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1.0 [INTRODUCTION

This document presents the results of a twelve month, 6.1 research
effort sponsored by RADC/IRRE and performed at VERAC, Incorporated in
San Diego. The primary tnrust of the study involved the development of

image coding tecnniques based upon the singular value decomposition
(SVD) operation, and intendea for application to bandwidth compression
of tactical imagery. An important aspect of the study was a thorougn
comparison of the new SVD approaches to other transform image coding
scnemes.

Compression algorithms based upon four dgistinct image
transformations were examined:

° Singular Value Decomposition,
) Karhunen-Loeve,

[ Cosine, and

] Haaamard.

Tne singular value decomposition coding algorithms were new, the
Karhunen-Loeve coaing algorithms were extensions of previous work, and
the cosine and Hadamard coding algoritnms were baselines representative
of the current state of the art in transform image coding.

A1l algorithms were designed to be as similar as possible, both in
philosophy and implementation. Differences were restricted entirely to
the particular image transformation employed in each case. The result
was a common framework in which the various transformations were
evaluated for coding effibiency and image qualiity, without contamination
by performance gifferences that can arise due to variations in other
aspects of coder implementation. This was the first time, to our
knowledge, that such a well-controlled environment was established for
comparison of alternative transform image coders.
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Tne study consisted of three efforts:

) Algorithm Design,
® Software Development, ana
) Coder Evaluation.

This document is primarily concerned with describing the various
algorithms developed under the study and summarizing their comparative
performances botn among themselives and with respect to the baseline
algorithms. The software developed under the contract to implement the
coaing algoritnms is described in a companion report, “Image Compression
Software Documentation," VERAC Technical Report No, R-022-81l.

1.1 Summary of Results

The singular value decomposition is the mathematical transformation
which achieves maximum energy compaction into the fewest number of
transtorm coefficients, called singular values in the case of the SVD.
Thus, tne SVD represents a potentially very useful operation for
reducing the bandwidth required to encode image data, since a small
number of singular values can be encoded in place of a larger number of
pixels. The SVD achieves this efficient compaction by tailoring the
transform operator -- called singular vectors for the SVD -- to the
image data itself. The price for this tailoring is that the singular
vectors must also be encoded along with the singular values to permit
the aecoder to perform image reconstruction.

A number of SVD-based image coding algorithms were developed. The
variations were due to different approaches to efficiently coding
singular vectors. The result was an assortment of SVD coding algorithms
of varying complexity which were identified, implemented and evaluated.

In addition to the SVD algorithms, a class-adaptive Karhunen-Loeve

transtorm (KLT) algorithm was also geveloped as a generalization of the
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SVD approach. The basic idea is to replace the SVD's tailoring of
transform operators to image data by the KLT's tailoring to average
image characteristics. Tne result is & reduction in the number of
different transform operators that must be encoaged: instead of one for
each block of imagery, one for each class of imagery is now required.

The price for this improvement is a concomitant lessening of the high
energy compaction produced by the SVD. Two versions of KLT code were
developed, one depending upon explicit training on image data, and other
computationally simpler but based upon an assumed image model.

The various SVD and KLT algorithms were evaluated against each
other as well as against the baseline algorithms, which employed the
fixed (not tailored) cosine and Hadamard transforms. Evaluations were
performed over a range of coding rates, extending as low as 0.25 bits
per pixel (bpp) and as nigh as 1.5 bpp. The best in each category were
igentified based upon a preliminary evaluation using a small set of test
imagery. Next, four algorithms -~ one SVD, one KLT and the cosine and
Hadamard -- were comprehensively evaluated against a larger set of test
imagery. This imagery included visible and IR aerial photographs and
SAR imagery, all quantized to 8 bpp.

A1l four algorithms performed well on the test images at 1.5 bpp.
The KLT ana cosine algorithms had highest coding efficiency, whereas the
Hadamard algorithm was most computationally efficient. Overall
performance -- jointly considering both coding and computational
efficiency -- was best for the cosine algorithm, which appeared to
perform well all the way down to 0.5 and sometimes 0.25 bpp. Despite
the intensive effort in developing the most efficient SVD coding
algorithm possible, this approach was found to be inferior to the cosine
transform coder.

1.2 Roadmap

The remainder of this report presents the algorithms developed
under this study and the results of evaluations performed to compare
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tnese algorithms among tnemselves and against baseline algorithms,
Section 2 begins by defining study opjectives and scope. Section 3
presents an overview of tnhe transform image coding approach employed by
ail the algorithms developed and testea. Section 4 then concentrates on
the details of the KLT algorithm and Section 5 upon the SVD algorithms.
Section 6 discussc” the mechanism implemented to achieve rate

equalization in all aigorithms. Section 7 next presents evaluation
results, Section 8 summarizes the study conclusions, and Section 9 lists
references. A variety of technical aetails which support various
aspects of coder algoritnm development are presented in Appendices A
through F.
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2.0 PROJECT SCOPE AND OBJECTIVES

The intelligence community and the Air Force have, for several
years, realized the important role that image compression will be
required to play in various image exploitation and intelligence systems
of the future. Full use of the potential of these systems implies a
need to transmit and store enormous quantities of digital image data.

As suggested in Figure 2-1, image compression {(and associated
decompression or reconstruction) will directly impact the utilization of
tnese systems Dy pringing storage and transmission reguirements within
technologically feasible bounds of transmission and storage media.

Tne primary focus of this study was on the compression of single
frame tactical imagery. Such imagery arises from a variety of imaging
sensors, including those sensitive to visible, infrared, and microwave
(radar) wavelengths. Applications typicaly include intelligence,
reconnaisance, and strike assessment.

We differentiate the imagery for such applications from the TV-scan
imagery normaliy associated with airborne scanners, trackers or target
detectors/recognizers and used in weapon fire control. In our case, the
imagery tends to be high resclution, with large area coverage, but with
relatively long revisit times. This is in contrast to the TV-scan
imagery which is typically of lower resolution and smaller field of
view, but with revisits at video rates. The effect is that in this
stuay we only exploited spatial information: temporal redundancy was not
available for use in compression.

In the course of the study, we concentrated upon the image
compression algorithms themselves, and not upon the particular
implementation to specific transmission or storage applications. In
particular, we did not take specific channel characteristics into
consideration, but instead focused on the inherent performance g
properties of the various algorithms. We did, however, design and |
investigate algoritnms for use over the range of compression ratios
anticipated as characteristic of various transmission and storage

channels of potential interest.
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Figure 2-1. Automated Compression/Decompression of
Tactical Imagery
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Our primary evaluation tool involved rate distortion measures which
describe coding efficiency in terms of the compression rates and image
aegradations that result from application of the various coders. A
secondary measure was the computational efficiency associated with each
approach.

( Image compression can be veiwed as a coding process in which a

‘ compact representation of the image is extracted which is sufficient for
supsequent viewing anv «:2lysis, The efficiency of the compression is
defined by the ancy=~ .« information (measured in number of bits)
necessary for ¥ . wuo.5e. One measure of this efficiency is the image
compression ratif; 'x .ned as the ratio of the number of bits
representing tfs v+ %.nal image to the number of bits in the coded

representat.at. An alternative is the compressed rate, defined as the

ratio of the numper of bits in the coded representation to the number of
pixels in the original image. These quantities are related as follows:

L]

compression = Bgpij
ratio Bcodeq
compressed

8
rate N-ﬂ
orginal = Bori
rate LR =

[}

compression = orginal rate
ratio compressed rate
where
Borig = number of bits in original image
Bcodea = number of bits in coded representation

NeM = number of pixels in orginal




2.1 Algorithms

There are a variety of compression algorithms that can be applied
to image data. In this study, attention was restricted to a class of
particularly efficient techniques wnich involvea use of two-gimensional
linear transformations of image data prior to encoding. Prominent in
this class are tne well-known 2D cosine and Hadamard transforms which
were included as baseline ailgorithms {1]. Image compression based upon
these transtorms is marked by both computational efficiency (due to the
existence of specialized “fast” algorithms) and coding efficiency (due
to good “energy compaction” properties). While the associated
computational efficiency is a considerable advantage, the fact that
these transforms are not specific to an image, or at least to a class of
images, does suggest that these transforms produce less than optimal
coaing efficiency.

This stuagy was concernea with developing and evaluating image
transform coders employing transformations more tailored to image
characteristics. Primary focus was on the singular value decomposition
(SVD) operation, due to its known property of producing optimal energy
compaction. Issues concerning both coding and computational efficiency
were addressed and are reported in this document.

The price for the efficient energy compaction of the SVD is that
not only the transform coefficients (singular values) themselves but
also tne transform operators (singular vectors) must be transmitted or
stored in order to permit decoding. In order to reduce this load,
averages over a number of similar images can be taken so that the
operators are no longer image-specific, but rather class-specific. The
result is the class-adaptive Karhunen-Loeve transform, which was also
included in this study.

2.2 Imagery of Interest

The tactical image compression applications to which transform
coders are targeted possess rather stringent compression requirements.
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Overall compression ratios on the order of 30:1 or 60:1 are often
necessitated. In order to achieve such ratios and still maintain useful
image qauality in image regions of tactical significance, a selective
compression algorithm is required. Such an algorithm employs priority
designations of various image regions as, for exampie, "high interest",
“low interest" or "background". Each such designation carries with it
the requirement for a different level of compression. For example,

“high interest"” might require a compression ratio on the order of only
8:1, whereas "background" might have to be compressed down to 60:1 or so.

The idea here is that less important regions are assigned a greater
share of the compression burden than are more important regions. The
overall achievement of large compression ratios depends upon the
predominance of less important ("background") regions within imagery.
Fortunately, tactical imagery often has this characteristic [2].

In this study, we have concentrated on the more difficult to
compress "high interest" regions of images. This is because it is on
such data that transform approaches generally perform best, yielding the
highest coding efficiency. Additionaily, and perhaps more importantly,
we focused on "nigh interest" image regions because it is the faithful
rendition of such regions at the decoder that is the fundamental raison
d'etre of tactical image collection, transmission and exploitation
systems.

We have investigated the applicability of the various transform
approaches to three types of imagery:

. Visible wavelength aerial photographs,
] Synthetic aperature radar imagery, and
. Infrared framing camera photographs.
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A1l imagery was originally quantized to 8 bits per pixel. The range of
compression ratios studied extended from 5:1 (1.5 bits per pixel) to
32:1 (V.25 bits per pixel). The nominal ratio used for comparison was
8:1 (1 bit per pixel).

2.2.1 Post Processing for Blockiness Suppression

A fundamental aspect of a transform coder is that it is applied to
images in a block-by-block fashion. When such a coder is required to
operate at high compression ratios, artifacts can appear at interblock
bounaaries. This blockiness occurs because the coder processes
different blocks separately and because adjacent blocks often contain
image data sufficiently different that when severe compression is
applied, and these characteristics bloom out over the entire block,
giscontinuities are created at block edges.

This blockiness behavior is not restricted to transform coders, and
in fact, has been observed in the operation of other compression
algorithms as well. There are several fixes which are possible, all
amounting to various restoration/enhancement schemes. For example,
selective averaging across block edges can substantially reduce the
visual impact of blockiness as well as the mean square degradation error
L3]. Although developed for spatial domain implementation, such an
approach also has an equivalant implementation in the transform domain,
and could be integrated as a final post-processing step with any of the
transform cogers investigated under this stuay.

However, we have avoided such post-processing considerations, and
have concentrated instead on the effect of coder algorithm operation
alone. This permitted a cleaner assessment of coder performance, and
enhanced our ability to isolate subtle image degradations introducted by
various alterations in coder parameter values. Since such
post-processing can always be added later, overall peformance of an
eventual coder implementation based on these algorithms was not
prematurely compromised. Introducing it at this early stage of
algorithm development and evaluation, however, would have merely
degraded our ability to assess algorithm performance. 1
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3.0 OVERVIEW OF TRANSFORM IMAGE CODING

There are a number of extant approaches to compressing single frame
imagery. Each approach represents a particular compromise among a set
of conflicting goals, including:

. Maximize compression,

[} Minimize degradation,

. Maximize adaptivity,

(] Minimize encoder compliexity, and
. Minimize decoder complexity.

3.1 Image Coding Approaches

Tapie 3-1 lists six categories of image coding approaches along
with an example or two for each. The simplest is PCM (Pulse Code
Modulation} which is simply a requantiziation of pixel intensities.

Such an approach includes companding (COMpressing and exPANding), as
well as adaptive versions that amount to digital automatic gain

controi. This approach is the least complicated to implement, and
generally produces the least compression at a given level of distortion.

The next three categories -- predictive, transform, and
interpolative/extrapolative —— attempt to exploit the spatial H
redundancies present in imagery. Predictive coding utilizes the
observation that, in high resalution imagery, neighboring pixels tend to
nave similar intensity values. This information is used to encode onl,
the differences between pixel values and estimates of these values
predicted from previously encoded pixels. Since these differences tend
to pe smaller than the pixel values themselves, fewer bits are needed to
encode them. A variety of versions, including schemes that are fixed
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Taple 3-1. Image Coding Approaches for

Compressing of Single Frame Imagery

PCM
- COMPANDING

PREDICTIVE
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OTHERS
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ang adaptive ana that are based on 1D and 2D prediction, are possible.
This approach is computationally efficient ana performs reasonably well
on over-samplea digital imagery. However, it expinits only part of the
spatial redundancy in the scene.

Transtorm approacnes tend to perform best on nigh-resalution,
moderate dynamic range, critically sampied imagery. This approach is
pasea on diviaing the image into blocks, performing a mathematical
transform operation on each block, ana encoding the resulting
coefficients [1). A number of transforms are available, including the
Fourier, cosine, sine, Hadamard, Haar, slant, Karhunen-Loeve, and

: singular value decomposition. This set spans the spectrum of coding angd
; computational efficiency. The fundamental idea involived in transform
coding is to apply a transform which compresses the block information
into a small number of coefficients which are then encoded in place of
tne larger numoer of pixel values themselves. This approach exploits 2D
redundancy in the image, but only within the boundaries of indiviaual
blocks. Both fixed ana adaptive versions are possible. '

As an alternative to transform approaches, the interponlative/ex-
trapolative approach attempts to fit curves to the two-dimens:cna’
surface defined by pixel intensity values. Then, only the par.m .rs of
the curves are coded. The simplest version uses piecewise Coo.tant
curves, such as are generated by CDC's MAPS (Micro Adaptive Processing
System; coder [4]. More ambitious approaches employ higher order
splines [5]. The keys to the success of these types of scheme are their
adaptivity to local image characteristics and their operation on imagery
containing a high proportion of smooth areas, which thus permits
parsimonious (low order and extensive in area) curve parameterizations.

The remaining approaches in the table are either specializations or
combinations of the foregoing. For example, contour or bit plane coding
is based on binary images, and the cosine/DOPCM hybrid combines a 1D
transform with a 10 predictive coder.
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In tnis study, transforim approaches were examined exclusively. New
SVD ano KLT algorithms were developed and compared with baseline cosine
ang Hadamard transform algorithms.

3.2 Transform Image Coding

Figure 3-1 illustrates the transform image coding chain used
throughout the study. The first step involves extracting a block from
the image, whicn accomplishes a reformating of the image from
raster-scan into block ordering. Following this is the input intensity
remapping step, wnich performs a memoryless transformation of the image
to compensate for sensor and display system nonlinearites.

The next step is the application of the Z0 transformation to the
image block, creating an array of transform coefficients to replace the
block of pixel values. This is where the different mathematical
transforms are inserted into the chain.

After conversion to transform coefficients, actual encoding
ensues. This is the step that performs the quantization and codeword
assignment that constitutes tne encoding of image information. It is
the guantization part of this operation that is responsible for the
deviations of a coded image from its original, by irreversibly degrading
the image representation: the coarser the guantization, the greater the
degracation (but the greater the compression). The trick is to perform
this quantization efficiently, i.e., with the introduction of as little
degradation as possible.

