
''AOAIIO All VERAC INC SAN DIEGO CA F/6 5/8
IMAGE COMPRESSION RESEARCH. Li
AUG 8l M S MURPHY F3060Z-8O-C-0lAB

UNCLASSIFIED R-021-81 RADC-TR-81-223 NLILI aEEEm hhhEomEo



OF

1 0 8 111



'*' LEVEi
, ADC-TR41-223

__ Pine Teduil Report
Au"s 1961

IMAGE COMPRESSION RESEARCH
!' ' VERAC Incorporated

Dr. Michael S. Murphy

[APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITEDELL

N 1.

ROME AIR DEVELOPMENT CENTER
Air Force Systems Command
Griffiss Air Force Base, New York 13441

82 02 11074
4



This report has been reviewed by the RADC Public Affairs Office (PA) and
is releasable to the National Technical Information Service (NTIS). At NTIS
it will be releasable to the general public, including foreign nations.

RADC-TR-81-223 has been reviewed and is approved for publication.

APPROVED:

JOHN T. BOLAND
Project Engineer

APPROVED:

OWEN R. LAWTER, Colonel, USAF
Chief, Intelligence and Reconnaissance Division

FOR THE COI4MANDER:9P 4

4:JOHN P. HUSS
Acting Chief, Plans Office

If your address has changed or if you wish to be removed from the .RADC
mailing list, or if the addressee is no longer employed by your organization,
please notify RADC.(IRRE) Griffies AFB NY 13441. This will assist .us in
maintaining a current mailing list.

Do not return copies of this report unless contractual obligations or notices
on a specific document requires that it be returned.

I IN I.I



UNCLASS IFIED

SECURITY CLASSIFICATION OF THIS PAGE (Wh** DewiEnl_ _ __d),_,_,,_ ,,

REPORT DOCUMENTATION PAGE BEFORE COMPLTGTNOR

I. REPORT NUMBER 12. GOVT ACCESSION NO, I. RECIPIENTS CATALOG NUMBER

RADC-TR-81-223 -,,,I 11 C Wif ____________

4. 'IL(adSubtile) S. TY"E It REPORT 6 PERIOD COVERED
TITLE(endFinalOTechnical Report

IMAGE COMPRESSION RESEARCH May 80 - June 81
6. PERFORMING OG. REPORT MUMmER

R-021-81

1. AUTHOR(,) S. CONTRACT OR GRANT UJM* ER-Ws

Dr. Michael S. Murphy F30602-80-C-0168

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT. TASK

VERAC Incorporated 
. AREA A WORK UNIT NUMBERS

VERA Incrported6270 2F

10975 Torreyana Road, Suite 300 
4542

San Diego CA 92121 45941832

II. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

Rome Air Development Center (IRRE) August 1981

Griffiss AFB NY 13441 
198

14. MONITORING AGENCY NAME & AODRESS(II diflrent from Co¢ttrollg Office) IS. SECURITY CLASS. (of this report)

UNCLASSIFIED
Is.. OECL ASSIF1CATION, OOWNGRAOINGS/CHEDULE
N/A

16. DISTRIBUTION STATEMENT (0 this Report)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the ebeiracI enttred in Block 20. if different from Report)

Same

IS. SUPPLEMENTARY NOTES

RADC Project Engineer: John T. Boland (IRRE)

I9. KEY WORDS (Continue on reverse sid. if necooew and Identily by block. . 77

Image Coding Karhunen-Loeve Transform
Image Compression Cosine Transform

Transform Coding Hadamard Transform
Singular Valve Decomposition

20. AbSTRACT (Contin. on reverse side It netoemeW7 and Identify by block number)

The vast quantities and high generation rates of tactical imagery require

very efficient data compression in order to conserve precious bandwidth
for transmission and to limit the required storage volume for archiving.
This report describes the results of efficiency and image quality compar-
isons for several ransform image coding techniques. Specifically, the I.
yesearch effort 4a focused on developing the Singular Valve Decomposition
TSVD) as an approach to image compression. Detailed comparisons were .

DD , 1473k- EDITION OF 1 NOV 65 IS OBSOLETE UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When De1 2E0R10)



795

UNCLASS IFIED

AECUM,?, CLASSIFICATION OF T%15 PAG(~e 089. 809"80~

,,to the two-dimensional cosine transform, Hadamard transform and
Karhunen-Loeve techniques. High and low altitude aerial imagery, and
IR and SAR imagery were included~in this study. Amages were coded with
rates in the range .25 to 1.5 bits per pixel (bpp). (Original images
were digitized at 8 bpp). The order of performance, as measured by rins
error (reconstructed image versus original) versus bpp, as well as by
visual image quality judgements, was first, cosine and Karahunen-Loeve
(nearly the same), second, SVD, and third, Hadamard. Computational bur-
dens, however, are least for the Hadamard, intermediate for cosine and
Karhunen-Loeve and most for the SVD technique.4

UNCLASS IFIED
SECURITY CLASSIFICATION OF " PAOEfWhu, Dets Enter")



Table of Contents

Section Page

1.0 INTRODUCTION .. .. .. . .... . .. ..... ....-

1.1 Sunmmary of Results .. .. .... . .... .. 1-2

1.2 Roadmap .. .. .. . .... ... ........ 1-3

2.0 PROJECT SCOPE AND OBJECTIVES. .. .. .. ........ 2-1

2.1 Algorithms .. .. .... . .... . .. ... 2-4

2.2 Imagery of Interest. .. .. .. ..... ... 2-4

2.2.1 Post Processing for Blockiness Suppression .. 2-6

3.0 OVERVIEW OF TRANSFORM IMAGE CODING .. .. .. . .... 3-1

3.1 Image Coding Approaches. .. .. ... ...... 3-1

3.2 Transform Image Coding .. .. .... . .... 3-4

3.3 Block Transformations. .. .. .... ...... 3-6

3.4 Block Size .. .. .... . .... ... . .. 3-7

3.5 Unitary Transforms. .. ... . .. ...... 3-9

3.6 Applicable Transformations. .. ... . ..... 3-13

3.6.1 Optimal Decorrelating Trasform .. .. .. 3-15

3.6.2 Cosine Transform. .. .. .. . ......3-16

3.6.3 Hadamard Transform .. .. .. . .. ... 3-16

3.6.4 Singular Value Decomposition .. .. .... 3-17

3.6.5 Focus of New Developments .. .. ..... 3-18

4.0 CLASS-ADAPTIVE KARHUNEN-LOEVE TRANSFORM CODER . . . . 4-1

4.1 Class-Adaptive Karhunen-Loeve Transformation .4-1

4.1.1 The Separable Covariance Assumption . .4-1

4.1.2 KLT Definition. .. .. .. . ....... 4-2

CI.Ee.Ae



Table of Contents

(continued)

Section Page

4.1.3 Class Adaptivity ................ 4-5

4.1.4 KLT Computational Algorithms ........ 4-7

4.2 KLT Preprocessing .... ............... 4-8

4.2.1 Classify Blocks .... ............ 4-8

4.2.2 Compute KLT Operator Matrices and

Predicted Statistics ... ......... 4-10

4.2.3 Collect Empirical Statistics ...... .. 4-13

4.2.4 KLT Preprocessing Summary ......... 4-15

4.3 KLT Image Coding ..... ............... 4-15

4.3.1 Overhead Encoding .... ........... 4-18

4.3.2 KLT Coefficient Coding ............ 4-18

5.0 SINGULAR VALUE DECOMPOSITION TRANSFORM CODER ..... . 5-1

5.1 SVD Computational Algorithms ... ......... 5-2

5.2 Decorrelation and Energy Compaction of

SVD Coefficients .... ............... 5-10

5.2.1 SVO Reordering .... ............. 5-16

5.2.2 Singular Vector Orthogonalization . . . 5-17

5.2.3 Repolarization .... ............. 5-20

5.3 Preprocessing ..... ................. 5-21

5.4 Singular ValuelVector Coding ... ......... 5-24

5,4.1 Bit Allocation ................. 5-25

5.4.2 Singular Value/Vector Coders ...... .. 5-28

. .; 4

- -- . . ... I ,, . .. . . . . ..'*W '" ° " " " " - " . .. . . . . .. . lml i f I .. |



Table of Contents

(continued)

Section Page

5.4.3 Coding the SVD Orthogonal Expansion

Coefficients .. .. ........ .. 5-31

6.0 RATE EQUILIZATION. .. .... ........ .... 6-1

7.0 ALGORITHM EVALUATION .. .. .... ....... ... 7-1

7.1 Preliminary Evaluation .. .. ..........7-2

7.1.1 Optimal Class boundaries. .. .. .... 7-2

7.1.2 Preliminary Algorithm Evaluation .. . 7-4

7.2 Comprehensive Evaluation. .. ..... .... 7-19

8.0 CONCLUSIONS .. .. ....... ....... .... 8-1

Y.0 REFERENCES. .. .. ....... ....... .... 9-1

APPENDICES

A DERIVATION OF THE SEPARABLE KARHUNEN-LOEVE
TRANSFORMATION AND ASSOCIATED STATISTICS .. .. ... A-1

B HOMOGENIZING IN TRANSFORM COEFFICIENT SPACE .. .. .. B-1

C OPTIMAL CODER ASSIGNMENTS FOR KLT COEFFICIENTS . . . . C-1

CDVIi.'



Table of Contents

(concluded)

Section Page

12 HOM4OGENIZING SVD'S OF PRETRANSFORMED BLOCKS. .. .... D-1

E SVD ORTHOGONAL EXPAN4SION COEFFICIENT STATISTICS ... E-1

F SVD COEFFICIENT CODING: BIT ALLOCATION .. .. ..... F-1

VURAC$ Ieee~emiv

ant



List of Figures

Figure Page

2-1 Automated Compression/Decompression of

Tactical Imagery 2-2

3-1 Transform Image Coding Chain 3-5

3-2 Unitary Block Transform 3-11

4-1 Comparison of Separable and Non-Separable

Image Covariances 4-3

4-2 KLT Preprocessing 4-9

4-3 KLT Image Coding Chain 4-16

4-4 Example Bit Assignment Arrays 4-20

4-5 Example Three-Bit Max Quantizer for

Gaussian POF 4-23

5-1 SVD Coding Chain 5-3

5-2 Direct Pixel Block SVD Calculation 5-6

5-3 Indirect Pixel Block SVD Calculation 5-6

5-4 Finding the SVD via a Coefficient-Block

SVD Calculation 5-8

5-5 Collapsing the Inverse 2D Pre-transfomation and

the Forward ID Singular Vector Transformation

into the Identity 5-9

(DVIRAC
v

I:

" . - - |.



List of Figures

(continued)

Figure Page

5-6 Comoined Algorithm: Efficient Extraction of

Botn Singular Values and 1D Transform Coefficients

of Singular Vectors 5-10

5-7 Example Singular Vector and its Cosine Transform 5-12

5-8 Example Singular Value Statistics 5-14

5-9 Two Impelementations for Extracting Singular

Values and Singular Vector Transform Coefficients 5-15

5-10 Example of Migration of Energy Concentrated with

Frequency 5-18

5-11 SVD Preprocessing 5-23

5-12 Example SVD Bit Assignment Arrays 5-29

5-13 Example Singular Value Statistics 5-30

6-1 Rate Equilization 6-2

7-1 Coding Algorithm Comparisons MSE versus

Rate Airfield Image 7-6

7-2 Coding Algorithm Comparison MAE versus

Rate Airfield Image 7-8

7-3 Original Image 7-9

CDVIRRA
vi

IWO.|- lb



List of F.gures

(continued)

Figure Page

7-4 Reconstructed Images 7-10

7-5 Reconstructed Images 7-11

7-6 Reconstructed Images 7-12

7-7 Reconstructed Images 7-13

7-8 Reconstructed Images 7-14

7-9 Error Images 7-15

7-10 Error Images 7-16

7-11 Original Airfield Image /-22

7-12 Coded Airfield Images 7-23

7-13 Coded Airfield Images 7-24

7-14 Coded Airfield Images 7-25

7-15 Original Harbor Image 7-26

7-16 Coded Harbor Images 7-27

7-17 Coded Harbor Images 7-28

7-18 Coded Harbor Images 7-29

vii

- -



List of Figures

(continued)

Figure Page

7-19 Original Infrared Image 7-30

7-20 Coded Infrared Images 7-31

7-21 Coded Infrared Images 7-32

7-22 Coded Infrared Images 7-33

7-23 Original SAR Image 7-34

7-24 Coded SAR Images 7-35

7-25 Coded SAR Images 7-36

7-26 Coded SAR Images 7-37

7-27 Coding Algorithm Comparisons; MSE versus

Rate, Airfield Image 7-38

7-28 Coding Algorithm Comparisons; MSE versus

Rate, Harbor Image 7-39

7-29 Coding Algorithm Comparisons; MSE versus

Rate, IR Image 7-40

7-30 Coding Algorithm Comparisons; MSE versus

Rate, SAR Image 7-41

7-31 Coding Algorithm Comparisons; MAE versus

Rate, Airfield Image 7-42

(DVIIII
SViIi



List of Figures
(continued)

Figure Page

7-32 Coding Algorithm Comparisons; MAE versus

Rate, Harbor Image 7-43

7-33 Coding Algorithm Comparisons; MAE versus

Rate, IR Image 7-44

7-34 Coding Algorithm Comparisons; MAE versus

Rate, SAR Image 7-45

ix

*1

, 4



ACKNOWLEDGEMENTS

This report summarizes the results of a research effort conducted

for Rome Air Development Center by VERAC, Incorporated, during the

periou May 1980 tnrougn June 1981. Work was performed under contract

numoer F3UbUZ-80-C-Ob8 and was monitored by Mr. John Boland of

RADC/IRRE.

A numoer of VERAC personnel participated in the effort. Dr. Harold

J. (Pete) Payne served as program manager, Dr. Michael S. Murphy as

principal investigator, and Messrs. Richard M. Crawford and Edwin H.

Schnaath as programmer/analysts. Report preparation was handled by

Ms. Denise Derringer-Straub, with assistance from Ms. Cheryl Ritter and

artwork Dy Ms. Erika Pearl.

DVIRAC
x

-co o k



1.0 INTRODUCTION

This document presents the results of a twelve month, 6.1 research

effort sponsored Oy RADC/IRRE and performed at VERAC, Incorporated in

San Diego. The primary tnrust of the study involved the development of

image cooing tecnniques oased upon tne singular value decomposition

(SVD) operation, and intended for application to bandwidth compression

of tactical imagery. An important aspect of the study was a thorougn

comparison of the new SVD approaches to other transform image coding

scnemes.

Compression algorithms based upon four distinct image

transformations were examined:

0 Singular Value Decomposition,

a Karhunen-Loeve,

* Cosine, and

* Haoamard.

Tne singular value decomposition coding algorithms were new, the

Karhunen-Loeve cooing algorithms were extensions of previous work, and

the cosine and Hadamard coding algorithms were baselines representative

of the current state of the art in transform image coding.

All algorithms were designed to be as similar as possible, both in

philosophy and implementation. Differences were restricted entirely to

the particular image transformation employed in each case. The result

was a common framework in which the various transformations were

evaluated for cooing efficiency and image quality, without contamination

by performance differences that can arise due to variations in other

aspects of coder implementation. This was the first time, to our

knowledge, that such a well-controlled environment was established for

comparison of alternative transform image coders.

CVIRAC
1-1

* 'A



The study consisted of three efforts:

* Algorithm Design,

* Software Development, ana

* Coder Evaluation.

This document is primarily concerned with describing the various

algorithms developed under the study and summarizing their comparative

performances botn among themselves and with respect to the baseline

algorithms. The software developed under the contract to implement the

cooing algoritnms is described in a companion report, "Image Compression

Software Documentation," VERAC Technical Report No. R-022-81.

i.1 Summary of Results

The singular value decomposition is the mathematical transformation

which achieves maximum energy compaction into the fewest number of

transform coefficients, called singular values in the case of the SVD.

Thus, tne SVO represents a potentially very useful operation for

reducing the bandwidth required to encode image data, since a small

number of singular values can be encoded in place of a larger number of

pixels. The SVD achieves this efficient compaction by tailoring the

transform operator -- called singular vectors for the SVD -- to the

image data itself. The price for this tailoring is that the singular

vectors must also be encoded along with the singular values to permit

the decoder to perform image reconstruction.

A number of SVD-based image coding algorithms were developed. The

variations were due to different approaches to efficiently coding

singular vectors. The result was an assortment of SVD coding algorithms

of varying complexity which were identified, implemented and evaluated.

In addition to the SVD algorithms, a class-adaptive Karhunen-Loeve

transtorm kKLT) algorithm was also developed as a generalization of the

(VERA¢
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SVD approach. The basic idea is to replace the SVD's tailoring of

transform operators to image data by the KLT's tailoring to average

image characteristics. Tne result is a reduction in the number of

different transform operators that must be encoded: instead of one for

eacn blocK of imagery, one for each class of imagery is now required.

The price for this improvement is a concomitant lessening of the high

energy compaction produced by the SVD. Two versions of KLT code were

developed, one depending upon explicit training on image data, and other

computationally simpler but based upon an assumed image model.

The various SVD and KLT algorithms were evaluated against each

other as well as against the baseline algorithms, which employed the

fixed (not tailored) cosine and Hadamard transforms. Evaluations were

performed over a range of coding rates, extending as low as 0.25 bits

per pixel (bpp) and as high as 1.5 bpp. The best in each category were

identified based upon a preliminary evaluation using a small set of test

imagery. Next, four algorithms -- one SVD, one KLT and the cosine and

Hadamard -- were comprehensively evaluated against a larger set of test

imagery. This imagery included visible and IR aerial photographs and

SAR imagery, all quantized to 8 bpp.

