

I

I Report No. 4845 Bolt Beranek and Newman Inc.

ITable of Contents

I
1. Introduction

1.1 Notation... 1
2. Memory Architecture 3
2.1 Address Spaces 3
2.2 Address Transformation 9
2.3 Segments F8through FF........................... 16
2.4 Design Considerations........ 19
3. Subspace Zero 22
3.1 EPROM .. 23
3.2 Subspace Zero Main-Memory..... 069..69940 25
3.3 Segment Attributes Registers...................... 25
3.4 Address Space Attribute Registeroo....... 000..600.. 27
3.5 Real-Time Clock/Timer... 28
3.6 Block Transfer..........., 000 30
3.7 Post Event......................31
3.8 Dual Queue Functions............... 34
3.9 Various Kernel Functions.. 000..0 39
3.9.1 Enqueue, dequeue, push. remove......qq.......... 40
3.9.2 Clear-Then-XOR and Clear-Then-Add 41
3.10 Miso register , 0 42

3.11 Interprocessor Interrupts and Resets 43
3.12 Interrupt Control Register....................... 43
3.13 Microcode Version Number.. 46
3.14 Memory Control Registers. 47
3.15 PNC status register 48
3.16 Verify User Write-Access 49
3.17 Conclusion 000........................ 50

I - i

Report No. 4845 Bolt Beranek and Newman Inc.

FIGURES

Physical Address Format................................... 4
Virtual Address Format...... 7
Processor Node Diagram................... 8
Virtual to Physical Address Translation.................. 12
Control Registers....................... .*...** 24
SAR and ASAR Layout 26

- ii -

mry . -- :., . .

Report No. 4845 Bolt Beranek and Newman Inc.

1. Introduction

This Quarterly Technical Report, Number 12, describes

aspects of our work performed under Contract No. MDA903-78-C-0356

during the period from 1 May 1981 to 31 July 1981. This is the

twelfth in a series of Quarterly Technical Reports on the design

of a packet speech concentrator. the Voice Funnel.

The hardware design of the Processor Node has been described

previously in Quarterly Technical Reports Numbers 4 and 6. They

describe the memory architecture of the machine and the role

played by the Processor Node Controller (PNC). The PNC is a

microcoded bit-slice processor which implements many special

functions for the Processor Node. This report defines the

functions of the PNC and updates the description of the memory

architecture. It supersedes the description of the memory system

described in Quarterly Technical Report Number 4.

1.1 Notation

Throughout this document, several notational conventions are

used to represent the allowed access modes of a resource and the

symbol names used to access these resources.

The protection mechanism checks all accesses according to

* whether the Processor Node is in Kernel or User mode and whether

V the access is a read, write, or instruction fetch. We have

I

Report No. 4845 Bolt Beranek and Newman Inc.

adopted a convention which is used by several operating systems

to reflect these types of access. The string "RWXrwx" has six

characters. Each one represents one mode of access. "R" means

that it can be read in kernel mode. "W" means that it can be

written in kernel mode. "X" means that it can be fetched as an

instruction in kernel mode. The lower case characters have the

same meanings but for user mode instead of kernel mode. If the

character is present, then that access mode is legal. If

instead, the character is replaced with an underline, then that

access mode is illegal. For example. "RW.rr" means that kernel

read or write accesses or user mode read accesses are legal, but

that user mode writes are illegal as are any instruction fetches.

The second notational consideration is with regard to the

names of symbols that are used to refer to special control

registers or memory locations. Throughout the document, these

symbols are represented in a bold typeface such as AsAr.

Finally, throughout this report, hexadecimal notation is

used for addresses of the various variables and bit values in the

machine.

-2-

Report No. 4845 Bolt Beranek and Newman Inc.

2. Memory Architecture

The computing power of a machine depends as much on the

architecture of its memory system as it does on the architecture

of its processor.

Three considerations dominate the design of the memory

system of the Butterfly Multiprocessor: 1) the software of this

machine is based on "processes" (rather than the strips of the

Pluribus); 2) it will support large and complex software,

requiring protection and separation between the component pieces;

and 3) it is a tightly-coupled multiprocessor, so that shared

memory will be an important form of communications.

The virtual memory system of the Butterfly Multiprocessor

provides each process with up to 256 memory segments. Each

segment can be from 256 to 64K bytes long. Each segment has

individual protection and relocation attributes, and each may

represent local memory (i.e. memory on the same node as the

processor), remote memory, or I/O device registers.

2.1 Address Spaces

The Butterfly Multiprocessor has a 32-bit physical address

space. This address space is the concatenation of the physical

address spaces of all the Processor Nodes in the machine. The

physical address space of each Processor Node consists in turn of

!-3

Report No. 4845 Bolt Beranek and Newman Inc.

4 "subspaces". Each subspace is now IM bytes long. The 32-bit

physical address is organized as an 8-bit Processor Node number

(permitting up to 256 Processor Nodes), a 2-bit subspace number,

2 spare bits, and a 20-bit subspace offset. This address format

is illustrated in Figure 1.

(8) 1(2)1(2)] (20)

PROCESSOR SUBSPACE
NODE OFFSET

NUMBER U SED

SUBSPACE
NUMBER

Figure 1 . Physical Address Format {

The 4 subspaces of a Processor Node are:

- Subspace 0 contains the EPROM. a portion of main
memory, and many special Processor Node control
registers. It is described in Section 3 of this
report.

- Subspace 1 contains the control registers on the I/0
boards. It is subdivided into four equal parts, one
for each possible I/0 board.

- Subspace 2 contains the memory which is local to this
Processor Node and which should be addressed directly.