Next, the resulting codewords are reordered into 1D form and
entered into the channel as a pit stream. Depending upon the
application, tnhe channel can take tne form of a storage disk or magnetic
tape, or a digita) communication system for downlinking aata from a
sensor, for relaying to an exploitation center, or for dissemination to
users.
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Figure 3-1. Transform Image Coding Chain




Whatever the application, it is the numper of bits exiting the
coefficient coder and entering the channel that describes the coder
efficiency, eitner in terms of compression ratio, or, the measure
preferred here, compressed rate (measured in bits per pixel).

Note that, invariably, the cnannel includes its own (channel)
coder/decoder or moaulator/demodulator (modem} which adds redundancy for
error protection. Examples are the parity bits written onto tape or the
burst error codes used in noisy communication systems. [n any case,
this redundancy is excluded from the coder efficiency measures employed

in this report, i.e., we are describing source coder performance only.

We are not concerned with channel coder performance, Since the
particular channel coder required in any situation is application-
depenaent.

The elements in the chain following the channel constitute the
decoding operation and hence reverse the operation of the various steps
applied before the channel. Coefficient decoding extracts the
appropriate bit patterns from the bit stream, interprets them as
codewords, and reconstructs the transform coefficients from the coded
information. This reconstruction is not exact, however, due to the
quantization error introduced during the the coeffic{ent encoding
operation. For this reason, the reconstructed coefficients are not
jdentical to the original coefficients computed during encoding. They
are, however, the best available estimates of these coefficients based
on encoded data.

Next, the reconstructed coefficients are passed through the inverse
transformation, producing reconstructed pixel values. Finally, an
output intensity remapping is applied to match the gray scale output to
the display system characteristics, and the block is re-inserted into
the image in the appropriate location.

3.3 Block Transformations

There are two underlying reasons for applying a 2D transformation

to a block of image data:
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] To exploit spatial redundancy, and
. To concentrate information in a small number of coefficients.

The first of these reasons means that the correlation in intensity
values of closely spaced pixeis should be exploited. The objective is
to generate a set of coefficients as uncorrelated as possible, with some
of these describing gross image structure, some medium-sized features,
and some fine detail. In this way, the degree of degradation introduced
by quantization into any level can be accounted for separately. For
example, since many images have many blocks with very little important
fine detail, those coefficients can be neglected -- that is, not encoded
-- with little loss of information. Aaditionally, the least mean square
image degradation is produced in those cases where the coefficients are
completely uncorrelated. This also motivates obtaining a transform
which decorrelates pixels as much as possible prior to coefficient
encoding. '

The second objective concerns concentrating the block's energy into
a small number of coefficients. In other words, the smailer the subset
of coefficients that have appreciable size, the smaller the number of
coefficients which must be coded for faithful image representation. But
not only is the number of large coefficients important, so aisoc is the
consistency of their location within the coefficient array. Thus,
transforms which consistently produce very small coefficient values in
certain fixed locations permit having those :oefficients consistently
ignored by the coefficient coder.

3.4 B8lock Size

Image transform coding oeperates on images a block at a time, so
that the question of appropriate block size immediately arises. There
are severa) issues involved in selecting block size, since blocks with

the following properties are required:

° Small enough for computational efficiency,
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° Large enough for substantial decorrelation,
) Small enough for local adaptivity, and
. Power of two for “fast" algorithms.

The first of these objectives stipulates a reasonable block size for
implementation. Both calculation time and storage space requirements
grow with block dimensions. Consequently, it is necessary to keep these
demands to a reasonable level. Based on experience with the 2D cosine
transform, a maximum block size of 32 X 32 is indicated [6].

The objective of cecorrelating pixels implies that blocks should be
as large as possible, since a transform is only able to decorrelate
pixels within a block. *o decorrelation of pixels in distinct blocks is
obtained. Based again on the 2D cosine transform, a minimum size of
8 X 8 is indicated for achieving appreciable decorrelation. (This
finding is based on critically sampled imagery with a spatial
correlation coefficient of approximately o = 0.9 [6].)

The third objective, for local adaptivity, implies that the block
size should be small enough so that radically different image structure
does not appear within the same block. The motivation for this
requirement is based on cases where a small subregion of fine structure
and, hence, high interest, is imbedded in an otherwise flat surround.
If the busy subregion occupies too small a portion of the block, its
effect on the transform coefficients is small with respect to that of
the flat surround. Hence, the important coefficients are small and may
therefore fail to be encoded accurately, if at all. Based again on the
cosine transform and critically sampled imagery, objectives 2 and 3 --
for high decorrelation and local adaptivity -- balance each other out at
a size of approximately 16 x 16 [6].

Since 16 is in fact a power of two, the block size used throughout

the study for all algorithms developed and compared was 16 x 16.
However, several notes are in order:
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(] Optimal block size may, in fact, vary with the particular
transform employed. Sixteen by sixteen is indicated for the
cosine transform, but was also adopted for the other
transforms in order to provide a consistent basis for
comparative performance evaluation.

) Optimal plock size definitely depends upon the spatial
sampling frequency. Sixteen by sixteen was predicated upon
application to critically sampled raster imagery (i.e., at or
near the Nyquist rate in each dimension). Significantly
oversampled imagery would probably require larger block sizes
to achieve the same degree of pixel decorrelation.

) There is no law requiring square blocks. In fact, past
studies have indicated a degree of relative insensitivity to
block aspect ratio, as long as the total number of pixels
remains constant. Non-square blocks can arise naturally in

imagery obtained from sensors utilizing non-square pixels
(e.g., the common mod FLIR). We employed square blocks as a
default, in the absense of reasons to adopt non-square blocks
for the imagery of interest.

3.5 Unitary Transforms

Suppose we denote a block of image aata by the symbol X. Based
upon our adopted block size of 16 x 16, X represents a 16 x 16 matrix of
pixel intensities. A linear transformation of X can be represented by:

Z=T(X)

where 1 represents the transform coefficients collected into a second 16
x 16 matrix. The transformation T is linear, implying that

T(X1 + XZ) = T(Xl) + T(XZ)’ and
T(aX) = aT(X).
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Linear transformations T are by far the most practical for image coding
applications, due to their easy implementation with respect to general
noniinear transformations.

However, even restricting T to be linear does not guarantee a
useful or easily implementable transformation. Further restricting T to

be in the class of separable unitary transformations does, however. A
separable, unitary transform has the following form:

7 = ubxv
| in which the coefficient array Z is obtained by premultiplication of the
pixel array X by the matrix Ut, and postmultiplication by V.
Furthermore, the transformation matrices U and V are unitary:
vtu = wt =1

viv owt o t

Figure 3~2 illustrates the structure of both the forward and inverse
separable unitary transform.

The advantage of such a transformation is that it possesses the
following characteristics:

[ Column/row separable,
° Easy to invert, and
() Norm preserving.

Column/row separability obtains because the columns and rows of X are
transformed separately: The Ut multiplication effects a column
transformation while the 'V multiplication effects a row transformation.

The result is that Z is obtained by applying 2n3 operations, where n
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Figure 3-2. Unitary Block Transform
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represents the sixe of X, i.e., X is n x n. *“n’s is a great savings
over the n4 operations required for a non-sepa. .dle linear
transformation.

tEasy inversion obtains because both U and V are unitary and
therefore their inverses are equal to their transposes:

b -

v’l = vt

Thus, both forward and inverse transformation entail the same amount of
work and utilize the same operators U and V.

Norm preservation again is a consequence of the unitary character
of U and V. what it implies is that energy calculations can be applied
in either tne pixel or coefficient domain. Specifically, if Z = [Zij]
and X = [xij]’ then:

n n
)IEFTIECID D 2
1,j=1 i3 1,321 i)
This property is extremely important in devising and anaiyzing
coefficient coding schemes. For example, if zpq is small and is
neglected (i.e., not coded and then approximated by zero) the effect in
tge pixel domain can be predicted as a decrease in signal energy by
qu'
The effect of a separable unitary transformation can best be
explained by considering basis blocks. First adopt the notation:

X:[xij]
U=[y_ly_2.-.l.l]

-N

V= (y Yo oo !ﬂ]
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.which gepects the elements of the coefficient array X and the columns of
the transformation matrices U and V. Then the inverse transform can be
expanded as follows:

X = uzv vtq
211 212, -

Sl T VP u] . e ° t
[ 1 S 221 222 % %

n t Zn1 znz..'znn vt

=X oz uy - -

Thus, the pixel biock X is given as a weighted sum of rank one matrices
LE ‘_’.g .

Each rank one matrix 2413 represents an elementary image
block called a basis block. Together they constitute the fundamental
components from which the overall X is constructed. In general, there
are n2 such basis blocks, which are weighted according to the
corresponding coefficient values Zij and combined to form X. The
coe:ficient Zij thus represents the strength of basis block
Yi¥s contained in X. If the basis blocks are known to the
aecoder, only the coefficient values Zij need be encoded into the
channel. The decoder can then reconstruct the image block X via an

inverse transformation of Z via X = UZVt.

3.6 Applicable Transformations

There are a number of separable unitary transformations which can
be applied for image compression. These generally can be classed in one
of three catagories:

. Fixed,
0 Tailored to statistics, or
. Tailored to block itself.
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Fixed transformations have received the greatest amount of
attention for application to image coding. These comprise 2D extensions
of familiar 1D unitary transformations and are characterized by fixed
operators U and V. They include:

° Fourier,
) Sine,

] Cosine,

. Hadamard,
) Haar, and
() Slant.

The first three of these employ sinusoidal basis functions (i.e.,
the columns of U and V are sampled Ssinusoids), whereas the last three
employ square wave, tertiary or triangular wave basis functions. A
primary advantage of using the fixed type of transformation is its ease
of implementation, often by a "“fast" algorithm. The primary
disadvantage is that these transformations are not sensitive to changes
in local image characteristics, and so may work much better on some
image blocks than on others.

The goal of adapting the transformation to local image
characteristics motivates consideration of the remaining two tailored
types of transformation. The first of these, which adjusts the
operators U and V to local image statistics, is best represented by the
Karhunen-Loeve transform, which is sensitive to second order block
statistics. The secona type of adaptive transform varies with the block
data itself, and is best represented by the singular value
decomposition, in which the U and V operators depend upon the image
block X itself.

@UGHRC
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3.6.1 Optimal Decorrelating Transform

To better appreciate the interrelationships among these three
transform types, a statistical viewpoint is helpful. In this viewpoint,
an image can often be reasonably modeled as a sample from a spatially
correlatea, discrete random field. If the additional assumptions that
the image is (spatially) stationary and Gaussian are included, Shannon
theory indicates that optimal compression (least distortion for a given
compression rate) can be achieved by first applying a decorrelating
transform to convert the correlated pixels to a set of uncorrelated
random variables, followed by encoding the resulting uncorrelated random
variables with a memoryless coder.

The transform wnich is statistically optimal for decorrelating a
block from a stationary image is the Hotelling, or discrete
Karhunen-Loeve, transform. When the image has a separable covariance
function, this transform takes the form

z = utxy
where U and V are determined from the image covariance function. For
this transform, Z is an array of completely uncorrelated random
variables.

For two primary reasons, technical effort has historically been
directed away from the optimal transform and focused instead on other
transforms which only approximate the optimal decorrelating transform:

[
] No fast algorithm generally exists for performing the
transform, and
[ The procedure for deriving the Karhunen-Loeve transform

involves potentially erroneous assumptions about the image
model itseif, resulting in difficulties with specific
applications.
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§ 3.6.2 Cosine Transform

Historically, the first suboptimal transform to be considered was
the discrete Fourier transform, in which U and V take the familar form
i of sampied compliex sinusoids [7]. A prime motivation for using this
1 transform is the fact that as the block size grows (again, under the
i stationarity assumption), the Fourier transform approaches the optimal
‘ transform in the mean-squared sense. Of more practical concern are the

facts that the Fourier transform produces a (complex) coefficient array
Z which is highly {though not perfectly) uncorrelated, and that a fast
implementation (the FFT) exists.

H

|

{ However, a problem basic to use of this transform in coding is the
Gibbs phenomenon, which results in severe artifacts near the edges of

% the compressed array, andg thus introduces opjectionable blocking in

: images that are block transformed. This latter problem can be

! eliminated by introducing a forced symmetry into the block, resulting in

the cosine transform [8]. For this transform, U and V are sampled real

sinusoias, and the coefficients Z are themselves all real. Because of

its direct relationship to the Fourier transform, the cosine transform

retains the Fourier transform's optimal asymptotic benavior, and is in

fact superior to the Fourier transform for decorrelating smaller sized

P T

blocks. In addition, the FFT can still be usea in actually executing
the transformation.

A key property of the cosine transform which makes it particularly
attractive for image compression is the energy compaction into the lower
frequency coefficients that occurs for most images. Consequently, by
concentrating on transmitting the larger magnitude, generally lower
frequency coefficients, efficient coding with only slight loss of image
energy is possi' le [9].

3.6.3 Hadamard Transform

The Hadamard transform is a binary approximation to the cosine

transform that is characterized by unitary matriéﬁs U and V all of whose
\
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elements are either 1 or -1. An alternate interpretation is that the
columns of U are samplea Walsh functions, so that this transform is also
known as tne walsh transform.

The major advantage of the Hadamard transform is its ease of
implementation. Not only are multiplications eliminatea in forming the
coefficient array Z, but a fast algorithm akin to the FFT also exists to
speeg execution. The price of this efficiency is a degradation in the
decorrelationa) properties of the transform relative to the cosine
transform. Even so, the transform does a fairly good job of
decorrelating images and of compacting energy into the lower "sequency"
coefficients of Z [10].

3.6.4 Singular Value Decomposition

Up to this point, the transforms discussed have been lirear,
separable and unitary, tnat is:

l = UtXV.

For stationary Gaussian images with separable covariance functions,
theory indicates that this structure provides for efficient
decorrelation of X into Z. However, for images which are nonstationary
or non-Gaussian or which have nonseparable covariance functions, it is
possible that a more general transform than that above could produce
better results.

One such generalization is a nonlinear transform that is an
imaje-adaptive version of those discussed above:

z = utx) x vix)

where U and V are again unitary. Among transforms of this class, the
best candidate in terms of energy compaction is the singular value
decomposition (SVD):

z = Uty
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1 where

t

XX°U = UA, ana
A diagonal
ij xtv = vaA.
i
: \1/2 s0 that Z has at most n non-zero entries, in

i In tmis case, Z =.

2

contrast to the n® entries of the optimal, 2D-cosine, and Hacamard

transforms.

Tne major property of this transform relevant to image compression
is that this choice of U and V yields a Z(=.\l/2) with maximum energy
compaction. However, unlike the previous transforms, this U and V
depena upon X, so that it is necessary to transmit not only Z =‘\]/2, but

also U and V. Consequently, it is perhaps better to represent this
. nonlinear image transformation as:

SVD(X) = (A, U, V).

2 . n non-zero entries in the

Although there are altogether 2n
arrays A, U, and V, a degrees-of-freedon analysis indicates that a
total of nz 2

numbers--n forA and n“-n for U and V together -- are

sufficient to completely specify all three arrays.

3.6.5 Focus of New Developments

Primary attention in this study was aimed at further developing the
SVD approach to image coding, A small amount of previous work using
SVD's for image compression was reported in [11], but the results are
preliminary and do not take into account the image statistics, the
regularity of the singular vectors (columns of U and V), or the
potential efficiencies that can be obtained by jointly considering the
transform and memoryless coding processes. It was these aspects of SVD
coding which were examined in the course of this study in developing an
optima) SVD image coder.

lacosporated
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In aadition, recognition of the high overhead necessitated by
sinqular vector coding prompted examination of a different approach
wnhich reduced this overhead by amortizing it over a number of image
blocks. The mechanism for accomplishing this was the implementation of
a cooing scheme in which the U and V operators are specific to, instead
of a single block of image data, a collection of such image blocks.
Since this scheme amounts to a class-adaptive Karhunen-Loeve coder, such
an algorithm was also developed for comparison.
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4.0 CLASS-ADAPTIVE KARHUNEN-LOEVE
TRANSFORM CODER

This section describes the class-adaptive Karhunen-lLoeve
transformation and the associated pre-processing and coefficient coding
schemes employed with it under the study. Subsection 4.1 covers the
transformation, Subsection 4.2 the preprocessing, and Subsection 4.3 the
coefficient coder.