All four algorithms performed well on the test images at 1.5 bpp.

The KLT and cosine algorithms had highest coding efficiency, whereas the

Hadamard algorithm was most computationally efficient. Overall

performance -- jointly considering both coding and computational

efficiency-- was best for the cosine algorithm, which appeared to

perform well all the way down to 0.5 and sometimes 0.25 bpp. Despite

the intensive effort in developing the most efficient SVD coding

algorithm possible, this approach was found to be inferior to the cosine

transform coder.

1.2 Roadmap

The remainder of this report presents the algorithms developed

under this study and the results of evaluations performed to compare

(VIERAC
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tnese algorithms among tnemselves and against baseline algorithms.

Section 2 begins by defining study oojectives and scope. Section 3

presents an overview of the transform image coding approach employed by

ail the algorithms developed and tested. Section 4 then concentrates on

tne details of the KLT algorithm and Section 5 upon the SVD algorithms.

Section 6 discusski the mechanism implemented to achieve rate

equalization in all algorithms. Section 7 next presents evaluation

results, Section 8 summarizes the study conclusions, and Section g lists

references. A variety of technical details which support various

aspects of coder algorithm development are presented in Appendices A

through F.

VIRAC
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2.0 PROJECT SCOPE AND OBJECTIVES

The intelligence community and the Air Force have, for several

years, realized the important role that image compression will be

required to play in various image exploitation and intelligence systems

of the future. Full use of the potential of these systems implies a

need to transmit and store enormous quantities of digital image data.

As suggested in Figure 2-1, image compression (and associated

decompression or reconstruction) will directly impact the utilization of

these systems Dy Dringing storage and transmission requirements within

technologically feasible bounds of transmission and storage media.

The primary focus of this study was on the compression of single

frame tactical imagery. Such imagery arises from a variety of imaging

sensors, including those sensitive to visible, infrared, and microwave

(radar) wavelengths. Applications typicaly include intelligence,

reconnaisance, ano strike assessment.

We differentiate the imagery for such applications from the TV-scan

imagery normally associated with airborne scanners, trackers or target

detectors/recognizers and used in weapon fire control. In our case, the

imagery tends to be high resolution, with large area coverage, but with

relatively long revisit times. This is in contrast to the TV-scan

imagery which is typically of lower resolution and smaller field of

view, but with revisits at video rates. The effect is that in this

study we only exploited spatial information: temporal redundancy was not

available for use in compression.

In the course of the study, we concentrated upon the image

compression algorithms themselves, and not upon the particular

implementation to specific transmission or storage applications. In

particular, we did not take specific channel characteristics into

consideration, but instead focused on the inherent performance

properties of the various algorithms. We did, however, design and

investigate algorithms for use over the range of compression ratios

anticipated as characteristic of various transmission and storage

channels of potential interest.

2-1
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Our primary evaluation tool involved rate distortion measures which

describe coding efficiency in terms of the compression rates and image

aegraaations that result from application of the various coders. A

secondary measure was the computational efficiency associated with each

approach.

Image compression can be veiwed as a coding process in which a

compact representation of the image is extracted which is sufficient for

suosequent viewing an '.lysis. The efficiency of the compression is

aefined by the i . .nformation (measured in number of bits)

necessary for ,se. One measure of this efficiency is the image
compression rati.: v...1-ed as the ratio of the number of bits

representinq tl ; hjnal image to the number of bits in the coded

representatvi. An alternative is the compressed rate, defined as the

ratio of the nuf-er of bits in the coded representation to the number of

pixels in the original image. These quantities are related as follows:

compression - Bori
ratio Fc0dea

compressed . coded
rate

orginal = Bor
rate

compression = orginal rate
ratio compressed rate

where

Borig = number of bits in original image

Bcodeo number of bits in coded representation

N.M = number of pixels in orginal

DVERAC
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2.1 Algorithms

There are a variety of compression algorithms that can be applied

to image data. In this study, attention was restricted to a class of

particularly efficient techniques which involved use of two-dimensional

linear transformations of image data prior to encoding. Prominent in

this class are tne well-known 2D cosine and Hadamard transforms which

were included as baseline algorithms [1]. Image compression based upon

these transforms is marked by both computational efficiency (due to the

existence of specialized "fast" algorithms) and coding efficiency (due

to good "energy compaction" properties). While the associated

computational efficiency is a considerable advantage, the fact that

these transforms are not specific to an image, or at least to a class of

images, does suggest that these transforms produce less than optimal

cooing efficiency.

This study was concerned with developing and evaluating image

transform coders employing transformations more tailored to image

characteristics. Primary focus was on the singular value decomposition

(SVD) operation, due to its known property of producing optimal energy

compaction. Issues concerning both coding and computational efficiency

were addressed and are reported in this document.

The price for the efficient energy compaction of the SVO is that

not only the transform coefficients (singular values) themselves but

also the transform operators (singular vectors) must be transmitted or

storea in order to permit decoding. In order to reduce this load,

averages over a number of similar images can be taken so that the

operators are no longer image-specific, but rather class-specific. The

result is the class-adaptive Karhunen-Loeve transform, which was also

included in this study.

2.2 Imagery of Interest

The tactical image compression applications to which transform

coders are targeted possess rather stringent compression requirements.

(VERAC
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Overall compression ratios on the order of 30:1 or 60:1 are often

necessitated. In order to achieve such ratios and still maintain useful

image qauality in image regions of tactical significance, a selective

compression algorithm is required. Such an algorithm employs priority

designations of various image regions as, for example, "high interest",

"low interest" or "background". Each such designation carries with it

the requirement for a different level of compression. For example,

"high interest" might require a compression ratio on the order of only

8:1, whereas "background" might have to be compressed down to 60:1 or so.

The idea here is that less important regions are assigned a greater

snare of the compression burden than are more important regions. The

overall achievement of large compression ratios depends upon the
predominance of less important ("background") regions within imagery.

Fortunately, tactical imagery often has this characteristic [2].

In this study, we have concentratea on the more difficult to

compress "high interest" regions of images. This is because it is on

such data that transform approaches generally perform best, yielding the
highest coding efficiency. Additionally, and perhaps more importantly,

we focused on "high interest" image regions because it is the faithful

rendition of such regions at the decoder that is the fundamental raison

d'etre of tactical image collection, transmission and exploitation

systems.

we have investigated the applicability of the various transform

approaches to three types of imagery:

0 Visible wavelength aerial photographs,

* Synthetic aperature radar imagery, and

* Infrared framing camera photographs.

(VERAC
2-5

I I I I II i II I l i u I



All imagery was originally quantized to 8 bits per pixel. The range of

compression ratios studied extended from 5:1 (1.5 bits per pixel) to

32:1 (0.25 bits per pixel). The nominal ratio used for comparison was

8:1 (1 bit per pixel).

2.2.1 Post Processing for Blockiness Suppression

A fundamental aspect of a transform coder is that it is applied to

images in a block-by-block fashion. When such a coder is required to

operate at high compression ratios, artifacts can appear at interblock

bounaaries. This blockiness occurs because the coder processes

different blocks separately and because adjacent blocks often contain

image aata sufficiently different that when severe compression is

applied, and these characteristics bloom out over the entire block,

aiscontinuities are created at block edges.

This blockiness behavior is not restricted to transform coders, and

in fact, has been observed in the operation of other compression

algorithms as well. There are several fixes which are possible, all

amounting to various restoration/enhancement schemes. For example,

selective averaging across block edges can substantially reduce the

visual impact of blockiness a well as the mean square degradation error

L3]. Although developed for spatial domain implementation, such an

approach also has an equivalent implementation in the transform domain,

and could be integrated as a final post-processing step with any of the

transform coaers investigated under this stuay.

However, we have avoided such post-processing considerations, and

have concentrated instead on the effect of coder algorithm operation

alone. This permitted a cleaner assessment of coder performance, and

enhanced our ability to isolate subtle image degradations introducted by

various alterations in coder parameter values. Since such

post-processing can always be added later, overall peformance of an

eventual coder implementation based on these algorithms was not

prematurely compromised. Introducing it at this early stage of

algorithm development and evaluation, however, would have merely

degraded our ability to assess algorithm performance.

MVIRA¢
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3.0 OVERVIEW OF TRANSFORM IMAGE CODING

There are a number of extant approaches to compressing single frame

imagery. Each approach represents a particular compromise among a set

of conflicting goals, including:

* Maximize compression,

* Minimize degradation,

* Maximize adaptivity,

0 Minimize encoder complexity, and

* Minimize decoder complexity.

3.1 Image Coding Approaches

Taole 3-I lists six categories of image coding approaches along

with an example or two for each. The simplest is PCM (Pulse Code

Modulation) which is simply a requantiziation of pixel intensities.

Such an approach includes companding (COMpressing and exPANding), as

well as adaptive versions that amount to digital automatic gain

control. This approach is the least complicated to implement, and

generally produces tne least compression at a given level of distortion.

The next three categories -- predictive, transform, and

interpolative/extrapolative -- attempt to exploit the spatial

redundancies present in imagery. Predictive coding utilizes the

observation that, in high resolution imagery, neighboring pixels tend to

have similar intensity values. This information is used to encode onl4

the differences between pixel values and estimates of these values

predicted from previously encoded pixels. Since these differences tend

to oe smaller than the pixel values themselves, fewer bits are needed to

encode them. A variety of versions, including schemes that are fixed
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Taole 3-1. Image Coding Approaches for

Compressing of Single Frame Imagery

0 PCM
- COMPANDING

* PREDICTIVE
- DPCM
- DELTA MODULATION

e TRANSFORM
- COSINE

- SVD

s INTERPOLATIVE/EXTRAPOLATIVE
-SUBSAMPLING (E.G., MAPS)
-SPLINES

*OTHERS
- CONTOUR

- BIT PLANE

*HYBRID
-COSINE/DPCM
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ana adaptive ano that are based on ID and 2D prediction, are possible.

This approach is computationally efficient ano performs reasonably well

on over-sampleo digital imagery. However, it exploits only part of the

spatial redundancy in the scene.

Transtorm approacnes tend to perform best on nigh-resolution,

moderate dynamic range, critically sampled imagery. This approach is

oased on divialng tne image into blocks, performing a mathematical

transform operation on each block, and encoding the resulting

coefficients Lij. A number of transforms are available, including the

Fourier, cosine, sine, Hadamard, Haar, slant, Karhunen-Loeve, and

singular value decomposition. This set spans the spectrum of coding and

computational efficiency. The fundamental idea involved in transform

coding is to apply a transform wnich compresses the block information

into a small number of coefficients which are then encoded in place of

tne larger number of pixel values themselves. This approach exploits 2D

redundancy in the image, but only within the boundaries of individual

blocks. Both fixed ano adaptive versions are possible.

As an alternative to transform approaches, the interpolative/ex-

trapolative approach attempts to fit curves to the two-dimen cria.

surface defined by pixel intensity values. Then, only the par.:* _rs of

the curves are coded. The simplest version uses piecewise coi.tant

curves, such as are generated by CDC's MAPS (Micro Adaptive Processing

Systemj coder L4]. More ambitious approaches employ higher order

splines [5]. The keys to the success of these types of scheme are their

adaptivity to local image characteristics and their operation on imagery

containing a high proportion of smooth areas, which thus permits

parsimonious (low order and extensive in area) curve parameterizations.

The remaining approaches in the table are either specializations or

combinations of the foregoing. For example, contour or bit plane coding

is based on binary images, and the cosinelDPCM hybrid combines a 10

transform with a ID predictive coder.

~VIRAC
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In tnis study, transform approaches were examined exclusively. New

SVD ano KLT algorithms were developed and compared with baseline cosine

anu Hadamard transform algorithms.

3.2 Transform Image Coding

Figure 3-1 illustrates the transform image coding chain used

throughout the study. The first step involves extracting a block from

tne image, whicn accomplishes a reformating of the image from

raster-scan into block ordering. Following this is the input intensity

remapping step, wnich performs a memoryless transformation of the image

to compensate for sensor and display system nonlinearites.

The next step is the application of the 20 transformation to the

image block, creating an array of transform coefficients to replace the

block of pixel values. This is where the different mathematical

transforms are inserted into the chain.

After conversion to transform coefficients, actual encoding

ensues. This is the step that performs the quantization and codeword

assignment that constitutes the encoding of image information. It is

the quantization part of this operation that is responsible for the

deviations of a coded image from its original, by irreversibly degrading

the image representation: the coarser the quantization, the greater the

degradation (but the greater the compression). The trick is to perform

this quantization efficiently, i.e., with the introduction of as little

degradation as possible.

Next, the resulting codewords are reordered into 1D form and

entered into the channel as a bit stream. Depending upon the

application, tne channel can take the form of a storage disk or magnetic

tape, or a digital communication system for downlinking data from a

sensor, for relaying to an exploitation center, or for dissemination to

users.

VIRAC
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Whatever the application, it is the numoer of bits, exiting the

coefficient coder and entering the channel that describes the coder

efficiency, either in terms of compression ratio, or, the measure

preferrea here, compressed rate (measured in bits per pixel).

Note that, invariably, the channel includes its own (channel)

coder/decoder or moaulator/demodulator (modem) which adds redundancy for

error protection. Examples are the parity bits written onto tape or the

burst error codes used in noisy communication systems. In any case,

this redundancy is excluded from the coder efficiency measures employed

in this report, i.e., we are describing source coder performance only.

We are not concerned with channel coder performance, since the

particular channel coder required in any situation is application-

depenuent.

The elements in tne chain following the channel constitute the

decoding operation and hence reverse the operation of the various steps

applied before the channel. Coefficient decoding extracts the

appropriate bit patterns from the bit stream, interprets them as

codewords, and reconstructs the transform coefficients from the coded

information. This reconstruction is not exact, however, due to the

quantization error introduced during the the coefficient encoding

operation. For this reason, the reconstructed coefficients are not

identical to the original coefficients computed during encoding. They

are, however, the best available estimates of these coefficients based

on encoded data.

Next, the reconstructed coefficients are passed through the inverse

transformation, producing reconstructed pixel values. Finally, an

output intensity remapping is applied to match the gray scale output to

the display system characteristics, and the block is re-inserted into

the image in the appropriate location.

3.3 Block Transformations

There are two underlying reasons for applying a 2D transformation

to a block of image data:

MVIRAC
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0 To exploit spatial redundancy, and

* To concentrate information in a small number of coefficients.

The first of these reasons means that the correlation in intensity

values of closely spaced pixels should be exploited. The objective is

to generate a set of coefficients as uncorrelated as possible, with some

of these describing gross image structure, some medium-sized features,

and some fine detail. In this way, the degree of degradation introduced

by quantization into any level can be accounted for separately. For

example, since many images have many blocks with very little important

fine detail, those coefficients can be neglected -- that is, not encoded

-- with little loss of information. Aoditionally, the least mean square

image degradation is produced in those cases where the coefficients are

completely uncorrelated. This also motivates obtaining a transform

which decorrelates pixels as much as possible prior to coefficient

encoding.

The second objective concerns concentrating the block's energy into

a small number of coefficients. In other words, the smaller the subset

of coefficients that have appreciable size, the smaller the number of

coefficients which must be coded for faithful image representation. But

not only is the number of large coefficients important, so also is the

consistency of their location within the coefficient array. Thus,

transforms which consistently produce very small coefficient values in

certain fixed locations permit having those .oefficients consistently

ignored by the coefficient coder.

3.4 Block Size

Image transform coding oeperates on images a block at a time, so

that the question of appropriate block size immediately arises. There

are several issues involved in selecting block size, since blocks with

the following properties are required:

0 Small enough for computational efficiency,

C)|EIAC
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* Large enough for substantial decorrelation,

* Small enough for local adaptivity, and

* Power of two for "fast" algorithms.

The first of these objectives stipulates a reasonable block size for

implementation. Both calculation time and storage space requirements

grow with block dimensions. Consequently, it is necessary to keep these

aemands to a reasonable level. Based on experience with the 2D cosine

transform, a maximum block size of 32 X 32 is indicated [6].

The objective of oecorrelating pixels implies that blocks should be

as large as possible, since a transform is only able to decorrelate

pixels within a block. " o decorrelation of pixels in distinct blocks is

obtained. Based again on the 2D cosine transform, a minimum size of

8 X 8 is indicated for achieving appreciable decorrelation. (This

finding is based on critically sampled imagery with a spatial

correlation coefficient of approximately p = 0.9 [6].)

The third objective, for local adaptivity, implies that the block

size Should be small enough so that radically different image structure

does not appear within the same block. The motivation for this

requirement is based on cases where a small subregion of fine structure

and, hence, high interest, is imbedded in an otherwise flat surround.

If the busy subregion occupies too small a portion of the block, its

effect on the transform coefficients is small with respect to that of

the flat surround. Hence, the important coefficients are small and may

therefore fail to be encoded accurately, if at all. Based again on the

cosine transform and critically sampled imagery, objectives 2 and 3 --

for high aecorrelation and local adaptivity -- balance each other out at

a size of approximately 16 x 16 [6].

Since 16 is in fact a power of two, the block size used throughout

the study for all algorithms developed and compared was 16 x 16.

However, several notes are in order:

QVIRAC
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0 Optimal block size may, in fact, vary with the particular

transform employed. Sixteen by sixteen is indicated for the

cosine transform, but was also adopted for the other

transforms in order to provide a consistent basis for

comparative performance evaluation.

* Optimal block size definitely depends upon the spatial

sampling frequency. Sixteen by sixteen was predicated upon

application to critically sampled raster imagery (i.e., at or

near the Nyquist rate in each dimension). Significantly

oversampled imagery would probably require larger block sizes

to achieve the same degree of pixel decorrelation.