- Subspace 3 indicates that the access should be made via
the switch. Local memory may also be accessed through
Subspace 3 but can be more efficiently accessed through
Subspace 2. This distinction is addressed in more
detail below.

-4

Report No. 4845 Bolt Beranek and Newman Inc.

One of the more important spaces is Subspace 2, where the

physical memory for this Processor Node is located. As with all

subspaces, it is limited in length to 1M bytes. This bounds the

amount of memory that may be placed on a Processor Node. In

addition, only 4 memory boards can be attached to a Processor

Node. Since only 16K-bit memory IC's are presently available,

the maximum amount of memory on one memory board is 128K bytes

and as a result, the maximum amount of memory on a Processor Node

is 512K bytes. The maximum amount of memory in a Butterfly

Multiprocessor with 256 Processor Nodes is thus 128 bytes. In

the future. we expect to use the two unused bits in the Segment

Attribute Register and Physical Address to expand the amount of

physical memory on a node to 4M bytes. With 64K memory chips and

a new memory board layout, this should be achievable.

The 32-bit physical address uniquely represents each

addressable memory and control register in the machine. Its

Processor Node, subspace, and subspace offset are fully

specified. As we will see later, the hardware uses Subspace 3 in

a special way which places limits on how a physical address is

interpreted. Subspace 3 is not a subspace in the usual sense.

Rather, it is a way of indicating to the hardware that this

reference is not to be interpreted as a local reference.

While the physical address space reflects the structure and

A. needs of the hardware, the virtual address space reflects the

structure and needs of the software. The software of the

-5-

Report No. 4845 Bolt Beranek and Newman Inc.

Butterfly Multiprocessor is divided into processes. Each process

executes in its own virtual address space, although the virtual

address spaces of several processes may reference the same

physical memory, if desired. Thus, while there can only be one

physical address space in a machine, there may be many virtual

address spaces in each Processor Node.

The size of the virtual address space is constrained by the

processor being used. The MC68000 is, in a large sense, a 32-bit

machine. As such. address registers within the machine have a

capability for 32-bit operations. However, only the lower 24

bits of the address are actually supported in the current

implementation of the MC68000. As a result, for our purposes, a

virtual address is a 24-bit number.

In the Butterfly Multiprocessor we treat the 24-bit virtual

address as an 8-bit segment number followed by a 16-bit offset

within the segment, as shown in Figure 2.

(8) (8) (16)

UNUSED SEGMENT SEGMENT.
NUMBER OFFSET

4-4

Figure 2 . Virtual Address Format

-6-

Report No. 4845 Bolt Beranek and Newman Inc.

This divides the virtual address space into 256 segments. Each

segment can be from 256 to 64K bytes long. Each segment has

independent protection and relocation attributes and may

represent local memory (on the same Processor Node), remote

memory, local I/O device registers, or local control registers.

The structure of the Processor Node is shown in Figure 3.

This figure illustrates the distinction between the virtual and

the physical address spaces. The processor (and as a result, the

programmer) operates in a virtual address space. Every memory

reference undergoes a translation into a physical address by the

Memory Management Unit (MMU) before the access is performed. The

Processor Node Controller, the switch, the I/O devices, and the

memory live in a physical address space. The MMU links these two

spaces.

The goal of a virtual memory system is to allow the software

to be better protected and more easily written. The virtual and

physical address spaces have different constraints. The physical

address space must be large enough that the ultimate main memory,

I/O, and special register spaces can be represented. This space

must be organized so that any physical address can be reached

quickly.

The virtual address space, on the other hand, must be large

enough that the program may be written without becoming

"cramped". There is no reason to suppose that the physical and

-7-"

Report No. 4845 Bolt Beranek and Newman Inc.

PROCESSOR

MC 68000

VIRTUAL

ADDRESSOE MEMORY SPACE
CNTOER MANAGEMENT

UNIT PHYSICAL
ADDRESS

SPACE

MEMORY INTERFACE]

l BARS BOARDS

II
I

I

Processor Node Diagram
Figure 3

- 8-

Report No. 4845 Bolt Beranek and Newman Inc.

virtual spaces should be the same size or should be organized in

the same way.

Having decided to implement a virtual memory system. we face

the options of segmentation and paging. Segmentation is the

division of an address space into variable length blocks, usually

by means of a virtual memory mapping. Paging, on the other hand,

divides the space into fixed length pieces. The implications of

the two schemes are quite different. Segments are intended as an

aid to the sophisticated programmer in organizing the protection,

sharing, and location of his process. Pages are used to break up

the full address space into more manageable fixed size pieces for

the operating system. Often demand paging is used to "cache" the

contents of a virtual address space through swapping on a

secondary storage medium.

Segmentation can be implemented on top of paging, as in the

Multics system. However. such a scheme is too complex and

requires too much additional mechanism to be used here. In

addition, since the MC68000 cannot now support demand paging, we

have determined that a simple segmentation scheme is most

appropriate for the Butterfly Multiprocessor.

2.2 Address Transformation

Memory management separates the virtual address space as

seen by the processing elements from the physical address space.

-9-

Report No. 4845 Bolt Beranek and Newman Inc.

The memory manager serves as an interface between these two

spaces, translating virtual addresses into physical addresses.

The time of the mapping is also a convenient one to perform some

ancillary functions such as protection.

The memory management system of the Butterfly Multiprocessor

contains 512 Segment Attribute Registers (SARs) on each Processor

Node. Each SAR defines the address translation and protection

characteristics for one segment. A set of registers are grouped

together to form an address space for a process. There is also a

single Address Space Attribute Register (ASAR) which, when loaded

with the address and extent of a group of SARs, defines the

currently active address space. The layout and use of SARs and

the ASAR are described in Sections 3.3 and 3.4.

