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The main objectives of the program are to study crack tip stresses and crack
tip deformation, and to use the findings of these studies to investigate the
fractures of ductile and tough materials.

Crack tip displacement and strain fields were measured with the moire method,
and the crack tip stress, displacement, and strain fields were calculated with
the finite elements method. The measured displacement and strain fields agree
well with the finite element calculations. The results were used to develop the
direct correspondence method of evaluating fracture toughness of ductile and I
tough materials and were also used to analyze deformation mode of fatigue crack
growth,

Griffith(]) formulated his well known energy criterion for brittle fractures.
At the fracture initiation of a cracked brittle solid in the condition of fixed
grip, the release rate of the stored strain energy equals or exceeds the dissi-
pative surface energy rate. auc/aa 2 aus/aa = 2y, where UE and UY are strain
energy and surface energy; vy, the surface energy per unit area; and a, crack
length. vy is constant for a given material. Assuming a constant dissipative

(2) (3)

rate of plastic energy I', Irwin and Orowan extended the energy criterion
to metallic solids, where plastic deformation takes place at crack tips.

The crack tip elastic stresses, strains, and displacements are characterized
by the stress intensity factor, K. Li. o has shown that for the case of small
scale yielding, SSY, K characterizes crack Lip stresses, strains, and displace-
ments even within a crack tip plastic zone in a metallic specimen. Liu has em-
phasized that the capability of K to characterize crack tip stresses, strains and

displacements forms the fundamental basis of the linear elastic fracture mechanics

RN, b

rather than the global energy balance.




-2-

More recently, Hutchinson(s), and Rice and Rosengren(7) derived the charac-
eristic crack tip stress, strain and displacement fields in power law strain
hardening materials. The crack tip stress, strain and displacement fields can
be characterized by J, which is a contour independent integral. J is also the
rate of potential encrgy change during the cracking process in a non-linear

elastic solid. J has been widely used to study non-linear fracture mechanics.

However, the characteristic crack tip fields are not universally valid. Figure 1
shows the slip line fields of a double-edge-notched specimen and a center-notched
specimen under fully plastic tensile loads. Because of the difference in in-plane
constraints, the principle tensile stress equal to (2 + m)k in one case and 2k in
the other; k is the yield stress in terms of shear. The characteristic flow fields
and stress fields of these two cases are grossly different. In other words, for
different types of specimen geometry, the characteristic fields might be different.

The same J-value might mean different crack tip stresses, strains, and displacements.
As a result, one would expect that specimens of different geometric typcs would

fail at different J-values. Indeed, Hancock and Cow1ing(8) tested specimens of

five different geometries, Fig. 2. The lowest and the highest values of crack

tip opening displacements at fracture, Sc, differ by a factor of 16, & is re-

lated to J but the relation differs for different fiow fields. Taking the dif-
ference of the flow fields into consideration Hancock and Cowling(a) found the

1

corresponding extreme values of J. to be 570 kNm™ " and 147 kNm'], a difference

of a factor of four.

Compact tension specimens and three point btending specimens were extensively
used to measure fracture toughnesses of a number of tough and ductile materials.
Yet according to the results shown in Fig. 2, the measured JIC values would be

overvalued in comparison with the decply double-edge-cracked specimens.

AL




In view of the divergent results of recent findings, a sound and rationa)
method of fracture-toughness evaluation is badly needed. This research pro-
gram follows a much more careful process cf developrent. The crack tip deforma-
tions were measured and calculated numerically. The measurements and the numeri-
cal calculations were compared with the analytical results. Based on these
studies, the characteristic crack tip fields were deduced. Then the direct
correspondence method of evaluating fracture toughnesses was developed.

Three characteristic two-dimensional crack models exist: plane strain,
plane stress and Dugdale model. The characteristic crack tip fields of plane
stress and Dugdale models were studied extensively in this investigation. The
crack tip stress, strain and displacement fields of a small sample in large
scale yielding or general yielding correspond directly to the crack tip fields
of a large sample in small scale yielding. Therefore these two samples, one
small and one large, must have the same K or J value. This conclusion is sub-
stantiated by the excellent agreement between the measured crack tip strain
and displacement fields with the finite element method calculations; the ex-
cellent agreement between the finite element calculations and the analytical

(6) (7).

results of Hutchinson and Rice and Rosengren' ‘; and the agreement of the
measured and calculated load-elongation curves of cracked samples. The choice
of a specific model and specific mechanical parameter for fracture toughness
evaluation is heavily dependent on the specimen thickness. The details are
summarized in Appendix I: "“Thickness Effects on the Choice of Fracture Criteria".
At times, the extensive experimental and theoretical studies appear to be
overly cautious. However, in view of the recent work by Hancock and Cowling(8),
our careful approach is warranted. The method of direct correspondence is ex-

tremely promising for the future development of non-linear fracture mechanics.




Fatigue cracks in ductile materials are often propagated by shear deforma-

tion process. When a crack is small and the applied stress approaches the tensile
yield stress of a material, the crack tip plastic zone size will be comparable or
even larger than the crack length. The effects of large scale yielding will cer-
tainly make the correlation between AK and da/dN invalid. Crack tip shear defor-
mation in both small scale yielding and iarge scale yielding were calculated.

Again the principle of direct correspondence is used to establish the equivalent
K-value of a micro-crack in large scale yielding. The results were used to analyze
fatigue crack growth.

Materials are not homogeneous. They consist of weak and soft phases and strong
and hard phases. The crack tip shear decohesion displacement in a soft phase was
calculated. The shear deformation at the crack tip in a soft phase is constrained
by the neighboring hard phase. The calculated shear deformations were used to analyze
fatigue crack growth. The analyses on micro-crack and the heterogenvus two-phase
materials are summarized in Appendix II, "Crack Tip Deformation and Fatigue Crack
Growth."

The 1ist of publications on the research results of this program is shown
in Appendix III.

The grant has supported three graduate students: Drs. Wan-liang Hu, C. Y.

Yang and Mr. Chien-Erh Hong. Mr. Hong has yet to complete his thesis. Their

dissertation and thesis titles and present affiliations are given in Appendix IV,
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Fig. 1 Slip line fields for fully plastic tension mode - plane strain.
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ABSTRACT

The stresses and strains in a cracked solid are in a complicated 3-dimensional
state. There are three two-dimensional limiting cases: plane strain, plane stress,
and Dugdale's strip yielding case. The thickness of a plate relative to crack tip
plastic zone size determines which one of these three limiting cases is predomi-
nant. The characteristics of the plane stress and the Dugdale strip yielding crack
tip fields were investigated with the moire method together with the finite ele-
ment calculations. The state of the crack tip stress and strain fields approaches
that of plane strain for very thick plates. For a very thin plate with a very
large crack tip plastic zone, the Dugdale's strip yielding model is applicable,
and the crack opening displacement, crack tip opening displacement, and thickness
contraction are related to K or J and they can be used for fracture toughness
measurements. When a plate thickness is in between these two extremes, there
exists a characteristic plane stress crack tip field. The correspondence of the
plane stress crack tip fields in small scale yielding and in general yielding
was established, and the J-value of a sample in general yielding can be obtained
from the established correspondence. The value of the applied J-field of a small
sample in general yielding can be measured in terms of the applied stress and the

specimen elongation

Keywords: Non-linear fracture mechanics, fracture toughness, small scale

yielding, general yielding, COD, CTOD, K, J, and thickness

contraction.
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exist. Still further away is Region 1V, where the effects of specimen geometry and
type loading dominate the deformationcharacteristics. Note that, in general, not
all of these four regions are present. For example, Region III diminishes with
increasing load. For a very thick single-edge-cracked, SEN, specimen, only Region
I and Region IV may exist.

The nature of the plane strain stiffening effect in Region I has been discussed
previous1y[10]. It is the stresses and strains in the immediate vicinity of the
crack tip within the stiffened zone that cause fracture initiation. The crack tip
stiffened zone is embedded within the plane stress crack tip field. It is reasonable
that the stresses and strains in the stiffened zone should be characterized by the
intensity of the plane stress crack tip field. In other words, the same intensity
of the plane stress crack tip field infers the same stresses and strains in the
stiffened zone, even though the exact values of the stresses and strains in the
stiffened zone are unknown. Therefore, the intensity of the plane stress crack tip
field also characterizes the condition for crack initiation. The degree of the
crack tip strengthening is affected by plate thickness, therefore this conclusion
is applicable only to samples of same thickness. We will focus our attention
in Regions II and III.

Crack tip stresses, strains and displacements in elastic solids can be expressed

(8]

in terms of the stress intensity factor K. In a like manner, Hutchinson and Rice
and Rosengren[9] have shown that crack tip stresses, strains, and disp]aceménts can

be expressed in terms of J.

1
) AT s
(o430 %] = olag e T+ [3;;(0.n), 8, (6,n)]
i 3 T
€3 o[ao € 1 r] ¢ (e n)
uj -y’ = o[aogI]_T _Tm(e n) (1)

00
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II. CHARACTERISTIC PLANE STRESS CRACK TIP FIELD - SMALL SCLE YIELDING AND LARGE
SCLAE YIELDING CORRESPONDENCE

[7]

Crack tip strains, €, were measured by Gavigan, Ke and Liu in double-edge-

yy
cracked, DEN, specimens made of three batches of 2024-0 aluminum alloy. 102 mm and
203 mm (4 or 8 inches) wide specimens of three different thicknesses were tested.
The meeasurements are shown in Fig. 1. The solid lines are plane-stress finite
element calculations. Away from the crack tip, in the region r > t, the measudre-
ments and the calculations agree very well. Close to the crack tip, r < t, the
measured strains are less than the calculated values. These strains were measured
on the specimen surface; however the surface was not free to deform, because the
surface was coupled to the interior of the specimen, where "plane strain" con-
straint existed. The constraint "stiffened" the crack tip area and it reduced
strains on the surface. The constraint is a localized three-dimensional phenomenon.
Beyond the crack tip stiffened zone, the measurements clearly indicate the existence

of a characteristic plane stress crack tip field. Figure 2 shows the measured and

the calculated load-displacement, P-A, curves. Again, the agreement of the measure-

ments and the calculations is very good.