* There is no law requiring square blocks. In fact, past

studies have indicated a degree of relative insensitivity to

block aspect ratio, as long as the total number of pixels

remains constant. Non-square blocks can arise naturally in

imagery obtained from sensors utilizing non-square pixels

(e.g., the common mod FLIR). We employed square blocks as a

default, in the absense of reasons to adopt non-square blocks

for the imagery of interest.

3.5 Unitary Iransforms

Suppose we denote a block of image data by the symbol X. Based

upon our adopted block size of 16 x 16, X represents a 16 x 16 matrix of

pixel intensities. A linear transformation of X can be represented by:

Z = T(X)

where Z represents the transform coefficients collected into a second 16

x 16 matrix. The transformation T is linear, implying that

T(X1 + X2 ) - T(XI) + T(X2), and

T(X) - mr(X).

DVERAC

3-9

* .I:*hj.



Linear transformations T are by far the most practical for image coding

applications, due to their easy implementation with respect to general

nonlinear transformations.

However, even restricting I to be linear does not guarantee a

useful or easily implementable transformation. Further restricting T to

be in the class of separable unitary transformations does, however. A

separable, unitary transform has the following form:

z = utxv

in which the coefficient array Z is obtained by premultiplication of the

pixel array X by the matrix Ut, and postmultiplication by V.

Furthermore, the transformation matrices U and V are unitary:

ut = UUt = I

VtV = VVt = I

Figure 3-2 illustrates the structure of both the forward and inverse

separable unitary transform.

The advantage of such a transformation is that it possesses the

following characteristics:

0 Column/row separable,

0 Easy to invert, and

* Norm preserving.

Column/row separability obtains because the columns and rows of X are

transformed separately: The Ut multiplication effects a column

transformation while the'V multiplication effects a row transformation.

The result is that Z is obtained by applying 2n3 operations, where n

(VIRAC
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represents the sixe of X, i.e., X is n x n. ;n's is a great savings

over the n4 operations required for a non-sepa.6le linear

transformation.

Easy inversion obtains because both U and V are unitary and

therefore their inverses are equal to their transposes:

(ut' =u

V-1 Vt

Thus, both forward and inverse transformation entail the same amount of

work and utilize the same operators U and V.

Norm preservation again is a consequence of the unitary character

of U and V. What it implies is that energy calculations can be applied

in either tne pixel or coefficient domain. Specifically, if Z = [zij ]

and X = [x ij], then:

n n

z2  x2
i,jal ij i,jul ij

This property is extremely important in devising and analyzing

coefficient coding schemes. For example, if z is small and isPq
neglected (i.e., not coded and then approximated by zero) the effect in

the pixel domain can be predicted as a decrease in signal energy by
z 
2 .

pq

The effect of a separable unitary transformation can best be

explained by considering basis blocks. First adopt the notation:

X = [xij ]

U = [ill2 2 . . . n

V[L3v 2 . •
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.which aepects the elements of the coefficient array X and the coluns of

the transformation matrices U and V. Then the inverse transform can be

expanded as follows:

ttU.V
n Lnl Z n2 . *Znnj vt
S z u v t  _-n i

i,j~l ij 1 t!

Thus, the pixel block X is given as a weighted sum of rank one matrices

t

Each rank one matrix _ivj represents an elementary image

block called a basis block. Together they constitute the fundamental

components from which the overall X is constructed. In general, there

are n2 such basis blocks, which are weighted according to the

corresponding coefficient values zij and combined to form X. The

coefficient zij thus represents the strength of basis block

uivt contained in X. If the basis blocks are known to the

decoder, only the coefficient values zii need be encoded into the

channel. The decoder can then reconstruct the image block X via an

inverse transformation of Z via X = UZV t.

3.6 Applicable Transformations

There are a number of separable unitary transformations which can

be applied for image compression. These generally can be classed in one

of three cataGories:

* Fixed,

* Tailored to statistics, or

* Tailored to block itself.

CVI RAC
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Fixed transformations have received the greatest amount of

attention for application to image coding. These comprise 2D extensions

of familiar ID unitary transformations and are characterized by fixed

operators U and V. They include:

0 Fourier,

0 Sine,

* Cosine,

0 Hadamard,

* Haar, and

0 Slant.

The first three of these employ sinusoidal basis functions (i.e.,

the columns of U and V are sampled sinusoids), whereas the last three

employ square wave, tertiary or triangular wave basis functions. A

primary advantage of using the fixed type of transformation is its ease

of implementation, often by a "fast" algorithm. The primary

disadvantage is that these transformations are not sensitive to changes

in local image characteristics, and so may work much better on some

image blocks than on others.

The goal of adapting the transformation to local image

characteristics motivates consideration of the remaining two tailored

types of transformation. The first of these, which adjusts the

operators U and V to local image statistics, is best represented by the

Karhunen-Loeve transform, which is sensitive to second order block

statistics. The second type of adaptive transform varies with the block

data itself, and is best represented by the singular value

decomposition, in which the U and V operators depend upon the image

block X itself.

VIl AC
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3.6.1 Optimal Decorrelating Transform

To better appreciate the interrelationships among these three

transform types, a statistical viewpoint is helpful. In this viewpoint,

an image can often be reasonably modeled as a sample from a spatially

correlateo, discrete random field. If the additional assumptions that

the image is (spatially) stationary and Gaussian are included, Shannon

theory indicates that optimal compression (least distortion for a given

compression rate) can be achieved by first applying a decorrelating

transform to convert the correlated pixels to a set of uncorrelated

random variables, followed by encoding the resulting uncorrelated random

variables with a memoryless coder.

The transform wnich is statistically optimal for decorrelating a

block from a stationary image is the Hotelling, or discrete

Karnunen-Loeve, transform. When the image has a separable covariance

function, this transform takes the form

Z = UtXV

where U and V are determined from the image covariance function. For

this transform, Z is an array of completely uncorrelated random

variables.

For two primary reasons, technical effort has historically been

directed away from the optimal transform and focused instead on other

transforms which only approximate the optimal decorrelating transform:

9

* No fast algorithm generally exists for performing the

transform, and

* The procedure for deriving the Karhunen-Loeve transform

involves potentially erroneous assumptions about the image

model itself, resulting in difficulties with specific

applications.

~Inco~e-ed
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3.6.2 Cosine Transform

Historically, the first suboptimal transform to be considered was

the discrete Fourier transform, in which U and V take the familar form

of sampled complex sinusoids [7]. A prime motivation for using this

transform is the fact that as the block size grows (again, under the

stationarity assumption), the Fourier transform approaches the optimal

transform in the mean-squared sense. Of more practical concern are the

facts that the Fourier transform produces a (complex) coefficient array

Z which is highly (though not perfectly) uncorrelated, and that a fast

implementation (the FFT) exists.

However, a problem basic to use of this transform in coding is the

Gibbs phenomenon, which results in severe artifacts near the edges of

tne compressed array, ana thus introduces objectionable blocking in

images that are block transformed. This latter problem can be

eliminated by introducing a forced symmetry into the block, resulting in

the cosine transform [8j. For this transform, U and V are sampled real

sinusoias, and the coefficients Z are themselves all real. Because of

its direct relationship to the Fourier transform, the cosine transform

retains the Fourier transform's optimal asymptotic behavior, and is in

fact superior to the Fourier transform for decorrelating smaller sized

blocks. In addition, the FFT can still be useo in actually executing

the transformation.

A key property of the cosine transform which makes it particularly

attractive fc'- image compression is the energy compaction into the lower

frequency coefficients that occurs for most images. Consequently, by

concentrating on transmitting the larger magnitude, generally lower

frequency coefficients, efficient coding with only slight loss of image

energy is possi'le [9].

3.6.3 Hadamard Transform

The Hadamard transform is a binary approximation to the cosine

transform that is characterized by unitary matricis U and V all of whose

V3RA¢
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elements are either I or -1. An alternate interpretation is that the

columns of U are samplea Walsh functions, so that this transform is also

known as tne Walsh transform.

The major advantage of the Hadamard transform is its ease of

implementation. Not only are multiplications eliminateo in forming the

coefficient array Z, but a fast algorithm akin to the FFT also exists to

speed execution. The price of this efficiency is a degradation in the

decorrelational properties of tha transform relative to the cosine

transform. Even so, the transform does a fairly good job of

decorrelating images and of compacting energy into the lower "sequency"

coefficients of Z [10].

3.6.4 Singular Value Decomposition

Up to this point, the transforms discussed nave been linear,

separaole and unitary, tnat is:

Z = utxv.

For stationary Gaussian images with separable covariance functions,

theory indicates that this structure provides for efficient

decorrelation of X into Z. However, for imagEs which are nonstationary

or non-Gaussian or which have nonseparable covariance functions, it is

possible that a more general transform than that above could produce

better results.

One such generalization is a nonlinear transform that is an

imae-adaptive version of those discussed above:

Z = Ut(x) X V(X)

where U and V are again unitary. Among transforms of this class, the

best candidate in terms of energy compaction is the singular value

decomposition (SVD):

Z - UtxV

(VIERAl
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where

XX U = UA, ana

A diagonal

XtXV = VA.

In this case, Z = A1/2 so that Z has at most n non-zero entries, in
contrast to the n2 entries of the optimal, 2D-cosine, and Hadamard

transforms.

The major property of this transform relevant to image compression

is that this choice of U and V yields a Z(=.\1 /2 ) with maximum energy

compaction. However, unlike the previous transforms, this U and V
depena upon X, so that it is necessary to transmit not only Z =AI/2, but

also U and V. Consequently, it is perhaps better to represent this

nonlinear image transformation as:

SVD(X) : (A, U, V).

Although there are altogether 2n2 + n non-zero entries in the
arrays A, U, and V, a degrees-of-freedon analysis indicates that a

total of n2 numbers--n forA and n2-n for U and V together -- are

sufficie:z to completely specify all three arrays.

3.6.5 Focus of New Developments

Primary attention in this study was aimed at further developing the

SVD approach to image coding. A small amount of previous work using

SVD's for image compression was reported in [11], but the results are

preliminary and do not take into account the image statistics, the

regularity of the singular vectors (columns of U and V), or the

potential efficiencies that can be obtained by jointly considering the

transform and memoryless coding processes. It was these aspects of SVD

coding which were examined in the course of this study in developing an

optimal SVD image coder.

SVERAC
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In adition, recognition of the high overhead necessitated by

singular vector coding prompted examination of a different approach

which reduced tnis overhead by amortizing it over a number of image

blocks. The mechanism for accomplishing this was the implementation of

a cooing scheme in which the U and V operators are specific to, instead

of a single block of image data, a collection of such image blocks.

Since this scheme amounts to a class-adaptive Karhunen-Loeve coder, such

an algorithm was also developed for comparison.
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4.0 CLASS-ADAPTIVE KARHUNEN-LOEVE

TRANSFORM CODER

This section describes the class-adaptive Karhunen-Loeve

transformation and the associated pre-processing and coefficient coding

schemes employed with it under the study. Subsection 4.1 covers the

transformation, Subsection 4.2 the preprocessing, and Subsection 4.3 the

coefficient coder.

4.1 Class-Aaaptive Karhunen-Loeve Transformation

The Karhunen-Loeve Transformation (KLT) is the method of expansion

by principle statistical components. That is, it involves the

representation of an image block X as a weightea sum of basis blocks

Bi which reflect statistically significant block characteristics.

This representation takes the form

X = .zijBij
13

where the zij constitute the KLT coefficient array Z. (This

expression represents the inverse KLT operation.) The KLT coefficient

array Z possesses two important properties:

* The elements zij of Z are uncorrela-ed, and

* The average energy compaction into the first few elements of

Z is greater than that obtained from any other linear

transformation.

4.1.1 The Separable Covariance Assumption

In order that the KLT be implementable as a separable operation on

X, i.e.,

Z . UtXV,

MVIRAC
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the basis blocks Bij above must take the form of the outer product of

two vectors, specifically:

B..j = ui~v.

This situation obtains if it is assumed that the image covariance

function is separable, i.e., if the correlation of the two pixels x(i,j)

ana x(i+ai,j+aj) depends not on the Euclidian separation TAi2+aj,

but separately on the vertical separation ai and the horizontal

separation aj. Mathematically, this can be written as

COV kai,aj) Cv (ai) CH(aj)

wnere Cv is the vertical image covariance and CH is the horizontal

covariance.

The significance of such an assumption is illustrated graphically

in Figure 4-1, which shows a typical radially-symmetricimage covariance

function in part (a) and a separable approximation to it in part (b).

The effect of the approximation is to over-accentuate image correlation

vertically and horizontally and under-accentuate it at oblique angles.

Thus, vertical and horizontal image structure can be expected to be

retained somewhat more faithfully than oblique image structure when KLT

coefficient coding is performed. However, the cost of implementing a

KLT based on a non-separable image model is prohibitive (an order of

magnitude more calculation). Consequently, we adopted the separable

mooel for derivation of the KLT operators.

4.1.2 KLT Definition

Based on the separable covariance assumption, it is shown in

Appendix A that a separable, unitary KLT transformation takes the

fol lowing form:

Z = U'XV

eVIRAC
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(a) Radially Symmnetric Covariance

(b) Separable Covariance

Figure 4-1. Comparison of Separable and Non-Separable'

Image Covariances
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where the U and V operators are unitary matrices that depend upon

vertical and horizontal pixel correlations, respectively. Specifically,

the U and V matricies are pre-computed from pixel statistics according

to the following pair of eigenvalue/eigenvector problems:

Crw U = UA row,. and

1 Ccol V =VA col

where Crow ana Ccol are row and column covariance matrices, 02 is

pixel variance, and row and Ic ol are diagonal matrices. Since the

resulting U and V are unitary, U-I=Ut and V-I=Vt so that these

problems can be rewritten as

ut[ 1 Crow] U = Arow, and

v t 1 i Ccol ]V = Acol,

which shows that the effect of the operators U and V is to diagonalize

the row and column covariance matrices. The result is that, in the KLT,
U and V remove row and column correlations, respectively, from the pixel

array X, producing an uncorrelated coefficient array Z. Maximum energy

compaction into the z ijs with the smallest indices is achieved simply
by ordering the columns of U and V so that the diagonal elements of
Aydr ing and co lunfUadVs httedaoa lmnso
Arow and ic° l monotonically decrease from upper left to lower right.

CVIRAC
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4.1.3. Class Adaptivity

The success of the KLT depends upon having a good match between an

image block X and its assumed statistics, summarized by the row and

column covariance matrices. Since images are typically highly

non-stationary, a multiple class KLT scheme was adopted here to better

aid in employing the proper statistical assumptions at the proper time.

In this approach, a number of different pairs of row and column

covariance matrices are included, each describing the statistical

characteristics of a particular class of imagery. Then, whenever an

image block of that class is to be transformed, the U and V matrices

previously calculated from that class's statistics are employed in

extracting the KLT coefficients.

Specifically, if a block X is determined to belong to class k, then

the class k KLT is applied to X:

Z = UtXVk,

where Uk,Vk satisfy the following class k eigenvalue/eigenvector

problems:[ 1 Crow]A rowan
2 k IUk = Uk~k ,andaonJ

kr k k k

Because the inverse KLT is class-dependent,

X = Uk V ,kzV

it is necessary to encode not only the array Z, but also the class label

k, so that the decoder can know how to properly inverse transform the

coefficients Z it receives from the channel. For this reason, the

number of classes is held to a reasonably small number, permitting

SDVERAC
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efficient encoding of class information and resulting in near negligible

overhead associated with block class encoding. In this study, eight

classes were employed.

A key issue associated with class-adaptive coding is the mechanism

for determining a block's class. Only if blocks can be easily and

consistently separated into meaningfully distinct classes is the scheme

useful. Properly, the problem of identifying meaningful classes and

determining reasonable classification schemes is a problem in

unsupervised pattern recognition.

Ideally, a number of block features would be examined to find the

optimal class boundaries, and the feature extraction procedure and

classification logic would be analyzed to determine the best tradeoff

between accuracy of correct classification and computational expense.

Instead, we adopted a block classifier based on the extraction of a

single scalar feature known to be strongly correlated with the quantity

of information contained in a block. We thus select our classes to

roughly correspond to varying levels of block information content and,

thus, difficulty of compression.

The feature employea in tnis study was block a.c. energy, defined

as the mean square deviation of a block's pixel values from the average

intensity value. That is:

U(x) Z x 2  x

n i,j=l i n i j=1 ij

The feature u(x) is a good measure of bloc', "busyness" and for this

reason provides a high correlation with block information content. In

addition, since it is based upon nergy, and both U and V are unitarj, u

can be calculated in either the pixel or transform coefficient domain.

Based upon this feature, a simple classifier of the following form

was employed:

SVIA AC
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Block X is in class k IF tkl P(X)<tk

Tne decision points tk were initially left unspecified, and an

experiment was conducted to determine the best choice. During this

experiment, which is detailed in Section 7 of this report, a uniform

spacing of the t .s in log (u) space was indicated as best, and wask
adopted for all class-adaptive applications.

4.1.4 KLT Computational Algoritnms

Three types of calculations are associated with the KLT:

0 Determining transformation operators,

* Extracting KLT coefficients, and

* Reconstructing pixels from KLT coefficients.

The first type, involving construction of Uk and Vk for each

class, amounts to the solution to 2k eigenvalue/eigenvector problems,

where k represents the number of classes (8 in this study). Each of

these problems entails the diagonalization of an nxn real, symmetric,

positive semidefinite matrix. Since n=16 in this study, such problems

can easily be solved by use of a conventional matrix calculation package

such as LINPACK [12]. Since this calculation is off-line and precedes

actual image coding, high efficiency is not required.