A virtual address space consists of 8, 16, 32, 64, 128, or

256 segments. Since there are 512 SARs this means that the

hardware can support from 64 to 2 address spaces simultaneously.

In order to change address spaces, it is only necessary to change

the ASAR. This will permit faster process switching.

In addition to these segments, every address space shares a

set of 8 segments numbered F8 through FF. These segments are

intended to hold operating system data structures. This will be

described in Section 2.3.

- 10 -

Report No. 4845 Bolt Beranek and Newman Inc.

The virtual address translation function has several phases:

1. Using the ASAR and the segment number from the virtual
address, select the correct SAR. If the segment number
is invalid, give a bus error.

2. Using the SAR selected above and the segment offset
from the virtual address, generate the physical
address. If the segment offset is too large, give a
bus error.

3. Using the SAR and the access mode of the memory
reference (e.g., read vs write, instruction vs data),
give a bus error if the access is illegal.

4. Process the access on the basis of its subspace field.

While this appears to be very simple and clean, the actual

implementation in the hardware imposes several constraints. This

implementation is shown in more detail in Figure 4. The address

transformation function is defined as follows.

Three bits of the ASAR contain a code which specifies how

many segments are in this process's address space. If a

reference is made to a segment whose number exceeds this limit,

an error will be generated. Since not all address space sizes

can be specified by an ASAR code, it may be necessary to specify

a larger than required segment count. The SARs for unused

- segments may be marked as zero length.

The least significant 9 bits of the ASAR are logically

"ORed" with the 8-bit segment number (padded with a zero on the

g ! - 1 1 -

Report No. 4845 Bolt Beranek and Newman Inc.

SEGMENT
ADDRESS ATTRIBUTE

REGISTERS

000
SPACE A

16 SEGMENTS ADDRESS

SPACE 8 SPACE
16 SEGMENTS ATTRIBUTE

040 REGISTER

00SPACE C [I
32SEGMENTS STARTING VIRTUAL ADDRESS

0100

SEGMENT

SPACE D SEGMENT PAGE OFFSET

32 SEGMENTS

0140O
SPACE E

16 SEGMENTS
0160

SPACE F
18 SEGMENTS

0200

SPACE G /SEGMENT ATTRIBUTE

REGISTER NO. 245

0245

SPACE H

0016 SEGMENTS

SPACE I

03016 SGMENTS
0340

PHYSICAL ADDRESS

SPACE J
32 SEGMENTI

0400

SPACE K
128 SEGMENTS

Virtual to Physical Address Translation
Figure 4

- 12-

1
Report No. 4845 Bolt Beranek and Newman Inc.

left) to form an index into the array of SARs. During this

logical "OR", the bottom three bits of the ASAR are ignored and

presumed to be zero. The logical "OR" function is used instead

of addition be-ouse it is more quickly and easily calculated by

the hardware. However. it constrains the allocation of SARs as

discussed further in Section 2.4.

Once the correct SAR has been selected, it is combined with

the segment offset from the virtual address to form the correct

physical address. As the figure illustrates, the least

significant 8 bits of the physical address come directly from

the least significant 8 bits of the virtual address, while the

most significant 16 bits come from the SAR directly.

The 8 bits in between are the sum of fields from the SAR and

the segment offset.

Since the segment offset in a virtual address is 16 bits

long, the largest segment is 64K bytes. However, segments need

not be this large. A segment length field in the SAR defines the

actual length. Each segment is defined to start at an offset of

zero and to increase to this limit. The table below gives the

segment length code and the corresponding limit on the number of

bytes in the segment. The number is given in both decimal and

hexadecimal for convenience. The largest valid segment offset is

one less than this limit. The difference in size between two

successive limits is approximately half of the smaller limit.

- 3
__ _ _ - --- -- - 1---- - -.

Report No. 4845 Bolt Beranek and Newman Inc.

This scheme is obviously a bit coarse since the smallest object

that can be controlled is 256 bytes long and large objects will

rarely have bounds which accurately match their length.

Segment Length Segment Offset Limit
Code (Decimal) (Hex)

0 0 0
1 256 100
2 512 200
3 768 300
4 1024 400
5 1536 600
6 2048 800
7 3072 coo
8 4096 1000
9 6144 1800

10 8192 2000
11 12288 3000
12 16384 4000
13 24576 6000
14 32768 8000
15 65536 10000

For each virtual-to-physical address translation, the MMU

also checks that the access is being performed in a legal mode.

This protection is on a segment-by-segment basis. All of the

locations in a segment are protected identically. The protection

mechanism checks the access according to whether the Processor

Node is in Kernel or User mode and whether the access is a data

read or write or an instruction fetch. If an inconsistency is

detected, a bus error will be generated and the access will be

aborted. The code that specifies which modes of access are legal

is in the SAR for the segment. The table below gives the

protection codes and the corresponding set of legal access modes:

- 14 -

I
Report No. 4845 Bolt Beranek and Newman Inc.

Protection Allowed Access
Code Characteristics

0 R-r-x
1 RXr-x
2 RWXrwx
3 RWrw_
4 R-r_
5 RW_
6 R
7 RW-r_

Once the correct physical address has been generated and its

validity checked, it is necessary to reference the correct

physical memory location. While the physical address can

uniquely specify the physical location, the hardware takes a

short cut.