Figure 3 schematically shows various regions of stress and strain fields.
Region 1 extends from the crack tip to a distance approximately equal to half of
the specimen thickness. In this region, the plane strain stiffening effect exists,
and the three dimensional effect is clearly shown. In Region II, the plane stress
condition prevails. The stress and strain fields approach the analytical results
of Hutchinson[S] and Rice and Rosengren[g]f Region III lies further away from
the crack tip where the material deforms elastically and the stresses and strains
vary with r-O.S. The measurements shown in Fig. 1 were all made at general yield-

ing. However if a specimen is large enough, the characteristic elastic field may

*This will be discussed in detail later.
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exist. Still further away is Region IV, where the effects of specimen geometry and
type loading dominate the deformationcharacteristics. Note that, in aeneral, not
all of these four regions are present. For example, Region III diminishes with
increasing load. For a very thick single-edge-cracked, SEN, specimen, only Region
I and Region IV may exist.

The nature of the plane strain stiffening effect in Region I has been discussed

previouslytlo]. It is the stresses and strains in the immediate vicinity of the

crack tip within the stiffened zone that cause fracture initiation. The crack tip
stiffened zone is embedded within the plane stress crack tip field. It is reasonable
that the stresses and strains in the stiffened zone should be characterized by the
intensity of the plane stress crack tip field. In other words, the same intensity
of the plane stress crack tip field infers the same stresses and strains in the
stiffened zone, even though the exact values of the stresses and strains in the
stiffened zone are unknown. Therefére, the intensity of the plane stress crack tip
field also characterizes the condition for crack initiation. The degree of the
crack tip strengthening is affected by plate thickness, therefore this conclusion
is applicable only to samples of same thickness. MWe will focus our attention
in Regions II and III.

Crack tip stresses, strains and displacements in elastic solids can be expressed

(el

in terms of the stress intensity factor K. In a like manner, Hutchinson and Rice

(9]

and Rosengren have shown that crack tip stresses, strains, and displaceménts can

be expressed in terms of J.

. J
[°1j’ °e] B o[ao €] r] [o..(e,n), ge(e,n)]

N J _—T
€45 = o[ao el r] Eij(e’n)
n 1
ug - u® aeofﬁgggr-m e, (0,n) (1)
n
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I. INTRODUCTION
Griffith[]] formulated the energy fracture criterion for brittle solids. At
the onset of fracture initiation, the driving force (i.e. the rate of change of
the elastic strain energy of a cracking solid), is equal to the energy dissipation
[2]

rate (i.e. the surface energy of a brittle solid), which is a constant. Irwin

and Orowan[3] extended the Griffith energy criterion to metallic solids by assuming

the plastic energy dissipation rate for fracture initiation was a material constant.

However, it can be shown that the plastic energy dissipation rate of a cracking in-
finite plate in the condition of plane strain is linearly proportional to crack
length, 2a. So does the rate of change of the elastic strain energy of the plate.
The fracture criterion of the global energy balance leads to a constant fracture
stress for an infinite plate. The fracture stress is independent of crack length.
This conclusion contradicts the experimental evidences, therefore the criterion of
the global energy balance for fracture initiation without the consideration of the

[4.5]

detailed fracture processes, must be fortuitous

Liu[4’5] has shown that the stress intensity factor, K, characterizes crack
tip stresses and strains even within the crack tip plastic zone, rp, if the condi-
tion of small scale yielding, SSY, is satisfied. The very existence of this con-
clusion allows us to determine experimentally the minimum specimen size for valid
fracture toughness measurements. But the condition of SSY is a sufficient, not
the necessary, condition for the validity of the linear elastic fracture mechanics.
The necessary condition is that K should be able to characterize the crack tip
stress or strain responsible for the defined fracture process. When the applied

stress or strain at the fracture process zone reaches the critical value, frac-

ture will occur.

If it is limited to the realm of the linear elastic fracture mechanics, with
the restriction to the same fracture mode and the limitation to the same thickness,

the concept of the K-characterization of the crack tip field and the assumption of
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the constant dissipation rate of plastic deformation energy lead to the same re-
sults. However, when it is extended beyond the realm of the LEFM, only the correct
analysis will lead to the desired results. The concept of characterizing

crack tip stress and strain fields by the stress intensity factor, K, forms a sound
basis for the extension of the LEFM to non-linear fracture mechanics. This paper
illustrates its applications.

The characteristic crack tip stresses and strains are greatly affected by
specimen thickness. When a small plastic zone at a crack tip is imbedded in a
massive and thick plate, the constraint to thickness contraction induces a state of
high triaxial stresses, and the state of the crack tip field approaches that of
, and the

plane strain. The maximum principle stress, o is nearly 2.45 x ©

max flow

triaxial state of stresses restrains plastic deformation. On the other hand, a
very large plastic zone in a thin plate causes crack tip necking. In this instance,
extensive plastic deformation is concentrated within a thin narrow strip. Within
the strip, the plate thickness contracts considerably, and the deformation approaches
the Dugdale strip yielding mode1[6]. When specimen thickness is intermediate between
these two extremes, a charcteristic plane stress crack tip field exists. In this
case, the maximum principle stress is nearly equal to Telow"
Fracture processes are controlled by the crack tip stresses and strains which
are greatly affected by plate thickness. Therefore the choice of the fracture
criteria must also be dependent on plate thickness.
This paper summarizes and synthesizes the experimental and theoretical work on
the effects of thickness on crack tip stresses, on crack tip deformation, and on
the choice of the fracture criteria for non-linear fracture mechanics. Plate thick-

nesses less than that of plane strain were studied. The results are applicable to

structures made of high toughness materials which are less thar 2 inches thick.




for a material with a power law stress-strain relation

-;; . a<g;>“ (2)

where, o, s the flow stress at the strain €0 When G, = OY and € = eY, a=1,

"

n>1. Te is effective stress. gij (a,n), 5 (8,n), E.. (6,n) and u, (o,n) are

e ij
functions of 6 and n. They define the distributions of their corresponding com-

ponents in the 8-direction. In(n) is a function of n.

e

m
1 J 8 M) 4 () (3)
-1
J is the well known J-integral. It characterizes crack tip stresses, strains, and
dispiacements analogous to K for elastic solids.
For a non-linear elastic solid, J can also be considered as the rate of the

change of the potential energy with respect to crack increment. In the case of SSY,

1-6-:=% (4)
E

where E = E for plane stress and E E/(]-vz) for plane strain. v is the Poisson's
ratio.

However, the characteristic crack tip fields given by Eqn. (1) are not uni-
versally valid in all the cases. Figure (4) shows the s1lip line fields of a
double-edge-notched specimen and a single-edged-notched specimen under fully plas-
tic tensile Toads. Because of the difference in in-plane constraint, the principle
tensile stress equal to (2 + n)k in one case and 2k in the other; k is the yield
stress in terms of shear. The characteristic flow fields and stress fields of

these two cases are grossly different. In other words, for different types of

specimen geometry, the characteristic fields might be different. The same
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J-value might indicate different crack tip stresses, strains, and displacements.
As a result, one would expect that specimens of different geometric types would

]

fail at different J-values. Indeed, Hancock and Cowling tested specimens of
five different geometries. The lowest and the highest values of crack tip open-
ing displacements at fracture, 5c differ by a factor of 10. & is related to J
but the relation differs for different flow fields. Taking the difference of
the flow fields into consideration Hancock and Cowling[]]] found the correspond-

ing extreme values of J_ to be 570 KNn~' and 147 KNm™!

, a difference of a factor
of four,

In order to measure fracture toughness as a material property, a reference
state of crack tip field must be established. The most meaningful one is that of
the small scale yielding. With this choice, the measured fracture toughness of
a small sample in general yielding will be able to predict the fracture strength
of a large structure in small scale yielding.

Plane stress calculations are also made for the double-edge-cracked sample
and the single-edge-cracked sample in SSY, LSY, and GY. The characterization
of the crack tip fields, the correspondence between the crack tip fields in the
state of the SSY, LSY and GY, and their relation to the applied stress and the
imposed elongation are studied.

The crack tip stress and strain fields in samples made of two batches of alumi-
num alloy in the state of SSY were studied using plane stress finite analysis. A
circular sample with a crack along one of the radial lines and with boundary dis-
placements given by the dominant terms of the linear elastic solution, i.e. ug =
(K/Zu)(r/2n)]/z ﬁi(e), serves as the reference state, see Fig. 5. u is shear

modulus. The o - € relations are prescribed by o = Ec for 0 < oy and o = ke\
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for 020 . k=% (1N 5 <69 Mpa (10 ksi) and N = 0.22 for batch B; and
oy = 50 MPa (7.26 ksi) and N = 0.315 for batch C. The finite element mesh is

shown in Fig. 5. The details of the calculations are given in Ref. 12. The crack
line stresses and strains for batch C aluminum are shown in the dimensionless plots
in Fig. 6. The results of nine loading steps are shown. The value of KI ranges

from 1.24 to 4.4 MPa/m (1.25 to 4 ksi/in).

