence 2 it is seen that a two-term expansion of the vector vorticity distribu-
tion is

- _ > >

w =Wy + oy (5.3.3)
where

> _

W, uy’te ude (5.3.4)

is zero order and
_ + g T,
0y = Z(uxys uyyn)1e —-2(uxxE + “xy“)Je

*+ 2[-(Qg + Rn)u, + (Pg + Qn)uy]‘k‘e (5.3.5)

is first order. The constants My oByys etc. are the derivatives of the
equivalent dipole distribution as given by equation (50) of reference 2.

From (5.3.1) and (5.2.2) expressed in panel coordinates:

..)

rf cZF (5.3.6)

Thus a two-term expansion of the velocity at (x,y,z) due to the vorticity
on the panel is

> W, X Te Wy, X F w, x K
¥ - wXxr - 1 f_ 0" e
e e e e n ) Ak Sk,
S A

s s (5.3.7)
-) (n-l X Y‘
= w X jf[—g— (1 + 3z —-2-) -, -—2- dA + ff r f da (5.3.8)
A LTS s A f
(0) (c)

By taking the gradient of the ¢ and ¢ terms of the source expan-
sion on page 20 of reference 2, it can be seen that the integral multiplying

10
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36 above is just the sum of superscript 0 and c¢ source terms for unit

source density. Specifically this combination is the velocity
v o= 700 & pp(P) 4 20(@ 4 3R, (5.3.9)

where the quantities on the right of (5.3.9) are as defined in section 6.2 of
->

reference 2, and the combined velocity V' 1is explicitly calculated by the

existing code.

To analyze the remaining term of (5.3.8), collect terms in equation (5.3.5)

to obtain
> > >
wp = 2(gq, + nqy) (5.3.10)
where the vectors
> T T _ T
Ay = Hyyle “de * (Puy Qu, kg
(5.3.11)
> > + _ >
Q= Te —ude * (Quy Ru, JKy

are constants in the integration. The integrals that result from using

(5.3.10) in the second term of (5.3.8) are the velocities due to linearly

varying source densities in the & and n directions having unit slope, i.e.
K . V(]x) and V(1y) from section 6.2 of reference 2.

Thus the velocity (5.3.7) due to vorticity on the panel may be expressed
in terms of source velocities as follows

o W > p(x) = (ly)
vV, = w, X V' o+ 2[qx x V + qy X v ] (5.3.12)

It is interesting to note that (5.3.12) can be evaluated directly in reference
coordinates after the relevant source velocities have been calculated and put
/" into this system. As regards the velocities due to the vorticity, this not
only means that no transformations between panel and reference coordinates

are required, but it also means that the question of far-field calculation
need never arise. If the source velocities have been computed by far-field

n
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formulas, they simply are used in (5.3.12), so that in effect the vorticity
calculation uses the source far-field procedure. The present code takes
advantage of the second of these facts, the use of far-field source fornulas,
but performs the calculation in panel coordinates.

Formulas (5.3.4), (5.3.11) and (5.3.12) replace the elaborate formulas
of section 6.3 of reference 2.

5.4 Assembly of the Vorticity Formulas

The formulas of section 5.3 give the difficult portion of the vorticity
calculation. However, the task remains to collect the terms of the vorticity-
induced velocity into velocities associated with the first and second N-lines
of the panel in a manner similar to that of section 9.0 of reference 2.
Basically this is a matter of performing the indicated vector cross products
of section 5.3 above and using formulas (141) of reference 2 for the
derivatives. This last is most easily done computationally by means of the
following logical table

pu-derivative First N-line Second N-1ine 1
M N3
u
x . -2 1
h h
o = clny +ny) =2+ clny * ny)
Hy W i IR w b L
Hyx d -d (5.4.1)
1 -1
My oW oW
Myy ¢ -¢

where all quantities have the same meaning as in reference 2 section 9.2. The
foregoing are on-body formulas. For wake panels set

X oxxoNy (5.4.2)
hF = LF (total), he = LS (total)

12
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In performing the indicated cross products it will be recalled that the

components of ?e’ 3?, te (Ké = W) in reference coordinates are the entries
of the panel's transformation matrix an® i.e.

