
" bAu £I 10 SYRACUSE WEZV MY SCHOOL OF COMPUTER AND INFORHAYZC -CYC F/S 9/2
PROVING PROGRAM CORRECTNESS. VOLUME V.(U)
NOV 61 .J C REYNOLDS F30602-77-C-0235

UNCASIFED hDChhE37-VLhEN

E~hEEE1hhhhhE

326

QjQ 1.2.5 211..i~ . 0H .

MiCROCOPY RESOLUTION TEST CHART
NATIONAt lfl t '' 7'Nt 'P

LEVEL(
RADC-TR4-0479, Vol V (of five)
Final Technical Report
Noveber 1961

PROVING PROGRAM CORRECTNESS

Syracuse University
MCC

John C. Reynolds

APPROVED FOR PUBLIC REEASE; DISTRIBUTION UNLIMITED

ROME AIR DEVELOPMENT CENTER
Air Force Systems Command
Griffiss Air Force Base, New York 13441

.8202 11078

This report has been reviewed by the RADC Public Affairs Office (PA) and
is releasable to the National Technical Informtion Service (NTIS). At NTIS
it will be releasable to the general public, including foreign nations.

RADC-TR-80-379, Vol V (of five) has been reviewed and is approved for
publication.

APPROVED: .

CLEMENT D. FALZARANO
Project Engineer

APPROVED:
JOHN J. MARCINIAK, Colonel, USAF

Chief, Command and Control Division

FOR THE COMNE

JOHN P. RUSS
Acting Chief, Plans Office

If your address has changed or if you wish to be removed from the RADC
mailing list, or if the addressee is no longer employed by your organization,
please notify RADC. (ISIS) Griffisa AFB NY 13441. This will assist us in
mainta~ning a current mailing list.

Do notbreturn copies of this report unless contractual obligations or notices
on a specific document requires that it be returned.

* I - I

UNCLASSIFIEn
SEC1URITY CLASSIFICATION OF THIS PAGE (Biss Dwe resU..

REPORT DOCU MENTATION PAGE BEFORECOPEIGFR
1. GOVTIN ACCESIO NO 95 . ECIPIEN1"S CATALOG NUMBER

4. TITLE (4id Subtil) S TYPE or REPORT a pEl"IOD COVERED

Final Technical Report
PROVING PROGRAM CORRECTNESS 1Oct 77 - 30 Sep 80

6. PERFORMING 0O4G. REPORT NUMBERt

7. AUTNOR(s) II. CONTRACT OR GRANT NUMOCIIII.)

John C. Reynolds F30602-77-C-0235

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT PROJECT. TASK
AREA & WORK UNIT NUMBERS

Syracuse University520
School of Computer & Information Science 5810
Syracuse NY 13210 ______________

11 CONTROLLING OFFICE NAME AND AODRESS 1Z. REPORT DATE

Rome Air Development Center (ISIS) 4ovember 1981

Griffiss AFB NY 1344113NUBROPAE
14. MONITORING AGENCY NAME & AODRESS(lf different fromi Controling Office) IS. SECURITY CLASS. (of tis report)

Same UCASFE

Sm. OECLASSIFICATION/DOWNGRAINGIpASCHEDULE

16. DISTRIBUTION STATEMENT (of tis, Report)

Approved for public release; distribution unlimited

17. DISTRLBUTION STATEMENT (of Ihe abstract entered in Block 20. it different from. Report)

Same

IS, SUPPLEMENTARY NOTES

RADC Project Engineer: Clement D. Falzarano (CO)

I9. KEY WORDS (Continue an reverse side it necessar old td&Ot' 'i number)

Programming Sy Stems S.. - nulation
Pr~ogramming Languages Sche,!%L -g Algorithm
Programming Grammars Logic Programming
9roving Programs Correct

/Computer Modeling) *0. ABSTRACT (ContInue on rev'erse side if necesetr, and identify by block numyber)
Thee"Language Studies" contract is divided into four project areas, all of
which are directed to the problems of effectively, reliably and efficientli
using modern computers in a wide range of applications.

Three of the projects deal with methods of communicating with computers.-
Task 1. Very High Level Programming Systems (P.1.: J.A. Robinson). This

group is working towards combining the features developed to support work
in the area of artificial intelligence and those used in general program

DO A7 1473 EDITION OF 10 NO6S IS OBSOLETE ITNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (When Dee. Enterd

UNCLASSIFIED

sECuRITY CLASSIFICATION OF THIS PAGE(f1 Does Enteto)

development into a new conceptual framework tat can be understood and
used by a large community of users. Task 2. Proving Program Correctness
(P.I.: J.C. Reynolds). This group is working towards programming languaje
designs which increase the probability that specification errors will be

detected by the compiler or interpreter and to provide the language
facilities so that users will more nearly be able to prove that programs
perform as they are specified than is currently possible. Task 3.
Grammars of Programming (P.I.: E.F. Storm). This group is working toward s
the development of methods which will allow users to communicate with
computer programs in terms more normal to their every day communication
forms. Task 4. Systems Studies (P.I.: R.G. Sargent). This group is

working towards developing more sophisticated and efficient models of
computer systems which can predict system performance when given particula
parameter values. The current efforts concern models of transaction
processing systd a (TPS).

A.09ggjof For

_RA&
D~~str~t , tjon.. •---

.A v a i l Ab i Y C o d e s

Dis@
,a

UNCLASSIFIED

SECURITY CLASSIFICATIO r 1-, PAGErhon Dos nferd

Preface

This report describes efforts completed in the Language

Studies project at Syracuse University under RADC contract

F30602-77-C-0235. The work covers the period October 1, 1977

through September 30, 1980.

The report is produced in five volumes to facilitate single

volume distribution.

Volume 1. Report from the Very High Level Programming Systems

task. Report title is "Logic Programming in Lisp".

Volume 2. Report from the Systems Studies task. Report

title is "Multiple Finite Queueing Model with Fixed

Priority Scheduling".

Volume 3. Report from the Systems Studies task. Report title

is "An Algorithmic Solution for a Queueing Model

of a Computer System with Interactive and Batch Jobs.

Volume 4. Report from the Grammars of Programming task. Re-

port title is "Integrated Parallel Processes: The

Elements of Meaning in Language".

Volume 5. Report from the Proving Program Correctness task.

Report title is ,Proving Program Correctness"

lii

The main goal of our research over the last three years has been the

development of a programming language with the basic character of Algol 60,

but without the major deficiencies of this language.

Of course, Algol 60 had a pivotal influence on language theory and

design when it was first introduced nearly twenty years ago. However, the

long-term result of this influence has been languages that are quite

different than Algol 60, and which overcome its deficiencies at the expense

of introducing new, quite different limitations.

On the one hand, Algol 60 inspired the development of semantic models,

particularly by Strachey and Landin, which in turn led to the development

of languages such as ISWIM, PAL, GEDANKEN, and, in a somewhat different line

of development, Algol 68. All of these languages are "higher level" than

Algol 60; in particular, they require a heap (garbage-collectable store)

for their implementation, and make it difficult to determine whether a

particular data item is stored in a stack or a heap.

On the other hand, the machine implementation of Algol 60 led to the

design of languages that avoided various inherently inefficient features

of that language. At the same time, Hoare's development of axiomatic

language definitions has encouraged the abandonment of certain features,

such as procedural parameters and call by name, that are difficult to treat

axiomatically. This line of development has lead to languages such as

PASCAL, EUCLID, MESA, and ADA, which are all "lower level" than Algol 60.

-2-

Our own goal has been to improve and extend Algol 60 without

changing its basic character. In particular, we want to retain both the

use of stack storage allocation and the power of the Algol procedure

mechanism.

A first step in this direction has been the development of an

idealization of Algol that is described in the first part of Appendix A.

In this language, the type structure has been refined to permit the complete

syntactic detection of procedure parameter mismatches, lambda expressions

and fixed-point operators of all types have been introduced, and a wide

variety of language features have been described as abbreviations for more

basic structures. (In Landin's phrase, they have been reduced to "syntactic

sugar".)

The main shortcoming of this language, as of Algol 60 itself, is the -

phenomenon of interference, which includes both variable aliasing and various

kinds of procedural side effects. To deal with this phenomenon, we have

explored two quite different approaches. The first, called the syntactic

control of interference, is to restrict the language so as to make potential

interference syntactically detectable. The second, which is embodied in

specification logic, is to regard noninterference as a relation between pairs

of language phrases that must be proved.

In the syntactic control of interference, described in Appendix A,

the language is restricted so that distinct identifiers always denote

noninterfering entities, while interfering entities must be named by

qualifications of the same identifier. This approach leads to certain

syntactic difficulties: the natural abstract syntax is ambiguous, and

syntactic correctness is violated by certain beta reductions.

3 -

These difficulties were an initial motivation for the development of a

generalization of many-sorted algebras, called category-sorted algebras,

which is described in Appendix B. In their most obvious application, these

algebras are a language design tool for controlling the interaction between

type conversions and generic operators. The underlying idea is to permit

an abstract syntax to be ambiguous while insuring that this ambiguity does

not produce an ambiguity of meaning.

Specification logic is a new approach to proving the correctness of

programs written in an Algol-like language. Its central novelty is to

regard specifications such as Hoare's {P) S {Q} as predicates about

environments (in the sense of Strachey and Landin). By introducing new

forms of specifications it is possible to formulate universal specifications

that are true in all environments, and to give rules for the inference of

such universal specifications. This logical system goes beyond such approaches

as Hoare's axiomatic semantics, Dijkstra's weakest preconditions, and Pratt's

dynamic logic in its ability to treat interference phenomena, call by name,

and statemert parameters. Moreover, by introducing lambda expressions and

beta reduction, it is possible to use simpler and more abstract inference

rules than in other logics that treat procedures.

The semantics of specifications, and rules for their inference are

described in Appendix C.

In addition to the above developments, which are related to the design

of an Algol-like language, we have also investigated a variety of concepts,

laws, and notations for making precise yet intelligible assertions about

arrays. This work is based upon Hoare's idea that an array is a variable-like

.. ' II 1[I i i . . . l h~ llm ,i,__ _ _ _--__ _ _ _-'- i ,

-4-

entity whose value is a function on an interval of integers. Interval and

partition diagrams are introduced to make assertions about intervals without

recourse to inequalities. A variety of functional concepts, such as

restriction, images, pointwise-extended relations, ordering, and rearrangement,

are used to minimize quantifiers in assertions about array values.

Our early work in this area is described in Appendix D. More recently,

we have made further progress by generalizing the concept of shift equivalence

to that of realignment, introducing a kind of abstract concatenation based

upon the disjoint union, and using preimages and related concepts. This work

is described in Appendix E.

APPENDIX A

SYNrACTIC cONTl3OL of INUR ERICE

Johm C. Reynolds
School of Computer and Information Science

Syracuse University

AISTRACT In progrming languages wtich permit both asignhment and procedures, distinct identifiers

can represent data tructures which share stores* or procedures with interfering side effects. In

addition to being a direct source of programing errors, this phenomenon, which we call interference

can impact type structure and parallelism. We show how to eliminate these difficulties by imposing
syntactic restrictions. without prohibiting the kind of constructive Interference which occurs with
higher-order procedures or SINILA classes. The basic idea is to prohibit interference between

identifiers, but to permit Iaterference among components of collections named by single identifiers.

The Problem tantamount to calling n by value. but while this
solution is adequate for simple variables. It can

it has long been known that a variety of become impractical for arrays. For example, the

anomalies can arise when a programing language procedure

combines assignment with a sufficiently powerful procedure tranepose(X. Y); real array X. Y;

procedure mechanism. The simplest and best-
understood case'is aliasing or sharing between for I : I until 50 do

variables, but there are also subtler phenomena of for I until 50 do

the kind known vaguely as "interfering side :-d

effects". Y(i, J) : X(j, i)

In this paper we will show that these anomalies
are instances of a general phenomenon which we call will malfunction for a call such as transpose(Z, Z)

interference. We will argue that it is vital to which causes X and Y to be aliases. But changing

constrain a language so that interference Is X to a local variable only solves this problem at

syntactically detectable, and we will suggest the expense of gross inefficiency in both time and

principles for this constraint, space. Certainly, this inefficiency should not be

getween simple variables, the only form of imposed upor. calls which do not produce interfer-

interference is aliasing or shorina. Consider, for once. On the other hand, in-place transposition is

example, the factorial-computing program: best done by a completely different algorithm.
This suggests that It is reasonable to permit

procedure fact(n, 0); int_.n .n f; procedures such as transpose, but to prohibit calls

begin integ.r k; of such.procedures with Interfering parameters.
Although these difficulties date back to Algol

k :- 0; f ;. I; and FORTRAN, more recent languages have introduced

while k 0 n do new features which exacerbate the problem of
Interference. One such feature is the union of

begink : k + ; f : k f end data types. Suppose x is a variable whose value

and . can range over the union of the disjoint data types

Suppose n and f are called by name as In Algol, or -nte-er and character. Then the language must
provide some construct for branching on whether

by reference as In FORTRAN, and consider the effect tvie current valte of x is an Integer .r a chardc-
of a call such as fact(t. a). in which both actual ter, and thereafter treating x as one type or the

parameters are, the same. Then the formal parameters other. For example, one might write

n and f will be aliases, i.e., they will interfere

in the sense that assigning to either one will uniuncase x of (Integer S; character: S')
affect the value of the other. As a consequence,
the assignment f :- I will obliterate the value of where x may be used as an identifier of type
n so that fact(&, z) will not behave correctly. intO.S in S and as an identifier of type character

In this case the problem can be solved by In 5'. However, conqlder
changing n to a local variable which is initialized

to the value of the input parameter; this Is ullioncase x of

(integer (y "A"? n X + 1);

character: noaction).

A-i

It is evident that aliasing between a and y can
cause a type error in the expression x + 1. Thus, nodelist ite. link
tn the presence of a union mechanism, interference
can destroy type security. This problem occurs
with variant records in PASCAL Ill. and Is only

avoided in Algol 68 (2) at the expense of copying n I
union values.

The introduction of parallelism also causes

serious difficulties. Hoare 13,41 and Brinch- n

Hanson 151 have ergued convincingly thet intellt- 2

Bible programming requires all interactions
between parallel processes to be mediated by some
mechanism such as a critical region or monitor.
As a consequence, in the absence of any critical n

roZion. or monitor cells, the perallel execution

of two statements. wrILten So |; S , can only be

permitted when S and S2 do Lot interfere with one
another. For exJaple.2

a :- a + 1 11 y ;- y - 2 This representation Is used by the procedure

would not be permissible when x and y were aliases, procedure itersucc(n,p); integer n; procedure p;

In this paper, we will not consider interacting begin inteser k;
parallel processes, but we will permit the parallel

construct S1 11 S2 when it is syntactically evident k :- nodelist(n);

that S and S do not interfere. Although this kind while k 0 0 do

of detirminati parallelism is inadequete for practi-
cal concurrent prograiming, it is sufficient to make beginp(item(k)); k : link(k) end

the consequences of interfereuce especially vivid, end

For example, when a and y are aliases, the above
statement becomes equivalent to which causes the procedure p to be applied to each

itmiediate successor of the node n.
X :- Z + I al a :- z x 2 If the graph is ever to change, then something

- probably a procedure such as "addedge" or

whose meaning, if any, is indeterminate, machine- "deleteedge" - must interfere with itersucc by

dependent, and useless, assigning to the global arrays rndelist. item. and

These examples demonstrate the desirability of link. On the other hand, the :orrect operation of

constraining a language so that variable alissing itersucc requires that the procedure parameter p

is syntactically detectable. Indeed, several must not asqign to these arrays. i.e., that p must

authors have suggested constraints which would not interfere with itersucc. Indeed, If Itersucc

eliminate slising completely 16,71. Involved parallelism, e.g. if the body of the while

However, aliasing is only the simplest case of statement were

the more general phenomenon of interference, which he teer m;

can occur between a variety of program phrases. We

have already spoken of two statements Interfering m :- item(k);

when one can perform any action which affects the begin p(m) I k :- link(k) end

other. Similarly, two procedures interfere when

one can perform a global action which has a global end

effect upon the other.
Interference raises the same problems as then noninterference between p and itersucc would

variable ellesing. For example, P(3) 11 Q(4) is be required for meaningfulness rather than Just

only meaningful if the procedures P and Q do not correctness.

interfere. Thus the case for syntactic detection Of coutrse, the need for interfering pr ceures

extends from slesing to interference in general. would vanish if the graph representation were a

However. the complete prohibition of interference parameter to tile procedures which use it. But this

would be untenably restrictive since. unlike would precIude ali importanit style of prograrminR

variables, Interfering expressions, statements, and - epitomized by SIHULA 67 1S1 - in which data

procedures can have usefully different meanings. abstraction In realized by uli.g collections of

Both the usefulness and the dangers of inter- procedures which interfere via hidden global

ference between procedures arise when procedures variables.

are used to encapsulate data representations. As In summary, these examples motivate the basic

an example, consider a finite directed graph whose goal of this paper: to design a programming lan-

nodes are labelled by small integers. Such a graph guAge in which Interference i. pussible yet

might be represented by giving, for each node n, a ryntasti, ally detectable. To the uthor'S lnow-

linked list of its Immediate successors n,... nk: ledge, the uliy cturrent language which tries to
meet this goal is Euclid Ill. The Appr)arh used

in Eucl Id is quite different than tl i: given here.

and apparently precludes prefc-ural pirameters and

call-hy-name.

A-2

Th laic Approach (Ill) Certain types of phrases, such as
expressions., and procedures which do not

Before proceeding further, we must delineate aesign to global variables, are said to be
the idea of interference more precisely. By a Pesive. When P and Q are both passive.

phrase we man a variable, expression, statement, p I Q
or procedure denotation. In the first three cases.
oe speak of e rcsInt th phre rst P, meaning: Passive phrases perform no assignments or other
either ase iin or evaluatin P If It ea actions which could cause interference. Thus they
variablei ealuating P If It ti an expression. or cannot interfere with one another or even with
xacutin Pl f it to a statement. themselves, although an active phrase and a passive

For phrases P and Q, we write P * Q to phrase can interfere.

indicate that it is syntactically detectable that
P and Q do not interfere. More precisely, # is a An Illustrative Language

syntactically decidable sysmetric relation between
phrases such that: To illustrate the above principles we will

(1) If neither P nor Q denotes a procedure, first Introduce an Algol-based language which,

then P 0 Q lplies that. for all ways of Although It satisfies Principle (I), permits

exercising P and Q, the exercise of P will uncontrolled Interference. We will then impose

have no effect on the exercise of Q (and Principle (II) to make interference syntactically

vice-versa). Thus the meaning of exercising detectable. Finally, we will explore the

P and Q in parallel is well-defined and consequences of Principle (III).

determinate. Unlike Algol, the illustrative language is
completely typed, so that reduction (i.e. appli-

(2) If P denotes a procedure, A1..... , An cation of the copy rule) cannot introduce syntax
are syntactically appropriate acual pare- errors. It provides lambda expressions and fixed-
meters, P 9 Q. &nd A1 0 Q .. , *An 0 Q, point operators for all program types, and a named
then P(A1 ,) 0 Q. (Thus P 9 Q Cartesian product, which is needed for the
captures the idea at P cannot interfere collections discussed under Principle II. Procedure
with Q via global variables.) de, laratione, multiple-parameter procedures, and

It should be emphasired that these rules have a lasses are treated as syntactic sugar, I.e.. as

fail-safe character: P 1 64 implies that r and Q ibbreviations which are defined in terms of more

cannot interfere, but not the converse. Indeed, b.asic linguistic constructs.

the rules are vacuously satisfied by defining 0 Arrays. call-by-value, jumps and labels.

to be universally false, and there is a probaly t-ions of types, references, inpuJt-output, and

endless sequence of satisfactory definitions which critical regions are not considered.comeeve clserto he emanic elaionof n.-We distinguish between dat. types, which are
ome ever closer to the semantic relation of nen-

interference at the expense of increasing complexity. the types of values of simple variables, and
Where to stop is ultimately a question of taste: program types, which are the types which can be

Wher tosto isultiatey aquetio declared for Identifiers and specified for
P 0 Q should mean that P and Q obviously do not parmeters. dentifiersdand spesifie r
interfere, prameters. he only data types are integer, real.

Our own approach is based upon three and Bo.lea.n, as in Algol, hut there are an infinite

principles: number of piogram types. Specifically, the set of
program types is the smallest set such that:

(I) If I f J for all identifiers 1 oc.ur-ring free in 1P and J occurring free in ,(TI) If 6 is a data type, then 6 vat
(meaning variable) and 6 exp (meaning

then P f (. expression) are proram types.

