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ABSTRACT

Fourier Transform Infrared Spectroscopy (FT-IR) and Torsional Braid
Analysis (TBA) were used to study the reaction of an epoxy resin system
cured with a sterically hindered amine. Isothermal torsional braid anal-
ysis showed the apparent activation energy to be approximately 42 kJ/Mol.
The reaction kinetics were also considered from the unreacted freshly
mixed condition and a partially reacted "B-staged" condition using infra-
red spectroscopy. The B-staged condition is unreactive and stable at
room temperature due to the quenching of the primary amine reaction by
the glassy structure and the steric hindrance of the secondary amine
reaction. Apparent activation energies for these two conditions were
found to be 49.4 kJ/Mol. and 49.0 kJ/Mol. respectively. The storage life
at room temperature of the B-staged resin system is predicted to be at
least three months based on extrapolation of the experimental kinetic
data.
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INTRODUCTION

A current problem with resin systems used in continuous-fiber rein-

forced composites is their storage capability. Once thp resin is mixed,

it must be used immediately or stored at low temperatures in the form of

a prepreg. Prepregs must typically be stored at -18*C(O'F)and at this

temperature they are estimated to remain stable for approximately six

months. The ideal system from a storage point of view would be a

prepreg which is stable at room temperature in the B-stage and yet which

retains its tack and drape. Currently no such system exists.

However, a resin system does exist which is stable at room tem-

perature in the B-stage in a glassy condition (no tack or drape). This

system (Figure 1) consists of diglycidyl ether of bisphenol-A (Dow 332)

and polyglycidyl ether of orthocresol formaldehyde novolac (Ciba-Geigy

1299), hardened with 2,5-dimethyl 2,5-hexane diamine (DMHDA). Rinde and

coworkers (1) have shown DGEBA/DMHDA to be stable in the B-stage at room

temperature. Upon mixing at room temperature, the primary amine hydro-

gens react to form a linear polymer. The secondary amine hydrogens do

not react at room temperature because they are much less reactive due to

the steric hindrance of the nearby methyl groups. The polymer does not

form a 3-dimensional structure until the secondary amine hydrogens react

upon additional heating. This results in a softening and slight flow of

the resin as it is being advanced to the fully cured state.

The epoxy-cresol-novolac resin (1299) was added to improve elevated

temperature mechanical properties by increasing the crosslink density of

the fully cured system. Due to its functionality of greater than two

-6-
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(average functionality is reported to be 5.4) it is possible to develop

some crosslinking with only the primary amine hydrogens reacting.

However, the possibility of network formation at room temperature is

considered low due to the relatively small amount of 1299 used in the

formulation (14 mole percent). Previous work has shown the basic mecha-

nism of linear polymer formation at room temperature to be retained (2).

When an epoxy cures, two principal structural transitions may

occur: gelation and vitrification. Gelation corresponds to the tran-

sition from linear and branched molecules to a network structure of

mathematically infinite molecular weight. Vitrification involves a

transition from the liquid or rubbery state into the glassy state as a

consequence of an increase in molecular weight before gelation or an

increase in crosslink density after gelation. As long as the extent of

cure remains below the gel point, the material is fusible and may be

suitable for use as a prepreg matrix. Onre the gel point is exceeded no

further processing is possible.

Several authors have found that the only significant reaction of an

epoxy and an amine in the absence of an accelerator is that of the amine

hydrogens (3.5). The reaction seems to be more complicated when an

accelerator is used; etherification reactions may complicate the simple

amine addition scheme. Also, reactions such as oligomerization

involving the hydroxyl and epoxy seem to be possible even in the absence

of an accelerator (5).

The amine-curing reaction of epoxy resins is usually catalyzed by

hydroxyl groups (6). This hydroxyl-catalyzed reaction is reported to be

first order in each reactant and third order overall (7). However, the

-7-
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integer-order of an epoxy curing reaction may be an oversimplification.

Abalofia (8) has found the order to vary over non-integer values using

DSC analysis. Therefore simple nth-order kinetics with the temperature

dependent rate constant given by an Arrhenius expression may be too

simplified to express the entire cure reaction adequately. The present

work investigates the reaction kinetics without attempting to determine

the reaction order.