The hardware interprets the physical address first on the

basis of the subspace field rather than the Processor Node

number. If the subspace is anything but subspace 3 (implying a

remote memory reference), the access proceeds without regard for

the Processor Node number. If the access is to subspace 3. a

switch message is created even if the Processor Node number

refers to the local Processor Node. This is important in

achieving the highest possible memory speed and simplifies the

hardware. Because of constraints in the PNC microcode, the

software must maintain the correct values in the Processor Node

field of all SARs, not only those that reference subspace 3.

Similarly, the software normally detects when a segment refers to

local memory and declares it to be in Subspace 2.

-15-

Report No. 4845 Bolt Beranek and Newman Inc.

As a result of this implementation, only memory may be

accessed across the switch. It is not possible to generate an

access to a remote Processor Node's I/O device registers, its

Processor Node Controller registers, or its EPROM.

It is possible to send messages out through the switch and

back to oneself simple *f -eferencing subspace 3 with the correct

Processor Node nun,. nis will be useful in testing this

Processor Node's sw " interface and a portion of the switch.

2.3 Segments FS tnrough FF

As described so far, the address space of a process consists

of a set of N segments numbered from zero to N-i. However, in

addition, every address space also has access to the segments F8

through FF. They are set up by the operating system and are

reserved for the operating system's use.

A reference to one of these segments is handled by the

hardware exactly as a normal reference, except that the size code

in the ASAR is not checked to see if the segment number is legal.

During the access, the hardware logically OR's the segment number

and the low nine bits of the ASAR to form the index into the

table of SARa. Notice that the numbers F8, F9, FA, FB, FC, FD,

FE, and FF are all ones in bits 7 through 3. Also notice that

the ASAR is always zero in bits 2 through 0. Thus, the only bit

of the ASAR that is important after the OR operation is bit 8.

- 16 -

Report No. 4845 Bolt Beranek and Newman Inc.

For example, a reference to segment F9 will result in the use of

either SAR F9 or SAR 1F9 depending on the ASAR, but none of the

other bits of the ASAR will be important. By convention, the

operating system keeps both sets of SARS equal.

There are several other conventions on the use of segments

0, F8 and FF. The 68000 can specify addresses as either 16-bit

quantities (called short) or 32-bit quantities (called long).

Short addresses are sign extended. Short addresses take up less

memory and instructions that use them are more efficient. This

means that references to segments zero and FF are more efficient

than those to other segments. To take advantage of this, we have

chosen to access the system code and microcode resources via

these two segments. The convention is that segment zero of every

process and SARs FF and 1FF point to subspace zero with RWXrwx

access. For this reason, the addresses given in Section 3 are

short.

Segment F8 is owned and maintained by the Butterfly

operating system, but may be used under certain circumstances by

application programs. In particular, segment F8 maps in physical

memory locations starting at location 0, with RW_r access.

Currently the entire 64K byte segment is mapped in, but this may

change.

The first 80 (hex) locations contain parameters and

variables which are used to communicate with the subspace zero

-17-

Report No. 4845 Bolt Beranek and Newman Inc.

functions provided by the microcode. The layout of the shared

section of segment F8 is as follows:

F80000: ;the first 32 bytes are not used, as an aid
;to debugging.

F80020: intVEC ;a 7 word array of 16-bit interrupt vectors
; See "Interrupt Control Register".

F80030: clknext ;2 words (h/i) of time-of-next-interrupt
Not intended for use by the 68000.

F80034: CurQ ;pointer to running queue
F80038: CurPCB ;pointer to running process

F80040: rstTout ;time until reset/interrupt messages timeout
F80042: reqTout ;time until request messages timeout
F80044: rspTout ;time requests wait for a response
F80046: ackTout ;time until acknowledgement messages timeou-t

F80048-7F: ;reserved for future PNC functions.

F80080 and up: ;for use by operating system

The rest of segment F8 is used in conjunction with the

Object System. An object in the system is represented by an

Object Handle. This handle consists of 8 bits of Processor Node

number, 8 bits of sequence number and 16 bits. By convention,

the 16 bits are the physical address of the object block on tne

specified node. This convention is supported by the PNC. For

example, the function which posts Events is called with an Event

Handle. This handle specifies the Processor Node that contains

the Event Block. The low 16 bits specify the physical address of

the block so that it can be found quickly by the PNC. The

conventional use of segment F8 means that the operating system

can also access that data structure simply by replacing the high

- 18 -

. ..- - ,..1 ..

Report No. 4845 Bolt Beranek and Newman Inc.

16 bits of the event handle with the constant F8.

Segment F8 is also used in a special way by a class of

special PNC functions which perform indivisible operations for

the 68000. In these cases, addresses in segment F8 are specified

as 32-bit quantities but in fact only the bottom 16 bits are

used. These functions are described in Section 3.9 below.

2.4 Design Considerations

The Memory Management hardware implements a virtual memory

system as described above. The design of any virtual memory

system raises complex issues. This section discusses some of the

decisions which went into this design and elaborates some areas

which require special care in the software which interfaces to

the memory system.

Unfortunately, the ASAR cannot point to any arbitrary map

location because the mapping register which will be used is not

the sum of the ASAR and the segment being addressed, but rather

the "OR" of the two.

In practice, this requires that the rightmost N bits of the

ASAR be zero for a space of 200N segments. The operating system

manages these registers using a "buddy system" allocator which

matches these constraints well.

-19-

Report No. 4845 Bolt Beranek and Newman Inc.

A similar restriction occurs in that the adder in the

translation does not carry past 16 bits in the physical memory

space. This means that there are boundaries in physical memory

every 2*"16 (or 64K) bytes which segments may not cross. This

boundary need not be visible to the application software, and is

easily hidden by the physical memory allocation software: since

the physical memory allocator will not allocate a block of memory

which crosses this boundary, segments which cross it cannot be

constructed.

