AD-A110 830 SYRACUSE UNIV NY SCHOOL OF COMPUTER A'D INFORMATION =—=£TC F/6 9/2
PROVING PRO.RAN CORRECTNESS. VOLUME V.
NOV 81 J C REYNOLDS 3060!'77-:-0!35
UNCLASSIFIED RADC=TR=80~=379=-VOL =8

l : l

ﬂ

“m 1.0 &M ja
=5z
o

= je
22 s e

MICROCOPY RESOLUTION TEST CHART

(0 TANGARDS T &

NATIONAL RURE AL

LEVEY/

RADC-TR-80-379, Vol V (of five)

- Final Technical Report
) November 1981
oo
QD
2 PROVING PROGRAM CORRECTNESS
o
P
<T Syracuse University
=< ¥
John C. Reynolds
1
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNI.IMIYE;]
oTIC
s TLECTE RS
& Fra i 1Es2
o
' ROME AIR DEVELOPMENT CENTER
‘ Air Force Systems Command
%’ Griffiss Air Force Base, New York 1344
<S 82 02 11076

This report has been reviewed by the RADC Public Affairs Office (PA) and
is releasable to the National Technical Information Service (NTIS). At NTI§
it will be releasable to the general public, including foreign natioms.

RADC-TR-80-379, Vol V (of five) has been reviewed and is approved for
publication,

APPROVED: . (,Z;m,,%/d%w«? 2

CLEMENT D. FALZARANO
Project Engineer

APPROVED:

JOHN J. MARCINIAK, Colonel, USAF
Chief, Command and Control Division

FOR THE commnnn;}»»&/ﬂ)%-4_/

JOHN P. HUSS
Acting Chief, Plans Office

1f your address has changed or if you wish to be removed from the RADC
mailing list, or if the addressee is no longer employed by your organizationm,
please notify RADC. (ISIS) Griffiss AFB NY 13441. This will assist us in
maintaéning a current mailing list.

Do nof, return copies of thia report unless contractual obligations or notices
on a specific document requires that it be returned,

A
g

%
)

UNCLASSIFIED

SECURMITY CLASSIFICATION OF THIS PAGE (When Dace Entered)

READ INSTRUCTIONS
REPORT DOCUMENTATION PAGE BEPORE COMPLETING FORM
[T REPORY NUMBER f?ﬁ 2. GOVY ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER
RADC-TR-80-379, Vol V (of five) | JP 4 JICHIC
4. TITLE (and Subtitie) S TYPE OF REPORY & PERMOO COVERED
Final Technical Report
PROVING PROGRAM CORRECTNESS 1 Oct 77 - 30 Sep 80
6. PERFORMING OXG. REPORT NUMBER
N/A
7. AUTNOR(S) B 8. CONTRACT OR GRANT NUMBER(s)
John C. Reynolds F30602-77-C-0235
9. PERFORMING ORGANIZATION NAME AND ADODRESS 10. PROGRAM ELEMENT PROJECT, TASK
R AREA & WORK UNIT NUMBERS
Syracuse University £2702F
School of Computer & Information Science 5811903
Syracuse NY 13210 d 0
11. CONTROLLING OFFICE NAME AND AODRESS 12. REPORT DATE
Rome Air Development Center (ISIS) November 1981
Griffiss AFB NY 13441 "} NUMBER oF PAcES

14. MONITORING AGENCY NAME & ADORESS(if dilfetent from Controlling Office) 1S. SECURITY CLASS. (of this report)

Same UNCLASSIFIED

1Sa. DECL ASSIFICATION/ DOWNGRADING

SCHEDUL
N/A

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)

Same

18. SUPPLEMENTARY NOTES

RADC Project Engineer: Clement D. Falzarano (CO)

19. KEY WORO§ (Continue on reverse side i{ necessary and fdent’ T A number)
Programming Systems 3., “tinulation
Programming Languages Scheer g Algorithm
Programming Grammars Logic Programming

roving Programs Correct

}Computer Modeling

0. ABSTRACT (Continue on reverse side if necessary and Identify by block number)
The "Language Studies" contract is divided into four project areas, all of

which are directed to the problems of effectively, reliably and efficiently
using modern computers in a wide range of applications.

Three of the projects deal with methods of communicating with computers. —{
Task 1. Very High Level Programming Systems (P.I.: J.A. Robinson). This
group is working towards combining the features developed to support work

in the area of artificial intelligence and those used in general program

DD , %%, 1473 eoimion oF 1 nov 63 1s oesOLETE

IFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Dere Entered)

T RN T e A

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAG!{"ﬁ_g' Dete Entered)

development into a new conceptual framework gyat can be understood and
used by a large community of users. Task 2. JProving Program Correctness
(P.I.: J.C. Reynolds). This group is working towards programming language
designs which increase the probability that specification errors will be
detected by the compiler or interpreter and to provide the language
facilities so that users will more nearly be able to prove that programs
perform as they are specified than is currently possible. Task 3.
Grammars of Programming (P.I.: E.F. Storm). This group 1s working towar*s
the development of methods which will allow users to communicate with
computer programs in terms more normal to their every day communication
forms. Task 4. Systems Studies (P.I.: R.G. Sargent). This group is
working towards developing more sophisticated and efficient models of
computer systems which can predict system performance when given particul
parameter values. The current efforts concern models of transaction
processing systé s (TPS).

Aogession FoT
“NTIS GRARI
pTIC TAB

Unannouncei
Justificstion,_",,_

. a

RY -
\ Distrlbution/l_ o
\ —;;ailahility Codes

" ;21) 0L/ 0T

- i1
‘prst | Special

creyY
WNSPECTED

2

UNCLASSIFIED

SECURITY CLASSIFICATION OF Yu'® PAGE/When Date Entered)

b ol

i Preface

H
;
i
I
i
b
b
£
;

This report describes efforts completed in the Language
Studies project at Syracuse University under RADC contract
F30602-77-C-0235. The work covers the period October 1, 1977
through September 30, 1980.

The report is produced in five volumes to facilitate single

volume distribution.
Volume 1. Report from the Very High Level Programming Systems
task. Report title is "Logic Programming in Lisp". n

Volunme 2. Report from the Systems Studies task. Report

R S e S St

title is "Multiple Finite Queueing Model with Fixed

Priority Scheduling”. |
Volume 3. Report from the Systems Studies task. Report title

is "An Algorithmic Solution for a Queueing Model

of a Computer System with Interactive and Batch Jobs.
Volume 4. Report from the Grammars of Programming task. Re-

port title is "Integrated Parallel Processes: The

Elements of Meaning in Language".

T

Volume 5. Report from the Proving Program Correctness task.

Report title is 'Proving Program Correctness"

iii

The main goal of our research over the last three years has been the
development of a programming language with the basic character of Algol 60,
but without the major deficiencies of this language.

Of course, Algol 60 had a pivotal influence on language theory and
design when it was first introduced nearly twenty years ago. However, the
long-term result of this influence haslbeen languages that are quite
different than Algol 60, and which overcome its deficiencies at the expense
of introducing new, quite different limitations.

On the one hand, Algol 60 inspired the development of semantic models,
particularly by Strachey and Landin, which in turn led to the development
of languages such as ISWIM, PAL, GEDANKEN, and, in a somewhat different line

of development, Algol 68. All of these languages are "higher level" than

Algol 60; in particular, they require a heap (garbage-collectable store)
for their implementation, and make it difficult to determine whether a
particular data item is stored in a stack or a heap.

On the other hand, the machine implementation of Algol 60 led to the
design of languages that avoided various inherently inefficient features
of that language. At the same time, Hoare's development of axiomatic
language definitions has encouraged the abandonment of certain features,
such as procedural parameters and call by name, that are difficult to treat

axiomatically. This line of development has lead to languages such as

PASCAL, EUCLID, MESA, and ADA, which are all "lower level" than Algol 60.

o

ORTRTEETRE TN T R T T

-2 -

Our own goal has been to improve and extend Algol 60 without
changing its basic character. In particular, we want to retain both the
use of stack storage allocation and the power of the Algol procedure
mechanism,

A first step in this direction has been the development of an
idealization of Algol that is described in the first part of Appendix A.

In this language, the type structure has been refined to permit the complete
syntactic detection of procedure parameter mismatches, lambda expressions
and fixed-point operators of all types have been introduced, and a wide
variety of language features have been described as abbreviations for more
basic structures. (In Landin's phrase, they have been reduced to '"syntactic
sugar".)

The main shortcoming of this language, as of Algol 60 itself, is the -
phenomenon of interference, which includes both variable aliasing and various
kinds of procedural side effects. To deal with this phenomenon, we have
explored two quite different approaches. The first, called the syntactic
control of interference, is to restrict the language so as to make potential
interference syntactically detectable. The second, which is embodied in
specification logic, is to regard noninterference as a relation between pairs
of language phrases that must be proved.

In the syntactic control of interference, described in Appendix A,
the language is restricted so that distinct identifiers always denote
noninterfering entities, while interfering entities must be named by
qualifications of the same identifier. This approach leads to certain
syntactic difficulties: the natural abstract syntax is ambiguous, and

syntactic correctness is violated by certain beta reductions.

e o "
m s e NIV T 55 FPA e teen e

—y

-3 -

These difficulties were an initial motivation for the development of a
generalization of many-sorted algebras, called category-sorted algebras,
which is described in Appendix B. In their most obvious application, these
algebras are a language design tool for controlling the interaction between
type conversions and generic operators. The underlying idea is to permit
an abstract syntax to be ambiguous while insuring that this ambiguity does
not produce an ambiguity of meaning.

Specification logic is a new approach to proving the correctness of
programs written in an Algol-like language. 1Its central novelty is to
regard specifications such as Hoare's {P} S {(Q} as predicates about
environments (in the sense of Strachey and Landin). By introducing new
forms of specifications it is possible to formulate universal specifications
that are true in all environments, and to give rules for the inference of
such universal specifications. This logical system goes beyond such approaches

as Hoare's axiomatic semantics, Dijkstra's weakest preconditions, and Pratt's

dynamic logic in its ability to treat interference phenomena, call by name,
and statemert parameters. Moreover, by introducing lambda expressions and
beta reduction, it is possible to use simpler and more abstract inference
rules than in other logics that treat procedures.

The semantics of specifications, and rules for their inference are
described in Appendix C.

In addition to the above developments, which are related to the design
of an Algol-like language, we have also investigated a variety of concepts,
laws, and notations for making precise yet intelligible assertions about

arrays. This work is based upon Hoare's idea that an array is a variable-like

D . B A

R

T TR W e

e S N S - - U ‘
bt ki PWSIFTNGESIRIINEFFSW S

-4 -

entity whose value is a function on an interval of integers. Interval and
partition diagrams are introduced to make assertions about intervals without

recourse to inequalities. A variety of functional concepts, such as 1

.

restriction, images, pointwise-extended relations, ordering, and rearrangement,
are used to minimize quantifiers in assertions about array values.

Our early work in this area is described in Appendix D. More recently,
we have made further progress by generalizing the concept of shift equivalence
to that of realignment, introducing a kind of abstract concatenation based
upon the disjoint union, and using preimages and related ccncepts. This work

is described in Appendix E.

APPENDIX A

SYNTACTIC CONTROL OF INTERFERENCE

Jown C. Reynolds
School of Computer and Information Science
Syracuse Univereity

ABSTRACT In programming languages which parmit both assignment and procedurss, distinct identifiers
can represent data structures vhich share storage or procedures with interfering side effects. In
addition to being a direct source of programming errors, this phenomenon, which we cal]l interference
can impact type structure snd parallelisa. We show how to eliminate these difficulties by impusing
syntactic restrictions, without prohibiting the kind of constructive interference which occurs with
higher-order procedures or SIMULA clssses. The basic ides is to prohibit interference between
identifiers, but to permit iaterference among components of collections named by single fdentifiers.

The Probles

1t has long been known that a variety of
anomalies can arise wvhen a programming language
combines assignment with s sufficiently powerful
procedure mechanism. The simplest and best-
understood case is aliasing or sharing between
variables, but there are also subtler phenomena of
the kind known vaguely as "interfering eide
‘effects”,

In this paper we will show that thess snomalies
are instances of a general phenomsnon wihich ve call
interference. We will argue that it is vitsl to
constrain s language so that interference is
syntactically detectable, and we vill suggest
principles for this constraiat.

Between simple variables, the only form of
laterference is alissing or sharing. Consider, for
example, the factorial-computing program:

procedure fact(n, f); integer n, f;
begin integer k;
k :»0; f = 1;
while k ¥ n do
begin k := k + 1; f := k x f end
end .

suppose n and f are called by name as in Algol, or
by reference as in FORTRAN, and consider the effect
of ® call such as fact{z, 2), tn which doth actual
paramcters are, the same. Then the formal parameters
n and f will be aliases, i.e., they will finterfere
in the sense that assigning to either one will
sffect the value of the other. As a consequence,
the assignment f := 1 will obliterste the value of
n so that fact(z, z) wvill not behave correctly.

In this case the problem can de solved by
changing n to a local variable which is infcialized
to the value of the input paramseter: this le

tantamount to calling n by value. But while this
solution is adequate for simple variables, it can
becowe impractical for srraye. For example, the
procedure

procedure transpose(X, Y); real array X, Y;
for 1 := 1 unttl 50 do

for § :=] until 350 do

——

Y(1, 1) = X(§, 1)

vill malfunction for a call such as transpose(2Z, 2)
which causes X and Y to be aliases. But changing
X to 8 local variable only solves this probiem at
the expense of gross inefficiency in both time and
space. Certainly, this inefficiency should not be
imposed upor calls which do not produce interfer-
ence. On the other hand, in-place transposition {s
best done by a completely different algoritha.
This suggests that it {s reasonable to permit
procedures such as transpose, but to prohibit calls
of such procedures with interfering paramsters.
Although these difffculties date back to Algol
and FORTRAN, wore recent languages have {ntroduced
nev features which exacerbate the problem of
interference. One such feature is the union of
data types. Suppuse x 18 a varisble whose value
can range over the union of the disjoint data types
integer and character. Then the language must
provide some construct for branching on whether
the current value of x i an integer ~r a charac-
ter, and thereatter treating x as one type or the
other. For example, cvne might write

unfoncase x of (lnteger S; charactee: S') ,

whete % may be used as an identifier of tvpe
integer in § and as an fdentifier of type character
fn S'. However, consider
unioncase x uf
(integer: (y := "A"; n := x ¢ 1);
character: noaction) .

It 1s evideat thet aliasing between x and y can
cause & type error in the expression x + 1. Thus,
in the presence of & union mechaniem, interferance
can destroy type security. This problem occurs
with variant recorde in PASCAL [1]), end {s only
avoided in Algol 68 {2] at the expense of copying
union values.

The incroduction of parallelism also causes
serious difficulties. Hoare (J,4] and Brinch-
Haneen (3] have srgued convincingly that intellf-
gible programming raquires all interactions
between parallel processes to be mediasted by some
mechaniem such as & critical region or monitor.

As a consequance, in the absence of any critical
regions or monitor calls, the parallel execution
of two statements, written S TI §,, can only be
permitted wvhean S, and s2 do &ot interfers with one
another., For cxilplo.

Rimx+l]||yi=yn2

wvould not be permissible when x and y were asliases.

In this paper, we will not coneider interacting
parallel processes, but we will permit the parallel
construce S, || S, vhen 1t is syntactically evident
that S, and”S, do not interfere. Although this kind
of det*rlln.ti parallelism is inadequate for practi-
cal concurrent programming, it is suffictient to make
the consequences of interfereunce espacially vivid.
For example, when x and y are aliases, the adove
statement bacomes equivalent to

w2+l]| s:im2x2

whose meaning, if any, i{s indeterminate, machine-
dependent, and useless.

These examples demonstrate the desirability of
constraining a language so that variable aliasing
is syntactically detectable. Indeed, several
authors have suggested constraints which would
eliminate aliasing cowpletely {6,7].

Hovever, aliasing is only the simplest case of
the more general phenomenon of interference, which
can occur between s variety of program phrases. We
have alresdy spoken of two statements interfering
when one can perform any action which affects the
other. Similarly, two procedures interfere when
one can perform a global action which has a global
effect upon the other.

Interference raises the same problems as
variable aliasing. For example, P(3) || Q(4) 1s
only meaningful 1f the procedures P and Q do not
interfere. Thus the case for syntactic detection
extends from sliasing to interference in general.
However, the complete prohibition of interference
would be untenably restrictive since, unlike
variables, interfering expressions, statements, and
procedures can have usefully different meanings.

Both the usefulness and the dangers of inter-
ference between procedures arise vhen procedures
are used to encapsulate data representations. As
an exawple, consider a finite Jdirected graph vhose
nodes are labelled by small fntegers. Such a graph
night be represented by giving, for each node n, a
liaked 1ist of its immediate successors n;,..., n.:

nodelist ftem link

"
n n
2

\

)

[}

n o |€

This representation is used by the procedure

procedure itersucc(n,p); integer n; procedure p;

begin integer k;
k :* nodelist(n);

while k ¥ 0 do
begin p(item(k)); k := link(k) end
end

which causes the procedure p to be applied to each
immediate successor of the node n.

If the graph is ever to change, then something
- probably a procedure such as "addedge" or
"deleteedge" - must interfere with itersucc by
assigning to the global arrays nodelist, ftem. and
link. On the other hand, the .orrect operation of
itersucc requires that the procedure parameter p
must not assign to these arrays, i.e., that p must
not interfere with iftersucc. Indeed, if jtersucc
involved parallelism, e.g. if the body of the while
statement were

begin iuteger m;
m := {tem(k);
begin p(m) || & := link(k) end

end .

then noninterference between p and ftersucc would
he required for meaningfulness rather than just
correctness.

0f course, the need for luterfering procedures
would vanish if the graph representation were a
parameter to the procedures which use {t. Bul this
would preclude an important style of prograrming
-~ epitomized by SIMULA 67 [8] - in which data
abstraction im realized by usiig collecttons of
procedures which fnterfere via hidden global
varfables.

In summary, these examples motivate the basic
goal of this paper: to design a programming lan-
guage in which interference is pussibie yet
syntactically detectable. To the suthor's ¥aow-
ledge, the (nly current language which tries to
meet this goal 1s Euclid {7]. The approach used
tn Euclid §s quite different than that given here.
and apparently precludes procedural pirameters and
call-by-name.

(Tl-IlI-l!!l!ll'lllllll!llllll'l'.!lll'l'lll‘IllllllIlllllllllIllllIIllll.lllIlllllllllllllillllllllql'

h 1.1 sic

roach

Before proceeding further, we must delineate
the idea of interference more precisely. By a
phrase we mean & varisble, expression, statement,
or procedure denotation. In the first three cases,
ve speak of exercising the phrase P, meaning:
either assigning or evaluating P if 1t {s a
variable, evaluating P 4{f it {s an expression, or
executing P 4f {t 1s a statement.

For phrases P and Q, we write P # Q to
indicate that it is syntactically detectable that
P and Q do not interfere. More precisely, # is a
syntactically decidable symmetric relation between
phrases such that:

(1) 1If neither P nor Q denotes a procedure,
then P # Q inplies that, for all ways of
exercising P and Q, the exercise of P will
have no effect on the exercise of Q (and
vice-versa). Thus the meaning of exercising
P and Q in parallel is well-defined and
determinate,

(2) 1f P denotes a procedure, A,, ... , AL
are syntactically appropriate lclull para-
meters, P # Q, and A} # Q, ... , A 1 Q,
then P(A,, ... , A) # Q. (Thue P # Q
captures ' the idea that P cannot interfere
with Q via global varisbles.)

It should be emphasize’ that these rules have a
fatl-safe character: P # Q implies that P and Q
cannot interfere, but not the converse. Indeed,
the rules are vacuously satisfied by defining #
to be universally false, and there is a probably
endless sequence of satisfactory definitions which
come ever closer to the semantic relation of non-
interference at the expense of increasing complexity.
Where to etop is ultimately a question of taste:
P # Q should mean that P and Q obviously do not
interfere.

Our own approach is based upon three
principles:

(1) 1f 1 #J for all identifiers 1 ociur-
ring free 1n P and J occurring free in Q,

then P ¢ Q.

In effect, all "channels” of interference must be
named by identifiers. For the language discussed in
this paper, this principle is trivial, since the
only such channels are variables. 1In a richer
language, the principle would imply, for example,
that all 1/0 devices must be named by fdentifiers.

(11) 1f 1 and J are distinct identifiers,
then I # J.

This 1s the most controversial of our principles,
since it enforces a particular convention for
distinguishing between interfering and noninter-
fering phrases. Interfering procedures (and othu1
entities) are still permissible, but they must
occur within a collectlion which is named by a
single identifier. {An exdmple of such a
collection {s & typical element in a SIMULA [3)
class. Indeed, the fdea of using such collections
was suggested by the SIMI'LA class mechanism,
although we will permit collections which do not
belong to any class.)

A-3

(I111) Certain types of phrases, such as

expreasions, and procedures which do not

assign to global vartiables, are satd to be

gg:ulvo. When P and Q are both passive,
Q.

Passive phrases perform no assignments or other
actions which could cause interference. Thus they
cannot interfere with one another or even with
themselves, although an sctive phrase and a passive
phrase can interfere.

An Illustrative Language

To 1llustrate the above principles we will
first introduce an Algol-based language which,
although 1t satisfies Principle (1), permits
uncontrolled Interference. We will then impose
Principle (11) to make interference syntactically
detectable. Finally, we will explore the
conscquences of Principle (III).