4.1 C(Class-Adaptive Karhunen-Loeve Transformation

The Karhunen-Loeve Transformation (KLT) is the method of expansion
by principle statistical components. That is, it involves the
representation of an image block X as a weightea sum of basis blocks

Bij which reflect statistically significant block characteristics.

This representation takes the form

X = ZZ. B :
'IJ 131

where the zij constitute the KLT coefficient array Z. (This
expression represents the inverse KLT operation.) The KLT coefficient
array L possesses two important properties:

' The elements z, of Z are uncorrela.ed, and

J
(] The average energy compaction into the first few elements of

Z is greater than that obtained from any other linear
transformation.

4.1.1 The Separable Covariance Assumption

In order that the KLT be implementable as a separable operation on
X, i.e.,

Z = Uy,
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the basis blocks Bij above must take the form of the outer product of

two vectors, specifically:

By = U5

This situation obtains if it is assumed that the image covariance
function is separable, i.e., if the correlation of the two pixels x(i,J)
and x(i+ai, j*aj) depends not on the Euclidian separation dai2+Aj2 s
but separately on the vertical separation ai and the horizontal
separation aj. Mathematically, this can be written as

COV (ai,a]) = Cv(Ai) CH(AJ)

where CV is the vertical image covariance and CH is the horizontal
covariance.

The significance of such an assumption is illustrated graphically

in Figure 4-1, which shows a typical radially-symmetric.image covariance

- function in part (a) and a separable approximation to it in part (b).
The effect of the approximation is to over-accentuate image correlation
vertically and horizontally and under-accentuate it at oblique angles.
Thus, vertical and horizontal image structure can be expected to be
retained somewhat more faithfully than oblique image structure when KLT
coefficient coding is performed. However, the cost of implementing a
KLT based on a non-separable image model is prohibitive (an order of
magnitude more calculation). Consequently, we adopted the separable
moae) for derivation of the KLT operators.

4.1.2 KLT Definition
Based on the separable covariance assumption, it is shown in
Appendix A that a separable, unitary KLT transformation takes the

following form:

L =U'XV
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(a) Radially Symmetric Covariance

(b) Separable Covariance

Figure 4-1. Comparison of Separable and Non-Separable’
Image Covariances
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where the U and V operators are unitary matrices that depend upon
vertical and horizontal pixel correlations, respectively. Specifically,
the U and V matricies are pre-computed from pixel statistics according
to the following pair of eigenvalue/eigenvector problems:

H
i

[ 1 ¢™W 7y =A™ ang

[ 1 ¢S 7y = ypcol

where "% ana C°! are row and column covariance matrices, o is

pixel variance, and A% ang AFO] are diagonal matrices. Since the

resulting U and V are unitary, u-layt and v-1avt 50 that these

problems can be rewritten as ]

——

Ut 1 crowly = Arow, and
an

-

L ozn

vl o1 e ]V L

which shows that the effect of the operators U and V is to diagonalize
the row and column covariance matrices. The result is that, in the KLT,
U and V remove row and column correlations, respectively, from the pixel
array X, producing an uncorrelated coefficient array Z. Maximum energy
compaction into the zij's with the smallest indices is achieved simply
by ordering the columns of U and V so that the diagonal elements of
AT and AFO] monotonically decrease from upper left to lower right.
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4.1.3  Class Adaptivity

The success of the KLT depends upon having a good match between an
image block X and its assumed statistics, summarized by the row and
column covariance matrices. Since images are typically highly
non-stationary, a multiple class KLT scheme was adopted here to better
aid in employing the proper statistical assumptions at the proper time.

In this approach, a number of different pairs of row and column
covariance matrices are included, each describing the statistical
characteristics of a particular class of imagery. Then, whenever an
image block of that class is to be transformed, the U and V matrices
previously calculated from that class's statistics are employed in
extracting the KLT coefficients.

Specifically, if a block X is determined to belong to class k, then
the class k KLT is applied to X: '

t
L= Uy,

where Uk’vk satisfy the following class k eigenvaiue/eigenvector

problems:
1 row | - row
[ > Ck Uk UkAk , and
9N ]

1 col 1, _ col
[—_E_- Ck Vk VkAk
o}

Because the inverse KLT is class-dependent,

t
X = U2V,

it is necessary to encode not only the array Z, but also the class label
k, so that the decoder can know how to properly inverse transform the
coefficients Z it receives from the channel. For this reason, the

number of classes is held to a reasonably small number, permitting
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efficient encoding of class information and resulting in near negligible
overhead associated with block class encoding. In this study, eight
classes were employed.

A key issue associated with class-adaptive coding is the mechanism
for determining a block's class. Only if plocks can be easily and
consistently separated into meaningfully distinct classes is the scheme
useful. Properly, the problem of identifying meaningful classes and
determining reasonable classification schemes is a prablem in
unsupervised pattern recognition.

Ideally, a number of block features would be examined to find the
optimal class boundaries, and the feature extraction procedure and
classification logic would be analyzed to determine the best tradeoff
between accuracy of correct classification and computational expense.
Instead, we adopted a block classifier based on the extraction of a
single scalar feature known to be strongly correlated with the quantity
of information contained in a block. We thus select our classes to
roughly correspond to varying levels of block information content and,
thus, difficulty of compression.

The feature employed in tnis study was block a.c. energy, defined
as the mean square deviation of a block's pixel values from the average
intensity value. That is:

(x) TR (L T\
; u(x) = 1 x> - f_ 1 X
\' ;2_ i’j=] 1J nz 1,J='] 1]

The feature u(x) is a good measure of bloc” "busyness" and for this
reason provides a high correlation with block information content. 1In
addition, since it is based upon nergy, and both U and V are unitar,, u
can be calculated in either the pixel or transform coefficient domain.

Based upon this feature, a simple classifier of the following form
was employed:

-~
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Block X is in class k IF tk—lﬁ u(x)<tk

Tne decision points tk were initially left unspecified, and an
experiment was conducted to determine the best choice. ODuring this
experiment, which is detailed in Section 7 of this report, a uniform
spacing of the tk
adoptea for all class-adaptive applications.

's in log (u) space was inaicated as best, and was

4.1.4 KLT Computational Algoritnms

Three types of calculations are associated with the KLT:

) Determining transformation operators,
. Extracting KLT coefficients, andg
. Reconstructing pixels from KLT coefficients. '

The first type, involving construction of Uk and V, for each
class, amounts to the solution to 2k eigenvalue/eigenvector problems,
where k represents the number of classes (8 in this study). Each of
these problems entails the diagonalization of an nxn real, symmetric,
positive semidetinite matrix. Since n=16 in this study, such problems
can easily be solved by use of a conventional matrix calculation package
such as LINPACK [12]. Since this calculation is off-line and precedes
actual image coding, high efficiency is not required.

For the KLT, both forward and inverse transformations are performed
by straightforward matrix multiplication:

Z = %XV and
X = uzvt.

Thus, 2n3 multiplications and additions are required to extract KLT
coefficients or to reconstruct pixels from coefficients,
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In general, no "fast" KLT algorithm (akin to the FFT) exists,
although under centain assumptions on the column and row covariance

matrices, U's and V's corresponding to the sine transform can be
generated. In this special case, the FFT can be used to effect both the
forward and inverse transformations. However, the required assumptions
to force this situation violate the philosophy of fitting the
transtormation to the naturally arising class statistics, which is the ]
whole reason for including the KLT in this study. The cosine transform,
which is very similar to, and, in fact, has been shown to be superior to
the sine transform in a number of cases, is already included in the
study for comparison, so including both would not illuminate any new
performance possibilities.

4.2 KLT Preprocessing

KLT preprocessing entails the calculations of class-specific KLT
operator matrices Uk and vV, and coefficient statistic matrices My
and 2|( from training data. The process is illustrated in Figure 4-2
and consists of three parts:

° Classify blocks of training imagery,

. Compute transform operator matrices and predicted statistics,
and

° Collect empirical statistics. »

4,2.1 C(Classify Blocks

The block classification process involves the two steps discussed
in subsection 4.1, namely:

. Compute activity measure u(x), and

° Classify the block.
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The result is the appending of a label k to each block of training
imagery. Since the KLT is class-adaptive, all further pre-processing to

be aiscussed is class-specific, in the sense that all calculations are
performed separately for all class 1 (k=1) blocks, all class 2 (k=2)
blocks, etc.

4.2.2 Compute KLT Operator Matrices and Predicted Statistics

The class-specific Uk and Vk matrices are calculated from
class-specific block statistics. Specifically, the following three
block statistic matrices are computed for each clsss k:

. X, = AVG (X in class k]
o REOW = AvG [xx in class k]
o RO < ave (X% in class «] \

If these statistics are accumulated over a large number of blocks
from a variety of imagery, they can be expected to converge to their
proper values. However, whenever the training set if finite, residual
structural artifacts may remain in the calculated statistics. To help W
smooth out these artifacts, the sample space of training imagery can be
artifically expanded by the addition of new members synthesized from
original members.

In particular, suppose X denotes the sample space of image blocks
X obtained by partitioning the training imagery into nxn blocks. The
set X can be expanded by any of the following schemes:

. Re-partition each image n2 times, so that block boundaries
shift around the image, causing a given pixel to occupy the
various n? locations of a block exactly once. This
eliminates artifacts due to block location within an image,

and expandsX by a factor of n2.
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[ F1ip each block vertically, horizontally ana both. This
eliminates certain artifacts due to the imaging system's
orientation with raspect to the scene, and expands X by a
factor of four.

. Rotate eacn block 90°, then apply flips (good only for sguare
blocks). This eliminates other artifacts due to the imaging
system's orizntation with respect to the scene, and
expands % by a factor of four.

In this study, the second and third of these sample space
enhancement schemes were employed for block statistics calculation. The
first was omitted due to the extremely nigh computation and storage load
associated with implementing it, and because the training set was
reasonably large to begin with,

An adaitional structural artifact can be removed by introducing the
homogenous mean assumption., That is, the block mean EXk i5 assumed to
be a matrix having all values equal to Mo i.e.:

M B Mg
Exk N He B oo My
M Mk M
= [
= u0l

where {1] is the nxn matrix all of whose elements are 1's. Since any
deviation from this behavior is without physical justification, the
assumption is introduced as a constraint to be satisfied during the
sample mean calculation. This means that instead of determining ik by
elementwise averaging over the X's in class k, u is calculated by
averaging over all elements of all X's in class k:

e = AVG[_%_ z Xij X in class k
n i,j=1
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Note: This can also be written as:

n
T 2 %G

n i,Jj=)

where ik = [% 4,1s which is tne way we actually implemented it.
Once ir,R;OW and REOI have been obtained, the required
sample covariance matrices are computed from one of the following pairs i

of equations:

) Without homogenous mean constraint
row row 7 7t
CK = R - XX
!
col col gtg
Ck = R - xkxk
1
. With homogenous mean constraint

row _ row y -t - 2
¢ = R, - e (1] X = Hy Xy (1] + M [1101]
col _ ,col ) = vt 2
Com = Ry - DI -y, Xe 011+ w0013

From these matrices, the class-specific KLT operators Uk and Vk
are obtained from (see Appendix A):

[ row|, . row
- Ck Uk Uk Ak , and
i
[ 1 ccol], . col !
| "k
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2 row col
where ok-tr Ak = tr Ak .

For coefficient coaing, the mean and standard deviation of the
coefficients zij in the KLT array Z are required. In Appendix A, it
1s snown that under the assumptions employed in finding Uk and Vk’
the class-specific coefficient statistics can be predicted as:

) Mean:
-- without homogenous mean constraint
t_
Mk = UkaVk
-- with homogenous mean constraint
Mo=w U [1]V
kT M Yk k
] Standard Deviation
-- Variance

t
2.row col
S = O A

~- Standard Deviation

2, = [ck,ijJ
where S, = [02 ]
k k,ij

4.2.3 Collect Empirical Statistics

Since it is recognized that the covariance separability assumption
under which Uk and Vk are derived and coefficient statistics are
predicted is not strictly valid, an alternative, empirical coefficient
statistics calculation scheme is also employed. When the covariance

separability assumption is valid, both approaches yield the same
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result. When the assumption is not valid, the second, empirical
approach produces a more accurate estimate of the statistics of the
coefficients actually produced by application of Uk and Vk'

Note that we are not talking about recalculating Uk and Vk
under more general covariance assumptions. Rather, we are only dealing
with obtaining a more accurate estimate of the average properties of the
coefficients obtained by use of that Uk and vk. The degree of
disparity between the statistics calculateg by the two methods indicates
the degree to which the actual. training data departs from the assumed
separable covariance model.

Empirical statistics are obtained by applying the appropriate
class-specific KLT to each block of training imagery, and accumulating
statistics on the resulting coefficients. In particular, two items are

required:
° Mean Mk’ and
. Standard Deviation =

“k
for each class k.

Calculation proceeds in two steps. First, the mean and mean square
coefficient values are accumulated, then the standard deviations are
derived from this data. The first step entails the following averages:

t . -
Mk = AVG (UkXVk : X is class k), and
Re = Ire,igd
where r = AVG (zg 1= UtXV and X is class k)
k,iJ il” =" kM k

VERAC
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Next, the standard deviation array Ek is obtained by:

2 = Loy, 45)

where °i,ij - rﬁ,ij - mE,ij'

The various sample space enhancement techniques discussed unaer
4,1.2 are germane to empirical statistics calculation as well. However,
rather than expand® , the sample space of X's, directly, it is possible
for the flip and rotation type of enhancements to expand %}, the sample
space of Z's, instead. This is of great practical benefit because of
the large computational load associated with applying the KLT to so many
blocks. Appendix B shows how the statistics of the expanded set can be
calculated from the statistics of the original set % .

4.2.4 KLT Preprocessing Summary

To summarize, KLT preprocessing is a training procedure applied to
a sample space of blocks obtained by appropriately partitioning a set of
training imagery. The result is the generation of several class
specifi¢c gquantities:

. KLT operators Uk and Vk for each class,
® Predicted statistics of Z for each class, and
) Empirically collected statistics of Z for each class.

The Uk and Vk matrices are required to specify the class-adaptive
KLT operation, while the coefficient statistics Mk and Ek are
employed to efficiently code the coefficients produced by the KL1
operator.

4,3 KLT Image Coding

Figure 4.3 depicts the KLT image coder employed in the study. The

process begins by extracting an nxn block X from an image. The block is

@ VERAC

Incorporated

4-15




utey) burpoy abewj -g-p sunbry

]
0w 1T $1N312143300 VIR0 334408 1)
1H3SN]- 38 ISIANL i 300030 1NANT [— w3
300230
=]
2
L
<t
1INV ¥3iing SiN312144300 NOTLYZI T3 1 00 00
1T 2 @ EI ] Aldd¥
oL 104100 N3 N AISSYD) VI3
43 3weanyg
QVIHYIAO uos3403s4q
300083 ¢
sse|) Y2018




classified by extracting the a.c. energy activity measure u(X) and
comparing the resulting value to a set of decision thresholas :tk:.
The result is a block label k. Based on this k, the proper KLT is

applied to X using the appropriate Uk and Vk matrices.

The resulting KLT coefficients are then encoded, and placed into
the output buffer for formation into a bit stream. Prior to this
encoding, a rate equalization step occurs which is aimed at achieving a
particular overall coding rate (e.g., 1 bit per pixel). This is
achieved by computing a global distortion parameter D which serves to
control coefficient coding by setting the fidelity level at which the
coder is to operate. The rate equalization algorithm implemented for
the KLT coder is essentially identical to that implemented for the SVD
coder, and is discussed separately in Section 6.