In effect, all "channels" of interference must be

named by identifiers. For the language discussed in (m s e a
this paper. this principle is trivial, since the
only such channels are variables. In a richer (i3) If w and w' are program types, then
language, the principle would imply, for example, w • w' is a progr.om type.
that all 1/0 devices must be named by identifiers. (If i4T) If w is a foIncrloto from a tinit,- set of

(11) If I and J are distinct identifiers, identifiers into program types, then n(w) is
then I 0 J. ;I program type.

This Is the moqt controversial of our principles, A ftrmal par.meter sp.c~lie,l t., have type
since it enforces a particular convention for A vir -i I.i 1,nsl on eitht'r side i .ef aqinment
distinguishing between interfering and noninter- wtehile , slut I,. a furm.,l p.erampt.r ispe it led to

fering phrases. Interfering procedures (and oth,, iv type t vxp an oily hue used aq in exprehton.

entities) are still permissible, but they must Ml. pr ,gratm type w - .' des. rilur pr cohres sh'ise

occur within a collection which Is named by a .liplt p.irnimeter !,ts type w and sue cal! hs type
single identifier. An exaMple of such a . Fr'xavplu, the Alg,,l pro(t'(|uu'ei

collection is a typical element in a SINULA 1) ,1n,);l r n; n :
class. Indeed, the Idea of using such collecti,,o

was suggested by the SIM'LA class mechanism, ret v .r ,.Cr ..1s; ,e.,; x; p. :- - x;

although we will permit collections which do not woued hive types integer var - sta and real exp
belong to any class.) lell exn respeciveIv.

A-3

The program type 9Qu to a Cartesian product reduce. t' I' even If Q ia nonteroln;.Z:mg or caume@
In which components are Indexed by Idiantifiers side effects. For collection tdIpreueiong, we heverather than by conscutive Integers. Xpecifically.
3(w) describes collections In which each I in the i1 P1,. P I -w
domain of.- Indexes a component at type ;(I). The n n~ It t

funtion a will always be written as a list of pairs for example.
of the form argmennt:valua. Thus, for examle. c -al a:nn)*ic a: eAIinct at*, vals Integer exp) describes collection@
In which Inc Indexes a statement and val indexes an Again, there io a flavor of call-by-nasa, since theinteger expression. A typical phrase of this type above reduction would still hold It oxn werenight be (Inc: n :- a + 1; val: n x a .

Tosmlf h ecrpino ytxw wil raLaced by a nonterminating expression. The
parentheaation, and we will adopt the fiction that reuto rl:
each identifier haa a fixed program type (except f) amwhen used as a component index), when In fact the !~
program type of an Identifier will be specified In In addition to lambda expressions. the onlyF the format LIw when the Identifier to bound. other binding mechanism In our language in theWe write 4w Id& and <w) to denote the sets of declattion of new variables. The statement
Identifiers and phrases with program type w. Then [,In Tar~
the syntax of the illustrative language Is given by new 1: Iral in S has the same meaning as thethe following production schemata. In which 6 ranges Bfoolean] J Intse Iover all date types. w. ws', Nis*. s range over Algol statement begin real I; S end.
program types. and...... Li range over Boolean]JIdentifiers: in By themselves, lam pressions and new

variable declaration, are an austere vocabulary,e# exp, o:- 46 var)y for variable binding. But they are sufficient to
'integer Gap), ::- 0 permit other binding mechanism to be defined as

vintgerexp>4, inteer xp>abbreviations. This approach io vital for the'intgerexp + 'nteer up>language constraints which will be given below.
gBoolean exp> ::- true since It insures that all binding mechanisms will

c 'nteger exp, - ginteger xp> be ulff le-paiframly.r procedures are treated
'Baoleen exp> 4 <Boolemn eup> following Curry 19):

(and similarly for other constants and P(A . , A n ?(A I . (Anoperations on data types)n
- n

csta', <: 6 var> :- '6 exp> A(it, ... 'n) B Ati V . AtR 5

'@tao:: noaction and definitional forms, including procedure
<a& ; <aw declarations are trcated following Landin 1101:

Iwhile 'cBoolean exp'- do <$to), let I - Q in P -- (Al. P)(Q)
<sta3- ::- new '6 var id> In 'eta' let rec I - Q in P 2-(A. M)Y0ll. W)

4W.- :- < 1d>(However, unIke Landin, we are using call-by-name.)<ws *P a" > A <w ida-. cw'l We will omit type specifications from let and

as" :* 'a * a'> (ins)let ret. expressions when the type of I Is apparentSi~w' ::from Q.
n n Ans hown In the Appendix, classes (in a~w .. , :'s) slightly more limited sense than in SIMULA) cann: als ne neie sabeitos

.c~dk> :'l, n~w)> Asan example, the declaration of the4.),:: if <Boolean exp', then 'Ws' else <ass procedure fact shown at the beginning of this paper.
along with a statement S in the scope of this

'as>:: f(',, *a')declaration, would be written as:

Although a formal semantic specification is le fact k ~ itrcp : integer varnbeyond the scope of this paper, the meaning of our (kw :: nt ;7"r ilanguage can be explicated by various reduction (k :j 0 n do 1;f ,rules. For lambda expressions, we have the usual whin S o(t ki tl'
ruleof bta-rducton:After eliminating ahbreviations. this becomes

Q (fart: integer exp *(integer var - ata). S)
where the right side denotes the result of (In: integer exp. Af: Integer var.
substituting Q for the free occurrence@ of I in P, new It: Integer in
after changing bound identifiers In P to avoid (kt - 0; f -5
conflicts with free Identifiers in Q. Note that while k 0 n do (kt :- It+; f . Itf)))

this rule implies call by name: It P does not

contain a free occurre ce of I then (A . P)(Q) A -

For example, consider the following procedure
for a "repeat" statement:

The Illustrative language already satisfies
Principle 1. If we can constrain it go satisfy let repeat - A(: ae. b: Boolean exp).

Principle 11 as well, them P 0 Q will hold when P (s; while -1 b do a)

and Q have no free identifiers in comon. By

assuming the most pessimistic definition of 0 In any useful call repet(A2) the statement A1

compatible with this result (and postponing the will interfere with the aoo an expressionI

consequences of Principle III until the next Although this is permitted in the unconstralaed

section), we get illustrative language. as In Algol, it is prohibited

P 0 Q Iff F(P) n F(Q) a 0), by the restriction A 0 A Instead, one must group
the interfering parsisters Into a collection:

where F(P) denotes the set of Identifiers which

occur free in P. let repeat - Ax: 11(s: eta, b: Boolean ep).

To establish Principle Ii, we must consider (x.e; while -1 x.b do x.s)

each way of binding an identifier. A new variable

declaration causs no problems, since new variables and use calls of the form repeat((a:A 1 b:A 2 .

&re guaranteed to be independent of all previously

declared entities. But a lambda expression can This example is characteristic of Principle 11.

cause trouble, since its formal parameter will Although interfering parameters are permitted, they

interfere with Its slobal Identifiers if it is ever require a somewhat cumbersome notation. In compen-

applied to an actual parameter which interferes nstion, it is immediately clear to the reader of a

with the global identifiers, or equivalently, with procedure body when interference between parameters

the procedure itself. To avoid this interference, is possible.

we will restrict the call ?(A) of a procedure by

imposing the requirement P 0 A. Passive Phrases

The following informal argument
shows why this

restriction works. Consider a beta-reduction In making interference syntactically detect-

(AI. P)(Q)-PjI.. Within P there may be a pair of able, we have been unnecessarily restrictive. For

identifiers which are syntactically required to example, we have forbidden parallel constructs such

satisfy the 0-relationship, and therefore must
be as

distinct. If so, it is essential that the subs- x :- n i y : n

titution I - Q preserve the #-relationship. No or
problem occurs If neither identifier is the formal

parameter 1. On the other hand, if one identifier 1e_ twice - As: sta. ia; a) in

is I, then the other distinct identifier must be (twice (x :- x+1) 11 twice(y :- yx2))

global. Thus the #-relation will be preserved if

K 9 Q holds for all global identifiers K, i.e., Mr'ov'r, the right side of the reduction rule

for all Identifiers occurring free in Al. P. This Y(f) ' (M(f)) violates the requirement f 0 Y(f).

is equivalent to (Al. P) 9 Q. giving a clear sign that there is a problem with

More formally, one chn
show that, with the recursion.

restriction on procedure calls: In the first two cases, we have failed to take
into account that the expression n and the procedure

,') ::- <w *.
W
'>(<w

>
) when <w * w'> 0 <w, twice are passive: They do no assignment (to global

variables in the case of procedures), and therefore

syntactic correctness is preserved by beta d. not interfere with themselves. Similarly, when

reduction (and also by reduction of collection f is passive, f 9 Y(f) holds, and the reduction

expressions), and continues to be preservvd when rule for Y(f) becomes valid. This legitimizes the

other productions restricted by 0 are added, e.g., recursive definition of procedures which do not

assign to global variables.

Aeta> ::- <eta 1> 1 .eta2 > when <etal- 0 <sta 2, • (gecursive procedures which assign to global
variables Are a more difficult problem. Within the

,he restriction P f A on P(A) also affects the body of such a procedure, the global variables and

language constructs which are defined as abbrevia-
the procedure itself are interfering entities, and

ions. Fr let I i n P S I. ?)(Q), and for must therefore be represented by components of a

let rec I Q in P (7l-. P)(A(1. Q)). we see that, collection named by a single identifier. Thls

e-eptfor i. no free identifer of Q can occur situation probably doesn't pose any fundamental

free in P. Thus, although one can declare a difficulties, but we have not pursued it.)

procedure or a collection of procedures which use The following treatment of passivity is more

global identifiers (the free identifiers of Q), tentative than the previous development.

these globala are masked from occurring in the
Fxpreasions in our language are always passive.

scope P of the declaratiun, where they would
sine they never reatse assignment to free variables.

interfere with the identifier I. I'r,,cedures may he active or passive, independently

For multi-parameter procedures, P(A A) of their argument and result typeb. Thus we must
A) . (A) implies the restrictions P # A., 11-stinguish the pr-gr-am type w *p w' describing

?(A " A . mplies the (A.t) wh passive procedures from the program type w *'p(AI)II A2. P(A) --- (An _1) 1 A.. which are

equivalent to requiring P 9 A for each parameter ,-s,-r1hing (possibly) !,tive procedures.

and A I A for each pair of iatinct rarameters.

A-5

More formally, we augment the definition (if In normal usage, a procedure call will be
program types with ative if and only If either the procedure itself

M) If to an o' are program types, then or its parsmeter are active. Although other cases
P0a are syntactically permissible they seem to haveonly trivial instances. Thus it might be desirable

and we define passive program types to be the to limit the program types of procedures to the

smallest set of program types such that cases:

(P1) 6 e3p 1a peOsive. p , a p a, * a a

(2) -o a' Is passive. where 0 and 0' are passive types and a and a' are
(P3) If U (4) iS passive for all I in the nonpassive types.

d i tThe most serious problem with our treatment of
do-ain of v, thee E() is passive. pasivity is our inability to retain the basic

Next. for any phrase r, we define A(r) to be property that beta-reduction preserves syntactic

the set of identifiers whLch have at least one free correctness. Consider, for example, the reduction

occurrence in r which Is outside of any subphrse(
of passive type. Note that, since identifler Op: mixed. (x :- p.a 11 Y P.8))
occurrences are themslves subphroses, A(r) never ((a: n+l, b: n :- 0
cootelns identifiers of pasive type, and since r
is a oubphrase of itself, Ar) I empty when r has x :- (a: n.1, b: n :a 0).a
passive type. i Y (a: n+1, b: n :-).a

Then we relax the definition of P 0 Q to permit
P and Q to contain free occurrences of the Same x :- R+1 y .: n+1

identifier, providing every such occurrence Is
within a passive subphrase. We define: where "mixed" stands for the program type

fl(a: integer exp, b: eta). Although the first and
P P Q i A(P) r) F(Q) . Ii &F(P) r) A(Q) - l) . last lines are perfectly reasonable, the inter-

mediate line is rather dubious, since it contains
Finally, we modify the abstract syntax. We assignments to the same variable n within two

define a passive procedure to be one in which no statements to be executed in parallel. Neverthe-
global identifier has an active occurrence: less, our definition of 0 still permits the inter-

mediate line, on the grounds that assignments

4W w'> ::- W '> Id' . kw'' within passive phrases cannot be executed.

when A(&.'>) - t.w id>) - However. if we accept

a :- (a: n~l, b: n :-a).

Passive procedures can occur in any context
which

permits active procedures: y (a- n+l, h: n :- 0).a

<W . W1> ::. kw p . , then It ii hard to deny

but only paoaive procedures can be operands of the XS Sta. x :- (A: -I|, b: (n -O II s)) .a

fixed-point operator: # y :- (a: n+l, b: n :- 0).a

<w> ::- Y(<w -p w>) B Dut this pritmit the reduction

(Ss: sta. 9 :" (a: n+l. b: (n :- 0 al 5)) .a)
Some Unresolved Questions

(y : (a: n+l, b: n :- 0 1. a)
Our abstract syntax is ambiguous, in the sense - x : (a: n+l, b:

that specifying the type of a phrase does not
always specify a unique type for each subphrase. k :- 0 y :- (a: n+l, b: n :- 0 a)

For example, in the original illustrative language, .a)
the subphrase if p then x else y might be either
a variable or an expression in contexts such As x :- n+1

a :- if p then x else y Htere the intermediate step. In which the under-
lined statement is clearly illegal, is prohibited

a: if p then x else y, b: 3).b by our syntax.
This kind of problem is compounded by the

Similarly, the introduction of passive procedures possibility of collection-returning procedures.
permits the subphrase As: eta. (a; s) to have For instatce, in the above examples, one sight have
either type eta * eta or ste *P st in the context silly(-Nl, n :- 0), where silly has type

integer exp * (sta * mixed), in place of the
(As: ea. (s el))x :- xl) . collev'iron (a: n+l, b: n :- 0).

A possible though unesthetic solution to these
Although these ambiguities could probably be
elit eeour ittions od rtan themie problems might be to permit illegal phrases in
eliminated. out intuition is to retain them. while contexts where passivity gusrntee nonexecution.
Insisting that they must not lead to ambiguous A more hopeful possibility would be to alter the
meanings. Indeed, it may be fruitful to extend definition of substitution to avoid the creation
this attitude to a wider variety of implicit of illegal phrases in such contexts.
conversions.

A-6

Dirtactions for Further Work
let C - Ab: 11(1l ... n:wn) * ste.

beyoed dealing with the above questions, it is C b(1 *I P

obviously essential to extend these ideas to other (DECL. INIT; b((I :Pn n
language mchamiem, particularly arrays. in S

In addition, the interaction between these
ideas and the axiomatization of program correctness where b to an Identifier not occurring in the
needs to be explored. We suspect that many rules original class declaration, and where DECL must be
of inference might be simplified by using a logic expressed in terms of new and let declaration@.
which imposes *-proservation upon substitutions. Then we define (2) to be an ebb-reviation for:

A somevhat tangential aspect of this work is

the distinction between date and program types, C(AX: fl(1l:w 1 ... , I :W). S')
which obviously has implications for user-defined n

types. (Note the absence of this distinction in As an example, where for simplicity P end P
Algol 68 121.) In less Algol-like languages . data are parameterless procedures: 1 2

types might have as much structure as program
types., and user definitions might be needed for class counter(Integar n; n :- 0;
both "types" of type. Indeed, there may be grounds Ic: n :- nl, we!: n) in
for introducing more than two "types" of type.

Finally, these ideas may have Implications for ... newelement k: counter in
the optimization of cell-by-name, perhaps to an
extent which will overcome the aura of hopeless ... (k.inc; x : k.val)
inefficiency which surrounds this concept. For is an abbreviation for
example, when an expression Is a single parameter
to a procedure, as opposed to a component of s
collection which is a parameter, then its repeated
evaluation within the procedure must yield the sane Ab: l(inc: sta, val: integer exp) * eta.
value (although nonterminstion is still possible).
This suggests a possible application of the idea of new n: Integer in
"lazy evaluation" 111, 12). (n :- 0; b((inc: n :- n+J, val: n))

In

APPENDIX ... counter(Ak: n(Inc: ata, val: integer exp).

Classes as Syntactic Sugar ... (kinc; x :- k.val))

In a previous paper, we have argued that which eventually reduces to
classes are a less powerful data abstraction
mechanism than either higher-order procedures or n w n: integer in (n :- 0;
user-defined types (14). The greater generality of (n ;. n+l; x :- n))
higher-order procedures permits the definition of
classes (in the reference-free sense of Hoare 1131 In the process of reduction, identifiers will be
rather than SINULA itself) as abbreviations in our rn t proect t iv n.

illustrative language. In fact, the basic idea e o p ffect of oriatefne

works In Algol 60, although the absence there of The only effect of our nterferene-controlin

lambda expressions ad named collections of i ,onstraints is that C ntit be a pas ve procedure,
procedures makes its application cumbersome. vriahe s hith are more global than those declared

We consider a class declaration with sc ope S atbPwhcarmoegbltanhsedlrd
he onsder acby DECL. This Insures that distinct class elements

of the form: will not interfere with one another. Otherwise,
lassC(DECL; INIT; I:P , I :Pn)in if C is not passive, then S' in the definition of

clsS n) n (2; cannot contain calls of C, so that multiple
class elements cannot coexist.

which iefines C to be a class with component names

I,, ... , I . Here DECL Is a list of declarations
of variablgs and procedures which will be private ACKNWtLEDGEMENTS
to a class element, INIT is an initialization
statement to be executed when each class element ts Most of this research waa done during a delightful
crested, and each Pk is the procedure named by 1,. and stimulating sahhatical at the Utniversity of
in which the private variables may occur as globals. Edinburgh. Spe(ial thanks are due to Rod Burstall

Within the scope S. one may declare X to be a and Robin Milner for their en-ouraRcme.nt and
new element of class C by writing the statement helpful suggestions. and to the members of IFIr

working group 2.3. eqpv . ally Tony Hloare, for
newelement X: C in S' (2) estalhishing the viewP,'int about programming which

underlies thl. work.
Then uithin the statement S' one may write X.Lk to

denote the component Pk of the class element X.
To express these notations in terms of

procedures, suppose P1 ' "'" ' n have types WI.
ft respectively. Then we define (I) to be an
abbreviation f,,r:

A-7

III Wth, N. The Programmlma Language PASCAL.
Acts Informatica 1. (1971), pp. 33-63.

121 van Iijngaarden, A. (ed.). Neilloux, I. J..
Peck, J. S. L.. and Koster. C. K. A. Report
on the Algorithmic Language ALGOL 68. Kk 101,
Matheuatlech Centrum, Artrdow February
1969.

(31 Hoare, C. A. I. Towards a Theory of Parallel
Programming. In Operating Systems Techniques,
Academic Free, 14ew York, 1972.

14) Moore, C. A. 1. Monitors: An Operating System
Structuring Concept. Come. ACM 17 (October
1974), pp. 549-557.

(51 grinch-Mansen. P. Structured Multiprogramming.
C'-m. ACM 15 (July 1972). pp. 574-577.

16) Hoare, C. A. 1. Procedures and Porametere:
An Axiomatic Approach. In Symosium on the
Semantics of Algorithmic Langualge. (ed. E.
Engeler). Springer, Berlin-Hoidelberg-New
York, 1971.

171 Popok. C. J., Horning, J. J.. Lampoon, S. Wi..
Mitchell. J. G.. and London, R. L. Notes on
the Design of Euclid. In Proceedings of en
ACM Conference on Languag~e Design. for
Reliable Software, SIGPLAN Notices 12, no. I
(MKarch 1977), pp. 11-18.

(8) Dahl., 0. -J. Hierarchical Progrsm Structures.
to Structured Prograiming, Academic Proes
New York 1972.

19) Corry. H. B.. and Foy#. R. Combinatory Lo&Lc,
Volume 1. North-Holland, Amsterdam 1958.

(101 Landin, P. J. A Correspondence Between ALrOL
60 and Church's Lambda Notation. Comm ACM 8
(February and March 1965). pp. 89-101 and
158-165.

fill Henderson, P., and Morris, J1. H.. Jr. A Lazy
Evaluator. Third ACM Sinspooium on Principles
of Programing Languagies (1976). pp. 95-103.

1121 Friedman, D. P., and Wigse, D. S. CONS Should
Not Evaluate its Arguments. Third Int'l
colloquium on Automata.-Langtuages, and
Programing, Edinburgh University Press 197b.,
pp. 257-284.

113) Moore. C. A. R. Proof of Correctness of Data
Rapresentations. Act$ Informaties 1, pp.
271-281 (1972).