Unlike Algol, the illustrative language is
completely typed, so that reduction (i.e. appli-
cation of the copy rule) cannot introduce syntax
errors. It provides lamhda expressions and f{xed-
point operators for all program types, an a named
Cartesian product, which is needed for the
collections discussed under Principle Il. Procedure
de.larations, multiple-parameter procedures, and
«lasses are treated as syntactic sugar, i.e., as
abbreviations which are defined in terms of more
basic linguistic constructs.

Arrays, call-by-value, jumps and labels,
uifons of types, references, {nput-cutput, and
critical regions are not considered.

We distinguish between dat. types, which are
the types of values of simple varialles, and
program types, which are the types which car be
declared for {dentifiers and specified fur
parameters. The only data types are iluteger, real,
and Bonlean, as in Algol, but there are an infinite
number of program types. Specifically, the set of
program types i{s the smaliest set such that:

(1) 1f ¢ {s a data type, then & var
(meaning varlable) and 6 exp (meaning
cexpression) are program types.

(12) sta (meaning statement) i{s a program
type.

(13) If w and w' are program types, then
W *w' {8 a progrum type.

(T64) If w ts a funcrion from a finfte set of
identifiers into prugram types, ther NM(w) s
A program type.

A formal parameter specified 1o have type

A ovar can be uywed on efther stde of assfznment
ctatements, whitie a formel parameter spe-itied to
Have type ¢ exp can only be used as an expres .ion,
he program type w * w' des.ribes procedures whese
shuple parameter has type w oand whone call has type
L' Far example, the Alpol procedures

procedure plin) g integer ngon e 1

Peal procedure pO(x) g real xi pdlote oxo0oxg

winrld have types Integer var = sta and real exp =+
1e1l exp respectively.

The progream type l(w) fs s Cartestan product
in which components are indexed by Lduntifiers
vather than by consecutive integers. secifically,
R(w) describes collections in which each_{ tn the
domain of v indexes a component of type w(i). The
fundtion w will always be written as a lfst of pairs
of the form argument:value. Thue, for exanple,
f(inc: sta, val: integer exp) describes collectfone
in which inc indexes a statement and val indexes an
integer expresaion. A typical phrase of thie type
might be (inc: n :* n + 1; val: n x n »

To simplify the description of syntax we will
ignore aspects of concrete representation such as
parenthesation, and we will adopt the fiction that
each identifier has s fived progrea type (except
vhen used as a component index), vhen in fact the
program type of an identiffer will be specified in
the format Iiw vhen the tdentiffer ts bound.

We write <w 1d> and <¢> to denote the seta of
identifieres and phrases with progras type w. Than
the syntax of the illustrative language 1s given by
the following production schemata, in which & ranges
over all data types, w, w', w3, ... w range over
program types, and 11. e s 1n. range over
identifiers:

<4 exp> 1:= <4 var>
<integer exp> ;:v 0
| <integer exp> + <integer exp>
<Boolean exp> ::= true
| <integer exp> = <integer exp>
| <Boolean exp> & <Boolean exp>

(and siailarly for other constants and
operations on data types)

<oLa> :iw <4 var> := <§ exp>
<sta> ::= noaction
| <sta> ; <ata>
| while <Boolean exp> do <ste>
<sta> ::® new <4 var id> in <sta>
<w> e <y 1d>
w e w' e) <y 1d>, ">
<w'> 1w <w v @' (<)
<n(£l:ul, cee s ln:un)> L)

n

<uk> siw <ﬂ(11:u1, ces o 1n:un)> . 1k

<w> ::= If <Boolean exp> then <w> else <uw>

(11:<u1>. vee l“:‘u >)

<> 1w l(<u - W)

Although s formal semantic specification is
heyond the scope of this paper, the meaning of our
language can be explicated by various reduction
rules, For lambda expressions, we have the usual
rule of beta-reduction:

0L P @ = .
where the right side denotes the result of
substituting Q for the free occurrences of I in P,
after changing bound identifiers i{n P to avoid
conflicts with free identifiers in Q. Note that
this rule implies call by name: 1f P does not
contain 8 free vccurrence of 1 then (Al, P)(Q)

A-4

reduces Lo ¢ even (f Q 18 nontermizailag or causes
side effects. For collection Sipressions, ve have
(tl: Pl' ey l“: ’n). ‘k - P. .

For example,
(inc: n := n+), val: nen). tne @ ¢ ;o ol ,

Again, there 18 a flavor of call-by-name, stace the
above reduction vould still hold 1f axn were
replaced by a fnonterminating sxpression. The
fixed-point operator ¥ can aleo be elucidated by a
reduction rule:

Y(r) = fyee)) .
In addition to lambda expressions, the only

other binding wechanign fn our language is the
decleration of new variables. The statement

integer
nev 1: |real in S hae the same meaning as the
Boolean] integer
Algol statement begin | real I; S end.
Boolean

By themselves, lasbda expressions and new
variable declarations are an austere vocabulary
for varfable binding. But they are suffictient to
permit other binding mcchanisma to be defined as
abbreviations. This approach 1s vital for the
language conatraints which will be given below,
since {t insures that all binding mechanisms will
be affected uniformly.

Multiple-parameter procedures are treated
following Curry [9}):

P(Al. oo An) H P(Al) e (An)

A(ll. ey ln). XI‘.

and definitional forms, including procedure
declarations are treated following Landin [10}:

P = (1. P)(Q)

-4
i

tes Aln. B

-
1
~
—
L]
<
-

Jet rec { »Q in P = (A1, PO, Q) .

(llowever, unlike Landin, we are using call-by-name.)
We will omit type specifications from let and

let rec expressions when the type of [(s apparent
from Q.

As shown in the Appendix, classes {i{n a
slightly move limited sense than {n SIMULA) can
also be defined as abbreviations.

As an example, the declaration of the
procedure fact shown at the beginning of this paper,
along with a statement S in the scope of this
declaration, would be vritten as:

let fact = A(n :integer exp, f: {nteger var).
T new k: integar in
b'——(k e 0 f im0
while X ¢ n do (k := kel; € := k=f))
ins .
After eliminating abbreviations, this becomes

(Mact: {nteger exp + ({nteger var < sta). §)
(in: i{nteger exp. Af: {nteger var.
new k: integer in
(k = 0; € 1= Y
while k # n do (k := kel; £ ;= k*f))) .

DI . VO, T3)

-

Ul A W ...

o

Countrollgng Interference

The 1llustrative language already satisfies
Principle 1. 1f wve can constrain it to sstisfy
Principle 11 as well, then P # Q will hold when P
snd @ have no free identifiers in common. By
sssuming the most pessimistic definition of #
compatible with this result (and postponing the
consequances of Principle II1 until the next
section), we get

P#Qief F(P) NFWQ) = (),

where F(P) denotes the set of identifiers which
occur free in P,

To establish Principle 1I, we must consider
esch vay of binding an identifier. A new variable
declaration causss no problems, since new variables
are guaranteed to bs independent of all previously
declared entities. But a lambda expression can
cause trouble, since its formal parameter will
interfere with 1ts global identifiers if it is ever
applied to an actual parameter which interferes
vith the global identifiers, or equivalently, with
the procadure ftself. To avoid this interference,
ve will rastrict the call P(A) of a procedure by
imposing the requirement P # A.

The following informal argument shows why this
restriction works. Consider s beta-reduction
(AL, P)(Q)'PII‘Q. Within P there may be a pair of

identifiers which are syntactically required co
eatisfy the #-relationship, and therefore must be
distinct. If a0, it fs essential that the subs-
titution 1 - Q preserve the f#-relatfonship. No
problem occurs if neither identifier is the foraal
paraseter 1. On the other hand, if one identifier
1o 1, then the other distinct identifier must be
giobal, Thus the #-relation will be preserved 1f
K # Q holds for all global identifiers K, {f.e.,
for all identifiers occurring free in Al. P. This
1s equivalent to (Al. P) # Q.

More formally, one can show that, with the
restriction on procedure calls:

w'> 1iw <w » w'>(<w>) vhen <w <+ w'> M <,

syntactic correctness is preserved by beta
reduction (and also by reduction of collection
expressions), and continues to be preserved when
other productions restricted by # are added, e.g.,

<sta> i <sta;> i <stay> when <ltnl> ’ <atap> .

The restriction P # A on P(A) also affects the
language constructs which sre defined as abbrevia-
tions. For let 1 = Q in P 3 (A1, PI(Q), and for
let rec 1 = Q in P = OL. P)(Y(Al. Q)), we see that,
:;Eept for 1, no free fdenti{ier of Q can occur
free in P. Thus, although one can declare a
procedure or a collection of procedures which use
global identifiers (the free identifiers of Q),
these globals are masked from occurring in the
scope P of the declarativn, where they would
interfere with the identifier 1.

For multi-parsmeter procedures, P(A,, ~ou An)
2 P(A,) ... (A) feplies the teilrlction‘ L Al'
PA2 Ay, T PGAD L (o) # Ay which Are
equivalent to requiring F # A, for each parameter
and A1 [Aj for cach pair of Jdistinct parameters.

A-5

For example, consider the following procedure
for a "repeat” ststement:

let repeat = A(s: sts, b: Boolean exp).
(s; while T b dos) .

In any useful call repeat(A;, A7), the statement A
will interfere with the Boolean expression A,.
Although this 1s permitted in the uncoaottatlcd
1llustrative language, as in Algol, it is prohibited
by the restriction A, # A,. Instead, one sust group
the interfering para*eter into & collection:

1

let repeat = ix: N{s: eta, b: Bnolean exp).

(x.8; while 7 x.b do x.0) ,

and use calls of the form repeat((.:Al' I’:Az Y).

This example is characteristic of Principle II.
Although interfering parameters are permitted, they
require a somewhat cumbersome notation. In compen-
sation, it is immediately clear to the reader of a
procedure body when interfersnce between parameters
{s possible.

Passive Phrases

In making interference syntactically detect-
able, we have been unnecessarily restrictive. For
example, we have forbidden parallel constructs such
as

x:=n|]ly:=n

or
let twice =)s: sta. (s; 8) in
(twice (x := xt1) || tvice(y := yx2)) .

Morcover, the right side of the reduction rule
Y(f) = ((¥(f)) violates the requirement f¢X(£),
giving a clear sign that there {s a problem vith
recursion,

In the first two cases, we have fatled to take
{nto account that the expression n and the procedure
twice arc passive: They do no assignment (to global
variables {n the case of procedures), and therefore
do nnt interfere with themselves. Similarly, when
f 1s passive, f # Y(f) holds, and the reduction
rule for Y(f) bacomes valid. This legitimizes the
recursive definition of procedures which do not
assign to global varfables.

(Recursive procedures which assign to global
variables are a more difficult problem, Within the
body of such a procedure, the global variables and
the procedure itself are interfering entities, and
must therefore be represented by components of a
collection named by a single identifier. Thie
s{tuation probably doesn't pose any fundamental
difficulties, but we have not pursued it.)

The following treatment of passivity is more
tentative than the previous development.
Fxpressions {n our language are always passive,
since they never cause assigoment to free variables.
Procedures may be act{ve or passive, {njependently
of their argument and result types. Thus we must
dfstinguish the program type w *p w' desrribing
passive prucedures {rom the program type v < w'
deseribing (possibly) active procedures.

More formally, we sugment the definftion of
program types with

(T5) 1f w and w' are program types, then
@ +p w' 18 a program type.

and ve define passive program types to be the
ssallest set of program types such that

(P1) ¢ exp is passive.
(P2) w +p »' is passive,

(P3) 1f W(1) s passive for all 1 in the
domain of w, then A(J) is passive.

Next, for any phrasse r, ve define A(r) to de
the set of identifiers which have at least one free
occurrence in r which is outside of any subphrsse
of paseive typs. Note that, since identifier

ccure are th lves subphreses, A(r) never
contains identifiers of passive type, and since r
is a subphrase of itself, A(r) is empty wvhen r has
passive type.

Then we relax the definition of P # Q to permit
P and Q to contain fres occutrences of the same
identifier, providing every such occurrence is
within a passive subphrase. We define:

PIQIAM) NFQ =} aF(P) NAQ) = {) .

Finally, we modify the abstract syntax. We
define a passive procedure to be one in which no
global identifier has an active occurrence:

<y »

P

w'> im A <w {d>. <w'>

when A(<w'>) - (<w 14>} = {} .

Passive procedures can occur in any context which
permite active procedures:

<w -Ou'> 1w gy ‘P u') .
but only passive procedures can be operands of the
fixed-point operator:

<w> e Y(<w p W) .

Some Unresolved Queatfons

Our abstract syntax {s ambiguous, in the sense
that specifying the type of a phrase does not
slways specify a unique type for each subphrase.
For example, in the original {llustrative language,
the subphrase if p then x else y might be either
a variable or an expression in contexts such as

AL p
(a: 4f p then x else y, b: 3).b

Sisilarly, the introduction of passive procedures
permits tha subphrase le: sta. (s; ») to have
either type sta < sta or sta *p sta {n the context

(Aa: ota. (8; 8))(x := x¢1) .

Although these ambiguities could probably be
eliminated, our intuition is to retain them, while
insieting that they must not lead to ambiguous
meanings. Indeed, it may be fruitful to extend
this attitude to a wider variety of implicitc
conversions.

C W e em— ——

e albklntiuiade

In normal usage, a procedure call will be
active {f and only Lf etther the procedure itself
or its parameter are active. Although other cases
are syntactically permissible they seem to have
only trivial instances. Thus it might be desirable
to limit the program types of procedures to the
cases:
0+,08 o “» a' 86+0 a-+a'
where 0 and 0' are passive types and o and a' are
nonpassive types.

The most eerious problem with our treatment of
passivity is our insbility tc retain the basic
property that beta-reduction preserves syntactic
correctness. Consider, for example, the reduction

(Ap: mixed. (x := p.a {| y :» p.a))
((a: n*l, b: n :=0))
(a: nél, b: n :« 0) .a
iy t= ta: ntl, b: n := 0) .8
* xi=ntl ||y e nel

where "mixed"” stands for the progran type
N{a: integer exp, b: sta). Although the first and
last lines are perfectly reasonadble, the inter-
mediate line is rather dubfous, since it contains
assignments to the same variable n within two
statements to be executed in paraliel. Neverthe-
less, our definition of # still permits the inter-
wediate lire, on the grounds that assignments
within passive phrases cannot be executed.
However, 1f we sccept

x = {a: n*l, b:n = 0).a

#f y:= {a:n+l, b:n :»0) .a,

then it is hard to deny

{n 7'0”!))‘3
* 0).a

el by

n+¢l, bi n

. X e (a:
f yi= (a;

But this permits the ceduction

{n:e0 || s).a)

(A3: sta. x := {a: n+l, b:

(y := (a: nt) b:n :» 0). a)
= x :* (a: n#l, b:
n =0 Il v := Ca: n+l, b: n := 0 V)
) .a)

» x iv n+l

llere the intermediate step, in which the under-
lined statement 1s clearly {llegal, is prohibited
by vur syntax,

This kind of prodblem {a compounded by the
poseibility of collection-returning procedures.

For {nstauce, in the above cxamples, one might have
8i)ly(n¢l, n := 0), where silly has type

integer exp <+ (sta <+ mixed), in place of the
collection (a: n¢l, b: n :» 0),

A possible though unesthetic solutfon tu these
problems might be to permit {llegal phrases {n
contexte wvhere passivity guarantees nonexecution.

A more hopeful possibility would be to alter the
definition of substitution to avoid the creation
of 1llegal phrases in such contexts.

Divectione for PFurther Work

Ssyond dealing vith the above questions, it ia
obvicusly essential to extend these ideas to other
language mechenisms, particulsrly srrays.

In addition, the interaction detween these
1deas and the axtiomatization of program correctneas
needs to be explored. We suspect that many rules
of inference might be simplified by using a logic
which tmposes f-preservation upon substitutions.

A somevhat tangential aspect of this work is
the distinction between data and prograsm types,
which obviously has implications for user-defined
types. (Note the sbasence of this distinction in
Algol 68 [2).) 1In lews Algol-like languages, data
types might have as much structure as programs
types, and user definitions might be needed for
both "types" of type. Indeed, there may be grounde
for introducing wore than two "types”" of type.

Finally, these ideas may have implications for
the optimization of call-by-name, perhaps to an
extent vhich will overcome the aura of hopeless
inefficiency which surrounds this concept. For
exsmple, when an expression is a single parameter
to a procedurs, as opposed to 8 component of &
collection which is a parameter, then ite repeated
evaluation within the procedure must yield the same
value (although nontermination is still possible).
This suggeste o possible application of the fdea of
“lazy evalusciorn® [11, 12},

APPENDIX

Classes as Syntactic Sugar

In a previous paper, we have argued that
clasees are a less powerful data sbstraction
oechanism than either higher~order procedures or
user-defined types [14]. The grester generality of
higher-order procedures permits the definftion of
classes (in the reference-free sense of Hosre [13)
rather than SIMULA itself) as abbreviations in our
i{llustrative language. In fact, the basic tdea
works in Algol 60, although the absence there of
lambda expressions and named collections of
procedures makes its application cumbersome.

We conaider s class declaration with scope S
of the form:

cless C(DECL; INIT; IlzPl, P
which tefines C to be a class with component names
1,, eees 1 . Here DECL fa a list of declarations
o} variablls and procedures which will be private
to a class element, INIT is an {nitialfzation
statement to be executed when each class element ts
created, and each P, is the procedure named by I, ,
in which the private variables may occur as globals,

Within the scope S, one may declare X to be a
nev element of class C by writing the statement

V1P) an s ()

nevelement X: C in §°' . (93]

Then within the statement S' one mav write X. Iy to
denote the component Py of the class element X.

To express these notations in terms of
procedures, suppose P , ... , P have types Wi
wy respectively, Then we defin (1) to be an
sbbreviation for:

A-7

let € = Ab: A(I i,y v0v , I tw) = ata.
1771 n'n
(DECL; INIT; b(‘II:PI' cre s LR YY)
ins,

vhere b is an {dentifier not occurring in the
original clasa declaration, and where DECL must be
expressed in terms of new and let declarations.
Then we define (2) to be an abbreviattion for:

c(ax: ““1‘”1' ETIRE U s') .

As an example, where for simplicity P1 and P2
are parameterless procedures:

class counter(integer n; n := O;
inc: n := n+l, val: n) in
<« fnewelement k: counter in

oo (k.ine; x := k,val)
1s an abbreviation for

let counter
Ab: N(inc: sta, val: integer exp) + sta.
new n: integer in
(n :® 0; b({inc: n := n+l, val: n)))
in
+.s counterfik: N(inc: sta, val: integer exp).
ces (kofne; x :® k,val)) ,

vhich eventually reduces to

nw n: integer in (n := C;

co (0w Nl x 1= n))

In the process of reduction, tdentifiers will be
renamed to protect the privacy of n.

The only effect of our interference-controlling
constraints is that € must be a passive procedure,
i.e., INIT and P,, ... , Py cannot assign to any
variahles which are more global than those declared
by DECL. This iLnsures that distinct class elcments
will not interfere with one another. Otherwise,

{f C {8 not passive, then 5' in the definition of
(2. cannot contain calls of C, so that multiple
class elements cannot coexist.

ACKNOWLEDGEMENTS

Most of this research was done during a delightful
and stimulating sahbbat{cal at the (niversity of
tEdinburgh. Specia) thanks are due to Rod Burstall
and Robin Milner for their en-ouragement and
helpful suggestions and to the members of IFIP
work{ng group 2.3, ecspecially Tony Hoare, for
establishing the viewpcint about programming which
underifes thily work.

Cg——

REFERENCES

(1] uirch, M. The Programming Language PASCAL.
Acta Informstica }, (1971), pp. 33-63.

[2) van Wijngaarden, A. (ed.), Matlloux, 8. J.,
Peck, J. K. L., and Koster, C. M. A. Report
on the Algorithmic Language ALCOL 68. MR 101,
Mathematisch Centrum, Amsterdes, February
1969,

(3] Hoare, C. A, R. Towsrds & Theory of Parallel

Programaing. In Operating Systems Techniques,
Acadenic Press, New York, 1972.
[4] Hoare, C. A. R. Monitors: An Operating System
f Structuring Concept. Comm. ACM 17 (October
' 1974), pp. 549-557.

l [5) Brinch-Haneen, P. Structured Multiprograsming.
Coom, ACM 13 (July 1972), pp. 576-577.

{6} Hoare, C. A. R. Procedures end Psrameters:
An Axiomatic Approach. In Symposium on the
Semantice of Algorithmic Languages (ed. E.

Engeler). Springer, Berlin-Heidelberg-New
York, 1971.

{7] Popex, G. J., Horning, J. J., Lampson, B. W.,
Mitchell, J. G., and London, R. L. Notes on
the Design of Euclid. In Proceedings of an

ACM Conference on Language Design for
Reliable Software, SIGPLAN Notices 12, no. 3

(March 1977), pp. 11-18.

(8] Dahl, O, -3. MNierarchical Program Structures.
In Structured Programming, Academic Press,
New York 1972,

[9) Curry, H. B., and Feys, R. Combinstory Logic,
Volume I. North-Holland, Amsterdam 1958,

{10] Landin, P. J. A Correspondence Between ALGOL
60 and Chutch's Lasbda Notation. Comm ACM B
(February and March 1963), pp. 89-101 and
158-165.

{11) Henderson, P., and Morris, J. H., Jr. A Lazy

Evaluator. Third ACM Sywposium on Principles
of Programming Lengusges (1976), pp. 95-103,

[12) Friedman, D. P., and Wise, D. S. CONS Should
Not Evaluate fts Arg ts. Third Int'}
Colloquium om Automata, Languages, and
Prograsming, Edinburgh Untiversity Press 1976,
pp. 257-284.