T . T -

1o = ap T +ap,d + a4k

+ > +

Jo = anT + agpl + apf (5.4.3)

- > -

ke = 237 + 25,0 + a3k

If the calculation is performed in panel coordinates, e.g. the near field, these
are simply the unit vectors along the coordinate axes, and, for example the
coefficient of ?é is simply Vx in the panel coordinates.

The formulas of section 5.3 above and the present section permit deter-
mination of the F and S vorticity influences in the form of equation (143)
of reference 2 in a straightforward way.

13
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6.0 THE LINE VORTEX ALONG A STREAMWISE EDGE OF A PANEL

6.1 Background

As mentioned in the Introduction and discussed in section 5.3 of reference
2, the use of a vorticity distribution on a panel rather than a dipole distri-
bution means that the effects of a line vortex around the perimeter of the panel
are neglected. Away from a physical edge of the body this neglect might be
justified because line vortices on the edges of adjacent panels tend to cancel.
It turns out this is true for spanwise panel edges but not for streamwise edges.
That is, the edge-vortex contribution to the bound vorticity has been found to
be relatively unimportant but the trailing edge vorticity along the N-lines must
be accounted for. This matter is discussed more in section 7.0 and examples are
given in section 8.0. At a wing tip or other physical edge of a 1ifting body
there is a strong edge vortex whose neglect renders the solution significantly
nonpotential. The absence of machinery for calculating the effects of such an
edge vortex restricts the method of reference 2 to very specialized 1ifting
configurations. The analysis of this section removes this restriction. The
same formulas are used for interior edge vortices along the N-lines.

There are several ways of accounting for the effect of the edge vortex, all
of which are theoretically equivalent to some order of accuracy. The approach
used here is the analogy of that used throughout the higher-order development.

A vortex lying along the edge of the curved panel is projected into the tangent
plane.

6.2 Derivation of the Influence of an Edge Vortex

The equation of the curved panel is (5.3.2). For definiteness consider
the case when the edge in question lies in the plane n = nys i.e. the first
N-Tine. The modifications for the case of the second N-line are obvious.
Thus the curve ¢ along which the vortex lies is

¢ = 5(g) = P + 2Qeny + Rn% (6.2.1)
The unit vector along this curve is
- 1 +
te——— (1, + 73, (6.2.2)
147

14
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where
T = 2(Pg + Qny) (6.2.3)

The velocity due to the vortex is

v, - fif;'”- uds (6.2.4)
[+

where u is the edge value of the équivalent dipole strength. Arc length
along the curve is related to distance in the tangent plane by

ds =V’l + TE dg (6.2.5)

Thus with r expressed in panel coordinates (Figure 1)

FxFds=( 0 ~ Ty-n) 1 T,
[z + Tx-g)+c] 3, (6.2.6)
tly =ng) + 0 1K) de

where the terms in the first column of (6.2.6) are first order, and those in
the second column are second order. This expression is exact except for the
approximation ¢ = %y

As shown in reference 7 a three term expansion of 1/r3 is

13-= l-3-[1 + 3¢y ¢+ 3(c$ + cz)] (6.2.7)
r ?‘f
where
13
_ %
“ 7
f 2 (6.2.8)
. =3.2_1%2
2" 29772732
f

Along the N-1ine the equivalent dipole strength varies linearly
u=8(h+¢g) (6.2.9)

where h s the total arc length along the N-1ine up to the n-axis of panel
coordinates (see section 9.2 of reference 2), and B 1s the unknown value of

15
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vorticity that is determined from the Kutta condition. The fundamental flow
is obtained by setting B equal to unity #n (6.2.9). Multiplying the above
expansions gives the components of the vortex velocity as follows