Within rp, the y-direction strain and stress can be expressed as

rm €, rm ¢ m g, K.2m _m
- Py oY olpy oY J =L Ly Ty
Eyy ﬁyy(r=r ) (r ) 5 (r ) g (YE = r) 3 (o ) (r) (9a)
p Yy Y
o E_m' Oy Eﬂ.m' ) Oy J m' Oy KI m’ l.m'
%yy Jyy(r=rp) G =g = ET'(YeYoYr) T BT (5;) @ (9b)

where rp = y(KI/oY)2 = yJ/sYoy. The values of 8, B' and y are respectively 1.41,
0.98, and 0.243 for batch C aluminum, and 1.35, 0.92, and 0.281 for batch B
aluminum,

The form of Eq. (9) is similar to that given by Hutchinsontg], and Rice and

Rosengren[g], Eq. (1). Combining Eqs. (1 and 9), with (m#m') = 1, one obtains

N v ,
In(n)loyy(O,n)eyy(O,n) = BR'/y (10)
TABLE I
N n 8 . : I (n) o 0.n)¥ _
B Y B8'/y I /oyy( n)eyy(O n)
Batch B 0.22 4.5 1.35 0.92 0.28 4.4 4.4
Batch C 0.32 3.2 1.41 0.98 0.24 5.7 5.0

Table I lists the values of (BB'/y) obtained from the finite element calculation

and the values of (In/gy

y g&y) obtained from Hutchinson's results. The values of




gyy (0,n) and %yy (0,n) are obtained by the linear interpolation between
n, _ o, - . N - A - .
Uyy (0,3) = 1.1 and oyy (0,13) = 1.2; and eyy (0.3) = 0.7 and Eyy (0.13) = 0.8;

the values of In(n) are from the linear interpolation between I (3) = 3.86 and
In (5) = 3.41. The values of the finite element calculations and those obtained

from Hutchinson's results are very close.

0

The results for o, €., G, and eP along the radial lines of 45°, 60, and

Yy  yy
90° and away from the crack line are shown in Fig. 7 as solid curves. o is

effective stress; eP

is effective plastic strain. Similar relations can also be
obtained for these stresses and strains.
The state of the crack tip stress and strain fields in SSY serves as a
reference to be compared with the crack tip fields of specimens in LSY and GY.
Double-edge-notched (DEN) and single-edge-notched (SEN) specimens were

studied. The calculated Oyy? Epy? 5, and P are shown in Figs. 7 and 8. For

yy
comparison, the results of the SSY calculations (solid curves) are also shown.
The values of rp for the specimens in LSY and GY are obtained by the linear

extrapolation of effective stress, o, to yield stress Oy in a logarithmic plot
of o vs r. The solid lines of the SSY coincide with the data of GY. The same

scaling factor r_ is applicable to all stress and strain components. Therefore,

P
these stresses and strains can be expressed in terms of a single parameter, r .

P
Since rp is related to K or J in SSY, these stresses and strains can also be
written in terms of K or J. In other words, these stresses and strains in LSY
and GY are characterized by K or J.
The fact that the data of SSY and GY fall onto the same line means that a
crack tip field in GY does correspond uniquely to a crack tip field in SSY. Con-

sequently, one will be able to use a small sample in GY to reach the crack tip

field of a large sample in SSY at the equivalent K-value. The fracture process




is controlled by the crack tip stresses and strains within the stiffened zone,
and the crack tip stiffened zone is imbedded within the plane stress zone. Thus,
the stresses and strains within the stiffened zone will be the same if the intensity
of the surrounding plane stress crack tip field is the same. Or, to state the con-
clusion more simply, the K or J of the plane stress crack tip field characterizes
the stresses and strains within the stiffened zone, even though the stresses and
strains within the stiffened zone are unknown. Therefore, if a small sample in
GY fractures at a K-value so defined, a very large sample, made of the same
materijal in SSY, will fracture at the same K-value, because the crack tip stresses
and strains are identical in both samples. Since crack tip stresses and strains
in the stiffened zone js affected by plate thickness, this conclusion is valied
only for specimens of the same thickness.

The near tip stresses and strains correlate with K or J. In order to use the
correlation for convenient fracture toughness measurements, the near tip field must
be related to the applied stress o and the imposed elongation A. Fig. 9 shows

the correlation of the product oy at a certain distance r ahead of a crack

y Cyy
tip with the product o A for the DEN sample. The product oyy Eyy is linearly pro-

portional to J. Therefore, we have

2

AL RN: (batch C aluminum)

(1)
2
F=0=13.7 04 (batch B aluminum)

These relations can be used to measure the fracture toughnesses of the DEN speci-
mens made of these two materials.

In a cracked elastic solid, an area exists near the crack tip bounded by
r_, within which the singular terms of the characteristic crack tip stress and

e
strain fields are valid approximations. For metallic specimens it can be shown
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that it .. size of re >> rps K will characterize crack tip stresses and strains
even wi‘’ 1, rp[4’S]. The very existence.of this conclusion serves as the basis
for th: - .,,irical determination of the minimum specimen size for valid fracture

tough: .: measurements. The condition of re >> rp is known as the condition of
small .. 4'2 yielding. Wilson has found that the size of o is quite sma11[13]

when ¢ v.»-ed with other specimen dimensions. However, r_ is linearly proportional

e
to spe i .n size; so, in principle the condition of SSY can always be satisfied
by uci.; large enough sample,

T condition of re >> rp could be unduly restrictive in terms of specimen
size -.:irements. T% iindition of re >> rp is a sufficient condition. The
necest.. ~+ condit‘an *o& rrg validity of the linear elastic fracture mechanics is
that b nvld be atie .. characterize the crack tip stress or strain component at
the ¢ ~ion »f the tefined fracture process.

C“aure 10 shows the relation between the applied stress and the equivalent
K-va':+ of a double-edge-notched specimen, both in the linear elastic fracture
mechanics region and in the non-linear region. The linear e]as?ic solution is
capabl: 0 characterize the crack tip field up to ow/oY = 0.6, ;hich gives a

crack ' e plastic zone size r

~ 0.25 inches in comparison with the crack
p(e=0) = © P
lengt:. » = 0.8 inches. In this case, the condition of e >> rp is obviously
more v: .irictive than necessary.

1. can be concluded that the plane stress crack tip field of a double-edge-
notche or single-edge-notched specimen in GY correlates well with the crack tip
field - - SSY, and that the crack tip field of a small sample in GY can be ex-
pressc- 1 terms of K or J. The correlation is substantiated by the experimental
strain = _asurements and the measured load-elongation curve as well as by its

agreen with the analytical results of Hutchinson and Rice and Rosengren.

The che-  teristic plane stress crack tip field is related to the product of the
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applied stress and the imposed elongation. The relation can be used to measure
fracture toughnesses of small samples in GY. The size of the crack tip stiffened
zone is approximately equal to the plate thickness. In order to use the charac-
teristic plane stress field, the plastic zone perhaps should be more than twice
the plate thickness; i.e., 0.25 (KC/OY)2 > 2t. For a tough material, with k. =
352 MPa/m (320 ksiv/in), oy = 552 MPa (80 ksi), t could be up to two inches.
I11. CRACK TIP OPENING DISPLACEMENT AS A FRACTURE CRITERION

When a very large crack tip plastic zone exists in a thin plate, a strip

6]

necking zone takes place, as observed by Dugdale Plastic deformation is con-
centrated within the strip necking zone, and the plate thickness is greatly re-
duced within the strip. A strip necking zone is imbedded within a much larger
plastic zone, shown scehmatically in Fig. 11, and a strip necking zone is shown

clearly by the moire pattern in Fig. 12.

Schaeffer et. a1[14] have measured crack opening displacements as well as
the relative "opening displacements" between the upper and the lower boundaries
of the strip necking zone. Their measurements agree very well with the calculated
values according to the Dugdale strip yielding model. The length of the strip
necking zone has to be several times the thickness of the plate in order to assure
a good agreement. The length of the strip necking zone, relative to plate thick-
ness, t, is given by the parameter n = (K/oY)z/t. For the specimens tested by
Schaeffer et al, n = 48, Furthermore, they have found that the opening displace-
ments within the strip necking zone equal the thickness contraction.

As K increases, and a crack grows slowly toward a point ahead of the crack
tip, the relative opening displacement at the point in the strip necking zone in-
creases while the thickness is reduced. Once the crack tip passes the point, the
plate thickness at the point stops changing. After a specimen is broken, the

thickness at a point along the fracture path is the same thickness, when the crack
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tip first reached the point. The thickness contraction, At, at the point equals
the crack tip opening displacement, CTOD, and CTOD is directly related to the
applied K. According to the Dugdale mode1[15],

CTOD = KZ/EOY (12)

for small scale yielding. Therefore the K-values during stable crack growth can

be obtained by plate thickness measurements along the fracture surface of a
broken specimen. Indeed, Liu and Kuo[]G] have measured the fracture resistance
curve as well as Kc from thickness measurements in such a manner. The thickness
contraction fracture toughness measurements can be used economically for screening
tests.

When strip necking takes place, CTOD is the result of the stretch of the
materials within the strip necking zone. In this case, the crack tip opening dis-

placement is a "tangible" physical quantity, that can be measured directly.

Experimenal observations showed that crack tip necking began to form at n
equal to about 18[]7]. For specimens in which n is between 18 and 48, the strip
necking zone is not large enough to warrant the use of the thickness contraction
as a fracture toughness measurement.

Using the moire method[]7’18]. COD were measured in specimens made of 2024-0,
2024-T3, and 2024-7351 aluminum alloys with tensile yield strengths, 54, 310, and
383 MN/mz, respectively. A1l specimens were 101.6 mm wide central crack panels

with a nominal crack length of 17.8 mm. The applied stresses were about one half ﬁ

the yield strengths for all of the specimens. The density of the amoire grille is
528 1ines/mm, and is capable of measuring COD of about 2.5 x 1074 mm (10'5 in),

using the rotational mismatch technique[19]. Figure 13 shows the measured COD.