{13) Hoare, C. A. R, Proof of Correctness of Data
Representations. Acta Informatica 1, pp.
271-281 (1972).

[14) Reynolds, J. C. User-Defined Typec and
Procedural Data Structures as Complementary
Approaches to Data Abstraction. In New
Directions in Algorlthnlq_Lunluqlgg_lgzg. ed.
§. A. Schuman, I.R.1.A. 1975, pp. 157-168.

A-8

APPENDIX B

USING CATEGORY THEORY TO DESIGN IMPLICIT CONVERSIONS AND GENERIC OPERATORS

John C. Reynolds
Syracuse University

Syracuse, New York

ABSTRACT A generalization of many-sorted algebras, called category-
sorted algebras, is defined and applied to the language-design problem
of avoid}ng anomalies in the interaction of implicit conversions

and generic operators. The definition of a simple imperative language

(without any binding mechanisms) 1s used as an example.

Introduction

A significant problem in the design of programming languages is the
treatment of implicit conversions, sometimes called coercions, between types.
A failure to provide implicit couversions can degrade the conciseness and
readability of a language. On the other hand, unless great care is taken
in the design of such convers.ons, and their #nteraction with operators
which can be applied to operands of several types, the resulting language
will exhibit anomalies that will be a rich source of programming errors.

(In the author's opinion, PL/I and Algol 68 exemplify this danger.)

As a simple illustration, consider assigning the sum of two integer

variables to a real variable. In the absence of an implicit conversion

from integer to real, one would have to write either

x := integer-to-real(m) + integer-to-real(n)

or

x := integer-to-real(m + n) .

Clearly, one would prefer to write x := m + n. If the language permits this,

however, one can ask whether the implicit conversion precedes or follows the

addition, i.e., which of the above statements is equivalent tox = m + n.

It is generally believed that a precise language definition must
answer this question unambiguously. However, if one were to ask the
question of a mathematician (at least one who didn't know too much about
programming), he would probably reply that it doesn't matter, since both
of the above statements have the same meaning, and that indeed the whole
point of permitting the same operator + to be applied to arguments of
different type which are connected by an implicit conversion is that the
resulting ambiguity should not affect the meaning.

In a sense, of course, the mathematician is wrong: some computers
provide a floating-point representation with such limited precision that
the ambiguity in question does affect meaning. But in a deeper sense the
mathematiclan is right. One intuitively expects that the above statements
should have nearly the same meaning, and in analogous cases where numerical
approximation or overflow is not involved, one expects exactly the same
meaning.

To see this, replace real by character string in the above example,

and suppose that integers are implicitly converted into character strings
giving their decimal representation, and that + denotes both addition of
integers and concatenation of strings. Then the two possible meanings of
X = m + n are radically different., This case is clearly a mistake in
language design which would be likely to cause programming errors.

In this paper we will describe a method for avoiding such errors. The
underlying mathematical tool will be a generalization of many-sorted
algebras called category-sorted algebras, which are closelv related to the
order-sorted algebras invented by Goguen.(])

Bevoad the specific goal of treating implicit coaversions, our
presentation {: intended to illustrate the potential of category theory in
tt > area of language definition and to suggest that the '"standard" denotational
semantics devoloped by Scott and Strachey may not be the final solution to the
language-definition problem. There is nothing incorrect about thie Scott-
Strachey methodology, ana {t has provided fundamental insights into many
aspects of programming languages such as recursion. But {t has not been so
helpful in othecr areas of language design such as type structure. We suspect
that clearer insights into these areas will require quite diffcrent

applications of mathematics.

B-2

Conventional Many-Sorted Algebras

Our use of algebras is based on the ideas of Goguen, Thatcher, Wagner,
and Htight,(z) which have roots as far back as Burstall and Landin.(a) In
(2) a language 1s viewed as an initial algebra and its semantic function as
the unique homomorphism from this initial algebra into some target algebra,
so that defining the target algebra is tantamount to defining semantics.
Here we will adopt the slightly more elaborate view that (roughly speaking)
a language is the free algebra generated by some set of identifiers, that
an environment is a mapping of these identifiers into the carrier of the
target algebra, and that the semantic function is the function which maps
each environment into its unique extension as a homomorphism from the free
algebra to the target algebra.

We propose to treat implicit conversions in this framework by generali-
zing the concept of an algebra appropriately. To motivate this proposal we
will proceed through a sequence of increasingly general definitions of
“algebra".

The standard concept of a many-sorted algebra used in algebraic semantics

is due to Birkhoff and Lipson,(a)

who called it an "heterogeneous" algebra.
According to Birkhoff and Lipson, but with changes of notation and terminology

to reveal the similarity to later definitions:
(1) A signature consists of:

(la) A set ! of sorts. (Informally, the sorts correspond to

types in a programming language.)

(1b) A family, indexed by nonnegative integers, of disjoint
sets An of operators of rank n.

(lc) For each n > 0 and ¢ € An, a specification I‘6 e 0" x Q.

(Informally, 1if T, = <<p cee wn)' w> then the operator §

) L’
accepts operands of sorts Wys eee 0 W and ylelds a result

of sort w.)

(2) An QAl-algebra consists of:

(2a) A carrier B, which is an Q-indexed family of sets.
(Informally B(w) is the set of meanings appropriate for phrases
of type w.)

(2b) For eachn > 0 and & ¢ An' an interpretation Yy €

B(wl) X o0 X B(wﬁ) -+ B(w), where SCWps eee s W >y W= rs.

(3) If B, yand %', = sse NAT-algebras, then a homomorphism from
B, y to B', " i& :.. Q-indexed family of functions 8(w) €

B(w) + B'(w) suc™ .«at, for all n > 0 and 6 ¢ 8> the diagram

| 's

‘ B(wl) X sa. X B(mn) —> B(w)
B(wl) X ,.. X e(wn) 0 (w)

; A . \ v

% B'(w) x ... x B'(w) —> B' (w)

commutes. Here <<w1, cee wn>. w> = F6 and fl X o4 X fn
denotes the function such that (fl X ... % fn)(xl, see xn)
3 =

<fl(x1), ces fn(xn)>'

Unfortunately, it is difficult to pose the implicit-conversion problem
within this concept of algebra since there is no mechanism for grouping
operators which are represented by the same symbol. For example, integer
addition and real addition would be distinct members of A2 (with specifications

<<integer, integer>, integer> and <<real, real>, real>), and there is no

b mechanism for relating their interpretations more closely than, say, integer

!

addition and multiplication.

-

Many-Sorted Algebras with Generic Operators

To solve this problem, we will employ an alternative concept of many-

sorted algebras due to Higgins.(s)

In this approach, the operators are

(in programming jargon) generic. The specification of an operator of rank n
is a partial function from a" to 1, which is defined for the combinations of
sorts of operands to which the operator is applicable, and which maps each
such combination into the sort of the result yielded by the operand. (Notice
that this captures the idea of bottom-up type determination.) Then the
interpretation of the operator 1s a family of n-ary functions indexed by the
domain of its specification.

In our own development we will insist that the specification be a total
function from " to R. At first sight, this simplification might appear to
be untenable since it implies that every operator can be applied to operands
of arbitrary sorts. Formally, however, the situation can be saved by
introducing a 'nonsense" sort ns, which is the sort of "type-incorrect"
phrases. (If a phrase is type-incoirect whenever any of its subphrases are
type-incorrect, then every specification will yield ns whenever any of the
sorts to which it is applied 1s ns. However, one can conceive of contexts,
such as the application of a constant function, where this assumption might
be relaxed.)

With this simplification, and a few changes of notation and terminology,

Higgins' concept of a many-sorted algebra is:
(1) A signature consists of:
(la) (as before) A set 2 of sorts.

(1b) (as before) A family, indexed by nonnegative integers,
of disjoint sets An of operators of rank n.

(1c) For eachn > 0 and 6 ¢ An' a §p§£1£1;3;19n_ré e o » Q.
(Informally, Fé(wl, ey wn) is the sort of result yielded by

the generic operator § when applied to operands of sorts

Wys see s wn-)

B-5

et

(2) An QAT-algebra consists of: -

3)

(2a) (as before) A carrier B, which is an Q-indexed family

of sets.

(2b) For eachn > 0 and 6 ¢ An, an interpretation T which

1s an Q"-indexed family of functions Yé(ul, oo s wn) €
B(wl) X ... X B(wn) -»> B(Pé(ml, oo wn)). (Informally,
yé(wl, cee wn) is the interpretation of the version of the

generic operator 6 which is applicable to sorts Wis eee mn.)

If B,y and B',y' are QAT-algebras, then an homomorphism from B,y
to B',y' is an Q-indexed family of functions 6(w) € B(w) + B'(w)

such that, for all n > 0, 6 ¢ An' and Ws eee s W€ 2, the

diagram

Yb(wl’ oo 5 W)

. X —) .
Bw)) x .. B(w)) — B(T, (v, v w))
B(wl) X ... X e(wn) \le(ré(wl, ,mn))
' Yé(wl’ cee wn)
B'(wl) X ... x B (wn) —> B'(ré(ml, . ,mn))
commutes.,
Algebras with Ordered Sorts .

We can now introduce the notion of implicit conversion. When there is
an implicit conversion from sort w to sort w', we write « < w' and say ‘hat
w 1s a subsort (or subtype) of w'. Syntactically, this means that a phrase
of sort u can occur in any context which permits a phrase of sort w'.

It i{s reasonable to expect that w < w and that w < w' and «' < " implies

(1)

w ¢ w"'. Thus the relation < is a preordering (sometimes called a quasiordering)

of the set f. Actually, in all of the examples in this paper < will be a

partial ordering, i.e., w < w' and &' < w will only hold when w = w',

our general theory will not impose this additional requirement upon <.

lowever,

E R ol S, 2aradi

-

Now suppose ¢ 18 an 'operator of rank n, and Wys ooe s w and w!, ... ,
u; are sorts such that w, :_ui for each 1 from one to n. Then a context
vhich permits a phrase of sort rb(mi. oo m;) will permit an application of
4 to operands of lortl'wi.'... , w;. But the context of the ith operand
will also permit an operand of sort wyy 80 that the overall context must

also permit an application of & to operands of sort w s W which has

R
sort Ps(wl. cee wn).‘ Thus we expect that ré(ml, e s wn) :_Yé(w', cee 5, ')

or, more abstractly, that the specification I‘6 will be a monotone function. "
If w < w' then an algebra must specify a conversion function from the
set B(w) of meanings appropriate to w to the set B(w')of meanings appropriate
to w'. At first sight, one might expect that this can only occur when B(uw)
is a subset of B(w'), and that the conversion function must be the corresponding
identity injection. For example, integer can be taken as a subsort of real
because the integers are a subset of the reals.
However there are other situations in which this is too limited a view

of implicit conversion. For example, we would like to say that integer

variable is a subsort of integer expression, so that integer variables can

occur in any context which permits an intcger expression. But it is difficult
to regard the meanings of integer variables as a subset of the meanings of
integer expressions. In fact, we will regard the meaning of an integer
variable as a pair of functions: an accfptor function, which maps integers
into state transformations, and an evaluator function, which maps states into
integers. Then the meaning of an expression will just be an evaluator
function, and the implicit conversion function from variables to expressions
will be a function on pairs which forgets thelr flrst components.

In general, we will permit implicit copversion functions which forget
information and are therefore not injective. 7o paraphrase Jim Morris,(6)
subtypes are not subsets. This is the main difference between our approach

(1)

particularly in the definition of signatures, whose implications are not

and that of Goguen, (There are some more technical differences,

completcely clear to this author.)

B=7

However, there are still some restrictions that should be imposed

upon implicit conversion functions. The conversion function from any

type to itself should be an identity function. Moreover, if w < w' and
w' < w" then the conversion function from B(w) to B(w") should be the
composition of the functions from B(w) to B(w') and from B(w') to B(uw").
This will insure that a conversion from one sort to another will not depend
upon the choice of a particular path in the preordering of sorts.

These restrictions can be stated more succinctly by invoking category
theory. A preordered set such as @ can be viewed as a category with the
members >f §i as objects, in which there i1s a single morphism from w to w'
if w < w' and no such morphism otherwise. Suppose we write w < w' to stand
for the unique morphism from w to w' (as well as for the conditfon that this
morphism exists), and require the carrier B to map each w < w' into the

conversion function from B(w) to B(w'). Then we have
(1) B(w < «') € B(w) + B(w") .

(1) Blu <o) = Iy, -

(111) If v < w' and w' < o" then

B(w < w") = B(w < w");Bw' < ") .

{(Throughout this paper we will use semicolons to indicate composition in
diagrammatic o:der, i.e., (f;8)(x) = g(f(x)).) These requirements are
equivalent to saying that B must be a functor from Q to the category SET,
in which the objects are sets and the morphisms from S to §' are the
functions from S to S'.

This leads to the following definition:
(1) A slgnature consists of:
(la) A preordercd set 1 of sorts.

(1b) (as before) A family, indexed by nonnegative integers,

of disjoint seits & of operators of rank n.
3 q °f operaters .

(lc) For each n > 0 and & ¢ Bor o specification To which

is a monotone function from 2" to .

B-8

g

(2) An QAl-algebra consists of:
(2a) A carrier B, which 18 a functor from to SET.

(2b) For eachn > 0 and 6 € An, an interpretation 76' which

1s an Q"-indexed family of functions Yb(wl' e wn) €

B(wl) X .. X B(wn) + B(ro(“1' ey wn)) such that, whenever

!

n’ the diagram

1
w, <w ce W < w
1-"1" "' Up -

Yé(wl' vee W)

B(wl) X 0. X B(wn) > B(ré(wl, “ee ,wn))

B(ré(wl, i 4w)

B(wljwi) X oo. X B(wn:p;) n (I
J/ (| :_Fé(wi, ...m;))
Y (1"’ oo ,(d')
B(wl) x ... x B(w)) 6 1 1 > BT, (0], -+)
commutes.

The above diagram asserts the relationship between generic operators
and implicit conversions which originally motivated our development. To
recapture our original example, suppose integer, real ¢ @, integer < real,
+ € AZ' P+(1nteger, integer) = integer, and F+(rea1, real) = real. Then

a particular instance of the above diagram is

y+(1nteger,inceger)
B(integer) x B(integer) —_ > B(integer)

B(integer < real) x B(integs. < real) B(integer < real)

Y+(real. real)

B(real) x 3(real) ~—————— B(real)

In other words, the result of adding two intcgers and converting their sum
to & real number must be the same as the result of converting the integers

and adding the converted operands.

B-9

In essence, the key to insuring that implicit conversions and generic
operators mesh nicely is to require a commutative relationship between
these entities. An analogous relationship must also be required between

implicit conversions and homomorphisms:

(3) 71f£ B,y and B',y' are QAl~algebras, then an homomorphism from B,y
to B',y' 1s an Q-indexed family of functions 8(w) € B(w) » B'(w)

such that, whenever w < w', the diagram

0(w)
B(w) - > B' (w)
B(N:W') O(w') VB'(OJf_(L)') (III)
B(w') > B'(w")

commutes, and (as before) for all n - 0, & ¢ An’ and Wis vee s

wo € Q, the diagram (I) commutes.

Category-Sorted Algebras

By viewing the preordered =et of sorts as a.category, we havwe been able
to use the category-theoretic concept of a functor to express a~g?: priats
restrictions on implicit conversion functions. In a similar viin, we can
use the concept of a natural transformation to express the relationship
between implicit conversion functions and interpretations given by diagram
(11) and the relationship between implicit conversion functions and
homomorphisms given by diagram (I1I).

In fact, diagram (II1) is simply an assertion that the homomorphism 6
is a natural transformation from the functor B to the functor B'. Diagram
(I1), however, is more complex. To express this diagram as a natural
transformation, we must first define some notation for the exponentiation

of categories and functors, and for the Cartesian product functor on SET:

B-10

(1) For

(a)
(b)
(c)
(d)
(2) For
(a)
(b)

(c)

(d)

any category K, we write:

|K| for the set (or collection) of objects of K.
X i X' for the set of morphisms from X to X' im K.
Ii for the identity morphism of X in K.

ix for composition in K.

any category K, we write K" to denote the category such that:

|&®| = |K|", i.e. the n-fold Cartesian product of |K|.

<x1, e Xn> E“ <xi, cee Xév
-]]
= (xl 2 Xl) X ,.. X (Xn 0 Xn)

Kn _ K K
I<X e, X = <Ix s see s Ix>
1 n 1 n

Wys e on>;Kn<oi. cee P> T <PIiPs see s PLGEOL>

(Notice that when K is a preorder (e.g. i) this definition is
consistent with the usual notion (e.g. Qn) of exponentiation of a

preorder.)

(3) For any functor F from K to K', we write F" to denote the functor

from K® to K'™ such that:

(a)

(b)

(4) We write x

n
Next, we note that when £ and @ are viewed as categories, the monotone

n
F (Xl, ces Xn) - <F(X1), e F(Xn)> .

F'(pys vov 5) = <F(p)), «ov , F(o)> .

(n) to denote the functor from SETn to SET such that:
x(“)(sl, ce S mS X xS
x(n)(fl, D SN N

function P6 can be viewed as a functor from Q" to Q by defining its action

on morphisms to be Fb(wl:pi, e wn:m;) = Pé(ml, N wn)‘iro(wi. vee , owh).

Then
: n (n)
P38 e s sET
and
r B
a" sa > SET

are compositions of functors which can be used to rewrite diagram (I1) as:

Yé(wl’ oo W)

(B“,x("))(wl. cee s) LN (Tg3B) (wy, --. o)
(B“;x(n))(wljyi, v ,wniw;) (ro‘B)(“li“i’ - '““EW;)

Yo(0ls oev pud)

> (B)y e)

In this form, the diagram is clearly an assertion that y, is a natural

() s

transformation from the functor Bn; to the functor FG;B'

At this stage we have come to regard Q entirely as a category. Indeed,
we can justify the term '"category-sorted algebra" by extending our definition

to the case where Q is an arbitrary category:
(1) A signature consists of:
(la) A category Q of sorts.

(1b) A family, indexed by nonnegative [ntegers, of diujoint
sets An of operators of rank n.

(lc) For each n > 0 and § ¢ An’ a specification ré, which

is a functor from Qn to Q.
(2) An QAT-algebra consists of:
(2a) A carrier B, which is a functor from Q to SET.

(2b) For each n > 0 and § ¢ An’ an interpretation Yoo which
(™ o rgiB.

n
is a natural transformation from B ;

(3) 1f B,y and B',y' are QAr-algebras, then an homomorphism from B,y
to B',y' is a natural transformation from B to B' such that, for

alln>0, 8ed,andw, oo v w € the diagram (I) commuties.

B-12

This 18 a clear 1llustration of what we mean by applying category theory
to language definition. Our intention is not to use any deep theorems of
category theory, but merely to employ the basic concepts of this field as
organizing principles. This might appear as a desire to be concise at the
expense of being esoteric. But in designing a programming language, the
central problem is to organize a variety of concepts in a way which exhibits
uniformity and generality. Substantial leverage can be gained in attacking
this problem 1f these concepts can be defined concisely within a framework
which has already proven its ability to impose uniformity and generality
upon a wide variety of mathematics.

It is easy to verify that QAT-algebras and their homomorphisms form a
category, which we will call ALGQAP‘ It is also evident that these category-
sorted algebras reduce to the Higgins algebras (with total specifications)
discussed earlier when I is a discrete category (i.e., a partially ordered

fet in which w < w' only holds when u = w'.)

Algebraic Semantics

We can now explicate our clafim that defining semantics is tantamount
to defining a target algebra. Suppose the target algebra is a categery-
sorted QAT-algebra B,y. Then B(w) is the set of meanings of type w. Thus

we can define the set M of all meanings to be the disjoint union of L{w)

over w € |Q|, i.e.,

M= {u,x | we |8 and x € B(w)}
1

We can also define the function ty « M » |u| such that

1, w, X)) =« ,

which gives the type of each meaning in .

Now let I be a set of identifiers and 1, ¢ 1 » |q| be an assignment of

1

types to each identifier in 1. Then an cnvironment e for I,TI is a function
from 1 to M which maps eack identifier into a meaning of the appropriate

type, i.e., which makes the diagram

B-13

of functions commute.

To describe this situation in category-theoretic terms,we define the
category SET#IQI of sets with type assignments. This is the category such
that

(a) The objects of SETJIQI are pairs S,1, where S is a set and

TeS > IQ],

(») S,1 SET:IQI §',t' is the set of functions f from S to S' such
that the diagram
ff s
;\\M v//C'
kel

commutes,
(c) Composition and identities in SET!|Q| are the same as in SET,

>
Then an environment for I,rI is a morphism in I,xI SET&]QI H’TH' We call

this set Env(I,TI).

Next we define U to be the functor from ALG to SET4 |22] whose action

QAT
on an {AT~algebra B,y is given by

U(B,y) = S,r where
S = {w,x I w e |Q| and x ¢ B(w)} ,

TeS IQ[is the function such that t(w,x) = v ,
snd whose action on an homomorphism 0 from B,y to B',y' is given by
e Ly! f h that
U(8) € U(B,Y) SETY | o U(B',y') is the function suc 1a

U(8) (w,x) = w,6(w)(x)

B-14

ot s et o ot N g1 Vi

Then H,TH is the result of applying U to the target algebra B,y, so that
Env(I,rI) = I,TI SETT]Q] U(B,Y). More generally, U is the "forgetful"
functor which forgets both interpretations and implicit conversions, and
maps a category-sorted algebra into the disjoint union of its carrier,
along with an appropriate assignment of types to this disjoint union.