Vr, = [ lo = [Ty = np)hl = [T(y =, )(3c;h + £)1 dt
E rf
€9
Vry = f ]—3 ~zh + [-2(3cqh + £) + h(T(x — &) + g,)] (6.2.10)
r
£ f
+ (-203(cE + )b + 3eqgl+ (3egh + £)T(x — ) + g)1lde
s
V[‘z = (y _n-l) [ _jlh + [3C'|h +E] + [3((:1 + Cz)h + 3C]E]Id€
g

6.3 Formulas for the Edge-Vortex Influence

The integrals in (6.2.10) have the form

£
2 .m

f - d (6.3.1)

g, f

Once the JOn and J]n have been calculated the others are calculated from
the recursion formulas

2
Jmn : J(m—Z)(n-Z) * ZXJ(m-l)n -P J(m-Z)n (6.3.2)
where

p2 = x% + (y --n])2 + 22 (6.3.3)

The required J0n and J1n are

ry+r,+d
1Y% 12)
T, -4, L (eq. (7.7.3) reference 1)

JO] = log

g = T — 1y + xdg

16
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1 [f2 X &y X
J03-;2- =T (6.3.4)
11
"13‘7-? r2+XJ03
£E, — X Eq — X
1 [%2 1
Joc = - + 24
05 '3‘;2[ 3 3 03]
2 1
1

1 827X §p—X ]
Jns = - +4)
07 7 52 [ rg 5 05
1,10 1
g g ((r—=) + xJ
17 75 ] :5 07

1 2

where

2

o? = (y-n)? et

(6.3.5)

and where " and r, are, respectively, distances of the point (x,y,z)
from the ends of the interval, i.e.,

r2 = (x — ¢ )2 +(y—n )2 + 22 (6.3.6)
k k 1
which is the same definition used in references 1 and 2.

In terms of certain auxiliary functions F_  the velocity components of

n
(6.2.10) are
Vi, = -y = ny)(hFy + Fg)
Vpy = -zhdyy + [-2Fp + hFy) ~2Z[3Fy + Fg] + Fy (6.3.7)

The auxiliary functions for on-body panels are:

17
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-
[

} = 2Py + 2Wnydgy

~ 2 }
Fp = 3zh[Pdyg + 2Unydyg + Raplgg) *+ {y3) 4
i
. _ 2 f
25,2, _1 |
Fa=72720,-370
i
< rpl 2, 2 3 2 4 i
F. = 62h[P20uc + 3PQnidoe + PRZdye ¢~ & widic + QRidye]
5 35 MYes M+ 7 ™MYs "1Y05

+ {2Pdgq v righys)

-n
[

) 7
g = (32[Pdgg + 2Unqdpg * Rnptygil

-n
[{

;= 32h [-92.145 + (20%x ~ 2PQnq)dqg + 6POXN Uyg
+(402xn% + zpaxnf + 2QRn3)d g + (2QRxn] + Rzn‘:')a(,s]

3 (=Pl + 2Pxdyy + (20umy + Rn¥)dl3}

The formulas for wake panels are obtained from (6.3.8) by deleting all terms
in {3 and replacing h by L (total) (section 9.2.2, reference 2).

For the semi-infinite last wake additfonal changes are made to the
formulas (6.3.4) for the Jun corresponding to

£ > ro == Ez/r2 + 1 (6.3.9)

Furthermore P and Q are set equal to zero.

s ' 6.4 Far-Field Formulas

Originally it had been thought that edge vortices would be required only
along physical edges of a 1ifting body, such as wing tips. In such a case no
approximate far-field formulas would be needed, because the total number of
edge-vortex influences would be a small fraction of the panel source influences.

18
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N

However, numerical experimentation showed that for good accuracy edge vortices
are required along all streamwise panel edges, i.e. along all N-lines of a

1ifting body.

Thus the total number of edge-vortex influences is substantially

twice the number of source influences, and simple far-field formulas are needed

to reduce the computing time.