The storage capability of the B-staged resin system can be assessed

by examining the kinetics of the curing reaction. Many authors have

used infrared spectroscopy to study the curing behavior of epoxies

(9-13). Signal-to-noise and resolution considerations limit rapidly

scanning the entire spectrum with a despersive instrument, and prevent

the application of conventional infrared spectroscopy to the study of

reactions with short half lives. With rapid-scanning Fourier Transform

Infrared spectorscopy (FT-IR) the time factor limitations have been

reduced and reactions with short half lives are now amenable to spectro-

scopic investigation (14). FT-IR is fast, which permits routine appli-

cation of signal averaging techniques to develop high quality spectra,

and has extensive data handling capabilities, which allow direct manip-

ulation of the spectra. If a reactant or product exhibits an absorption

free of spectral interference, the absorbance versus time plot repre-

sents a kinetic profile of this reaction species.

The epoxide group shows three characteristic infrared absorption

bands. The region of the first band is small at about 1250 cm-1. The

regions of the two other bands are broader, the position of the maximum

depending on the structure of the epoxide. These absorption bands

-8-
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appear between 950 and 860 cm-1 (usually at 915 cm- 1) and between 865

and 785 cm- 1 (generally 830 cm-1). The extent of reaction can be

followed by measuring the decrease in the epoxy ring absorbance as the

cure proceeds.

Torsional Braid Analysis (TBA) provides a mechanical means of in-

vestigating the curing behavior of the epoxy which compliments the FT-IR

technique. In this work both FTIR and TBA techniques were used to study

the cure kinetics of the 332/1299/DMHDA resin system.

-9-
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MATERIALS

The epoxy resin system studied consists of a stoichiometric mix of

2/3 DGEBA (Dow 332). 1/3 Novolac (Ciba 1299), and DMHDA as shown in

Figure 1. The 1299 resin is a solid Novolac and may be mixed with the

332 resin by heating. The liquid 332 resin acts as a solvent for the

solid 1299 resin. Upon cooling a very viscous homogeneous resin mixture

is obtained. The Tg of the fully cured resin system is 1440C as deter-

mined by dynamic mechanical analysis using the DuPont 1090 DMA

instrument. (The Tg was taken as the intersection between the horizontal

and vertical portions of the modulus-temperature curve). The curing

agent (DMHDA) is slightly volatile at the higher cure temperatures. All

of the components are commercially available.

- 10 -
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RESULTS AND DISCUSSION

Differential Scanning Calorimetry (DSC)

A DSC scan to 2000C at 2C/Min. of a freshly mixed sample of the

resin system is shown in Figure 2a. The two exothermic peaks represent

the primary and secondary amine reactions. Another DSC scan is shown in

Figure 2b for the same resin system of a specimen which was kept at room

temperature long enough to solidify (approximately 48 hours). This B-

staged condition is not fully cured as evidenced by the single broader

exotherm shown in the figure. The endothermic peak represents a melt

from the solid state which then allows the reaction to proceed. This

solid-state melt may be due to some crystalline melting of the linear

polymer or segregated unreacted constituents. Due to this behavior,the

kinetics of the curing reaction were investigated from both freshly

mixed and B-staged starting conditions.

Dynamic Mechanical Analysis

Conventional Torsional Pendulum Analysis (TPA) was used to study

the isothermal cure behavior of composite specimens which were prepared

by impregnating graphite cloth (AS fiber; 8-harness weave) with the

resin system and allowing the laminate to B-stage at room temperature.

In this experiment the temperature was kept constant and the modulus and

log decrement were monitored as a function of time. After softening,

the cure proceeded normally, but only the final portion of the stiffness

and damping plots were observable. The sensitivity of this instrument

was not adequate to observe the total cure, and the time to gelation was

not estimable. TPA did not yield useful kinetic data, but a similar

- 11 -
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technique, torsional braid analysis (TBA) was attempted and proved to be

more sensitive.

Isothermal TBA runs were made of the resin system at approximately

I Hz using an automated apparatus in a helium atmosphere. The specimens

were prepared by impregnating a glass braid with a resin solution in 25%

methylene chloride. The methylene chloride was removed as the specimen

was heated to the starting temperature. The cure of the freshly mixed

resin was monitored by observing the torsional rigidity and damping as a

function of time at several constant temperatures. The reader is

referred to Gillham et al. (15-17) for a complete description of tor-

sional braid analysis and its use in mapping the transformations of

thermosetting systems.

The isothermal TBA run at 1000 C is shown in Figure 3. At this

cure temperature and also at 900C, well defined gelation and vitri-

fication peaks were obtained. (The total cure time was approximately

24 hours). At the higher cure temperatures no gel peaks were ob-

served, perhaps due to loss of the volatile curing agent. The first

significant decrease in the damping plot was then used to deter-

mine the apparent gel point.

Assuming arrenius kinetics, the time, t, to reach a given degree

of conversion can be written:

t - to EXP(Ea/RT),

where to is a constant, Ea is the apparent activation energy, R is the

universal gas constant, and T is the absolute temperature. An Arrhenius

plot (assuming the conversion at the gel point is a constant) is shown

- 12 -
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in Figure 4 using the time to gelation at different cure temperatures.