In the appendix, we will show that for any object I.rI of SET#]Q]
there is an algebra F(I,rI), called the free QAT-algebra generated by I,t

I’
and a morphism n(I,tI) € 1,11 SETrlﬂl U(F(I,tI)). called the embedding of
I,rI into its free algebra, such that:

-+
For any B,y ¢ IALGQAFI an? ec I,TI SETY | o) U(B,y), there is
exactly one homomorphism e ¢ F(I,t.) -+ B,y such that the
1 ALG
QAT
diagram
n(l)TI)
I,TI >U(F(I’TI))
e u(e)
U(B,Y)

in SET4|R| commutes.

Suppose F(I,TI) = By»vp- Then each Bo(w) is the set of phrases of type w
which can be constructed from identifiers in 1 whose types are given by Ty
Each e(w) maps the phrases of type w into their meanings in B(w). Moreover,

suppose R,1, = U(BO,YO) = U(F(I,TI)). Then R is the set of phrases of all

types, Tp mgps these phrases into their types, and U(e) maps these phrases
into their meanings in a way which preserves types.

The embedding n(I,rI) maps each identifier into the phrase which
consists of that identifier. Thus the above diagram shows that the meaning
ule)(n(I,rI)(i)) of the phrase consisting of i is the meaning e(i) given to
i by the environment e.

For a given I,TI, one can define the IQl-indexed family of semantic
functions
u(w) € By(w) + (Env(I,t,) » B(w))

such that
p(w) (r) (e) = e(w)(x) .

B-15

Then each u(w) maps phrases of type w into functions from environments to %

meanings of type w. Alternatively, one can define the single semantic :

function !
peR~» (Env(l,tl) + M)

such that

u(r)(e) = uce)(r) .

This function maps phrases of all types into functions from environments
to meanings.

It is evident that the linguistic application of category-sorted
algebras depends crucially upon the existence of free algebras or, more
abstractly, upon the existence of a left adjoint to the forgetful functor
U. In general, if U is any functor from a category K' to a category K,

F 1s a functor from K to K', and n is a natural transformation from IK

[to F;U such that:
For all X ¢ |K|, X' ¢ |K'|, and p € X P U(X'), there is exactly
one morphism p £ F(X) % X' such that
x—"% L yra)
[u(p)

u(x")

commutes in K,

then F is said to be a left adjoint of U, with associated natural transfor-
mation n. The triple F, U, n is called an adjunction from K to K'.

In the appendix, we show the existence of free category-sorted algebras

by constructing a left adjoint and associated natural transformation for the

forgetful functor U from ALG,, . to SET! | 9] .

B-16

Data Algebras

To illustrate the application of category-sorted algebras, we will
consider several variations of Algol 60. However, since we do not yet
know how to treat binding mechanisms elegantly in an algebraic framework,
we will limit ourselves to the subset of Algol which excludes the binding
of identifiers, 1.e., to the simple imperative language which underlies
Algol. Although this i1s a substantial limitation, we will still be able
to show the potential of our methodology for disciplining the design of
implicit conversions and generic operators.

As discussed in (7) and (8), we believe that a fundamental characteristic
of Algol-like languages is the presence of two kinds of type: data types,
which describe variables (or expressions) and their ranges of values, and
phrase types (called program types in (7)) which describe identifiers (or
phrases which can be bound to identifiers) and their sets of meanings.

Algebraically, § should be a set of data types in order to defipe the
values of expressions. In this case, the carrier of the free algebra is
a data-type-indexed family of sets of expressions, and the carrier of the
target algebra, which we will call a data algebra, is a data-type-indexed
family of sets of values.

In Algol 60 itself there are three data types: integer, real, and

boolean, to which we must add the nonsense type ns. To avoid implicit

conversions, we would take Q to be

ns

N

integer real boolean

Notice that ns is the greatest element in this partial ordering, reflecting
the notion that any sensible expression can occur in a context which

permits nonsense.

On the other hand, to introduce an implicit conversion from integer

to real, we would take integer to be a subtype of real:

real boolean

integer .

A rore interesting situation arises when long real is introduced. One
might expect real to be a subtype of long real, but an implicit conversion

from real to long real would be dangerous from the viewpoint of numerical

analysis, since a real value does not provide enough information to completely
determine a long real value. In fact, it is the opposite implicit conversion

which is numerically safe, so that long real should be a subtype of real:

ns

real boolean

long real

integer .

In a language definition which was sufficiently concrete to make sense

of the distinction between real and long real, one might take B(real) and

B(long real) to be sets of real numbers(with single and double precision
representations, respectively. and 3(long real < real) to be the truncation
or roundoff function from B(long real) to B(real). Notice that this function
is not an injection, reflecting the fact that a conversion from long real to
real loses information.

However, although this is suggestive, our methodology is not really
adequate for dealing with the problems of roundoff or overflow. For this

reason, we will omit the type long real and define our language at the

level of abstraction where roundoff and overflow are ignored.

In the rest of this paper we will take Q to be:

ns
/N
complex boolean
real
integer

digit string
It should be emphasized that this choice of Q - particularly the use of digit

string - is purely for illustrative purposes, and is not put forth as
desirable for a real programming language.

In the carrier of our target algebra we will have:

B(digit string) = the set of strings of digits,
B(integer) = the set of integers,

B(real) = the set of real numbers,

B(complex) = the set of complex numbers,

B(boolean) = {true, false},
with the conversion functions

B(digit string < integer) = the function which maps each digit
string into the integer of which it is a decimal representation.

B(integer < real) = the identity injection from integers to

real numbers.

B(real < complex) = the identity injection from real numbers to

complex numbers.

Notice that, because of the possible presenae of leading zeros, the function

B(digit string < integer) is not an injection.

B-19

Y YU RN

We must also specify B(ns) and the conversion functions into this set.

For these conversion functions to exist, B(ns) must be nonempty, i.e., we

must give some kind of

meaning to nonsense expressions. The closest we can

come to saying that they do not make sense is to give them all the same

meaning by taking B(ns) to be a singleton set. This insures (since a

singleton set is a terminal element in the category SET), that there will

be exactly one possible conversion function from any data type to ns:

B(ng) = {<>},

B(w < ns) = the unique function from B(w) to {<>}.

As an example of an operator, let + be a member of AZ’ with the

specification
F+(w1,w2) = }f_ul
else if

elgse if

else ns
and the interpretation

Y+(w1.w2) = if o)
Alx,y).

in

else 1f u <
A(x,y).

in

else if Wy <
A(x,y).

in

elgse A(x,y).

< integer and w,y < integer then integer

Wy < real and wy < real then real
ml < complex and wz < complex then complex

< integer and w, < integer then

let x' = B(wlfinteger)(x) and y' = B(mzi integer) (y)
integer-addition(x',y'")

Eﬁél.éﬂg.wz < real then

let x' = B(w,<real)(x) and y' = B(w,<real)(y)
real-addition(x',y"')

complex and w, < complex then
let x' = B(wljcomplex)(x) and y' = B(wzfcomglex)(y)

complex-addition(x"',y")

<> .

Although the above definition makes + a purely numerical operator, it

can be extended to encompass nonnumericaladdition":

- ey

i k2 d

T

r+(ul,w2) = if w, < boolean and w, < boolean then boolean

else 1if w) < digit string and w, < digit string then digit string
else ... (as before)

y+(m1,u2) = 1f v, < boolean and w, < boolean then

Alx,y). let x' = B(wli.boolean)(x) and y' = B(wzi boolean) (y)
in boolean-addition(x',y')

else if w; 2 digit string and w, < digit string then
Alx,y). let x' = B(wL§ digit string) (x)

and y' = B(w,< digit string)(y)
in digit-string-addition(x',y‘)

else ... (as before) .

Since there are no implicit conversions between boolean and any other type

than ns, we are free to choose "boolean addition" to be any function from
pairs of truth values to truth values. On the other hand, “digit-string
addition" is tightly constrained by the implicit conversion from digit string
to integer, which gives rise to the requirement that

digit-string addition

B(digit string) x B(digit string) >B(digit string)
B(digit string < integer) B(digit string
x B(digit string < integer) < integer)

integer addition

B(integer) x B(integer) 3 B(integer)

commute. In other words, the sum of two digit strings must be a decimal
representation of the sum of the integers which are represented by those
two strings. The only freedom we have in defining digit-string addition
is in the treatment of leading zeros in the result.

The definition of + suggests that a typical operator will have a
significant specification and interpretation for certain "key" sorts of
operands, and that its specification and interpretation for other sorts of

operands can be obtained by implicitly converting tue operands to

key sorts. To formalize this idea, let

(1) A, be a category of keys.

é
(2) °6 be a functor from A to A".
3) ?; be a functor from i to Q,
4) ;s be a natural transformation from 06;Bn;x(n) to FQ;B.

Intuitively, for each key A eIAél, Oé(k) is the n-tuple of sorts to which the
"A-version' of 6 is applicable, ro(A) is the sort of the result of the
A-version of &, and ;;(A) € x(n)(Bn(Oé(A))) + B(F?(A)) is the interpretation
of the A-version of 6.

These entlties can be extended to all sorts of operands if the functor
06 possesses a left adjoint Wé, which will be a functor from Q" to A, and an
associated natural transformation Ng» which will be a natural transformation

from IQ“ to ¥ Then we can define the specification

6;06.
= n
r6 = wé,ré eq +Q,

and the interpretation
- (), ,.n -
Yé(wl’ LA] wn) =X (‘3 (ﬂé(wl, ter s wn))’Yé(wé(wl, ¢ e g9 wn)) 2
(n)

which can easily be shown to be a natural transformation from Bn;x to FG;B.

Intuitively,wé(wl, oo wn) can be thought of as the key determining the

version of 6§ to be used for operands of sorts Wy eee s B and

nd(wl, cee wn) as the implicit conversion to be applied to these operands.
In the special case where A6 and Q are partially ordered sets, it can

be shown (9, p. 93) that Vé will be a left adjoint of ¢6 if and only if

;'j,OG(YG(;)) for all w ¢ Q" and Wé(Qé(k)) < X for all x e Aé. In this case

no(w) will be the unique morphism w < @6(Y6(w)), and Y will be

vy @ =« %@ < 0, (4,(22)) 37, (¥, @)

Moreover, as shown by the following proposition, Vé will be uniquely determined

by 66:

—i e

Proposition Suppose ¢ is a monotone function from A to Qn, where
A and Qn are partially ordered sets, such that

(1) For all w e 2", the set {A | A € A and & < &(}))

has a greatest lower bound in A.

(2) For all v e F 0(17A {»] » e A and E.i $(N)}) is the
greatest lower bound in Q" of {6(1)) | A ¢ A and ;'j.o(k)).

Then ¥(u) = ﬂA {»] A e Aand w< ®)} is the unique monotone function
from 2" to A such that ¥ is a left adjoint of &.

Proof: V¥ is obviously monotone. For any A e A, v(6(A)) is the greatest
lower bound of {A' I A' € A and 9()) < ¢(1")} and, since \ belongs to this
set, ¥(0(1)) < A. For any w e A", #(¥(w)) = o(N, 1 | e Aand w < 6()D)
is the greatest lower bound of {#(X) | A ¢ A and G < ¢(A)} and, since T is a

lower bound of this set, ;':_¢(W(;)).
Suppose Y is a laft adjoint of ¢. If w
Thus ¥(w) is a lower bound of {A | A ¢ A and

< ®()) then ¥(w) < ¥(®(X)) <).
w < $(\)}. Moreover, this set
contains ¥(w) since ;.: ¢(¥(w)). Thus any lower bound of this set must be

less than W(;), so that Wd:) is the greatest lower “ound.

The conditions in this proposition will hold 1f A contains greatest
lower bounds of all of its subscts, i{.e., if A is a complete lattice, and
¢ preserves all greatest lower bounds. However, we will sometimes use A's
which are not complete lattices.

As an example, the purely numeric definition of + given earlier can be

recast mure concisely by using the set of keys

A, = { .nteger, real, complex, ns}

with the same partial ordering as .. Then the specification T+ is determined

by the functions ¢, and F; such that

B-23

A LACY r.

integer integer,integer integer

real real,real real

complex complex,complex complex

ns ns,ns ns :

and the interpretation Y, is determined by !
;;(1nteger) = integer addition
;;(real) = real addition
;;(comglex) = complex addition
7+(n_S_) = AMx,y). <> .

To extend this definition to nonnumeric types, one adds bgolean and digit
string to A+, with

A o, () r,
boolean boolean,boolean boolean

digit string digit string,digit string digit string
; and

;;(boolean) = boolean addition {

;;(digit string) = digit-string addition .

(Notice that in this case A+ is not a complete lattice, but the necessary
conditions for the existence of a left adjoint to 0+ are still met.)

In the remainder of this section we will illustrate our approach by
defining a few other binary operators. In each case A+ is the lisced

subset of 2, with the same partial ordering as Q.

For the division operators / and + we can define

A o/(A) r,()
real real,real real
complex complex,complex complex
ns ns,ns ns

;)(real) = real division
;}(comglex) = complex division

v/ @) = A(x,y). <

and
A 0, (M) T, ()
integer integer,integer integer
ns ns,ns ns

Vl(integor) = A(x,y). the unique integer q such that
x = q xy + r where

if x > 0 then 0 < r < |y| else - Iyl <r<0,

Y,(n8) = Mx,y). <> .

These operations cannot be combined into a single operator since, for example,
3/2 =1.5but 3+ 2 =1. On the other hand, since the definition of yl(integer)
extends sensibly to the case where x and y are real, one could generalize
+ by taking o*(integer) = real,real.

Since nonnegative integers have not been introduced as a data type and,
for example, 3_2 is not an integer, exponentiation cannot be defined to yield

an integer result for any sort of operands. If exponents are limited to

integers, one can define

B-25

Ay ¢, () r,)
real real,integer real
complex complex,integer complex
ns ns,ns ns

;}(real)- A(x,n). x*
;}(comglex) = A(x, n). x°
3 ;1 (_n_s) = A(xyy)n <> .

This can be extended to noninteger exponents by taking Qf(comglex) =

complex,complex, but the multi-valued nature of complex exponentiation

3 (as well as the time required to compute the necessary logaritluas and
exponeutials) would probably make this unwise.

Finally, we define an equality operation:

A . o) T ()
boolean boolean,boolean boolean
integer integer,integer boolean
real real,real boolean
complex complex,complex bcolean
ns ns,ns ns

;;(A) = 1f A # ns then the equality relation for B(})

else A(x,y). <> .

One might be tempted to add digit string to A_, with ¢_(digit string) =
digit string,digit string, T;(digit string) = boolean, and Y_(digit string)

= the equality relation for B(digit string). However, the diagram

B(digit string) * B(digit string) digit string —> B(boolean)

B(digit string < integer) 1
x B(digit string < integer) B(boolean)

“integer

3 B(boolean)

B(integer) * B(integer)

does not commute, since B(digit string < integer) is not an injection.
(For example, 6 and 06 are unequal digit strings which convert to equal
integers.) Indeed, one can never use the same operator for the equality
relation on different data types when the data types are connected by an
implicit conversion function which is not an injection. (At the more
concrete level where roundoff error is taken into account, this suggests,
quite correctly, that there are special perils surrounding an equality

operation for real numbers.)

Algebras for Simple Imperative Languages |

Now we move from data algebras, which describe languages of expressions,
to algebras which describe simple imperative programming languages, i.e., {
¢ languages with variables, expressions, and commands, but without binding |
: operations. The sorts of our algebras will change from data types to
phrase types, which can be thought of as phrase class names of the abstract
syntax for the language being defined. For example, in place of the set of

data typés {integer, real, boolean}, Q might be the following partially

ordered set of phrase types:

3 ns
real exp boolean exp command

integer exp boolean var
real var

integer var

It is evident that for each data type T there will be two phrase types
1 exp(ression) and 1 var(iable), and that 1 exp will be a subtype of ' exp
whenever the data type t is a subtype of t'. Moreover, t var will be a

subtype of T exp since a variable can be used in any context which permits

i o e L i

an expression of the same data type. On the other hand, the subtyvpe relation
will never hold between variables of distinct data types. For example, an
integer variable cannot be used as a real variable since it cannot accept a
noninteger value, and a real variable cannot be used as an integer variable

since it might produce a noninteger value.

B-27

This kind of phrase-type structure, which describes many programming
languages, is unpleasantly asymmetric. For each data type, there are
variables, which can accept or produce values, and expressions, which can
only produce values. Thus one might expect another kind of phrase, called
an acceptor, which can only accept values. If acceptors for each data type
are added to fl, we have:

ns
integer acc real exp boolean acc boolean exp command
real acc integer exp boolean var

real var integer var

Notice that the subtype relation among acceptors is the dual of that for

data types or expressions. For example, a real acceptor can be used 2s an

integer acceptor since an integer value can be converted into a real value.
The above partial ordering has the peculiarity that there is a pair

of phrase types, real var and integer var, which have no least upper bound.

In general this might not be a problem, but we will find that there is one
language construct, the general conditional phrase, which requires the
existence of binary least upper bounds. To see the problem, suppose n is
an integer variable and x is a real variable, and consider the conditional
variable

if p then n else x .

In a context which calls for an expression, this phrase must be considered
a real expression, since when p is false it can produce a noninteger value.
But in a context which calls for an acceptor, the phrase must be considered
an integer acceptor, since when p is true it cannot accept a noninteger
value. The phrase type which describes this situation must be a subtype

of both integer acc and xeal exp which im turn has real var and integer var i

as its subtypes. In other words, it must be the least upper bound of

real var and integer var.

The way out of this difficulty is to characterize variables by both
the data type which they accept and the data type which they produce.
For example, a real var is actually a "real-accepting, real-producing"
variable, an integer var is actually an "integer-accepting, integer-producing"
variable, and the above conditional variable 1s an "integer-accepting,
real-producing" variable. If we write T, T, var to abbreviate "tl-accepting.

tz-producing" variable, then we have the ordering

integer acc real exp
real acc integer real var integer exp

/

real real var integer integer var .

Implicit in this discussion is the idea that phrase types are constructed
from data types. More generally, since the meaning of expressions can be
described by a data algebra, and expressions are a major constituent of an
imperative programming language, it should be possible to define the algebra
describing the programming language in terms of the data algebra describing
its expressions. To emphasize this possibility we will construct a
programming-language algebra for an arbitrary data algebra, with signature
ﬂD, AD, PD, carrier BD, and interpretation YD. The main restrictions we will
place upon this data algebra are that ns must be the greatest sort in QD,

and that rD(wl, vee wn) = ns must hold when any w, 1s ns.

i
The set of phrase types is

O={trexp| 1€ ° - {ns}} u {1t acc | 1 ¢ Q° - {ns}}
D
v {11, var | T;» T, € 9 - {ns}} v {comm, ns} ,
with the least partial ordering such that

if 1 :P T' then T exp < t' exp

if ' :P t then 1 acc < t' acc

1) D 1] 1]
if LN and 1, <"1, then T,T, var < 1,7, var
TyTp ¥ar = T, 8cc

7 T Yar < T, exp

w < ns .

Our target algebra describes direct semantics. (Continuation semantics
can be treated in much the same way, but it leads to more complex definitions
without providing any additional insights into the concerns of this paper.)
The carrier of this target algebra will map each sort into a domain (a
partially ordered set containing a least eclement 1 and least upper bounds
of its directed subsets), with implicit conversion functions which are strict
and continuous (i.e., which preserve 1 and least upper bounds of directed
sets). Specifically, the following carrier is appropriate for direct

semantics:
B(T exp) = 5 » [BD(T)]l
B(comm) = § =+ [S]‘L
B(t acc) = BD(T) + B(comm)
B(tltz var) = B('rl acc) x B(T2 exp)
B(ns) = {1}

B(t exp < 1' exp) = Av. v;[BD(r < 1')])
exp = exp < N

Aa. BD(r' <1); a

B(t acc < t' acc)

B(1112 var :.Tl acc) = Aa, v). a
n(rltz var < 1, exp) = A(a, v). v

. v = ' '
B(f1T2 var < 1,7, var) = B(t, ace < Y acc) x B(r2 exp < 1, exp)

¥ =
B(w < ns) = Ax. 13(22)

Here S is an uunspecified set of store states. For any set X, [X]l denotes
the rlat domain obtained by adding 1 to X. For any function f ¢ X + X',
lf]l denotes the strict extension of f to l)(]‘L > [X']l.

Basically, the meaning of a command is a state transition function
(with result L for nontermination), the meaning of an acceptor is a function
from data values to state transition functions, and the meaning of a variable
is a pair giving both the meaning of an acceptor and of an expression. Notice
that this way of defining variables avoids the mentlon of any entities such as
Strachey's L-values. (As a consequence, our definition permits strangely

(10))

behaved variables akin to the implicit references in GEDANKEN.