For the KLT, both forward and inverse transformations are performed

by straightforward matrix multiplication:

Z = UtXV and

X - UZV t

Thus, 2n3 multiplications and additions are required to extract KLT

coefficients or to reconstruct pixels from coefficients.

VeURAC
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In general, no "fast" KLT algorithm (akin to the FFT) exists,

although under centain assumptions on the column and row covariance

matrices, U's and V's corresponding to the sine transform can be

generated. In this special case, the FFT can be used to effect both the

forward and inverse transformations. However, the required assumptions

to force this situation violate the philosophy of fitting the

transtormation to the naturally arising class statistics, which is the

whole reason for including the KLT in this study. The cosine transform,

which is very similar to, and, in fact, has been shown to be superior to

the sine transform in a number of cases, is already included in the

study for comparison, so including both would not illuminate any new

performance possibilities.

4.2 KLT Preprocessing

KLT preprocessing entails the calculations of class-specific KLT

operator matrices Uk and Vk and coefficient statistic matrices Mk

and Tk from training data. The process is illustrated in Figure 4-2

and consists of three parts:

0 Classify blocks of training imagery,

Compute transform operator matrices and predicted statistics,

and

* Collect empirical statistics.

4.2.1 Classify Blocks

The block classification process involves the two steps discussed

in subsection 4.1, namely:

0 Compute activity measure u(x), and

* Classify the block.

MVIRAC
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The result is the appending of a label k to each block of training

imagery. Since the KLT is class-adaptive, all further pre-processing to

be aiscussed is class-specific, in the sense that all calculations are

performea separately for all class 1 (k=1) blocks, all class 2 (k=2)

blocks, etc.

4.2.2 Compute KLT Operator Matrices and Predicted Statistics

The class-specific Uk and Vk matrices are calculated from

class-specific block statistics. Specifically, the following three

block statistic matrices are computed for each clsss k:

* X = AVG [X in class k

* Rrow AVG LXX t in class kj
k

* Rcol AVG [XtX in class k]k =

If these statistics are accumulated over a large number of blocks

from a variety of imagery, they can be expected to converge to their

proper values. However, whenever the training set if finite, residual

structural artifacts may remain in the calculated statistics. To help

smooth out these artifacts, the sample space of training imagery can be

artifically expanaed by the addition of new members synthesized from

original members.

In particular, suppose)( denotes the sample space of image blocks

X obtained by partitioning the training imagery into nxn blocks. The

set %( can be expanded by any of the following schemes:

0 Re-partition each image n2 times, so that block boundaries

shift around the image, causing a given pixel to occupy the

various n2 locations of a block .exdctly once. This

eliminates artifacts due to block location within an image,

and expanasX by a factor of n2.

OVERAC

4-10

.4-



J Flip each block vertically, horizontally ana both. This

eliminates certain artifacts due to the imaging system's

orientation with respect to the scene, and expands K by a

factor of four.

0 Rotate eacn block 90, then apply flips (good only for square

blocks). This eliminates other artifacts due to the imaging

system's orientation with respect to the scene, and

expands 0) by a factor of four.

In this study, the second and third of these sample space

enhancement schemes were employed for block statistics calculation. The

first was omitted due to the extremely nigh computation and storage load

associated with implementing it, and because the training set was

reasonably large to begin with.

An additional structural artifact can be removed by introducing the

homogenous mean assumption. That is, the block mean EXk is assumed to

be a matrix having all values equal to Uk, i.e.:

Wk 'Ik . k

- '0 k " kl) '

where [1] is the nxn matrix all of whose elements are l's. Since any

deviation from this behavior is without physical justification, the

assumption is introduced as a constraint to be satisfied during the

sample mean calculation. This means that instead of determining Xk by

elementwise averaging over the X's in class k, u is calculated by

averaging over all elements of all X's in class k:

AVG Ix 1  : X in class k

n i j=l

S)4-RAC
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Note: This can also be written as:

n

'J x
n i,j~l

where X = K which is tne way we actually implemented it.

-ro col
Once XR r~k .°

r'k and Rk  have been obtained, the required
sample covariance matrices are computed from one of the following pairs

of equations:

* Without homogenous mean constraint

Crow = row tcrO Rro X X
K k -

Col = col-.

* With homogenous mean constraint

crow row t 2k = k k l k - 1'k Xk [1] + 'k

C col Rcol - t 2 1 k[l1

From these matrices, the class-specific KLT operators Uk and V k

are obtained from (see Appendix A):

Crow] A row andk  'Uk =U k  k n
a' k

[ 2n k  Vk Vk Ak

MVIRIIC
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where o2 . tr Arow . tr A Colk k

For coefficient cooing, the mean and standard deviation of the

coefficients zij in the KLT array Z are required. In Appendix A, it

is Shown that under the assumptions employed in finding Uk and Vk,
the class-specific coefficient statistics can be predicted as:

* Mean:

-- without homogenous mean constraint

Mk = UkXkVk

-- with homogenous mean constraint

M t

Mk = Uk Uk [I] Vk

* Standard Deviation

-- Variance

2 row colt
k =k~k Ak

-- Standard Deviation

Ik= [k,ij3

where Sk

4.2.3 Collect Empirical Statistics

Since it is recognized that the covariance separability assumption

under which Uk and Vk are derived and coefficient statistics are

predicted is not strictly valid, an alternative, empirical coefficient

statistics calculation scheme is also employed. When the covariance

separability assumption is valid, both approaches yield the same

Vt. IAC
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result. When the assumption is not valid, the second, empirical

approach produces a more accurate estimate of the statistics of the

coefficients actually produced by application of Uk and Vk.

Note that we are not talking about recalculating Uk and Vk

under more general covariance assumptions. Rather, we are only dealing

with obtaining a more accurate estimate of the average properties of the

coefficients obtained by use of that Uk and Vk. The degree of

disparity between the statistics calculated by the two methods indicates

the degree to which the actual. training data departs from the assumed

separable covariance model.

Empirical statistics are obtained by applying the appropriate

class-specific KLT to each block of training imagery, and accumulating

statistics on tne resulting coefficients. In particular, two items are

required:

0 Mean Mk$ and

6 Standard Deviation

for each class k.

Calculation proceeds in two steps. First, the mean and mean square

coefficient values are accumulated, then the standard deviations are

derived from this data. The first step entails the following averages:

M = AVG (UtXV : X is class k), and

k k k

Rk = [rk,i j

where rk~i = AVG (z.2 Z UtXV and X is class k)

YVRAC
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Next, the standard deviation array is obtained by:

k = [Okij]

where2 = r2  m2khr a , ij k ,ij k,ij"

The various sample space enhancement techniques discussed unaer

4.1.2 are germane to empirical statistics calculation as well. However,

rather than expandoX , the sample space of X's, directly, it is possible

for the flip and rotation type of enhancements to expand 'S, the sample

space of Z's, instead. This is of great practical benefit because of

the large computational load associated with applying the KLT to so many

blocks. Appendix B shows how the statistics of the expanded set can be

calculated from the statistics of the original set C .

4.2.4 KLT Preprocessing Summary

To summarize, KLT preprocessing is a training procedure applied to

a sample space of blocks obtained by appropriately partitioning a set of

training imagery. The result is the generation of several class

specific quantities:

0 KLT operators Uk and Vk for each class,

* Predicted statistics of Z for each class, and

* Empirically collected statistics of Z for each class.

The Uk and Vk matrices are required to specify the class-adaptive
KLT operation, while the coefficient statistics Mk and Ik are

employed to efficiently code the coefficients produced by the KLI

operator.

4.3 KLT Image Coding

Figure 4.3 depicts the KLT image coder employed in the study. The

process begins by extracting an nxn block X from an image. The block is

CVERAC
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classified by extracting the a.c. energy activity measure t(X) and

comparing the resulting value to a set of decision thresholds It

The result is a block label k. Based on this k, the proper KLT is

applied to X using the appropriate Uk and Vk matrices.

The resulting KLT coefficients are then encoded, and placed into

the output buffer for formation into a bit stream. Prior to this

encoding, a rate equalization step occurs which is aimed at achieving a

particular overall coding rate (e.g., 1 bit per pixel). This is

achieved by computing a global distortion parameter D which serves to

control coefficient coding by setting the fidelity level at which the

coder is to operate. The rate equalization algorithm implemented for

the KLI coder is essentially identical to that implemented for the SVD

coder, and is discussed separately in Section 6.

In addition to th KLT operation itself, KLT coefficient coding is

also a class-adaptive operQ.ion. This permits the allocation of

relatively more channel bandwidth (number of bits) to high-information

portions of the image than to low-information portions. This is

'implemented by generating more bits for "busy" (high activity measure 1)

blocks than for "quiet" (low activity measure p) blocks. The result is

that bandwidth is adaptively allocated to the various blocks within an

image. Class-adaptive KLT coefficient coding is disucssed in subsection

4.3.2.

The decoding operation is essentially the reverse of the encoding

process. However, because the KLT operation is class-adaptive, the

decoder must be provided with each block's class label in order to

properly inverse-KLT the reconstructed coefficients into the

reconstructed pixel block. Thus, the block labels k constitute overhead

information which must be encoded and entered into the channel.

Similarly, the coder control parameter D must be avaiiable at the

decoder in order for coefficient reconstruction to be properly

performed. Thus, this parameter also constitutes overhead to be encoded

and entered into the channel. Overhead coding is discussed next, in

subsection 4.3.1.

DVERAC
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4.3.1 Overhead £ncoding

Since only a single D value need be specified for each image, and

since only one of a small number of possible class labels need be

specified for each block, overhead coding does not consume much channel

bandwidth. Specifically, since, as indicated in Section 6, it is log(D)

which controls coder fidelity, an 8-bit BCD log-quantizer was adopted

for 0. For k, which could assume one of eight values, a simple 3-bit

BCD quantizer was employed.

The bandwidth resources consumed by encoding this overhead is

slight. In particular, for 16 x 16 blocks and 256 X 256 images, the

overhead is:

* Distortion parameter: 0.0001 bpp

* Class labels: 0.012 bpp.

Thus, total overhead to acnieve both class adaptivity and rate

equalization is slightly more than one hundredth of a bit per pixel.

Since, for the high interest imagery under study here, overall coded

rates on the order of one bit per pixel are of interest, the overhead

associated with this scheme is, in fact, negligible.

4.3.2 KLT Coefficient Coding

The key aspect of the KLT coefficient coder is that it is

class-adaptive. This adaptivity extends into two domains:

* Interblock adaptivity, and

* Intrablock adaptivity.

Interblock adaptivity refers to the distribution of total bandwidth

among the various blocks in an image according to block class. High

(51U"RA
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activity-index blocks contain more information and are thus allocated

more bandwidth than are low activity-index blocks, which contain less

information.

Intrablock adaptivity refers to the distribution of bandwidth among

the various coefficients in a particular coefficient array Z according

to their statistics. Coefficients with a high degree of predictability

(e.g., usually small) are allocated less bandwidth than are coefficients

with a low degree of predictability (i.e., can occur over a wide range

of values).

Figure 4.4 illustrates an example of bit assignment arrays for two

classes, one for low-activity blocks and the other for high-activity

blocks. The arrays are to be interpreted as assigning the number of
2bits to be used in encoding the various 16 = 256 coefficients within

the array Z. Thus, the 3 in the (i,j) = (3,2) position of the first

array indicates that, for low-activity blocks, z32 is to be coded with

a 3-bit quantizer.

The figure illustrates both types of adaptivity. Interblock

adaptivity is indicated by the difference in the total number of bits

allocated to all the n2 coefficients, i.e., by the difference in the

summations over all elements of each array. Intrablock adaptivity is

illustrateo by the preferential allocation of bits to those coefficients

in the upper left hand corner of the arrays, corresponding to the

coefficients which typically require the most dynamic range. Note that

in both arrays a number of coefficients are allocated no bits at all,

indicating they are to be ignored (not coded). These are the typically

insignificant coefficients (approximated, for example, by zero).

Coefficient coding requires resolution of two issues:

0 How to make coder assignments, and

* What quantizer to employ.

INcO ee d ...
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8 4 3 2 2 2 1 1 1 1 0 0000
4 3 3 2 2 2 1 1 1 1 1 0 0 0 0 0
:3 3 2 2 2 2 1 1 1 1 100 00

2 2 2 2 1 1 1 1 1 1 0 0 0 0 0 0
2 2 2 1 1 1 1 1 1 1 0 0 0 0 0 0

11 11111110 00 0 0 0 0

11 11 111 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0d 0 0 0 0

Lowest Activity Class

8 8 8 5 6 4, 4 2 3 1 2 0 0 0 0 0
8 7 6 5 S 4 3 2' 2 1 1 1 0 0 0 0
8 6 6 5 5 4 4 3 2 1 1 0 1 0 0 0
5 5 5 4 3 4 3 3 3 2 2 0 1 0 0 0
6 5 5 3 :3 3 3 2 2 2 2 2 0 0 0 0
4 4 4 4 3 3 1 2 2 2 1 1 1 0 0 0
4 3 4 3 :3 1 2 1 1 0 1 0 0 1 0 0
2 2 3 :3 2 2 1 2 1 0 1 0 0 0 0 0
3 2 2 3 2 2 1 1 0 0 0 1 0 0 0 0

•0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Highest Activity Class

Figure 4-4. Example Bit Assignment Arrays
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4.3.2.1 Coder Assignment

Coder assignment amounts to constructing the bit assignment

matrices shown in Figure 4-4. Since we are dealing with an eight-class

situation, eight such matrices are required.

The criterion employed for coder assignment is the minimization of

mean squared coding error at any given coding rate. Such a criterion

results in a bit allocation rule which distributes the mean- squared

error uniformly across all blocks, and, within a block, uniformly across

all coefficients. To achieve such uniformity, such a rule must allocate

more bits to high activity blocks than to low-activity blocks, and,

within a block, more bits to strongly varying coefficients than to

quiescent coefficients.

As shown in Appendix C, this criterion results in the following

assignment rule:

B ij(k) : NT 10o 2 I

where: * B ij(k) = Number of bits allocated to the ij-th

coefficient in class k blocks.

* .(k) = Standard deviation of the ij-th
13

coefficient in class k blocks. (This is the ij-th

element of Ik the class-k coefficient standard

deviation matrix. Either predicted or empirical values

can be used.)

* D = Global distortion control parameter

(determined to provide rate equalization).

* INT [.] = The integer part (required because we are

using fixed rate quantizers).

4-21
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To repeat, this rule produces adaptive bit allocation because it results

in more bits being assigned to coefficients with high variability as

measured by large Because high-activity blocks typically have

many such coefficients, such blocks receive more bits in aggregate than

do low-activity blocks.

4.3.2.2 Coefficient Quantization and Coding

Once a coefficient is allocated a number of bits for encoding, the

next question is how to employ these bits in effectively encoding the

coefficient. A number of possibilities exist, but the Max quantizer was

selected here for its optimality properties. The key requirement for

applying the Max quantizer is that the probability density functions of

the zij be known.

The assumption applied is that all coefficients zij share the

same form of probability density function, parameterized by mean

m. (k) and variance 0 ij(k). Thus, the derived coefficients

(zij-mij(k))/oi(k) all share the same zero-mean, unit-variance

PDF p(z).

For this study, we used a modified Gaussian function for-p(z). The

Gaussian assumption is justifiable by the central limit theorem, and the

modification, which slightly boosted up the tail of the distribution,

was added to account for rare, but important events.

The Max quantizer consists of a set of quantizer decision

thresholds and an associated set of reconstruction levels selected so

that coding error is minimized on average. It results in a non-uniform

quantization scheme that is tailored to the statistics of the

coefficients. For example, the three-bit Max quantizer which minimizes

mean squared coding error for a Gaussian PDF is shown in Figure 4-5.

Max quantizers of 1,2, ... , 8-bit were used in the study.

DVIERAC
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Figure 4-5. Example Three-Bit Max Quantizer for

Gaussian POF
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Although a Max quantizer can be used on all coefficients, special

treatment was provided the z11 coefficient. This is because the basis

block ulvX corresponding to this coefficient is invariably near

constant in intensity over all pixels in the block, so that z11 is

similar to the cosine or Hadamard "dc" coefficient.

The reason for special treatment for "dc" is that when using a Max

quantizer -- even an 8-bit Max quantizer -- occasionally severe coding

errors are committea. These errors arise where the coefficient deviates

most from its assumed mean value, since there the Max quantizer

bin-wiath is largest, and the potential difference between the actual

coefficient value and its quantized (reconstructed) value is greatest.

Because "dc" errors are perceived as "olockiness" in the image,

these errors are potentially more perceptually damaging than are similar

errors encounterea for a.c. coefficients. Thus, in place of a Max

quantizer, a uniform quantizer was applied to the d.c. coefficient.

V|URAC
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5.0 SINGULAR VALUE DECuMPOSITION IRANSFORM CODER

The singular value decomposition transform coder uses a transform

constituting the metnoa of principal deterministic components. In this

method, each image block is again aecomposed into a sum of unit norn

basis olocks, out nere tne oecomposition acnieves the optimal energy

compaction for each and every block, rather than merely on average as is

the case for the KLT. Tnis means tnat, here, the fewest number of

coefficients of any decomposition is required for efficient image

coding. However, in contrast with the statistical approach where the

transform matrices are pre-computed and thus available to both coder and

decoaer, here the transform matrices themselves depend upon the image

block ana hence must themselves be coded along with the coefficients.