The dashed 1ines are calculated from the Dugdale model and the solid lines from !
the elastic model. Figure 13a shows two specimens at the same K-value. Specimen

1 is much thinner than specimen 2. The thinner specimen (n = 1.75) agrees very
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well with the Dugdale model, and the thicker one (n = 1.12) agrees with the elas-
tic model. Approaching the crack tip, the difference in COD is more than a factor
of two. It is not likely that the crack tip opening displacement of specimen 2
will be equal to that given by the Dugdale model. Similar data is shown in Fig.
13b. It can be concluded that when n is close to 18, the measured COD's agree
exceedingly well with the Dugdale model. When n is close to one or less, the
measured COD's agree well with the elastic calculations. When the COD measure-
ments agree with the Dugdale model, the measured COD can be used to infer a CTOD
according to the Dugdale model and the inferred CTOD relates to K by Eq. (12).

The inferred CTOD characterizes crack tip deformation and crack tip stresses.
Therefore it is a suitable choice as a fracture criterion. It should be emphasized
that no strip necking zone was observed in the thin specimens despite the fact that
the COD's in these specimens agreed well with the Dugdale model, which assumes a
strip yield zone.

The agreement in COD between the measurements and the Dugdale model was ob-
served for aluminum specimens in small scale yielding or prior to general yielding.
Figure 14 shows the COD measurements in a magnesium specimen by Kobayashi et a][ZO].
A1l curves are beyond general yielding. The points shown in the figure were
calculated in this investigation with the Dugdale model for curve Mg-1-1Y, which
was at the incipience of general yielding. The measurements agree well with the
Dugdale model even in the general yielding condition. The agreement of the
measured and the calculated COD both in SSY and in GY supports the Dugdale model
for fracture toughness measurements. Figure 14 also shows that crack opening pro-
files are parallel once beyond general yielding. When the upper and the lower

crack surfaces move apart like two rigid surface, the area ahead of the crack tip

is stretched, and the added stretch gives more opening displacement at the crack
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tip. During the process of crack tip opening stretching, the crack profile
maintains its original shape, corresponding to that at the incipience of general
yielding. Let SCOD(r) be the difference of the crack opening displacement at r,
cod{r), and the crack tip opening displacement at the incipience of general yield-
ing. Once beyond general yielding, the SCOD(r) remains unchanged. The total

CoD(r) beyond general yielding is the sum of SCCD(r) and CTOD, i.e.,

cod(r) sCOD(r) + CTOD
or (13)

CTOD = coD(r) - 5COD(r)

5COD(r) can be calculated by the finite element method. CTOD can be obtained from

the measured COD{r) and the calculated 8COD(r). CTOD is related to K by Eq. (12).
Equation (13) is applicable to center cracked panels. For the compact ten-

sion specimens, an additional term should be added to account for the rigid body

rotation about a "plastic-hinge”. The rotational effects remain to be investigated.

The finite element method, based on the Dugdale model, can be used to calcu-
late 8COD(r) for plates of arbitrary shape. Hayes and William[21] have used the
finite element method to calculate COD and CTOD for the central crack, double-
edgé crack, single-edge crack, and circumferential crack specimens under various
load levels up to general yielding. Basically, Hayes and Williams's method
balances the stress intensity factors contributed from the remote applied stress
and the stresses in the strip yielding zone.

Equation (12) has been indiscriminantly used to relate CTOD to K without the
consideration of the thickness effect. The equation is applicable when n > 18,

For specimens of lower n-values, £q. (12) needs to be modified by a parameter

which is thickness dependent.
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There exist several methods to measure CTOD, such as the load-1ine mouth
opening and plastic hinge method, the linear extrapolation of a crack opening pro-
file from an optical photograph, rubber infiltration, etc. None of these methods
can avoid some degree of arbitrariness, either in the relation between the far
field measurement and the near tip deformation behavior or in the relation between
the measured quantity and the inferred K-value. Perhaps some of the earlier dif-
ficulties in applying CTOD to fracture toughness measurements arise from such
arbitrariness. The method and the procedure outlined in this study will help
to avoid these difficulties.

IV. SUMMARY AND CONCLUSIONS

1. The stresses and strains in a cracked solid are in a complicated 3-dimensional
state. There are three 2-dimensional 1imiting cases: plane strain, plane stress,
and the Dugdale strip yielding case. The parameter n = (K/oy)z/t determines which
one of these three limiting cases is predominant. The characteristic crack tip
fields of these three cases differ vastly.

2. Fracture process is controlled by the stresses and strains at the

crack tip. Because of the difference in the characteristics of the crack

tip field, there exist various regimes of fracture correlations between a small
laboratory sample in general yielding and a large engineering structure in small
scale yielding.

3. Crack tip strip necking has been observed, when n is 48, At n = 48, the
measured relative opening displacements between the upper and the lower boundaries
of the strip necking zone, inciuding that at the crack tip, agree well with the
calculated values according to the Dugdale strip yielding model. Furthermore

the relative opening displacement in the strip necking zone is equal to the thick-
ness contraction. According to the Dugdale model,

K = {€o, crop) /2 - (Eo, at)'/2

where At is thickness contraction.

o T STy wem— ——————
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4. When n is 18, crack tip necking zone begins to form, and the measured crack
opening displacements agree extremely well with the calculations based on the
Dugdale strip yielding model. Once general yielding is reached, the upper and
the lower crack surfaces move apart as two rigid surfaces. The difference be-
tween the crack opening displacement at a distance r, COD(r), and crack tip open-
ing displacement, CTOD, remains unchanged once beyond general yielding.
scop{r) = COD(r) - CTOD

8COD(r) can be calculated by the finite element method. CTOD can be obtained
from the calculated 8COD(r) and the measured COD(r); and CTOD is related to K.

Thus for n between 18 and 43, we have
1/2

K (EcY CT0D)

{Eo, [coD(r) - scon(r)]}/2 .

5. When rp is several times larger than the plate thickness but it is not large
enough to form the crack tip necking zone, a characteristic piane stress crack
tip field exists. For double-edge-notched and single-edge-nmatiched samples, there
is a unique correspondence between the crack tip field . s small ;.conle in gen-
eral yielding and the crack tip field in a very large sample in small scale yield-
ing. Therefore the equivalent K-value of such a small sample can be established.
Furthermore, the near tip stresses and strains are related to the applied stress
and the imposed elongation. Therefore the fracture toughnesses of such small
samples can be measured conveniently for n between 10 and 18.

In summary, as shown in Fig. 15, when n is more than 48, thickness contrac-
tion can be used to measure K; when n is between 18 and 48, the COD can be used
to measure equivalent K; and when n is between 10 and 18, the correspondence be-
tween the crack tip fields in small scale yielding and in general yielding can be
used to measure the fracture toughness of a ductile and tough material. However,

the demarcations between the various regions are tentative. Additional studies

are needed to establish them firmly,

i
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FIGURE CAPTIONS
FIGURE 1.  COMPARISON OF CALCULATED €y VERSUS EXPERIMENTAL MEASUREMENTS, DOUBLE-
EDGE-NOTCHED PLATE, 2024-0 ALUMINUM ALLOY. A = ELONGATION OF GAGE

a4

LENGTH, GL. E=6.9x 10" MPa (10% ksi).

Sy N W a GL
Batch MPa  ksi mm  Inches mm Inches mm Inches
A 47.6 6.9 0.31 104 4.1 19.4 0.764 168 6.625
B 69 10 0.22 208 8 40.6 1.6 356 14.0

C 50 7.26 0.315 102 4 20.3 0.8 178 7.0
FIGURE 2.  THE MEASURED AND CALCULATED LOAD-ELONGATION CURVES
A = AREA, W = WIDTH.
FIGURE 3.  SCHEMATIC PLOT OF STRESS AND STRAIN DISTRIBUTIONS AHEAD OF A CRACK
IN LOGARITHMIC SCALE.
FIGURE 4.  SLIP LINE FIELDS FOR FULLY PLASTIC TENSION MODE . PLANE STRAIN.
FIGURE 5.  ELEMENT LAYOUT FOR SMALL SCALE YIELDING CALCULATIONS,
FIGURE 6.  NORMALIZED PLOTS OF CRACK LINE STRESSES AND STRAINS.
FIGURE 7.  CORRELATIONS OF Iyy* Eyy G, and P BETWEEN THE SMALL SCALE YIELDING
AND DOUBLE-EDGE-NOTCHED SPECIMEN LOADED INTO THE REGION OF GENERAL
YIELDING.
FIGURE 8.  CORRELATIONS OF Oyy* Eyy’ G AND &P BETWEEN THE SMALL SCALE YIELDING

yy
AND SINGLE-EDGE-NOTCHED SPECIMEN LOADED INTO THE REGIUN OF GENERAL

YIELDING.
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L FIGURE 9. NEAR FIELD PARAMETER, Oyycyy VERSUS FAR FIELD PARAMETER, o A

FIGURE 10. CALCULATED STRESS INTENSITY FACTOR AT VARIOUS LOADING LEVELS.

FIGURE 11, CHEMATIC DIAGRAM OF CRACK TIP NECKING.

. " FIGURE 12. MOIRE PATTERN OF A STEEL SPECIMEN: APPLIED STRESS 55 ksi; 0.2%
OFFSET YIELD STRESS 91 ksi: YOUNG'S MODULUS 32 «x 106 psi; 0.012

INCHES THICK: 6 INCHES WIDE: SLOT LENGTH 1 INCH: PITCH OF MOIRE

GRILLE 1/13,400 INCHES.

FIGURE 13. THICKNESS EFFECTS ON COD. DASHED LINE - DUGDALE MODEL. SOLID LINE - ELASTIC MO§
FIGURE 14, COD IN MAGNESIUM [From A. S. Kobayashi et. al, Ref. 20]. 1
FIGURE 15. THICKNESS EFFECTS ON THE CHOICE OF FRACTURE CRITERIA.
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ABSTRACT

Fatigue crack growth is caused by crack tip cyclic plastic deformation.
Both the macro-analysis and the moire strain measurements indicate that crack
tip cyclic deformation is a function of AK, R-ratio, and plate thickness, t.
Therefore, da/dN must be dependent on these three parameters.