114) Reynolds, J. C. User-Detined Typec and
Procedural Data Structures a Complementary
Approaches to Data Abstraction. In lkvu

Directions In Algorithmic Ldingu!!&e 175i. Vd.
S. A. Schuman, l.R.I.A. 1975, pp. 157-168.

A-8

APPENDIX B

USING CATEGORY THEORY TO DESIGN IMPLICIT CONVERSIONS AND GENERIC OPERATORS

John C. Reynolds

Syracuse University

Syracuse, New York

ABSTRACT A generalization of many-sorted algebras, called category-

sorted algebras, is defined and applied to the language-design problem

of avoiding anomalies in the interaction of implicit conversions

and generic operators. The definition of a simple imperative language

(without any binding mechanisms) is used as an example.

Introduction

A significant problem in the design of programming languages is the

treatment of implicit conversions, sometimes called coercions, between types.

A failure to provide implicit conversions can degrade the conciseness and

readability of a language. On the other hand, unless great care is taken

in the design of such conversions, and their interaction with operators

which can be applied to operands of several types, the resulting language

will exhibit anomalies that will be a rich source of programming errors.

(In the author's opinion, PL/I and Algol 68 exemplify this danger.)

As a simple illustration, consider assigning the sum of two integer

variables to a real variable. In the absence of an implicit conversion

from integer to real, one would have to write either

x : integer-to-real(m) + integer-to-real(n)

or

x :a integer-to-real(m + n)

Clearly, one would prefer to write x :- m + n. If the language permits this,

however, one can ask whether the implicit conversion precedes or follows the

addition, i.e., which of the above statements is equivalent to x :- m + n.

B-1

It is generally believed that a precise language definition must

answer this question unambiguously. However, if one were to ask the

question of a mathematician (at least one who didn't know too much about

programming), he would probably reply that it doesn't matter, since both

of the above statements have the same meaning, and that indeed the whole

point of permitting the same operator + to be applied to arguments of

different type which are connected by an implicit conversion is that the

resulting ambiguity should not affect the meaning.

In a sense, of course, the mathematician is wrong: some computers

provide a floating-point representation with such limited precision that

the ambiguity in question does affect meaning. But in a deeper sense the

mathematician is right. One intuitively expects that the above statements

should have nearly the same meaning, and in analogous cases where numerical

approximation or overflow is not involved, one expects exactly the same

meaning.

To see this, replace real by character strina in the above example,

and suppose that integers are implicitly converted into character strings

giving their decimal representation, and that + denotes both addition of

integers and concatenation of strings. Then the two possible meanings of

x :i m + n are radically different. This case is clearly a mistake in

language design which would be likely to cause programming errors.

In this paper ,.'e will describe a method for avoiding such errors. The

underlying mathematical tool will be a generalization of many-sorted

algebras called category-sorted algebras, which are closelv related to the

order-sorted algebras invented by Goguen.i(

Bevoid the specific goal of treating implicit conversions, our

presentation i: intended to illustrate the potential of category theory in

tfU area of language definition and to suggest that the "standard" denotational

semantics devoloped by Scott and Strachey may not be the final solution to the

language-dfinition problem. There is nothing incorrect ahuut thu Scott-

Strachey methodology, ano it has provided fundamental Insights into many

aspects of programming languages such as recursion. But it has not been so

helpful iq other areas of language design such as type structure. We suspect

that clearer insights into these arcas will require quite diffo.rent

applications of mathematics.

B-2

Conventional Many-Sorted Algebras

Our use of algebras is based on the ideas of Goguen, Thatcher, Wagner,

and Wright, (2) which have roots as far back as Burstall and Landin. (3) In

(2) a language is viewed as an initial algebra and its semantic function as

the unique homomorphism from this initial algebra into some target algebra,

so that defining the target algebra is tantamount to defining semantics.

Here we will adopt the slightly more elaborate view that (roughly speaking)

a language is the free algebra generated by some set of identifiers, that

an environment is a mapping of these identifiers into the carrier of the

target algebra, and that the semantic function is the function which maps

each environment into its unique extension as a homomorphism from the free

algebra to the target algebra.

We propose to treat implicit conversions in this framework by generali-

zing the concept of an algebra appropriately. To motivate this proposal we

will proceed through a sequence of increasingly general definitions of

"algebra".

The standard concept of a many-sorted algebra used in algebraic semantics

is due to Birkhoff and Lipson, (4) who called it an "heterogeneous" algebra.

According to Birkhoff and Lipson, but with changes of notation and terminology

to reveal the similarity to later definitions:

(1) A signature consists of:

(la) A set 0 of sorts. (lIformally, the sorts correspond to

types in a programming language.)

(lb) A family, indexed by nonnegative integers, of disjoint

sets An of operators of rank n.
n

(1c) For each n > 0 and 6 E A , a specification r6 C P X.n 6n

(Informally, if r J) ... , n>, cw> then the operator 6

accepts operands of sorts w,, W and yields a result

of sort w.)

B-3

(2) An nmr-algebra consists of:

(2a) A carrier B, which is an s-indexed family of sets.

(Informally B(w) is the set of meanings appropriate for phrases

of type wi.)

(2b) For each n > 0 and 6 c An an Interpretation y £

B(w 1) x ... x B(w).aB(w), where <w, .. ,>, w> = r
n 6'

(3) If B, y and V, n fAr-algebras, then a homomorphism from

B, y' to B', S0-indexed family of functions e(W) E

B(w) -~B'(w) .- ,iat, for all n > 0 and 6 c A ,the diagram

Bw x ... x h(w B (w
n

B'(w) x *x B'(w B M

commutes. Here -w1 , .. , >, w> r 6and f 1x *. xf

denotes the function such that (f 1 X .. f)(x3,.. X)

= <f 1(X I), .. fn(>

Unfortunately, it is difficult to pose the implicit-conversion problem

within this concept of algebra since there is no mechanism for grouping

operators which are represented by the same symbol. For example, integer

addition and real addition would be distinct members of A 2 (with specifications

<<integer, integer>, integer> and <<real, real>, real>), and there is no

mechanism for relating their interpretations more closely than, say, integer

addition and multiplication.

B-4

Many-Sorted Algebras with Generic Operators

To solve this problem, we will employ an alternative concept of many-

sorted algebras due to Higgins. (5) In this approach, the operators are

(in programming jargon) generic. The specification of an operator of rank n

is a partial function from 4n to Q, which is defined for the combinations of

sorts of operands to which the operator is applicable, and which maps each

such combination into the sort of the result yielded by the operand. (Notice

that this captures the idea of bottom-up type determination.) Then the

interpretation of the operator is a family of n-ary functions indexed by the

domain of its specification.

In our own development we will insist that the specification be a total

function from n to R. At first sight, this simplification might appear to

be untenable since it implies that every operator can be applied to operands

of arbitrary sorts. Formally, however, the situation can be saved by

introducing a "nonsense" sort ns, which is the sort of "type-incorrect"

phrases. (If a phrase is type-incorrect whenever any of its subphrases are

type-incorrect, then every specification will yield ns whenever any of the

sorts to which it is applied is ns. However, one can conceive of contexts,

such as the application of a constant function, where this assumption might

be relaxed.)

With this simplification, and a few changes of notation and terminology,

Higgins' concept of a many-sorted algebra is:

(1) A signature consists of:

(la) (as before) A set $ of sorts.

(lb) (as before) A family, indexed by nonnegative integers,

of disjoint sets A of operators of rank n.
n

(1c) For each n > 0 and 6 c An, a sp ficaLtnr 6 E n 1.

(Informally, r6(wi, ... , Wn) is the sort of result yielded by

the generic operator 6 when applied to operands of sorts

B-5

(2) An 5a-algebra consists of:

(2a) (as before) A carrier B, which is an Q-indexed family

of sets.

(2b) For each n > 0 and 6 e An, an interpretation y6, which

nn
is an n_-indexed family of functions (,1. ., n€

6n
B(w 1) x ... x B(w n) B(6 (wig ... ,n)). (Informally,

Y6 , NIP W n) is the interpretation of the version of the

generic operator 6 which is applicable to sorts wl, "'" ' w
n

(3) If B,y and B',y' are QAr-algebras, then an liomomorphism from B,y

to B',y' is an 1-indexed family of functions O(w) c B(w) - B'(w)

such that, for all n > 0, 6 c An, and wi' ." ,W c 1, the

diagram

B(w) x ... x B(wn) 6 ' ' n >B(6(wI ... , n

B'(Wx) . x B'(w) B'r (W,, ... ,Wn))

n 61' '6 n

commutes.

Algebras with Ordered Sorts,

We can now introduce the notion of implicit conversion. When there is

an implicit conversion from sort w to sort w', we write w < w' and say .hat

W is a subsort (or subtype) of w'. Syntactically, this means that a phrase

of sort w can occur in any context which permits a phrase of sort w'.

It is reasonable to expect that w < w and that w < w' and w' < w" implies

(J ". Thus the relation < is a preordering (sometimes called a quasiordering)

of the set 0i. Actually, in all of the examples in this paper < will be a

partial ordering, i.e., w < w' and w' < w will only hold when w - w'. However,

our general theory will not impose this additional requirement upon <.

B-6

Now suppose 6 is atoperator of rank n, and wi .t w and w

wo are sorts such that w < w for each i from one to n. Then a contextnI

which permits a phrase of sort r6(l'. ... w') will permit an application of

6 to operands of sortsw ... , . But the context of the ith operand

will also permit an operand of sort w,, so that the overall context must

also permit an application of 6 to operands of sort wit... I W no which has

sort r6(w1, ... , wn).' Thus we expect that r6 (wit ... , un) < r6(b, ... , w)

or, more abstractly, that the specification r6 will be a monotone function.

If w < w' then an algebra must specify a conversion function from the

set B(w) of meanings appropriate to) to the set B(w')of meanings appropriate

to w'. At first sight, one might expect that this can only occur when B(w)

is a subset of B(w'), and that the conversion function must be the corresponding

identity injection. For example, integer can be taken as a subsort of real

because the integers are a subset of the reals.

However there are other situations in which this is too limited a view

of implicit conversion. For example, we would like to say that integer

variable is a subsort of integer expression, so that integer variables can

occur in any context which permits an integer expression. But it is difficult

to regard the meanings of integer variables as a subset of the meanings of

integer expressions. In fact, we will regard the meaning of an integer

variable as a pair of functions: an acceptor function, which maps integers

into state transformations, and an evaluator function, which maps states into

integers. Then the meaning of an expression will just be an evaluator

function, and the implicit conversion function from variables to expressions

will be a function on pairs which forgets their first components.

In general, we will permit Irplicit conversion functions which forget

information and are therefore not injective. To paraphrase Jim Morris,(
6)

subtypes are not subsets. This is the main difference between our approach

and that of Goguen. (1) (There are some more technical differences,

particularly in the definition of signatures, whose implications are not

completcly clear to this author.)

B-7

However, there are still some restrictions that should be imposed

upon implicit conversion functions. The conversion function from any

type to itself should be an identity function. Moreover, if w < w' and

W' < w" then the conversion function from B(w) to B(w") should be the

composition of the functions from B(w) to B(w') and from B(w') to B(w").

This will insure that a conversion from one sort to another will not depend

upon the choice of a particular path in the preordering of sorts.

These restrictions can be stated more succinctly by invoking category

theory. A preordered set such as 0 can be viewed as a category with the

members if 4 as objects, in which there is a single morphlsm from w to w'

if w < w' and no such morphism otherwise. Suppose we write w < w' to stand

for the unique morphism from w to w' (as well as for the condition that this

morphism exists), and require the carrier B to map each w < w' into the

conversion function from B(w) to B(w'). Then we have

(i) B(w < w') C B(w) * B(w')

(ii) B(W < W) - IBM

(iii) If u < w' and w' < w" then

B (W < w") - B(W < w');B(w' < w")

(Throughout this paper we will use semicolons to indicate composition in

diagrammatic o.:der, i.e., (f;g)(x) - g(f(x)).) These requirements are

equivalent to saying that B must be a functor from Q to the category SET,

in which the objects are sets and the morphisms from S to S' are the

functions from S to S'.

This leads to the following definition:

(1) A signature consists of:

(1a) A preordered set 0 of sorts.

(lb) (as before) A family, indexed by n,,nnegative integers,

of disjoint SeLS A of o2_erators of rank n.n

(lc) For each n > 0 and 6 c , a specttication r , which

is a monotone function from 2.1 to i.

B-8

(2) An aAr-algebra consists of:

(2a) A carrier B, which is a functor from (Q to SET.

(2b) For each n > 0 and 6 E A , an interpretation y6, which

is an Q n-indexed family of functions y6(Wl, ... I Wn) C

B(WI) x ... x B(W) B(r6 (Wl, ... , wn)) such that, whenever

S< ,... ' w -- ' the diagram
1- ~~ 1n- n

(W B(W n) - 6 1wg..O n 6 B WrV(u1

{6 .(W ...w'))

B (w))' ... x B ((W) 6V B (.6(, nB-w 6' (Br W))

commutes.

The above diagram asserts the relationship between generic operators

and implicit conversions which originally motivated our development. To

recapture our original example, suppose integer, real c f , integer < real,

+ E A2, r+(integer, integer) - integer, and r+(real, real) - real. Then

a particular instance of the above diagram is

i+ (integer,integer)

B(iinteger) x-nteger) B(integer)

B(integer < real) x B(integ .. < real) Binteger < real)

y+ (real, real)

B(real) x 3(real) - B(real)

In other words, the result of adding two intcgers and converting their sum

to a real number must be the same as the result of converting the integers

and adding the converted operands.

B-9

In essence, the key to insuring that implicit conversions and generic

operators mesh nicely is to require a commutative relationship between

these entities. An analogous relationship must also be required between

implicit conversions and homomorphisms:

(3) Tf Boy and B',y' are MAr-algebras, then an homomorphism from B,y

to B',y' is an Q-indexed family of functions'G() E B(w) B'(w)

such that, whenever w < w', the diagram

0)

0(' O) 1B' (W<W') I)

B(w') B'(w')

commutes, and (as before) for all n _ 0, 6 c An, and 1l .

W n c U, the diagram (I) commutes.

Category-Sorted Algebras

By viewing the preordered set of sorts as a category, we have been able

to use the category-theoretic concept of a functor to express a-sp- priat :

restrictions on implicit conversion functions. In a similar v-'.1n, we can

use the concept of a natural transformation to express the relationship

between implicit conversion functions and interpretations given by diagram

(II) and the relationship between implicit conversion functions and

homomorphisms given by diagram (III).

In fact, diagram (III) is simply an assertion that the homomorphism 6

is a natural transformation from the functor B to the functor B'. Diagram

(II), however, is more complex. To express this diagram as a natural

transformation, we must first define some notation for the exponentiation

of categories and functors, and for the Cartesian product functor on SET:

B-10

Ir

(1) For any category K, we write:

(a) IKI for the set (or collection) of objects of K.

(b) X X' for the set of morphisms from X to ' in K.

(c) K for the identity morphism of X in K.(c X

(d) ;K for composition in K.

(2) For any category K, we write Kn to denote the category such that:

(a) jKn - IKI n , i.e. the n-fold Cartesian product of IKI.

(b) <XI, .. Xn > -K -zXXi ' " X

=(x1 X)) ... x (xnj x,)n
(.. ,* XP X < X , ... , X)

K n n

(c .. K>; K
,K,

<X1 ** K > K1 X

(d) <0n , i' ... n > = <p1;Kpi' "' n;Kon

(Notice that when K is a preorder (e.g. n) this definition is

consistent with the usual notion (e.g. 0") of exponentiation of a

preorder.)

(3) For any functor F from K to K', we write Fn to denote the functor

from Kn to K 'n such that:

(a) Fn(XI, . n) <F(X), ... F(X n)>

(b) Fn(p1, ... , pn) = <F(p), ... , F(p n)>

(4) We write x(n) to denote the functor from SET
n to SET such that:

(a) x (n)(s ... Sn) = S1 x ... x Sn

(b) x (n) (f l, ... , fn) - f 1 X X fn "

Next, we note that when 0 and 11 are viewed as categories, the monotone

function r6 can be viewed as a functoc from 0n to 01 by defining its
action

on morphisms to be r6(w1<.i , ... , wn.) - r6 (w1,) .r 6 (w i ...(W In).

B-11

Then
n B n n X(n)

92 SETh SET

and

0n r6 B SET

are compositions of functors which can be used to rewrite diagram (II) as:

(B ;x y~6(w1, , Z'

(B n;x(n))(l, ... ,w (it . jr n) , In) 6 ;B)(wlI ... own)

n, (n)... ,jn)(B n)) , ,) (r6;B)(wl,. , n)
(Bn;X " o

In this form, the diagram is clearly an assertion that Y6 is a natural
n(n)transformation from the functor Bn ;X to the functor r6 ;B.

At this stage we have come to regard Q entirely as a category. Indeed,

we car. justify the term "category-sorted algebra" by extending our definition

to the case where S Is an arbitrary category:

(1) A signature consists of:

(la) A category Q of sorts.

(ib) A family, indexed by nonnegative integers, of diLjoint

sets An of operators of rank n.

(1c) For each n > 0 and 6 E An , a specification r6 , which

is a functor from Qn to Q.

(2) An mAr-algebra consists of:

(2a) A carrier B, which is a functor from Q to SET.

(2b) For each n > 0 and 6 C An , an interpretation y 6 which

is a natural transformation from B n;x (n) to r6 ;B.

(3) If By and B',y' are Q&r-algebras, then an homomorphism from B,)

to B',Y' is a natural transformation from B to B' such that, for

all n > 0, 6 c An' and w,, ... , Wn E o, the diagram (1) COMMULes.

B-12

This is a clear illustration of what we mean by applying category theory

to language definition. Our intention is not to use any deep theorems of

category theory, but merely to employ the basic concepts of this field as

organizing principles. This might appear as a desire to be concise at the

expense of being esoteric. But in designing a programming language, the

central problem is to organize a variety of concepts in a way which exhibits

uniformity and generality. Substantial leverage can be gained in attacking

this problem if these concepts can be defined concisely within a framework

which has already proven its ability to impose uniformity and generality

upon a wide variety of mathematics.

It is easy to verify that PAr-algebras and their homomorphisms form a

category, which we will call ALGAr. It is also evident that these category-

sorted algebras reduce to the Higgins algebras (with total specifications)

discussed earlier when $ is a discretu category (i.e., a partially ordered

-et i:n which w < w' only holds when w a'.)

Algebraic Semantics

We can now explicate our claim that defining semantics is tantamount

to defining a target algebra. Suppose the target algebra is a categery-

sorted Mr-algebra B,y. Then B(w) is the set of meanings of type :. Thus

we can define the set M of all meanings to be the disjoint union of L(0)

over E j{ , i.e., = l I and x c

We can also define the function T. C M + 1., such that

IM(w, x) = W

which gives the type of each meaning in 1'.

Now let I be a set cf identifiers and cI C I - { i be an assignment of

types to each identifier in I. Then an environment e for 1,rI is a function

from I to M which maps each identifier into a meaning of the appropriate

type, i.e., which makes Lhe diagram

B-13

I e

of functions commute.

To describe this situation in category-theoretic terms,we define the

category SETV+JII of sets with type assignments. This is the category such

that

(a) The objects of SET4 fkI are pairs S,T, where S is a set and
T C S - JIQ,

tc jij

(b) st SET Iml SI,T' is the set of functions f from S to S' such

that the diagram

commutes,

(c) Composition and identities in SET410I are the same as in SET,

Then an environment for I,T is a morphism in I, I 1T 1 MtM* We call

this set Env(I,Tl).

Next we define U to be the functor from ALG to SET41i1 whose action

on an flAr-algebra B,y is given by

U(B,y) - S,T where

S = {Wx I W E IS11 and x c B(w),

C S 10 12 is the function such that T(,x) ,

and whose action on an homomorphism 0 from B,y to B',y' is given by

U(O) E U(B,y) E U(B',y') is the function such that

U(e)(w,x) w,O()(x)

B-14

Then MiM is the result of applying U to the target algebra B,y, so that

Env(I,rT) = I,T I SET-I0I U(By). More generally, U is the "forgetful"

functor which forgets both interpretations and implicit conversions, and

maps a category-sorted algebra into the disjoint union of its carrier,

along with an appropriate assignment of types to this disjoint union.

In the appendix, we will show that for any object I,TI of SET4IflI

there is an algebra F(I, I), called the free nAr-algebra generated by I,T I ,

and a morphism n(I,r I) C , SET II U(F(I,rI)), called the embedding of

I,T I into its free algebra, such that:

For any B,y c ALG rl and e c , SET U(B,y), there is

exactly one homomorphism e c F(I,T) AL0 B,y such that the
Iiagra

diagram
n(ITI)

I, U(F(I,T I)

J(e)

U(B,Y)

in SET41Jfn commutes.