At any given time a program in the 68000 sees a particular

virtual address space. A virtual address space is limited to a

fixed range of segments. Each segment has certain protection

attributes, and its segment length may also be limited to less

than 64K bytes. Ordinary main memory write requests are

suppressed in hardware if any kind of protection violation

occurs; the 68000 sees a 'bus error' condition. For I/O and

interprocessor accesses the microcode checks explicitly for

access violations. However, protection in subspace zero works a

bit differently.

Subspace zero is mapped into segments 0 and FF with dil

types of access allowed. However, the specific microcode

- functions are protected in three stages. First. an error is

generated in hardware if the fundamental protection requirements

for the specific function are not satisfied. Second, some of the

functions make additional specific checks. Third, if the segment

- 20 -

I

Report No. 4845 Bolt Beranek and Newman Inc.

being referenced is outside the allowable range, hardware

generates a bus error.

There is one quirk in the operation of the protection

mechanism which may need to be understood when debugging

operating system routines. The problem occurs during a kernel

mode reference to a segment which is out-of-range. The hardware

starts to use the invalid SAR specified by the address; if the

SAR specifies anything but subspace zero there is no problem.

However, if all other protection requirements are satisfied, most

subspace zero functions will not be inhibited and will execute

normally, although the 68000 will still get a bus error during

the third stage discussed in the previous paragraph. This may be

bad, since, with very low probability, a wild memory access in

kernel mode could have undesirable effects. Concrete examples

include writing the misc and AsAr, and side effects while reading

the PNC status register.

The solution is to be careful to avoid wild stores when

running in kernel mode; use the user-mode write access routine to

check pointers acquired from unprotected areas. Wild reads

should not cause significant problems, since their side effects

are minimal. This problem would be expensive to fix in hardware

or microcode, and should not be serious, at least during normal

system operations.

- 21 -

Report No. 4845 Bolt Beranek and Newman Inc.

3. Subspace Zero

The Processor Node hardware makes a number of special

features available to the 68000. For example. the EPROM, memory

management registers, I/O devices, and interprocessor memory

accesses are all controlled and implemented by the PNC. Some of

these features are invoked by reading or writing special

locations in the processor's physical memory address space

through what is called subspace zero. Subspace zero is mapped

into segments 0 and FF of every address space in the machine.

Subspace zero is one of the four memory subspaces of the

Processor Node. It includes all of the special PNC registers.

EPROM, the memory management register file. and locations 64K-96K

of physical memory. It is 64K bytes (one segment) !.ng and is

laid out as follows:

0000-0007 R X- EPROM bytes 0-8 (Reset vector)
0008-OOFF R X- Physical memory 010008-010OFF
0100-7FFF RXrx Physical memory 010100-017FFF

8000-BFFF RXr-x EPROM (up to 16K bytes)
COOO-C7FE RW- Segment Attribute Registers
C800-CFFF Register group A, individually protected
DOOO-DFFF _W-w_ Register group B
EOOO-EFFF RW_r__ Register group C
FOOO-FFFF RW. Register group D

The control registers in groups A-D are generally located at

256 byte intervals within the groups. Closely related functions

will be handled within a single 256 byte functional interval.

Frequently, accessing any location within the interval will have

- 22 -

1
Report No. 4845 Bolt Beranek and Newman Inc.

the same effect as referencing the first location in the

interval. Bytes writes are generally not supported.

Figure 5 summarizes the available functions; most of these

are discussed in detail in individual sections below.

Several PNC functions use parameter blocks to pass arguments

to the PNC and return results from the PNC. There is a special

consideration in their use. The PNC checks that the program can

read and write the contents of the parameter block. Normally,

for this purpose, the 68000 Supervisor mode flag and the

Processor Node's Kernel mode flag are combined to yield a

composite "kernel mode". However, in the case of these parameter

blocks, the 68000 Supervisor mode flag is ignored. Since the

operating system uses the Kernel mode flag, there is no problem.

However, it is not good enough to assume that an interrupt

routine is in kernel mode unless the Kernel mode flag has been

set explicitly. A further consideration is that these parameter

blocks must be located in the local memory of the Processor Node.

3.1 EPROM

The specification for EPROM is straightforward, except that

the first 8 bytes appear at locations 0-7, as well as with the

rest of the the EPROM at location 8000 and up. This is so that

the reset interrupt vector is available at power-up. Space is

reserved in the address space for up to 16K bytes of EPROM. As

- 23 -

Report No. 4845 Bolt Beranek and Newman Inc.

Btran DOOG L _W__...w. Request block transfer

rtc EOOO L RW_r_. Read or set real time clock (62.5 usec)
sltime E700 S _W_ Set interval timer (62.5 usec)

pnn E100 B RW_r_ Read or set Processor Node number
rrpnn E200 B R-r__ Last reset request's Processor Number
rrint E200 B _W_ Request remote interrupt
rreset E202 B _W_ Re quest remote reset

leavker E300 S R r_ Read ASAR. leave kernel mode, enable
*ntker E302 S R-r__ Read ASAR. enter kernel mode
AsAr E304 S RW_r_ Read or Write ASAR
enticerin E306 S R-....r__ Read ASAR, enter kernel mode, inhibit