The transformation usea in tnis approach is the singular value

decomposition (SVD), given by:

S = Ut XV

wnere XX U = UA\, where A is a diagonal array of non-negative

elements and U is orthogonal;

ana X tXV = VA, where.\is tne same diagonal array of non-negative

elements ana V is orthogonal;

ano wnere S = t.\)

Tne matrix S is diagonal and contains the singular values. The matrices

U ano V have as their columns the left and right singular vectors of X

respectively. Because U and V depend upon X, all three matrices -- S,

U, and V -- must be coded.

Several aspects of image coding using the SVO were explored:

* Computational algorithms,

a Further aecorrelation and energy compaction, and

VYIRAC
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* Singular value/vector coding.

The overall coding chain is indicated in Figure 5-i. It is very similar

to Lne KLI approach, with the major exceptions being:

* ne SVD automatically adapts to the block X: it is not

class-specific, and

* botn singular values and sinqular vectors are coded.

As in the KLT approach, coefficients (singular values and vectors) are

coded class-adaptively. Since the SVD is a unitary transformation,

delaying the extraction of the activity measure u(X) until after the

forwarQ SVD operation has no effect on the result of the classification

process. In fact, the computational load of calculating u(X) is less

here due to tie nigh energy compaction produced by the SVD transforms,

as reflected in the diagonal structure of Z.

The reia nod! of this section presents the details of the SVD image

cooer. Sabsectiun 5.1 discusses computational algorithms; subsection

5.2 suimarizes additional steps potentially yielding further energy

compaction or decorrelation of singular values/vectors; subsection 5.3

describes the preprocessing required to support SVD coding; and

subsection 5.4 presents the new schemes developed for singular

value/vector coding.

5.1 SVD Computational Algorithms

Several candidate algortithms for calculating the SVD were

identified during the study. One is equally applicable for computing

the KLT matrices during KLT preprocessing, ano was, in fact, applied for

that purpose. (Since KLT preprocessing is an initial, off-line training

procedure, computational efficiency is not an issue there.)

VIERAC
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Two classes of SVD algorithms were identified, the direct and

indirect methods. In the direct method, a block X is decomposed by

directly searching for ortnogonal matrices U and V such that

UtXV = S, S diagonal and non-negative.

In the indirect method, the intermediate, symmetric positive

semi-definite matrix XXt or xtX is first computed and its eignvalues

and eignvectors calculated as:

(XtX)U = UA, or

(XtX)V = VA,

in wnich U and V are orthogonal andA is diagonal and positive

semi-definite. In fact, S = A 1 12 , i.e.,

A= Sts = SSt .

Whichever of U or V is calculated from the eigenvalueleigenvector

problem, the other is obtained directly from:

V = XtUA - I 2 , or

U = XVA-1/2

in whichA -112 is a diagonal matrix having elements which are the

reciprocal of the corresponding elements ofAwhen non-zero, and zero

otherwise. In this way, only those columns of V or U which correspond

to non-zero singular values are obtained (they are the only ones needed).

Each type of SVD computation method, direct and indirect, can be

tailored separately to two types of array X, a block of pixels and a

block of transform coefficients, resulting in the four algorithms

examined. (The indirect pixel block method is also used for computing

VERac
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the class adaptive KLT matrices by replacing XtX and XXt by E(XtX)

and E(XX t).)

Pixel Block SVD Algorithms

The approach is illustrated in Figure 5-2 and consists of two steps:

0 Apply a fixed number of Householder transformations Ui and

V. to render

U t Ut..Ut XV V

bi-diagonal, and then

* Iteratively apply a sequence of plane rotations, U and V, to

the rows and columns of X in order to implement the implicity

shifted QR algorithm and to thus render the resulting

-. t -. -.

diagonal. This results in

U = U1U "UnU '

V = VVT"VnV,

and S = UtXV.

The indirect pixel block SVD algorithm is illustrated in Figure 5-3

and consists of an iterative application of Jacobi Transformations to

diagonalize the symmetric matrix XXt or XtX. Suppose XXt is to be

diagonalized. Then a sequence of Jacobi Transformations Ui are

applied to yield a diagonal matrix

A= u u"U(XXt) UiU"UL

VIRAC
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R02181

81-DIAGONALIZE UitXy DIAGOtIALIZE sU,V
X REAL BIDIAGONAL131XEL BLOCK MATRIX MATRIX SVD

Figure 5-2. Direct Pixel Block SVD Calculation

R02181

FORM t  DIAGONALIZE DETERMINE 1
XRM SYMMETRIUE U SINGULAR VALUES

X GRAM SYMMETRIC AND RIGHT F'. SUV
MATRIX MATRIX SINGULAR VECTORS |

PIXEL
BLOCK OR SVD

FORM XtX DIAGONALIZE AV DETERMINE

GRAM Xto SYMMETRIC SINGULAR VALUES
MATRIX MATRIX AND LEFT
MATRIX MIX ____ _ lSINGULAR VECTORS

Figure 5-3. Indirect Pixel Block SVD Calculation
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The transformation Ui is selected to reduce the largest off-diagonal

elements remaining at the i-th iteration.

This results in

U = UU" L s

S -A' 12 , and

V = xtuA - I1 2

Both of these algorithms are generic in that they are applicable to

extracting the SVD of any array X. They were included as baseline

techniques against which to compare the more tailored coefficient block

SVD algorithm and, for the indirect method, as a means of extracting the

KLT matrices.

Coefficient Block SVD Algorithms

The coefficient block SVD approach attempts to exploit prior

knowledge about typical image blocks. For example, from knowledge that

pixels are non-negative and highly correlated arises the fact that one

left and one right singular vector must be close to uniform (vector's of

all 1's before normalization). Thus, pre-transforming by a U and V

which each include such a column should render UtXV closer to diagonal.

In addition, the known regularity which often occurs in image block

singular vectors can be anticipated by including appropriate columns in

the pre-transforms U and V. The result is a matrix X = Utxv which is

more nearly diagonal than is X. This can be exploited in more easily

completing the diagonalization process. The overall procedure is shown

in Figure 5-4.

The pre-transforms employed here include the 2D cosine and

Hadamard. Both include a uniform column in U = V and both tend to mimic

typical singular vector structure.

DVIERAC
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Figure 5-4. Finding the SVD via a Coefficient-Block

SVD Calculation

Not only do such pre-transforms accelerate the diagonalization of

X, but they also dovetail nicely with the singular vector coding

approaches developed in the study. These approaches are discussed in

detail elsewhere, but they amount to taking 1D correlating transforms

(e.g., cosine or Hadamard) of the singular vectors of X and encoding the

resulting coefficients. If such a singular vector coding approach is

employed in conjunction with a pre-transform intended to ease SVD

extraction, a particularly convenient synergism occurs. This is because

the normally required steps of backing-out the pre-transform to find the

singular vectors of X, followed by the application of a decorrelating 1D

transform to these singular vectors to prepare for coding, can be

eliminated. In particular, if the pre-transform is the 20 version of

the ID decorrelating transform (e.g., 2D cosine and 1D cosine) the

combination of inverting the 2D pre-transform and applying the ID
transform cancel each other out. This is illustrated in Figure 5-5.
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h_, INVERSE 2D PRE-S,U,V V0RSINGULAR ,S'uUIVtV TRANSFORMATION VCO

FROM COEFFICIENT T RTRANSFORMATION SAME AS
BLOCK SVD FROM COEFFICIENT

BLOCK SVD

IDENTITY TRANSFORMATION

Figure 5-5. Collapsing the Inverse 2D Pre-transformation and

the Forward 1D Singular Vector Transformation

into the Identity

The result is an efficient algorithm for extracting both the

singular values and the ID transform of the right and left singular

vectors of X. The process is illustrated in Figure 5-6. This was the

procedure utilized during the evaluation phase of the study.

Both direct and indirect coefficient block SVD algorithms are

possible and utilize a sequence of orthogonal transformations to

diagonalize the appropriate matrix. In the direct case, transformations

UI and Vi, are applied until

ULiU U XV) ViV L

is approximately diagonal. In the indirect case, either the Ui's or

Vi's are applied to diagonalize

UL U1 U XU iL

or

la e t~e ...... t . V

L 1 1 V V

(DYERAC
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Figure 5-6. Combined Algorithm: Efficient Extraction of

Both Singular Values and 1D Transform Coefficients of

Singular Vectors

The other is obtained by substitution as in the indirect pixel block

algorithm.

The inoirect method was adopted here due to the availability of

existing code to implement it, and, as discussed in Section 7, because

SVD coder performance turned out not to be good enough to warrant a

thorough investigation of the relative merits of the other SVD

computational approaches.

5.2 Decorrelation and Energy Compaction of SVD Coefficients

Prior work utilizing the SVD transformation for image compression

recognized the statistical correlations that typically occur within

singular vectors [11]. In that work, a predictive coding scheme based

on DPCM coding of singular vectors was employed to exploit the

correlation. However, it is well known that such an approach only

CVIRAC 51
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removes some of the correlation. Efficien. enciding demands that as

much correlation as possible be removed, which suggests egpplying a 10

transform to the singular vectors to decorrelate them.

The optimum transform for decorrelating a vector is the

Karnunen-Loeve transform. However, for maximum adaptibility to

non-stationarity, a class-aptitive, singular vector-specific ID KLT is

best. In such a scheme, the particular KLT operator applied would

depend upon the block's class and the singular vector's index (location

within U or V as appropriate). For our case, we have eight classes and

sixteen left and sixteen right singular vectors requiring a total of 8.

16-1b = 2048 i6x16 KLT operator matrices. Even in the case where

statistical distinctions between left and right singular vectors are

ignored, 8-i6 = 128 such matrices are required.

Such a storage load, coupled with the computational load required

to perform the KLT extraction via matrix multiplications, suggests that

suboptimal transformations possessing a "fast" implementation be

investigated. This was also indicated in order to efficiently combine

the 2D pre-transformation discussed in Section 5.1 with the ID singular

vector transformation. Thus, we investigated two 1D transforms for

singular vector decorrelation:

0 Cosine, and

* Hadamard.

The first was included because of its known success at approximating the

KLT's optimal decorrelating performance. The second was included due to

its particular computational efficiency.

As an example of the effect of applying such a transform, Figure

5-7 snows some results for the cosine transform case. The first plot

shows an example singular vector, in this case, the third left singular

vector from a particular image block. The second plot shows the

corresponding 1D cosine transform coefficients. Note the correlation

from element to element in the singular vector and both the lack of such

5-11
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correlation and the occurrence of energy compaction in the transform as

evidenced by the appearance of some coefficients with significantly

larger magnitude than others.

That this behavior is even more striking on average is shown in

Figure 5-8. In this figure, the first plot illustrates the mean and

standard deviation obtained by accumulating over all third singular

vectors. The corresponding quantities for transform coefficients are

shown in the second plot. The marked peak in the second plot confirms

the energy compacting property of the transform. When coding,

coefficients corresponding to such peaks will be more accurately coded

than will other, less important coefficients.

Figure 5-9 illustrates the two alternative implementations of the

ID singular vector transformations. The first approach is the

straightforward one, in which the SVD is first calculated and the 1D

transform of the resulting singular vector is then obtained. The second

is the combined algorithm of Figure 5-6 which permits coordination with

computation of the SVD itself. The equivalence is demonstrated by

S =U tXV

S.x X = USVt

= (UU) S (VV)t

". S = (utu)t (utxv) (vtV)

which shows that if IS,U,VI constitute the SVD of X, then

slutuVtv- constitute the SVD of UXV. Thus, UU and V V can

be obtained in either of two ways:

0 Find SVD of X, then take the 10 transform of the columns of U

and V, or

MVERAC
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Figure 5-9. Two Implementations for Extracting

Singular Values and Singular Vector Transform Coefficients

* Find tne SVD of U XV directly.

In addition to the use of the iD singular vector decorrelating

transformation, three other techniques were identified as potentially

useful for either additionally decorrelating the elements of S, U, and

V, or for introducing further energy compaction. These techniques are:

* SVD reordering,

* Singular vector orthogonalization, and

* Repolarization of singular vectors.

OVIRA,
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Eacn of these techniques is described in turn.

5.2.1 SVD Reordering

The SVD forward transform takes the form

S = UtXV,

where S is diagonal. The inverse transform takes the form

X = USV
t

which, because S is diagonal, can be rewritten as

n t
X = siu- iv

i=j -1-1

which expresses X as a weighted sum of n (not n2 ) basis blocks
t

Yi~i•

There is no inherent ordering to the terms in this expression. In

fact, permuting the ordering merely results in permuting the

corresponding columns of U and V, and diagonal elements of S.

The normal default ordering is usually selected to result in si's

with monotonically decreasing size, i.e., monotonically decreasing

sI. However, statistical analyses conducted under this study suggest

that the singular vectors ordered in this way also typically have their

strongest energy concentrated at monotonically increasing frequencies

(or sequencies).

Figure 5-10 illustrates the migration of this energy concentration

to higher frequencies for three singular vectors. The first singular

vector has most of its energy concentrated at lowest frequencies. The

third singular vector has most of its energy concentrated at somewhat

higher frequencies. The twelfth singular vector has most of its energy

at still higher frequencies.

VIRAC
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This observation suggests that if ordering were performed.

explicitly in terms of where singular vectors have peak energy instead

of in terms of which singular values are largest, a very similar

ordering would result. However, the ordering may be different often

enough that when statistical averages are taken, even sharper peaking of

average coefficient energy would result. This would then permit even

more efficient encoding of singular vectors, since their energy would

be, on average, more predictably concentrated is certain, known

coefficients. There would be a concomitant decrease in the peakyness in

the singular value statistics, but this would probably be more than

compensated for by the increased peakyness of singular vector

coefficient statistics.

This reordering was implemented and evaluated against no

reordering. The results are reported in Section 7.

5.2.2 Singular Vector Orthogonalization

This enhancement represents an attempt to exploit the known

orthogonal structure of the singular vector arrays U and V. It results

in a structure somewhat different from that otherwise applied for coding

singular vectors.

Up to this point, singular vector coefficient coding was handled

simultaneously: after the ID transform was applied, all the

coefficients were encoded at once. In the current enhancement, the

structure is different: first, some coefficients are extracted, then

they are coded, then other coefficients are extracted, and then they are

coded. This process cycles until all coefficients are extracted and

coded.

This enhancement is intended to exploit the known redundancy in the

arrays U and V. Here we will focus on the left singular vector

coefficient array UtU. For notational simplicity, we will denote this

array simply as U during the remainder of this discussion, although the

process is applied to the coefficient array U U.

$YIRAC
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First we note tnat the j-th column of U, u, is orthogonal to all

previous columns 14, Y"' i-" Suppose a change of basis is

introduced, with the new basis being

B. = [ ,U2,"',uj-i,b 'bnjl,

where jkjj ,'" simply completes the basis in Rn. The vector
ui can be represented by:

n

i=j 
bij

since L is orthogonal to lulu 2,"uj_11 so that j is

linearly independent of ul,u2,'",uj_1  . Thus, instead of

having to transmit the n elements of u. directly, only the (n-j+1)

coefficients imij, a.nj need be transmitted, as long as the

Jijl are available to both transmitter and receiver. But the Mijl
can be computed from the previously transmitted singular vectors

1ui j', so that the process is realizable.

When repeated for each i, this process results in an array of a's

which can be collected into the following upper triangular form:

n7 Oan2 a nn

Thus, the n2 elements of U can be completely represented by the nLn-1
coefficients [aij]. 2

The most obvious coding strategy based on this representation is to

independently code the individual aij's using statistics collected

during a pre-processing statistical analysis. However, in this method,

the reconstruction accuracy of later singular vectors is very sensitive

to errors in earlier ones.

OvER5c
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This can be seen by examining the reconstructed value of uj, j

n

-J = i j i

Here, not only is &ij an approximation to aij' but so is bij an

approximation to bi j. And although the error in a ij is independent

of the error in all other aij 's, the error in bij depend upon the

previous reconstructed values , , which themselves

depend upon I pq : q<p, q<j i.

To aviod this dependency and to thereby reduce average coding

errors, we use a different basis B.:

B 1-0~1 ' 'j-1'ijj'"- :bOj]

where {b. ,bnj = ' ,u_1 . The price we pay

is tnat the coefficient matrix of aij s is no longer triangular -- it

is in general full. However, the elements occuring in the upper

triangle (the aij s' for i<j) will typically be small as long as u

is a reasonable approximation to u.. They can therefore either be

neglected altogether, or, as we shall do, be more coarsely quantized

tnan those a. 's in the lower triangle (ls for j<i).

5.2.3 Repolarization

In the SVD expansion

X = USV
t

n
= t

i, siu-

there is a fundamental question of polarity of the various members of

each term. In particular, the term s.u.v t has a definite sign,

buc the individual members si,u i and -Ki do not, so long as

their product works out to have the correct polarity.

5-20
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Normal default in SVD is to choose silO. That still leaves ui
and Ki's polarities unspecified, but constrained so that their product

is of the correct sign. The additional condition we impose is that the

sum of the areas of the two vectors, Eui.+vij, be non-negative.
J J

This condition is basically a default elected to help minimize the

dispersion of singular vector coefficient statistics.

Repolarization is an alternate scheme intended to further reduce

the dispersion of singular vector coefficient statistics. It is based

upon the motive of providing a consistent sign for the largest energy

component of each singular vector. The scheme consists of assigning

signs to Li and vi that result in their both having their largest

magnitude transform coefficient be positive. The sign of si is then

adjusted to give the term si.iv i the correct polarity.

The price for this repolarization is that singular values are no

longer guaratneed to be non-negative and thus display increased

dispersion in their statistics. However, having both polarization

methods available permits an evaluation of which effect dominates, the

decrease in dispersion of singular vector coefficients, or the increase

in dispersion of singular values.