Suppose F(I, I) B0 ,Y0 . Then each B0 (u) is the set of phrases of type w

which can be constructed from identifiers in I whose types are given by TI .

Each e(w) maps the phrases of type w into their meanings in BGw). Moreover,

suppose RTR - U(BoY O) - U(F(I, I)). Then R is the set of phrases of all

types, TR maps these phrases into their types, and U(e) maps these phrases

into their meanings in a way which preserves types.

The embedding n(I,T I) maps each identifier into the phrase which

consists of that identifier. Thus the above diagram shows that the meaning

U(e)(n(I,TI)(i)) of the phrase consisting of i is the meaning e(i) given to

i by the environment e.

For a given I,TI, one can define the JIQ-indexed family of semantic

functions

V(u) C B0(w) (Env(I,T) B(M))

such that

u(w)(r)(e) - e(w)(r)

B-15

Then each u(w) maps phrases of type w into functions from environments to

meanings of type w. Alternatively, one can define the single semantic

function

p c R - (Env(I,T1) * M)

such that

p(r)(e) - U(e)(r)

This function maps phrases of all types into functions from environments

to meanings.

It is evident that the linguistic application of category-sorted

algebras depends crucially upon the existence of free algebras or, more

abstractly, upon the existence of a left adjoint to the forgetful functor

U. In general, if U is any functor from a category K' to a category K,

F is a functor from K to K', and n is a natural transformation from IK

to F;U such that:

For all X c IKI, x' IK'J, and p c X U(X'), there is exactly

one morphism c F(X) -, V such that

X n(X) >U(F(X))

P { U 6)

U(X')

commutes in K,

then F is said to be a left adjoint of U, with associated natural transfor-

mation n. The triple F, U, n is called an adlunction from K to K'.

In the appendix, we show the existence of free category-sorted algebras

by constructing a left adjoint and associated natural transformation for the

forgetful functor U from ALG r to SETIS1.

B-16

Data Algebras

To illustrate the application of category-sorted algebras, we will

consider several variations of Algol 60. However, since we do not yet

know how to treat binding mechanisms elegantly in an algebraic framework,

we will limit ourselves to the subset of Algol which excludes the binding

of identifiers, i.e., to the simple imperative language which underlies

Algol. Although this is a substantial limitation, we will still be able

to show the potential of our methodology for disciplining the design of

implicit conversions and generic operators.

As discussed in (7) and (8), we believe that a fundamental characteristic

of Algol-like languages is the presence of two kinds of type: data types,

which describe variables (or expressions) and their ranges of values, and

phrase types (called program types in (7)) which describe identifiers (or

phrases which can be bound to identifiers) and their sets of meanings.

Algebraically, 2 should be a set of data types in order to define the

values of expressions. In this case, the carrier of the free algebra is

a data-type-indexed family of sets of expressions, and the carrier of the

target algebra, which we will call a data algebra, is a data-type-indexed

family of sets of values.

In Algol 60 itself there are three data types: integer, real, and

boolean, to which we must add the nonsense type ns. To avoid implicit

conversions, we would take f to be

ns

integer real boolean

Notice that ns is the greatest element in this partial ordering, reflecting

the notion that any sensible expression can occur in a context which

permits nonsense.

On the other hand, to introduce an implicit conversion from integer

to real, we would take integer to be a subtype of real:

B-17

ns

real boolean

integer

A i .ore interesting situation arises when long real is introduced. One

might expect real to be a subtype of long real, but an implicit conversion

from real to long real would be dangerous from the viewpoint of numerical

analysis, since a real value does not provide enough information to completely

determine a long real value. In fact, it is the opposite implicit conversion

which is numerically safe, so that long real should be a subtype of real:

ns

real boleanI
long realI
integer

In a language definition which was sufficiently concrete to make sense

of the distinction between real and long real, one might take B(real) and

B(long real) to be sets of real numbers with single and double precision

representations, respectively, and B(long real < real) to be the truncation

or roundoff function from B(long real) to B(real). Notice that this function

is not an injection, reflecting the fact that a conversion from long real to

real loses Information.

However, although this is suggestive, our methodology is not really

adequate for dealing with the problems of roundoff or overflow. For this

reason, we will omit the type long real and define our language at the

level of abstraction where roundoff and overflow are ignored.

B-18

In the rest of this paper we will take 0 to be:

ns

complex boolean

real

integer

digit string

It rhould be emphasized that this choice of Q - particularly the use of digit

string - is purely for illustrative purposes, and is not put forth as

desirable for a real programming language.

In the carrier of our target algebra we will have:

B(digit string) - the set of strings of digits,

B(integer) the set of integers,

B(real) - the set of real numbers,

B(complex) - the set of complex numbers,

B(boolean) - {true, false),

with the conversion functions

B(digit string < integer) - the function which maps each digit

string into the integer of which it is a decimal representation.

B(integer 4real) - the identity injection from integers to

real numbers.

B(real < complex) - the identity injection from real numbers to

complex numbers.

Notice that, because of the possible presenae of leading zeros, the function

B(digit string < integer) is not an injection.

B-19

We must also specify B(ns) and the conversion functions into this set.

For these conversion functions to exist, B(ns) must be nonempty, i.e., we

Ptust give some kind of meaning to nonsense expressions. The closest we can

come to saying that they do not make sense is to give them all the same

meaning by taking B(ns) to be a singleton set. This insures (since a

singleton set is a terminal element in the category SET), that there will

be exactly one possible conversion function from any data type to ns:

B(ns) - {<>),

B(u < ns) - the unique function from B(u) to (<>I.

As an example of an operator, let + be a member of A2, with the

specification

r+(w 1, 2) = if < integer and w2 < integer then integer

else if wi < real and w2 < real then real

else if w I< complex and w 2 < complex then complex

else ns

and the interpretation

Y+(Wi, 2 = if 1 integer andw 2 w integer then

A(x,y). let x' = B(wlfinteger)(x) and y' = B(w 2< integer)(y)

in integer-addition(x',y')

else if wi < real and w2 < real then

X(x,y). let x' = B(w 1 <real)(x) and y' = B(w2real)(y)

in real-addition(x',y')

else if wi1< complex andw 2 .1 complex then

X(x,y). let x' = B(wl<complex)(x) and y' = B(N2<complex) (y)

in complex-addition(x',y')

else X(x,y). <>

Although the above definition makes + a purely numerical operator, it

can be extended to encompass nonnumerical"addition":

B-20

[

r+(wl,w2) - ifwl1 < boolean and, w2
<1 boolean then boolean

else if l.1 digit string and 2 <digit string then digit string

else ... (as before)

Y+ (W1,2)= if w1 I boolean and w2
< boolean then

A(x,y). Let x' - B(wl boolean)(x) and y' - B(2.f boolean (y)

in boolean-addition(x',yt)

else if wl < digit string andw 2 < digit string then

xy), let x' - B(w digit string)(x)

__ B(w,< digit string)(y)

in digit-string-addition(x',y')

else ... (as before)

Since there are no implicit conversions between boolean and any other type

than ns, we are free to choose "boolean addition" to be any function from

pairs of truth values to truth values. On the other hand, "digit-string

addition" is tightly constrained by the implicit conversion from digit string

to integer, which gives rise to the requirement that

digit-string addition
B(digit string) x B(digit string) d B(digit string)

B(digit string < integer) B(digit string

B(digit string < integer) < integer

B(integer) x B(integer addition B(integer)

commute. In other words, the sum of two digit strings must be a decimal

representation of the sum of the integers which are represented by those

two strings. The only freedom we have in defining digit-string addition

is in the treatment of leading zeros in the result.

The definition of + suggests that a typical operator will have a

significant specification and interpretation for certain "key" sorts of

operands, and that its specification and interpretation for other sorts of

operands can be obtained by implicitly converting tie operands to

key sorts. To formalize this idea, let

B-21

(1) A6 be a category of keys.

(2) *6 be a functor from A ton

(3) 6 be a functor from A to 0.
6

- n (n) -(4) y be a natural transformation from 06 ;Bn;x to r;B.

Intuitively, for each key A £1A 6 1, *6 (A) is the n-tuple of sorts to which the

"A-version" of 6 is applicable, r6 (A) is the sort of the result of the

A-version of 6, and y 6() X (n)(Bn(A6())) - B(6 (X)) is the interpretation

of the A-version of 6.

These entities can be extended to all sorts of operands if the functor

€6 possesses a left adjoint TV6 which will be a functor from fn to A, and an

associated natural transformation n6, which will be a natural transformation

from Ian to T6;06• Then we can define the specification

r6 = 6 ;f6 . -n ,

and the interpretation

y6(ill ... ,n) = (n) cn(n6(wit ... W n));Y 6 (6 (i1 I Wn

which can easily be shown to be a natural transformation from Bn;x(n) to I6 ;B.

Intuitively,T 6 (wi, ... , n) can be thought of as the key determining the

version of 6 to be used for operands of sorts wt ... , W n' and

n6 (wt, ... , tn) as the implicit conversion to be applied to these operands.

In the special case where A6 and 0 are partially ordered sets, it can

be shown (9, p. 93) that '6 will be a left adjoint of 06 if and only if

<6 (6(w)) for all w c and TP6(0()) < A for all A c A 6 In this case

r6(w) will be the unique morphism w < 66(T6(w)), and y6 will be

Y6 W = X (n)(Bn(, <6 (6(w)))); 6(T6(())

Moreover, as shown by the following proposition, '6 will be uniquely determined

by 06:

B-22

Proposition Suppose 9 is a monotone function from A to fQn where
n

A and il are partially ordered sets, such that

(1) For all W c Qn, the set (X I X c A and w < 00))

has a greatest lower bound in A.

- n
(2) For all W E S1, 0 (1 {T A and _<0()}) is the
greatest lower bound in on Of {0(A) I A E A and w < O(X)}.

Then T(W) - rA IX I A e A and w < O(X)} is the unique monotone function

from in to A such that T is a left adjoint of 0.

Proof: T is obviously monotone. For any X E A, (o(A)) is the greatest

lower bound of (A' ' A and o(A) < 0(A')} and, since A belongs to this

set, <((A)) X A. For any w e a 0(i(w)) = 0({ c A and w <

is the greatest lower bound of {#() I A c A and Z < 0(A)} and, since W is a

lower bound of this set, W <

Suppose T is a left adjoint of 0. If w < O(X) then T(w) < Y(O(A)) <).

Thus T(w) is a lower bound of (A A c A and w < O(X)}. Moreover, this set

contains T(w) since W < O(I(w)). Thus any lower bound of this set must be

less than '(w), so that T(w) is the greatest lower bound.

The conditions in this proposition will hold if A contains greatest

lower bounds of all of its subsets, l.c., if A is a complete lattice, and

0 preserves all greatest lower bounds. However, we will sometimes use A's

which are not complete lattices.

As an example, the purely numeric definition of * given earlier can be

recast inure concisely by using the set of keys

A = {.nteger, real, complex, nsl

with the same partial ordering as '. Then the specification r+ is determined

by the functions D+ and T+ such that

B-23

A+() 0+

integer integer,integer integer

real real,real real

complex complex,complex complex

ns nsns ns

and the interpretation y+ is determined by

Y+ (integer) = integer addition

Y+(real) = real addition

Y (complex) = complex addition

+(ns) = (x,y). <>

To extend this definition to nonnumeric types, one adds boolean and digit

string to A+, with

X 0(A) rA

boolean boolean,boolean boolean

digit string digit string,digit string digit string

and

y+(boolean) - boolean addition+

y+(digit string) = digit-string addition

(Notice that in this case A+ is not a complete lattice, but the necessary

conditions for the existence of a left adjoint to 0+ are still met.)

In the remainder of this section we will illustrate our approach by

defining a few other binary operators. In each case A+ is the listed

subset of 0, with the same partial ordering as 0.

B-24

For the division operators / and 4 we can define

A / (A)r/(A

real real,real real

complex complexcomplex complex

ns nsns ns

Y/(real) - real division

y/(complex) - complex division

Y/(ns) = A(x,y). <>

and

A4(X) I' (A)

integer integer,integer integer

ns ns,ns ns

yj(integer) = A(x,y). the unique integer q such that

x q x y + r where

if x > 0 then 0 < r < Ijy else - IjY < r < 0

y.(ns) X A(x,y). <>

These operations cannot be combined into a single operator since, for example,

3/2 - 1.5 but 3 + 2 - 1. On the other hand, since the definition of y,(integer)

extends sensibly to the case where x and y are real, one could generalize

+ by taking 0 (integer) - real,real.

Since nonnegative integers have not been introduced as a data type and,
for example, 3- 2 is not an integer, exponentiation cannot be defined to yield

an integer result for any sort of operands. If exponents are limited to

integers, one can define

B-25

0t (A) rt(AM

real real,integer real

complex complex,integer complex

ns ns,ns ns

Yt(complex) - A(x, n). x n

This can be extended to noninteger exponents by taking 0 t(complex)

complex,complex, but the multi-valued nature of complex exponentiation

(as well as the time required to compute the necessary logaritIns and

exponelutials) would probably make this unwise.

Finally, we define an equality operation:

A . (A0) T. A)

booleau boolean,boolean boolean

integer integer,integer boolean

real real,real boolean

complex complex,complex boolean

ns ns,ns fls

Y(A)- if A a s then the equality relation for B(A)

else X(x,y). <>.

One might be tempted to add digit string to A_, with 0.(digit string)=

digit string,digit string, 7_(digit string) - boolean, and 7 (digit string)

=the equality relation for B(digic string). However, the diagramJ (digit string x B(digit string digit string Bboa)

B(digit string.< integer)

x iB(digit string .1 integer) Bje(boolean)

B(intager) Xb(integer) inee B(boolean)

B-26

does not comute, since B(digit string C integer) is not an injection.

(For example, 6 and 06 are unequal digit strings which convert to equal

integers.) Indeed, one can never use the same operator for the equality

relation on different data types when the data types are connected by an

implicit conversion function which is not an injection. (At the more

concrete level where roundoff error is taken into account, this suggests,

quite correctly, that there are special perils surrounding an equality

operation for real numbers.)

Algebras for Simple Imperative Languages

Now we move from data algebras, which describe languages of expressions,

to algebras which describe simple imperative programming languages, i.e.,

languages with variables, expressions, and commands, but without binding

operations. The sorts of our algebras will change from data types to

phrase types, which can be thought of as phrase class names of the abstract

syntax for the language being defined. For example, in place of the set of

data types {integer, real, boolean}, Q might be the following partially

ordered set of phrase types:

ns

real ex boolean exp command

_ _ I _

integer ex boolean var

real var I

integer var

It is evident that for each data type T there will be two phrase types

T exp(ression) and T var(iable), and that i exp will be a subtype of T' exp

whenever the data type T is a subtype of T'. Moreover, t var will be a

subtype of T exp since a variable can be used in any context which permits

an expression of the same data type. On the other hand, the subtype relation

will never hold between variables of distinct data types. For example, an

integer variable cannot be used as a real variable since it cannot accept a

noninteger value, and a real variable cannot be used as an integer variable

since it might produce a noninteger value.

B-27

This kind of phrase-type structure, which describes many programming

languages, is unpleasantly asymmetric. For each data type, there are

variables, which can accept or produce values, and expressions, which can

only produce values. Thus one might expect another kind of phrase, called

an acceptor, which can only accept values. If acceptors for each data type

are added to Q, we have:

ns

integer acc real e boolean acc boolean exp command

real acc integer exp boolean var

real var integer var

Notice that the subtype relation among acceptors is the dual of that for

data types or expressions. For example, a real acceptor can be used PS an

integer acceptor since an integer value can be converted into a real value.

The above partial ordering has the peculiarity that there is a pair

of phrase types, real var and integer var, which have no least upper bound.

In general this might not be a problem, but we will find that there is one

language construct, the general conditional phrase, which requires the

existence of binary least upper bounds. To see the problem, suppose n is

an integer variable and x is a real variable, and consider the conditional

variable

if p then n else x

In a context which calls for an expression, this phrase must be considered

a real expression, since when p is false it can produce a noninteger value.

But In a context which calls for an acceptor, the phrase must be considered

an integer 3cceptor, since when p is true it cannot accept a noninteger

value. The phrase type which describes this situation must be a subtype

of both integer acc and real ex which in turn has real var and integer var

as its subtypes. In other words, it must be the least upper bound of

real var and integer var.

B-28

The way out of this difficulty is to characterize variables by both

the data type which they accept and the data type which they produce.

For example, a real var is actually a "real-accepting, real-producing"

variable, an integer var is actually an "integer-accepting, inteSer-producing"

variable, and the above conditional variable is an "integer-accepting,

real-producing" variable. If we write T 1 T2 var to abbreviate "T-accepting,

T2-producing" variable, then we have the ordering

integer acc real exp

real acc nteger real var integer exp

real real var integer integer var.

Implicit in this discussion is the idea that phrase types are constructed

from data types. More generally, since the meaning of expressions can be

described by a data algebra, and expressions are a major constituent of an

imperative programming language, it should be possible to define the algebra

describing the programming language in terms of the data algebra describing

its expressions. To emphasize this possibility we will construct a

programming-language algebra for an arbitrary data algebra, with signature
S1D, AD, rD carrier BD , and interpretation y. The main restrictions we will

D
place upon this data algebra are that ns must be the greatest sort in QD

and that rD (w, ... , n) ns must hold when any w i is ns.

The set of phrase types is

Q T T e xp T S1 D - {ns) u (i acc I T E QD _ {ns})

u {,rT2 va.r I t' T 2 C D _ {ns}} u {comm, ns}

with the least partial ordering such that

if T <D T' then T exp < T' exp

if T' < T then T acc < T' acc

if TI T and T2 Tj then IT ar a< TT var
1 1~nT 2--

IIt2 var TI acc

I T2 var T 2 exp

B-29

Our target algebra describes direct semantics. (Continuation semantics

can be treated in much the same way, but it leads to more complex definitions

without providing any additional insights into the concerns of this paper.)

The carrier of this target algebra will map each sort into a domain (a

partially ordered set containing a least element i and least upper bounds

of its directed subsets), with implicit conversion functions which are strict

and continuous (i.e., which preserve . and least upper bounds of directed

sets). Specifically, the following carrier is appropriate for direct

semantics:

3(r exp) = S [B(T)l

B(comm) = s -[[S]I

B(T acc) = BD(T) - B(comm)

B(01T2 at) = B(1 acc) x B(12 exp)

B(s) = {±

(r exp <_ 'r' exp) = Xv. v;[B (T < T')]

B(T acc < T' acc) = Xa. BD(T '
< T); a

B(T1 2 var < T, acc) = ,(a, v). a

(T2 var< exp) = A(a, v). v

1 2 IL~ex<P)
T <T ' vdr) B(! acc < ' acc) X B(T exp

1 ar < !r2 -2 re ___

!(w < -s) = Ax. IB(ns)

Here S is an unspecified set of store states. For any set X, [X]I denotes

the flat domain obtained by adding I to X. For any function f L X - X'

If] denotes the strict extension of f to IX]± ". [X'] I .

Basically, the meaning of a comn:,i3nd is a state transition function

(with result i for nontermination), the meaning of an acceptor is a function

from data values to state transition functions, and the meaning of a variable

is a pair giving both the meaning of an acceptor and of an expression. Notice

that this way of defining variables avoids the mention of any entities such as

Strachey's L-values. (As a consequence, our definition permits strangely

behaved variables akin to the implicit references in GEDANKEN.
(1 0)

B- 3 0

Next we consider operators. Each operator of the data algebra becomes

an expression-producing operator of the imperative-language algebra. If
6 AD

6 C An then 6 e An, with the specification given by:

A6 = (,D)n

t6 M where c a D 1 is the function such that

#(T) if t - ns then ns else T exp

r6 IB

To define the interpretation of 6 we must give a natural transformation y6
from 0 ;Bn (nr) n ;Bn (n) - - r D Thus 'n(i, mustfo ;B; ;B;x to F6-)6B.. , ust

be a function from B(O(T1)) x ... X B((T n)) to B(,(FD(TI, . , n))).

if r 6(-ci s ... ,n
) is ns, then y6(Tip T ,) will be the unique function

from B((TI)) x ... X B((T n)) to B(ns). Otherwise, none of the Ti will be

ns, and y6 (TI, ... Tn) will be the function from B(T 1 exp) x ... x B(n

M (S -~ [BD(r)) . x (S -~ [B D (T to B~ (i
[BD[BD(rn)

- ... , r 6)) such that

y6 ('lr ..1)V, ... , V

= A S. [Y '(1, .. ,l(VlCa), ... , vn(o))

where [y(l, ,n) denotes the extension of yD (T19 T) such that
D 61 n

[6 (T11 ... 9 n)]J(Xl ... xn i if any xi

Assignment is an operator := E A This is the one case which we cannoL

define by using an adjunction from a set of keys. The specification is

r :- (l 2 = if (3'T C SD - {ns}) Wi < Tacc and u2 <. T exp

then comm else ns

If a data type T meeting the above condition exists, then the interpretation

is

Y:M(W.l,2= A(a,v). let a' = B(u1 <T acc)(a) and v' - B(w2 < T exp)(v)

in D COMM(v';[a'])

B-31

otherwise
Y:(tW '2) A(a,v). iB(ns)

Here [a'] is the i-preserving extension of a' from B D(T) - B(comm) to

[BD (T)] I B(comm), and D C (S - B(comm)) B B(comm) is the diagonalizing
function such that

D (h)(a) - h(a)(o).