The cyclic crack tip unzipping shear decohesion process is described, and
the unzipping fatigue crack growth process is modelled by the finite element
method. The calculated crack growth rate agrees well with the experimental
measurements. The unzipping model is used to study the growth of micro-cracks
and the fatigue crack growth in a ferritic-martensitic two phase steel.

A model of fatigue crack growth threshold is proposed. The proposed model
agrees with the observed crack growth behavior in the near threshold region. A
quantitative analysis of fatigue limit and microstructure is made. The analysis
provides a quantitative approach to optimize the microstructure for high fatigue
strength.

INTRODUCTION

Plastic deformation in crystalline materials takes place in discrete paral-
lel planes separated by crystal layers which are practically "deformation free"
[1]. This deformation process may occur at a crack tip and cause a crack to grow
under cyclic loading.

The use of a single parameter AK to characterize crack tip cyclic plastic
deformation has been analyzed [2,3]. Moiré strain measurements [4] showed that
AK does characterize both the cyclic strain range and the total accumulated
strain in the crack tip region. The capability of AK to characterize crack tip
deformation is the basis for the use of AK to correlate fatigue crack growth
rate. The analysis and the moiré strain measurements are reviewed briefly.

Alternating shear at two intersecting conjugate slip planes, crack tip
blunting, and shear decohesion have been proposed as the mechanisms for fatigue
crack growth [5,6,7,8]. The unzipping model of fatigue crack growth based on
crack tip shear decohesion process was modelled by the finite element method [9].




The calculated crack growth rate compares favorably with crack growth rate and
striation spacing measurements. The unzipping model was extended to study the
growth of micro-cracks and the fatigue crack growth in a ferritic-martensitic
two phase steel [10,11].

When the applied AK is low enough, a crack stops propagating.
&K for crack growth threshold. Based on the unzipping shear decohesion process,
a model for AK. is proposed. The proposed model agrees with the crack growth
behavior in the near threshold region.

AK¢y, 1s the

A quantitative analysis on the fatigue limit of a two-phase ferritic-marten-
sitic steel is made. The fatigue limit of such steel could be controlled by the
crack non-nucleation or crack non-propagation in the ferrite or in the martensite;
the fatigue limit could be controlled by the constraint of the hard martensite
on the crack tip deformation in the ferrite; it can also be controlled by the
cracking resistance of the martensite. The relation between the dominant con-
trolling process and the ferrite domain size is analyzed.

CRACK TIP DEFORMATION -~ AK CHARACTERIZATION [2,3]

During the last twenty years, linear elastic fracture mechanics has been
applied extensively to fatigue crack growth. Linear elastic fracture mechanics
is based on the characteristic crack tip stress field in a linear elastic solid.
The elastic stresses, strains, and displacements for a Mode I crack are

K
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where r, 0 are polar coordinates; and gi , %i
&poneﬂts. K; is the stress intemsity

of the corresponding 0j4, €1j, and uj €0
factor while v is Poisson's ratio.

These relations are valid only in a region very close to a crack tip, and
we call this region the characteristic elastic crack field zone, ro. Outside
this region, the approximations of these relations deteriorate rapidly. Within
re, the stresses increase rapidly as r approaches the tip. The high stresses
cause plastic deformation within a small region close to the tip in a metallic
specimen. The plastic region is defined by rp(e).

Figure 1 shows two samples that have different geometry and forms of load-
ing. However, these two samples are loaded to the same K-value. Without plas-~
tic deformation, the elastic stresses within re's of these two samples are the
same. With plastic deformation, if ry; << r,, the stresses on the outer bound-
aries of rg's are not perturbed much gy the stress relaxation within r 's, and
the stresses on the boundaries of these two ry's are essentially given by the
elastic solution.

Figure 2 shows the two regions of re's as free bodies of the same shape and
If the condition of r, << ro is satisfied, their boundary stresses must
be the same since K; = Kj. gherefore, the stresses and strains at the same point
P(r,0) in these two free bodies also must be the same. Furthermore, if the same
cyclic loading (in terms of K), are applied to these two samples, the fluctua-
tions of the boundary stresses on these two free bodies are the same, and the
cyclic stresses and strains at the same point P(r,6) within these two regions of

size.
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Fig. 1. Two different specimen geometry, two different
forms of loading, but Kl = Kz.

Fig. 2. Two free bodies of same shape and size. With
same boundary stresses.

re must be the same even within r,. If the same fluctuation of K is applied to
these two samples (provider’ the ratio rp/a is not excessively large), the cyclic
stresses and strains experienced by these two material points at P(r,0) are the
same, even if the crack tip advances. In conclusion, the fluctuation of K char-
acterizes the cyclic stresses and strains in the near tip region of a propagat-
ing crack, even within r,. This characterization is invariant to the planar geo-
metry of a specimen if tge condition of small scale yielding, SSY (i.e. r_ << rg)
is satisfied. P

When a crack propagates under a constant AK (or under a slowly changing AK)
at a given R-ratio, the value of AK alone will be able to characterize the cyclic
stresses and strains in the near tip region. If the cyclic stresses and strains
experienced by the materials control the crack growth rate, then one must con-

clude that




da/dN = f(AK) (2)

The stresses and strains are also affected by specimen thickness, t, and R-ratio.
The functional relationship between da/dN and AK is affected by environment, cy-
clic frequency, v, and testing temperature, T. Consequently, for a given mater-
ial, one may write

da/dN = f(AK,R,t,v,T, environment) (3)

This relation is true if r; << r, . r, is linearly proportional to speci-
men size. Therefore, Equation %3) can always be made true, in principle, by
using large enough samples. The SSY condition is the sufficient rather than the
necessary condition. The necessary condition for Equation (3) is that a sample
is large enough so that K characterizes the specific stress or strain component
controlling the crack growth process.

The capability of AK to characterize cyclic strains in the near tip region
was investigated by the moire method and the results are given in the next
section.

CYCLIC DEFORMATION IN CRACK TIP REGION [4]

The above analysis shows that under a constant AK (or slowly changing AK)
fatigue loading, crack tip stresses and strains are characterized by AK. Be-
sides AK, the stresses and strains are also affected by specimen thickness and
R-ratio. Within the plastic zone in a thick specimen in the state of plane

strain, the ratio between the maximum tensile stress and flow stress, (Cmaxkklow)

is approximately 2.45 under a static loading; and the ratio is nearly 1 for the
state of plane stress. The strains in these two different states must vary
accordingly.

The cyclic deformations in the crack tip regions at various K-levels were
measured with the moiré technique [4]. Measurements were made on 2024-T351
aluminum center cracked plate specimens with a thickness of 6.4 mm and 1.28 mm
(0.25" and 0.05") and R-ratios of 1/3 and 1/10. The static and cyclic yield
strengths were 360 and 460 MPa (52 and 67 ksi) respectively, and the cyclic
strain hardening exponent was 0.13.

As a fatigue crack propagates toward a material point far ahead of the tip,
the cyclic strain at the point is, at first, elastic. As the tip gets closer to
the point, the material at the point experiences plastic deformation during the
loading half cycle, but the deformation is still elastic during the unloading
half cycle. The plastic strain accumulates monotonically cycle after cycle as
the tip propagates toward the point. As the crack tip moves even closer, plas-
tic deformation takes place during the unloading as well as the loading half
cycles, and the plastic deformation becomes cyclic. In a fatigue loading, there
are monotonic plastic zone rp(s) and cyclic plastic zone, rp(c). The cyclic

plastic zone is embedded within the monotonic plastic zone. Both the accumulated
total strain, €pax’ and the cyclic strain range, Ac, along the crack line were

measured. From these strain measurements, the monotonic and cyclic plastic
zones were determined [4].

The moiré patterns were obtained by the double exposure method. The speci-
men surface was coated with a photo-resist coating. The coating was first ex-
posed to a high density moiré grille of 13,000 lpi, before the pre-cracked sample
was loaded. The grille lines were parallel to the crack line to measure the dis-
placement uy. The second exposure was made at Kmax when the crack increment was

long enough so that a "steady state" of cyclic plastic deformation at the crack
tip region was realized. The moirée fringe pattern thus formed gave the total
accumulated strain, emax' After the picture of the fringe pattern was taken, the

pattern was immediately removed, and a new photo-resist coating was applied to




measure cyclic strain range, Ac. Two exposures were made in succession, one

each at xhin and Khax’ The fringe pattern gave Ae.

The data of € ax and Ac for the 1/4" thick specimens at R=1/10 are given in

Figures 3 and 4. Additional data are given in Reference [4]. The data at a
given AK- or Kmax_level in a logarithmic plot can be correlated very well by a

straight line. For the € nax data, the slopes of the lines decrease from -0.5 at
low K levels to -0.8 at high K levels.
max max "

Unfortunately, all the Ac measurements were made outside the cyclic plastic
zone. The moire pattern lost its definition when r < 0.03". However, all of
the Ac measurements were made within the monotonic plastic zone. The lines in
the log Ae vs log r plot have a slope of -1/2, which agrees with the elastic
calculation. If both oxx and ny are taken into account,

syy -1 - v)oyy/E, cyy(r,O) = K/Y2nr . The measured Aeyy can be written as
- - p1-V) &K
Aeyy(measured) BAeyy(theoretical) 8 E ST (4)

The values of B are close to 1, and they are tabulated in Table I. The maximum
deviation from the theoretical values is 357%. For a given combination of t and

R, B is a constant.

TABLE I
¢ R g = 2Zmeasured
theoretical
1.27 mm (0.05") 1/10 1.06
1.27 mm (0.05") 1/3 1.18
6.35 mm (0.25") 1/10 1.25
6.35 mm (0.25") 1/3 1.35

The measured Ae in the thin specimens is less than that in the thick speci-
and 18 caused by crack closure in the thin specimens as will be explained later.
Ac 1s higher at a higher R-ratio. The higher Ae 1is likely caused by cyclic
creep, which is caused by the positive mean stress within rp(c).