In adgition to the KLT operation itself, KLT coefficient coding is
also a class-adaptive operc.ion. This permits the allocation of
relatively more channel bandwidth (number of bits) to high-information
portions of the image than toc low-information portions. This is
:implemented by generating more bits for “"busy" (high activity measure u)
blocks than for “quiet" {(low activity measure u) blocks. The result is
that bandwidth is adaptively allocated to the various blocks within an
image. Class-adaptive KLT coefficient coding is disucssed in subsection
4.3.2.

The decoding operation is essentially the reverse of the encoding
process. However, because the KLT operation is class-adaptive, the
decoger must be provided with each block's class label in order to
properly inverse-KLT the reconstructed coefficients into the
reconstructed pixel block. Thus, the block labels k constitute overhead
information which must be encoded and entered into the channel.

Similarly, the coder control parameter D must be avaiiable at the
gecoder in order for coefficient reconstruction to be properly
performed. Thus, this parameter also constitutes overhead to be encoded
and entered into the channel. OQverhead coding is discussed next, in i

subsection 4.3.1.
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4.3.1 Overhead Encoding

Since only a single D value need be specified for each image, and
since only one of a small number of possible class labels need be
specified for each block, overheaa coding does not consume much channel
bandwidth, Specifically, since, as indicated in Section 6, it is log(D)
which controls coder fidelity, an 8-bit BCD log~quantizer was adopted
for D. For k, which could assume one of eight values, a simple 3-bit

BCD quantizer was employed.

The bandwidth resources consumed by encoding this overhead is
slight. In particular, for 16 x 16 blocks and 256 X 256 images, the
overhead is:

. Distortion parameter: 0.0001 bpp

] Class labels: 0.012 bpp.

Tnus, total aoverhead to achieve both class adaptivity and rate
equalization is slightly more than one hundredth of a bit per pixel.
Since, for the high interest imagery under study here, overall coded
rates on the order of one bit per pixel are of interest, the overnead
associated with this scheme is, in fact, negligible.

4.3.2 KLT Coefficient Coding

The key aspect of the KLT coefficient coder is that it is
class-adaptive. This adaptivity extends into two domains:

* Interblock adaptivity, and
) Intrablock adaptivity.

Interblock adaptivity refers to the distribution of total bandwidth
among the various blocks in an image according to block class. High
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activity-index blocks contain more information and are thus allocated
more bandwidth than are low activity-index blocks, which contain less
information.

Intrablock adaptivity refers to the distribution of bandwidth among
the various coefficients in a particular coefficient array Z according
to their statistics. Coefficients with a high degree of predictability
(e.g., usually small) are allocated less bandwidth than are coefficients
with a low aegree of predictability (i.e., can occur over a wide range
of values).

Figure 4.4 illustrates an example of bit assignment arrays for two
classes, one for low-activity blocks and the other for high-activity
blocks. The arrays are to be interpreted as assigning the number of
bits to be used in encoding the various 162 = 256 coefficients within
the array Z. Thus, the 3 in the (i,j) = (3,2) position of the first
array indicates that, for low-activity blocks, 23, is to be coded with
a 3-bit quantizer.

The figure illustrates both types of adaptivity. Interblock
adaptivity is indicated by the difference in the total number of bits
allocated to all the n2 coefficients, i.e., by the difference in the
summations over all elements of each array. Intrablock adaptivity is
illustratea by the preferential allocation of bits to those coefficients
in the upper left hand corner of the arrays, corresponding to the
coefficients which typically require the most dynamic range. Note that
in both arrays a number of coefficients are allocated no bits at all,
indicating they are to be ignored (not coded). These are the typically

insignificant coefficients (approximated, for example, by zero).
Coefficient coding requires resolution of two issues:

] How to make coder assignments, and

) What quantizer to employ.
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4.3.2.1 Coger Assignment

Coder assignment amounts to constructing the bit assignment
matrices shown in Figure 4-4. Since we are dealing with an eight-class
situation, eight such matrices are required.

The criterion employed for coder assignment is the minimization of
mean squared coding error at any given coding rate. Such a criterion
results in a bit allocation rule which distributes the mean- squared
error uniformly across all blocks, and, within a block, uniformly across
all coefficients. To achieve such uniformity, such a rule must allocate
more bits to high activity blocks than to low-activity blocks, and,
within a block, more bits to strongly varying coefficients than to
quiescent coefficients.

As shown in Appendix C, this criterion results in the following
assignment rule: !

B. (k) = INT (1092 "q"k)l
J D

where: . Bij(k) = Number of bits allocated to the ij-th
coefficient in class k blocks.

°ij(k) = Standard deviation of the ij-th

coefficient in class k blocks. (This is the ij-th
element of zk the class-k coefficient standard
deviation matrix. Either predicted or empirical values
can be used.)

. D = Global distortion control parameter
(determined to provide rate equalization).

) INT [.] = The integer part (required because we are
using fixed rate quantizers).
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To repeat, this rule produces adaptive bit allocation because it results
in more bits being assigned to coefficients with high variability as
measured by large oﬁj. Because high-activity blocks typically have
many such coefficients, such blocks receive more bits in aggregate than
do low-activity blocks.

4.3.2.2 Coefficient Quantization and Coding

Once a coefficient is allocated a number of bits for encoding, the
next question is how to employ these bits in effectively encoding the
coefficient. A number of possibilities exist, but the Max quantizer was

- selected here for its optimality properties. The key requirement for
applying the Max quantizer is that the probability density functions of
the zij be known.

The assumption applied is that all coefficients Zij share the
same form of probability density function, parameterized by mean t
mij(k) and variance oﬁj(k). Thus, the derived coefficients
(Zij'mij(k))/°1j(k) all share the same zero-mean, unit-variance

PDF p(z).

For this study, we used a modified Gaussian function for_p(z). The
Gaussian assumption is justifiable by the central limit theorem, and the
modification, which slightly boosted up the tail of the distribution,
was added to account for rare, but important events.

The Max quantizer consists of a set of quantizer decision
thresholds and an associated set of reconstruction levels selected so f
that coding error is minimized on average. It results in a non-uniform
quantization scheme that is tailored to the statistics of the
coefficients. For example, the three-bit Max quantizer which minimizes
mean squared coding error for a Gaussian PDF is shown in Figure 4-5,
Max quantizers of 1,2, . . ., 8-bit were used in the study.
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Figure 4-5. Example Three-Bit Max Quantizer for

Gaussian POF
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Although a Max quantizer can be used on all coefficients, special
treatment was provided the ) coefficient. This is because the basis

block gixf corresponding to this coefficient is invariably near
constant in intensity over all pixels in the block, so that 2y is
similar to the cosine or Hadamard "“dc" coefficient.

The reason for special treatment for “dc" is that when using a Max
quantizer -- even an 8-bit Max guantizer —- occasionally severe coding
errors are committea. These errors arise where the coefficient deviates
most from its assumed mean value, since there the Max quantizer
bin-wiath is largest, and the potential difference between the actual
coefficient value and its quantized (reconstructed) value is greatest.

Because "dc" errors are perceived as "Dlockiness" in the image,
these errors are potentially more perceptually damaging than are similar
errors encountered for a.c. coefficients. Thus, in place of a Max i
quantizer, a uniform quantizer was applied to the d.c. coefficient. :

P
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5.0 SINGULAR YALUE DECOMPOSITION TRANSFORM CODER

The singular value decomposition transtorm coder uses a transform
constituting the metnoa of principal deterministic components. In this

methoda, each image block is again aecomposed into a sum of unit nori
pasis DlOoCKS, Dut nere tne gecompositinn acnieves the optimal energy
compaction for each and every plock, rather than merely on average as is
the case for the KLT. This means tnat, here, the fewest number of
coefficients of any decomposition is required for efficient image
coding. However, in contrast with the statistical approach where the
transform matrices are pre-computed and thus available to both coder and
gecoager, here tne transform matrices themselves depend upon the image
plock and hence must themselves be coded along with the coefficients.

The transformation usea in tnis approach is the singular value
gecomposition (SVD), given by:

S = utxv

wnere  XX'U = UA , where \ is a aiagonal array of non-negative
elements and U is orthogonal;

ang XtXV = V., where\is tne same giagonal array of non-negative
elements ana V is orthogonal;

ang where S = L\)llz.

Tne matrix S is diagonal and contains the singular values. The matrices
U ana V have as their columns the left and right singular vectors of X
respectively. Because U and V depend upon X, all three matrices -- S,
U, and V -- must be coded.

Several aspects of image coding using the SYD were explored:

[ ] Computational algorithms,
° Furtner decorrelation and energy compaction, and
@ lncorporated
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] Singular value/vector coding.

The overall coding chain is indicated in Figure 5-1. It is very similar
to the KLT approach, with the major exceptions being:

) Tne SVD automatically adapts to the block X: it is not
class-specific, and

. potn singular values and singular vectors are coded.

As in the KLT approach, coefficients (singular values and vectors) are

coded class-adaptively. Since the SVD is a unitary transformation,

delaying the extraction of the activity measure u(X) until after the

forwara SVD operation has no effect on the result of the classification

process. In fact, the computational load of calculating u(X) is less

nere cue to tne high energy compaction produced by the SVD transforms,

as reflected in tne diagonal structure of Z. !

Th2 remainazr of this section presents the details of the SVD image
coder. Subsectiun 5.1 discusses computational algorithms; subsection
5.2 summarizes additional steps potentially yielding further energy
compaction or decorrelation of singular values/vectors; subsection 5.3
gdescribes the preprocessing required to support SVD coding; andg
subsection 5.4 presents the new scnhemes developed for singular
value/vector coding.

-5.1 SvD Computational Algorithms

Several candidate algortithms for calculating the SVD were
identified during the study. One is equally applicable for computing
the KLT matrices during KLT preprocessing, ana was, in fact, applied for
that purpose. (Since KLT preprocessing is an initial, off-line training
procedure, computational efficiency is not an issue there.)
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Two classes of SVD algorithms were identified, the direct andg
ingirect methods. In the direct method, a block X is decomposed by
directly searching for ortnhogonal matrices U and V such that

UtXV = S, S diagonal and non-negative.
In the indirect method, the intermediate, symmetric positive

semi-definite matrix xxt or X% is first computed and its eignvalues
and eignvectors calculated as:

(x*X)U = UA, or

(xY)w = vaA,

in wnich U and V are orthogonal and A is diagonal and positive
semi-definite. In fact, S =.N1/2, i.e.,

As Sts o sst,

Wnichever of U or V is calculated from the eigenvalue/eigenvector
problem, the other is obtained directly from:

v = xtuAatlie o

U = XVA M2,

in wm’an'“2 is a diagonal matrix having elements whirh are the
reciprocal of the corresponding elements of A when non-zero, and zero
otherwise. In this way, only those columns of V or U which correspond
to non-zero singular values are obtained (they are the only ones needed).

Each type of SVD computation method, direct and indirect, can be
tailored separately to two types of array X, a block of pixels and a
block of transform coefficients, resulting in the four algorithms
examined. (The indirect pixel block method is also used for computing
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the class adaptive KLT matrices by replacing xtX and xxt by E(th)
t
and E{XX"}.)

Pixel Block SVD Algorithms

The approach is illustrated in Figure 5-Z and consists of two steps:

° Apply a fixed number of Householder transformations Ui and
Vj to render
X = Ut ut eeut v vty

bi-diagonal, and then

v A%
. Iteratively apply a sequence of plane rotations, U and V, to
the rows and columns of X in order to implement the implicity
shifted QR algorithm and to thus render the resulting

4%}
UEX Y

diagonal. This results in

LR ’\‘
U= U1U2 UnU

e v e ’\’
Vo= Vvt
and S = utxv.

The indirect pixel block SVD algorithm is illustrated in Figure 5-3
and consists of an iterative application of Jacobi Transformations to
diagonalize the symmetric matrix th or XtX. Suppose xx* is to be
diagonalized. Then a sequence of Jacobi Transformations Ui are
applied to yield a diagonal matrix

toog it vyt cen
A= UL UZ(XX )UIUZ UL
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Figure 5-2. Direct Pixel Block SVD Calculation
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Figure 5-3. Indirect Pixel Block SVD Calculation
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The transformation Ui is selected to reduce the largest off-diagonal
elements remaining at the i-th iteration.

This results in
U=y,

S =x\1/2, and

v = xtua-t/e,

Both of these algorithms are generic in that they are applicable to
extracting the SVD of any array X. They were included as baseline
techniques against which to compare the more tailored coefficient block
SVD algorithm and, for the indirect method, as a means of extracting the
KLT matrices.

Coefficient Block SVD Algorithms

The coefficient block SVD approach attempts to exploit prior
knowledge about typical image blocks. For example, from knowledge that
pixels are non-negative and highly correlated arises the fact that one
left and one right singular vector must be close to uniform (vector's of
aill 1's before normalization). Thus, pre-transforming by a B and V
which each include such a column should render ht£V closer to diagonal.

In addition, the known regularity which often occurs in image block
singular vectors can be ant1c1pated by including appropr1ate columns in
the pre-transforms U and V The result is a matrix } U XV which is
more nearly diagonal than is X. This can be exploited in more easily
completing the diagonalization process. The overall procedure is shown
in Figure 5-4,

The pre-transforms employed here include the 2D cosine and
N v
Hadamard. Both include a uniform column in U = V and both tend to mimic
typical singular vector structure.
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Figure 5-4. Finding the SVD via a Coefficient-Block
SVD Calculation

ly do such pre-transforms accelerate the diagonalization of

X, but they also dovetail nicely with the singular vector coding
approaches developed in the study. These approaches are discussed in
detail elsewhere, but they amount to taking 1D correlating transforms
(e.g., cosine or Hadamard) of the singular vectors of X and encoding the
resulting coefficients. If such a singular vector coding approach is
employed in conjunction with a pre-transform intended to ease SVD

extraction, a particularly convenient synergism occurs.

This is because

the normally required steps of backing-out the pre-transform to find the
singular vectors of X, followed by the application of a decorrelating 1D

transform to these singular vectors to prepare for coding, can be
eliminated.
the 1D decorrelating transform (e.g., 2D cosine and 1D cosine) the
combination of inverting the 2D pre-transform and applying the 1D
transform cancel each other out. This is illustrated in Figure 5-5.
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into the Identity

The result is an efficient algorithm for extracting both the
singular values and the 1D transform of the right and left singular

vectors of X. The process is illustrated in Figure 5-6. This was the

procedure utilized during the evaluation phase of the study.

Both direct and indirect coefficient block SVD algorithms are
possible and utilize a sequence of orthogonal transformations to

diagonalize the appropriate matrix. In the direct case, transformations

Ui and Vi’ are applied until

LR TP N
Ug Uy (U*Xv) Vit

is approximately diagonal. In the indirect case, either the Ui's or
Vi's are applied to diagonalize

oot Moty ...
Uttty {U*xx*u) Uity

or

ooyt St bt Yy ...
vovg (VEXEXV) VitV .
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The other is obtained by substitution as in the indirect pixel block

algorithm.

The inadirect method was adopted here due to the availability of
existing code to implement it, and, as discussed in Section 7, because
SVD coder performance turned out not to be good enough to warrant a
thorougn investigation of the relative merits of the other SVD

computational approaches.

5.2 Decorrelation and Energy Compaction of SVD Coefficients

Prior work utilizing the SVD transformation for image compression
recognized the statistical correlations that typically occur within
singular vectors {11]. In that work, a predictive coding scheme based
on DPCM coding of singular vectors was employed to exploit the
correlation. However, it is well known that such an approach only
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removes some of the correlation. Efficien. encrding demands that as
much correlation as possible be removed, which suggests anplying a 1D
transform to the singular vectors to decorrelate them.

The optimum transform for decorrelating a vector is the
~ Karnunen-Loeve transform. However, for maximum adaptibility to
non-stationarity, a class-aptitive, singular vector-specific 1D KLT is
best. In such a scheme, the particular KLT operator applied would
depend upon the block's class and the singular vector's index (location
within U or V as appropriate). For our case, we have eight classes and

sixteen left and sixteen right singular vectors requiring a total of 8
16°1b = 2048 i6x16 KLT operator matrices. Even in the case where
statistical distinctions between left and right singular vectors are
ignored, 8+i6 = 128 such matrices are required.