These are used along interior edges.

The nota-

tion is the same as in section 6.3, which refers to the first edge of a panel.

If

where

Compute

S

2
Y‘2F= [X-(—T—)] + [y—n]IZ + 22

(5, — &)2/r8 < 0.001, use

Vix = ~(y -'"I)ToI

) §1%6
Vo = 2+ To (x———=8) + ¢ 11
Vrz=(y_7\'|)1

£, — & £, +E
1=2 1 12

"F

) 1% 5

T, = 2(P L% + Qny1

£yt &,2 E * &
P(2)" + 20ny (Log—2) + Rad

%o

(6.4.1)

(6.4.2)

(6.4.3)

For the second N-line the obvious quantities are replaced by the corresponding
The above equations replace the elaborate formulas of the previous

ones.
secti
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7.0 MODIFICATION OF THE GLOBAL VORTICITY ALGORITHM

7.1 Considerations of Continuity and Accuracy

In general the singularities are discontinuous from one panel to the next
over the surface of the body, i.e., across the interior panel edges. In a
consistent method these discontinuities are higher order in some sense, but
it seems intuitively desirable to reduce or eliminate them. However, the
very useful method of reference 1 did not appear to suffer very much from their
presence. The discontinuity in source strength is an unavoidable consequence
of the basic method of solution as described in reference 2, section 8.0. In
any event experience indicates that inaccuracies due to source discontinuities
are relatively unimportant. It is the problem of dipole discontinuity that is
addressed here.

If the 1ifting effects are accounted for by means of dipole distributions
on the panels, e.g., reference 1, then a discontinuity of dipole strength
yields a concentrated line vortex along the edge of a panel whose effects
presumably are almost cancelled by the corresponding edge vortex of the
adjacent panel. Thus the possible inaccuracies are due to presence of weak
line-vortex singularities lying in the surface where clearly no such singularity
exists. In the present method, however, the 1ifting effects are accounted for
by means of vorticity distributions on the panels which are derived from an
equivalent dipole distribution. If this last is discontinuous across interior
panel edges, there will be no line vortex. Instead the computed velocity field
will be slightly nonpotential. It is not obvious which of the above two types
of error is larger or if either is particularly serious. Nevertheless, it
seemed useful to try to minimize the effect of this source of ervor.

There are two distinct phenomena that cause the equivalent dipole distri-
bution to be discontinuous. The first is geometric. In general, the edges
of adjacent panels are not exactly coincident, and thus cancellation of edge
singularities cannot be exact. This situation is unavoidable in the present
method and will not be considered further. Attention has been directed towards
the second cause of discontinuity, namely nonagreement of the equivalent dipole
distributions of adjacent panels along their common edge. There are two types
of interior edges — spanwise and streamwise, the latter of which 1ie along the

20




NADC-79277-60

N-lines. Section 7.2 addresses the question of obtaining continuity of the
equivalent dipole distributions across spanwise edges by suitably modifying
the spanwise dipole variation and thus the chordwise vorticity variation.
Exact continuity can be obtained in the absence of geometric discontinuity.
Section 7.3 discusses a modification of the spanwise vorticity variation
that apparently produces an improvement but not exact continuity.

7.2 Modification of the Chordwise Vorticity on a Panel

The basic analysis has been carried out in reference 1 for the flat panel
case, and it applies to the present method as well under the assumption of
coincident panel edges. As stated in section 7.3.4 of reference 1, the dipole
strength is in general discontinuous between two adjacent panels of the same
lifting strip unless a term quadratic in spanwise location is added to each
panel distribution. The form of this term is

cAB (1'1 “n])(n—n3) (7°2°])

where n is the spanwise panel coordinate, " and ng are the locations

of the parallel sides, AB 1is the change in vorticity strength across the
span of the panel (zero if a piecewise constant B variation is used) and

c is a constant to be adjusted for continuity. As shown in section 7.3.4

of reference 1, continuity between panels i and i + 1 of a strip is obtained
if

w(i)[c(i)w(i) + mgg)] = w(i+1)[c(i+])w(i+]) + m£;+])] (7.2.2)

where w 1s panel width (usually the same for all panels of a strip), M3s
is the slope of the upper panel edge and M the slope of the lower panel
edge. Equation (7.2.2) is solved for successive values of ¢ 1 beginning
Wwith