The cyclic plastic zone size r ( can be obtained by extrapolating the
measured Ac line to a value of 9.3 & Eb", which corresponds to 2¢ "
938 MPa (134 ksi) with the Mises yield criterion. The monotonic pIas%ic zone
can be determined in a like manner. The results are shown in Figures 5 and 6.
The dashed lines in these two figures are the calculated lines based on Irwin's
plastic zone size formula. The larger measured plastic zone sizes in comparison
with the calculated ones reflect the high measured strains.

Recognizing 2°Y(C) = yield stress range, at the initiation of the cyclic

plastic deformation, we have,

- (1-v) - a2=v) AK
Aeyy(Y) T 2% (c) 8% -—-——m (5)
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vith AK? = EAJ 8

2 2 2

AK 8 EAJ '
T - G/ = ———— - (6)
p(C) 2n 2°Y(C) 2"(2°v(c))2

Since all the At lines are parallel and have the same slope of -1/2, the
plot of all of the data of Ac vs r/rp(c) fall on a single line. This is shown

in Figure 7 for the 6.35 mm thick specimen at R = 1/10.

0.02
2024-T385 A
, A=4": 025
R= 1210
0.0t —
v [
-
& T
i N
b
z -
<
@
-
) —
1
e
3
O }
S
[ ]
0.001 : ! | S B \IIL !
o7 1 10 ' 40

f/lp( c,

Fig. 7. Strain versus r/rp(c) for 6.35 mm thick specimens
at R = 1/10. Ref. [4b]

Similarly, the €pa
The €nax data lie within a narrow band. The empirical relation

. data are plottedagainstr/rp(c) in the same figure.

r m

correlates well with the data. Emax can also be written as

2 m
e  =al At ) (8)
max 27 ZOY(C) ZEY(C)r

which is similar to that given by Hutchinsen [12], Rice and Rosengren [13]. For
t = 6.35 mm and R = 1/10, the data in Figure 7 give m = 0.8 and a = 0.0045. Ad-
ditional data are shown in Figures 8, 9, and 10 for theother combination of t and
R. € - is the highest for the thin specimens at the high R-rato of 1/3, and the

lowest for the thick specimens at the low R-ratio of 1/10. The other two sets

of data are in between. The Moiré method measures the deformation on the surface
of a specimen. The plastic deformation on the surface of a thick specir=n is
constrained by the interior of the specimen, where the deformation is in the
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state of plane strain. On the surface of a thin specimen, the constraint is ab-
sent, and it is "free" to deform. Therefore €nax's in thin specimens are higher -11-

than those in thick specimens. The high measured € ax is also reflected in the
large rp(s) in Figure 6. n

Both cyclic creep and crack closure will affect the strains., At high R-
ratio, the mean stress in the plastic zone is positive; the positive mean stress
causes cyclic creep. Cyclic creep increases both Ac and € at the higher R-
ratio of 1/3 as shown in Table I and Figures 8, 9, and 10 08¥ 11.

The increase in €p,y is more pronounced in the thin specimens because of
the lack of the constraint by the interior plane strain zone. The material with-
in the plastic zone in thin specimens is stretched considerably more than that
in the thick specimens. During the unloading, the highly stretched zone will
cause crack closure and will reduce the effective AK. Therefore, Ac in a thin
specimen is less than that in a thick specimen as shown in Table I.

Figure 7 shows that all the Ae data fall on a single line, therefore, Ac
can be expressed in terms of rp(C)’ which is in turn related to AK. Hence, Ac

can be directly related to AK. The gp,x data fall within a narrow band (¢ 5%).
Therefore, Emax can also be expressed in terms of rp(c) and AK. At a given
thickness and at a given R-ratio, AK can characterize both Ae and €nax’
The €pax scatter bands for the other combinations of t and R are wider

(x 15%) as shown in Figures 8, 9, and 10. If the lines for the three high Kmax-
values are eliminated from Figures 8 and 9, the scatter band is reduced con-
siderably. The possible causes for data scatter include the thumb nail configu-
ration of the internal crack front, and the shift of the crack to the shear plane
at the high K, levels. The shift reduced plane strain constraint and caused

an increase in plastic strain.

The fatigue crack growth data in Figure 11 show that the crack growth rate
increases in the same order as the increase in Ae, that is in the order of R =
1/10, t = 1,27 mm; R=1/3, t = 1.25 mm; R = 1/10, t = 6.35 mm; and R = 1/3, t =
6.35 mm.

In conclusion: AK characterizes both Ac and €max in a crack tip region and

the cyclic strains are affected by both specimen thickness and R-ratio. Since
fatigue crack growth is closely related to plastic deformation, therefore da/dN
must be related to AK, t, and R.

THE UNZIPPING MODEL OF FATIGUE CRACK GROWTH

Orowan [5] has proposed the alternating shear rupture on two sets of inter-
secting slip planes as the ductile fracture mechanism. Subsequently, crack tip
bluntiag by shear decohesion has been proposed as the mechanism for fatigue stri-
ation formation and fatigue crack growth E6,7,8]. Neumann [8] has directly ob-
served alternating shear rupture, which causes crack tip opening and crack ,
growth in copper single crystals under cyclic loading.

Plastic deformation in single crystals is not continuous as has been assumed
in continuum mechanics. Rather, it concentrates in discrete parallel slip bands
separated by crystal layers, which are essentially elastic as shown in Figure 12.
The same deformation processes may also occur at the crack tip in a crystalline
solid. The slip bands in a single crystal coincide with the slip planes of the
crystal. The deformation in the slip band of a polycrystal are the result of a |
number of active slip systems of each crystal in a band, and the slip bands co- '
incide with the plane of maximum shear stresses. Figure 13 shows two sets of
parallel intersecting slip bands at a crack tip. As the applied stress increases,
shear decohesion takes place alternately on slip bands 1, 2, 3, and 4, in

A
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Fig. 12. Development of laminar slip bands with increasing defor-
matio?,](a) and (b), and laminae at high deformation (c),
Ref. [1]. )
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Fig. 13. The unzipping model for crack opening and advance.

succession. The elastic slabs between the neighboring slip bands move away from
the crack tip, one at a t.iume, like the teeth of a zipper during the unzipping
process. As the slabs move, the crack tip opens up, and the crack moves forward.

Kuo and Liu [9] have modelled the crack tip unzipping process using the
finite element method. A cracked circular solid is loaded with boundary dis-
placement exitation as shown in Figure l4a. The solid is loaded incrementally
to a predetermined K~level. The stresses and strains are calculated, and the
plastic zone, r,, is delineated. At the K-level, a slip band such as AB is
chosen, Figure Eéb. Each of the nodal points along AB is branched into two. A
small load increment, 6K is then applied. During the increment, the branched
nodal points are allowed to slide freely along AB, but they are not allowed to
move away from AB. In the meantime, plastic deformation iz allowed to occur to
all the elements during 6K. The crack increment caused by the unzipping process,
GA'uz' during the increment 8K is calculated.

According to the dimensional analysis and the results of the past studies,
the unzipping crack increment must be

2
2, K
Aauz C(1-v°) By (9)

wvhere C is an unknown proportional constant; v is the Poisson's ratio; E is the
Young's modulus;and 0, is the yleld stress. Differentiating both sides, one

obtains

Y
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Fig. l4a. Finite element configu- Fig. 1l4b. Plastic zone and decohesion
ration, 8 = 459, plane.

2, 2K8K
o (10)

GAauz = C(1-v7) i

The values of K, 8K, and §Aa from the finite element calculation enable us to
evaluate C. Thus we have

_ 2, K©_0.04J
ba = 0.04 (1-v°) By " o, (11)

where J = (1 ~ v2)K2/E. Yang [14] repeated the calculations for a cracked cir-
cular solid and, in addition, has made a calculation for a compact tension speci-
men. His results are essentially the same

Under a fatigue load, as the applied load increases from Kmin’ the stresses
at any point within the cyclic plastic zone, rp(C) increase. The plastic defor~-

mation at the point takes place when the effective stress increases by the

amount of 20 instead of oy as in the static case. Therefore, one can justi-
fiably use Eq&azion (11) to calculate fatigue crack growth rate with the substi-
tutions of da/dN, AK, and 2 GY(C) for Aauz, K, and OY respectively. After these

substitutions, one obtains

2 2
dN = 0.02 (1-v2) EGAK = 0.02 O—A"—— ~ 0.018 ?:L (12)
Y(C) 1(c) Y(C)

Bates and Clark [15] related fatigue striation spacing with AK for a number
of materials. Taking striation spacing as da/dN, we have

da

2 - <——> (13)

From the available literature, Hahn et al. [16] have correlated da/dN with
AK for a number of steels. They found that

2
8% (14)

Pook and Frost [17] have found a similar relation

2

da _ 9 0K
- ;(E ) (15)



Barsom [18] tested the fatigue crack growth of a number of steels. He found

~14-

%% = 0.66 x 10°8 4k?*2% (inches/cycle) (16)

According to Bates and Clark, Hahn et al., and Pook and Frost, da/dN can be

written as
2
da AK
da _ () an
“’ With oy o /E = 1/400 and E = 207 x 10% MPa = 30 x 10% psi for steel, the empiri-

cal equations and the theoretical equation are plotted in Figure 15. The agree-
ment is very good.
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Fig. 15. Comparison of the empirical fatigue crack growth
rates in steels with that predicted by the un-

zipping model. Ref. [11]

The measured crack growth data of various steels do not seem to vary much.
It is known that the cyclic yield strengths of steels do not vary much because
the annealed soft steels usually cyclically harden, and hardened steels usually
cyclically soften. The value of the ratio OY(C)/E does not vary much from one
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steel to another. If their crack growth is controlled by the deformation pro-
cess, their growth rates should not vary much either. =15~

Kobayashi et al. [19] measured the striation spacings of a variety of

metals and alloys. The measured striation spacings are related to AJ/Oflow as
shown in Figure 16, For a number of materials, 910w <2 OY(C) < 2 Gflow' Two

10°

STRIATION SPACING (S){mm)

V Cu ALLOY
o A Ti ALLOY
; 0 Al ALLOY
sl | !
10 3 2 .
10 [} 10
J/ crﬂow(mm)

Fig. 16. Comparison of striation spacing with that prediced
. by the unzipping model. Ref. 20]

lines in Figure 16 are calculated according to Equation (12) with 2 OY(C) "% 1ow

for one line and © for the other. Again the agreement is very good.