A subtlety in this definition is that the data type T may not be unique.

For example, if w is real acc and w is integer exp then T can be either

integer or real. However, the definition still gives a unique meaning to

Y:.. Basically, this is because the structure of 0 insures that, if

Tacc T' acc x exp T' exp

and
"'1 "'2

then there are data types T and T such that

T acc T' acc T exp T' exp
• .,x\A\k

Tr acc and T2 exp

1 2 1
V I W 2
wl "'2

Then the definition of B for the implicit conversion of acceptors and

expressions Implies that the diagram

B(W 1 x B(w2)

B(1 -1 rac--c) x B(w2 t T2exp)

1B B(Tlacc < T acc) x B(T2exP t exp)
B(Tracc) x B(T2exp) B(T acc) x B(O exp)

(_cc t T'acc) x B (<2 . r'-1p) X(a,v).

I D Com(v;[aI)0%(a', '). Comm (V';[a'] 4) v c m (; a@

B(t'acc) x B(t'exp))(comm)

of functions commutes. A slight extqnsion of this argument shows that y

is a natural transformation.

B-32

Next we consider conditional phrases. It is trivial to define a

particular type of conditional phrase such as a conditional commiand, but

the definition of a generic conditional, applicable to arbitrary phrase

types, is more challenging. Obviously, boolean must be a data type, with

B D(boolean) - {true,false). Less obviously, Q~ must possess all binary

least upper bounds. (Note that this imposes a restriction upon Q .

Under these conditions, we can define if c A.wit h the specification

if 1

if C Q - 0 is the function such that

0'; (w) - if w - ns then <ns,ns,ns> else <boolean exp,w,w>

r if IQ

Then the left adjoint of 0 if is the function T if E S13 such that

~if (Wlpw2 W 3) =.L w< boolean exp~ then w2U w3else Rs

(From the proposition in the previous section, it can be shown that if there

are w 21 W3 in 02 which do not possess a least upper bound then 0 has no left

adjoint.)

To determine the interpretation of if, we must give a natural transfor-
3 (3)-

mation 'y if from 4';B ;X to r;B =B. When w =ns, y if (w) is tie unique

function from B(ns) x B(ns) x BOnO to B(ns). Otherwise it is the function

from B(boolean exp2) x BMw x B(w) to B(w) such that

Yif(w)v~fg)= D W(v;[)Xb c {true,false). if b then f else gi)

where D is the £0-indexed family of diagonalizing functions, D E

(S -*B(w)) -B(w) such that

D 'rep Xh c S (S [B D (r)l).)Fo S. h(c)(c)

D Col h c S *(S -~[S]I) .) r. S. h (a) (j)

D T ac h c S -~(B D(T) -~(S -(]SI)).)X r: 6 C T). XC E S. h(a)(x)(a)

D , var E-S-B~1 c) x1(2 xp).

-D ae(h;(A(a,v).a)), 1D x

Dns A ~s.IBOOs *

B-33

(Notice that Dcolm also occurred in the definition of assignment.) This

family has the property that, for all W,w' E fl such that w < w' and all

h E S - BM,

B(w < w')(D W(h)) - D ,(h;B(w < w'))

It is this property that insures that Yif is a natural transformation.

Finally, for completeness, we define operators for statement sequencing

and a while statement. Since these operators are not generic, their

definition is straightforward:

E A 2 , while E A2

A; = Awhile = {comm, ns} with the same partial ordering as Q.

@.(comm) = <conm,comm> , Cwhile (comm) = <boolean exp,comm>

.(ns) = 0while(ns) = <ns,ns>

I. (comm) = while(Comm) - comm

r (ns) = r (ns) = ns
- while il-

Y.(s) = Ywhile (ns) is the unique function from B(ns) x B(ns) to B(ns).

'.(com) =)(c I C S - (S s c2 C S - [S]I). CI;[C2)

while(Comm) - A(v c S - [{true,false)]l, cI f S + [S]

Y(Ac2 E S - [S]I. DCon (v;[Ab. if b then (cc;[c]) else J])

Here J is the identity injection from S to [S] and Y is the least-fixed-point

operator for the domain S - [S]i

Future Directions

The approach described in this paper is still far from being able to

encompass a full-blown programming language. In particular, the following

areas need investigation:

(1) Binding mechanisms, i.e. declarations and procedures.

(2) Products of types, i.e. records or class elements.

(3) Sums of types, i.e. disjoint unions.

(4) Type definitions, including recursive type definitions.

(5) Syntactic control of interference.(
7)

B-3
4

In the first three of these areas, our ideas have progressed far enough

to suggest the form of the partially ordered set of phrase types. One wants

a set 1 satisfying

primitive procedure product sum

Here + denotes some kind of sum of partially ordered sets. (At present, it

is not clear how this sum should treat the greatest type ns or a possible

least type.) The partially ordered set 0primitive is similar to the 0

described in the previous section, and

0procedure 1 { 2 1 '1' '2 E C)

{product(wl, ... I n n > 0 and wI' " E
product .. , n n n 1,..,

s - {sum(l, . , w n n > 0 and wit ... ,wnRsum"' n"''n

The main novelty is the partial ordering of Sprocedure" One wants

procedure types to satisfy

(wi w2) < (W w~i w ') if and only if 1- --n 'an

so that the type operator + is antimonotone in its first argument. For

example, suppose integer exp < real exp. Then a procedure of type

real exp - boolean exp, which can accept any real expression as argument,

can also accept any integer expression as argument, and should therefore be

permissible in any context which permits a procedure of type integer exp

boolean exp. Thus (real exp - boolean ep) < (integer exp - boolean exp).

It follows that Q will be isomorphic to Qox 0, where R p
procedure

denotes the dual of Q. This raises the question of how one solves the

recursive equation describing Q. The simplest answer is to impose an

appropriate ordering on the least set satisfying this equation. The

resulting 0, however, will not contain certain limits which will be needed

to deal with recursive type definitions. One would like to use Scott's

methods to treat recursive definitions, but these methods do not encompass

the operation of dualizing a partial ordering.

B-35

This difficulty does not arise for products or sums, where conventional

pointwise ordering seems natural. However, a richer ordering becomes

attractive when named, rather than numbered, products and sums are considered.

Suppose we redefine

11product m {product(w) Jw c N - Q for some finite set N of names)

and similarly for 0 sum" Then the following ordering can be used:

product(w) < product(w') whenever

domain(w) m domain(w') and (V n E domain(w')) w(n) <w'(n),

sum(w) < sum(w') whenever

domain(w) c domain(w') and (V n E domain(w)) w(n) < w'(n).

The first ordering permits implicit record conversions which forget fields.

The second ordering permits implicit conversions of disjoint unions which

broaden the number of alternatives in a union.

In particular, the second ordering solves a long-standing problem in

the type-checking of disjoint union expressions. Suppose p is a phrase of

type w, and make-n denotes the injection into a disjoint union corresponding

to the alternative named n. Using bottom-up type analysis, how doen one

determine the type of make-n(p)? The answer is that the type is sum(n:w),

which is a subtype of any sum of the form sum(.. , n:w,

B-36

APPENDIX

In this appendix we will demonstrate the existence of free category-

sorted algebras by constructing an appropriate adjunction. Our basic

approach will be to connect category-sorted algebras with ordinary one-sorted

algebras in order to use the known existence of free ordinary algebras.

We begin by stating several general properties of adjunctions which will be

used in our development.

Proposition Suppose U is a functor from K' to K, F is a function

from IKI to IK'I, and n is a IKI-indexed family of morphisms

n(X) c X - U(F(X)) such that:

For all X e RKI, X' c IK'[, and p c X j U(X') there is

exactly one morphism p c F(X) i, X' such that

X n(X))U(F(X))

U(x')

commutes in K.

Then there is exactly one way of extending F to be a functor from

K to K' such that F is the left adjoint of U with n az the associated

natural transformation. Namely, for each e e X - X', F(O) must be
K

the unique morphism such that

n(X)
X •-) U(F(X))

je IV (F(6))
X1 n(x'))U(F(X'))

commutes in K.

We omit the proof (ll,p. 116), the main point of which is to show that the

extension of F preserves composition and identities. The utility of this

proposic.on is that, in specifying adjunctions it is only necessary to

specify the object part of the left adjoint.

B-37

Next, we consider the composition of adjunctions:

Proposition Suppose U is a functor from K' to K with left adjoint F

-nd associated natural transformation n, and U' is a functor from K"

K' with left adjoint F' and associated natural transformation n'.

Let

U" - U';U

F" - F;F'

n"X M - n(X);KU(n'(F(X)))

Then U" is a functor from K" to K with left adjoint F" and associated

natural transformation r",

Again we omit the proof (9, p. 101),

Finally, we introduce the construction of categories over distinguished

objects, and show that an adjunction between such categories can be built

out of an adjunction betw,-n the categories from which they have been

-,nstructed.

Let K be a category and T c IK. Then KUT, called the category of

objects ovcr T, is the category such that

(a) IK4TJ - [X, t I X c IKI and - c X - T}
K

(b) X,- [T X',t' is the set of morphisms p c X - X' such that

X 0 XI

T

T

comnmutes in K.

(c) Composition and identities are the same as in K.

B-38

Then:

Proposition Suppose U is a functor from K' to K with left adjoint

F and associated natural transformation ni. Suppose T' c IK'Iand
T - U(T'). Let"U be the functor from KIT' to O4T such that

V(X',') - U(X'),UWr) and U90) - U(P). Then U has a left adjoint

F and an associated natural transformation n such that

'F(X,T) - F(X),r

n(,)- n(X)

where E F(X) -,T' is the unique morphism such that

X n(X)U(F(X))

TU(;

U(T') = T

commutes in K.

Proof: We leave it to the reader to verify that U9 is a functor from

K'4T' to KJ-T, that F is (the object part of) a functor from UiT to KI4T',

and that riCX,T) E X,T KrTU(F(X,T)). To show the -adjunction property,

suppose X,rCIK'TI, X',T's JK'.&TI'and P E X,T K4T U(X',T'). Then we must

show that there is exactly one P c F(X,T) K'I'T' X',T' such that

XT U((XY) - U(F(X)),Jr)

U(X',T') - U(X'),U(T')

commutes in K4T.

Since composition is the same in K$T as in K, can only be the unique

morphism in F(X) -+ V' such that

p jU(6)

U(X')

B-39

commutes in K.

However, we must show that 0 actually belongs to the more restricted

set of morphisms F(X,T) K'-T' X',r'. To establish this, we note that

p C XT K+T U(X',r') - X,T KT U(X'),U(T') implies that

X P U(X')

T

commutes in K, which in conjunction with the previous diagram implies that

X - n(X) UC)

T / U(s); U(T') -u(;T')

T

commutes in K. Then the uniqueness of ; gives p;T' = r, so that p E

F(X), '' X F(X,) K'TX',T'

Now we can apply these general results to the specific case of interest.

Let nAr be a fixed but arbitrary category-sorted signature, let CALG (called

ALG Ar in the main text) be the category of mgr-algebras and their homo-

morphisms, and let ALG be the category of A-algebras and their homomorphisms:

(1) A A-algebra consists of:

(la) A carrier R, which is a set.

(lb) For each n > 0 and 6 c A , an interpretation 0 c Rn + R.

(2) If R,a and R',o' are A-algebras, then a homomorphism from R,a

to R',o' is a function h e R - R' such that, for all n > 0

and c A n , the diagram

Rn 06 -R

R 'n R'

o' functions coimfutes.

B-40

The known existence of ordinary free algebras can be stated in the

language of adjunctions by:

Let UA be the functor from ALG to SET which maps algebras into

their carriers and homomorphisms into themselves. Then UA

possesses a left adjoint F A with an associated natural

transformation nA.

Here FA(S) is the free A-algebra generated by S, and nA(S) is the embedding

of S into the carrier of FA(S).

Of particular importance is the A-algebra, which we will call T, in which

the carrier members are sorts and the interpretation of each operator is its

category-sorted specification. More precisely, T is the A-algebra Ia2, rb ,

where each rob,6 is the object part of the functor r6 .

We now introduce the categories ALGIT and SET4fi J. An object of ALG4T

can be thought of as a A-algebra equipped with an assignment of sorts to the

members of its carrier. Similarly, an object of SET1IJQ can be thought of

as a set equipped with an assignment of sorts to its members. Since l =

UA(T), our last general proposition gives:

Let UT be the functor from ALG T to SET41QI such that UT(<R,o>,T)

- U A(R,o),UA () - R,', and UT(h) = U A(h) = h. Then UT has a left

adjoint FT and an assoriated natnral transformation nT such that

FT(S,t) = FA(S),c

nT(ST) = hA(S) I

where r e FA(S)A GT is the unique morphism such that

h_ A(S) U(FS)
Sf A

jUA(T)

T

commutes in SET.

Informally, a type assignment to a set can be extended to the free A-algebra

generated by that set by using the specification r to interpret the operators

in A.

B-41

Our final (and most complicated) task is to construct an adjunction

from ALG4T to CALG. Let UC be a functor from CALC to ALG4T whose action

on objects is given by:

UC(Be Dy') - <R',o'>,r' where

Re - (w,x' I w I1 and x' c B'()),

06 c R n - Re is the function such that
(1)

°G' (<W'x?' ' .. <WnX,
) 1 n) >)

r * 6 (W 11 .. 0 ~ ,n) Y6wl wn e$$,

T I Re - 1 is the function such that T'(w,x') = w

(The variables in this definition have been primed to facilitate its applica-

tion to later developments.) The reader may verify that T' is an homomorphism

from R',o' to T, so that <R',o'>,r' is an object of ALGtT. Intuitively, the

action of UC on objects is to forget the morphism part of B' (i.e., the

implicit conversion functions) and to collapse the object part of B' into a

disjoint union R' of its components, with a type assignment T' which remembers

which component of B' was the source of each member of R'.

To specify the action of U on morphisms, suppose 0 c By CI BGy,
C CL

and let <R,o>,T - Uc(B,y) and <R',V'>,T' = Uc(B',y'). Then

UC(a) E R + R' is the function such that

Uc(e)(w,x) =,))

The reader may verify that UC(8) is anhomomorphism from R,o to R',o' (which

depends upon the fact that 0 is an homomorphism from By to B',y'), that

R,o UCCOI) lcy
-,O R' ,O'

T
commutes in ALG, so that Uc(e) E <R,c>,T <R','>,T', and that U

AL,5 ALG4T

preserves composition and identities.

B-42

. II I '. L , . . .

Next, let FC be the functor from ALGT to CALG such that

Fc(<Ra>,T) - B,y where

B(w) - {r,i I r E R and I E T(r) w)

B(e w w') c B(w) - B(w') is the function such that

B(p)(r,i) r,Ci; P) ,
(2)

Y6 (wit ... I) B(w) x .. x B(w) B((wi, ... n)

is the function such that

Y6(wit ... ,w n)(<r , >, ... , <rn, n>) =

6(rI ... , rn),r 6 0I ... # in)

To see that y6 (wi, ... , 'n
) is a function of the correct type, suppose that,

for 1 i .< n, <ri, i> E B(wi). Then each i I c(ri) w. Thus

r6 , .. i n) c r6 ((r)), , T(rn)) - r6 (wi, . , w). But since

T is an homomorphism from R,o t T = Ial,rob, this set is also

-ra (r I , . n)) r6 (W, W')). Thus <a6(r, ... , rn)

r6 , ... , n)> B(r6 (, ... , wn)). The reader may also verify that B

is a functor from f0 to SET and y6 is a natural transformation from B n;x
(n)

to r;B.

Intuitively, one can think of T as assigning a "minimal" type to each

member of R, and of a member of B(w) as a member of R paired with an implicit

conversion from Its minimal type to w.

For any object <R,o>,T of ALG4T,

Uc(Fc(<R,O>,T)) W<R,o>,T where

= {w,<r,t> I wc ISI1 and r c R and i F T(r) w)

06 E -n R R is the function such that

C 6 (<Wl<rl' l
> >

, "' <ln'<rn'tn
: >) I

r6(I , 11) 6(r i , ... , rn),r n) >

R * sIf is the function such that T(w,<r,i>) W

B-43

Let

nC (<R,o>,T) R * R be the function such that

nC<'>,)r = T),r (r)>

The reader may verify that nc(<R,o>,T) is anhomomorphism from R,o to R,a

(which depends upon the fact that T is an homomorphism from R,a to T = lsir ob),

and that

nc(<R,o>,T)

R c(Ra a -

commutes in ALG. Thus nIC(<R,o>,T) C <R,a>,T GT -

Uc(Fc(<R,a>,T)).

Now we will show that FC is a left adjoint of UC, with associated

natural transformation nC* Let <R,o>,T be an object of ALGtT, let B',Y' be

an object of CALG, and let h be a morphism in ALG4T from <R,a>,T to Uc(B',y').

where Uc(B',y') - <R',o'>,T' is described by (1).

Since h is a function from R to R', the definition of R' implies that

h(r) will be a pair w,x', where x ' e B'(w). Moreover, since h is a morphism

ii ALG4T,
h

R,O R' ,ot

T

must commute in ALG, so that T(r) = i'(h(r)) - r'(w,x') = W. Thus

[h(r)]l a T(r) and [h(r)] 2 c B'(W(r)).

Now suppose f is any morphism in Fc(<R,o>,) CALG B',y', where

F (<R,o>,T) B,y is described by (2), and consider the diagram
C

'B-44

<R(<o>,,T _Uc(F c(<R,a>,T))

h jUc(h) (D)

Uc(B' ,y')

in ALCGT.

From the definitions of nC and of the action of UC on morphisms,

we have

Vc(h)(nc(<R,o>,C)(r)) - Uc(h)(T(r),<r,I T(>) T(r)

Thus the diagram (D) will commute if and only if, for all r c R,

h(T(r))(r,In) - [h(r)] 2
T(r)2

Moreover, since h is a category-sorted homomorphism from B,y to B',y',

it is a natural transformation from B to B'. Thus for all r c R, w c I'I,

and i C T(r) w,

B(T(r)) h(T(r)) 0 B'((r))

1B I')

B(w) h(w)) B'(W)

commutes in SET. In conjunction with the action of B on morphisms, this gives

hiw)(<r,i>) = h(w)(B()(r ,I Qr)) - B'(1)(h(T(r))(r,I)) •
r(r) r(r)

Thus diagram (D) will commute if and only if

hkw)(,r,>) - B'(i)([h(r)12)

holds for all r c R, w c If2, and i C T(r) wu.

Since this equation completely determines h, the adjunction property will

hold if the resulting h is actually a category-sorted homomorphism from B,y

to B',y'. We leave it to the reader to verify that h(kw) c B(w) - B'(w), and

that, because of the action of B on morphisms, h is a natural transformation

from B to B'. The one nontrivial property to be shown is that h satisfies

the homomorphic relationship with the interpretations y and y', i.e., that

for all n > 0, 6 E An , and wI'... , W n E Jll,

B-45

(
6X(r (W)

B'(W1) x ... x B'(w))B'(r 6 (,... , w

commutes in SET.