Moy (7.2.3)

and proceeding over all on-body panels of the strip. The choice (7.2.3) is
arbitrary and expresses the fact that equations (7.2.2) have a nonunique
solution, once the values of ¢ for on-body panels have been calculated.
The wake values are given by the procedure of section 7.9 of reference 1.




NADC-79277-60

7.3 Modification of the Spanwise Fitting Procedure

In the standard option of the present method the variation of the equivalent
dipole strength along an N-line is Bs where B 1is a constant and s is arc
length measured around the contour from the trailing edge, e.g., equation (7.3.1)
of reference 1 or (138) of reference 2. Thus B denotes vorticity strength
normal to an N-line, i.e., bound vorticity. The total circulation around the
section defined by the N-line is BL (total), where L (totai) 1is the total
arc length around the section from lower trailing edge to upper trailing edge.

The spanwise fitting option described in section 7.11 of reference
uses a piecewise constant or a piecewise linear fit to the values of B.
Only the linear fit is permitted in the higher-order method of reference 2.
However, it is clear from equation (7.3.1) of reference 1 that the equivalent
dipole distribution in the wake depends on values of BL (total) rather than
B. This is clear also on physical grounds since the strength of the trailing
wake vorticity equals the spanwise derivative of the bound circulation, which
is BL (total). Accordingly a fit in terms of B can lead to extraneous
wake vorticity that does not necessarily vanish in the limit of small strip
width. Since the method of reference 1 has given many good results, clearly
the above effect is not important in many cases. Nevertheless it seemed useful
to eliminate this possible source of inaccuracy, and the spanwise fits have
been modified to accomodate BL (total) rather than B. This change also
has the effect of reducing the discontinuity of the equivalent dipole distri-
bution across N-lines and thus the magnitude of the required edge vorticities.

22
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8.0 THE USE OF AN EXTRAPOLATED KUTTA CONDITION

The present method and its first-order predecessor both use an equal-pressure
Kutta condition, in which the squares of the velocities on the upper and lower
surfaces of the trailing edge are required to be equal. 1In the first-order method
of reference 1 the velocities used are those at the control points nearest the
trailing edge on the upper and lower surfaces of the wing. Thus in effect the
Kutta condition is applied a finite distance, i.e., half a panel length, forward
of the trailing edge. This approximation is sufficient for conventional airfoils
where the difference between the upper- and lower-surface pressures a short distance
ahead of the trailing edge is small. However, for supercritical airfoils pressure
gradients near the trailing edge are large and even a short distance forward the
difference between upper- and lower-surface pressures is substantial. Requiring
these pressures to be equal at a location where they actually are quite different
results in a considerable loss of lift. This situation was obscured for the first-
order method by other inaccuracies that occur in cases of supercritical airfoils.
However, the higher-order method handles such airfoils much more accurately and
the use of the older form of the Kutta condition penalizes such a method
unnecess-rily. i

The numerical implementation is quite simple. Using velocity components at
the two control points nearest the trailing edge on the upper and lower surfaces,
linear extrapolation gives values of these components "at" the trailing edge. The (.
sum of the squares of the upper- and lower-surface components are then equated in rjw
the usual way.
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9.0 CALCULATED EXAMPLES

The formulas presented in this report have been thoroughly verified to
establish that they are coded as they are written. The larger questions of the
correctness and effectiveness of the approach and the appropriateness of the
various orders of approximation cannot be answered exactly because of the lack
of analytic solutions with which to compare. The effectiveness of the approach
will be established by frequent use, which will gradually produce a qualitative
feel for its accuracy. A small start has been made in this direction. Several
cases have been run to illustrate various features of the method and to compare
it with the first order method of reference 1.