=g
Y(C) flow
More detailed discussions of the modelling and the comparison with the experi-
mental results are given by Kuo and Liu [9], Liu, Yang, and Kuo [3], and Liu and
Kobayashi [20].

In the unzipping model, the crack growth rate is much less than that given
by the Dugdale strip yielding model. As a crack tip is deformed and blunted
during a rising load, the crack tip opens up and the tip grows forward. However,
only part of the blunting crack opening displacement contributes to crack growth.

Figure 17a shows slip band A at a crack tip. As K increases, the shear de-
cohesion at A causes crack tip blunting and crack growth as shown in Figure 17b.
As the crack tip grows during a rising K, the slip band A is left behind. The
slip band A will continue to be active. Once behind the crack tip, the shear
decohesion at A will blunt the crack tip but will not contribute toward crack
growth as shown in Figure l7c.

Let 6K, = (K} - 0); 6K,y = (Ky = K5 eeons 0K = (K - K _1). Along the




(S ——

-16-

(a)
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-

(c)

Fig. 17. Shear decohesion, crack tip blunting, and crack
growth.

crack path, n slip bands will participate in the unzipping process. After 6Rp,
the crack tip reaches the slip band (P +1). During each of the GKn increments,
shear decohesions take place on all of those slip bands at or behind the crack
tip. All of these shear displacements will blunt the crack tip, but only the
opening displacement on the slip band at the crack tip contributes to crack

growth, Let GCTODmp be the crack tip opening displacement, which takes place on
slip band m during the increment GKp. SCTODmp are tabulated below.

Slip Slip Slip
Band 1 Band 2 . . . . . . . Band n
6K1 BCTOD11
('5!(2 5CTOD12 ('SCTOD22
f 6Kn SCTODln GCTODZn. « e e e e GCTODnn

The crack growth is the sum of the diagonal terms. The crack blunting and
Dugdale CTOD include not only the off-diagonal terms but also the shear deforma-
tion along the crack flank which is behind the original crack tip at the be-
ginning of a loading cycle. Therefore, the crack growth rate calculated with
the Dugdale model is nearly ten times greater than the experimental values.

In the calculation, the slip step size, GAauz, is assumed to be very small.
The model is valid even if the slip step is equal to one atomic spacing.
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A MODEL FOR CRACK GROWTH THRESHOLD, AKth -17-

Slip bands can easily be seen on the surface of a plastically deformed crys-
tal. Intense plastic deformation takes place on certain parallel slip planes,
while the layers of the crystal between these active slip planes remain practi-
cally undeformed, as illustrated in Figure }2. In aluminum, the thickness of
the undeformed crystal layer, is about 200 A [1]. Let the minimum thickness of
the crystal layer be ﬂm. When the unzipping crack increment Aauz is less than

lm, the applied load will reverse the slip direction before the crack front

reaches the intersecting conjugate slip plane B as shown by the dashed lire,
position 2 in Figure 18b. Upon unloading, however, the crack tip

ya\
\3/ Time

(o) (d) (c)

Fig. 18. Cyclic creep shear decohesion when Aauz < £m. Successive positions

of the upper crack surface during a stress cycle are indicated.
The additional shear decohesion between positions 2 and 4 is caused
by cyclic creep.

will not return to its original location. The mean shear stress on the slip

plane, (Tmax - Tmin)/Z lies in the direction to open the crack tip. During the

next loading cycle, the mean shear stress will cause "cyclic creep" slip,moving
the crack tip a little closer to the conjugate slip plane B, position 4 in
Figure 18b. Additional shear decohesion between positions 2 and 4 is caused by
cyclic creep. This cyclic creep slip motion will continue during the subsequent
loading cycles, until the crack front reaches the slip plane 8. Then, the un-
zipping process will switch to the conjugate plane. A large number of cycles is
needed to propagate the crack by the amount of {;. Therefore, when crack growth
rate is less than {y, the growth rate decreases drastically with AK. This is
knows commonly. This crack growth rate transition takes place at da/dN % £ and
at 0K = AKt' o

Below the transition point, the size of the crack growth "step" remains con-
stant, equal to f;. But it takes a large number of cycles to propagate a crack
through £y. Hertzberg and Mills [21] have observed constant crack growth step
in aluminum, stainless steel, brass, and Ni-Cb eutectic composite. Constant
growth step size were observed over two decade range of crack growth rates.
Similar observations have been made by Gell and Leverant [22].

The sharp decrease in crack growth rate as AK decreases, often occur in the
neighborhood of 200 X/cycle, = 10-° inches/cycle), a value close to the observed
for aluminum. The crack growth step size observed by Hertzberg and Mills is
likely to be 2{; consisting of one step on one slip plane and another on the con-

jugate slip plane.

The transition point, AKt’ is given by

L = 0.018 —= (18)
m Eoy(c)

ettt duintteiinsishaliisatiniesltondion s,
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When cyclic creep takes place, the mean stress is relaxed. Whe the mean 18-

stress is relaxed, two effects will increase shear decohesion. First, as the
mean stress relaxes to zero, 4 vart of the elastic strain at Kmax is convert-~

ed to plastic strain and shear decohesion. Second, when the stress relaxation
takes place, the flow stress at KMax is reduced. This reduction in flow stress

will increase the plastic zone size and increase plastic deformation and shear
decohesion. A rigorous evaluation of the stress relaxation and cyclic creep
shear decohesion is difficult especially if the discrete deformation mechanism
is taken into consideration. However, the end results of these two effects can
be considered as the reduction of OY(C) in the calculation of Aauz'

When stress relaxation takes place, the flowstress at K decreases. Fig-

ure 19 illustrates the stress relaxation at a point cycled within a fixed strain

o 2
4 |
6
Stabilized
- Hysteresis
Loop
! ——
3
5
. Fig. 19. Relaxation of mean stress and stablized hysteresis

loop. Successive stress reversals are numbered.

range, Ae. The O pax decreases cycle by cycle until the mean stress is relaxed to
zero and omax is nearly the half of the value at the beginning of the cycle load-

ing. Figure 19 illustrates the stress relaxation where plastic deformation takes
place during both loading and unloading half cycles. In this case, the rate of
relaxation is rather fast. However, the stress relaxation within the cyclic
plastic zone 1s coupled to the slow relaxation within the monotonic plastic zone,
vhere relaxation takes place only when the stress deviates slightly from the elas-
tic deformation during the re-loading half cycle. The rate of unzipping cyclic
creep shear decohesion is directly related to the overall relaxation rate. When
the mean stress is relaxed to zero, the flow stress is reduced approximately by
half. Thus we have

2
AK
da = 0.018 E(oy(c) 2) (19)

When the cyclic creep shear decohesion is taken into consideration, 1if A‘uz is




still less than £, the crack tip will move back and forth between two neighbor- _jq_
ing conjugate slip bands, and the crack will remain dormant. Therefore AK be-

comes Axth' Combining Equations (18) and (19), we have

(20)

AR . = 0.7 Al(t

th

R

A (21)

th 0.5 AJt

Figure 20 shows the data of A533B steel [23]. The values of AJ and AJ
are 18 in—lb/m and 36 in-lb/m , and the ratio AJ /AJ

tion (20) 108 T ™
I I

is 0.5 as given in Equa-
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Fig. 20.

The cyclic creep shear decohesion model for AK , takes the deformation pro-
cess into consideration. It is well known that AK . is environmentally sensi-
tive. The chemical effects must be superimposed Snto the deformation mechan-
ism. The details remain to be studied. However, the relation AKth =0.7 Al(t

seems valid for a number of materials tested in detrimental chemical environ-
ments.

THE GROWTH OF FATIGUE MICRO-CRACKS

When a crack is very small, the applied stress is often high. It is often
close to or even higher than the yield stress of the material, in order to keep
AK above AKth. In this situation, the linear elastic fracture mechanics is no

longer applicable. Yang and Liu [10] have used the finite element method to
model the unzipping crack growth process in a single edge-cracked plate with an
applied stress up to the yield stress. The unzipping crack increment is given by

K dAa z
Aa = Y2 4x (22)
[]

uz dK

At various K-levels, the quantity dAauz/dK was calculated, and Anu' was obtained

by numerical integration, The calculated crack growth rate is




42 - (0.018 + 0.020 22— _2pRa (23)
Y(C) Y(C)

where A0 is the applied stress range and AKappa is the apparent AK value obtained

from the linear elastic solutions. In the case of small scale yielding, the
ratio AG/OY(C) approaches zero, and Equation (23) is reduced to Equation (12).
Axeff is the AK-value corresponding to Aauz in the small scale yielding case.
Combining Equations (12 and 23), we have

2 A

J
eff Ao
A7 =1+ 1,11 =% (24)

appa appa % (c)

(AKeff )
K

In the intermediate crack growth rate region, Aauz corresponds directly to
da/dN. In the lower AK region near the threshold, da/dN is much less than Aauz’

because of the discrete nature of the crack growth process. However, in this re-
gion, we can use Aauz as a physical parameter that characterizes the crack tip

shear decohesion process as illustrated in Figure 15. This is analogous to the
use of elastic AK to characterize crack tip stress and strains even if plastic
deformation takes place.