PNC-post F300 L _W_ Post Event

PNC..enq E400 L _W_ Supervisor enqueue function
PNC-deq E404 L _W_ Supervisor dequeue function
PNC..push E40O8 L _W_ Supervisor push function
PNC_rem E40C L _W- Supervisor remove queue element function
PNC-cTx E41 0 L _W_..... Clear-then-xor bits in memory
PNC_cTa E414 L _W _ Clear-then-add bits in memory

dq-poll E500 L _W_ Poll dual queue
dq-..deq E520 L _W_ Dequeue from dual queue: [event-to-post]
dq..pdeq E560 L _W_ High-priority dequeue: [event-to-post)
dq-fetch E580 L _W_ Fetch-an-event from dual queue
dq-.erzq E5AO L _W_ Enqueue on dual queue: [any long)
dq..stack E5EG L. _W_ Stack data on dual queue: [any long]

mSC E600 S _W_ Set PNC misc register
rdverri E400 S R-r_ Microcode version number
rdint FOOO S R____ Read INTr
andint FOOO S -_ AND to IN Tr
iorint F002 S _W_ 10R to IN Tr

mCr..PEH[J F100 S R - High word of parity error address
mCr..YEL[] F110 S R_ Low word of parity error address
mCr..CPE[] F120 S _W_...... Clear Parity error
mCr..DAR[J F140 S _W_.. Disable Auto-Refresh

4mCr..EAR[J FiCO S _W_ Enable Auto-Refresh

PNCsRC F200 S R - Read and clear PNC status register
Uprobe F200 L _W_ Check virtual address

Figure 5 *Control Registers

-24-

Report No. 4845 Bolt Beranek and Newman Inc.

long as an EPROM shorter than 16K is installed, additional images

of the EPROM will occur.

3.2 Subspace Zero Main-Memory

The region of physical memory from 10008 to 17FFF is mapped

by the hardware into addresses 0008 through 7FFF of subspace 0.

This supports the 68000 interrupt vectors (bytes 8-511) and the

operating system kernel including all interrupt handling

routines, the standard protected library routines, and other

standard library routines, as desired. To protect the vectors

and code, this region of subspace zero is given RXr-x access.

Of course, this memory may be mapped in with any protection by

the supervisor using subspace 2 or 3.

3.3 Segment Attributes Registers

There are 512 32-bit SARa, which appear at location COOO in

subspace zero. They can be read or written in kernel mode as

32-bit long integers or 16-bit integers; byte writes are not

supported (the same thing would be written into both bytes of the

word). The bit-wise layout of a SAR is shown in Figure 6.

- 25 -

Report No. 41845 Bolt Beranek and Newman Inc.

SEGMENT ATTRIBUTE REGISTER

N. S S -~--

Processor Page Bits 19:16
Node Number Offset of the Physical

Address

Access Code Sgetsize

0 RLr-x 0 0 8 16
2 R-..Xr...x 1 1 9 24
4 RWXrwx 2 2 A 32
6 RW-rw.. 3 3 B 48 Subspace___

8 R-r 4 4 C 64 0 Subspace Zero
A RW... 5 6 D 96 4 1/0
C R__ 6 8 E 128 8 Local Memory
E RWr.. 7 12 F 256 C Remote Memory

ADDRESS SPACE ATTRIBUTE REGISTER

I I I I I 1 .1 1 O O~

Kernel]SR

Inh IbisT

Size Code

0 8
2 16
4 32
66
8 128
A25M

SAR and ASAR Layout
Figure 6

-26-

Report No. 4845 Bolt Beranek and Newman Inc.

3.4 Address Space Attribute Register

The layout of the ASAR is shown in Figure 6. The Address

Space Attribute Register (ASAR) contains a number of important

fields, some of which can be set directly by the user.

Therefore. a user-mode method for setting and/or clearing these

fields is necessary.

The address space size field controls how many segments

appear in the current virtual address space (excluding segments

F8-FF which are always present). The sizes must be powers of

two; the coding is given in Figure 6.

The ASAR is an actual hardware register, but the microcode

keeps a copy of the ASAR in an alu register, and the function

which reads the ASAR actually references that register instead.

In kernel mode all 16 bits can be written with a single operation

by storing into the global variable AsAr. The ASAR can be read

at four different locations. However. all but AsAr have side-

effects which change the value of the ASAR just after the read

has occurred. Reading the variable leavker clears the Kmode and

intINH bits; entker sets the Kmode bit; and entkerin sets both

the Kmode and intINH bits. With these functions, the supervisor

can enter kernel mode or inhibit interrupts and save the previous

state indivisibly.

- 27 -

Report No. 4845 Bolt Beranek and Newman Inc.

3.5 Real-Time Clock/Timer

The PNC maintains a 32-bit time-of-day clock and a 16-bit

interval timer. The resolution of each clock is 62.5

microseconds, giving a maximum timer interval of 4.096 seconds

and a time-of-day period greater than 74 hours. The interval

timer initiates a 68000 interrupt on level 2 when it reaches

zero. At that time, it is reset to request a new interrupt in

4.096 seconds.

These two functions use two internal registers that record

the time-till-next-interrupt (in a PNC register) and time-of-

next-interrupt (in main memory); their difference is the current

time-of-day. The value of the time-of-day is available to the

user and system as rtc. Since rtc is two words long and can

change at any time, care must be taken to read it reliably. The

68000 must execute a "movl rtc, <ea>" instruction which takes two

memory cycles. During the first cycle the PNC calculates the

correct 32-bit time. returns the high word, and stores the low

word into an internal PNC register. During the second cycle it

simply returns the value from that register. Most of the

operations that are done on longs by the 68000 operate in the

correct order. However, pushing arguments on the stack accesses

the words in the wrong order so one should not pass rte directly

as an argument to a function.