The calculated examples are of two types. The first compares various
options of the program to determine their relative importance and to establish
tentatively the proper use of the method. The second-type illustrates the
scope of the method by presenting results for realistic examples.

A series of cases was run with the edge vortex formulas of section 6.0
and the global vorticity feature of section 7.2 to establish the relative
importance of spanwise and streamwise edge vortices on a panel. The body used
for this study is the swept wing of Figure 2a. Calculations were performed with
the first-order method of reference 1 and with the present method suppressing
both curvature and source-derivative effects. Differences between the two cases
are due solely to edge-vortex effects. If the edge-vortex terms of section 6.0
are used along all N-lines the present method and the first-order method have
the same trailing vorticies. If either the piecewise-constant spanwise vorticity
option is used or the piecewise-Tinear spanwise vorticity option is used with
the global vorticity feature of section 7.2, then neither method has vortices
along spanwise panel edges. If the features of both the last two sentences are
used, then the two programs should give identical answers. This was verified
explicitly. If the N-line edge vortices are retained but the piecewise-linear
spanwise vorticity option is used without the feature of section 7.2, the
first-order method has vortices along spanwise panel edges while the present
method does not. A comparison of the calculated results then indicates the
importance of the spanwise edge vortices. The two span-load distributions are
essentfally identical as are the pressure distributions except for the peak
velocities, which are slightly different. It is concluded that the use of the
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feature of section 7.2 is desirable because it offers some improvement, but
that the level of discrepancy does not warrant special edge-vortex formulas
for spanwise panel edges for curved-panel cases where exact cancellation of
these vortices cannot be attained.

The study of the previous paragraph was continued by using the present
method with an edge vortex on the tip N-line only and comparing its results to
those obtained using edge-vortices on all N-lines. To minimize the strengths of
the interior edge vortices, the piecewise-linear spanwise vorticity option was
used. Figure 3 compares the two spanwise distributions of section 1ift coef-
ficients. It can be seen that the neglect of trailing vortices on the interior
N-lines yields a somewhat wiggly 1ift distribution of reduced level. Accordingly,
it was decided to include these vortices in all future calculations.

As described in section 8.0, the Kutta condition in the first-order method
has been applied by requiring equal pressures at the control points nearest the
trailing edge on the upper and lower surfaces, i.e., the equal-pressure condi-
tion is applied a finite distance forward of the trailing edge. On supercritical
wings, for which pressure gradients are large in the trailing edge regions, this
can lead to an underprediction of 1ift. As a remedy, a new form of the Kutta
condition has been developed in which upper- and lower-surface pressures are
separately extrapolated to the trailing edge, and these extrapolated values are
set equal. Sample results are shown in Figure 4 for the supercritical wing whose
planform is shown in Figure 2b and whose airfoil section is as given in Figure 4.
As is evident in Figure 4a, the requirement of pressure equality forward of the
trailing edge pulls the pressure curve inside the more correct one. The result-
ing loss of 1ift is more easily seen in the spanwise distribution of Figure 4b
and in the values of total 1ift. Thus the extrapolated Kutta condition is used
exclusively in the present method.

To compare the present method with the first-order method of reference 1,
calculations were performed for the conventional wing whose planform is shown
in Figure 2a and whose airfoil section is given in Figure 5 and also for the
wing-fuselage shown in Figure 6. Results for the clean wing are shown in Fig-
ure 5. As expected from two-dimensional experience, there is not a great deal
of difference between the two methods for such a simple geometry. Nevertheless,
some change in pressure distribution is evident in Figure 5a. The most sig-
nificant difference is in the spanwise 1ift distribution shown in Figure 5b

—
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where it is seen that the higher-order method gives higher tip loadings and
lower root loadings.