The apparent activation energy from the slope of the curve is 42 kJ/Mol.

If the reaction mechanism remains the same at all temperatures, the

conversion at the gel point is a constant and can be calculated (18).

Using a statistical calculation for the three components, the gel point

is found to be at 78% extent of reaction (19). However this assumes

equal reactivity of all functional groups, which is not true for the

present system. The primary amines react initially to form a linear

polymer with a few scattered crosslinks due to the 1299 resin. This

reaction proceeds at room temperature until quenched by vitrification.

The reaction of the secondary amines requires elevated temperatures and

converts the linear polymer into a crosslinked network. The polymer

must be fusible and partially soluble to allow some flow if it is to be

a useful- prepreg resin. Fifty percent extent of reaction is estimated

to be the maximum processing limit for B-staging, assuming that after

this point the primary reaction has completed and the secondary (cross-

linking) reaction is dominant.

Fourier Transform Infrared Spectroscopy (FT-IR)

B-staged specimens were heated in a vacuum oven at various tem-

peratures and for various times. Potassium bromide (KBr) pellets were

made and infrared spectra from 3800 to 450 cm"1 were collected using a

Fourier Transform Spectrometer (Digilab FTS - 10M). Spectral resolution

was 4 cm"1 and averaged over 120 scans.

In addition, thin films of the B-staged and freshly mixed resin

were sandwiched between two KBr salt plates. The salt plates were

mounted in a temperature-controlled cell holder with a thermocouple

- 13 -
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inserted in a drilled cavity between the plates. Infrared spectra from

3800 to 450 cm- 1 were recorded at one-minute intervals during the cure.

This was repeated for several temperatures and for the freshly mixed

condition. All spectra were taken in a nitrogen atmosphere.

A ratio indicating unreacted epoxide groups relative to the

starting condition can be found by normalizing the size of the epoxide

peak (915 cm" 1) of ea-.) scan to the aromatic peak (1510 cm" I) of each

scan and then dividing by the similarly normalized spectra of the

starting condition.

A (t) A 15, s A1510r
91510,s 915, ref

Ag1 5 (t) - fraction unreacted epoxide at time t

A9 15,s  - specimen absorbance at 915 cm"I at time t

A 1510,s  - specimen absorbance at 1510 cm 1 at time t

A - initial absorbance at 915 cm 1
9g15' ref

A1510, ref - initial absorbance at 1510 cm
-1

An example of these spectra is shown in Figure 5. The absorbances at

915 cm 1 versus time at various temperatures were plotted from the two

starting conditions and are shown in Figures 6 and 7.

In Figure 7 (B-staged starting condition) the 1000C plot is seen to

reach 45% absorbance at 915 cm"1 in 4 hours. The reaction at this tem-

perature is very slow but still continues at a finite rate as evidenced

- 14 -
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by the torsional braid analysis. The TBA run at 100*C showed the reac-

tion to continue for approximately 24 hours (see Figure 3). The lower

reaction rate at 100°C is believed to be due to vitrification and

quenching of the resin system.

The 125C and 150C run (Figure 7) show the extent of reaction to

approach 81 and 77 percent respectively in Tess than two hours. The 1250C

run, below the maximum Tg of the fully cured system (1440C), proceeds to

a significant extent of reaction before it vitrifies. The 150 0C run is

above the maximum Tg and does not vitrify at this temperature.

At 177*C (Figure 7) the cure temperature is significantly above the

maximum Tg. The reaction initially proceeds very rapidly but then seems

to slow down in a relatively short time. This may be due to the react-

ants degrading thermally at this elevated temperature or extensive chain

crosslinking and re-vitrification.

In Figure 6 the epoxide absorbances versus time are plotted for the

freshly mixed condition at three temperatures. The reactions follow the

same pattern of the B-staged condition but at a slightly faster rate.

This is most likely due to greater mobility of the reactants in the

liquid state.

Arrhenius plots of logarithmic time to 49% conversion (51% absor-

bance at 915 cm- ) versus reciprocal temperature are shown in Figure 8.

As mentioned earlier, this conversion is believed to be the maximum at

which the resin is still fusible and soluble. The activation energies

calculated from the slopes of the plots of Figure 8 are similar (49.4

and 49.0 kJ/Mol.). These values agree with the work by Rinde et al. (7)

in which the activation energies of the primary and secondary curing

- 15 -
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processes were found to be identical. They are also in reasonable

agreement with the activation energy found by Torsional Braid Analysis

(42/kJ/Mol.).