B-30

NIRRT

Next we consider operators. Each operator of the data algebra becomes
an expression-producing operator of the imperative-language algebra. If

D

¢ An’ then 6 € An’ with the specification given by:

D.n
Ay = (87
06 = 0“ , where ¢ ¢ QD + is the function such that

¢(t) = if 1 = ns then ns else 1 exp ,

= D
I, = 6 .
To define the lnterpretation of 6 we must give a natural transformation y
from ¢, LI (M) g rb,n - r6,¢ B. Thus y NCITIS
be a function from B(Q(T)) x ... x B(¢(r)) to B(@(r (r N rn))).
1f F (1 vee Tn) is ns, then ;6(71, cee rn) will be the unique function

. rn) must

from B(¢(rl)) X ... X B(o(r)) to B(ns). Otherwise, none of the T, will be

ns, and ?6(1 cee 3 T) will be che function from B(T exp) x ... x B(Tn exp)
= (S + [BD(x)])"---"(S"[B (1)])COB(I' (T ,'rn) exp)
=S » [BD(PD(r cee Tn))]L such that
76(11, vee rn)(vl, cee s vn)
=0 € 8. [Yg(t), oe h1)] ((0), oen v (D)

where [yg(tl, e ’Tn)]LL denotes the extension of yg(rl. e rn) such that

D - -
by (rys oee s Tn)]LL(xl’ cee s X)) = L Af any x, = L

Assignment is an operator := ¢ AZ' This is the one case which we cannoc

define by using an adjunction from a set of keys. The specification is ;
F._(wl,wz) = if (391 ¢ WP - {ns}) wy £ 7 acc and wy < T exp

then comm else ns

I1f a data type T meeting the above condition exists, then the interpretation

is
Y, u(w50)) = A(a,v). let a' = B(w) < 7 acc)(a) and v' = Blw, < v exp)(v)

in Dcomm(v';[a'la)) ;

B-31

otherwise

Y:_(wl,wz) = A(a,v). 18(22)

Here [a'] 1s the i-preserving extension of a' from BD(r) -+ B(comm) to

D
(B (r)]l + B(comm), and Dcomm € (§ + B(comm)) + B(comm) is the diagonalizing
function such that

Dcom(h) (@) = h(o) (o).

A subtlety in this definition is that the data type t may not be unique.
For example, if wy 1s real acc and wy is integer exp then T can be either
integer or real. However, the definition still gives a unique meaning to
Y..+ Basically, this is because the structure of Q insures that, if

T acc t' ace 1 exp ' exp
QA ¥ and N\ 4 ,
W wy
then there are data types L and T, such that
T acc ' acc T exp ' exp
4&‘ &y ‘N\ ’a’
T, acc and T, exp .
vi VI
“1 “2

Then the definition of B for the implicit conversion of acceptors and

expressions implies that the diagram

B(wl) x B(wz)

B(w) < 7;ace) x Blw, < 1y exp)

« B(tjacc < 1 acc) x B(ty,exp < v exp)

B(r,acc) x B(r,exp) ¥ B(t acc) x B(1 exp)
B(rjace < t'ace) x B(rpexp < 'exp) Aé.a.;r::.iv;[alg)

< Aa',v'). Dcomm(v';[a']) v

B(t'acc) x B(1'exp) ¢ > B(comm)

of functions commutes. A slight extansion of this argument shows that Y.

is a natural transformation.

B-32

Next we consider conditional phrases. It is trivial to define a
particular type of conditional phrase such as a conditional command, but
the definition of a generic conditional, applicable to arbitrary phrase
types, is more challenging. Obviously, boolean must be a data type, with

Bn(boolean) = {true,false}. Less obviously, 2 must possess all binary
least upper bounds. (Note that this imposes a restriction upon nD.)

Under these conditions, we can define if ¢ 84, with the specification

Aif = Q

¢ £€ Q-+ 93 is the function such that

m—

¢..(w) = 1f w = ns then <ns,ns,ns> else <boolean exp,w,w>

— —_—r

Ty = Ig -

Then the left adjoint of o,f

is the function yif € 93 + 2 such that

Yli(wl’wz’w3) = if wy < boolean exp then w, U w, else ns .

(from the proposition in the previous section, it can be shown that if there
are Wy Wq in 2 which do not possess a least upper bound then ¢ has no left

adjoint.)

To determine the interpretation of if, we must give a natural transfor-

mation ;1f from Q;Bj;x(a) to T';B = B, When w = gg,'qif(m) is tbe unique
function from B(ns) x B(ns) x B(ns) to B(ns). Otherwise it is the function

from B(boolean exp) x B(w) x B(w) to B(w) such that
;1f(w)(v,f,g) = Du(v;[kb € {true,false}. if b then f else g]g} .

where D is the Q-indexed family of diagonalizing functions, Du €
(S + B(w)) -+ B(w) such that

DT exp = dh e¢ §S - (S -+ [BD(T)]L). Ao € S. h(G)(U)

Deomm * Ahe S > (S~ [Sll)- g e S. h(o) (o)

D = hes -~ (B21) » (5~ (51)). ix « 82¢t). Ao € S. h(o)(x)(a)
T acc py

DTITo var * Mhe S ~» B(Tl acc) x B(t2 exp) .

‘DTl acc(h;()\(a,V)-a)); D_(2 exp(h;()\(a,v).v)),

D = AheS ~+B(ns). L
ns —

B(ns)

e M

(Notice that DComm also occurred in the definition of assignment.) This
family has the property that, for all w,w' e Q such that w < w' and all
h e S+ B(w),

B(w :_u')(Dw(h)) = Dw,(h;B(m<i w')) .

It is this property that insures that ;if is a natural transformation.
Finally, for completeness, we define operators for statement sequencing
and a while statement. Since these operators are not generic, their

definition is straightforward:

; € AZ ,» while € A2

A; = A!Eil& = {comm, ns} with the same partial ordering as Q.

O;(comm) = <comm,comm> , f!hils(ggggp = <boolean exp,comm>

,(a8) = @,4.(m8) = <ms,ns>

'F;(_QO_ngn_) =FM(QM) = comm

F;(__g) =F1ruis(-“-s-) = ns

?;(ﬂg) = ;;hile(ﬂi) is the unique function from B(ns) x B(ns) to B(ns).

7;(comm) = A(c1 €S~ [S]l, c, € S - [S]L). Cl;ICZJw |

Yyhile(gggg) =AvesS-~ [{Eggg,ggigg}]l, ¢, €8~ I[8]).
Y(hey € § > [S])+ D py (vilAb. 1if b then (Cl;[CZJQQ else Jl@? .
Here J is the identity injection from § to [S]l and Y is the least-fixed-point

operator for the domain S =+ [Sll'

Future Directions

The approach described in this paper is still far from being able to
encompass a full-blown programming language. In particular, the following
areas need investigation:

(1) Binding mechanisms, i.e. declarations and procedures.

(2) Products of types, i.e. records or class elements.

(3) Sums of types, f.e. disjoint unions.

(4) Type definitions, including recurst;; type definitions.

(5) Syntactic countrol of interference.

B-34

In the first three of these areas, our ideas have progressed far enough
to suggest the form of the partially ordered set of phrase types. One wants
a set {} satisfying

Q=

Qprimitive + Qprocedure + Qproduct + qum

Here + denotes some kind of sum of partially ordered sets. (At present, it

is not clear how this sum should treat the greatest type ns or a possible

least type.) The partially ordered set nprimitive is similar to the @

described in the previous section, and

Qprocedure - {wl M) I Wys Wy €)
Qroduce = (Rroduct(u,, ... , w) | n>0andw, ... 0 ¢
qum = {sum(wl, oo mn) | n > 0 and Wys e ,wn}

The main novelty 1is the partial ordering of Q One wants

procedure’
procedure types to satisfy

(0, *+ w,) < (wi_* wé) if and only if wi < w and w, < “é ,
so that the type operator + is antimonotone in its first argument. For
example, suppose integer exp < real exp. Then a procedure of type
real exp + boolean exp, which can accept any real expression as argument,
can also accept any integer expression as argument, and should therefore be
permissible in any context which permits a procedure of type integer exp +
boolean exp. Thus (real exp + boolean exp) < (integer exp -+ boolean exp).

It follows that Qprocedure will be isomorphic to a°P x !, where QP
denotes the dual of . This raises the question of how one solves the
recursive equation describing Q. The simplest answer is to impose an
appropriate ordering on the least set satisfying this equation. The
resulting 2, however, will not contain certain limits which will be needed
to deal with recursive type definitions. One would like to use Scott's 3
methods to treat recursive definitions, but these methods do not encompass 5

the operation of dualizing a partial ordering.

B-35

[. " L " . ’ . P - ; T O R S

This difficulty does not arise for products or sums, where conventional
pointwise ordering seems natural. However, a richer ordering becomes
attractive when named, rather than numbered, products and sums are considered. f

Suppose we redefine

nptoduct = {product(u) | w € N + Q for some finite set N of names} ,

and similarly for nsum' Then the following ordering can be used:
Eroduct(:b :_groduct(;') whenever
domain(w) 2 domain(w') and (Vn € domain(w')) w(n) _<_;' (n),
sum(w) < sum(w') whenever
domain(w) < domain(w') and (Vn € domain(w)) w(n) _<_:'(n).

The first ordering permits implicit record conversions which forget fields.
The second ordering permits implicit conversions of disjoint unions which
broaden the number of alternatives in a union.

In particular, the second ordering solves a long-standing problem in

the type-checking of disjoint union expressions. Suppose p is a phrase of

type w, and make-n denotes the injection into a disjoint union corresponding
to the alternative named n. Using bottom-up type analysis, how does one
determine the type of make-n(p)? The answer is that the type is sum(n:w),

which is a subtype of any sum of the form sum(... , niw, ...).

B-36

APPENDIX

In this appendix we will demonstrate the existence of free category-
sorted algebras by comstructing an appropriate adjunction. Our basic
approach will be to connect category-sorted algebras with ordinary one-sorted
algebras in order to use the known existence of free ordinary algebras.

We begin by stating several general properties of adjunctions which will be

used in our development.

Proposition Suppose U is a functor from K' to K, F is a function
from IKI to IK'!, and n is a lK‘—indexed family of morphisms
n(X) ¢ X ? U(F(X)) such that:

For all X ¢ |K|, X' ¢ |K'{, and p € X 3 U(X') there is
exactly one morphism p € F(X) :, X' such that

Kl
x —2%) 5 ur)
) U(p)

u(x")
commutes in K,
Then there is exactly one way of extending F to be a functor from
K to K' such that F is the left adjoint of U with n a: the associated

natural transformation. Namely, for each 8 € X E X', F(8) must be

the unique morphism such that

x —MX) 5 uer)

\Le JU(F(B))
n(x")

X' ———SU(F(X"))

commutes in K.

We omit the proof (11,p. 116), the main point of which is to show that the
extension of F preserves composition and identities. The utility of this
proposic.on is that, in specifying adjunctions it is only necessary to

specify the object part of the left adjoint.

Next, we consider the composition of adjunctions:

iy

Proposition Suppose U is a functor from K' to K with left adjoint F

and associated natural transformation n, and U' is a functor from K"

< s iy

.2 K' with left adjoint F' and associated natural transformation n'.

Let

u" = Uu';u
F' = F;F'
n"(X) = n(X); Uln' (F(X)))
Then U" is a functor from K" to K with left adioint F" and assoclated

natural transformation n",

Again we omit the proof (9, p. 101),
Finally, we introduce the construction of categories over distinguished

objects, and show that an adjunction between such categories can be built

out of an adjunction betw..n the categories from which they have been

constructed.
Let K be a category and T ¢ |K|. Ther KIT, called the category of

objects over T, is the category such that
(a) [K¢T| = {X, 1 | X e |K| and 1 € X 4 T} ,

(t) X,1 Tr X',1' is the set of morphisms p ¢ X 3 X' such that

K
X —&—x’
T /'

VA

T

commutes in K.

(c) Composition and identities are the same as in K.

B-38

Then:

Proposition Suppose U is a functor from K' to K with left adjoint
F and associated natural transformation n. Suppose T' ¢ |K'|and
T « U(T'). Let U be the functor from K'¢T' to KIT such that
UX',1') = UX"),U(s") and U(p) = U(p). Then U has a left adjoint
F and an associated natural transformation ; such that

F(X,1) = F(X),T

;(X:T) - n(x) »

where T ¢ F(X) i T' is the unique morphism such that

x —1X) s yrex))
T u(t)
u(tT') = T

commutes in K.

Proof: We leave it to the reader to verify that U is a functor from
K'¢T' to KIT, that F is (the object part of) a functor from KIT to KT,
and that H(x,r) € X,t KrT'ﬁ(f(x,t)). To show the adjunction property,
suppose X,1¢|KIT|, X',1'e |K'4T'|,and p € X, T U(X',T'). Then we must
show that there is exactly one p € F(X,T) K'?T' X',t' such that

n(X,1) = X)L FFx, 1)) = UEE), T

X,t
o () = U(p)
UX', ") = U(x"),uct")

commutes in KiT. .
Since composition is the same in KIT as in K, o can only be the unique

morphism in F(X) oL X' such that
x —1X)_ Surx))
p u(s)

ux")

—

commutes in K.
However, we must show that 0 actually belongs to the more restricted
set of motphismsif(x,r) K'IT' X',1v'. To establish this, we note that
U(X'),U(7') implies that

p e X,t ux',t') = X

T T

X —E&— ux")
>\\N J//G(T')
T

commutes in K, which ir conjunction with the previous diagram implies that

-+
KT

x —E 5 yrm))

T U(p); U(r') = U(;t")
T
commutes in K. Then the uniqueness of T gives 5;1' = ;, so that 8 €
F(X),T o3 X1’ = FOGT) o X'oe's

Now we can apply these general results to the specific case of interest.
Let QAT be a fixed but arbitrary category-sorted signature, let CALG (called
ALGgAr in the main text) be the category of QAl-algebras and their homo-
morphisms, and let ALG be the category of A-algebras and their homomorphisms:

(1) A A-algebra consists of:
(la) A carrier R, which is a set.

(1b) For eachn > 0 and ¢ ¢ An’ an interpretation O € R" + R.

(2) 1If R,o0 and R',0' are A-algebras, then a homomorphism from R,o
to R',0' is a function h ¢ R + R' such that, for all n > 0

and & € An, the diagram

n 9s
R —————»R

‘[h" lh ;
ax ‘
Rln 6 a Rl |

o. functions coumutes.

B-40

e B e

1

The known existence of ordinary free algebras can be stated in the
language of adjunctions by:

Let UA be the functor from ALG to SET which maps algebras into
their carriers and homomorphisms into themselves. Then UA

possesses a left adjoint FA with an associated natural

transformation n,e
Here FA(S) is the free A-algebra generated by S, and nA(S) is the embedding
of S into the carrier of FA(S).

0f particular importance is the A-algebra, which we will call T, in which
the carrier members are sorts and the interpretation of each operator is its
category-sorted specification. More precisely, T is the A-algebra IQI, rob,

where each T is the object part of the functor Pé.

We now ::E:oduce the categories ALGIT and SET¢ {Q|. An object of ALGIT
can be thought of as a A-algebra equipped with an assignment of sorts to the
nembers of its carrier. Similarly, an object of SET&]Q] can be thought of
as a set equipped with an assignment of sorts to its members. Since [Q| =

UA(T)’ our last general proposition gives:

Let Uy be the functor from ALGIT to SETY [2| such that Up(<R,0>,1)
= UA(R,O),UA(T) = R,1, and UT(h) = UA(h) = h, Then U,r has a left

adjoint FT and an assoriated natural transformation Np such that

Fp(S,7) = F,(8),¢
np(S,7) = n,(S),

where 1 ¢ FA(S)AfGT is the unique morphism such that

n, ()
e —— 4 UA(FA(S))
T IUA(;)

T

commutes in SET.

Informally, a type assignment to a set can be extended to the free A-algebra

generated by that set by using the specification I' to interpret the operators

in A.

B-41 4

Our final (and most complicated) task is to construct an adjunction
from ALGIT to CALG. Let Ue be a functor from CALG to ALGIT whose action
on objects is given by:

UC(B'.y') = <R',0'>,1' where
R' = {w,x' | we |R] and x' € B'(w)} ,

oé e R'™ + R' is the function such that
L} t 1] (l)
06(<w1,x1>, coe s <wn,xn>) -

I‘é(wl, cee wn). Yé(wlo s ‘un)(xi’ see x;l) ’
' e R' » |Q| is the function such that 1'(w,x') = w .

(The variables in this definition have been primed to facilitate its applica-
tion to later developments.) The reader may verify that t' is an homomorphism
from R',0' to T, so that <R',6"'>,7' 1s an object of ALGIT. Intuitively, the

action of U, on objects is to forget the morphism part of B' (i.e., the

c
implicit conversion functions) and to collapse the object part of B' into a
disjoint union R' of its components, with a type assignment t' which remembers
which component of B' was the source of each member of R'.

To specify the action of U, on morphisms, suppose 6 e B,y CKLG B',y',

C
and let <R,0>,T1 = UC(B,y) and <R',¢g'>,1' = UC(B',Y'). Then

UC(G) € R+ R' is the function such that
Uc(e)(m,x) = w,0(w)(x)

The reader may verify that Uc(e) is an homomorphism from R,s to R',¢' (which
depends upon the fact that 8 is an homomorphism from B,y to B',y'), that

6
R,U ——ULR"o'

:\\\! !
T

commutes in ALG, so that UC(e) e <R,0>,1 ALEJT <R',0'>,t', and that UC

preserves composition and identities.

B-42

PO}

Next, let FC be the functor from ALGIT to CALG such that
FC(<R,0>,1) = B,y where

B(w) = {r,1n | r e Rand 1\ ¢ 1(r) P w} ,

B(p € w 3 w') € B(w) + B(w') is the function such that

B(p)(r") - r:(\;QO) ’

(2)
Yc(“’l’ cee s wn) € B(“’l) X Le. X B(“’n) + B(r6(w1, e wn))

is the function such that
y6(w1, vee s wn)(<r1,1 >, aee <rn,1n>) =
°6(r1’ cen rn),ré(ll, e ‘n) .

To see that Yb(wl’ cee wn) is a function of the correct type, suppose that,
for 1 <1 <n, T e B(wi)' Then each 4y € r(ri) s Thus
Pé(ll, e s 1n) € Fé(r(rl), e T(tn)) 2 FG(wl’ e s wn). But since
T is an homomorphism from R,0 t* T = |Q|,F°b, this set 1is also
1(06(r1, cee s rn)) 3 Fc(wl. oo wn))' Thus <06(r1, vee rn).
rb(tl, e 1n)> € B(Pb(ul, ey wn)). The reader may also verify that B
is a functor from Q to SET and s is a natural transformation from Bn;x(n)
to I';B.

Intuitively, one can think of 1 as assigning a "minimal" type to each
member of R, and of a member of B(w) as a member of R paired with an implicit
conversion from its minimal type to w.

For any object <R,0>,t of ALGIT,

UC(FC(<R.0>,T)) = <R,0”,T where
R = {w,<r,1> | we 2] and r ¢ R and 1 ¢ 1(r) 3 w} o,
- -1 -
06 € R -+ R is the function such that
;s(<wl,<rl,ll>>, cee oy {mn,<tn,1n>>) -
r6(wl' L “’n)’ (oé(rl, LRI Y rn))ré(‘lj v 1n)> N

e R~ |Q| is the function such that :(w,<r,1>) =W .

il

B-43

nc(<R,o>,1) € R > R be the function such that

nc(<R,0>,1)(x) = T(r)’“’l‘:(r)>

The reader may verify that nc(<R,c>.1) is an homomorphism from R,o to R,o
(which depends upon the fact that t is an homomorphism from R,oto T = |Q| T
and that

nc(<R,0>,71) _ _
R,0 —> R,0
1 T
™~
commutes in ALG. Thus nC(<R,c>,1) £ <R,0>,T ALE&T <R,0>,T = <R,0>,1 ALE&T
UC(FC(<R,0>,1)).
Now we will show that Fc is a left adjoint of UC, with associated

natural transformation N Let <R,0>,7 be an object of ALGIT, let B',y' be
an object of CALG, and let h be a morphism in ALGIT from <R,0>,t to UC(B'.y'),
where UC(B',Y') = <R',0'>,1' 18 described by (1).

Since h is a function from R to R', the definition of R' implies that
h(r) will be a pair w,x', where x' ¢ B'(w). Moreover, since h is a morphism
in ALGIT,

R,0 — 1 3 R',q"

N/

must commute in ALG, so that 1(r) = 1'(h(r)) = t'(w,x') = w. Thus
(h(r)]; = ©(r) and [h(r)], € B'(1(r)).

Now suppose h is any morphism in FC(<R,0>,1) CZLG B',y', where

FC(<R.O>,T) a B,y is described by (2), and consider the diagram

\\\ B-44

’ ob)'

nc(<R-°>'T)
<R,0>,T1 w%UC(FC(<R,0>,1))
h luc<h) (0)
UC(B"Y')
in ALGIT.
From the definitions of e and of the action of UC on morphisms,
we have ‘

UR) (ng(R,0>,) (1)) = U R) (1), <r, I3 12) = 1) R (r, 15 L))

Thus the diagram (D) will commute if and only if, for all r ¢ R,
- 2
R (5, I5 () = (WD), .

Moreover, since h is a category-sorted homomorphism from B,y to B',y',

it 1s a natural transformation from B to B'. Thus for all r e R, w ¢ |0],

and 1 € t(r) g

B(1(r)) ——LED) S5 (r))

lB(t) JB'(\)
ﬁ(w)

B(w) — B' (w)

commutes in SET. In conjunction with the action of B on morphisms, this gives
b = b Q = ' h Q
h(w) (<r,1>) h(w)(B(t)(r.IT(r))) B (1)(h(r(r))(r.11(r))) .
Thus diagram (D) will commute if and only if
h(w) (<r,1>) = B'(1) ({h(D)],)

holds for all r ¢ R, w ¢ |0], and v € 1(r) 5o

Since this equation completely determines h, the adjunction property will
hold if the resulting h is actually a category-sorted homomorphism from B,y
to B',y'. We leave it to the reader to verify that h(w) € B(w) + B'(w), and
that, because of the action of B on morphisms, h 1s a natural transformation
from B to B'., The one nontrivial property to be shown is that h satisfies
the homomorphic relationship with the interpretations y and v', 1.e., that
e |al,

for alln >0, 6 ¢ L and wyy cee W

B-45

X

Y6(wlb eee wn)

B(w) % ... x Bl) 3BTy, e 5 6))

ﬁ(wl) X ve. X ﬁ(wn) ﬁ(r6(w1. e w))

Yi(wyy oov , w)
B'(wl) X .., X B'(wn) 8 1 n_ B'(Fé(wl, cen wn))

commutes in SET.