Despite its greater geometrical complexity, the results for the wing-fuselage

are not very different for the two programs, as shown in Figure 7. The higher-
order method yields a smoother spanwise variation of section 1ift coefficient.

2,0 (x,Y»2)

X8

£.n,8)

Figure 1.

A general curved surface panel and its projection in the tangent
plane.
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(b) The supercritical wing

Figure 2. Planforms and panel distributions for two wings.
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1 Kutta Conditior
. Extrapolated to trailing edge
s CL = 0.932
----- Applied at control points of
o last panels CL = (.883
C
P 2
T80 90 180 110 15.0 10 1.0 1m0 18.0 1.0 180 150 2.0 2.0 2.0 2.0 2.0 2.0 #
X
(a) Chordwise pressure distributions at mid-semi-span
¥
Cl ]
gl? \J \ \J RJ
0.0 0.1 0.2 o3 0.4 0.5 0.6 0.7 0.9 0.9 1.0

n = ¥Yeip
(b) Spanwise variations of section 1ift coefficient.

Figure 4. Calculated results for the supercritical wing with and without the
extrapolated Kutta condition.
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"] Higher order
s ------ First order
C

L’ p

¢

o
4

“ oo 5.0 10.0 15.0 2.0 25.0 3.0 %.0 40.0 45.0

X
(a) Chordwise pressure distributions near the root.

&

: ¢,
I
| ’
2
/7 [
y o1
L. ]’
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1o
n= y,'yt'lp
(b) Spanwise variation of section 1ift coefficient.

Figure 5. Calculated results for a conventional wing.
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Figure €. A wing-fuselage geometry showing the panel distribution.
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—- Higher order

----- First order
|
(a) Chordwise pressure distributions near the root
0.7 ¢
0.6
0.5}
4
‘ 0.4}
] ¢,
4 ( 0.3 -~
[ p
0 1 ] | 1 1 1 1 1
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
t ne ¥/¥t1p
(b) Spanwise variation of section 1ift coefficient
Figure 7. Calculated results for a wing-fuselage combination.
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APPENDIX A
A SURFACE GEOMETRY FITTING PROCEDURE BASED ON BICUBIC SPLINES

The original le st-square fitting procedure for P, Q and R, as described
in section 7.2 of reference 2, proved satisfactory for many geometries. However,
it broke down for large panel aspect ratios, as for example occur near wing
leading edges. Several modifications were attempted, including weighted least
squares and double-precision arithmetic, but none proved satisfactory for every
application. Accordingly, it was decided to try a completely new geometric
procedure to replace that of section 7.0 of reference 2. This approach effec-
tively decouples the geometric calculation from the fluid dynamic one, and it has
proved more accurate and versatile than any of its predecessors.

Very elaborate geometry fitting procedures based on parametric bicubic
splines have been developed at Douglas Aircraft Company over many years. A
description of this technique is beyond the scope of the present report. A
survey is contained in reference 8. In the present application the method is
considered a "black box," although several minor changes had to be made.

The points defining the body are input in the usual way. Each panel is
fitted by a bicubic surface in terms of two parameters u and v that vary
from 0 to 1 over the panel. (The panel is the unit square in parameter space.)
This permits the well-known procedures of reference 9 to be used as follows.

Let a point (x,y,z) of the panel be represented as a vector

X=xT +y]+2K (A.1)
The parametric cubic fit then yields
X = x(u,v) (A.2)

These expressions may be differentiated analytically to give

S > > +> >
Xu’ xvs qu, Xuv’ xvv (A.3)

as functions of u and v. The vectors Iu and ;v are tangent to the
curves v = constant and u = constant, respectively, and thus lie in the

surface although they are not perpendicular.
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The point corresponding to u = v =% is in the "center" of the panel in
some sense. It is selected as the control point and origin of coordinates of the
flat projected panel. The derivatives of (A.3) are evaluated there, and in all
that follows X and its derivatives are assumed to be those at u = v = L.