When a nucleated micro-crack is at the threshold of crack growth, AKeff be-
comes AKth’ and the applied stress amplitude (A0/2) becomes the endurance limit,
O AKth is related to uz(th) by Equation (12). Aauz(th) is used here as a
physical parameter that characterizes the shear decohesion process at a crack tip
for crack growth threshold. With AKappa = 1.1 Aovra for a single-edge-cracked

plate and "a" as the crack nucleus size, a,, we have

Aa o o N 2
uz(th) . X (0.09 + 0.20 —°—) (=) (25)

3 Yy %Y(c)

Equation (25) relates endurance limit to crack nucleus size, a_ and Aa
n uz (th).

The crack nucleus size a, is dictated by the nucleation process. For example, if
a fatigue crack is nucleated by an inclusion particle, a, must be related to the
size of the particle.

FATIGUE CRACK GROWTH IN A FERRITIC-MARTENSITIC TWO PHASE STEEL

The fatigue crack growth behaviours of martensitic-ferritic steel have been
studied [24,25,26,27]. Fatigue cracks in such steels are often nucleated in the
soft ferrite region. If the applied stress is high enough, the nucleated cracks
will propagate across the martensite to the final failure.

Yang and Liu [11] analyzed the unzipping crack growth process by using the
finite element method. The two phase structure is simulated by a thin layer
of ferrite over a martensite core as shown in Figure 21. The quantity,dAauz/dK

is calculated at various K-levels, and the crack growth rate is obtained by nu-
merical integration. The results of the calculation are shown in Figure (22}

for three stress ranges: AC = 690, 550, and 410 MPa (100, 80, and 60 ksi). The
unzipping crack increment, Aauz can be considered as the crack growth rate. It

can also be used as a physical parameter to characterize crack tip shear deco-
hesion process.

~-20-
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Fig. 21. Finite element mesh represents a two-phase
martensitic-ferritic steel.
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Fig. 22. Unzipping increment obtained by FEM simulation. [11]

At a given applied Ac-level, before the plastic zone touches the ferrite-
martensite interface boundary, Aauz increases with crack length a. When the

plastic zone reaches the interface, the hard martensite constrains the plastic

-21-




deformation in the ferrite.

Therefore, the rate of increase of Aa,, decreases.
A maxima is reached, and Aa,, decreases as the crack tip approaches the inter-

| -

-22~

face. This variation of the calculated Aa,, agrees with the crack growth data
in Figure 23. The growth rate increases initially. However, the growth rate
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Fig. 23, Fatigue crack growth in a {erritic-martensitic steel.

Ref. [23]

decreases as the crack tip approaches the interface. If the applied stress is
low, and AKeff is below AKth’ a crack may even be stopped within the ferrite re-

AK . is directly related to Aauz(th)' Therefore, the threshold condition

th
can also be characterized by Aauz(th)' The qualitative agreement between the

gion.

calculation and the experiment is very good. An improved calculation, using the
actual material properties of the ferrite and the martensite, is needed for

quantitative comparisons.
A QUANTITATIVE ANALYSIS OF MICRO~STRUCTURE AND FATIGUE LIMIT

In order to have fatigue failure in a two phase steel, a crack has to be
nuc 'eated, and the applied stress has to exceed the threshold for the propaga-
tion of the nucleated micro-crack. The crack nucleus in the soft ferrite has to
overcome the constraint of the hard martensite; the crack has to penetrate the
ferrite-martensite interface. Once in the martensite, the crack has to overcome
the cracking resistance, AKth’ of the martensite. The fatigue limit of thesteel

can be controlled by any one of these processes.

If the crack nucleus sizes, the crack nucleation stresses the thresholds
for fatigue crack growth in ferrite and martensite and the cyclic yield strengths
of ferrite and martensite, and in addition the thickness of the ferrite layer
are known. The fatigue limit of a two phase steel can be evaluated quantita-

tively.

First, consider the ferrite alone without the complication of the marten-
site. Let the stress for crack nucleation be 0,. The value of 0O, and a, will

give us the value of AKeff' Equation (24). If Axeff > Axth(ferrite) the crack

will continue to grow until failure. Therefore, the fatigue limit gy, is equal

to On, and Oe is controlled by the crack nucleation process.




1f AKeff at On is less than AK ,» the nucleated crack will stay

th(ferrite)

dormant, until the applied stress is increased. Therefore, oe > on and the fati-

gue limit is controlled by the crack propagation process.
The relation between crack nucleus size and fatigue limit is given by Equa-
tion (25). For the fe:rlte, we assume.oY(C) = 380 MPa, "OY(C)/E = 5,8 x 1077,
uz(th)= 28 x 107° mm, which corresponds to AKth = 11 MPa/m. The calcu-
lated relation between a, and O, is plotted in Figure 24. 0 changes from 200
to 300 MPa as a, varies from 0.085 to 0.03 mm,

and Aa
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Fig. 24. Crack nucleus size and fatigue limit.

The curve for the martensite is also plotted in the figure. For the mar-
tensite, we assume Aauz(th) = 23 x 10”% mm, which corresponds to AKth =

16.5 MPavm . Iy (cy = 1035 MPa, and E = 207,000 MPa. The fatigue limit of the

martensite changes from 600 tc 800 MPa as the crack nucleus size varies from
0.02 to 0.01 mm.

Once a crack grows into the martensite, if the applied AK is less than

Axth(martensite)’ the crack will stop propagating. The fatigue limit is thus

controlled by the cracking resistance of the martensite. With the crack length
equal to the ferrite layer thickness, the fatigue limit can be calculated with

Equation (12 or 25). For a single edge-cracked plate, and for AKth(martensite)-
16.5 MPa vm, the fatigue limit of the two phase steel is plotted in Figure 25.

The fatigue limits controlled by crack non-propagation in both martensite
and ferrite are also plotted in the figure. For the ferrite, J, = 300 MPa and
a, = 0.03 mm; and for the martensite, G = 800 MPa and ap = 0.0% mm.

When a crack tip grows close to the ferrite-martensite interface, the un-
zipping crack increment, Aauz decreases as shown in Figure 22, When the shear
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decohesion increment decreases below Aa for crack growth threshold, the

uz (th)
crack stops in the ferrite region as shown by the three specimens at the lower
stress levels in Figure 23.

The unzipping crack increment calculation as shown in Figure 22 could be
used to construct the relation between the fatigue limit of the steel and the
ferrite domain size, when martensite constraining is the controlling process.
However, a much finer finite element mesh is needed to establish the quantita-
tive relation. The line in Figure 25 is a schematic line.

Figure 25 gives an overall view of the fatigue limit of the steel. The
effects of crack nucleus size in the ferrite and the martensite, the crack
growth thresholds of the ferrite and the martensite, the stress necessary for
crack nucleation, and the ferrite domain size are all intimately related to the
fatigue limit. Such an analysis will help to optimize the micro-structures in
order to achieve the best fatigue strength.

This analysis illustrates the need to study the effects of large scale
yielding, the discrete nature of plastic deformation, and the material inhomo-
geneity in order to establish the quantitative relation between fatigue
strength and micro-structure.

DISCUSSIONS

Fatigue crack growth rate are often correlated with AK. If the specimen is
large enough and the applied load is low enough so that the condition of small
scale yielding prevails, AK is capable of characterizing crack tip stresses and
cyclic plastic strains. In other words, a given value of AK corresponds unique-
ly to a state of crack tip stresses and strains. If fatigue crack growth is the
result of cyclic stresses and cyclic strains at the tip, da/dN must be related
uniquely to AK. When the condition of small scale yielding is not met, a given
value of AK may result in a number of different states of crack tip stresses and
strains. Therefore, AK is no longer able to correlate with da/dN. 1In the case
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of large scale yielding, both Aauz and AJ are applicable. 25
OK and AJ are applicable as long as they can characterize crack tip stresses

and strains. Both AK and AJ are used as indirect parameters, which do not infer

any crack growth mechanisms. Nor the growth mechanism need to be known in order

to make such correlations.

In the case of the ferritic-martensitic two phase steel, neither AK nor AJ
is capable to characterize the crack tip stresses or strains. Therefore, neither
AK nor AJ can be used to correlate crack growth rate. Aauz is equal to da/dN;

therefore it is a direct parameter for crack growth correlation. A direct para-
meter, if known, is always preferred because it has a much wider range of appli-

cability.

Mechanical metallurgy studies the mechanical properties as affected by
microstructures. In the stress analysis, neither discrete plastic deformation
nor material inhomogeneity are taken into consideration. Fatigue crack growth
is the direct result of the discrete plastic deformation process. A quantita-
tive relation can be derived directly only if the discrete deformation process
is taken into consideration.

It is suggested to develop a new field of study of metallurgical mechamics,
which takes inhomogeneity, anisotropy, and the discrete deformation process in-
to account in the stress analysis. Then, use the calculated local stresses and
strains to correlate with microstructures. This paper 1llustrates such studies
on the effects of discrete slip process and the effects of material inhomogeniety
on crack growth. The recent developments in mechanics and metallurgical studies
set the stage for fruitful efforts and rapid progress in this area,

CONCLUSIONS

1. Cyclic plastic deformation at a crack tip may cause a fatigue crack to grow.
In the case of small scale yielding, AK is able to characterize the cyclic plas-
tic deformation at a crack tip, and AK can be used to correlate with da/dN suc-
cessfully.

2. The unzipping model of fatigue crack growth agrees with the measured crack
growth rate and striation spacing measurements.

3. The unzipping model is extended to micro-cracks and the ferritic-marten-
sitic two-phase steel.

4, MK and AJ are indirect parameters to correlate da/dN.

5. Neither AK nor AJ can be used to study the micro-structural effects on

da/dN. In this case, a direct parameter, such as Aauz is needed.

6. A model of crack growth threshold is proposed. The model predicts cor~
rectly the crack growth behavior in the near threshold region.

7. A quantitative analysis on microstructure and fatigue limit is illustrated.
Such quantitative analysis will help to optimize the micro-structures to achieve
high fatigue strength.
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