To see this, suppose SE1s1>s el Tl E B(wl) X ,,. 0% B(wn).
Then

h(rd(wl’ ve wn))(Yé(wl’ ey wn)(<r1,1 >y e, <rn,1n>))

= ﬁ(ré(wl, PR DICNC TP I Y CH P 1))

B'(Pé(tl. oo s ‘n))([h(°6(r1’ vee rn))]z)

B'(Ty(1yy «oe s A DU, ooty B(E],

since h is an homomorp.ism from R,o to R',o'

B'(Fé(ll, cee ln))(Ya(T(rl). vee s T(rn))([h(rl)]z, e [h(’n)]z))
by the definition of 03 given in (1)

=y, e s 8B QDUREDL, won, BGY TR)],))

since yé is a natural transformation from B'n;x(n)to FG;B'

Yo(wys woe 5 0)R (L), ey B) (F 1))

In summary, we have constructed the adjunctions

Fp Fe

SET4 || (______i ALGIT é______f CALGC
U U

T C ;
with associated natural transformations Np and e The adjunction used in

the main text is the composition of these adjunctions:

U=1U_U

c’T

F=F

Ti¥e

n(S,7g) = np(S418) igpry || V(g (Fp(S,7g)))

The free NAl-algebra F(S,rs) generated by S.ts is given explicitly
by (2), vhere R,0 is the free A-algebra generated by S and t ¢ R + |f]
is the unique homomorphism such that nA(S);r = Tg
In the special case where I is a preordered set, there is at most

one 1 ¢ t(r) 3 w» 80 that (2) is isomorphic to the much simpler definition:
B(w) = {r | r ¢ R and 1(r) < W}
B(w < w') is the identity inclusion from B(w) to B(w'),
Yb(wl’ cee wn)(tl, cee rn) = cé(rl, cee s rn).

In this case, B(w) 1s simply the subset of the terms of the ordinary free
A-algebra whose minimal sort is a subsort of w, the implicit conversion
functions are all identity inclusions, and the operators are interpreted

the same way as in the ordinary free algebra.

10.

11.

REFERENCES

Goguen, J. A., "Order Sorted Algebras: Exceptions and Error Sorts,)
Coercions and Overloaded Operators", Semantics and Theory of
Computation Report #14, Computer Sclence Department, U.C.L.A.,
(December 1978). To appear in Journal of Computer and Systems Science.

Goguen, J. A., Thatcher, J. W., Wagner, E. G., and Wright, J. B.,
“Initial Algebra Semantics and Continuous Algebras", Journal ACM 24
(1) pp. 68-95 (January 1977).

Burstall, R. M., and Landin, P. J., "Programs and Their Proofs: An
Algebraic Approach', in Machine Intelligence 4, B. Meltzer and D.
Michie, Eds., Edinburgh University Press, pp. 17-43 (1969).

Birkhoff, G., and Lipson, J. D., 'Heterogeneous Algebras', Journal
of Combinatorial Theory 8, pp. 115-133 (1970).

Higgins, P. J., "Algebras with a Schema of Operators', Math. Nachr.
27, pp. 115-132 (1963).

Morris, J. ., "Types are not Sets', Proc. ACM Symposium on Principles
of Programming Languages, pp. 120-124, Boston (1973).

Reynolds, J. C., "Syntactic Control of Interference", Proc. Fifth ACM
Symposium on Principles of Programming Languages, pp. 39-46, Tucson
(1978).

Reynolds, J. C., The Craft of Programming, in preparation.

MacLane, S., Categories for the Working Mathematician, Springer-Verlag,
New York (1971).

Reynolds, J. C., "GEDANKEN - A Simple Typeless Language Based on the
Principie of Completeness and the Reference Concept", Comm. ACM 13
(5), pp. 308-319 (May 1970).

Arbib, M. A., and Manes, E. G,, Arrows, Structures, and Functors -
The Categorical Imperative, Academic Press, New York (1975).

APPENDIX C: SPECIFICATION LOGIC

This presentation of specification logic is based upon a subset of
Algol W that has been augmented by refining its type structure and
introducing lambda expressions, as in idealized Algol.

The phrases of this language are categorized by phrase types, which
are described by the following grammar:

<data type> ::= {Eﬁgggr | real | logical

<phrase type> ::= <data type> Yi&i\a,b\le | <data type> ev)\(lglies"svicin

| <data type> array variable (<dimension list>)
] <data type> array g¥PEg§§}qn (<dimension list>)

| statement l assertion
—oPEITE T P2ERNR

| EEF ‘qufe (<phrase type list>)

] <data type> Eggqugrg (<phrase type list>)
<phrase type list> ::= <phrase type>

| <phrase type list> , <phrase type>

<dimension list> ::= * I <dimension list> , *

The symbols exp and var are often used to abbreviate expression and variable.
- AR AN~ N TN~ -~

Let Mg be the set of meanings appropriate to the phrase type 6.

In particular, let

M =8>V
T expression T

M = § + {true, false}
assertion L
=s>(" g
Mstatement - (s vs),

where S is the set of states (mappings of variables into values) and Vr is

the set of values appropriate to the data type T.

'____'________..___—-um"—- —— =

Here the form of M reflects the partially operational view
statement
that the meaning of a statement maps a state o into the finite or infinite
sequence of states that occur during execution of the statement starting
with 0. The inclusion of intermediate states in this definition is
necessary for the definition of noninterference specifications.
An environment is a mapping on the set of identifiers that maps each

identifier of phrase type 6 into a member of M.,. We write [PBn for the

]
me.iing of a phrase P in an environment n.

Then the meanings of the various forms of specifications used in

spec ication logic can be defined as follows:

(1) If P and Q are assertions and S is a statement then
{{p} s {Q}Hn is true if and oniy if, for any state ¢ such that
ﬂPﬂn(o) is true, the sequence ﬂsﬂn(o) is either infinite or

3 concludes with a final state o, such that [an(of) is true.

f

(2) 1f P is an assertion, then [{P}]n is true if and only if

lP]n(o) is true for all states o.

(3) Forn>1, if Sl’ ces S“ and S are specifications then
lSl & ... & Sn = S]n is true if and only if either (S]n is true

or some lSiln is false.

(4) 1f I is an identifier and S 1s a specification such that the
free occurrences of I in S have phrase type 6, then t(Ne D S]n

48 true if and only if, for all meanings m appropriate to 8,

ES][n | 1: m) is true.

C-2

Yt ey e N o o o A

'——-—s-———-—-—'-—-—'———- h

(5a) If S is a statement and E is a 1 expression or assertion
then [S ¢ Eln is true if and only if, for all states ¢ and o'

such that ¢' occurs in the sequence ﬂS]n(o), [E]n(o') = [E]n(a).

(5b) If V is a 7 variable, E is a 1' expression or assertionm,
and I is an identifier not occurring free in V or E then,

for all environments, V # E has the same meaning as

NrepD (VieD #E

-

(5¢) 1If X is an n-dimensional 1 array variable, E is a <

expression or assertion, and Il’ e s In are distinct identifiers

not occurring free in X or E then, for all environments, X # E

has the same meaning as

(Vinteger £xp Il) oo (V¥integer exp In) X(Il’ . In) # E .
(5d) 1f H is a procedure(el, e en), E is a t expressicn

or assertion, Il' cee 3 In are distinct identifiers that do
not occur free in H or E, and 611. e eik are the statement
~-like members of {61. ces s Bn} then, for all environments,

H # E has the same meaning as

(Yo, 1) ... (Vo 1)

(1il FES& ... & Iik #E=H(I, ..., 1) #E)

C-3

(5e) If § is a statement-like phrase, Y is an n-dimensional

T array expression, and I,’ vee s In are distinct identifiers
not occurring free in S or Y then, for all environments, S # Y
has the same meaning as

(Vinteger ‘e‘xhp Il) (theger exp In)

(s ¢ Il & ... &S # In =S Y(Il, vee s In)) .

(5f) If S is a statement-like phrase, F is a 7 procedure(el, cee Gn)
or an assertion procedure(el, cee 9“), Il’ vev In are distinct
identifiers not occurring free in S or F, and ei s eee ei are the

1 k

expression-like members of {61, ces oy en} then, for all environments,

S # F hes the same meaning as

Ve, 1) ... (¥e_ 1)

(s # Iil & ... &5 ¢ Iik =S # F(Il, vee In)) .

(6) If V is a 1 variable, and E and T are distinct identifiers

that do not occur free in V then, for all environments, gz(v)

has the same meaning as

(Vr exp E) (V assertion procedure(t acg) n)

(V#n={(I(E))}V:=¢€E{I(WM}) .

h
4

Specification logic is a system for inferring universal specifications,
which are specifications that are true in all environments. It includes
both axioms, which are particular universal specifications, and rules of

inference. Inferences may also be made by alpha conversion and (forward

or backward) beta reduction, as in the lambda calculus.

An inference rule consists of zero or more premises and a conclusion.
An instance of the rule is obtained by replacing metavariables, denoted by
upper case letters, by appropriate phrases, subject to restrictions that
may preface the rule. If all of the premises of an instance are

universal, then the conclusion of the instance is universal.

In the form Sl & oo & Sn = §, the specifications on the left, called
assumptions, are regard as a finite set. The metavariable I is used for
such a set, while S is used for a single specification. L & L' abbreviates
L ul', while I & S abbreviates £ u {S}. When I is empty, I = S stands for S.
Phrase types are classified as statement-like and/or expression-like

as follows:

Phrase Type Statement-1like Expression-like
T variable X X

L
T expression X

NP g—.,
1 array variable(*, ... , *) X X

L 8 P\

* *®

T array expressigp(s ses 5 *) X

ctatement
I T

agsertion
N PO gt
ptocedure(el, e s en)

1 precedure(el, cee en)

assertion procedure(8.,
L I e l

An occurrence in P of an identifier is statement-like (expression-like) if

the type of every subphrase of P encloging the occurrence is statement-like

(expression-like). We write Fsta—like(P) (Fefg:}iEf(P)) for the set of

e

-

identifiers having statement-like (expression-like) free occurrences in P.

The following rules of inference and axioms have been developed:

(1) Self-Implication

—————

S-S
(2) Adding Assumptions

r=35 |

r&i'=S$

(3) Separating Assumptions

L&' =S

gttt >

t= (' =9)
(4) Combining Assumptions

za(x'aS)

e e bt e

1 &' =S

(5) Modus Ponens

L& 31 & .0 & Sn =S

=
&I, & 00 & Zn S

1

C-6

(6) Quantifier Introduction
1f I is an identifier of phrase type 6 that does not occur
free in I then
£=3S
r=> (VoD S
(7) Quantifier Removal
1f Il’ P In are distinct identifiers of phrase types
91, - Uy and Al' cee An are phrases of types 01, oo s On
then
(Ve, 1,) ... (Ve_1) S =5]|
171 n n Il' e s In -+ Al’ e s An
(8) Free Substitution
If S is a type-correct
'11, v T AL e A P
substitution, then
S
S’I . I + A . A
1’ ' n 1’ ' “n
(9) ."~thematical Fact Introduction
1f P is an assertion that is a mathematical fact then
{r},
(10) Reductio ad Absurdum
{false}l = S .
peam——
(11) Static Implication
1f P and © are assertions then
(P} & {P implies Q} = {Q}
L S e
Cc-7
o "‘f""“"’"“" . . . o

E
|
F

PR

(12)

(13)

(14)

(15)

(16)

a17)

(18)

(19)

(20)

(21)

If s

Statement Compounding (Axiom)

{p} $; {q} & {q} s, {r} = {p} 8;5 8, {x;

Strengthening Precedent (Axiom)

{p implies q} & {q} s {x} = {p} s {r}

Weakening Consequent (Axiom)

{p} s {q} & {q imglies r} = {p} s {r}

while statement (Axiom)
g

{1 and 2} s {1} = {i} while 2 do s {i and N2}
A Vassey M .

Two-way Conditional Statement (Axiom)
{p and L} §; {q} & {p and N} s, {q}

= {p} ii L Ehsp s, else s, {q}

One-way Conditional Statement (Axiom)
{p and 2} s {q} & {(p and 1) implies q}

= {p} if ¢ then s {q}

Empty Statement (Axiom)

{p} {p}

Specification Conjunction (Axiom)

{pl} s {ql} & (pz} s {qz} = {p1 and 92) 8 {q1 322.q2}
Specification Disjunction (Axiom)

{pI} s {qi} & {pz} s {qz} = {p1 or pz} 8 {q1 or qz}

Left-Side Noninterference Decomposition

is a statement-like phrase, E 1is an expression-like

phrase, and Fsta-like(s) w {Il, cee s In}, then

4
Il #E&... & In #E~SH#E .

C-8

(22) Right-Side Noninterference Decomposition

If S is a statement-like phrase, E is an expression-like

phrase, and F (E) = {11. cee In}, then

exp-like
APt

s # I1 & ... &S # In =S {#E

(23) Constancy (Axiom)

s #p&{q}l s {r}={q and p} s {r and p}

(24) Simple Assignment

Let X be a 1 variable identifier, E bé a 1 expression, and P

be an assertion such that all free occurrences of X in P have

type 1 expression. Let {I., ... , I }=F 1) - {x}.
YA e, 1 n exp-like

Then

gv(X) 6 X4 I & ...x#1 = {P|x R

M-

E} X := E {P} .
(25) Simple Variable Declarations

If X 1s a 1 variable identifier, P and Q are assertions,
El, cee Em are expression-~like phrases, Sl’ ces Sn are

statement-like phrases, and X does not occur free in I, P, Q,

El’ aee Em' Sl’ ces s Sn’ then

Lsé& gx(x) &§X ¥ E1 & ... &X # Em &S

1 fX&...68 Sn # X={P} B {Q}

Z = {P} begin t X; B end {qQ} .

C-9

e e —

(26) Proper Procedure Declarations

- e ont- o o

Suppose
Fl. cee Fn, Gl’ , Gk‘ H are distinct identifiers of phrase
types el, cee Gn, Oi, cer eé, procedure(el, cee s en),
Bproc’ B are statements,

P +» Q

» P, Q are assertions,
proc proc

,, ', tpa are finite sets of specifications,

such that
I'cr,
Fl’ cee Fn do not occur free in L', i
Gis cvv s G do not occur free in Bproc or L', i
H does not occur free in Pproc’ Qproc’ P, Q E, L', or zpa'

Let zproc be

(Velz*l) (Venrn)(\#eicl) v (Y 8,G,)

():pa - {ppmc} H(Fy, oen s Fn) {Qproc})

=14 Y o S i
&(VexpllkeE)(Ilih&. &Im#E H # E) ,

where {I,, ..., Im} = Fsta—like(Bproc) - {Fl, e s Fy H} and E
L N
is some identifier that is distinct from Il’ e » Im and H. Then
L =
Lt s zpa & zproc {Pproc} Bproc {Qp:oc}

L& zpmc = {P} B {Q}

£ = (P} begin procedure H(elFl; oo 3 enbn); Bproc; B end {qQ} .

R - b

(27) Simple Assignment {Axiom)

gv(x) & x # n = (n(e)} x := e {n(x)} .

(28) Good Variables (Axiom)
(Vr w e)(V ssertion erocedure(r 9‘12) ™)
(x # n={n(e)} x :=e {n(x)})

= gv(x)

(29) Noarecursive Proner Procedure Declaralions (Axiom)
ip} o(m) {q} =
{p}
Esgag\procedu(e h(elfl; cee enfn); m(fl, ‘e
o(h)
g&(\i‘

{q}

(30) Array Assignment

Let X be an identifier of type 1 array variable(*), S be
VAR Yt

an integer expression, E be a 1t expression, and P be an

assertion such that all free occurrences of X in P have

’f)Q
n

i) * 3 =
type T grray expression(*). Let (Il. cee In}
Fexp—like(v) - {X}. Then
D
o =
X)) # 1, & ... 8 X(8) # L {P[x . lXISIIiJ} X(S)

(31) Good Array Designators (Axiom)

x(s) # s = ﬂ(x(s))

= B (P} .

RN

(32) Array Element Noninterference (Axiom)

{s #t} & x(s) # t = x(a8) # x(t) .

(33) Array Segment Noninterference (Axiom)

{s ¢ v} & x(8) #v=x(s) #x]v .

(34) Array Declarations

If X is a t array variable(*) identifier, P and Q are assertions,
L and U are integer expressions, El’ cee Em are expression-like

phrases, S s Sn are statement-like phrases, and X does

10 e

not occur free in I, P, Q, L, U, El’ cae Em’ Sl, ees s Sn,

then:

I&x# El & ... &X# Em & S1 rxs ... Sn X

”{Pﬂiwx-lL Ul}'B{Q}

£ = {P} begin t array X (L::U); B 222,{Q} .

(35) Domain Constancy (Axiom)

s # dom x ,
(%]

ST TR T TN Y ey e

Bt it ot ol e A e A T

APPENDIX D
Programming J.J. Homing
_l:ngugel . Editor
Reasoning About
Arrays

John C. Reynolds
Syracuse University

A varlety of concepts, laws, and notations are
presented which facilitate reasoning sbout arrays. The
basic concepts include intervals and their partitions,
functional restriction, images, pointwise extension of
relations, ordering, single-point variation of functions,
various equivalence relations for array values, and
concatenation. The effectiveness of these ideas is
illustrated by informal descriptions of algorithms for
binary search and merging, and by a short formal proof.

Key Words and Phrases: arrays, assertions,
program proving, intervals, partitions. pointwise
extension, ordering, concatenation, binary search,
merging

CR Categories: 4.0, 4.22, 5.21, 5.24

1. Introduction

The use of assertions to describe programs and prove
their correctness [4-6] has developed to the point where
the necessary assertions are often at least as lengthy and
difficult to comprehend as the program which they de-
scribe. A major cause is the use of languages and proof
methods—typically the first-order predicate calculus-
which are taken from classical logic and are not oriented
towards programming,

Perhaps the most glaring example of these difficulties
is the use of arrays. One need only compare the assertions
needed to describe a program such as log n exponen-
tiation, which does not involve arrays or other compound
data structures, with the assertions for a program such as
binary search, which is intuitively no more complex. but
uses arrays. In the first case, the assertions are clear and
concise, and reasoning about them involves only the

Permussion to copy without fee all or part of this matenal s
granted provided that the copies are not made or distnbuted for direct
commercial advantage. the ACM copynght notice and the ntle of the
publication and its date appear. and notice 1s given that copying is by
permussion of the Association for Computing Machinery. To copy
otherwise, or o republish, requires a fee and/or specific permission

Work supported by National Science Foundation Grant MCS 75-
22002 and Rome Air Force Development Center Contract F30602-77-
C-0235.

Author's address: School of Computer and Information Science.

Syracuse University. 313 Link Hall, Syracuse NY 13210
© 1979 ACM 0001-0782/79/0500-0290 $00 75

familiar law . of clementary algebra. But when arrays are
introduced, the assertions become lengthy and filled with
quantifi.rs, and their manipulation seems only tenuously
conaected with the programmer’s intuition.

Superficially. we nee«: a “ettei n (ation for assertions
about arrays. But more " ‘ndamentaily. we need concepts
and laws which are nc only correct but also reflect our
intuivive understanding of arrays, just as the concepts of
addition and multiplication, and the associative. com-
mutative, and distributive laws reflect our intuitive un-
derstanding of numbers. Once the night concepts and
laws have been found., it is comparatively trivial to design
a notation which facilitates their application.

This paper presents a vanety of concepts. laws, and
notations for reasoning about arrays some bhorrowed
from mathematics and others originai which we believe
meet the above criteria. Their utihty will be demon-
strated both by informal descniptions of program behas -
ior and by a shont formal proof of program correctness

The consideration of both informal and format proots
reflects our belief that the relationship between the two
1s a critical 1ssue 1n program proving. kdeally, an informal
description of “why a program works™ should provide
enough information that an intelligent reader could pro-
duce a formal correctness proof by filling in details.
without any significant invention or change of concepts

As an illustrative programming language. we will use
Algol 60 with the following changes

(1) while \tatemenis.

(2) Round rather than square brackets for arrav
subscripts (to emphasize the view that array values are
functions).

(3) Integer expressions of the form lower X and
upper X. denoting the minimum and maximum sub-
scripts of a one-dimensional array X

(4) Empty arrays. obtained by permiuting arras dec-
larations in which a lower subscript bound s larger than
the corresponding upper bound.

We have purposely stayed close to Algol to avod
inadvertently choosing a programming language which
hid the defects of our assertion language. In parucular.
we have refrained from antroducing our notation for
assertions into the programming language itself (except
for lower and upper. which were irresistibly attractive)
Moving in this direction seems to lead to a very high-
level language. closer to APL than to Algol. which 1~
outside the scope of this paper

On the other hand. even the chace of Algol has had
subtle effects on the ensuing deselopment For example
switching to a programming language with the novel
approach to arravs described i {3 Ch 1] would neces
sitate munor changes to many concepts. such as aban.
doning the umgueness of the array value with an empts
domain.

To an even greater extent than i indicated by the
explicit references. this work is built upon the 1deas of
C.A.R. Hoare [7 9]. Mention should also be made ot
distinct but related work on arravs by D €. Cooper {2

D-1

and of work by R. Burstall [1] which, roughly speaking,
does for lists what we are trying to do for arrays.

2. Interval and Partition Diagrams

Before considering arrays themselves, we introduce
some diagrammatic expressions for making assertions
about subscripts. Basically, these expressions are a for-
malization of the diagrams which are traditionally drawn
by programmers when describing arrays.