The unit normal vector to the panel, which is also the unit vector along
the ¢ axis of panel coordinates is

-

b 34

X

=+ u

>
n= ke = 4

v (A.4)

x4 x4

>3

u X vl

where the sign is selected to give an outward normal. The unit vector along
the ¢ axis of panel coordinates is taken tangent to the v = constant curve
which nearly parallels the N-lines,

X
T _ u
T ——_; | (A.5)
u
Thus the unit vector along the n axis of panel coordinates is
> _ > >
Jo = kg x 1 (A.6)

The components of the three unit vectors thus obtained are the transformation
matrix. Compare equation (7.2.10) of reference 1.

Now define
h=u-—%, k=v-—3% (A.7)

and consider the Maclaurin series for £, n, and ¢ in terms of h and k.
They have the form

£ = Ah + Bk + (second order)
n = Ch + Dk + (second order) (A.8)
z = %(eh? + 2fhk + gk®) + (third order)

There are no constant terms in (A.8), because the origin of panel cocrdinates
corresponds to h =k = 0. Furthermore, since the &n plane is tangent to
the surface at the origin (Ee is the normal vector), the series for ¢ has
no linear terms. Reference 9 gives the coefficients of equations (A.8) as
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A=x, 0 T, B=X, -1,
ce%, 3, -0 0= %, - 3, (A-9)
e = ;uu [ f=X, % g=%, ‘0 (A.10)
The first two of equations (A.8) may be inverted to give
h = ag + bn + (second order)
kK = ce + dn + (second order) (A.17)
where
s, pe-BL clf gl
(A.12)

A = AD — BC

Equation (A.12) may be inserted into the third equation of (A.8) to give the
desired form

2 2

¢ = Pg” + 2Qen + Rn (A.13)
The result is
P= !s[ea2 + 2fac + gc2]
Q = %[eab + f(ad + bc) + gcd] (A.18)

R = L(eb + 2fbd + gd2]

] ' For generality c has been included in (A.14), but in the present application
: it is zero, which simplifies (A.14).

It remains to compute corner points in panel coordinates. The four input
points bounding the panel are transformed into panel coordinates to obtain
‘ (gﬁ, n;, ;a) k=1, 2, 3, 4. They are projected into the plane by simply
jgnoring c;- Next the side between points 1 and 2 is rotated to make ny = Ny
The midpoint and length of the side are, respectively, A
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£ = %(gy + £3), n = %45(n} + n3)
(A.15)
d= J(E‘-',’ - 5‘2‘7[*” (n¥ - n§)2
Then the final corner point coordinates are
n] = n2 = ;I-
6 =E-9 (A.16)
Q=T+

A similar calculation is performed for the side between the points 3 and 4.

It should be noted that the underlying parametric cubic geometry routine
uses the surrounding input points to generate the fit to a panel. The routine
considers only points on the same section, and thus slightly different results
can be obtained depending on how the body is sectioned. For fitting purposes
the wake is considered a separate section, so that the routine does not try to
fit around the trailing edge. On the semi-infinite last-wake panel the deriv-
atives P and Q are set equal to zero, sc that the panel has <traight gener-
ators in the stream direction, but R, the spanwise second derivative, may be
nonzero.

The parametric cubic procedure gives smooth fits even in extreme cases.
By way of illustration the airfoil sections on a wing were defined by only four
points, leading and trailing edges and upper and lower surface maximum-thickness
points. Thickness was 20% at the root and mid-semispan and 10% at the tip.
Results are shown in Figure A.1. Remarkably, the "diamond" section shapes have
been fiited with reasonable, smooth curves, as opposed, for example, to what a
parabolic fit would have done. It should be noticed that the leading edge is
rounded and the trailing edge, from which the wake issues, is sharp as required.
The fact that the trailing-edge angles are somewhat large is due to the absurdly
inadequate point number.
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L’ Figure A.1. Parametric cubic representation of a wing with four panels around
each section.
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