Such a storage load, coupled with the computational load required

to perform the KLT extraction via matrix multiplications, suggests that
suboptimal transformations possessing a "fast" implementation be

investigated. This was also indicated in order to efficiently combine
the 2D pre-transformation discussed in Section 5.1 with the 1D singular
vector transformation. Thus, we investigated two 1D transforms for
singular vector decorrelation:

[ Cosine, and
. Hadamard.

The first was included because of its known success at approximating the
KLT's optimal decorrelating performance. The second was included due to
its particular computational efficiency.

As an example of the effect of applying such a transform, Figure
5-7 snows some results for the cosine transform case. The first plot
shows an example singular vector, in this case, the third left singular
vector from a particular image block. The second plot shows the
corresponding 1D cosine transform coefficients. Note the correlation

from element to element in the singular vector and both the lack of such
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correlation and the occurrence of energy compaction in the transform as
evidenced by the appearance of some coefficients with significantly
larger magnitude than others.

That this behavior is even more striking on average is shown in
Figure 5-8. In this figure, the first plot illustrates the mean and
standard deviation obtained by accumulating over all third singular
vectors. The corresponding quantities for transform coefficients are
shown in the second plot. The marked peak in the second plot confirms
the energy compacting property of the transform. When coding,
coefficients corresponding to such peaks will be more accurately coded

than will other, less important coefficients.

Figure 5-9 illustrates the two alternative implementations of the
1D singular vector transformations. The first approach is the
straightforward one, in which the SVD is first calculated and the 1D
transform of the resulting singular vector is then obtained. The second
is the combined algorithm of Figure 5-6 which permits coordination with
computation of the SVD itself. The equivalence is demonstrated by

s = ubxv

SoX = UsvE

" N,
UtV = Utusyty

- (0tu) s (Ttv)t
S5 (Ut (Ut vty

which shows that if {S,U,V} constitute the SVD of X, then

n,
{5,0t0,Vtv} constitute the SVD of UKV. Thus, UtU and Vt

be obtained in either of two ways:

V can

. Find SVD of X, then take the 1D transform of the columns of U
and Vv, or
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. N
. Find tne SVD of U'XV directly.

In addition to the use of the 1D singular vector decorrelating
transformation, three other techniques were igentified as potentially
useful for either additionally decorrelating the elements of S, U, anag
V, or for introducing further energy compaction. These techniques are:

) SVD reordering,
[ Singular vector orthogonalization, and
) Repolarization of singular vectors.
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Eacn of these techniques is described in turn.

5.2.1 SVD Reordering

The SVD forward transform takes the form
s = uty,

where S is diagonal. The inverse transform takes the form
X = usv®

which, because S is diagonal, can be rewritten as

which expresses X as a weighted sum of n (not n2) basis blocks

t
Yi¥se
There is no inherent ordering to the terms in this expression. In
fact, permuting the ordering merely results in permuting the
corresponding columns of U and V, and diagonal elements of S.

The normal default ordering is usually selected to result in si's
with monotonically decreasing size, i.e., monotonically decreasing
‘51" However, statistical analyses conducted under this study suggest
that the singular vectors ordered in this way also typically have their
strongest energy concentrated at monotonically increasing frequencies
(or sequencies).

Figure 5-10 illustrates the migration of this energy concentration
to higher frequencies for three singular vectors. The first singular
vector has most of its energy concentrated at lowest frequencies. The
third singular vector has most of its energy concentrated at somewhat
higher frequencies. The twelfth singular vector has most of its energy
at still higher frequencies.
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This observation suggests that if ordering were performed.

explicitly in terms of where singular vectors have peak energy instead
of in terms of which singular values are largest, a very similar
ordering would result. However, the ordering may be different often
enough that when statistical averages are taken, even sharper peaking of
average coefficient energy would result. This would then permit even
more efficient encoding of singular vectors, since their energy would ‘
be, on average, more predictably concentrated is certain, known |
coefficients. There would be a concomitant decrease in the peakyness in
the singular value statistics, but this would probably be more than
compensated for by the increased peakyness of singular vector
coefficient statistics.

This reordering was implemented and evaluated against no
reordering. The results are reported in Section 7.

5.2.2 Singular Vector Orthogonalization

This enhancement represents an attempt to exploit the known

orthogonal structure of the singular vector arrays U and V. It results
in a structure somewhat different from that otherwise applied for coding
singular vectors.

Up to this point, singular vector coefficient coding was handled
simultaneously: after the 1D transform was applied, all the
coefficients were encoded at once. In the current enhancement, the
structure is different: first, some coefficients are extracted, then
they are coded, then other coefficients are extracted, and then they are
coded. This process cycles until all coefficients are extracted and
coded.

This enhancement is intended to exploit the known redundancy in the
arrays U and V. Hsre we will focus on the left singular vector
coefficient array UtU. For notational simplicity, we will denote this
array simply as U during the remainder of this discussion, although the
process is applied to the coefficient array htU.
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First we note tnat the j-th column of U, Ed’ is arthogonal to all

previous columns u,, u;"", Yy1 Suppose a change of basis is

introduced, with the new basis being

=[9-1’“2"” b b

B 312055 0ngds

where {gjj ,"‘,gnj} simply completes the basis in R". The vector
u; can be represented by:
Zan 0; 40
since u; is orthogonal to {ul,uz,‘ ',uj_l} so that Uj is
linearly independent of {uj,uy,"""su; j}. Thus, instead of
having to transmit the n elements of gj directly, only the (n-j+1)

coefficients {aij, “nj} need be transmitted, as long as the
{943} are available to both transmitter and receiver. But the ;gij}
can be computed from the previously transmitted singular vectors

{u } 1, so that the process is realizable.

When repeated for each i, this process results in an array of a's
which can be collected into the following upper triangular form:

N
n o
an.l an ~‘ann

Thus, the n elements of U can be completely represented by the n!n- )
coefficients [a ]

The most obvious coding strategy based on this representation is to
independently code the individual “ijls using statistics collected
during a pre-processing statistical analysis. However, in this methad,
the reconstruction accuracy of later singular vectors is very sensitive
to errors in earlier ones.
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This can be seen by examining the reconstrucied value of Ed’ Qj:

= D
5T MR

Here, not only is aij an approximation to a5 but so is Eij an
approximation to gij. And although the error in aij is independent
of the error in all other aij's, the error in ﬁij depend upon the
previous reconstructed values *24’!2’.‘.’Ed-1} which themselves

depend ni{a i},
pend upon {3, : qcp, q<i}

To aviod this dependency and to thereby reduce average coding
errors, we use a different basis Bj:

BJ' = [21122, :_!j_lyp_jj: ’En.]]

where {Eij,"‘,ﬁnj} = {gl,gz,'--,gj_l} . The price we pay

is that the coefficient matrix of uij'S is no longer triangular -~ it
is in general full. However, the elements occuring in the upper
triangle (the a;;'s for i<j) will typically be small as Tong as Qj

is a reasonable approximation to gj. They can therefore either be
neglected altogether, or, as we shall do, be more coarsely quantized
tnan those “ijls in the lower triangle (°1j'5 for j<i).

5.2.3 Repolarization

In the SVD expansion

X = usvt
> t
= 5 %%k

there is a fundamental question of polarity of the various members of
each term. In particular, the term s.u.v? has a definite sign,

=i
but the ingividual members Si’gi and do not, so long as

V.
=i
their product works out to have the correct polarity.
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Normal default in SVD is to choose s,>0. That still leaves u;

and !4'5 polarities unspecified, but constrained so that their product

j

is of the correct sign. The additional condition we impose is that the
! iy be non-negative.

This condition is basically a default ‘selected to help minimize the
dispersion of singular vector coefficient statistics.

sum of the areas of the two vectors, ;uij+v

Repolarization is an alternate scheme intended to further reduce
the dispersion of singular vector coefficient statistics. It is based
upon the motive of providing a consistent sign for the largest energy
component of each singular vector. The scheme consists of assigning
signs to Yj and Y that result in their both having their largest
magnitude transform coefficient be positive. The sign of S5 is then

adjusted to give the term 51241§ the correct polarity.

The price for this repolarization is that singular values are nn
longer guaratneed to be non-negative and thus display increased 1
dispersion in their statistics. However, having both polarization
methoas available permits an evaluation of which effect dominates, the
decrease in dispersion of singular vector coefficients, or the increase
in dispersion of singular values.

5.3 Preprocessing

SVD preprocessing is required for the same reason KLT preprocessing
is, as a training step. Since the singular values and the singular
vector coefficients are coded using statistically-optimized coding
schemes, tnhe underlying statistics are required.

What are required are:

. Singular value statistics, and

. Singular vector statistics.
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The procedure for obtaining this information is shown in Figure 5-11.
This process constitutes an empirical SVD statistics calculation., It
begins with tne forward SVD transforming of the various blocks in the
training imagery. Since coding is again class-adaptive, separate
class-specific statistics are required. Also, since several different
ordering, polarization methods are to be evaluated, several versions of
the statistics are required. These include:

° Default singular value/vector ordering and polarization,
) Singular value/vector re-rodering,

. Singular value/vector re-polarization, and

[ Both re-rodering and re-polarization.

In each case, the same SVD is applied, and the results simply
reorganized as reqgired. (As previously discussed in 5.1, the order of
the SVD and transform operations can be interchanged.)

The statistics required are the first and second moments of the
various entities to be coded. Specifically, let S5 denote the i-th
singular value, and 'Y and v the transform coefficient vectors for

the corresponding singular vectors. Then the statistics calcualted are:

[ Singular values
Ski o AVG[s1 : x is class k]
§2 . e [sZ: x is class k]
k,1 i
() Singular vector coefficients
Uk = AVG [U: x is class k]
Vk = AVG [V : x is class k]
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pleft _ [rleft rleft 2
k k,ijl k,ij

. . ,
Pilght = [rr1ght] » (rright)Z = AVG [v?. : X is class kJ

AvG [ufj : X is class k}

k’ij k’ij 1]

From these, tne required standard devitions can be computed as:

Srey )2 2 =2
(ci(k)) =Sk T Sk,
2 2
left - Eﬂeft] Jleft r’left) .7
Ek k51 \%,1j K,ij Kyij
. . 2 Y
right - right r1ght) - ( r1ght) .
z Phﬁ]’%JJ kol Yk, 1

The efficient sample space enhancement techniques applied to smooth
out structural artifacts in the KLT case can also be applied here.
Specifically, both "flips" and "rotation" can be applied. Appendix D
discusses how to implement these techniques on SVD's of pre-transformed
data, which is the case of interest here.

In oraer to encode the coefficients resulting from the singuar
vector orthogonal expansion enhancements discussed in 5.2.2, the first
two moments of the orthogonal expansion coefficients are required.
Appendix E computes expressions for these quantities which allow their
calculation from the statistics of ‘Si’fh’ and 11:.

{

5.4 Singular Value/Vector Coding

To insure adaptibility to non-stationarity, a class-adaptive coding
scheme is employed. Figure 5-1 illustrated the SVD coding chain and
ingicated the place of overhead, singular value, and singular vector
coding in the overall arrangement.
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As in the KLT case, overhead consists of the global rate distortion
parameter D and each block's class label k. Both are required to permit
correct singular value/vector reconstruction at the decoder. (Note that
although the SVD transform is not class-dependent as was the KLT, the
class labels are nontheless needed at the decoder for correct singular
value/vector reconstruction.) SVD overhead coding is identical to KLT

overhead encoding.

The overall singular value/singular vector coding problem
constitutes a hierarchy of coding problems, which pose the following

questions: ;

. How are bits allocated among blocks,
e How are bits allocated to terms in a particular block's SVD

expansion,

!

() How are bits distributed among the singular value and two

singular vectors in particular terms, and
. What coders are best for use on singular values and singular

vectors?
5.4.1 Bit Allocation

To obtain solutions to these problems we again adopt the following
global problem statement:

MINIMIZE : Total mean squared coding error
SUBJECT TO : Not exceecing a given coding rate

and specify the use of fixed rate coders (coders which produce codewords
whose lengths do not depend upon the input values to be coded).
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As demonstrated in Appendix C (in the context of KLT coding) the
optimal solution dictates allocating bandwidth to achieve a uniform
distribution of coding error over all blocks. This implies that busier
blocks are encoded with more bits than are quieter blocks. Furthermore,
Appendix C shows that each block's bit allocation problem can bel
separately solved. Appendix F addresses this problem (the second and
thira in the list), and shows that bandwidth should be allocated so that
coding error is distributed uniformly over all terms Sj!:l} in

i
the SVD expansion

X =ZS-U t
1

idiY-

This means that those terms Siﬁdlg which have the most
variation in energy will be allocated the most bits; those which are

more predictable receive fewer bits.

Appendix F also shows that the bit allocation problem can be solved t
separately for each term, and that the optimal solution has the
following features:

] the singular value S5 is allocated bits according to its
variability, as given by its class k standard deviation,
o':?(k).

(] the singular vectors u;,v; are allocated bits according

to the average size of the corresponding singular value Si»
as given by its class k RMS value, rs(k), and

) bits are distributed among the 1D transform coefficients of
the singular vectors to achieve uniform coding error in each
coefficient.
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The matnematical form of the allocation rule is as follows:

Bsi
Buij
Bv

iJ

where Bs

INT

INT

INT

o 4

L1og2 (°li:§2 (rs(k))1

L'Iog2 (“:i?g;)(rs(k))ﬂ

number of bits allocated to S5

number of bits allocated to “ij’

number of bits allocated to Vi

standard deviation of S5 in class k,
=2
s

i ki,

standard deviation of uij in class k,

standard deviation of vy in class k, and

J

global distortion control parameter.

(This rule is an approximation based on a particular curve fit to the
performance characteristics of the fixed rate coders used to quantize
the singular values/vectors.)
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As an example, the bit assignment matrices shown in Figure 5-12
were calculated from these rules. The figure iilustrates the bit
assignments for the singular values and left singular vector transform
coefficients (right singuiar vector transform coefficients are similar)
for two classes.

Both inter- and intrablock adaptivity are in evidence. The former
obtains from the difference in total number of bits assigned, the latter
from the selective allocation within the arrays. Note the larger
allocations to the first few singular values/vectors, which are the ones
with largest energy. Note also the preferential allocation within
columns of the singular-vector-coefficient bit-allocation matrix,
reflecting the energy compaction properties of the transform.
Aaditionally, note the evidence of the centroid-of-energy migration from
lower coefficient inaices (top of column) to higher indices (botton of
column), as reflected by the shifting bit allocation pattern as we move
from the first few singular vectors (left side or array) to the last few
singular vectors (right side of array). Finally, note that many
singular value/vector combinations are not coded at all. This is a
result of the highly efficient energy compaction into the first few
terms in the SVD expansion provided by the SVD transform.

5.4.2 Singular Value/Vector Coders

Figure 5-13 illustrates the singular value statistics specific to a
particular class of image blocks. Because each singular value extends
over a fairly narrow range (approximately constant in log space, except
for the last one), and pecause high fidelity singular value coding was
desired (for the same reason high fidelity “dc" coding is in the KLT
case), we selected a uniform quantizer for encoding singular values.
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The procedure employed to encode singular values was:

"" —
] Subtract mean: Sy =S; -S4
. Use a uniform quantizer of Bs1 bits, with lower end -D ;

and upper end D, where

D=J3—(03) =\/§_u?.

The value D describes the extent of a uniform pdf with standard
deviation ¢%. Note: the s, case was handled slightly

differently; the gquantizer extent was stretched to exend down to zero
instead of ~D, if necessary. This is the precise analog of the special
"d¢" treatment included for the KLT, and is included to insure equally
accurate quantization of average grey level for all blocks, and to

thereby minimize blockiness.