To see this, suppose <rll 1 >, ... , rnn> c B(W1) X ... x(n

Then

h(r 6 (l, ... I n))(Y 6 (wi, ... , wn)(crl, 1 >, .. , r ,n>))

- h(r6(w1, ... ,))(a6 (rI , ... , r), (, d)

- B'(r (11, . . , n))([h(c (r., . . r M) 2nn

- B'(r 6 (1 , .(.. , in))([oa(h(rl), .. , h(rn)) 2)

since h is an homomorp:,ism from R,o to R',o'

- B'(r 6(11, ... , n))(y6(T(rl), ... , T(rn))(Ih(r 1)] 2 , ... , [h(rn)] 2))

by the definition of a ' given in (1)
6

! .(.i , wn)(B'(il)([h(rl)]2) '' , B'(xn)([h(r)] 2))

sinew. ' (n)])
since y6 is a natural transformation from B n;x(n) to r ;B16

= ';(wl' "'" I wn) (h(wl)(ril'l) I' h(wn)(rn I)

In summary, we have constructed the adjunctions

FT FC
SE10 AL4 CALC

T C

with associated natural transformations nT and n . The adjunction used in |

the main text is the composition of these adjunctions:

U - UC;UT

F FT;FC

n(STs) - nT(SITS);SET*ItIUT(jC(FT(S TS)))

B-46

The free nAr-algebra F(S,T s) generated by S,TS is given explicitly
by (2), where R,o is the free A-algebra generated by S and T c R 0 I1

is the unique homomorphism such that nA(S);T - Ts .

In the special case where 0 is a preordered set, there is at most

one I C T(r) w, so that (2) is isomorphic to the much simpler definition:

B(W) - {r I r c R and T(r) c w)

B(w < w') is the identity inclusion from B(w) to B(w'),

Y6 (wit ... , Wn)(rl ... , rn) a a6(rl, ... , rn).

In this case, B(w) is simply the subset of the terms of the ordinary free

A-algebra whose minimal sort is a subsort of w, the implicit conversion

functions are all identity inclusions, and the operators are interpreted

the same way as in the ordinary free algebra.

B-47

REFERENCES

1. Goguen, J. A., "Order Sorted Algebras: Exceptions and Error Sorts,

Coercions and Overloaded Operators", Semantics and Theory of

Computation Report #14, Computer Science Department, U.C.L.A.,

(December 1978). To appear in Journal of Computer and Systems Science.

2. Goguen, J. A., Thatcher, J. W., Wagner, E. G., and Wright, J. B.,
"Initial Algebra Semantics and Continuous Algebras", Journal ACM 24

(1) pp. 68-95 (January 1977).

3. Burstall, R. M., and Landin, P. J., "Programs and Their Proofs: An

Algebraic Approach", in Machine Intelligence 4, B. Meltzer and D.

Michie, Eds., Edinburgh University Press, pp. 17-43 (1969).

4. Birkhoff, G., and Lipson, J. D., "Heterogeneous Algebras", Journal

of Combinatorial Theory 8, pp. 115-133 (1970).

5. Higgins, P. J., "Algebras with a Schema of Operators", Math. Nachr.
27, pp. 115-132 (1963).

6. Morris, J. -'., "Types are not Sets", Proc. ACM Symposium on Principles
of Programming Languages, pp. 120-124, Boston (1973).

7. Reynolds, J. C., "Syntactic Control of Interference", Proc. Fifth ACM

Symposium on Principles of Programming Languages, pp. 39-46, Tucson

(1978).

8. Reynolds, J. C., The Craft of Programming, in preparation.

9. MacLane, S., Categories for the Working Mathematician, Springer-Verlag,

New York (1971).

10. Reynolds, J. C., "GEDANKEN - A Simple Typeless Language Based on the

Principle of Completeness and the Reference Concept", Comm. ACM 13

(5), pp. 308-319 (May 1970).

11. Arbib, M. A., and Manes, E. G., Arrows, Structures, and Functors -

The Categorical Imperative, Academic Press, New York (1975).

B-48

. 7 -7 .- ,-

APPENDIX C: SPECIFICATION LOGIC

This presentation of specification logic is based upon a subset of

Algol W that has been augmented by refining its type structure and

introducing lambda expressions, as in idealized Algol.

The phrases of this language are categorized by phrase types, which

are described by the following grammar:

<data type> :: integer e oi

<phrase type> ::= <data type> variable I <data type> expression

<data type> array variable (<dimension list>)

<data type> array expression (<dimension list>)

statement assertin

prc dure (<phrase type list>)

<daLa type> procedure (<phrase type list>)

<phrase type list> ::= <phrase type>

I <phrase type list> , <phrase type>

<dimenE-ion list> :: * <dimension list> , *

The symbols exp and var are often used to abbreviate expression and variable.

Let Me be the set of meanings appropriate to the phrase type e.

In particular, let

M =
M expression t

Ma r S ((true, false}

M =S-4(S uSW),
statement

where S is the set of states (mappings of variables into values) and V is

the set of values appropriate to the data type T.

C-I

Here the form of Mstatemen t reflects the partially operational view

that the meaning of a statement maps a state a into the finite or infinite

sequence of states that occur during execution of the statement starting

with a. The inclusion of intermediate states in this definition is

necessary for the definition of noninterference specifications.

An environment is a mapping on the set of identifiers that maps each

identifier of phrase type 0 into a member of M . We write IPJi for the

me-aing of a phrase P in an environment n.

Then the meanings of the various forms of specifications used in

spec "ication logic can be defined as follows:

(1) If P and Q are assertions and S is a statement then

I{P} S {QIn is true if and only if, for any state a such that

[P)n (a) is true, the sequence ISJ (a) is either infinite or

concludes with a final state of such that IQ]n(of) is true.

(2) If P is an assertion, then {P}j is true if and only if

nnIPJ (a) is true for all states a.

(3) For n > 1, if Sit ... , S and S are specifications then

iS1 & ... & S - S) is true if and only if either (SI is true

or some iSi n is false.

(4) If I is an identifier and S is a specification such that the

free occurrences of I in S have phrase type 6, then [(V I) Se I

is true if and only if, for all meanings m %ppropriate to 8,

IS) I1: m] is true.

C-2

(5a) If S is a statement and E is a T expression or assertion

then IS # El is true if and only if, for all states a and a'

such that o' occurs in the seciuence IS]n (a), IE| (a') - IEn (a).

(5b) If V is a T variable, E is a T' expression or assertion,

and I is an identifier not occurring free in V or E then,

for all environments, V # E has the same meaning as

(VT MP I) (V I I) # E.

(5c) If X is an n-dimensional T array variable, E is a i'

expression or assertion, and I, ... , In are distinct identifiers

not occurring free in X or E then, for all environments, X # E

has the same medning as

(integer exp II) ... (Vinteger exp I) X(11, I I) # EV. % n "

(5d) If H is a procedure(e1 , , n), E is a T expressicn

or assertion, *I ... , In are distinct identifiers that do

not occur free in H or E, and 6il, ... , Sik are the statement

-like members of {1l ... n } then, for all environments,

H # E has the same meaning as

(V On I.)

C# E & I & k # E - H(1, ... n) # E)

i C-3

(5e) If S is a statement-like phrase, Y is an n-dimensional

T array expression, and Ii, ... , I are distinct identifiersn

not occurring free in S or Y then, for all environments, S # Y

has the same meaning as

(Vinteger exp I) . (integer exp I)

(S # I & ... & s # In" S # Y(11, ... , In))

(Sf) If S is a statement-like phrase, F is a T procedure(01 , ... , en)

or an assertion procedure(01 , ... , en), I,, ... , I are distinct
n

identifiers not occurring free in S or F, and oil, ... 1 0ik are the

expression-like members of {el, . n then, for all environments,

S # F has the same meaning as

(eO r1) ... (V In)

(S #I, & ... & S # I S # F(I, ... , I)).

(6) If V is a T variable, and E and N are distinct identifiers

that do not occur free in V then, for all environments, gv(V)

has the same meaning as

(exp E) (V assertion procedure(T exp) R)

(V # Hl {f(E)} V E {H(V)})

C-4

Specification logic is a system for inferring universal specifications,

which are specifications that are true in all environments. It includes

both axioms, which are particular universal specifications, and rules of

inference. Inferences may also be made by alpha conversion and (forward

or backward) beta reduction, as in the lambda calculus.

An inference rule consists of zero or more premises and a conclusion.

An instance of the rule is obtained by replacing metavariables, denoted by

upper case letters, by appropriate phrases, subject to restrictions that

may preface the rule. If all of the premises of an instance are

universal, then the conclusion of the instance is universal.

In the form S & ... & Sn = S, the specifications on the left, called

assumptions, are regard as a finite set. The metavariable E is used for

such a set, while S is used for a single specification. Z & Z' abbreviates

Z u ', while Z & S abbreviates E u {S}. When Z is empty, Z - S stands for S.

Phrase types are classified as statement-like and/or expression-like

as follows:

Phrase Type Statement-like Expression-like

T variable X X

T expression X

r array variable(*, ... , *) X X

t array expression(*, *) X

- tatement X

assertion X

procedure (... e) x

'r procedure(e1 "'" 'e) X
n

assertion procedure(O, ... ,) X~ 1 n

C-5

An occurrence in P of an identifier is statement-like (expression-like) if

the type of every subphrase of P enclosing the occurrence is statement-like

(expression-like). We write Fs like(P (Fe Mi(P)) for the set of

identifiers having statement-like (expression-like) free occurrences in P.

The following rules of inference and axioms have been developed:

(1) Self-implication

S-S

(2) Adding Assumptions

z & ' S

(3) Separating Assumptions

E a& -'.' (' "S)

(4) Combining Assumptionis

S -E' S)

S& z'-S

(5) Modus Ponens

SE1 1S

zn S
1 n£& & ... & S n S

& & '.. & £ S

C-6

(6) Quantifier Introduction

If I is an identifier of phrase type 0 that does not occur

free in E then

z (Ve I) S

(7) Quantifier Removal

If I, ... , In are distinct identifiers of phrase types

alp ... ou, and AI, , An are phrases of types 01, . n

t hvin

(eI I1) ... (V e I) S $ 1, IV I - A, A
n n " n ""'n

(8) Free Substitution

If S. I A is a type-correct

substitution, then

S

S1 , .. , I - A ll A n

(9) jathematical Fact Introduction

If P is di aqsertion that is a mathematical fact then

{il

(10) Reductio ad Absurdum

{false) l S

(11) Static Implication

If P and i, are assertions then

(P1 & {P implies Q) I IQ)

C-7

(12) Statement Compounding (Axiom)

(pI s 1q) & (qi s2 {r) - (p) s1; a2 {rJ

(13) Strengthening Precedent (Axiom)

(p iml q} & {q} s {r} - (p) a (r)

(14) Weakening Consequent (Axiom)

{p) s (q} & {q i es r) - (p} s (r}

(15) while statement (Axiom)

{i and XI 3 fi} - {i) while £ do s {i and -1

(16) Two-way Conditional Statement (Axiom)

{p and X} sI (q) & {p and -t} s2 {q}

{p} if k then sl else a2 {q)
%** 6.- 1 2

(17) One-way Conditional Statement (Axiom)

(p and £ s (qi & ((p and i1) implies q}

" {p1 if k then s {q}

(18) Empty Statement (Axiom)

(p) (p1

(19) Specification Conjunction (Axiom)

(p1
1 s (q11 & {p 21 s (q2 [p, a P {ql nd q2)

(20) Specification Disjunction (Axiom)

(pl} s (q,} s fq {P o a {q o q
I P2) q2) 1 %00 P2 1 %1. q2

(21) Left-Side Noninterference Decomposition

If S is a statement-like phrase, E is an expression-like

phrase, and F sa-like(S) - {Il, ... , In, then

II # E '& In # E S # E '

C-8

(22) Right-Side Noninterference Decomposition

If S is a statement-like phrase, E is an expression-like

phrase, and F explike (E) = (I1, ... , I}, then

S # I I & & S # In - S # E

(23) Constancy (Axiom)

s # p & {qi s {r) {q and p} s {r and p}

(24) Simple Assignment

Let X be a T variable identifier, E bd a T expression, and P

be an assertion such that all free occurrences of X in P have

type r expression. Let {Ii, ... I} = F (P) - {X.Sn ex-lk

Then

gv(X) & x # I & X I {PI E} X := E {P}
S"n X1 n

(25) Simple Variable Declarations

If X is a T variable identifier, P and Q are assertions,

Ell ... , Em are expression-like phrases, SI, ... , S are1' m n

statement-like phrases, and X does not occur free in E, P, Q,

Ell ... , Em, Si,..., S, then

z & y(x) & X # El & ... & X # Em & S, # X & ... & Sn # X (P} B {Q}

E 4 [P) begin r X; B end {Q)

C-9

!I

(26) Proper Procedure Declarations

Suppose

Fl, ... , F n , Gi ... , Gk H are distinct identifiers of phrase

types el, ... , 6n' *.. , Olt procedire(8 . , en),

Bproc , B are statements,

Pproc Qproc , P, Q are assertions,

E, E', £ are finite sets of specifications,pa

such that

Fit.. , Fn do not occur free In ',

GI, ... , Gk do not occur free in Bproc or E',

H does not occur free in Pproc' Qproe' P
,

Q
, E, ' or Epa"

Let E beproc

((1 .. }V nn (F Fn... FV 9) 1)
(zpa . {Pproc } H(FI ... F n {Q proc

& (Vexp-like E) (II # E & ... & #I I E H # E)

where {I, ... Im = F sta-lke (B pro) - {Fi ... , Fn, H) and E

is some identifier that is distinct from I1 , ... I and H. Then

Z'E & { po}B {Qp'o

pa proc proc proc p:oc

E r proc {P} B {Q)proc

E {P} begin procedure H(6 F; ... ; OF); B ; B end {Q}
1 n n proc

C-10

(27) Simple Assignment (Axiom)

gv(x) & x # i - (i(e)) x := e (x)} •

(28) Good Variables (Axiom)

(TeXp J)(r t ertin prcd qr e (T e xp) 7r)

(x # r {7((e)} x :=e f7T(x)))

gv(x)

(29) Nonrecursive Proiler Prcedire Decli.raLionS (Axiom)

ip} o(m) {q}

(pI

en procedur.e h(01 fl; ... ; 6nfn); m(fI , f n

o (h)

end

{qj

(30) Array Assignment

Let X be an identifier of type i array variable(*), S be

an integer expression, E be a T expression, and P be an

assertion such that all free occurrences of X in P have

type T Ury expression(*). Let (II . , I

F exp-lke(P) - {X1. Then

X(") #I & ... & X(S) #I , x X } X(S) L E 4P}

(31) Good Array Designators (Axiom)

x(s) # s (x(s))

C-11

(32) Array Element Noninterference (Axiom)

{s 0 t0 & X(s) # t -X(s) # x(t)

(33) Array Segment Noninterference (Axiom)

(ai ~V1 & X(s) # V -X(s) # xlv

(34) Array Declarations

If X is a T array variable(*) identifier, P and Q are assertions,

L and U are integer expressions, El . E E are expression-like

phrases, S1. ... ,S nare statement-like phrases, and X does

not occur free in E, P, Q, L, U, E1, Em, S1, S Sno

then:

Z &X #E & ... & X #E m& S 1# X& ... S nI#X

{P and dom X - [LIU1 B {Q)

Z'* MP begiT aaX (L::U); B {dQ)

(35) Domain Constancy (Axiom)

s #i dom x

C- 12

familiar law.. of elementary algebra. But when arrays are
APPENDIX D introduced, the assertions become lengthy and filled with

quantifi.rs, anl their manipulation seems only tenuously

Paming J. Horng coniected with the programmer's intuition.
Langages JEJ"itorin Superficially. we nee,, a ':ettci n, ation for assertions
Lana Editorabout arrays. But more "*ndammiitally. we need concepts

R eason gand laws which are nc only correct but also reflect our
intuitive understanding of arrays, just as the concepts of

A rray addition and multiplication, and the associative, com-

mutative. and distributive laws reflect our intuitive un-

John C. Reynolds derstanding of numbers. Once the right concepts and
laws have been found, it is comparatively trivial to design

Syracuse University a notation which facilitates their application.
This paper presents a variety of concepts, laws, and

A__varietyofconcepts,_laws._andnotationsare _ notations for reasoning about arrays some borrowedA variety of concepts, laws, and notations are from mathematics and others original which we believe
presented which facilitate reasoning about arrays. 11T rmmteaichnetesoiinlwiheei~

meet the above criteria. Their utility will be demon-
basic concepts Include Intervals and their partitions. strated both by informal descriptions of program hehav-
functioal restriCtion, eagleS, polntwise extension of ior and by a short formal proof of program correctness
relations. ordering, single-point variation of functions, The consideration of both informal and formal prools
various equivalence relations for array values, and reflects our belief that the relationship between the two
concatenation. The effectiveness of these Ideas is is a critical issue in program proving. Ideally, an informal
illustrated by informal descriptions of algorithms for description oi why a program works" should pro.ide
binary search and merging, and by a short formal proof. enough information that an intelligent reader could pro-

Key Words and Phrases: arrays, assertions, duce a formal correctness proof by filling in detail,.
program proving. intervals, partitions. pointwise without an1 significant invention or change of concepts
extension, ordering, concatenation. binary search. As an illustrative programming language, we w ill use
merging Algol 60 with the fillowing changes

CR Categories: 4.0, 4.22, 5.21. 5.24 (I) while statements.

(2) Round rather than square brackets for arraN
subscripts (to emphasize the view that arraN value% are

I. Introduction functions).
(3) Integer expressions of the form lower X and

The use of assertions to descibe programs and prove upper X. denoting the minimum and maximum sub-
their correctness [4-6] has developed to the point where scripts of a one-dimensional array X
the necessary assertions are often at least as lengthy and (4) Empty arrays, obtained by permitting arrai, dec:-

difficult to comprehend as the program which they de- larations in which a lower subscript bound is larger than

scribe. A major cause is the use of languages and proof the corresponding upper bound.
methods-typically the first-order predicate calculus- We have purposely stayed close to Algol t, avoid
which are taken from classical logic and are not oriented inadvertently choosing a programming language which
towards programming. hid the delects ot our assertion language. In particular.

Perhaps the most glaring example of these difficulties we have refrained from introducing our notation for
is the use of arrays. One need only compare the assertions assertions into the programming language itself iexcept
needed to describe a program such as log n exponen- for lower and upper. which were irresistibls attractivei
tiation. which does not involve arrays or other compound Moving in this direclion seems to lead to a %eri high-
data structures, with the assertions for a program such as level language. closer to API. than to Algol, ' hich i,
binary search, which is intuitively no more complex, but outside the scope o this paper
uses arrays. In the first case, the assertions are clear and On the other hand, even the choice of Algol has had
concise, and reasoning about them involves only the subtle elfe'cts on the ensuing deselopment For example

Permission to copy without fee all or pan of this matenal is switching to a programming language with the novel
granted provided that the copies are not made or distrbuted for direct
commercial advantage, the ACM copyright notice and the title of the approach io array, decried in 11 . (h I I I would nece,
publication and its date appear. and notice is given that copying is by sitale minot thanges io ninv .oncepts. such J, .ihan-
permission of the Association for Computing Machinery To copy doning the uniqueness of the array valuc with an empti,
otherwise, or to republish. requires a fee and/or specific permsion do

Work supported by National Science Foundation Grant MCS 75- domain.

22002 and Rome Air Force Development Center Contract F30602-77- To an even greater extent thdn is indicated h the
C0235. explicit references, this work is built upon the ideas of

Author's address: School of Computer and Information Science. CAR lloare [7 gl Mentton should also be made 't
Syracuse University 313 Link Hall. Syracuse NY 13210

(1979 ACM 0001-0742/79/05O0-0290 S0 75 distinct but related Aork on arrays hy Dh C (ooper 121

D-1

and of work by R. Burstall (I] which, roughly speaking, of a potential source of error, i.e. the possibility that a
does for lists what we are trying to do for arrays. program may be correct for one case of the conditional

but not the other. To emphasize this situation, we say
that the interval a[---- is regular when b - a : 0. or

2. Interval and Parttion DI'm irregular when b - a < 0. It is evident that a nonempty
interval is always regular. but the empty interval can be

Before considering arrays themselves, we introduce either regular or irregular. (This is a slight abuse of

some diagrammatic expressions for making assertions language; it is really the interval diagram. rather than
about subscripts. Basically, these expressions are a for- the interval itself, which is regular or irregular.)
malization of the diagrams which are traditionally drawn Partition diagrams are concatenations of interval dia-
by programmers when describing arrays. grams which assert that the corresponding intervals form

For example, in describing the program for binary a partition. More precisely, if,. a, a. are expressions

search to be developed in Section 5, one might draw denoting integers, then:

X: L 1 71 (a) a ai ... a, a is called a partition

a b diagram.
(b) a,_= r_a' Jl. i.e. the intervals de-

to assert a relationship between the integer variables a noted by diagrams obtained by eliminating all but an
and b and the domain of permissible subscripts of the adjacent pair of lines, are called the component intervals
array X. We will regard this diagram as an assertion that of the partition diagram.
the subscript domain is partitioned into three subsets: (c) a,,Z-,I. i.e. the interval denoted by the dia-
l(iflower X s i < a). (ila S i:5 b). and {ilh < i -s upper gram obtained by eliminating interior lines. is called the
X). total intcrval oIt the pai titon diagram.