5.3 Preprocessing

SVD preprocessing is required for the same reason KLT preprocessing

is, as a training step. Since the singular values and the singular

vector coefficients are coded using statistically-optimized coding

schemes, the underlying statistics are required.

What are required are:

0 Singular value statistics, and

* Singular vector statistics.

(DVERAC
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The procedure for obtaining this information is shown in Figure 5-11.

This process constitutes an empirical SVD statistics calculation. It

begins with the forward SVD transforming of the various blocks in the

training imagery. Since coding is again class-adaptive, separate

class-specific statistics are required. Also, since several different

ordering, polarization methods are to be evaluated, several versions of

the statistics are required. These include:

0 Default singular value/vector ordering and polarization,

0 Singular value/vector re-rodering,

0 Singular value/vector re-polarization, and

0 Both re-rodering and re-polarization.

In each case, the same SVD is applied, and the results simply

reorganized as reqirea. (As previously discussed in 5.1, the order of

the SVD and transform operations can be interchanged.)

The statistics required are the first and second moments of the

various entities to be coded. Specifically, let si denote the i-th

singular value, and ui and vi the transform coefficient vectors for

the corresponding singular vectors. Then the statistics calcualted are:

* Singular values

Sk,i AVG[s. : x is class k]

-2 AVG i : x is class k]
5k,1 =1

* Singular vector coefficients

Uk a AVG [U: x is class k]

Vk M AVG V: x is class k]

BVIRAC
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k = [rLeij (rij = AVG ui : X is class k
krgh rk,ij ' k,ij ) ij

Pright = rrigt , (rright)2 AVG : X is class kI

From these, tne required standara devitions can be computed as:

k,i k,i
l e f tl l e f t 2 = l e f t ) 2 U k , i j

k L k,ij] 'k,ij

right right / right 2  = rright 2  _ -2[kl ka k,ijI ) = / gt V-2k~ ICkjr ~jk,ij , k,ij

The efficient sample space enhancement techniques applied to smooth

out structural artifacts in the KLT case can also be applied here.

Specifically, both "flips" and "rotation" can be applied. Appendix D

discusses how to implement these techniques on SVD's of pre-transformed

data, which is the case of interest here.

In oraer to encode the coefficients resulting from the singuar

vector orthogonal expansion enhancements discussed in 5.2.2, the first

two moments of the orthogonal expansion coefficients are required.

Appendix E computes expressions for these quantities which allow their

calculation from the statistics of Isi.,u., and v.1.

5.4 Singular Value/Vector Coding

To insure adaptibility to non-stationarity, a class-adaptive coding

scheme is employed. Figure 5-1 illustrated the SVD coding chain and

indicated the place of overhead, singular value, and singular vector

coding in the overall arrangement.

CVIRAC
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As in the KLT case, overhead consists of the global rate distortion

parameter D and each block's class label k. Both are required to permit

correct singular value/vector reconstruction at the decoder. (Note that

although the SVD transform is not class-dependent as was the KLT, the

class labels are nontheless needed at the decoder for correct singular

value/vector reconstruction.) SVD overhead coding is identical to KLT

overhead encoding.

The overall singular value/singular vector coding problem

constitutes a hierarchy of coding problems, which pose the following

questions:

* How are bits allocated among blocks,

0 How are bits allocated to terms in a particular block's SVD

expansion,

* How are bits distributed among the singular value and two

singular vectors in particular terms, and

0 What coders are best for use on singular values and singular

vectors?

5.4.1 Bit Allocation

To obtain solutions to these problems we again adopt the following

global problem statement:

MINIMIZE : Total mean squared coding trror

SUBJECT TO : Not exceeO'ng a given coding rate

and specify the use of fixed rate coders (coders which produce codewords

whose lengths do not depend upon the input values to be coded).

MVIRAC
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As demonstrated in Appendix C (in the context of KLT coding) the

optimal solution dictates allocating bandwidth to achieve a uniform

distribution of coding error over all blocks. This implies that busier

blocks are encoded with more bits than are quieter blocks. Furthermore,

Appendix C shows that each block's bit allocation problem can bel

separately solved. Appendix F addresses this problem (the second and

third in the list), and shows that bandwidth should be allocated so that

coding error is distributed uniformly over all terms ii1i in

the SVD expansion

X =s.u.vt.
i 1-i-i"

t

This means that those terms si!iut which have the most

variation in energy will be allocated the most bits; those which are

more predictable receive fewer bits.

Appendix F also shows that the bit allocation problem can be solved

separately for each term, and that the optimal solution has the

following features:

0 the singular value si is allocated bits according to its

variability, as given by its class k standard deviation,

* the singular vectors uiv i are allocated bits according

to the average size of the corresponding singular value si,

as given by its class k RMS value, r s(k), and

0 bits are distributed among the ID transform coefficients of

the singular vectors to achieve uniform coding error in each

coefficient.

$ VIRAC
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The mathematical form of the allocation rule is as follows:

Bs i  INT [log 2  ( I

a /left r ())

Buij = INT 1 0o 2  ktij) ( rs

o Iright)(r ()]

Bvij = INT [log2 ( )k,i t) s 'k)

wnere Bsi  number of bits allocated to si,

Buij = number of bits allocated to u/j,

Bvij = number of bits allocated to vj,

S(k) Z standard deviation of si in class k,i

rs(k) s 2
i k,i,

left = standard deviation of uij in class k,
ik,ij

right = standard deviation of vij in class k, and
0k,ij

D global distortion control parameter.

(This rule is an approximation based on a particular curve fit to the

performance characteristics of the fixed rate coders used to quantize

the singular values/vectors.)

(DYIRAC
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As an example, the bit assignment matrices shown in Figure 5-12

were calculated from these rules. The figure illustrates the bit

assignments for the singular values and left singular vector transform

coefficients (right singular vector transform coefficients are similar)

for two classes.

Both inter- and intrablock adaptivity are in evidence. The former

obtains from the difference in total number of bits assigned, the latter

from the selective allocation within the arrays. Note the larger

allocations to the first few singular values/vectors, which are the ones

with largest energy. Note also the preferential allocation within

columns of the singular-vector-coefficient bit-allocation matrix,

reflecting the energy compaction properties of the transform.

Additionally, note the evidence of the centroid-of-energy migration from

lower coefficient indices (top of column) to higher indices (botton of

column), as reflected by the shifting bit allocation pattern as we move

from the first few singular vectors (left side or array) to the last few

singular vectors (right side of array). Finally, note that many

singular value/vector combinations are not coded at all. This is a

result of the highly efficient energy compaction into the first few

terms in the SVD expansion provided by the SVD transform.

5.4.2 Singular Value/Vector Coders

Figure 5-13 illustrates the singular value statistics specific to a

particular class of image blocks. Because each singular value extends

over a fairly narrow range (approximately constant in log space, except

for the last one), and because high fidelity singular value coding was

desired (for the same reason high fidelity "dc" coding is in the KLT

case), we selected a uniform quantizer for encoding singular values.
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Figure 5-? 2. Example SVD Bit Assignment Arrays
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Figure 5-13. Example Singular Value Statistics
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Tne procedure employed to encode singular values was:

* Subtract mean: si = Si - si

0 Use a uniform quantizer of Bsi bits, with lower end -D

and upper end D, where

0 . 4_3 (,s)2 = - s

The value D describes the extent of a uniform pdf with standard
5deviation a . Note: the sI case was handled slightly

differently; the quantizer extent was stretched to exend down to zero

instead of -D, if necessary. This is the precise analog of the special

"dC" treatment included for the KLT, and is included to insure equally

accurate quantization of average grey level for all blocks, and to

thereby minimize blockiness.

As used in the KLT case for transform coefficient coding, a Max

quantizer was applied to encode singular vector transform coefficients

in the SVD case. A tail-modified Gaussian pdf was assumed, and Max

quantizers of 1,2, ", 8-bit length were used. The coding procedure

was:

a Subtract mean from coefficients,

0 Normalize by standard deviations of coefficients,

* Encode coefficients using BCD representation of the

quantization levels obtained from Bu i or Bv i (as

appropriate) bit Max quantizers.

5.4.3 Coding the SVD Orthogonal Expansion Coefficients

In this enhancement singular vectors are treated differently. The

procedure is cyclic, and is repeated for each of the left and right

Icf oeted
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singular vectors. For concreteness, suppose !L (the vector of

transform coefficients for the j-th left singular vector) is to be

coded: A single cycle consists of the following steps.

0 Find the basis matrix BP

* Find the coefficients 0[4ij]

L J
[anjJ

* Quantize 2.j and output the resulting codeword to the

buffer, and

Reconstruct values for next cycle.

A similar set of steps produces Be's from the V.'s.

The theory to support this process was covered in Section 5.2.2.

The topic here encompasses only the quantizers and bit assignments used

for encoding the 'ij 's. For the quantizer, the same modified-Gaussian

Max quantizer employed for the KLT and the other SVD algorithms is

employed here. Coding is performed by the following procedure:

* Determine Bsi as in § 5.4.1

* Determine Buij and Bvij as in§ 5.4.1, using statistics of

aij in place of those of u i (and those of oij in place

of those of v.ii)

* Encode aij using a Buij-bit quantizer, and B ij using

Bv ij-bit quantizer.

At tne conclusion of this cycle, the next iteration is begun. This

consists of incrementing j to j+l and repeating the above process for

lj+1 and !j+j"

QVINIAC
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6.0 RATE EQUALIZATION

Rate equalization is the process of meeting a global target

compresseo rate (in bits per pixel). Since the coding algorithms

employed in this study are class-adaptive and since it is generally not

known aheaG U time now many olocks of each class are present in a given

image, it is necessary to regulate the coding process in order to adapt

to changing class population from image to image [6].

The concept upon which rate equalization is based is illustrated in

Figure 6-i whicn shows the overall coder performance curve. The curve

shows how the coder's output rate (average bits per pixel) depends upon

d control parameter U. The parameter is a measure of the distortion

added during coding: in order to achieve a small coded rate a large 0

is necessary; for larger coaea rates, a smaller D will do. The task of

rate equalization is to select the D that meets the target rate. Since

the curve depends upon not only the coder, but also the image being

encoded, the problem in non-trivial.

The metnod of rate equalization employed in the study is predictive

rate equalization. This means that it is performed prior to coding the

image. That is, no trial-and-error coding is required to meet the

target rate. The correct value of D can be determined before any coding

commences.

Tne determination of the correct global distortion parameter D is

based on two types of information:

0 class-specific transform coefficients statistics, and

* class-populations.

Thus, D only depends upon aggregate image information; it does not

depend upon the actual image data (pixel values) themselves.

The rate equalization problem is solved by aetermining the value of

0 which satisfies the following condition:

OVIRAC
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Figure 6-1. Rate Equalization

Total bits = 1 Nk Bk(D) (6.1)

for image class
k

wnere Nk  = number of blocks of class k

k (0) - numoer of bits allocated to class k blocks

Tne quantity Bk(D) represents tne total class k bit allocation

and is obtained by summing over all elements of the class-k bit

allocation array. For the KLT case, the expression for 6k(D) is:

n

Bk(D) E i. log 2  [aiDk] (6.2)

where I ij(k) is the standard deviation of the ij-th element of the KLT

coefficient array Z obtained from class k blocks. For the SVD case, the

YVIRAl
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expression is more complicated; since singular values, left singular

vectors and right singular vectors must all be coded:

B (o) . n n leftk)rS(k)
E 10g 2 ~j + i 1g 2  D.. (k .1 (6.3)

k 1
n r ght( k)r(k)

+ 1 log 2  u
i D*y

where as(k) standard deviation of j-th singular value for

class k blocks

r 5 (k) RMS value of j-tn singular value for class k

blocks

aleft (k) standard deviation of i-tn transform

coefficient of j-th left singular vector for

class k blocks

righ(K) standard deviation of i-th transformaij

coefficient of j-th right singular vector for

class k blocks

Y - a constant of proportionality.

The rate equalization process thus entails finding D to satisfy

these conditions. For this study, the process was implemented by

performing an iterative search of logD-space, relying upon the convexity

of the RID curve of Figure 6-1 it insure rapid convergence.

It is important to note that for each trial value of U, only a

simple analytical expression (equation 6.2 or 6.3) need be computed and

the result compared with the goal to see if (6.1) is satisfied. If not,

a currection to U is applied and the procedure is repeated. Actual

image coding is not necessary to find the correct D. In addition,

experience indicates that convergence occurs usually in two iterations,

out essentially always Dy the third iteration.

(5VERAC
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7.0 ALGORITHM EVALUATION

Algorithm evaluation was conducted in two phases:

0 Preliminary, and

0 Comprehensive.

The preliminary evaluation was aimed at investigating the relative

merits of the various perturbations of the KLT and SVD algorithms

developed under the effort, using a small set of test imagery. Based on

this evaluation, the best members in each catagory were selected and

more thoroughly exercised against a larger set of imagery to compare

their performance with each otner and with the baseline cosine and

Haoamard algorithms.

All algorithms were essentially identical in all ways except for

which transform applied. Thus, all had the following features:

0 Class-adaptive coefficient coding,

0 Empirical accumulation of class-specific coefficient

statistics (except KLT/P),

* Special, error-free, "dc" coding,

* Same intensity mappings,

0 Same blocks labels obtained from block classification,

a 16 X 16 block size,

0 Same block boundarief,

YVIRAc
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0 Same fixed rate quantizers (uniform and Max), and

a Same rate equalization techniques.

Algoritnms were compared on several bases:

* Coding efficiency:

- Mean square error versus coded rate

-- Mean absolute error versus coded rate

-- Subjective perception of distortion in reconstructed

image versus coded rate

-- Subjective perception of information in error image

versus coded rate

* Computation efficiency:

-- Execution time

-- Adaptability to nardware implementation

The remainder of this section is divided into two subsections, 7.1 which

summarizes the findings of the preliminary evaluation, and 7.2 which

presents the results of the comprehensive evaluation.

7.1 Preliminary Evaluation

Preliminary evaluation consisted of two parts:

* Determination of optimal class boundaries, and

* Algorithm evaluation.

7.1.1 Optimal Class tuundaries

All algorithms tested employed class-adaptive coefficient coding.

An important aspect of sucn algorithms is determining good class

7-2
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definitions. In this study, a single scalar feature was extracted from

each olock and used to classify the block into one of eight classes,

according to the value of that feature. Specifically, the feature used

was block a.c. energy:

WW X' xxi  -2 ]
nT 'x) ij ij

n n

ano the classifier took the form:

X is ladled class k IF tk_1u(X)tk.

This portion of preliminary evaluation dealt with determining the best

values tor it I I kl*
Five types of threshold settings were investigated:

(1) Uniform class population in test image,

(2) Uniform class population over many images,

(3) Uniform thresholds in v,

(4) Uniform thresholds in V4,

(5) Uniform thresholds in log(p).

Evaluation consisted of exercising the baseline cosine coding algorithm

on a particular GFE aerial image, for each of the threshold settings,

over a range of compression rates.

Comparisons were based on mean square coding error (MSE), on mean

absolute coding error (MAE), and on subjective comparisons of original,

coded, and error images. The conclusion was that, based on MSE, (4)

performed best with (1) a close second. Based on MAE, (4) again

performed best, but this time both (1) and (2) were close. Sub-

jectively, (4) was judged to produce the best results with (5) a close

second.

OVERAl
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Altogether, (4) was selected as uest. Therefore, class bounaaries

uniform in /1(uniform in blocK RMS value) were used for all algorithms

during tne remainder of the evaluations.

7.1.2 Preliminary Algorithm Evaluation

The following algoritnms were compared under preliminary evaluation:

* COS : 20 cosine transform (baseline)

* HAD : 20 Hadamara transform (baseline)

* KLT/P Class-adaptive KLT using predicted

coefficient statistics

* KLT/E Class-adaptive KLT using empirical

coefficient statistics

0 SVD/COS : SVD using ID cosine transform of singular

vectors

* SVDJHAD : SVD using ID Hadamard transform of singular

vectors

* SVD/COS/RO : Same as SVD/COS but with reordering

enhancement

a SVDIHAD/RO : Same as SVD/HAD but with reordering

enhancement

* SVDICOSIORTH : Same as SVDICOS but with orthogonal expansion

enhancement

* SVD/COS/bP : Same as SVD/COS out with repolarization

enhancement

YUVRAC



Each algorithm was applied to a GFE aerial image of an airfield at three

coded rates, 0.5, 1.0, and 1.5 bits per pixel (bpp).

Mean Squared Error

Tre first eight algorithms were evaluated first. The last two were

later enhancements subsequently evaluated. Figure 7-1 shows the mean

square coding error plots for the first eight algorithms. Each curve is

a piecewise linear fit to the three evaluation points (0.5, 1.0, and 1.5

bpp). Curves located towards the bottom of the plot indicate better

coding efficiency than do curves located towards the top.

From this figure, the KLT/E and COS algorithms are seen to perform

best; they add the least amount of mean square coding error of any

algorltnm. Since their curves essentially overlap, it is not possible

to judge relative superiority of one of thes over the other on the

basis of MSE; however, both are markedly superior to the remaining six

algorithms.

The figure also shows the poorest performance is ,tained for

algoritnms employing the Hadamard transform. It is illuminating to

compare tne COS and HAD curves to see how much coding efficiency one

gives up to gain the computational efficiency provided by the HAD

algorithm. For example, the figure indicates that the COS performs as

well at 0.5 bpp as the HAD does at twice that rate, 1.0 bpp. This same

effect is in evidence in comparing the various SVD/COS algorithms with

the various SVD/HAD algorithms.