As useqg in the KLT case for transform coefficient coding, a Max
gquantizer was applied to encode singular vector transform coefficients
in the SVD case. A tail-modified Gaussian pdf was assumed, and Max

quantizers of 1,2, , 8~bit length were used. The coding procedure

was:
. Subtract mean from coefficients,
° Normalize by standard deviations of coefficients,
° Encode coefficients using BCD representation of the

quantization levels obtained from B“ij or Bvij (as

appropriate) bit Max quantizers.

5.4.3 Coding the SVD Orthogonal Expansion Coefficients

In this enhancement singular vectors are treated differently. The
procedure is cyclic, and is repeated for each of the left and right
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singular vectors. For concreteness, suppose Y (the vector of
transform coefficients for the j-th left singular vector) is to be
coded: A single cycle consists of the following steps.

) Find the basis matrix Bj,
. Find the coefficients a5 =[%;
pra!
anj
. Quantize 8; and output the resulting codeword to the
buffer, and
. Reconstruct a. values for next cycle.

J

A similar set of steps produces gj's from the lj's.

The theory to support this process was covered in Section 5.2.2. {
The topic here encompasses only the quantizers and bit assignments used
for encoding the dij's. For the gquantizer, the same modified-Gaussian
Max quantizer employed for the KLT and the otnher SVD algorithms is
employed here. Coding is performed by the following procedure:

. Determine Bs. as in §5.4.1
(] Determine Buij and Bvij as in§ 5.4,1, using statistics of
% 5 in place of those of Ui 5 {and those of Bij in place
of those of v..)
AN
] Encode % using a Buij-bit quantizer, and Bij using »

Bvij-bit quantizer,

At tne conclusion of this cycle, the next iteration is begun. This
consists of incrementing j to j*1 and repeating the above process for

Sje1 AND Biyy-
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6.0 RATE EQUALIZATION

Rate equaiization is the process of meeting a global target
compressed rate (in pits per pixel). Since the coding algorithms
employed in this study are class-adaptive and since it is generally not
known aheaa ot time how many plocks of eacn class are present in a given
image, it is necessary to regulate the coding process in order to adapt
to changing class population from image to image [6].

The concept upon which rate equalization is based is illustrated in
Figure 6-1 whicn shows tnhe overall coder performance curve, The curve
shows how the coder's output rate (average bits per pixel) depends upon
4 control parameter D. The parameter is a measure of the distortion
aaded during coding: in order to achieve a small coded rate a large D
is necessary; for larger coded rates, a smaller D will do. The task of
rate equalization is to select the D that meets the target rate. Since
the curve depends upon not only the coder, but also the image being
encoded, the problem in non-trivial.

Tne metnod of rate equalization employed in the study is predictive
rate equalization. This means that it is performed prior to coding the

image. That is, no trial-and-error coding is required to meet the
target rate. The correct value of D can be determined before any coding
commences.

Tne determination of the correct global distortion parameter D is
based on two types of information:

(] class-specific transform coefficients statistics, and
. class-populations,

Thus, D only depends upon aggregate image information; it does not
depend upon the actual image data (pixel values) themselves.

The rate equalization problem is solved by determining the value of
D which satisfies the following condition:

VERAC

6-1 4




incerporated

B03181

TARGET
RATE
—pD
REQUIRED
(1]
Figure 6-1. Rate Equalization
Total bits .
: = X N B (D) (6.1)
for image class
k
wnere N

" = number of blocks of class k
Bk(D) = number of bits allocated to class k blocks

Tne quantity Bk(D) represents tne total class k bit allocation
and is obtained by summing over all elements of the class-k bit
allocation array. For the KLT case, the expression for Bk(D) is:

n

B, (D) 1% log, [ﬁgﬂ] (6-2)

where °ij(k) js the standard deviation of tne ij-th element of the KLT
coefficient array Z obtained from class k blocks.

For the SVD case, the
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expression is more complicated; since singular values, (eft singular
vectors and right singular vectors must all be coded:

n Jlef
B (D) = JZ log, ] “" + ng i3 t“‘)'”l“‘) (6.3)

+ 23 log, r;ght ](k);

where og(k) = standard deviation of j-th singuiar value for
class k blocks

rj(k) = RMS value of j-th singular value for class k

blocks
left _ .. .

%u; (k) = standard deviation of i-tn transform
coefficient of j~th left singular vector for
class k blocks

rignt = s . . {

%5 (k} = stanaara deviation of i-th transform
coefficient of j-th right singular vector for
class k blocks

Y = a constant of proportionality.

The rate equalization process thus entails finding D to satisfy
these conditions. For this study, the process was implemented by
performing an iterative search of logD-space, relying upon the convexity
of the R/D curve of Figure 6-1 it insure rapid convergence.

It is important to note that for eacn trial value of D, only a
simple analytical expression (equation 6.2 or 6.3) need be computed and
the resuit compared with the goal to see if (6.1) is satisfied. If not,
a currection to D is applied and the procedure is repeated. Actual
image codiny is not necessary to find the correct D. In addition,
experience indicates that convergence occurs usually in two iterations,
out essentially always by the third iteration,
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7.0 ALGORITHM EVALUATION
Algorithm evaluation was conducted in two phases:
° Preliminary, ana
° Comprehensive.

The preliminary evaluation was aimed at investigating the relative
merits of the various perturbations of the KLY and SVD algorithms
developed under the effort, using a small set of test imagery. Based on
this evaluation, the best members in each catagory were selected and
more thoroughly exercised against a larger set of imagery to compare
their performance with each otner and with the baseline cosine and
Hagamard algorithms.

A1l algorithms were essentially identical in all ways except for
wnich transform appiied. Thus, all had the following features:

(] Class-adaptive coefficient coding,

() Empirical accumulation of class-specific coefficient
statistics (except KLT/P},

. Special, error-free, "dc" coding,

. Same intensity mappings,

) Same blocks labels obtained from block classification,
° 16 X 16 block size,

. Same block boundaries,
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° Same fixed rate quantizers (uniform and Max), and
(] Same rate equalization techniques.
Algoritnms were compared on several bases:
° Coding efficiency: i
—  Mean square error versus coded rate
-—  Mean absolute error versus coded rate
-- Subjective perception of distortion in reconstructed
image versus coded rate
—— Subjective perception of information in error image i

versus codeq rate

. Computation etficiency:

--  Execution time !_
—- Adaptability to nardware implementation

The remainder of this section is divided into two subsections, 7.1 which
summarizes the fingings of the preliminary evaluation, ang 7.2 which
presents the results of the comprehensive evaluation.

7.1 Preliminary Evaluation

Preliminary evaluation consisted of two parts:

() Determination of optimai class boundaries, and

. Algorithm evaluation.

7.1.1 QOptimal Class soundaries

A1l algorithms tested employed class-adaptive coefficient coding.

An important aspect of sucn aigorithms is determining good class
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cefinitions. In this study, a single scalar feature was extracted from
each olock and used to classify the block into one of eight classes,
according to tne value of that feature. Specifically, the feature used
was block a.c. energy:

2 2
R %: SH (—‘— 2 *ij) '
n

nZ ij
ana tnhe classifier took the form:

X is laplea class k IF t, ,<ulX)<t,. i

This portion of preliminary evaluation dealt with determining the best

e 1
values tor ttk$'

Five types of threshold settings were investigated:

(1) Uniform class population in test image,

(2) Uniform class population over many images,

(3) Uniform thresholds in u,

(4) Uniform thresholds in Vi,

(5) Uniform thresholds in log(n).

Evaluation consisted of exercising the baseline cosine coding algorithm
on a particular GFE aerial image, for each of the threshold settings,
over a range of compression rates.

Comparisons were based on mean square coding error (MSE)}, on mean
absolute coding error (MAE), and on subjective comparisons of original,
coued, and error images. The conclusion was that, based on MSE, (4)
performed best with (1) a close second, Based on MAE, (4) again
performed best, but this time both (1) and (2) were close. Sub-
jectively, (4) was judged to produce the best results with (5) a close
second.




Altogether, (4) was selected as vest. Tnerefore, cliass bounaaries

uniform in Vit (uniform in block RMS value) were used for all aigorithms

during tne remainder of the evaluations,

7.1.2 Preliminary Algoritnm Evaluation

§ Tne following algoritnms were compared under preliminary evaluation:

. cos

) HAD

. KLT/P

. KLT/E

° SvD/cOos
® SVD/HAD

] SVD/COS/RO

(] SVD/HAD/RO

] SVD/COS/ORTH :

. SVD/COS/RP

VERAC

20 cosine transform (baseline)

20 Hadamarg transform (baseline)

Class-adaptive KLT using predicted
coefficient statistics

Class-adaptive KLT using empirical
coefficient statistics

SVD using 10 cosine transform of singular
vectors

SVD using 1D Hadamard transform of singular
vectors

Same as SVD/COS but with reordering
enhancement

Same as SVD/HAD but with reordering
enhancement

Same as SVD/COS but with orthogonal expansion
enhancement

Same as SVD/COS but with repolarization
enhancement
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tach algorithm was applied to a GFE aerial image of an airfiela at three
coded rates, 0.5, 1.0, and 1.5 pits per pixel (bpp).

.

Mean Squared Error

Tne rirst eight algorithiis were evaluated first. The last two were
later ennancements subsequently evaluated. Fiéure 7-1 shows the mean
square coding error plots for the tirst eight algorithms. Each curve is
a piecewise linear fit to the three evaluation points (0.5, 1.0, and 1.5
bpp). Curves located towards the bottom of the plot indicate better
coding efficiency than do curves located towards the top.

From this figure, the KLT/E and COS algorithms are seen to perform
best; they add the least amount of mean square coding error of any
algoritnm. Since their curves essentially overlap, it is not possible
to Jjudge relative superiority of one of thes. over the other on the
basis of MSE; hawever, both are markedly superior to the remaining six
algorithms.

The figure also shows the poorest performance is ~-tained for
algorithms employing the Hadamard transform. It is illuminating to
compare the COS and HAD curves to see how much coding efficiency one
gives up to gain the computational efficiency provided by the HAD
algorithm. For example, the figure indicates that the COS performs as
well at 0.5 bpp as the HAD does at twice that rate, 1.0 bpp. This same
effect is in evidence in comparing the various SVD/COS algorithms with
the various SVD/HAD algorithms.

Of particular relevance to this study, the figure shows that the
various SVD algorithms perform significantly worse than the COS or KiT/E
algorithms. The SVD/COS algorithms are superior to the baseline HAD
algorithm but are nonetheless inferior to the baseline COS and the KLT/E.

Aaditionally, the figure also indicates that using empirically
determined statistics in the KLT is superior to using predictedu
statistics oased on a separable covariance model. This indicates that
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Figure 7-1. Coding Algorithm Comparisons MSE versus
Rate Airfiela Image
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tnis moael is not particularly good at characterizing image correlation,
even though use of the KLT transform operators derived under tnis model
go yiela good results when empirical statistics are provided to the
coder.

Finally, the singular value/vector reordering enhancement is seen
to slightly degrade, rather than improve, both SVD/Z0S and SVD/HAD
performance. Tnis indicates that ordering on the basis of singular

value size produces smaller dispersions in singuiar vector coefficient
statistics than does ordering on the basis of singular vector frequency
{or sequency) content.

Mean Apsolute Error

Very similar relative algoritnm performance is i1ndicated by the
mean absolute error curves of figure 7-2. These curves show the
intensity of the error image obtained at each experiment point. Since,
on the whole, the curves occupy the same relative positions in Figure P
7-2 as tney do in Figure 7-1, similar conclusions on relative
performance are drawn.

Subjective Evaluation

Figure 7-3 illustrates a GFE aerial photograph made available for
algorithm testing. The 256 X 256 subset shown was extracted and used
for preliminary evaluation. The results of Figures 7-1 and 7-2 were
obtained by processing this subset. Additional, subjective comparisons
of the algorithms were also performed.

Figures 7-4 tnrough 7-8 show the reconstructed images
opbtained by applying tne various algorithms at several bit rates.
Figures 7-9 and 7-10 show error images for the eight algorithms operated
at 1.0 opp. Several observations were obtained by examining tnese
pictures.
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figure 7-2. Coding Algorithm Cumparisan MAE versus Rate
Airfield Image
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First, the COS and KLT/E algorithms are subjectively best. They
are indistinguishible in terms of subjective performance and yield the
best reconstructed images, both in terms of edge crispness and
continuity and faithful texture rendition. The COS and KLT/E produce
the lowest brightness error images with the least structure in them.
ThéY'aiso produce the smallest number of very bright error pixels.
Recbnstructed images retain all important detail at all three bit
rates: 1.5, 1.0, and 0.5 bpp.

Second, the SVD/COS algorithm performs subjectively well. It is
subjectively indistinguishable from the SVD/COS/RO algorithm. It
renders detail well at 1.5 and 1.0 bpp, although it is inferior to both
COS and KLT/E at these rates. This inferiority is evidenced in several
catagories, including:

. Crispness of edges in reconstructed images,
. Rendition of texture in reconstructed images, and
() Intensity of error images.

On the other hand, the SVD/COS is approximately equivalent to COS and
KLT/E in terms of the structure in the error images and the number of
very bright error image pixels.

Third, the KLT/P is, subjectively, considerably inferior to all
three of the COS, KLT/E, and the SVD/COS (and SVD/COS/RO) algorithms.
This inferiority is consistent across all bit rates and is refelcted in
all the subjective measures just discussed.

Last, the HAD, SVD/HAD and SVD/HAD/RO are worst in all catagories.
Especially noticeable is the error image structure, which appears to
accurately capture the essential structural information in the original
image. Since good performance dictates having uncorrelated error and
reconstructed imagery, this is an indication of poor coding performance.
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Orthodonal Expansion ana Repolarization Enhancements

Due to the apparent poor showing of the SVD-based algorithms with
respect to the COS baseline, the orthogonal expansion and repolarization
enhancements were developed as a final attempt at optimizing the SVD
coder. These enhancements represented an additional effort to exploit
the last possible sources of redundancy in the SVD decomposition in
order to extract as high a aegree of performance as possible.

Both enhancements were evaluated, and neither improved the SVD/COS
performance markedly. The SVD/COS/ORTH was slightly better in terms of
MSE and MAE, but the qifference was similar to the small difference
between the KLT/E and COS algorithms, and no subjective difference was
apparent. The repolarization enhancement produced similar results, but
in its case tne objective performance was slightly poorer, while the
subjective performance was indistinguishable,

Conclusions of Preliminary Algorithm Evaluation g

The following points summarize the preliminary evaluation results:

(] CO0S is superior to SVD/COS,

] KLT/E and COS are tied,

(] SVD/COS is superior to SVD/HAD,

. KLT/E is superior to KLT/P,

E '] HAD performed worst,
[} Reordering does not improve SVD coding,

3 0 Orthugonal expansion does not markedly improve SVD coding, and
[ Repolarization does not improve SVD coding.
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gasea on tnese fingings, the best algorithm in each catagury can be

idqntified:
] Baseline : Cos
) ) KLT : KLT/E
° SVD : SvD/COS

7.2 Comprehensive Evaluation

This subsection reports on the results of the comprehensive
algorithm evaluation. Four algoritnms were applied:

' cos cosine baseline,
[} HAD : Hadamard baseline,

!
¢ SvD : SVD/COS algorithm, and

(] KLT ¢ KLT/E algorithm.

These algoritnms were applied to four test images, eacn one a 256 X 256
subset of a larger GFE image. These images were:

[ Visipble airfield,
° Visible harbor scene,
] Infrared airfield, and

) SAR airfield. 4
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tach algorithm was pplied to each 1mage at three gifferent pit rates:

° Visible airfiela 0.5, 1.0, 1.5 bpp
L) Visible hartor : 0.5, 1.0, 1.5 bpp,
e Infrared airfield : 0.25, 0.5, 1.0 bpp, and
) SAR airfield : 0.5, 1.0, 1.5 bpp.

The total number of image encodings/decodings was thus 48.