In this work the B-staged starting condition (Figure 7) initially

shows approximately 28% conversion. This was after several days at room

temperature in which the resin vitrified. Extrapolation of the data in

Figure 8 to room temperature yields a 3 month time to 49% conversion.

The data for Figure 8 are for the rubbery or softened state after heating

the B-staged resin. Gillham (16) has found the reaction rate to be

slower in the glassy (Vitrified) state. Therefore, 3 months most likely

represents a much shorter time to 49% conversion than what occurs In the

glassy state at room temperature.

- 16 - .
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CONCLUSIONS

The results of this study show the apparent activation energies for

the curing reactions to be similar, regardless of the initial condition.

Using FT-IR they were found to be 49.4 kJ/Mol. (freshly mixed) and 49.0

kJ/Mol. (B-staged). Using TBA it was 42 kJ/Mol. (freshly mixed). The

nature of DMHDA, which causes partial cure at room temperature by form-

ing a glassy linear polymer, makes the cure rather complicated. Vitri-

fication at room temperatur. t-, rs the primary reaction. The second-

ary reaction requires e'.- .-mperatures due to the steric hindrance

of the methyl groups. S >g, flow, and re-vitrification occurs as

the resin is cured from the i-stage.

The primary reacti'4 continues to increase the molecular weight of

the system at room temperature till most of the primary amine hydrogens

have reacted. The storage life therefore is the time to completion of

the primary reaction which was found to be approximately three months

using the experimental kinetic data. As previously mentioned,this data

is based on a rubbery state after softening the B-staged resin with

additional heating. (The extrapolation to room temperature used kine-

tics based on a rubbery condition.) The reaction rate is most likely to

be slower in the glassy state at room temperature and therefore the

actual storage life will be longer. To determine the actual storage

life the reaction after B-staging must be monitored at room temperature

for long time periods.

A glassy prepreg patch with a storage life of three months is

still not adequate for field level repair of advanced composites. The

- 17 -
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material deployment time alone may be three months. Thus, a storage

life of at least one year is preferred.

Rinde et al. (17) has reported that DGEBA/DMHDA does not cross-link

for up to one year if protected from moisture. Moisture plasticizes the

resin allowing a faster reaction rate through increased mobility of the

reactants. This may be applied to the present system if moisture

absorption can be prevented. More research and development is needed

in this area of stable prepreg matrix materials.

- 18 -
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Figure 1. Components of epoxy resin system.

(Average n for ECN 1299 is 3.4)
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Figure 4. Arrhenius plot of logarithm time to aelation versus
reciprocal temperature from TBA results.
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Figure 5. Infrared spectra of freshly mixed and
partially cured resin specimens.
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5

4-

'2 8-STAGED,.

2

22232.4 2.5 2.6 2.7

I/T (OK) x 10'

Figure 8. Arrhenius plot of logarithm time to 49% conversion
versus reciprocal temperature from FT-IR results.
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APPENDIX

The following mechanisms have been proposed as possible schemes

for the amine-cure of epoxy resins (4).

Scheme I: (Simple Amine Addition)

OH

NH 2-X + CH 2-CH-Y -X-NH-CH 2-CH-Y

0 OH

X-NH-CH 2-CH-Y + CH 2-CH-Y CH 2 -CHl-Y

X-N OH

CH2-CH-Y

Scheme II: (Zwitterion Initiated Homopolymerization)

0 OH

NH 2-X + CH 2-CH-Y X-NH-CH 2-CH-Y

? H / 0 
?

X-NH-CH 2-CH-Y + CH 2-CH-Y X-N-CH 2-CH-Y

CH
1 2
CH-OH

Y

y

CH-OH

OH 0 CH2

X-N-CH 2-CH-Y + CH2-CH-Y Xf -CH 2-CH-Y

CH2 CH2 0

CH-OH CH-OH

Y Y
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(The relatively stable Zwitterion may continue to add epoxide groups and

thus initiates homopolymerization.)

Scheme III: (Alkoxide Ion Addition)

C-H-Y 0

N2-X + - X-NH-CH 2 -CH-Y

OH 0-)

X-NH-CH 2-CHM-Y + Base~ - X-NH-CH2-CH-Y

0 ~ O-CH 2 -L-Y

X-NH-CH -CHM-Y + CH -CH-Y - X-NH-CH -CH-Y2 ~ 22

Scheme I is favored for a stoichiometric mix of amine and epoxy

with no accelerator. With excess epoxide groups, oligomerization

involving the hydroxi groups has been shown to be possible (5). Schemes

II and III become mare probable with the introduction of an accelerator.
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