Of course, an equivalent assertion can be given in the (d) 'he partition diagram is a logical expression
predicate calculus, but this sacrifices the intuitive content which is true iff the component intervals are a partition
of the diagram. (For example, the above assertion is of the total interval. i.e. iff the c)mpxonent intervals are
equivalent to lower X - I _5 a - I s b s upper X or disjoint and their union is the total interval
lower X - I 2 a - I ?_ b L upper X.) A better approach A% sith interval diagranis. - - ma\ be
is to formalize and give rigorous meaning to the diagram ...t..e in place of d- a
itself. The only change we will make is to place expres- -. -. p - , n
sions such as a and b within, rather than below, the - L1 in place of . - -

relevant boxes. In addition to making the notation more Thus for example. 7--7bF jc is a partition dia-
nearly linear, this curtails the tendency of such expres.- gram which is true iftfthe component intervals g h7 b
sions to migrate across boundaries when written hastily. = {ala -c i < h), (h). and b[-- ilh < i s

Before defining such partition diagrams. however. %e r t t i l < 7'i
must introduce the simpler concept of an interval d .a- =. I i a the

gram. An interval is a finite consecutive set of integers. II The nature of partitions implies that the t/e tif the

a and bare expressions denoting integers, thenaF-_-. ,hal inteial is the Num of the stzcs of the c.,mponcnt
called an interval diagram, is an expression denoting the nicrals.
interval 4''. aal . a. implies (23 i
When formulating general properties of interval dia- ,-,

grams (or partitidiarams) we will always use the As sh,in in the Appendix, (22) implies the following
standard form al -_ b . But when using the diagrams hindatn'cital pioperty of partition diagrams.
to make assertions, we will permit more flexibility. Spe-
cificatly, at either end of an intervaldiagram. Ia maybe il either
written instead ofa - I1. Also, 2J may be written as an 11"'< a, 5 ... ! a,, ,5 a or (2.3)

abbreviation for a -a.- Thus a b1 (-0a _ i _ a,, ?. , t ... : a , - a..

b). fa "-b - lila _ i < b), a -b = (ila < i Note thai the first inequality asserts that cery compo-

< b). and P] (a). nent intet :,l is regular. while the second incqualit,\

For any finite set S. we write #S to denote the sie. assert that cscrt component interal is empty

or number of elements in S. Thus From (2 3). the following simple cases are ohvious;

- if b - a L O then b - a else O. (2.1) ts always true. (2.4)

This use of a conditional expression to describe a fun- [a] 1 , ia , ' i2.5)

damental property of a data structure is a clear symptom [I is nonemp r

D-2

[a Ibi c] iffa : b S c iffb a Ia'--c. (2.6) However, one could permit intervals to be empty
By (2.4), partition diagrams without interior lines are without pe_. ttin their irregular representation by re-
tautologis so that in practice such diagams will not garding a[... as well-defined when a - b, but
occur in assertions. This circumvents the problem that undefined when a > b. Our decision to permit irregular
such diagrams can only be distinguished from interval representations has several motivations:
diagrams by their context. (I) Undefined ex , essions are a potential source of

More interestingly, one can easily derive several "dia- confusion.
grammatically natural" rules of inference. (Here "line" (2) If for i :- a until b do s is regarded as iterating
refers to any vertical line in a diagram, including its over the interval J (as in [81), then most
associated expression.) Algol-based languages permit Fj- to be irregular in

Eraawe. From a partition diagram one can infer any this context.
diagram obtained by deleting a line, i.e. (3) The author has never encountered an array-ma-

a-- implies (2.7) nipulating algorithm which handles the empty array yet
implies_ cannot be extended without complication to handle ir-

Adjacent Duplication. From a partition diagram one regular subscript domains.
can infer any diagram obtained by replicating a line next A potential counterargument is that even thogh an
to itself, i.e. algorithm may extend smoothly to the irregular case, its

- - - aT _ implies proof of correctness may require extra case analysis. But
a a - (2.8) in the author's experience, this case analysis can be...... avoided by using partition diagrams instead of inequal-

Substitution. From two partition diagrams such that ities - basically this avoids the or lurking in Proposition
the end lines of the first match some pair of adjacent (2.3).
lines in the second, one can infer the diagram obtained Nevertheless, a consistent case can be made for avoid-
by substituting the first diagram for the adjacent lines in ing irregular intervals. F.L. Morris has explored the use
the second: of interval and partition diagrams in this context. His

al b ... b,1 cl and basic approach is to regard any occurrence of an interval
diagram a[=-----] within an assertion as having the

a -- implies (2 9) "side effect" of asserting a s b. Then the partition
al bl ... b, c diagram aoi all ... a.] is defined to mean ao s a,

It should be emphasized that (2.4) to (2.9) are useful, _ ... s a., which implies both that the component
but not-complete rules, i.e. they cannot completely re- intervals are well-defined and that they form a partition
place (2.2), (2.3), or the definition of partition diagrams. of the total interval. In this approach, Propositions (2.2)
The use of these rules is illustrated by the following and (2.4) to (2.9) remain true.
inferences, which will be pertinent to the binary search 3. Functions as Array Values
example to be given in Section 5: There are two quite different concepts of an array.

(a) For any integers I and u, (2.4) and (2.8) show The more traditional view is that an array of, say, real
that 11 1I ul ul holds. numbers is a function from subscripts into variables,

(b) Suppose 1I Ja b] u and a :s j _s b. which in turn possess real values. The more recent view,
Then by (2.6) and (2.9), expounded by Hoare [7, 9] and Dijkstra [3], is that an

I la U/ bl ul holds. In turn, by array of real numbers is a variable whose value is a
function from subscripts into real numbers. In this paper.(2.7), this implies we take the latter view. The effect is to banish the

l I Li+ i bi ul, possibility of "sharing" or "aliasing" among array ele-
and i Ja j- if u. ments, which would greatly complicate the problems of

In conclusion, it should be noted that the definitions proving program correctness.
of interval and partition diagrams have been motivated Specifically, we assume that an array declared by
by a definite attitude towards empty and irregular inter- r array X(a:b) is a variable whose values range ever the
vals, and towards arrays with such intervals as their set of functions from the interval FaZiiIb] into the set

domain of subscripts. Although there are exceptions. "
such as finding the subscript of a maximum element. We write (to denote the unique function whose
most array-manipulating algorithms can be extended domain is the empty set {). For any function X, we
without complication to handle the empty array. In the write dom X for the domain of X, and when this domain
author's opinion, it is invariably good practice to do so., is an interval, lower X and upper X for the integers such
and the linguistic prohibition of empty arrays (as in that dor X - lower X . This definition of
Algol 60) is a design mistake-akin to prohibiting for lower X and upper X is intentionally incomplete for the
statements which execute their bodies zero times. case where X - (). We assume that there are integers

D-3

... i , J~ , I 111101 i Jl)d et,. •-

1o and o such thatliwe"() 16up r() -uo, and It is easily seen that images possess the following prop-
/o > u, but we leave these integers unspecfied to avoid erties:
makin& arguments which might depend upon their ar-
bitrary values. S Q d X implies {X 1 S) C {X} (35)

WhenSQdomX, wewriteX1S, clldtherestrction (()) - (j (3.6)
of X to S. to denote the function such that S - do. X implies (37)
dom(X 1S) - S (3.1) (X) -(X 1 S) U (X 1S')
(ViE s) (X l S)X) - XW). (3.2) (X I - (X(o) (3.8)

(Usually. but not necessarily, S will be an interval.) This S(X} !cdoiX when doe Xis fiite (3.9)
concept, which mirrors the informal idea of (the value
of) a subafray or segment of an array, satisfies

IfS'QS dorX then (X1 S) I " X1S' (3.3) 4. Operations on Reltlos

X I () - ().- (3.4)
There are several operations on relations which can

As an example. consider the program often be used to reduce the number of quantifiers in

begin Integer i; Integer array Squares(-5:5); assertions.
nteger array Possquares(0:5); Suppose p is a binary relation between two sets U
nteger array Nosquares(14:5); and U'. Then p*, called the pointwise extension of p. is

for i :- -5 until 5 do SquaresQ) :- i x i the binary relation between the set of subsets of U and
for i :- 0 until 5 do Passquares(0i X i the set of subsets of U', such that S p" S' holds if and
... only if x p x' holds for all x in S and all x' in S'.
end When U and U' are both the set of integers, p could

At the program point indicated by the ellipsis, the fol- be any of the relational operators of Algol. For example.
lowing assertions will hold: (2, 31 * (3. 4) and (2.3) # (4. 5) are both true, while

d2, 3) <0 (3.4). f2, 3) = (2. 3), and (2, 3) ,# (2. 3)
dom Squares are all false. The last two examples demonstrate that
lower Squares -=-5 90 is not the negation of =* (and thereby show the
upper Squares 5 importance of making * explicit).
(Vie [-55j) Squaresi) - i x i The pointwise extension of any relation satisfies the
Possquares = Squares 1 F 5 following laws:
Nosquares = Squares 1 () =()
lower Nosquares > upper Nosquares. (S p* S' & c_ S) implies T p* S' (4. la)

The expressions lower X and upper X occur so fre- (S p" S' & 1' C S') implies S p* T' (4.1h)
quently in interval and partition diagrams that it is useful (4 2at
to adopt conventions for eliding them. We will permit
the name of a function X to be attached as a label to an S p* ((4.2b
interval or partition diagram. In the presence of such a (S U T S il (p S & T S) (4.3a)
label, lower X may be omitted from the right of the
leftmost line ofthe diagram, and upper Xmay beomitted S p* (S' U 7") tll (S p* S' & S p T') (4.3b)
from the left of the rightmost line. For Example, X: (x) P)X') ill x X'. (4.4)
F71a b stands for Ilower X]a b[upper X.
X: k stands for k u r X , and X: = Oc.asonally. one needs the pointwise extenion of a

relation with regard to only a single argument. The
stands for dora X. Moreover, when an interval diagram simplest way of encompassing this case is to regard
is used to restrict a function X. the label X: can also be A p" S' as an abbreviation for (.r) p" S' and S p* x' as
elided. For example, X 1 E stands for X 1 an abbreviation for S p" {x').
[lower X a]. Another concept involving relations, somewhat more

For a function X, we write (X), called the image of specialized than pointwise extension, is ordering. The
X. to denote the set fX(i)ji E dora X) of values obtained usual idea of an ordered array can be generalized to an
by applying X to members of its domain. (On the other arbitrary relation in a way which unifies several impor-
hand, when x is not a function. [x) will denote the tant cases. Let ,' be a function whose domain is a set of
singleton set containing x.) Thus for example, integers, and let 1) be a biary relation appropriate to the

type of result of X. Then X is ordered with regard to ji.
SPossquares) ,, (0. I. 4, 9. 16, 25) }written ord, X. if and only if. for all i andj in the domain
(Possquares 1 [T3) - (1, 4,9) of X, i <j implies X(i) p X(j).
(Squares 1 r-2 2) = (0, 1, 4). The following "orderings" appear as specific cases-

D-4

who-

or X: increasing order occur in either of two segments at the left and right ends
ord, X: strict increasing order of X. If we use the local variables a and b to delineate
ond X: decreasing order these segments, we have the invariant:
or&C X: strict decreasing order If found then X: (lll] & X(j) - y else
ord- X.: all elements equal
on,. X: all elements distinct X: []Ia E J & (X 1 g--a ,' y& {x 1 bi---) ," y.
Moreover, the generalization satisfies the following es- On the one hand, this invariant can be achieved
sential laws of ordering: initially by setting found to false and making the end

ord, X & S C dom X implies ord,(X 1 S) (4.5) segments of X empty. On the other hand, it is easy to see

doma X < I implies ord. X (4.6) that the invariant implies the goal of the program if
eitherfound is true or Fj7_7b is empty. This is obvious

If S U T-- dom X & S <" T then if found is true, while if found is false and a b is
(ord, X iff (ord,(X 1 S) & ord,(X 1 T) (4.7) empty then the partition diagram X: [[a b[_

& (X 1 S) p([X 1 71)). implies dom X =a U b=, so that (X I =a)

An important special case of(4.7) is obtained by taking * y & (X b=j]) 0- y implies (X) # v. Thus,
S and T to be two components of a partition: since the emptiness of F b can be tested by a > b,

If X: .._l_.] then our program has the form:

(ord, X iff (ord,(X 1 [-4,) begin inleger a h.
ord(X 1 -) a - loer Y, h uptper X.frund - fake.&~~~ ~ ~ ~ fr.XIk= hl ound or a > h) do

& (X 1 p (X 1 k=))). end

For particular relations p, there will be additional When execution of the body of the while statcment
significant laws about p" and ord. Although we cannot begins, both the invariant and the while test will be true.
approach completeness in this area, the following laws Since a will be nonempty. we can perform an
are relevant to the examples we will give: opera.ion "Pick j'" (whose details will be considered

Irall x andy, then S * later) which sets j to some integer in a At thisIf x p y implies x p'.v for al n ,te *stage, we will have

T implies S p'" T for all S and T, and ord, (4.9) stage._wewillhave

X implies ord,- X for all X. X: L7L J . hIIZ

If x p.y and y p' z implies x p" z for all x, y, & (X 1 =la) ,° & (AX 1 b= ,".
and :, then S p" y and y p'* T implies S (4.10) and we can compare X(j) with y. There are three cases:
"° T for all S,. ~v and T. (I) If X(Q) = ., the invariant will be pr:served if

If x p x for all x, and if dor X is a nonempty found is set to true.
interval, then ord, X implies X(lower X) p* (4.11) (2) lfX(J)<y. thenord. Xinsuresthat {X l }
(X) and (X) p* X(upper X). * v. Thus (X 1 =--]a} A y will be preserved if a is

set toj + I.

5. Binary Search (3) If X(1) > y. then a similar argument justifies
setting b toj - I.

We have now introduced enough of our notation to The following is a more detailed justification of Case

demonstrate its use in describing -precisely yet intelli- (2): From (4.5) and (4.11), ord. X and the nonemptiness
gibly-why a program works. As an example. we de- of X: [imply (X 1 n:} - 0 X(j). Along with
scribe an algorithm for binary search. X() < v. this implies (X 1 [- } < * .v by (4.10). and

Given an ordered array X and a test value Y. the - -- I - by (49) (In a more formal presen-
program should set the boolean variablefound to indicate tation. ord. X would occur in all assertions. reflecting the

whether any element of X is equal to y. iffound is true. oba ious fact that the program does not changete thearray

then the integer variable]j should be set to a subscript of

X such that X(j) = y. More precisely, if ord, X. then 1 us our program is:
executing the program should achieve the goal begn Integer a, b.

Iffound then X: [IIJIZ & X(j) - y else a - lower X. h - ue- X.,pud - tsalei
(M} # y. while - (Joundor a > b)do

be~n
Throughout program execution, found will only be "Pk j'.

set to true if X: j & X(j) y is achieved. On If I i - then t,'und t rue elke
if ki/< i thena - + Iete-, - I

the other hand, when found is false, it will not be known end
that y occurs nowhere in X, but only that it does not end

D- A

Termination is guaranteed by the fact that each [Xlile(fi-X(j) when j, , (6.3)
iteration either sets found to true, which immediately
stop@ further iterations, or else decreases the size of and, as an immediate consequence of (6.3).

a -b, whose emptiness will cause termination. Xile] 1 S - X 1 S when S dm. X
The absence of subscript errors is guaranteed since and i C S. (6.4)

X: Jj holds at the program points where X(j) Once X(i) :- e is seen as an abbreviation for X :-
is evaluated. [XliieI, the usual axiom of assignment [5]:

It should be noticed that this discussion of binary PJ,_, (x :_ e) P (6.5)
search does not exclude the possibility that
flower X upper X[, and therefore a "b, might be (where PI.-. denotes the result of substituting e for x in
irregular. This illustrates our contention, at the end of P) extends to an axiom of array assignment 19]:
Section 2, that partition diagrams permit reasoning about Px-X,t,, (X(i) :" e) P. (6.6)
intervals to include the irregular case without extra case
analysis. Because of(6. 1), when this axiom is used, the substitution

To complete our program, we must digress from the X- [XIijei need not be appiied to occurrences of X in
topic of arrays to specify "Pick j". In this case, the iom X, lower X, upper X, or in a label attached to an
problem is not to find a correct realization-either interval or partition diagram.
j :- a or j :- b would be correct-but to find an effi-
cient one. The need to shrink [alj as much as pos-
sible suggests choosingj as close as possible to the mid- 7. Equivalence Relatlons for Arrays
point of r--'-j, i.e. j := (a + b) + 2.

However, we must be sure that if a s b, thenj :- (a For many programs which alter arrays. such as sort-
+ b) + 2 will achieve a s j :s b, despite the fact that ing programs, a full specification will stipulate both that
integer division involves rounding. Although it is stand- the final value of the array will possess some property,
ardized in Algol 60, the rounding behavior of hardware- such as being ordered, and that the final value will be
implemented division can vary for different machines, related to the initial value in some way, such as being a
especially when a + b is negative. Fortunately, it is rearrangement. Often-even when the situation is intu-
enough to know that division by two is a monotonic itively obvious-a formidable technical apparatus is
function which is exact for even numbers. For a 5 b needed to formulate and prove the latter kind of speci-
implies a + a s a + b _5 b + b, so that monotonicity fication.
gives (a + a) + 2 :s (a + b) + 2 _- (b + b) + 2. and To deal with these problems it is useful to introduce
exactness for even numbers gives a i (a + b) + 2 !s b. several equivalence relations for array values. Suppose

(S. Winograd has pointed out thatj :- (a + b) + 2 is X and Y are both functions whose domains are sets of
unnecessarily prone to overflow, in comparison with, for integers. Then:
example,j :- a + (b - a) + 2. We leave it to the reader (a) We write X Y- Y, and say that X is a redistri-
to show that the correctness of this improvement can still bution of Y iff (X) = (Y).
be proved with a monotonicity argument.) (b) We write X - Y, and say that X is a rearrange-

ment of Y iff there is a bijection B (sometimes called a

6. Array Assignment one to one correspondence or a permutation) from dor
X to dor Y such that (Vi E dom X) Y(B(i)) - X(i).