- 28 -

Report No. 4845 Bolt Beranek and Newman Inc.

To set the timer interrupt interval, store the number of

62.5 microsecond ticks in the interval, as a short unsigned

integer, into sltime. Only requests which reduce the current

interval are honored. When a timer interrupt occurs, the 68000

should first clear the interrupt request (see niR2 in the INTr),

then reset the timer if desired.

Because of a bug in the current microcode, the programmer

must be careful not to store a zero into the timer since this

will cause the real time clock to loose 4 seconds and the timer

to be reset to expire in 4 seconds. This will be fixed in the

future.

It is also tricky to set rtc reliably. Since this is a rare

event, we do not try to solve this problem directly in the

microcode; instead, a special procedure must be used by the

68000:

The 68000 executes a 'movl' instruction to location
ffeOOO (rtc); this will cause two memory cycles, the
first to write ffeOOO, the second to write ffeO02.
During the first cycle we simply store the high word in
clknext. During the second cycle we add in the time-
till-next-interrupt and store the result in clknext+2;
the carry. if any, is ignored. That means that our
answer is wrong if there was a carry, or if the
interval timer was incremented between the two cycles
and a carry occurred. The 68000 program MUST check for
this by reading the time-of-day clock and comparing the
time it tried to set with the time read; if they are
not within a few ticks of each other this process must
be repeated.

-29-

Report No. 4845 Bolt Beranek and Newman Inc.

3.6 Block Transfer

A microcode supported block transfer facility is available

to transfer a block of data from one location to another. The

68000 program activates this facility by writing the address of a

parameter block with the following format into Btran.

struct btrctrl /* block transfer control block 1/(
char *btto; /* virtual address of destination '/
short unsigned bt-len; /0 length of transfer in bytes [minus 1]
char *bt.from; /* virtual address of source 1/

1;
[byte count minus one (16 bits, unsigned, but 0 <= bc-i < Ox8 00) J

The protection mechanisms require that the transfer not

cross a segment boundary and not be to or from I/O or subspace

zero. It must also be legal for the 68000 to read and write into

the parameter block and to write into the destination area and

read from the source area. These tests are performed using the

mode the 68000 had when it specified the parameter block.

Protection violations generate a bus error.

There may be from one to three processors involved in a

single block transfer. During a block transfer the source and

destination processors will be quite busy. since the switch will

try to use 3/4 of the total PNC bandwidth in these processors.

I/O transfers have priority over block transfers, but 68000

memory access requests do not, and the 68000 will run a great

deal slower than normal during a block transfer. If the

processor which requested the block transfer is not involved in

-30-

Report No. 4845 Bolt Beranek and Newman Inc.

passing the data, it simply continues normally until it does

another switch operation which interacts with the block transfer.

Because block transfers can use so much switch and processor

bandwidth, it is important to consider their impact on other

switch traffic and system latencies. The most common result of

excessive contention in the switch is that some messages will be

delayed past the timeouts which normally detect broken or missing

hardware. These timeouts are currently set to about 10

milliseconds. If they are exceeded level 7 interrupts result.

In an attempt to help reduce switch contention problems, the

originating processor must break up long block transfer requests

into a series of shorter requests, so that other switch traffic

will have a chance to get through. This is done by the library

routine that handles block transfers.

3.7 Post Event

Events are the central operating system process control

primitive. They may be posted to notify a process of some

interesting happening in the machine. ro post an Event, the

68000 writes the address of a parameter block into PNCpost. The

* parameter block is specified as follows:

TT - 31 -

* - 7 • I - _

Report No. 4845 Bolt Beranek and Newman Inc.

struct PNC.pb{
EH p-handle; / Event Handle '/
long p.postdata; / Stored into Event Block */
short bits p-reply;1;

The Event Handle indicates an Event Block which may be

either in local memory or on another processor node. Switch

errors or Event Handles which specify an invalid Processor Node

will generate a level-7 interrupt (like a remote read error

would).

The reply code in the parameter block reports on the result

of the posting operation. If the Event Handle is invalid, the

reply code will be one of the following:

0100 - bad event pointer
0200 - bad sequence number

Otherwise, the reply code is simply the old value of the e-flags

byte from the Event Block as follows:

0001 - event was already posted
0002 - event was already posted more than once
0004 - it is illegal to post this event more than once

These three flags represent the state of the Event Block before

this post. It would be an error to post this Event more than

once if the Event Block says that this is illegal. In that case,

the PNC post function will fail. We can detect that this has

happened by noting that it is an error only if bit code 4 was on

- 32 -

I
Report No. 4845 Bolt Beranek and Newman Inc.

and one of the other bits was also on. Combining the error codes

from above and this constraint, we can see that reply codes O-4

are normal. while codes 5 and above indicate various error

conditions.

The Event mechanism assumes that the Event Block and Process

Control Blocks have the following layout. See the operating

description for further details.

struct EBLOCK /I Event Block /(
struct EBLOCK 'e.next; /I Link to next event block V

char etype; / Block type BT_EVNT = 2 /
char e-flags; /* Flag bits (see above) /
char e-spareO; /* Spare byte */
char e-seqno; /* Block sequence number */
long e-prot; / Protection bits (reserved) i
PH e-owner; /* Handle of owning process i/
long e-data; /I Data passed with post i

} / spares /

struct PCB /* Process Control Block 'l{
struct PCB *p.next; /I Link to next process block i

char p-type; /I Block type */
char p-state; /* Process state flags (see below) /
char p-spareO; /* Spare byte '/
char p.seqno; /* Block sequence number /
long p-prot; /* Protection bits (reserved) 0/
EH p-erreh; /* Error event-handle */

struct q.ctrl 'p.que; /* Current scheduler queue */
struct q.ctrl p.eventq; /* Posted event block queue /

.. } /I other fields not used by post /

/0 Layout of p.state: /
p-onque = 1 /* process cannot be put on a scheduler

queue now */
p.posted = 2 /0 process is sted /
p-run = 4 /0 process is runnable 0/
p-frozen = 8 /0 process cannot become runnable /

-33-
ILI

Report No. 4845 Bolt Beranek and Newman Inc.