For example, in describing the program for binary
search to be developed in Section 5, one might draw

o - —
a b

to assert a relationship between the integer variables a
and b and the domain of permissible subscripts of the
array X. We will regard this diagram as an assertion that
the subscript domain is partitioned into three subsets:
{ijlower X = i< a), {ila<i=<b)}. and {i|b < i =< upper
X))

Of course. an equivalent assertion can be given in the
predicate calculus, but this sacrifices the intuitive content
of the diagram. (For example. the above assertion is
equivalent to lower X — 1 < a ~ | < b < upper X or
lower X — | = a ~ 1 = b = upper X.) A better approach
is 10 formalize and give rigorous meaning to the diagram
itself. The only change we will make is to place expres-
sions such as a and b within, rather than below. the
relevant boxes. In addition to making the notation more
nearly linear, this curtails the tendency of such expres-
sions to migrate across boundaries when written hastily.

Before defining such partition diagrams. however. we
must introduce the simpler concepl of an interval diu-
gram. An interval is a finite consecutive set of integers. 1t
aand b are expressions denoting integers. thena[___ 4).
called an interval diagram, is an expression denoting the
interval

a[__ b= {ila<isb).

When formulating general properties of interval dia-
grams (or partition diagrams) we will always use the
standard form a . But when using the diagrams
to make assertions. we will permit more flexibility. Spe-
cificatly, at either end of an interval diagram. |a may be
written instead of @ — 1. Also, [a] may be written as an
abbreviation for [a al. Thus |a o= lilasis=
bl.[a__Jpb=(ilasi<b) a[_b= (ila<i
< b). and @ = {a}.

For any finite set S, we write #5 to denote the size,
or number of elements in S. Thus

sa[__b=ifb~a=0thenb— aelseO. 2.1

This use of a conditional expression to describe a fun-
damental property of a data structure is a clear symptom

%—F‘

of a potential source of error, i.c. the possibility that a
program may be correct for one case of the conditional
but not the other. To emphasize this situation. we say
that the interval o is regular when b ~a 20, or
irregular when b — a < 0. It is evident that a nonempty
interval is always regular, but the empty interval can be
either regular or irregular. (This is a slight abuse of
language: it is really the interval diagram, rather than
the interval itself, which is regular or irregular.)

Partition diagrams are concatenations of interval dia-
grams which assert that the corresponding intervals form
a partition. More precisely, if au. a,. a. are expressions
denoting integers, then:

@ al__a] .. a.] adis called a partition
diagram.

() ao[@), ... an [__ag). ic. the intervals de-
noted by diagrams obtained by eliminating all but an
adjacent pair of lines. are called the component intervals
of the partition diagram.

(<) a..| a,,l. i.c. the interval denoted by the dia-
gram obtained by elinunating interior lines. i called the
total interval of the partition diagram.

(d) The partition diagram is a logical expression
which is true iff the compaonent intervals are a partition
of the total interval, i.e. iff the compunent intervals are
disjoint and their union is the total interval

As with interval diagrams, _
wiitten in place of @ T] ~ " | and
S T et i B
Thus for example, [[o[] 1s a partition dia-

gram which is true iff the component intervals ¢~ jb
=lilasi<b) [B]=(h)andb[J=tilb<is=
¢} are disjoint and their union is the totabinterval [¢

= {1l =~ 1% c}.

The nature of partitions tmplies that the wize of the
total intenval s the sum of the sizes of the component
intervals,

al @] as a.] implies 22)
:‘.qu_T_éa = >- % a, ,l a,"
=i

As shown an the Appendix, (2.2) implies the tollowing
tundamental property of partition diagrams.

al __a] . _an | a] iffeither
Sy .. Sdy 1 Su, O 2.3
=212 ... 2 dn 1 2 dn.

Note that the first inequality asserts that every compo-
nent interval i regular. while the second inequality
asserts that every component interval is empty

From (2 3). the following simple cases are obvious:

a[- !’l“‘ always true. (2.4)

{i’l Bt e .:—I."." acht

[a RS nonempty

2.5

D-2

T diffasb=cifbefa__d (6
By (2.4), partition diagrams without interior lines are
tautologies, 30 that in practice such diagrams will not
occur in assertions. This circumvents the problem that
such diagrams can only be distinguished from interval
diagrams by their context.

- More interestingly, one can easily derive several *“dia-
grammatically natural” rules of inference. (Here “line”
refers to any vertical line in a diagram, including its
associated expression.)

Erasure. From a partition diagram one can infer any
diagram obtained by deleting a line, i.c.
O B . P)
Adjacent Duplication. From a partition diagram one
can infer any diagram obtained by replicating a line next
to itself, i.e.
_——al ___ implies ——— 28
———da
Substitution. From two partition diagrams such that
the end lines of the first match some pair of adjacent
lines in the second, one can infer the diagram obtained
by substituting the first diagram for the adjacent lines in
the second:

al__ bl .. by ¢l and
___a_d ___ implies (29

':’_;L [T

It should be emphasized that (2.4) to (2.9) are useful,
but not.complete rules, i.c. they cannot completely re-
place (2.2), (2.3), or the definition of pantition diagrams.
The use of these rules is illustrated by the following
inferences, which will be pertinent to the binary search
example to be given in Section §:

(a) For any integers / and u, (2.4) and (2.8) show
that [/ W u[4] holds.

(b) Suppose |/ la_ b wandas<j=<b.
Then by (2.6) and (2.9),

] la I/ b u holds. In turn, by
(2.7), this implies

Ll « [[j+1 [4
and [T la j-—1] ul.

In conclusion, it should be noted that the definitions
of interval and partition diagrams have been motivated
by a definite attitude towards empty and irregular inter-
vals, and towards arrays with such intervals as their
domain of subscripts. Although there are exceptions,
such as finding the subscript of 2 maximum element.
most array-manipulating algorithms can be extended
without complication to handle the empty array. In the
author’s opinion, it is invariably good practice to do so,
and the linguistic prohibition of empty arrays (as in
Algol 60) is a design mistake—akin to prohibiting for
statements which execute their bodies zero times.

However, one could permit intervals to be empty
without permitting their irregular representation by re-
garding d as well-defined when a = b, but
undefined when a > b. Our decision to permit irregular
representations has several motivations:

(1) Undefined ex,.essions are a potential source of
confusion.

(2) If for i = g untll b do s is regarded as iterating
over the interval (as in [8]), then most
Algol-based languages permit [a___b] to be irregular in
this context.

(3) The author has never encountered an array-ma-
nipulating algorithm which handles the empty array yet
cannot be extended without complication to handle ir-
regular subscript domains.

A potential counterargument is that even though an
algorithm may extend smoothly to the irregular case, its
proof of correctness may require extra case analysis. But
in the author’s experience, this case analysis can be
avoided by using partition diagrams instead of inequal-
ities- basically this avoids the or lurking in Proposition
23).

Nevertheless, a consistent case can be made for avoid-
ing irregular intervals. F.L. Morris has explored the use
of interval and partition diagrams in this context. His
basic approach is to regard any occurrence of an interval
diagram g within an assertion as having the
“side effect” of asserting a = b. Then the partition
diagram ao[__a)] ... a,) is defined 1o mean as < a,
=< .. < a,, which implies both that the component
intervals are well-defined and that they form a partition
of the total interval. In this approach, Propositions (2.2)
and (2.4) to (2.9) remain true.

3. Functions as Array Values

There are two quite different concepts of an array.
The more traditional view is that an array of, say, real
numbers is a function from subscripts into variables,
which in turn possess real values. The more recent view,
expounded by Hoare [7, 9] and Dijkstra 3], 1s that an
array of real numbers is a variable whose value is a
function from subscripts into real numbers. In this paper.
we take the latter view. The effect is to banish the
possibility of “sharing” or “aliasing™ among array cle-
ments, which would greatly complicate the problems of
proving program correctness.

Specifically, we assume that an array declared by
7 array X(a:b) is a variable whose values range cver the
set of functions from the interval into the set
T.

We write () to denote the unique function whose
domain is the empty set { }. For any function X, we
write dom X for the domain of X, and when this domain
is an interval, lower X and upper X for the integers such

that dom X = [lower X upper X]. This definition of

lower X and wpper X is intentionally incomplete for the
case where X = (). We assume that there are integers

lo and wo such that lower () = b, upper () = o, and
lo > uo, but we leave these integers unspecified to avoid
making arguments which might depend upon their ar-
bitrary values.

When S C dom X, we write X { S, calied the restriction
of X to S, to denote the function such that

dom(X |S)=S 3.0
(Vi € 8) (X 1 5)XD) = X(. 32

(Usually, but not necessarily, S will be an interval.) This
concept, which mirrors the informal idea of (the value
of) a subarray or scgment of an array, satisfies

HSCSCdomX then (X1)15=X18 (33)

X1{}=0). 39
As an example, consider the program

begin integer i; integer array Squares(—5:5);

integer array Possquares(0:5),

integer array Nosquares(14:5);

for i ;= —5 until 5 do Squares(i) = i X i,

for i := 0 until 5 do Passquares(i) = i X i.

end
At the program point indicated by the ellipsis. the fol-
lowing assertions will hold:

dom Squares =

lower Squares = —5

upper Squares = 5

(Vi€ [-5 5|) Squarestiy = i x i
Possquares = Squares 1
Nosquares = Squares | { } = ()
lower Nosquares > upper Nosquares.

The expressions lower X and upper X occur so fre-
quently in interval and partition diagrams that it is useful
to adopt conventions for eliding them. We will permit
the name of a function X to be attached as a label to an
interval or partition diagram. In the presence of such a
label, lower X may be omitted from the right of the
leftmost line of the diagram, and upper X may be omitted
from the left of the rightmost line. For Example, X:

[Ja B[] stands for [lower X Ja 5[upper X].
x: stands for (k] _upper X]. and X: [}
stands for dom X. Moreover, when an interval diagram
is used to restrict a function X. the label X: can also be
clided. For example, X { [a] stands for X {
flower X _a].

For a function X, we write { X}, calied the image of
X. to denote the set { X(/)}i € dom X) of values obtained
by applying X to members of its domain. (On the other
hand, when x is not a function, {x} will denote the
singleton set containing x.) Thus for example.

{ Possquares} = {0, 1, 4, 9, 16, 25}
{Possquares 1 {1__3]) = (1,4,9)
(Squares 1 [=2_2)) = (0, 1. 4).

It is easily seen that images possess the following prop-
erties:

SCdom X implies (X1S)¢({X) 3.5)

(C))=4(}) 3.6)

SUS =dom X implies G
(X)={Xx18}u{X15}

(x 1) = (x@) 3.8

#(X) <#dom X when dom X is finite 39

4. Operations on Relations

There are several operations on relations which can
often be used to reduce the number of quantifiers in
assertions.

Suppose p is a binary relation between two sets U
and U'. Then p*, called the pointwise extension of p. is
the binary relation between the set of subsets of U and
the set of subsets of U’, such that S p* S’ holds if and
only if x p x" holds for all x in Sand all x"in §'.

When U and U’ are both the set of imegers. p could
be any of the relational operators of Algol. For example.
(2.3} <*{3.4) and {2.3} #°* (4,5} are both true. while
{2.3) <® {3.4}.{2.3) =" (2.3}, and {2, 3} =* (2.3)
are all false. The last two examples demonstrate that
#* is not the negation of =* (and thereby show the
importance of making * explicit).

The pointwise extension of any relation satisfies the
following laws:

(Sp*S&TCS) implies Tp*§ (4.1a)
(Sp* & 7°CS) implies Sp*T’ (4.1b)
{(Vp* S (4.2a)
Sp*{} (4.2b)
(SUTp* St Sp* S &Tp* S) (4.3a)
Spr(SUTH M (Sp* S &Sp*T) (4.3b)
(x)p* (<} iff xpx. 4.4)

Occastonally, one needs the pointwise extension of a
relation with regard to only a single argument. The
simplest way of encompassing this case is to regard
x p* § as an abbreviation for {x} p* §' and S p® x’ as
an abbreviation for S p* {x'}).

Another concept involving relations, somewhat more
specialized than pointwise extension, is ordering. The
usual idea of an ordered array can be generalized to an
arbitrary relation in a way which unifies several impor-
tant cases. Let X be a function whose domain is a set of
integers. and let p be a bu.ary relation appropriate to the
type of result of X. Then X is ordered with regard 10 p.
written ord, X. if and only if. for all i and j in the domain
of X, i < jimplies X(i) p X()).

The fallowing “orderings™ appear as specific cases:

D-4

ord, X: increasing order

ord. X: strict increasing order
ord, X: decreasing order

ord, X: strict decreasing order
ord. X: all clements equal
ord. X: all elements distinct

Moreover, the generalization satisfies the following es-
sential laws of ordering:

ord, X & S C dom X implies ord, (X | S) (4.5)
#dom X < | implies ord, X (4.6)
i SUT=dom X& S<*T then

(ord, X iff (ord (X 1 &ord (X T) 4.7)

& (X18)p* (X1T))).

An important special case of (4.7) is obtained by taking
S and T to be two components of a partition:

If x| k[__] then
(ord, X iff (ord(X1[__ &)
&ord (X 1k[__D
& (X 1Kot (x1k[_J.
For particular relations p, there will be additonal
significant laws about p* and ord,. Although we cannot
approach completeness in this area, the following laws
are relevant to the examples we will give:

(4.8)

If x p y implies x p” y for all x and y. then § p*
T implies S p’* T for all S and T, and ord,
X implies ord, X for all X.

(4.9)

If xp yand y p’ z implies x p” z for all x,).
and z, then S p*® y and v p’* T implies §
p”"* Tforall S.y,and T.

If x p x for all x, and if dom X is a nonempty
interval, then ord, X implies X(lower X) p*
{X} and {X} p* X(upper X).

4.10

4.1hH

S. Binary Search

We have now introduced enough of our notation to
demonstrate its use in describing —precisely yet intelli-
gibly—why a program works. As an example. we de-
scribe an algorithm for binary search.

Given an ordered array X and a test value y. the
program should set the boolean variable found to indicate
whether any element of X is equal to y. If found is true.
then the integer variable j should be set to a subscript of
X such that X() = y. More precisely, if ord. X. then
executing the program should achieve the goal

if found then X: [___E]:] & X(j) = v else
{X} %° y.
Throughout program execution, found will only be

set to true if X: & X(j) = y is achieved. On
the other hand, when found is false, it will not be known
that y occurs nowhere in X, but only that it does not

D-5

oucut in either of two segments at the left and right ends
of X. If we use the local variables a and b to delineate
these segments, we have the invariant:

iffoundthen X:[[] & X(j)= yelse

xC o B] &(X1[Jaywey

& (X160 1wy

On the one hand, this invariant can be achieved
initially by setting found to false and making the end
segments of X empty. On the other hand, it is casy to sce
that the invariant implies the goal of the program if

cither found is true or is empty. This is obvious
if found is true, while if found is false and is
empty then the partition diagram X:
impliesdom X ={___Jaub[__ |.sothat {X1{__Ja}
)y & (X} b:]} #* y implies {X} #* y. Thus,
since the emptiness of can be tested by a > b,
our program has the form:

begin integer a. b,

a = lower Y. h = upper X. found = false.
while * {Jound ot a > b) do ..

end

When execution of the body of the while vatement
begins, both the invariant and the while test will be true.
Since {a b} will be nonempty. we can perform an
operaiion “Pick ;™ (whose details will be considered

later) which sets j to some integer in [a___b]. At this
stage. we will have
5 8 IS RN Y Y

&(X1|]a}#"v&(XHvl } #*

and we can compare X(j) with y. There are three cases:

(1) If X(p = v. the invariant will be preserved if
found is set to true.

(2) If X(j)<y.thenord- Xinsuresthat { X | [:Z])
#* v. Thus {X 1 [___Ja} #* y will be preserved if a is
settof+ |

(3) If X(;) > ». then a similar argument justifies
setting btoj — .

The following is a more detailed jusufication of Case
(2): From (4.5) and (4.11), ord. X and the nonemptiness
of X: [__j)imply {X 1 [___J]} =* X(,). Along with
X(p) < v thisimplies {X 1 [j]} <* v by (4.10). and
ROl :j]) #* 1 by (4.9) (In a more formal presen-
tation, ord. X would occur in all assertions. reflecting the
obvious fact that the program does not change the arrav
X)

Thus our program is:
begin integer a, b.

a = lower X. b = upper X, found = fatse;
while ~ (found or a > b) do
begin
“Pick g
i Yiy) = s them found = true ebwe
X< ithena =+ letseh = ;- |

end
end

Termination is guaranteed by the fact that each
iteration eitker sets found to true, which immediately
stops further iterations, or else decreases the size of

[a__3), whose emptiness will cause termination.
The absence of subscript errors is guaranteed since
X:[_T7T__] holds at the program points where X()
is evaluated.

It should be noticed that this discussion of binary
search does not exclude the possibility that
(lower X upper X]. and therefore [a___ 5], might be
irregular. This illustrates our contention, at the end of
Section 2, that partition diagrams permit reasoning about
intervals to include the irregular case without extra case
analysis.

To complete our program, we must digress from the
topic of arrays to specify “Pick ;™. In this case, the
problem is not to find a correct realization—ecither
J = aor j = b would be correct—but to find an effi-
cient one. The need to shrink [a___5] as much as pos-
sible suggests choosing j as close as possible to the mid-
pointof [@__ B.ie.j=(a+ b)+ 2.

However, we must be sure that if a < b, then j := (a
+ b) + 2 will achieve a < j < b, despite the fact that
integer division involves rounding. Although it is stand-
ardized in Algol 60, the rounding behavior of hardware-
implemented division can vary for different machines,
especially when a + b is negative. Fortunately, it is
enough to know that division by two is a monotonic
function which is exact for even numbers. For a < b
implies @ + a =< a + b = b + b, so that monotonicity
gives@+a)+2=<(@a+b+2=<(b+b)+2 and
exactness for even numbers gives g = (a + b) + 2 < b.

(S. Winograd has pointed out that j := (a + b) + 2 is
unnecessarily prone to overflow, in comparison with, for
example, j 1= a + (b — a) + 2. We leave it to the reader
to show that the correctness of this improvement can still
be proved with a monotonicity argument.)

6. Array Assignment

We must now move beyond programs such as binary
search which merely use arrays. to consider programs
which change arrays. Our treatment of such programs
follows the ideas of Hoare [7, 9], which are based upon
carlier work by McCarthy and Painter [10].

In programming languages at the level of Algol, the
fundamental agent of change is an assignment statement
which aiters a single array element, e.g. X(/) ;= e. To deal
with this statement from tke viewpoint that an array is
a function-valued variable, we must regard it as an
abbreviation for the assignment X = [X]i|e]), where
[X]i]e) denotes the function which is similar to X except
that it maps i into e. More formally, [X]i|e] is defined
when i/ € dom X, in which case it is the function satisfying

[X}ile) = X(j) when jwi, 6.3)
and, as an immediate consequence of (6.3),

{Xiile]1S=X1S when SCdomX
and /€S (64)

Once X(i) := e is seen as an abbreviation for X =
{X]i{e]. the usual axiom of assignment [5]:

Plicef{x =€} P ’ 6.5)

(where P|.... denotes the result of substituting e for x in
P) extends to an axiom of array assignment [9):

Plx-ixyer{ X(9) = e} P. (6.6)

Because of (6.1), when this axiom is used, the substitution
X — [X|i|e] need not be appiied to occurrences of X in
dom X, lower X, upper X, or in a label attached to an
interval or partition diagram.

7. Equivalence Relations for Arrays

For many programs which alter arrays. such as sort-
ing programs, a full specification will stipulate both that
the final value of the array will possess some property,
such as being ordered, and that the final value will be
related to the initial value in some way, such as being a
rearrangement. Often—even when the situation is intu-
itively obvious—a formidable technical apparatus is
needed to formulate and prove the latter kind of speci-
fication.

To deal with these problems it is useful to introduce
several equivalence relations for array values. Suppose
X and Y are both functions whose domains are sets of
integers. Then:

{a) We write X ~~ Y, and say that X is a redistri-
bution of Y iff {X} = {Y}.

(b) We write X ~ Y, and say that X is a rearrange-
ment of Y iff there is a bijection B (sometimes called a
one to one correspondence or a permutation) from dom
X to dom Y such that (Vi € dom X) Y(B(i)) = X(i).

{¢) We write X = Y, and say that X is a shiff of Y iff
there is a bijection as in (b) with the special form B(i)
= j + 5 for some integer s.

This defines an increasingly stringent sequence of equiv-
alence relations. Thus where p is ~~, ~, or =:

Transitivity Xp Y& Yp Z implies Xp Z (7.1
Symmetry Xp Y impliess Yp X (7.2)
Reflexivity Xp X 7.3)
X=Y implies X~Y (7.4)
X~Y implies X~~Y. (1.5)

Finally. we have three more specific laws. Exchang-

dom [X}i]¢] = dom X (6.1) ing a pair of elements produces a rearrangement:
(Xlile)i) = e (6.2) (Vi.j € dom X) [{ XLi| X()]Ij1 X)) ~ X. (7.6)
D-6
—_ - J
- ot o ombion nbiomonaanctlim

a1 A S, AN S IRy P - v, ANy AR

two one-clement arrays with equa! values are shifts of
one another:

[[] = dom X & [[] = dom Y & X()) = Y())

X))
implies X = Y,
and a shift of an ordered array is ordered:
' X > Y & ord, X implies ord, Y. (1.8)

As Hoare has pointed out (6}, for any program which
only alters an array by performing exchanges, (7.1), (7.3),
and (7.6) are sufficient to show that the final array value
is a rearrangement of the initial value. However, to deal
with programs which move information from one array
to another, we must also consider the concatenation of
array values.