We must now move beyond programs such as binary (c) We write X = Y, and say that X is a shy't of Y iff
search which merely use arrays, to consider programs there is a bijection as in (b) with the special form B(i)
which change arrays. Our treatment of such programs - i + s for some integer s.
follows the ideas of Hoare [7, 9], which are based upon This defines an increasingly stringent sequence of equiv-
earlier work by McCarthy and Painter [10]. alence relations. Thus where p is ~~, ~, or

In programming languages at the level of Algol, the
fundamental agent of change is an assignment statement Transitivity X p Y & Y p Z implies Xp Z (7.1)
which alters a single array element, e.g. X(t) :- e. To deal Simmetrv X p Y implies Y p X (7.2)
with this statement from th viewpoint that an array is
a function-valued variable, we must regard it as an Reflexiiviy X p X (7.3)
abbreviation for the assignment X :- [XIaie], where X Y implies X - Y (7.4)
IX1il e] denotes the function which is similar to X except
that it maps i into e. More formally, [Xjije] is defined X - Y implies X -- Y. (7.5)
when i E do. X, in which case it is the function satisfying Finally, we have three more specific laws. Exchang-

dom [XjijeJ - dora X (6.1) ing a pair of elements produces a rearrangement:

[Xlile]() - e (6.2) (Vij E dora X) LIXjiIX()luj1X(1 j - X, (7.6)

D-6

i . o . ..

two one-element arrays with equal values are shifts of 9. Merulag

one another. As a second example of program description, we
O - dor x & [D - ,m Y& x(- Y(.J) (7.7) consider the problem of merging: Given two ordered

implies X a- Y, rrays X and Y, set Z to an ordered rearrangement of

and a shift of an ordered aay is ordered: the concatenation of X and Y. We assume that Z is just
the right size to hold the result. Thus if

X- Y& rd X impies ord, Y. (7.8) OrC X & Ord, Y & Z -(#dmX+#d y),

As Hoare has pointed out (6), for any program which then executing the program should achieve the goal
only alters an array by performing exchanpes, (7.1). (7.3) t
and (7.6) are sufficient to show that the final array value onts Z & Z ~ (X" Y).
is a rearrangement of the initial value. However, to deal During execution, each array will be partitioned into
with programs which move information from one array a processed part on the left and an unprocessed part on
to another, we must also consider the concatenation of the right, the processed part of Z will be an ordered
array values. rearrangement of the concatenation of the processed

parts of X and Y, the unprocessed part of Z will be the
right size to hold the unprocessed parts of X and Y, and

8. Concatenation all processed elements in Z will be smaller or equal to all
unprocessed elements in X or Y. (The last condition is

Let X and Y be functions whose domains are intervals needed to insure that the unprocessed elements can be
with sizes m and n respectively. Then X_ Y, called the moved into Z without rearranging the already processed
concatenation of X and Y, is a function such that elements.) Thus we have the invariant:

domn(X- Y)- ,,,+,+I- I I-x:[__ l7x I : k, (a)
(X- Y) 1 m+l-l= X & Z: L 11: Z
(X-Y) 1m + I I + m + [- i . Y, & ord Z I -- kz (b)

where I- lower (X- Y). To make this definition unique. & Z 1 [k: - (X 1 1kxr Y I [kv) (c)

we would have to specify the integer function lower & 9 Z:i] (d)
(X" Y): we refrain from doing so to preclude arguments - : X [+ :: Y:
which might depend upon this arbitrarily chosen func- & (Z I [1-1k:)
tion. (e)

Let) denote the unique function whose domain is <0 (X 1 kx-) U (Y 1 k=).
empty. Then concatenation satisfies the following laws: 'The conciseness and clarity of this notation in compar-

X-(- X (81) son with predicate calculus can be seen by comparing
() X= X (8.2) this invariant with the nearly equivalent one given in
(X-Y)-Z X l(YiZ) (8.3) Reynolds I I1.)
X Z- X' & Y Y' implies X_ Y = X'_ Y, (8.4) T he invariant can be achieved initially by making
X'Y Y X (8.5) the processed parts all empty, and it will imply the goal
X - X' & Y - Y' implies X - Y- X, Y' (8.6) of the program when the unprocessed parts are all empty,

a implies which by (d) -will occur when the unprocessed part of
X: (I F__ = (8.7) Z is empty. Thus we can use a program of the form:x = (K 1 E77)-(x 1 a E--l)

(XYL) X) U (Y) (8.8) begin integer kx. ky. kz;
ord(X- Y)iffordX&ord, Y& X~p (Y). (8.9) kx:=lower X;k;:=lower Y, kz:-lowerZ:while k: upper 7 do "('opy One Element"
The first four laws show that array values form a monoid e.

under concatenation, provided that shift equivalence is

used in place of true equality. The next two laws show In "(opy One Element." a single element will be
that this monoid becomes commutative when the les. moved from the unprocessed part of X or Y into the
stringent equivalence of rearrangement is used. (Tech- processed part of Z To preserve condition (e) the ele-
nically, one can make these statements precise by work- ment to be moved must be the smallest member of [X
ing with the quotient of the set of array values under the 1 Uk]) U (Y 1 ki . Since both X and Y are
equivalence relations - or -.) ordered, this will be the smaller of the leftmost unpro-

The last three laws establish the basic connections cessed elements. X(kx) or Y(ky). providing both unpro-
between concatenation and partitions, images, and or- cessed parts are nonempty. However, if only one unpro-
dering. In particular, (39) is a consequence of (4.8) and cessed part is nonempty. its leftmost element will be the
(7.8). element to be moved.

D-7

-,

More precisely, when "Copy One Element" begins, r -

Z: kz__ and atleIt"one of X:[and Y:WyIj] 'X k & Y:[Z Wa)
will be nonempty. Suppose X: [is nonempty and & Z: kz
Y:[isempty. Sinceor. X,(4.5)and(4.11)imply & oer [ZlkzlX(kx)] 1 ki (b')
X(kx) s (X 1 x), and since (Y 1 R }yZZ) is & [ZlkzlX(kx)] 1 kz
empty, (X k " Y 1]ky) (c')

IX x: j & Z: ((f) & # Z: kz=l(d'
& X(kx) S ((XJ k1 U (Y I FYi)) (g) - # X: kxEj + # Y y- (d')

willholdaswells theinvariant l.(Notethat X:kx & ([ZlkzlX(kx)] 1 kz)
is an abbreviation for the partition diagram (iX 1 kx[-]) U (Y 1 [----i) (e')

u , which asserts that the unprocessed
part of X is nonempty.) By a similar argument, if X: (Here we have made the simplification of replacing

is empty and Y: [kiZ is nonempty, then occurrences of _ _ _ and - - -

IY- Y: & Z: k [kz+ I_ - bytheequivalent forms--- k - - -

& (ky) :_0 ((X 1)---" U {Y I I----)) and z-_ .) Thus we must show that l & IX
implies 1', i.e. that lines (a) through (g) imply (a') through

will hold. Finally, if both unprocessed segments are (e').
nonempty, then By the rule (2.9) of substitution, (a) and (f) imply

X: & Y: IJ-- & Z: I: & : _
& X(kx) 5- (kX 1 I- &: (h)

& (ky) :0 (Y1 kvy---) & Z: EIT l7
will hold. In this case, by (4.10) and the transitivity of which, by the rule (2.7) of erasure. implies (a') as well as
:5, X(kx) !5 Y(ky) implies IX. while Y(k') _< X(kx) various partition diagrams used in the sequel. In panic-
implies I Y. ular, by (2.2) and (2. 1), X: [implies -X: T_

Thus if we define -= sX: kxI--] + I, and Z: Ikzl implies :Z: -:__
"Copy One Element" - - Z: k:[-- + I, so that (d) implies (d').

if kv > upper Y then "Copy X- else
if kx > upper X then "Copy Y" else
If X(kx) _ Y(ky) then "Copy r" else Copy Y", IZlkzlX(kx)J 1 U-7 K

then I & IX will hold before the execution of (either [ZlkzlX(k.x)] 1 L]kz - IZlkzlX(kx)l 1 IJ
occurrence of) "Copy X", and I & IY will hold before by Z: L ., (8.7). (3.3)
the execution of "Copy Y". = z 1 L-- Ikz [Zlkzl X(kx)] 1 []

If "Copy X" moves X(kx) out of the unprocessed by (6.4)
part of X and into the processed part of Z. then (g) b (
insures that (e) will be preserved. Moreover, (e) insures Z 1 [Jkz X I [k.,]

that X(kx) will be larger or equal to the elements which by (7.7), (8.4), (6.2)
have previously been moved into Z. Thus the ordering ~ (X 1 [_Ikx - Y 1 []kv) - X 1]x
(b) will be preserved if X(kx) is placed at the right of the by (c), (8.6)
processed part of Z. This leads to: (X I L ikx -X 1 I[) - Y 1 E_]ky

"Copy X" - by (8.3), (8.5), (8.6). (7.4)
begn Z(kz):= X(kx); kx :- kx + l; k :- k z + I end. .X 17 - -Y 1 jZj]ky

and by a similar argument by X: kx (8.7) (3.3)

"Copy Y" a which establishes (c'), and also
begin Z(kz) := Y(kv); ky := k + 1; kz :- kz + I end.

Formally, in the notation of Hoare 15], "Copy X" [ZlkzIX(kx)] 1 j k- Z 1 LZ -k2 -XI . (i)

must meet the specification Then

I & IX ("Copy X") I. {[Z kzX(kx)] 1 kz

To exemplify the application of the various laws we have - (Z 1]kz - X 1 kx}
stated, we give a formal proof of this specification. The by I1). (7.4) (7.5)
assignment axioms (6.5) and (6.6) imply I' ("Copy X") = (Z 1 =-]k:) U { X 1 Ek
I, where by (8.8)

D- 8

- (Z 1 "-'kz) U (X(kx)) the precise yet intelligible description of a significant
by (3.8) aspect of programming.

<* (X j k " U (Y I [-) Hopefully, this work suggests guidelines for further
] b (e,), (4.3a) progress: One should focus upon particular mechanisms

- (X 1 X 1 kx k such as arrays rather than generalities which pertain to
by X: [kr ,(18N.7). (3.3) all computation. Concepts and laws are more fundamen-

-(X 1 kx)U (X 1 kxL--) U (Y1 [z-7) tal than notation per se, and should reflect intuitive

by (8.8) understanding. Most important, the crucial test is the
ability to describe real programs in a way which is not

so that (4. la) and (4. Ib) give (e') and only precise but also intelligible to the human reader.

(Z 1 [--]kz) 5* (X 1 kx). (J) Acknowledgments. I am indebted to the members of

Finally, (3.1), (2.1), and (4.6) imply ordX 1 kx, IFIP Working Group 2.3, who have provided motiva-
which with (b), (j), and (8.9) implies ord.,(Z I tion, inspiration, and helpful criticism. I am also grateful

=--kz - X 1 kx), which with (i) and (7.8) im- for the hospitality of the University of Edinburgh and
plies (b'). the support of the Science Research Council during theperiod when this paper was written.

10. Multidimensional Arrays Appendix. Proof of Proposition (2.3)

Although the concepts we have presented were de-
veloped and tested in the context of one-dimensional We leave it to the reader to verity that either a,, < a,
arrays, most of them extend to the multidimensional S ... ! a. or a,, m -> ... a. implies ai,__ 7 -_ .
case. The major additional concept which is needed is The following proof of the converse was found by F.L.

the Cartesian product: Morris.
Suppose aqE[.. a ,-- . From (2.2) we have

Si x ... x S. - {(0 , i)Ji a S, & ... & i, E S.

A Cartesian product of intervals is called a block. The a,[- = X a, ,I-- a , (a)
values of the array declared by T array X(ai: b ... a,:
b,,) are functions whose domain is the block a2 where
Xx... , # .l. --A = ifh -a o then b - a else 0

It is evident that the values of subarrays of X such as
rows and columns are restrictions of X to certain blocks, is always nonnegative and is zero iff aL-- is empty.
For example, with some fairly obvious conventions about For arbitrary a,'s simple cancellation gives
eliding lower and upper bounds, the following assertion
specifies that (i, j) is a saddle point of the two-dimen- a - a, = a, - a,
sional array X:

Then subtraction of (a) from both sides gives
(x I ([7 x)) s_ x(ij) , a)(b

& X(ij) 5 (X 1 (=--- x -]).. a,,) = fia, a,), (b)

where

Ii. Conclusion fla. h) - b a-
= if h - a > 0 then 0 else b - a

The content of this paper is only a small beginning is alsaws nonpoitive and is zero iffatI"I is regular.
It is largely limited to one-dimensional integer-sub- Ihc interval a,,[7a:,j must he either empty or
scripted arrays. and even within this domain it is based regular (or both). Suppose it is empty. Then (a) asserts
upon the careful study of perhaps a dozen simple pro- that a sum of nonnegative terms is zero which ilmpies
grams. Moreover, program proving has been viewed as that each term is zero. Thus for each i. a, ,E:-a is
a purely human endeavor and the possibility of mechd- empty. and a, , 2! a,.
nization has been ignored. On the other hand, suppose a[is regular.

Thus further study is certain to produce significant Then (b) asserts that a sum of nonpositive terms is zero,
extensions and reformulations. Nevertheless, we believe which implies that each term is zero. Thus for each i.
that we have gone far enough to demonstrate the value a, L is regular, and a, , <_ a,.
of the underlying approach: We have formulated con-

cepts, laws, and notations which are powerful tools for Rceecd hJil 1977. lev,.,ed May 1TX

D-9

1. DurstaU. R M. Some techniques for proving roirreciess of
programs which alter data structures. achame Inte~hpence 7 (Nov.
1972), 23-49.
2. Cooper, D.C. Proofs about programs wich one-dimensional
arrays. Unpublished.
3. Djkstra. E.W. A Ducoe' of Prograwnwg. Prentice-Hall.
Englewood Cliffs. N.J.. 1976.
4. Floyd, R.W. Assigning meanings to programs. Proc. Symp in
Applied Mathematics. Vol. 19, Amer. Math. Soc.. Providence. R 1.
1967. pp. 19-32.
S. Hloare. C.A.R. An axiomatic basis for computer programming.
Comm. ACM 12, 10 (Oct. 1969). 576-58 1.
6. Hoare. C.AR. Proof of & program: FIND. Comm. ACM4 14. 1
(Jan. 1971). 39-45.
7. Hoare. C.AR. Notes on data strructuring. In Sirnaaured
Programming. 0.-J. Dahl. E.W. Dijkstra. and C A.R Hoare,

Acdemic Press. N.Y.. 1972. pp. 83-174.
& Hoare,.CA.R. A note on the FOR statement. BIT 1.3 3(1472).

34341.
9. IKoate. C.AR., and Wirth. N An axiomatic definition ot the
programmig language PASCAL. Acra Informatica 2 (1973). 335
355.
10. McCarthy, I., and Painter, I Correctness of a compiler for
arithmetic expressions. Proc. Symp. in Applied Mathernatics. Vol ly.
Amer. Math. Soc., Providence. R1., 19067. pp. 33-4 1.
11. Reynolds,. iC. Programming with transition diagrams In
Programming Methodologv. A Collection of Papers bt Members of
IkI-P WG 2.3. D. Gries. Ed.. Springer- Vtrlaig. 197M. pp 15~3 10~

D- 10

APPENDIX E: RECENT WORK ON ARRAY CONCEPTS

In "Reasoning about Arrays" (Comm. ACM 22 (1979) 290-299), we defined

the concept of rearrangement:

When X and Y are functions with the same codomain, X u Y

(X is a rearrangement of Y) holds if and only if there is a

bijection B: dom X - dom Y such that X = B.Y,

and of shift equivalence:

When X and Y are functions with the same codomain and domains

that are intervals of the same size, X v Y (X is shift equivalent

to Y) holds if and only if there is a constant s such that

X(i) = Y(i + s) holds for all i in dom X.

This year we discovered the usefulness of generalizing the latter concept

as follows:

When X and Y are functions with the same codomain and totally

ordered domains, X nu Y (X is a realignment of Y) holds if and only

if there is a monotone bijection B: dom X - dom Y such that

X =B-Y.

It is easily seen that realignment is an equivalence relation that implies

rearrangement and reduces to shift equivalence in the special case where

dom X and dom Y are intervals of the same size. Morever,

If X Y and ord Y then ord X

and

If X " Y then X*Z ^ Y-Z

E-1

The advantage of realignment lies in its ability to deal with functions

whose domains are sets of integers that are not intervals, or even sets of

nonintegers. An example is the following annotation of a program for

left-shifting an array:

a b an ddo X and X - X

begin integer k;

: a;k

{whileinv: [a. Ikl "bl and X 1 ([k u k.[]) "X 0 1 a= }

while k < b do

begin k := k + 1; X(k-1) :- X(k) end

end

{X 1 b -v X 0 1 a=l

Notice that the invariant expresses the idea of an array with a hole

in the middle by using a function whose domain = k u k= is not

an interval.

Another advantage is that we can replace the usual notion of con-

catenation by a kind of concatenation based on "source tupling" of functions.

For sets S and T, let

S + T = {i} x S u {2} x T

with the ordering

<x, y> < <x', y'> iff x < x' or (x = x' and y < y')

Then, for functions X: S -+ U and Y: T - U, let X s Y: S + T U be the

function such that

(Ci C S) (X s Y)(<l, i>) = X(i)

(Vj r T) (X $ Y)(<2, j>) = Y(j)

E-2

Then

a. dowm(X 0 Y) is the union of the disjoint

sets (1) x dom X and (2) x dom Y

b. (X 0Y)1 ((li x dmX)P6X

c. (x *Y) 1({2) x dom Y) Iv Y

d. Ullx dom X< (2) xdom Y

establish that 4D is a kind of concatenation. In particular, if X and Y are

sequences, then X * Y is a realignment of the usual sequence-concatenation

of X and Y. However, unlike the usual notion of concatenation, X l Y is

defined for any pair of functions with the same codomain.

Further laws include:

If S c dom X and T c dom Y then

(X.*Y)1 (S +T) -(Xl S) 0(Y T)

(x t Y)*Z - x* . z

{x * Y) {- Ux ' {Y)}

or% (XC Y) If and only if

(a) ord X
to.- p

and (b) ord Y

and (c) Wx p* {Y}

E-3

(Xe Y) z 0x (Ye Z)

X. <> 'xX

<> 9 X X

If X P X' and Y N Y' then Xe Y \ X' * y'

If X k X' and Y _ Y' then X e Y " X' e Y'

If dom X = S u T and S and T are disjoint

then X -. (X1 S) 0 (X1 T)

If dom X - S u T and S < * T

then X n. (X 1 S) * (X I T)

If dom X - a= and ab

then X Na (XjI aEE) 10 (X 1 bF--Jc)

For example, in proving the above left-shifting program, one must show

that

[a Jk-ilkJ b and X 1 (k-l u k-l=) a X0 1 a bl

implies

[X k-i: X(k)] 1 (a]k u kjb) . X0 I a[b11bl

This can be proved by a sequence of realignments involving concatenations:

E-4

I[X k-i: X(k)] I (F--Ik u k=)

_: ([X I k-i: X(k)] I Fa-iJk) * ([X I k-i: X(k)] 1 k=--)

_: (X I k-i: X(k)] 1 IZJk-l) * ([xI k-i: X(k)] 1 J)
* ([X I k-i: X(k)] 1 k=)

"_ (X Ij k-1) * (xI 1R) * (xl ki--1)
_-~(cxIEk- 1) * (X 1 k-l 1t

Sx1 (raFJ-k-I u k-l[jz1)

X0 l a-J .

Further applications of realignment arise in conjunction with preimages

and related concepts. For a function X and a set U c cod X, let

P(U, X) = {i I i E dom X and X(i) e U)

be the preimage of U under X. Then

If U' c U then P(U', X) c P(U, X) ,

P(U u U', X) - P(U, X) u P(U', X) ,

P(U A U', X) - P(u, X) n P(u' X) ,

P(u - U', X) - P(u, X) - P(U', X) ,

P(U, X) - dom X if and only if (X) c U

P(U, X) a (I if and only if U and {X) are disjoift.

p(U, X'Y) - p(p(U, Y), X)

p(U', I) U' .

p(U, Xl s) - P(U. X) n S

S P((xl S), x) .

(xl P(U, X)) - U n x

P(u, x , Y) - P(u, X) + P(u, Y)
E- 5

If X Y then x1 P(, x) Y P(U, Y)

If X ' Y then Xl P(U, X) Y P(U, Y)

For a function X and set U, let

x A U = xl P(cod X n U, X)

X - U = X P(cod X I U, X)

Then

X A U = X if and only if (X c U

X A U - <> if and only if U and (X} are disjoint

(x A U) A U' - x A (U n U')

(x Y) -A (x A U) 0 (y A U)

{x A ul - (x} n U ,

If X Y then X N U \ Y h U

If X ' Y then X A U I N, UY

and

X " U = X if and only if U and (X} are disjoint

X " U < > if and only if (X) c U

(U U) { U' - x (U u u')

If X %Y then X U ' Y - U,

If X ' Y then X U " Y - U

E-6

'. _J___- Ja

In effect, X ?~U and X -'U can be regarded as the intersection and difference

of the function X and the set U.

In conjunction with realignment these concepts can be used to specify

programs such as the following, which deletes array elements with values

outside of the interval rf-S1:

{j---J c dom X and X - X0

begin inee d; c :- a; d :a;

{whileinv: Is: Ic I 7 and Xl Fai7c 1% (X0 I ~Zd) A ~

anid X I rdbm"X0 1 d b

while d c b do

if (Xd) <r) o,(X(d)) then d :- d + 1

else b in X(c) :X(d); c := c + 1; d :- d + 1 end

end

a I c and Xl ~ c (X0 1 a -b) r s I

Another application is the following definition of stability (in the

sense of stable sorting):

Suppose X, Y, and K are functions such that cod X =cod Y

=dom K. Then X is a stable rearrangement of Y with respect

to K when

(VJk E cod K) X P({k, K) nu Y nP({k}, K)

E3-7

MISSION
Of

Rowe Air Development Center
RA19C ptans and executes6 'tez ewch, deveeopment, .tes~t and
seected acquisiti~on pkoywjn6 in suppo4.t o6 Command, Contt

Communcations and Intettigence (C31) activities. Technica
and engineering suppo4tt within ateaz o6 technicat competence
is ptoided to ESP Pftogtam O66ce (PO.6) and otheti ESV
eements. The p'tincipoJ techniLcat mission aAeas WI~e
communications, etectomagnetic guiZdance and cont~ot, 6uA-
v.e.ZZtznce o6 gtound and aeito.pace objects, itettigence data
cottection and handting, in~owtmation 6stern technotogy,
ionosphe'Lc p4opaqa-tion, sotid state scAienceA, ?flicAowavIe
physics and e2.eci~oniZc 4etiabitity, maintainabitity and

* compatihbtity.

DATE

F.ILMEDI,