Figures 7-11 tnrough 7-26 show the original and coded images
involved in the evaluation. Figures 7-11 through 7-14 pertain to the
visitle airfiela image, Figures 7-15 through 7-18 to the harbor scene,
Figures 7-19 through 7-22 to the IR image, and Figures 7-23 through 7-26

to tne SAR 1mage.

Figures 7-27 tnrough 7-34 give a summary of objective coding '
performance measures in terms of MSE and MAE versus coding rate.

These results can be summarized as follows:

° MSE, MAE, and subjective evaluation yield same conclusions,
(] COS and KLT perform equally well and best,

° Next is SvD,

) Poorest is HAD.

In terms of computational load, the following rank ords-ing applied:

° HAD is lowest,

) COS is next,
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. KLY is tnira, and
. SVD is significantly highest.

In terms of extendability to special purpose hardware, both tne COS
ano HAD are gooo candidates owing to their "fast" algorithms. In fact,
special purpose hardware for 10 versions of these transforms already
exists. The KLT could be impliemented in special purpose hardware, but
it would be significantly more cumbersome due to the requirement to
perform full matrix multiplications. A special purpose hardware
implementation of the SVD is not so practical, owing to its reliance
upon an iterative procedure which is not guaranteed to converge in a

finite number of steps.

In summary, taken together, these observations point to the
conclusion that the cosine transform coder is the best algorithm amongst
those tested. In certain applications where computational efficiency is
paramount, the Hadamard algorithm may be warranted. However, neither
coding nor computational efficiency seems to favor the KLT or SVD in any

case.
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Figure 7-27. Coding Algorithm Comparisons;
MSE versus Rate, Airfielu Image
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8.0 CONCLUSIONS

The principal conclusion of this study is that among the algorithms
tested, the cosine transform algorithm appears to be the best performer
in terms of coding efficiency. Computational efficiency points to the
Hadamarag algorithnm as a better choice, but it suffers a significant
performance degradation compared to cosine as a price. The SVD based
algorithms displayead coding efficiency intermediate to the cosine and
Hadamard, but computational efficiency worse than both. Because special
purpose harudware can be usea to implement it efficiently, the cosine
approach appears best for applications requiring the highest degree of
compression with the smallest coding distortion.

More generally, results point to the success of compressing various
eignt-pit images down to at least 1.0 bit per pixel using the oetter
transform techngques. In several cases, good performance down to 0.5
pits per pixel was also observed. All transform coders performed well
at 1.5 bits per pixel.

Significantly, results demonstratea that aithough the singular
value decomposition produces extremely high energy compaction into a
small numper of singular values by virtue of its being tailored to the
image data, the price of also having to code singular vectors renders
the approach less efficient averall than either the tailored-to-class
; KLT or the fixed cosine approaches. That this observation was constant
i over an assortment of techniques developed to minimize the bandwidth
requirea for singular vector coding suggests that this conclusion is
| robust and that the SVD is inherently inferior for image coding
| applications. In addition, since the Karhunen-Loeve approach yielded
t performance results comparable to the cosine transform, it can be
; concludea that it is the tailoring of the coefficient coding process,

: and not the tailoring of the transform, which is most important in image
coding.
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All of the algorithms tested achieved tailoring of the coefficiznt
coding process via class-adaptivivity, insuring the allocation of
banawiatn to portions of an image where most required. In addition,
these algorithms aistribute bandwidth within blocks to the most
important information that that block contains.

Such adaptivity ensures robustness and the capability to deal with
highly non-stationary imagery. The price is that rate equalization is
required to achieve target global compression rates. In this study, an
approach was employed that guaranteed meeting the specified target rate
through a process of predictive rate equalization, which was based on
plock class populations and class-specific statistics and which avoided
trial and error coding.
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APPENDIX A

DERIVATION OF THE SEPARABLE KARHUNEN-LOEVE TRANSFORMATION
AND ASSOCIATED STATISTICS

In thic appendix the separable KLT is derived and the predicted
statistics of the resulting KLT coefficients are determined from the

block mean and row and column covariance matrices.
A.1 Model
A block X is assumed to possess a separable covariance function.

Such a situation can be modeled by assuming that block X is generated by
an outer product matrix multiplication on a zero-mean, stationary white

matrix:
X = HWGE + X (A.1)
! P
where e H and G are normalized so that
tr Ht H = n
t
tr G G = n (A.2)
o W is an n x n matrix of 02 variance, uncorrelated, zero
mean random variables W = [wij]’ i.e.
E wij = 0
2 2
E wij = ¢ (A.3)
E = 0 for (p,q) # (i,J), and

¥ij ¥pq

e The n x n matrix X is the mean of the block X.
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Figure A-1 illustrates the assumed model. That such a model
results in a separable covariance can be verified by determining an
expression for the covariance of pixels xij and qu in X.

) (x - X_ )

c{1,3; pa) = Elxyy - x g ~ *pg

1)

Elef(x - X) ;) [ef(x - ¥) g]

(Here e, denotes the unit vector with ith
element 1 and the rest Q)

]

t t t t,t
= : . H
E[g‘ HWG gj] (e, GW e

t t t oyt yt
= e; . H
e HE {WG g5 & GW } &

= g? H [Trace (Gt g; g; G) 02 1] Ht &
= g? At & " o2 * Trace(Gt &; g; G)
= of (b mut e,) (e a6’ e)
= C, (,p) * €y (3,9) (A.4)
where ¢y (up) = @ €] HHtgp, and
¢y (G0) = o §_§ GGt e

Since ¢(i,j; p,q) can be written as the product of two functions each
separately dependent upon vertical and horizontal pixel displacement,
equation (A.1) is seen to model a block with a separable covariance
function.
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A.2 KLT Derivation

The objective is to find a separable, unitary transformation from X
into another array Z:

t

Z = U”Xv, (A.5)

such that the Zij
compaction into the upper left-hand corner of Z. Note that because U

in Z are uncorrelated and have maximum energy
and V are unitary:
t .
X = Uzv-, (A.6)

i.e., X is recoverable from Z via the inverse unitary operation.
Another way of writing (A.6) is:
n

Z:: Us Vs
TS T

where u. is the ith column of U and Y; is the jth column of V. X is
thus a weighted sum of basis blocks u, l}-

According to Shannon, optimum coding dictates selecting U and V
such that the Z;
expressed as:

j are uncorrelated. The coefficient zij can be

t
zij = u; X ¥; (A.8)
Therefore
£z = WX, az (A.9)
ij =i = = %)
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and

)t

E [g'i: (x - X) ¥4l [ﬁ (x =%)" u]

E (o} (Hi6®) v,] [y} 6" HE uy)
t bont t ottt
= Uy HE WG v vy GHOyH g
= g§ H [Trace (thj l% G) ol 1] nt Y

= (EE HHE gk) ‘ 02 * Trace (Gt !j 1% G)

2 t t t t
= g (g]. HH _qk) (_V_j GG y_]) (A.10)
Consequently, the zij will be uncorrelated if
wHrty, = 0 fori 4 k
t At .
Y5 G6" vy = 0 forj 4 1 (A.11)

i.e., if U and V are the matrices that diagonalize Hit and GG
respectively. These latter matrices are related to the row and column
correlations in the block X:

E Mx-% (x - 7)‘{ £ }Hwe‘ out HE!

HE }uet ew: ut

2

= Ho® * Trace (6* 6) 1 * WY

= 0% " n - wunt
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and

£ :(x -t (x - M){ = o n - get (A.12)

an
and
eet - L ol (A.13)
ozn
where C™°% and Cco] are the row and column covariance matrices of

LE(x-%) (x-%Yand E (x - 1) (x - X).

The U and V matrices can therefore be obtained by solving the
following eigenvector/eigenvalue problems:

(._l_ Crow) U = U ATOW
O2

n
(__%_ Ccol vV o= V/\CO]
on
where
ATO% - Diag (x?, xg,..., xi), x? 20
col : ¢ .c c c
A = Diag (xl, Agseens xn), ¥ 20
Because C"°% and ccol are positive semi-definite matrices, both U

and V can be found which are orthogonal.
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A.3 Predicted KLT Coefficient Statistics

In order to code the Zij’ the corresponding mean and variance are
required. Using the U and V calculated above, the mean is given by
(A.9), and the variance by the specialization of (A.1C) to the case
vhere k = i and 1 = j:

= 2 2 t t t t

E(zy; - 255 = o [2.1' HH™ u,] [.‘.’_j 66 lj]

1

2t 1 t, 1
o [L{i ( 02n Crow) !'i] [_V_J ( oZn CCO]) !J]

|}

= 02 xr.‘ AC. (A'13)

For the greatest energy compaction into the 23 with the smallest
indices, we impose an ordering on the columns of U and V such that

3

xi > xg z... 2A§ (A.16)

The mean and variance of the Zij can be compactly summarized by a

matrix form of equations (A.9) and (A.15):

7 - (7] = (Ez] = ut xv (A.17)
and
2 = \2 2 r ct
S = ["ij] = [E(z"lj-zij)) = o A A (A.18)
where
r o}
M M
N N
A" AC
n n
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APPENDIX B

HOMOGENIZING IN TRANSFORM COEFFICIENT SPACE

In order to smooth out structural artifacts induced in coefficient
sample statistics due to too small a sample space, the sample space is

artificially expanded by the addition of new members synthesized from
original members.

In particular, statistics of the coefficient arrays
7 = utxv

are required, where X is an image block and U and V are specified
unitary matrices. The sample space of Z's is

6= 12: 7 =utxv, xef)q

where fk: is the sample space of image bliocks X, consisting of all m x n
blocks X obtained by partitioning the designated images (often m = n}.

/
The sample space <§ is expanded to.é}' by expanding C{_to ik;.
This latter expansion is obtained by including the following blocks

in 92':

For all X in ?C;

. Original: X = [xij]

1 ] Horizontal Flip: X [xi,n+1-j]
. Vertical Flip: V- [xm+1-i,j]
. Double Flip: XHV = [Xm*l-i,n+1-j]

@ VERAC
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For square case (m = n), also include:

] Transpose of X: X' [xji]

. Horizontal Flip of xt: xt o [xj,m+1-i]

. Vertical Flip of xt: x!V = (Xqo1-g, 1]

o Double Flip of x': XMV o [x ) o ow )

B.1 Flips

Now, rather than expand ?C,to ?(J and apply Ut and V to the
resulting large set ?C‘, a more economical approach is to determine the
elements of /%f from /§ directly.

For this purpose, note that the flip operation is characterized by
the operator

-
L}
-

i.e., the 90° rotation of the identity matrix. Let F" and F"
represent the n x n and m x m versions respectively. Then the blocks

XH, Xv and XHv are related to X by:

UL

Xv = me

XHV fM xgn

Also note that Pt F = F'l.
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B.2  scumption
We will assume that U and V have special symmetry properties:
U = W',y = "

where J", " are square matrices of the form

This property means that the 1st, 3rd, etc. columns of U are symmetric
about their midpoint, and that the 2nd, 4th, etc. are anti-symmetric.
The foilowing transforms have this property:

) Cosine

) Sine

) Hadamard

. Slant

] Karhunen-Loeve when U and V are based on covariance matrices

symmetric about the ortho-diagonal.

8.3 /' from / Directly

/i 7
. .. H v HY
Based on all of this, the coefficient arrays 7', 7' and !
obtained from XH, XV and XHv can be predicted from Z alone:

Moty 2 wtE™ oy - et xE" vy - ut
= ubxva™y - b oxwd”

AL
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AT U R (LT 'S I A (1L 2 W ('
W ™) xv o« (A o)t v
W™t xv = (3" oty xv
= "z
ZHV = Jm g0

In the square case, m = n, the coefficient array ZTrans resulting

from Ut Xt V is not necessarily the transpose of Z = ot xv. In
cases where it's not, the following coefficient arrays are added to 45:

. ZTrans
TransH Trans
(] z = [ J
Transv Trans
[ ] 2 = JZ
VH
. ZTrans - JZTrans J

In those square cases where U = V, the situation is simpler since
77rans | 7t and the following arrays -- all obtainable from Z
directly — are added to /5':

) Zt

0 Zt J
o it

o Jty
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B.4 Statistics

Mean:

Mean
Square
Value:
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incorporated

The mean array Z obtained by averaging over all
elements of /L' can be obtained by averaging the

following over al) members Z of {and for the second
Trans

case 1 of Trans):
m#n: %[Z + Zv M s ZHV]
1
= Z[1+3) 201 + 3]
101 0 101 0
- 0, z 0
0 1, o lo
1 0 1 0
0 T 0
m=n: U £ Vs %_ . (1 +1 rans) .
o o o o
VR LR
m=n; =V 3 {(z+127)
o lo o Lo

The mean square value array of the set /%‘ can be
directly obtained by element-wise mean square
averaging of the following over all members Z of
(ang 277308 of ATTANS o0 the 2nd case).

mEn: 2

m=n, U gy z,20TaNS

man, U=V: 2, Zt




APPENDIX C

OPTIMAL CODER ASSIGNMENTS FOR KLT COEFFICIENTS

We pose the coder assignment problem as one of minimizing the total
coding error ErTOT subject to not exceeding a maximum bit allocation
BMAX' To be specific, suppose there are L blocks in an image. Then the
total mean square error is the sum of each individual block's error:

Erpor = Z]) E(1) (c.1)

and the toal bit allocation BTOT is equal to the sum of the individual
blocks' bit allocations B(1):

Bror = 2]: B(1) (c.2)

The optimization problem can be posed as:
minimize ErTOT
(C.3)
subject to BTOT = BMAX

This is most easily approached as a Lagrange multiplier problem in which
the functional J is formed:

+ A[B

.
[

Error * AlBror - Byax]

Z]: Er(1) + A Z]:B(l) - Byay] (C.4)

The optimum values of B(1) are found by taking partial derivatives of J
andsetting them to zero:
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This yields

gEr(l) = 1iees
53-(—71] = - A, 1=1,---L, (C.6)

where the multiplier X is given by:

dEr
_ T0T
A = - W—"—‘ ’ (C.7)

TOT

which is the {negative) slope of the overall coding error/coding rat~ curve.

Now, since A is global and does not depend upon the block index 1,
we see that if A is known, we have L independent problems:

g ‘(T}‘Er(]) = (c.8)
which means that each block's bit allocation can be separately

determined. The key point here is that ) provides global fidelity control:
specifying A determines where on the coding error/coding rate curve we
will operate. Armed with that information, each block's allocation

follows by solving (C.8) for the appropriate 1.

The problem of specifying the correct A to insure constraint
satisfaction (BTOT < BMAX) is called rate equalization. It is treated

in Section 6. For present purposes we consider X given.

C.1 Single Block Problem

To solve (C.8), it is necessary to expand both Er{1) and B(1).
Since each block is separately solved, we will drop the "1" argument for
notational simplicity. Adopting the energy error measure, we have

n

Er = Y E(xy; - X

)2
i WU

(C.9)
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where gij is the reconstructed version of pixel Xij: Because the KLT is

unitary, this last expression can be computed equally well in the
transform domain, yielding

n
Er = X E(zy - 2,.° (C.10)
ij=1 J
where Eij is the reconstructed version of coefficient Zij‘

Also, the total bit allocation for the block can be expanded in
terms of the bit allocations for each coefficient, yielding

n
B = Bys (C.11)
ig=t M
where Bij is the bit allocation for Zij‘ What we ultimately seek are
the Bij S.
Now, we notice that (C.8) is one of the necessary conditions t
required to solve the single-b5lock Lagrange multiplier problem,
> A "
IV o= Y E(zes - 2,0 +A[ LB, - B] (C.12)
i3 1l 1J i3 1)
which arises from wanting a sclution t3 the following constrained
minimization problem:
minimize Er = 2: E(zij - iij)z
1 (€.13)

subject to B = 2: Bi"
ig M

The remaining necessary conditions for the single-block Lagrange
multiplier problem are obtained by setting to zero the partials of J'
w.r.t. the Bij‘

NRY-
"%J_. o 2 - By +
3B, 3 Bj;

(C.14)

"
o
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or:

Y4
2;5 " Zij)
BBij

AE(

"
i
>

(C.15)

Thus, again the problem reduces in scope: Now we need only solve bit
allocations for a single coefficient at a time.