Of particular relevance to this study, the figure shows that the

various SVD algorithms perform significantly worse than the COS or KLT/E

algorithms. The SVD/COS algorithms are superior to the baseline HAD

algorithm but are nonetheless inferior to the baseline COS and the KLT/E.

Aoditionally, the figure also indicates that using empirically

determined statistics in the KLT is superior to using predicteu

statistics based on a separable covariance model. This indicates that

V7RACincer ~eot
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Figure 7-1. Coding Algorithm Comparisons MSE versus
Rate Airfielo Image
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tnis model is not particularly good at characterizing image correlation,

even though use of the KLI transform operators derived under tnis model

do yield good results when empirical statistics are provided to the

coder.

Findlly, the singular value/vector reordering enhancement is seen

to slightly degrade, rather than improve, both SVD/IOS and SVD/HAD

performance. Tnis indicates that ordering on the basis of singular

value size produces smaller dispersions in singular vector coefficient

statistics than does ordering on the basis of singular vector frequency

(or sequency) content.

Mean Aosolute Error

Very similar relative algorithm performance is indicated by the

nean absolute error curves of Figure 7-2. These curves show the

intensity of the error image obtained at each experiment point. Since,

on the whole, the curves occupy tne same relative positions in Figure

7-2 as tney do in Figure 7-1, similar conclusions on relative

performance are drawn.

Subjective Evaluation

Figure 7-3 illustrates a GFE aerial photograph made available for

algorithm testing. The 256 X 256 subset shown was extracted and used

for preliminary evaluation. The results of Figures 7-1 and 7-2 were

obtained by processing this subset. Additional, subjective comparisons

of the algorithms were also performed.

Figures 7-4 through 7-8 show the reconstructed images

obtained oy applying the various algorithms at several bit rates.

Figures 7-9 and 7-10 show error images for the eight algorithms operated

at 1.0 opp. Several observations were obtained by examining tnese

pictures.

iaeco# e7-ed
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Figure 7-2. Coding Algorithm Comparison MAE versus Rate

Airfield Image
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First, the COS and KLT/E algorithms are subjectively best. They

are indistinguishible in terms of subjective performance and yield the

best reconstructed images, both in terms of edge crispness and

continuity and faithful texture rendition. The COS and KLTIE produce

the lowest brightness error images with the least structure in them.

They aiso produce the smallest number of very bright error pixels.

Reconstructed images retain all important detail at all three bit

rates: 1.5, 1.0, and 0.5 bpp.

Second, the SVD/COS algorithm performs subjectively well. It is

subjectively indistinguishable from the SVDICOSIRO algorithm. It

renders detail well at 1.5 and 1.0 bpp, although it is inferior to both

COS and KLT/E at these rates. This inferiority is evidenced in several

catagories, including:

a Crispness of edges in reconstructed images,

* Rendition of texture in reconstructed images, and

0 Intensity of error images.

On the other hand, the SVD/COS is approximately equivalent to COS and

KLTIE in terms of the structure in the error images and the number of

very bright error image pixels.

Third, the KLT(P is, subjectively, considerably inferior to all
three of the COS, KLT/E, and the SVD/COS (and SVD/COS/RO) algorithms.

This inferiority is consistent across all bit rates and is refelcted in

all the subjective measures just discussed.

Last, the HAD, SVD/HAD and SVD/HAD/RO are worst in all catagories.

Especially noticeable is the error image structure, which appears to
accurately capture the essential structural information in the original

image. Since good performance dictates having uncorrelated error and

reconstructed imagery, this is an indication of poor coding performance.

7-17
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Orthodonal Exoansion and Repolarization Enhancements

Due to the apparent poor snowing of the SVD-based algorithms with

respect to the COS baseline, the orthogonal expansion and repolarization

enhancements were developed as a final attempt at optimizing the SVD

coder. These enhancements representea an additional effort to exploit

the last possible sources of redundancy in the SVD decomposition in

order to extract as nigh a aegree of performance as possible.

Both enhancements were evaluated, and neither improved the SVD/COS

performance markedly. The SVD/COS/ORTH was slightly better in terms of

MSE and MAE, but the difference was similar to the small difference

between the KLT/E and COS algorithms, and no subjective difference was

apparent. The repolarization enhancement produced similar results, but

in its case tne objective performance was slightly poorer, while the

subjective performance was indistinguishable.

Conclusions of Preliminary Algorithm Evaluation

The following points summarize the preliminary evaluation results:

0 COS is superior to SVD/COS,

* KLT/E and COS are tied,

* SVD/COS is superior to SVD/HAD,

* KLT/E is superior to KLT/P,

* HAD performed worst,

4 Reordering does not improve SVD coding,

0 Orthugonal expansion does not markedly improve SVD coding, and

* Repolarization does not improve SVD coding.

(BIRA
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dased on tnese finaings, the best algorithm in each catagury can be

identified:

0 Baseline CoS

0 KLT KLT/E

0 SVD : SVD/COS

7.2 Comprehensive Evaluation

This subsection reports on the results of the comprehensive

algorithm evaluation. Four algorithms were applied:

* COS : cosine baseline,

o HAD : Hadamard baseline,

* SVD SVD/COS algorithm, and

* KLT : KLT/E algorithm.

These algorithms were applied to four test images, eacn one a 256 X 256

subset of a larger GFE image. These images were:

* Visible airfield,

* Visible harbor scene,

* Infrared airfield, and

* SAR airfield.

OVIRAC
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Each dlgorithm was pplied to each image at three different bit rates:

0 Visible airfield : 0.5, 1.0, 1.5 bpp

* Visible harbor 0.5, 1.0, 1.5 bpp,

I Infrared airfield : 0.25, 0.5, 1.0 bpp, and

* SAR airfield : 0.5, 1.0, 1.5 bpp.

The total number of image encodingslaecodings was thus 48.

Figures 7-11 through 7-26 show the original and coded images

involved in the evaluation. Figures 7-11 through 7-14 pertain to the

visible airfield image, Figures 7-15 through 7-18 to the harbor scene,

Figures 7-19 through 7-22 to the IR image, and Figures 7-23 through 7-26

to tne SAR image.

Figures 7-27 through 7-34 give a summary of objective coding

performance measures in terms of MSE and MAE versus coding rate.

These results can be summarized as follows:

* MSE, MAE, and subjective evaluation yield same conclusions,

* COS and KLT perform equally well and best,

* Next is SVD,

a Poorest is HAD.

In terms of computational load, the following rank ord"'ing applied:

* HAD is lowest,

& COS is next,

SY6RAC
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* KLI is third, and

* SVD is significantly highest.

In terms of extenaability to special purpose hardware, both the COS

ano HAD are gooo candidates owing to their "fast" algorithms. In fact,

special purpose hardware for ID versions of these transforms already

exists. The KLT could be implemented in special purpose hardware, but

it would be significantly more cumbersome due to the requirement to

perform full matrix multiplications. A special purpose hardware

implementation of the SVD is not so practical, owing to its reliance

upon an iterative procedure which is not guaranteed to converge in a

finite number of steps.

In summary, taken together, these observations point to the

conclusion that the cosine transform coder is the best algorithm amongst

those tested. In certain applications where computational efficiency is

paramount, the Hadamard algorithm may be warranted. However, neither

coding nor computational efficiency seems to favor the KLT or SVD in any

case.

MVIRAC
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Figure 7-27. Coding Algorithm Comparisons;

MSE versus Rate, Airfiela Image
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Fugure 7-28. Coding Algorithm Comparisons;

MSE versus Rate, Harbor Image
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Figure 7-29. Coding Algorithm Comparisons;

MSE versus Rate, IR Image
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Figure 7-30. Coding Algorithm Comparisons;

MSE versus Rate, SAR Image
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Figure 7-31. Coaing Algorithm Comparisons;

MAE versus Rate, Airfield Image
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Figure 7-32. Coding Algorithm Comparisons;

MAE versus Rate, Harbor Image
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Figure 7-33. Coding Algorithlm Comparisons;

MAE versus Rate, IR Image
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Figure 7-34. Coding Algorithm Comparisons;

MAE versus Rate, SAR Image
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8.0 CONCLUSIONS

The principal conclusion of this study is that among the algorithms

tested, the cosine transform algorithm appears to be the best performer

in terms of coding efficiency. Computational efficiency points to the

Haaamara algorithm as a better choice, but it suffers a significant

performance degradation compared to cosine as a price. The SVD based

algorithms displayed coding efficiency intermediate to the cosine and

Hadamard, but computational efficiency worse than both. Because special

purpose hardware can be used to implement it efficiently, the cosine

approach appears best for applications requiring the highest degree of

compression with the smallest coding distortion.

More generally, results point to the success of compressing various

eignt-Dit images down to at least 1.0 bit per pixel using the oetter

transform technques. In several cases, good performance down to 0.5

oits per pixel was also observed. All transform coders performed well

at 1.5 bits per pixel.

Significantly, results demonstrated that although the singular

value decomposition produces extremely high energy compaction into a

small number of singular values by virtue of its being tailored to the

image data, the price of also having to code singular vectors renders

the approach less efficient overall than either the tailored-to-class

KLT or the fixed cosine approaches. That this observation was constant

over an assortment of techniques developed to minimize the bandwidth

required for singular vector coding suggests that this conclusion is

robust and that the SVD is inherently inferior for image coding

applications. In addition, since the Karhunen-Loeve approach yielded

performance results comparable to the cosine transform, it can be

concluded that it is the tailoring of the coefficient coding process,

and not the tailoring of the transform, which is most important in image

coding.

VIRAC
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All of the algorithms tested achieved tailoring of the coefficient

coding process via class-adaptivivity, insuring the allocation of

bandwiotn to portions of an image where most required. In addition,

these algorithms aistribute bandwidth within blocks to the most

important information that that block contains.

Such adaptivity ensures robustness and the capability to deal with

highly non-stationary imagery. The price is that rate equalization is

required to achieve target global compression rates. In this study, an

approach was employed that guaranteed meeting the specified target rate

through a process of predictive rate equalization, which was based on

DIOcK class populations and class-specific statistics and which avoided

trial and error coding.
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APPENDIX A

DERIVATION OF THE SEPARABLE KARHUNEN-LOEVE TRANSFORMATION

AND ASSOCIATED STATISTICS

In this appendix the separable KLT is derived and the predicted

statistics of the resulting KLT coefficients are determined from the

block mean and row and column covariance matrices.

A.1 Model

A block X is assumed to possess a separable covariance function.

Such a situation can be modeled by assuming that block X is generated by

an outer product matrix multiplication on a zero-mean, stationary white

matrix:

X HWG t +X (A.1)

where * H and G are normalized so that

tr Ht H = n

tr Gt G = n (A.2)

* W is an n x n matrix of a2 variance, uncorrelated, zero

mean random variables W = [wij ], i.e.

E wij = 0

E w?. = a2 (A.3)
13

E wij Wpq = 0 for (p,q) (ij), and

* The n x n matrix X is the mean of the block X.

VIERAC
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Figure A-i illustrates the assumed model. That such a model

results in a separable covariance can be verified by determining an

expression for the covariance of pixels x i and x pq in X.

c(i,j; p,q) E(x ij - i ) (xp - x )q

= ie(X -X) tj] [e4(X -X) e I

(Here e1 denotes the unit vector with ith

element 1 and the rest 0)

=Ee Wt eLt 6 Jt Hte]

t e HE {WGt e. et GWt} Ht e-1 -j- t -p

= e H [Trace (G te. e tG) a 2 1] H t e-1 - -q -p

t t 2t teti HHt , Trace(G e.j e G)

= 2(ei HHt2) (tj GG tq)

C V~ (iP) 'CH (j,q) (A.4)

t twhere C, (i,p) = a tiHH e, and

C (~q)= a t t
CH tjq) = GG eq

Since c(ij; p,q) can be written as the product of two functions each

separately dependent upon vertical and horizontal pixel displacement,

equation (A.1) is seen to model a block with a separable covariance

function.

$YURAC
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A.2 KLT Derivation

The objective is to find a separable, unitary transformation from X

into another array Z:

Z = Ut XV, (A.5)

such that the zij in Z are uncorrelated and have maximum energy

compaction into the upper left-hand corner of Z. Note that because U

and V are unitary:

X = UZVt, (A.6)

i.e., X is recoverable from Z via the inverse unitary operation.

Another way of writing (A.6) is:

n

X z i ui v- (A.7)
i,j= - i j

where u is the ith column of U and vj is the jth column of V. X is

thus a weighted sum of basis blocks ui v.

According to Shannon, optimum coding dictates selecting U and V

such that the zii are uncorrelated. The coefficient zij can be

expressed as:

z u X vj (A.8)

Therefore

E zij ,u Xvj _A-ij (A.9)

(pVIRAC
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r -T--___

and

E(zij - Yij) (zkl -Zkl)

- E tu_ (x- 7) _j] [v (x- ) ]

E [u (HWGt) v.] [vt GWt Ht k]

Ut HE t t t

H [Trace (Gtv. v G) a
2 13 Ht

= (u t Hat

-1 ." Trace (Gt vv G)

- 2 (ut HHt u) _t v l) (A.1O)

Consequently, the zij will be uncorrelated if

!ui HHt k = 0 for i k

-1 4

t GG v, = 0 forj 1 (A.I)

ibe., if U and V are the matrices that diagonalize HHt and GGt

respectively. These latter matrices are related to the row and column

correlations in the block X:

(x i)) = E IHWGt GWt H

= HE IWGt GW
1 Ht

H o2 . Trace (Gt G) I Ht

02 . HHt

A-RA5
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and

E I M)t ( M)2 n GG t (A.12)

Thus

HHt 1 Crow

and

GG t = 1 CCOl (A.13)

where Crow and Cclare the row and column covariance matrices of

X, E(x - 3) (x - 1) tand E (x - !) t(x --7).

The U and V matrices can therefore be obtained by solving the

following eigenvectorjeigenvalue problems:

(4 Crow)U = U Arow

(-f- ccol V = VA col

where

Aco . Diag (xc, C'..., xx), X 0

Because C row and C col are positive semi-definite matrices, both U
and V can be found which are orthogonal.

A-6



A.3 Predicted KLT Coefficient Statistics

In order to code the zij , the corresponding mean and variance are

required. Using the U and V calculated above, the mean is given by

(A.9), and the variance by the specialization of (A.10) to the case

w'here k = i and I = j:

E -zij )2 = 02 [t HHt ui] [ t GGt ±j]t3

2 t I t 1
a2 [u ( 2n Crow) ui] [j a 2n CO j

2 r c= i Xj (A.13)

For the greatest energy compartion into the zij with the smallest

indices, we impose an ordering on the columns of U and V such that

r r r1 2 m " n

and

2 n

The mean and variance of the zij can be compactly sunmarized by a

matrix form of equations (A.9) and (A.15):

Z= [ij] - CE zij ]  = Ut XV (A.17)

and

[a 2]-=[E(zij - i)2] = 2 Ar Xct (A.18)

where

_r [c

VIRAA
A-7

- I



APPENDIX B

HOMOGENIZING IN TRANSFORM COEFFICIENT SPACE

In order to smooth out structural artifacts induced in coefficient

sample statistics due to too small a sample space, the sample space is

artificially expanded by the addition of new members synthesized from

original members.

In particular, statistics of the coefficient arrays

Z = Ut XV

are required, where X is an image block and U and V are specified

unitary matrices. The sample space of Z's is

Z: Z - Ut XV, XE

where Y- is the sample space of image blocks X, consisting of all m x n

blocks X obtained by partitioning the designated images (often m = n).

The sample space I is expanded to 41 by expanding ( to T..

This latter expansion is obtained by including the following blocks

in

For all X in Y:

a Original: X = [x ij]

* Horizontal Flip: XH [x i,n+1 _j

* Vertical Flip: XV  = [Xm+1_i,j]

* Double Flip: XHV [Xm+l-i,n+l.j]

QVIRAl
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For square case (m = n), also include:

0 Transpose of X: Xt  , xji

0 Horizontal Flip of Xt: XtH , [xj,m+1-i3

* Vertical Flip of xt: xtv [Xn+l1 ji]

0 Double Flip of xt: XtHV [xn+lj, Xm+1_i]

Now, rather than expand ,%to %' and apply Ut and V to the

resulting large set %,', a more economical approach is to determine the
elements of from directly.

For this purpose, note that the flip operation is characterized by

the operator

0 ii

F

1" 0

i.e., the 90° rotation of the identity matrix. Let Fn and Fm

represent the n x n and m x m versions respectively. Then the blocks

X , XV and XHV are related to X by:

XH = XFn

XV , Fm X

XHV . Fm XFn

Also note that Ft = F = F-1 .

VU|RAC
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B.2 ,jmption

We will assume that U and V have special symmetry properties:

Fm U = UJm , F" V = VJn

where 3n, Jm are square matrices of the form

1-1 01

0 " -

This property means that the Ist, 3rd, etc. columns of U are symmetric

about their midpoint, and that the 2nd, 4th, etc. are anti-symmetric.

The following transforms have this property:

* Cosine

0 Sine

* Hadamard

* Slant

* Karhunen-Loeve when U and V are based on covariance matrices

symmetric about the ortho-diagonal.