8. Concatenation

Let X and Y be functions whose domaiis are intervals
with sizes m and n respectively. Then X Y, called the
concatenation of X and Y, is a function such that

dom (X" Y)=[I _ _m+n+i-1]

X mal=0= X
X 1[m+T_m+n+i-i]=7,

where I = lower (X~ Y). To make this definition unique,
we would have to specify the integer function lower
(X Y); we refrain from doing so to preclude arguments
which might depend upon this arbitrarily chosen func-
tion. '

Let {) denote the unique function whose domain is
empty. Then concatenation satisfies the following laws:

X (ry=X (8.1
()Y X=X (8.2)
XY Zxx"(Y"2) 83
X=X &Y=Y impliesX Y= X"y (8.4)
X“r~r"x (8.5)
X~X &Y~Yimplies X Y~X"Yy (8.6)

X[] 7 implies

_ X=(x1[_a)y x1a(D
(X Y)={X}u{Y) (8.8)
ord, (X Y)ifford, X&ord, Y & (X) p* (Y). (8.9

The first four laws show that array values form a monuid
under concatenation, provided that shift equivalence is
used in place of true equality. The next two laws show
that this monoid becomes commutative when the less
stringent equivalence of rearrangement is used. (Tech-
nically, one can make these statements precise by work-
ing with the quotient of the set of array values under the
equivalence relations = or ~.)

The last three laws establish the basic connections
between concatenation and partitions, images. and or-
dering. In particular, (3.9) is a consequence of (4.8) and
(7.8).

(8.7

D-7

9. Merging

As a second example of program description, we
consider the problem of merging: Given two ordered
srrays X and Y, set Z to an ordered rearrangement of
the concatenation of X and Y. We assume that Z is just
the right size to hold the result. Thus if

ord; X&ord: Y& Hdom Z = (# dom X + # dom Y),
then executing the program should achieve the goal
ord; Z&Z~ (X Y)

During execution, each array will be partitioned into
a processed part on the left and an unprocessed part on
the right, the processed part of Z will be an ordered
rearrangement of the concatenation of the processed
parts of X and Y, the unprocessed part of Z will be the
right size to hold the unprocessed parts of X and Y. and
all processed elements in Z will be smaller or equal 10 all
unprocessed elements in X or Y. (The last condition is
needed to insure that the unprocessed elements can be
moved into Z without rearranging the already processed
elements.) Thus we have the invariant:

I=x[_Jkx J& 1] ky] @)
«z
&ord- Z [Jkz (b)

&Z V[Jka~x 1 Jkx" Y1 Jkn ©
&8 7 (d)

=2 X: [kx |+5Y:
&{Z [_Jkz) ©
= X1k Dori_]).
‘The conciseness and clarity of this notation in compar-
1won with predicate calculus can be seen by comparing
this invariant with the nearly equivalent one given in
Reynolds [11].)

The invariant can be achieved initially by making
the processed parts all empty, and it will imply the goal
of the program when the unprocessed parts are all empty.
which by (d)- -will occur when the unprocessed part of
Z is empty. Thus we can use a program of the form:

begin integer kx. ky. kz;

kx = lower X k) = lower Y, kz := lower Z;
while k- < upper Z do “Cupy One Element”
end.

In “Copy One Element.” a single element will be
moved from the unprocessed part of X or Y into the
processed part of Z. To preserve condition (2) the ele-
ment to_be moved must be the smallest member of (X
1k]y uty1[ky__]). Since both X and Y are
ordered. this will be the smaller of the leftmost unpro-
cessed elements. X(kx) or Y(ky). providing both unpro-
cessed parts are nonempty. However, if only one unpro-
cessed part is nonempty. its leRmost element will be the
element to be moved.

More precisely, when “Copy One Element” begins,
Z:[kz__Jandatleastoneof X:[kx__ Jand Y:[ky]
will be nonempty. Suppose X: [kx___] is nonempty and
Y: is empty. Since ord, X, (4.5) and (4.11) imply
X(kx) <* (X { [kx__]), and since (Y 1 [ky___]} is
empty,

IXaX:[kx] |&Z: ksl | f)

& Xk = (X1x_Ju(r1_» ®
will hold as well as the invariant /. (Note that X:
is an abbreviation for the partition diagram

[kx] __upper X], which asserts that the unprocessed
part of X is nonempty.) By a similar argument, if X:

is empty and Y is nonempty, then
IYmY [l l&zk] |
&Y=t (X1l _Ppuriy_Im

will hold. Finally, if both unprocessed segments are
nonempty, then

X JevR_Jezk]

& X(kx)=* (X 1[kx__])

&Yk =t (Y1[ky__]
will hold. In this case, by (4.10) and the transitivity of
=, X(kx) =< Y(ky) implies /X. while Y(ky) < X(kx)
implies /Y.

Thus if we define

“Copy One Element” =
if kv > upper Y then “Copy X else
if kx > upper X then “Copy Y else
if X(kx) = Y(ky) then “Copy X" else Copy Y.

then 7 & /X will hold before the execution of (either
occurrence of) “Copy X, and [& 7Y wal! hold before
the execution of “Copy Y.

If “Copy X moves X(kx) out of the unprocessed
part of X and into the processed part of Z. then (g)
insures that (¢) will be preserved. Morecover, (¢) insures
that X(kx) will be larger or equal to the elements which
have previously been moved into Z. Thus the ordering
(b) will be preserved if X(kx) is placed at the right of the
processed part of Z. This leads to:

A.Copy X“ -

begin Z(kz) = X(kx); kx = kx + 1, kz:= kz+ | end.
and by a similar argument
“Copy V" =

begin Z(kz) = Y(kv), ky = ky + 1, kz = kz + | end.

Formalily, in the notation of Hoare 5}, “Copy X"
must meet the specification

1& IX {“Copy X"} I.

To exemplify the application of the various laws we have
stated, we give a formal proof of this specification. The
assignment axioms (6.5) and (6.6) imply /' {*Copy X"}
1, where

T & [arreor|trrset| 22iaa xian)

=X kx| &Y Ty]

2z [kl] ®
& ord. [Z|kz) X(kx)) 1 [k (b)
& (2| kz| X(kx)) | k3] ,

~ X[k [k ©
&8Z k])

-#X:kxE:]+#Y:[E] @)
& {[Z)kz) Xkx)) 1 [_k))

= (x1k[_Puir1fie 1)

(Here we have made the simplification of replacing
occurrencesof _ _ _ Jkx+1 _ _ _and _ _ _ _

kz+1 _ ~ _ bytheequivalentforms _ _ _ kx _ .
and __ ~ kz]_ _ _ .) Thus we must show that / & /X

implies I', i.e. that lines (a) through (g) imply (a’) through
(e).
By the rule (2.9) of substitution, (a) and (f) imply
x| k] J&Y [Jky | (h)
& Z: &]

which, by the rule (2.7) of erasure. implies (a’) as well as
various partition diagrams used in the sequel. In partic-

ular, by (2.2)and (2.1), X: [kx] _ Jimpliessx: [kx]
=#X-kx[]+ 1l.andZ:[kz[]implieszZ:[k:]
=#2Z: kz[___] 4 1. so that (d) implies (d').

Next, we have

(Z|kz| Xtk] 1 [kg
= (2Z|kz| X(kx)) 1 [Jkz ~ 1 Z1kz| Xthx)] |
by Z: [Tkg. 8.71).(3.3)
=Z 1 _Jkz 7 [Z]kz| Xkx)] 1

=z1[k7 x1 (k3
by (7.7). (8.4), (6.2)

~ Xk T v Tk ™ X1 kA

by (). (8.6)

~ XL _Jex Tox k) T Y T ke

by (8.3), (8.5). (8.6). (1.4)

S a2
by X: [Tkx] (87).3.3)

which establishes (c¢’), and also

(Zikz| Xk [k =Z1[_Jkz~ x1[ka)
Then

by (6.4)

(Z{kz| X(k0)] 1 [_&2))
={(Z1[_Jkz” x1[ka]}
by (1). (7.4).(1.5)
={Z1[_Jkap uix 1 [ka])
by (8.8)

~rpne vy s

= (Z 1 [_Jkz} U (X(kx))
= (X1l Nuri_D

_ by (¢), (g) (4.33)
={X1[kx] ” X1kx[_Jyu{rt])
by X: (87, (33)

- (X1 E U X1k Purify_ D

by (8.8)

by (3.8)

x=

so that (4.1a) and (4.1b) give (¢’) and

(Z 1 [Jk2r = (x 1 [k} ()

Finally, (3.1), (2.1), and (4.6) imply ord<X 1 [kx].
which with (b), (j), and (8.9) implies ords(Z {
[Jkz = X 1 [kx]), which with (i) and (7.8) im-
plies (b").

10. Multidimensional Arrays

Although the concepts we have presented were de-
veloped and tested in the context of one-dimensional
arrays, most of them extend to the multidimensional
case. The major additional concept which is needed is
the Cartesian product:

SiX .. XSy m ((iry ., in) i€ S & ... &in € Sa).

A Cartesian product of intervals is called a block. The
values of the array declared by r array X(ai: b, ..., a.:
b) are functions whose domain is the block |a| h.|
X

lt is evident lhat the values of subarrays of X such as
rows and columns are restrictions of X to certain blocks.
For example, with some fairly obvious conventions about
cliding lower and upper bounds, the following assertion
specifies that (i, j) is a saddle point of the two-dimen-
sional array X:

P AN ORI NESS. ()
& xu.y=* (x 1 (__Ix0Uhr

11. Conclusion

The content of this paper is only a small heginning
It is largely limited to one-dimensional integer-sub-
scripted arrays, and even within this domain it is based
upon the careful study of perhaps a dozen simple pro-
grams. Moreover, program proving has been viewed as
a purely human endeavor and the possibility of mecha-
nization has been ignored.

Thus further study is certain to produce sigmficant
extensions and reformulations. Nevertheless. we believe
that we have gone far enough to demonstrate the value
of the underlying approach: We have formulated con-
cepts. laws, and notations which are powerful tools for

the precise yet intelligible description of a significant
aspect of programming.

Hopefully, this work suggests guidelines for further
progress: One should focus upon particular mechanisms
such as arrays rather than generalities which pertain to
all computation. Concepts and laws are more fundamen-
tal than notation per se, and should reflect intuitive
understanding. Most important, the crucial test is the
ability to describe real programs in a way which is not
only precise but also intelligible to the human reader.

Acknowledgments. I am indebted to the members of
IFIP Working Group 2.3, who have provided motiva-
tion, inspiration, and helpful criticism. I am also grateful
for the hospitality of the University of Edinburgh and
the support of the Science Research Council during the
period when this paper was written.

Appendix. Proof of Proposition (2.3)

We leave it to the reader to verify that cither a, < a,
<..Sa,0a2a 2. 2a,impliesa__ a] .. ai.
The following proof of the converse was found by F.L.
Morris.

Suppose a..| __H_‘... a,.IA From (2.2) we have
fal ad=3 #a [al. (a)
-

where
sal B =ifh—a=0then b —agelse

is always nonnegative and is zero iff o b] is empty.
For arbitrary a,'s simple cancellation gives

_ail—zal—all

=1

Then subtraction of (a) from both sides gives

ﬂa.‘. a,) = X ﬂa. 1 a). (b)
=}

where

flahy=b-u-8 “[-_—B
=ifb-a=0thenOeclse b~ a

is always nonpositive and s zero lfTa ts regular.

The nterval a) a] must be either empty or
regular (or both). Suppose it 1s empty. Then (a) asserts
that a sum of nonnegative terms is zero, which implies
that cach term is zero. Thus for each i, a, :[:‘ﬁl
empty. and a, | 2 a,.

On the other hand, suppose a _ a,] is regular.
Then (b) asserts that a sum of nonpositive terms is zero,
whuh implies that each term is zero. Thus for each i,
a [alisregular,and a, | < a,

Receved July 1977 1evised May 197X

D-9

References

1. Burstall, R M. Some techniques for proving correciness of
programs which alter data structures. Machine Intelligence 7 (Nov.
1972), 23-49.

2. Cooper, D.C. Proofs about programs with one-dimensional
arrays. Unpublished.

3. Dijkstra, EW. 4 Discipline of Programming. Prenuice-Hall,
Englewood Cliffs, N.J., 1976.

4. Floyd, R.W. Assigning meanings to programs. Proc. Symp n
Applied Mathematics, Vol. 19, Amer. Math. Soc., Providence. R 1,
1967, pp. 19-32.

8. Hoare, C.A R. An axiomatic basis for computer programming.
Comm. ACM 12, 10 (Oct. 1969), 576-581.

6. Hoare, C.AR. Proof of & program: FIND. Comm. ACM /4.)
(Jan. 1971), 3945,

7. Hoare, C.A.R. Notes on data structuring. In Structured
Programming. O.-1. Dahl. E.W. Dijkstra, and C.A.R. Hoare.
Academic Press, N.Y ., 1972, pp. 83-174.

8. Hoare, C.A.R. A note on the FOR statement. BIT 12,3 (1972).
334-341.

9. Hoare. CAR. and Wirth, N An aniomauc definition of the
programming language PASCAL. Acta Informauca 2 (1973), 335
355,

10. McCarthy, I, and Pawnter, J Correctness of a compuler for
anthmetic expressions. Proc. Symp. in Applied Mathemaucs, Vol 19,
Amer. Math. Soc, Providence. R 1, 1967, pp. 33 -41.

11. Reynolds. §.C. Programming with transition diagrams In
Programming Methodology, A Collection of Papers by Members of
1FIP WG 2.3, D. Gries, Ed., Springer-Verlag, [978, pp 153 {65

D-10

APPENDIX E: RECENT WORK ON ARRAY CONCEPTS

In "Reasoning about Arrays' (Comm. ACM 22 (1979) 290-299), we defined

the concept of rearrangement:

When X and Y are functions with the same codomain, X ~ Y
(X is a rearrangement of Y) holds if and only if there is a

bijection B: dom X - dom Y such that X = B-Y,

and of shift equivalence:

When X and Y are functions with the same codomain and domains
that are intervals of the same size, X ¥ Y (X is shift equivalent
to Y) holds if and only if there is a constant s such that

X(i) = ¥(i + s) holds for all i in dom X.

This year we discovered thz usefulness of generalizing the latter concept

as follows:

When X and Y are functions with the same codomain and totally
ordered domains, X v Y (X is a realignment of Y) holds if and only
if there is a monotone bijection B: dom X - dom Y such that

X = B-Y.

It is easily seen that realignment is an equivalence relation that implies
rearrangement and reduces to shift equivalence in the special case where

dom X and dom Y are intervals of the same size. Morever,

R el

If X v Y and ord Y then ord X
- ~o P e P

and

If X v Y then X+Z v YZ .

The advantage of realignment lies in its ability to deal with functions
whose domains are sets of integers that are not intervals, or even sets of
nonintegers. An example is the following annotation of a program for

left-shifting an array:

{[z]_ 1] and [a b] < dom X and X = X,}

b

begin integer k;

k := a;

{whileinv: [a k] b] and x1 ([a_Jk v k[TB]) ~ %, [B}
while k < b do

j e Ny,

begin k := k + 1; X(k-1) := X(k) end
D L
end
A
x] [a_Jb~x,1 a[B]}
Notice that the invariant expresses the idea of an array with a hole
in the middle by using a function whose domain k v k[__-_tﬂ is not
an interval.
Another advantage is that we can replace the usual notion of con-
catenation by a kind of concatenation based on 'source tupling" of functions.

For sets S and T, let
S+ T={1} xsu {2} xT

with the ordering

<x, y> < <x', y'> iff x < x' or (x = x' andy <y') .

Then, for functions X: S - U and Y: T > U, let X ® Y: S+ T > U be the
function such that

(Vies) (X ®Y)(<l, i>)

X(1)

NVieD (xev)(<2, j>)

Y(3)

E-2

Then

b.
c.

d.

dom(X ® Y) is the union of the disjoint
sets {1} x dom X and {2} x 933 Y ,
(XoY)] ({1} x dom X) X ,
(xeY)] ({2} xdom Y) 2 Y ,

®
{1} x dom X < {2} x dom Y .
(5 o

establish that ® is a kind of concatenation. In particular, if X and Y are

sequences, then X & Y is a realignment of the usual sequence-concatenation

of X and Y. However, unlike the usual notion of concatenation, X @Y is

defined for any pair of functions with the same codomain.

Further laws include:

If Scdom X and T < dom Y then
— -— vy

Xev)] (+T)=(x1s)e(¥]TD.

(X ®Y)eZ = XeZ & YeZ ,

{x e Y} = {X} v {Y}.

gggp (X ® Y) 1f and only if

(a) e_r_dp X

and (b) ord Y
e P

and (c) (X} p" (¥} .

E-3

r (XoeY)®ZrnXe (Yeoz).
X <>nX.

<> @XnX.

XeYvYeX.

If XvX' and YA Y' then X ®©Y N X' © Y

If X% X' and YA Y’ then XO0 YA X' ©Y' ,

If ggE\X =SuTand S and T are disjoint
then X (X1 s) e (x1 1) .
If domX =S y T and § <* T
-,

then X~ (X7 s) e (x]T) .

If dom X = a[c] and a[_B[o]
then X (XT a[TB]) & (x] b[2)) .

For example, in proving the above left-shifting program, one must show

that

[a [k-1[k[b| and x 7 ([a_Jk-1 v k-1 B]) ~ X, 1 a[_B]
implies

[X | k-1: X)) 7 ([a_Jk v k[_B]) ~ %1 a[_B] .

This can be proved by a sequence of realignments involving concatenations:

S o —————— e e,

X | k-1: X1 (@ _Jx v k[s

X | k-1 X011 [@_Jk) @ (IX | k-1: X(K)] 1x[ED H

2 UX | k=12 X)) T E_Jk-1) ® ([xX] k-1: X1 9 [&=1I])
® ([x | k-1: (k)] 1 k[B])

2 x7 [a]Jk-1) @ (x] [E]) e (x1 k[B])

» @1 D o] 1 CH)
X4 (@ Jx-1u k-1["B])
lx01 a.E] *

Further applications of realignment arise in conjunction with preimages

and related concepts. For a function X and a set Uc cg_d X, let
P(U, X) = {i | i e dom X and X(i) e U}
\'\,\
be the preimage of U under X. Then

If U' € U then P(U', X) € P(U, X) ,
P(Uuu', X) = P(u, X) v PQU', X) ,
P(U n U', X) = P(U, X) n P(U', X) ,
P(U - U', X) = P(U, X) - P(U', X) ,
P(U, X) = dom X if and only if X} cu,

P, X) = {} if and only if U and {X} are disjoint .

p(u’ x.Y) - p(p(U» Y)p x) ’
pcu’, IU) =y’ .
P(Uu, X1 8) =PW, X) ns .

S cP({x] s}, x).
{(x1 P(u, X)} = U n (x} .

P(U, X ® Y) = P(U, X) + P(u, v) .
E-S

T e e e— - - -

PORPEREYY VN SIS S SRR

If X~ Y then X P(U, X) Y1 P(u, ¥) ,

| If X~ Y then X P(U, X) » Y1 P(U, Y) .

For a function X and set U, let

g XAhU

'r- =X7 P(cod X n v, %),
X*U=2Xx1Plcod X * U, X)

] Then

. XAU=X1f and only if {X} c U .

XA U= <> if and only 1if U and {X} are disjoint .

XAU AU =XA(UnU"Y) .

(XeY) AU=(XAAU ® (YN .

xaut={X}onvu,

If X~Ythen XAUNVY AU

I£EX~Ythen XAUNY AU .

and

X2 U=2X if and only if U and {X} are disjoint ,
X2 U=<> if and only if {X} c U ,

X-U)~vu'=xX=~(UWuu) ,

(XeY)~-U=(X-U)e (Y~-U |,

X-UV}e{X}-v,

IfX~vYthenX=-UnryY=>U,
If XvYthenX=UAY2U .
E-6

In effect, X A U and X - U can be regarded as the intersection and difference

of the function X and the set U.
3 In conjunction with realignment these concepts can be used to specify

programs such as the following, which deletes array elements with values

f outside of the interval |r sl:

{|la blifﬂlxﬁ‘;’x’xo}
1 begin integer d; c := a; d := a;

1 {whileinv: [a_Jc Jd ©] and x1 [Je» (41 [J0) &
| and x1 [T 0] =%, 1 (8] }

while 4 < b do
[¥ " VS —

E (X(d) < r) or (. X(d)) then d = d + 1
else begin X(c) = X(d); c:=c+1l;d:i=d+1 &r:g

end

—
{fa Jc b) andx] [a_Jen x,1 [a_B]) & [r s}

Another application is the following definition of stability (in the

sense of stable sorting):

S

Suppose X, Y, and K are functions such that ?29 X=codY

= gpm K. Then X is a stable rearrangement of Y with respect

to K when

(Vk e cod K) X & P({k}, K) » Y & P({k}, K)

E-7

MISSION
of
Rome Air Development Center

RADC plans and executes nesearnch, development, test and
selected acquisition proghams in suppornt of Command, Contrnol
Communications and Intelligence (C31) activities. Technical
and engineering suppornt within areas of technical competence
48 provided to ESD Program 0ffices (POs) and othen ESD
elements. The principal technical mission areas are
communications, electromagnetic guidance and control, sunr-
veillance of ground and aerospace obfects, intelligence data
collection and handling, information system technology,
Aonospheric propagation, sofid state sciences, microwave
physics and electronic reliability, maintainability and
compatibility.