C.2 Single Coefficient Problem

For this we need a relationship connecting E(zij -3,

We make the following assumptions:

i and Bij’

. E Zij = zij = E Zij’ i.e. the coder is unbiased.

[ The random variables Zij all share the same form of probability
density function (pdf) with each parameterized by its mean E}j
and variance oijz.

° Quantization is performed by first subtracting E}j from zij’
then dividing by 00 then finally passing the result
through a Bij - bit (ZB‘J - level) unbiased quantizer.
Reconstruction re-introduces the 93 factor and biases the
result by Zij‘
These assumptions are all in force for the coders used in this study. Under
thase conditions
A N2 2

i ij) = 95 f(Bij), (C.18)
where f(*) is a monotonically decreasing positive function depending
upon the assumed pdf and the type of quantizer.
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The analytical form of f(B) is generally unwieldly, and common
practice is to employ a simpler curve fit. Specifically, a fit of
the following form is used here:

f(8) - b 2°8/2

{C.17)
where b and a are parameters tailored to various types of pdf's and
quantizers. For example, for the case of Gaussian pdf's and Max
quantizers -- which we use for KLT coefficient coding -- good upper-
bound values are b = 2.2 and a = 0.5. Good lower-bound values are b = 1
and a = 0.5,

Given the fit {C.17) and the expression (C.16)}, the necessary
condition (C.15) reduces to:

-B../a
og5° (2) (bra) 2 0 = (c.18)
which yields:
0..2
(* - 5wz)
For our cases of interest, a = 0.5. We also denote
1/2
D = (ﬁ%‘f) (c.20)

to obtain

O
- i
By log, —ﬁi (c.21,

This last expression tells how to determine the bit allocation Bij from
the coefficient varfances 95 and the global distortion control parameter D.
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APPENDIX D
HOMOGENIZING SvD'S OF PRETRANSFORMED BLOCKS

We begin with Ut XV = S, where X is derived by applying either
the cosine or Hadamard transform to the rows and columns of a pixel
block x. We wish to find the singular values and left and right
singular vectors for homogenized versions of X.

D.1 Flips

Corresponding to the set x, xH, xv, xHV of flipped pixel

blocks are the following transform blocks:
x, x3", ™ x, 9" xJ"

where J", J™ are the n x n and m x m versions of the matrix:

Note that this matrix has the property that:

AR LI
Therefore, if vt xv = s,
ut (™) @ V) = s
@@ x)v = s
(@™ 0t @™ " @) = s
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Therefore, to homogenize the SVD wrt flips, average over the following:

. singular values: S only
° left singular vectors: U, J" U
. right singular vectors: V, v

D.2 Transpose (Rotation and Flip)

Since the transform of x is X, the following relationship:

t

bttxy = s o vtxtu - s

tells us to homogenize wrt transposes by

. singular values: S only
) left singular vectors: U and V
] right singular vectors: U and V
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APPENDIX E
SVD ORTHOGONAL EXPANSION COEFFICIENT STATISTICS

This appendix constitutes an analysis to determine the first two
moments of the coefficients {“ij} from the singular vector statistics
{uij} and {uzij}.

E.1 Problem

At the jth step, the orthogonal s1ngu1ar vectors Uys” "’!j-l
been quantized, transmitted, and decoded as ul, "'93-1' These
vectors are then used to find an orthogonal basis for the jth step

{assumes the Qi's are orthogonal).

have

- AN A ’\N N N N
Bj = [ Uys Ups- ..,uJ 1 g: §j+1""’§m]
where
o= =L
‘“1‘ |
-1 i-1
t ~N, ~N t Ny N
= e - (eb oy (e by) b
=i i =1 SR =5 1 11 =
N 1
b, = —— b
-1 lbl |
~
Then express u; as
Lt N Zm: N
u, = - a,, U + s b

We wish to find the statistics aH and -?' of these coefficients in
order to encode them. ik
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E.2 C(Case l

ai.for i<

J
oy T uibyy T Y
=g§(g,--'§?) Vo= u-u
Eag; = {Q@s(ﬂ)=o
tad; = € (ub W7

=i = =3
!
_ AN N t
= trE (Ei ' ) E (uJ _qj)

m  —
z e T2
= u T
k=1 Ki kd
\
= di . -u—f; (This uses TP in place of E:, i.e.,
k=1 uses |u;| = 1 in order to obtain a
linear-in-d expression for a%.)
= d
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= u; b, .
D51 9N
1 t [ ~N ~N N N
= u: |e; - U;q Uzq 4 (bs.:): (t_;_..).]
bij J L il " k=3 171 =375 q
- Z > |
1 [ " N
= U, - Usqy Oqps - (g.).a.]
gij ij =1 it 1y 125 1371 71 ?
For simplification of notation, we will henceforth denote Qij by b,
notationally supressing the dependence of b's on the stage j. g
S 121 N N N 1
b, = e - TATA byy b , by = b,
=i = 111 - 12=J. il, 12 i _5'. =i
j-1 i-1
2 2
o.o lg-ilz = 1 e Z_ a:“] - Z_ b:“]
G.i =
Eai =
2 =
%
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"3
w/. E
o] ~ E
7_ E _ =}
o 3 |5
2 -
+ o _2 £
E Zz o~
= o — - =)
s < N E
o — —
. AR o
— .
3 A E ~ .
o - Vmus.
a-vl ——
- o~y —
— ! " — — — 7N —
— — — z - ! [ 0
o] <3 —
+ T ————— vy
~ —~ — D "
= — W " + had —
Ll ~— — ~ .
0 3
e 7._ —
o] +
—4 — +
= — wu-l ™ o~
=4 _2 — - —
& — Z v
- — <3 — 0
— ™ _uz = =1
.1.|_ ~ — o~ . - ~— — S — -
— U 1] [} ]
+ — -ﬂ. — - —
_)— "
— o b —
1..— H " _Z.J -
. —t ] = -
— > o~ 3
o
+ 1 + + +
T.J
o=
3
"
N o
=]
w
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2
i-1 ~—5\ i-1 ili—
2 i 2
(ZH)Z T T(F) 2
155 1= 1=

i-1
SR S D Y+

- SR
= u‘ij [1 + 1-§ u11 ]
E.4 Summary
{
aij = 0

x|
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APPENDIX F
SVD COEFFICIENT CODING: BIT ALLOCATION
SVD black reconstruction error is given by:
f\' ~
X = X-X
= ; X] - ]Z X1 (x =Zx] is inverse SVD, X] = s, 81.
where B8, = u, \L:)
= ; (X - X;) |
i
= ; (sy By - 5y 8y) |
1
n, 4"
- Z:, [sy By - (s - 578, - 8;)] '
s 2 [s, B B, +s B +% B -% 8]
R wli Tt W Tt B Bt B 1515
N ", NN
= ;[51 B]"‘S] B]'S] B]]
Iy N
4 ; X,
where
Sy = 1th singular vector i
B] = Y 1% ... Ith basis block
. Y]
! sy = quantization error in $1
N
81 = quantization error in B]
incorporated




The squared reconstruction error is then

w - [z 24"

1 k
t
N, n, NN % 4" N
= [21:5131"51 By - 5 Bl] [% SkBk+skBk'SkBk]
- XX B 8t +s. 5 B, B s 8, 8t
T sk BBt s s B Bt s s B R
(F.2)
s Sy s, By B B, B
* 5y s By By +osy s By B - sy 5 By By
N 47 LA VI VA Y t NNV '\,t
-5 skB] Bk-s] skB]Bk+s] skB] Bk
!
Now assume:
. Sis S uncorrelated for all i + j
N 4"
. i sj uncorreiated for all i # j
(F.3)
. ?‘li‘ S uncorrelated for all i + j
.
] Bi’ BJ. uncorrelated for all i # ]
A" % .
Then X; uncorrelated with XJ. for i # j (assume Gaussian).
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for uncorrelated Y1's:

MSE = }]:Etr X, 3(’: (F.4)
A ot
S let ey = trX X (F.5)
Then, supressing subscripts:
e = tr :sz E Bt +s g E Bt - s g E Et
+ ssBBt+%aRt -SSRt
B F AU S AN (F.6)
We next want to take the expected vaiue. We will apply this
theorem:
Theorem Xi's zero mean, jointly Gaussian » Ex1 Xp Xq Xy
= Ex1 Xy Ex3 Xa
+ Ex1 X3 Ex2 Xy
+ Exq %y Exy xg (F.7)
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The form this takes for us is

t t
E $1 S B1 82 £ $1 Sy E B1 82 + E $q B1 E S, B

t
+t So B1 E s1 82

Note: We are assuming that Sy ?1, B], E] are jointly Gaussian.

Now, applying this to each term of the previous expression for
e generates terms involving:

n, [AVENAW
eset,esB ¢t e8at

n N
EsB, EsB, EsBandetE

We assume those underlined to be zero. This results in:

where overbar indicates expected value.

(u-0 (v-%t

V] 4% AV T
-u vt - vt +u v]

QA

(F.10)

(F.11)




Now we want

| Thus :

A"
£ tr R 8"}

Also, B B
tr B B

E {(tr 88
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t

)

[E LV LI R N LI IV
ru vty it e VPV Lt LW VY ut
VIV 4"} LAV V!
Uty Et -y Vt vub+u vt v Et] (F.12)
to take tr {E {+} }. In doing so, we will assume:
LAV
u, v uncorrelated
u, v uncorrelated
n,
u, u uncorrelated
N
v, v uncorrelated (F.13) ;
1 |
= ey E Vv et VEVE V- EUE Y EVEY
rEdtueVtvrE eVt V-Gt ue VPV
CEVEUEVE Vs Bt B EVE e E Rt U EVEY
n, V)
= e1U12 Elvi? + EJul? €]V)2 + E1U)2 E1V)2 (F.18)
t ¢ t .t 7
= (uv)(uv) = uv vu
= wtuvty
= elul? £jv|? (F.15)




Now:
ES? = (B) f (n) . of o= Esf - (Es)?
2 2 2 2 2
E S, fu(nu.) . o, = Euy - (Eui)
h] 1 1
a2 2 2 2 2
EVS = °v]. fV (nvi) . cvi = Evj- (Evi) (F.16)
Finally:
vy ~o aary Y2 Aot
e = % tr BB + &2 tr BBY + &% tr BB
Tt - F ot
= (o243 tr B8 + (oF 7, (ns)> tr 88% + (of 7, (ng)) tr BE°

= (?2 + og (1 + f (ns))) tr Ww‘ oz fs (ns) tr -B—BT

Yy

[;2 + cg (1 + f; (ns))] . [? 051 f, (n

) }J_:(vf + o§i>

2
+ Eo f {(n
i Y vy

2
) ?ov fy ("vj)]

2
+ o fs (n

S

2, 2 - 2
) 2T+ o) ‘JL(vjwv)

i J
We will be interested in partial derivatives of this expression w.r.t.

Ngs nu1 and nVj
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3"5 S i i i
—2 . ; afs(ng)
. {JZ'(VJ. + Ovj) + ?ovj fv ("vj)] ) an
.2 —2 2
- & [BfEe e, (nui)))]
3f (n,)
2, 2 S_S
[‘J‘:(VJ + 0“3‘ (1 + f, (nvj) }] ——3—-;—- (F.18a)
%%g—- = [-5-2 + 02 (1 + fs (ns))] [Z (V? + 0‘2 (1 + fy (nv)))} 0121
H
3fu(nui)
. - (F.18b)
i
;E‘e - [52 + ol (1 +f (ns))] [;(62’ + Uﬁi (1 +f (ﬂui)))] tsz
Y
afy(n, )
. j (F.18¢c)
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Now, using the fits:

"

-n/a
fe (n) bs 2 s

p 27"/ (F.19)

1]

f, {n) = f, {n)

we shall find explicit expressions for the remaining partials:

af, (n,) b
s 'S s -n./a
—_— = =) 2"5"s In2
ans (as)
af (n. )
Ut
i b\ ,-n,/a
T '(5)2 W In 2 (F.20)
of (n_ ) !
VYV,
J_ . _{b)o,-ny/a
on (a)z V& n 2

Now, to find expressions for bit allocations, we wil) solve the following

problem:
minimize MSE
}
subject to 2: fn, + 2: n + 2: n = N (F.21)
T 18y A T
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We will approach the problem via Lagrange multipliers. That is, we form
the functional

J=Mss+x[2ns]+ Z}:; n o+ sz: n

]- NT] (F.22)

1 Upn Vi
and set the derivatives aad s 3J . 3J equal to 0.
nS anu. anv_
1 il J1
From the previous expressions for Ee (one term of MSE = 2: Ee]),

we have:

b
« (1n2) (—5)2'“5’35 = A (F.23a)
[§2+02 (1+b2'“s’°s)] . o -[Z P+t (1 +b2'nv./a)]
S S i . Ve J
« (1n2) (g-) 2"y, /2 = (F.23b)

[52 +od (14 bSZ'"s/as)] . [Z W@+ o (14 627"y /a)]
i Y

- /
vo2 () ( )2""3- P (F.23c)

J

oo

for every term Ee1 in mSE,

VERAC
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where A is the value of the sensitivity of the total error to the total
allocation:

OMSE  _
3ﬁ;— = =) (F.24)
To solve (F.23) we begin by noticing that the MSE in the various
elements of u are equal, and similarly, that the MSE in the various

elements of v are equal. We express this as:

2 -, /2 - .
o”i (b2 *§ ) = du v i=1,...,m
(F.25)
2 -n,./a _ .
O (2 '3 ) = d, Y i=1,...,m
!
The truth of these statements can be established by ratioing F.23b
{and F.23c) for different i (and j).
We now simplify (F.23) by writing:
-n_/a
g - el (1eb2 5%
-n_/a
- Peleddb 2 ¥F (F.26a)
{
.z, o .
= s ds R where dS is defined as implied.
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-n_ /a
U - Z@ etz Yy
: u
i i
-n_/a
= 2: Gf + oﬁ + cﬁ b2 Yy
i i i
- Z(Z+q)
3 u
- 2
= 2: u; + mdu
i
= lg|2+md
and similarly:
'y/ = lvl2 + nd,.
- v
Now, we introduce first order approximations:
° ds << ;Z : x/ = ;?
o md, << w? U - lfl = 1
AL ST

VERAC
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(F.26b)

(F.26¢)

(F.27a)

(F.27b)

(f.27¢)




Therefore, the equations (F.26) simplify to:

Aas
g (F.28a)
4y = ﬁ'i (F.28b)
7
S
d, = T%%’“l‘ (F.28¢)
2

In 1ight of this, it is convenient to solve (F.25), and the definition
of dS {(in F.26a), in terms of the bit allocations:

2
b
n_ = a_log % S (F.29a)
3 3 2 35
2
n = alog ! (F.29b)
uy 2 du
ns - b
= 1
nv1 a log, '_H;-—— (F.29¢)
lacorporated




Finally, combining (F.28) and (F.29):

o
P 1092 —02-
2
i
TR TR
0 3‘5)
s
2 7
= i
nvi = a 1og2 ;B—S—
"lap
s
where
Aa
2 _ C s
0= d/bs = T,
@_lnovponud
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MISSION
of
Rome Awr Development Center

RADC plans and executes nesearch, development, test and
delected acquisition programs in suppont of Command, Control
Communications and Intelligence (C31) activities. Technical
and engineering suppont within areas 0f technical competence (&
48 provided to ESD Program Offices (P0s) and other ESD “
elements. The principal technical mission areas are %
communications, electromagnetic guidance and control, sun- o,
veillance of ground and aerospace obfects, intelligence data <
collection and handling, infonmation system technology,
Lonospheric propagation, solid state scdences, microwave
physics and electronic neliability, maintainability and
compatibility.
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