B.3 from Directly

H V HVBased on all of this, the coefficient arrays ZH , Z and Z

obtained from XH, XV and XHV can be predicted from Z alone:

zH = Ut XH V = Ut(XFn) V = Ut X(Fn V) =U t

= Ut X(VJn) = Ut xv n

. ZJn

MVIRAl
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zV v Ut x v V- Ut(F X) V .(Ut Fm) XV

. (Ut Fmft) X - (Fm U)t XV

a (Ujm)t XV (jflt Ut) XV

z HV .jm I 7,n

In the square case, m - n, the coefficient array Zrrans resulting

from U t xt V is not necessarily the transpose of Z . Ut XV. In

cases where it's not, the following coefficient arrays are added t

T zrans

* zTrans H Trans i

* TransH jTrans

9 z~rn - z~rn ,

In those square cases where U V, the situation is simpler since

z Trans .- and the following arrays -- all obtainable from Z

directly - are added to

* zt

it

0 Jzt

B-4



B.4 Statistics

Mean: The mean array T obtained by averaging over all

elements of ' can be obtained by averaging the

following over all members Z of 4(and for the second
case ZTrans of Trans):

0 m n: -Z + V + ZH + ZH V]

1[I + J] Z[I + J]

0i 0  0 0~a s

Sm(Z + ZTrans* m = n; U V V: (l-a"(10
2 0 (0 0

m.n; V: 1 ( 0 ) (Z + Zt) (lao)
2 = n; = 

0f0

Mean The mean square value array of the set can be

Square directly obtained by element-wise mean square

Value: averaging of the following over all members Z of

(and ZTrans of 'Trans for the 2nd case). L

0 mAn: Z

0 m -n, U V: Z, ZTrans

* m = n, U = V: Z, Zt

(veRAC
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APPENDIX C

OPTIMAL CODER ASSIGNMENTS FOR KLT COEFFICIENTS

We pose the coder assignment problem as one of minimizing the total

coding error ErTOT subject to not exceeding a maximum bit allocation

BMAX. To be specific, suppose there are L blocks in an image. Then the

total mean square error is the sum of each individual block's error:

ErTOT  = E(l) (C.1)

1

and the toal bit allocation BTOT is equal to the sum of the individual

blocks' bit allocations B(l):

BTOT = 1 B(l) (C.2)

The optimization problem can be posed as:

minimize ErTOT

(C.3)

subject to BTOT s BMAX

This is most easily approached as a Lagrange multiplier problem in which

the functional J is formed:

J ErTOT + X[BTOT BMAX]

= Er(l) + X[ B(l) - BMAXJ (C.4)1 1

The optimum values of B(1) are found by taking partial derivatives of J

and'setting them to zero:

= (T + X = 0 , 1 = ,...,L (C.5)

VIRAC
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This yields

§a--(-l) = - , 1 = l,"'-L, (C.6)

where the multiplier X is given by:

a E rT O T
( C 7- BT T  ' (C.7)

which is the (negative) slope of the overall coding error/coding rat- curve.

Now, since A is global and does not depend upon the block index 1,

we see that if X is known, we have L independent problems:

2 (l -A (C.8)

which means that each block's bit allocation can be separately

determined. The key point here is that A provides global fidelity control:

specifying A determines where on the coding error/coding rate curve we

will operate. Armed with that information, each block's allocation

follows by solving (C.8) for the appropriate 1.

The problem of specifying the correct X to insure constraint

satisfaction (BTOT s BMAX ) is called rate equalization. It is treated

in Section 6. For present purposes we consider X given.

C.l Single Block Problem

To solve (C.8), it is necessary to expand both Er(l) and B(l).

Since each block is separately solved, we will drop the "l" argument for

notational simplicity. Adopting the energy error measure, we have

Er = E(xi  i) 2 (C.9)

i,j=l J

VIERAC
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where xij is the reconstructed version of pixel xi. Because the KLT is

unitary, this last expression can be computed equally well in the

transform domain, yielding

n
Er : 1 E(zij - zij 2 (C. 10)

ij=l

where zij is the reconstructed version of coefficient z .

Also, the total bit allocation for the block can be expanded in

terms of the bit allocations for each coefficient, yielding

n
B = B. i  (C.11)

ij=l 13

where Bi is the bit allocation for zij. What we ultimately seek are

the Bij' s.

Now, we notice that (C.8) is one of the necessary conditions

required to solve the single-block Lagrange multiplier problem,

J' = . E(zij - z-j. I[ Bi- B] (C.12)

which arises fro, wanting a soltion t) the following constrained

minimization problem:

minimize Er X E(zij iij) 2

ij (C.13)

subject to B =F Bij.

The remaining necessary conditions for the single-block Lagrange

multiplier problem are obtained by setting to zero the partials of '

w.r.t. the Bij

aJ - DE(z i - i) 2 + X = 0 (C.14)

Ilj a ij

MVIRAC
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or:

aE(zij - 2
13 = -x (C. 15)

a Bij

Thus, again the problem reduces in scope: Now we need only solve bit

allocations for a single coefficient at a time.

C.2 Single Coefficient Problem

^ 2

For this we need a relationship connecting E(zij - zij) and Bi..
We make the following assumptions:

* E zij = zij = E zij., i.e. the coder is unbiased.

* The random variables zij all share the same form of probability

density function (pdf) with each parameterized by its mean zij
and variance 1i3

* Quantization is performed by first subtracting zi from

then dividing by oa, then finally passing the result

through a B i - bit (2B j - level) unbiased quantizer.
Reconstruction re-introduces the oi factor and biases the

result by zij.

These assumptions are all in force for the coders used in this study. Under

thse conditions

E(zij ij)2 = Gij 2  f(Bij), (C.16)

where f() is a monotonically decreasing positive function depending

upon the assumed pdf and the type of quantizer.

VIIRAC
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The analytical form of f(B) is generally unwieldly, and common

practice is to employ a simpler curve fit. Specifically, a fit of

the following form is used here:

f(B) - b 2-B/a (C.17)

where b and a are parameters tailored to various types of pdf's and

quantizers, For example, for the case of Gaussian pdf's and Max

quantizers -- which we use for KLT coefficient coding -- good upper-

bound values are b - 2.2 and a = 0.5. Good lower-bound values are b = I

and a = 0.5.

Given the fit (C.17) and the expression (C.16), the necessary

condition (C.15) reduces to:

2 -B.ij/a
(1ij n2) (b/a) 2 = a , (C.18)

which yields:

2

Bij a log2  i a

For our cases of interest, a = 0.5. We also denote

1/2

D A a) 1/2(C.20)

to obtain

Bij - log2  ( (C.21,

This last expression tells how to determine the bit allocation Bi fromN

the coefficient variances oij and the global distortion control parameter D.

VIARAC
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APPENDIX D

HOMOGENIZING SVD'S OF PRETRANSFORMED BLOCKS

We begin with Ut XV = S, where X is derived by applying either

the cosine or Hadamard transform to the rows and columns of a pixel

block x. We wish to find the singular values and left and right

singular vectors for homogenized versions of X.

0. 1 Flips

Corresponding to the set x, xH, xV, xHV of flipped pixel

blocks are the following transform blocks:

X, Xin, jm XS jm xjn

where jn, jm are the n x n and m x m versions of the matrix:

1j=

Note that this matrix has the property that:

J-1 = Jt = j.

Therefore, if Ut XV = Ss

Ut (Xjn) (jn V) . S

(jm U)t (jm X) V - S

(jm U)t (jm Xjn) (jn V) - S

SIVIERAC
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Therefore, to homogenize the SVD wrt flips, average over the following:

0 singular values: S only

* left singular vectors: U, jm U

* right singular vectors: V, jn V

D.2 Transpose (Rotation and Flip)

Since the transform of x is X, the following relationship:

Ut XV = S * Vt Xt U = S

tells us to homogenize wrt transposes by

0 singular values: S only

* left singular vectors: U and V

o right singular vectors: U and V

BVIRAC
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APPENDIX E

SVD ORTHOGONAL EXPANSION COEFFICIENT STATISTICS

This appendix constitutes an analysis to determine the first two

moments of the coefficients {ci} from the singular vector statistics

{u } and {u ij}.

E.l Problem

At the jth step, the orthogonal singular vectors Ul,"-,uj. have

been quantized, transmitted, and decoded as u,*"'ui-1. These

vectors are then used to find an orthogonal basis for the jth step

(assumes the i's are orthogonal).

b." -- i bi+ ....9

where

uN)u - " tN bN

uji I i  I e

b . e.- L(o1! AN - (e b)_
1=1 l=j - -

N- 1 b
-: I [ i 

-

Then express ui as

J~-1 m

We wish to find the statistics and T of these coefficients in

order to encode them.

SVIauc
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E.2 Case I

for

13 J 13 i

t ^-N

Eij= -E(. E(u. u) 0 -

t~44
= -U. U.Ij

-* -1

Ez= Er (uag ( 2i

=tE 2 u'~ ) uT u

k=1 ki ki

=d. * (This uses Riin place ofU i.e.,
' k=1 kj i

uses 1 in order to obtain a

llnear-in-d expression for aj.

d d.

(MYURAC
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E.3 Case 2

O~1 jfor~ i-I A i-I
+' !N 'E ( N N

13 73 -13

r j-1 i-i N
- 1 2_it K - N l + Oji(i)

j !j 1=jI i k=j -1 i

j-1 i-1

S ij i EN - e~ al

-13j I =1=j

For simplification of notation, we will henceforth denote by b.,

notationally supressing the dependence of b's on the stage j.

-1 - ~ N - i-1

b. =GN A b N bN Nb 1 b.1!,~~ -1. i :l IT1 2 =J i 2  12 - 1S7 iT

j-1 2 i-i
2 - E- 2

-i 1 12j 2

= Ti (U~ - -1 i 1 2=1 b 2 12)

Ecti 0-00 0 0

2i I 1 1 1 1 1- 1 bN 2 12 )

BVIRAC
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+ - 0~ 2 i-I [b ~ N2- 2u. j-1 N a

2=j bi1 11j,= l1 11

-2u. 0. b~CL
ii 1 2=j 112 1 2

S 1 1 12

+ b' bN a O

1 1=j 1 2=j il1 i12 1 1 12

+ F, N bN c x
1 =1 1 2=j 111 112 1 1 1 2

-1 i-

13 1=1 11 1  + ~ b11  1 +

+' U' u U.l a
13 1= 1=1 m~1 Im m

-r ~ 1-1i-i

+ 7N A

1=3 12 jm=

(vvnac
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Neglecting all higher order terms, this can be simplified to:

j-,

EA4 Summnary

ct.. 0

(VIRAC
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APrENDIX F

SYD COEFFICIENT CODING: BIT ALLOCATION

SVD block reconstruction error is given by:

x =x-

(X = is inverse SVD, X1  s1 81,

~ ~ .1)where B8 Y-1 )
=~~~ I s B-C 1

E (X[1 Bi-(s l1(B

1

EB -UI baisloc

~YIRAI

E E , '~l + S'lB I -'Is, l
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The squared reconstruction error is then

= ['E "'] ['E Xk I

F- s. 1B.1 + 1 B1 - -' 1 [ s Sk Bk + %k B k )k %k]t

1k L

(F.2)
sBt Bt

+lSk BI B k +sl Sk 1 k - si sk BI k

1. b 't lu t 1. 11 A

1 Sk B1 Bk- S k B1I B k + S, S k B1 Bk

Now assume:

0 si, si uncorrelated for all i #j

0 Si s i uncorrelated for all i# j

* Y1 s.i uncorrelated for all iIP j

* Bi B.i uncorrelated for all i -f j

Then Xiuncorrelated with X' for i j' (assume Gaussian).

F-2



For uncorrelated 'S:

MSE = E trl 'X FAMSE X (F.4)

.' let eI = tr Xl Xl  (F.5)

Then, supressing subscripts:

e -- tr s 2 Bt+ sBBt- sBBt

\ B ̂ t +)2 t v -vBt

+ s' sB + BBt s sBBt

- Ws Wt _ n2 Bt + -2 -\-t(
-s BB (F.6)

We next want to take the expected value. We will apply this

theorem:

Theorem Xi's zero mean, jointly Gaussian 4ExI x2 x3 x4

= Ex, x2 Ex3 x4

+ Ex, x3 Ex2 x4

+ ExI x4 Ex2 x3  (F.7)

(BVINAC
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The form this takes for us is

BBt = EssEBBt + t
E sl S2 B B2  E i 2 E 1 B2  1 E 1 E2 B2

+ E s2 B1 E s1 B t (F.8)

Note: We are assuming that sit. si Bit B 1 are jointly Gaussian.

Now, applying this to each term of the previous expression for

e generates terms involving:

2 -.
E s , E s s , E

E B Bt, E B B E B Bt

E s B, E s B, E s B and E s B (F.9)

We assume those underlined to be zero. This results in:

Ee tr I7 + i Bft + 7 Bt (F.10)

where overbar indicates expected value.

Now B =BB u uv -uv

= uvt- u )(v

t t " 't
u vt [u vt - ~v -i v + u v]

'\ t '\t ." t
u uv + uv u uv (F.11)
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vt BB' = [ . + U\ Vt VUt~ UVt -. rt

\uV VUt +Ut V\ V - -U Vq

- U V VU - U V V U + u v v u ] F. 12

Now we want to take tr [E f. .In doing so, we will assume:

* u , v Uncorrelated

* u, v Uncorrelated

* U, u Uncorrelated

0 v ,vUncorrelated (F.13)

Thus:

E ' (t vt =E E vt v + E Ut ?~E vt ~ E 't E v v

+ EU U E + tEt~E~ E Vt'

+ E uU E V v + E ut V V + EU U E v V

t q- t t t q ^ v Nt-

Also, B 8 (u Vt) (u Vt ) v U V VU

tr B B t U t U V t V

E {tr B Bt = Elul 2 EIVl 2  (F.15)

CDVIRAC
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Now:

22 s

Es = (s)f (n) = E s2 - (Es)2

S S S

2 02 fu n2 2 )2
E ui = i ( ) fui = E ui - (Eu.)2

1 U1  U U1  1 1

Ev2 2 f2. E v2 (Evi  (F.16)

Finally:

Ee = s trBB +2 tr BB + 7 tr t

S 2 + s2) tr BB+ (c2 fs (ns)) trB + (c,2 f, (ns)) tr B

+ 2r fs i s)t B-

= I-2+ c,2 (1 + f s (ns))) tr I + cy2fs (ns) tr BB t

= [-2+ 2 + V + 2
[ (1 + f i (n2 fu (nui ]v ~: -2+ I+f sn))] " uU j

( uv fv (n )

33 3

+ Eo2 f (nu) 1 2 f (]

2 ( -2 2+ c 2
i ui j jf ( vj

We will be interested in partial derivatives of this expression w.r.t.

ns ,  nul and nvJ,

~VRAC
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;Ee ~2 (-2 + 02 + f~(n1an s U i i: uif2

, O f ( vj "S S)
4 j v~ 4 vj a n

t vjs

2 ~1~~ + 02 (1 + f~ (ne))

~-V(2 +a2 f1+ f( fs(n ) (F. 18a)

r~4 ~2 ~ f n)) E (V- + 02 (1 + f (n) 1 j2

aUn (L 
(F. 18b)

anU.

REe + o~(I + f (n~) [u~+ ( + f u(n U V))] oj

af 11(n IS(F. 18c)
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Now, using the fits:

fs (n) = b s 2 -n/as

fu (n) = fv (n) = b 2 "n/a (F.19)

we shall find explicit expressions for the remaining partials:

af n ( - - ( 2-ns/aS In 2

f(n )
au (b) 2 -nu/a In 2 

(F.20)

af (nV.)

3n = (b) 2 -nv/a In 2nv

Now, to find expressions for bit allocations, we will solve the following

problem:

minimize MSE

subject to 1 n + n ~ n N (F.21)

SImcepoewekFd
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We will approach the problem via Lagrange multipliers. That is, we form

the functional

J = SE ns + n ui+nCr T F22)

and set the derivatives Tns- -u-' an equal to 0.

From the previous expressions for Ee (one term of MSE = Ee ),

we have.

+ 1 + *ru b + (1 + b2 a

O(n2) (bS\) 2 -n/a5  = (F.23a)

-s+ a ( + b n/aS *2 + C;2 (1 + b2~ -v/a)]

- (I1n2) -n nui /a =x(F.23b)

--2 2 -n/al r- - 2 -ni/al

+ a s(I +b 2 s [e u+ a (1 +b2u )

*02 (Wn) (t 2-vj /a (F.23c)

for every term Eel in rISE,
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where X is the value of the sensitivity of the total error to the total

allocation:

-MSE A (F.24)

To solve (F.23) we begin by noticing that the MSE in the various

elements of u are equal, and similarly,that the MSE in the various
elements of v are equal. We express this as:

(b2 -nui/a = du V i = 1....mui

(F.25)
2 "nvj/a

2 (b2 j dv  V i = I,... ,m.

The truth of these statements can be established by ratioing F.23b

(and F.23c) for different i (and j).

We now simplify (F.23) by writing:

S: -2 + 2 (1 + bs2 - n s / a s )

s 5

-2 -ns/a

s2 + 02 + a bs 2 (F.26a)

s + d , where ds is defined as implied.

SVCIRAC
F-10

*-..



-U- + 2 (1 + b2UI/a

-U2 2  + 2  b2 nu /a

T ~( + d) (F. 26b)

1 u

- j

and similarly:

2= dV (F.26c)

Now, we introduce first order approximations:

0 d5 sS :~C j S (F.27a)

* md u<< lul = l I = 1(F.27b)

0 ndv I <<! = 1 (f.27c)

VIR11C
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Therefore, the equations (F.26) simplify to:

d ln2 (F. 28a)

du- Xa 1 (F. 28b)ln2 T

dv Xa 1 (F.28c)

In light of this, it is convenient to solve (F.25), and the definition

of d5 (in F.26a), in terms of the bit allocations:

flu a log2092 asdb (F.29b)

u

(F.29b)
n a 1og2  d u---

V

F- 12



Finally, conrtiring (F.28) and (F.29):

s a 1092 -s-DY

2 7

S'

a s

=~ a o 2  D2( 
T

where

D ds/bS -2 b
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