In addition to these data structures. the post microcode

also depends on CurQ, a pointer to the currently active scheduler

queue, and on the layout of the array of scheduler queues, to

decide whether to invoke the scheduler.

The actual algorithm used to post an Event is as follows:

1. Check the block type in the specified event block
2. Check the sequence number in the specified e'ent block
3. Test if the event block is already posted; if so:

3.1 Set posted-more-than-once flag
3.2 Return 'was-posted' or 'illegal-multiple-post' reply

4. Set event-posted flag; store user data in event block
5. Enqueue the event on the owner's event queue
6. Set process-posted flag and process-on-queue flag
7. If process-on-queue flag was set, return normal reply
8. Compare priority of queue with running-process-queue;

set interrupt level 1 if context switch is required
9. Enqueue the process on the proper scheduler queue
10. Return normal reply.

3.8 Dual Queue Functions

There are a number of Dual Queue functions, all of which

require a parameter block with the following format:

struct PNC.dqpb /* Dual queue handling functions */
{

QH dq-handle; /* queue handle */
long dq-datum; /* datum or EH *
char bits dq.ode; /0 reply code, see dRC_ ... *1
char bits dq-flgs; /0 return code flags, see q-flags */

- , };

The dq-handle is always overwritten in one of three ways:

by a- copy of the user data, by data, or by an Event Handle

- 34 -

Report No. 4845 Bolt Beranek and Newman Inc.

extracted from the Dual Queue. In the cases when an Event Handle

is returned, this allows the 68000 to post it immediately, using

the same parameter block.

The Dual Queue may be on any Processor Node in the machine.

If the Processor Node portion of the handle is invalid, the

switch error will generate a level-7 interrupt (like a remote

read would).

The various dual queue functions are enqueue. dequeue,

stack, priority-dequeue, fetch (an event), and poll (for data).

These functions and other dual queue features are specified

below.

dq-poll Poll dual queue
dq-deq Dequeue from dual queue: [event-to-post]
dqpdeq High-priority dequeue: [event-to-post]
dq-fetch Fetch-an-event from dual queue
dq-enq Enqueue on dual queue: [any long]
dq-stack Stack data on dual queue: [any long]

It is important to distinguish between the enqteue/dequeue

functions, as requested by the 68000 and the Chrysalis system

calls which use these functions. It is also important to

distingui between the dequeue function and the extract

operation. If data is available, the dequeue function invokes

the extract operation; otherwise it uses the insert operation.

The same is true for the the enqueue operation, which may do

either an insert or an extract.

-35-

Report No. 4845 Bolt Beranek and Newman Inc.

Dual queues have two sections, a queue header (see layout

below) and a ring buffer. The ring buffer may have either data

entries or Event Handles, or may be empty. A flag bit in the

queue header distinguishes data queues from Event queues. A

queue may be frozen by its owner (for debugging purposes, etc.),

by setting a flag bit; in this case all dual queue requests

return the 'frozen' reply code.

When dual queues are used as locks, an empty queue

represents a locked lock; to unlock the lock, the process which

is holding the lock uses enqueue to store something on the queue

(actually its Process Handle is stored as a debugging aid).

Anyone who needs the lock can use dequeue to wait for the lock,

or poll to test the lock. Setting the 'lock' flag bit limits the

queue to a maximum of one data entry at a time. and thus prevents

inadvertently unlocking a lock more than once.

PNC Dual Queue return codes (high byte). The low byte is the
new value of q.flags, except for errors:

dRCFRZN = 0000 ;reply: frozen
dRCBQH = 0100 ;error: bad queue handle
dRC_SNE = 0200 ;error: sequence number error
dRC_MUNLK = 0400 ;reply: attempt to multiply unlock (enq)
dRC_FULL = 0800 ;reply: queue is full (enq/stack/deq)
dRC_EMTY = 1000 ;reply: queue is empty (fetch/poll)
dRC_EXTRT = 2000 ;reply: extracted a queue entry
dRC_INSRT = 4000 ;reply: inserted a queue entry

- 36 -

I
Report No. 4845 Bolt Beranek and Newman Inc.

Queue Header layout (also see operating system documentation):

struct DUALQUE(
struct DUALQUE *q-next; /* Link to next queue header '/

char q-type; /* Block type BTDQH = 6 £/
char q-flags; / Flag bits (see above) /
char q-spareO; / Spare byte '/
char q-seqno; / Block sequence number V
long q-prot; / Protection bits (reserved) V
EH q-ownevnt; /* Owner's Event Handle /
short q-exadd; /1 Extract address *I
short q inadd; /* Insert address 'I
short q-endadd; / End-of-queue address (last+4) /
short q-stadd; / Start-of-queue address 'I
char q-sparel; /* Spare byte */
char q-queueh; / Queue address bits 19.16 /
long q-lastext; /* At time of last extract: element

which would have been inserted /

long q-exttime; / Time of last extract 'I
long qinstime; / Time of last insert */

Bits in q-flags:

q-frozen = 8 ;queue is frozen by owner
q lock = 4 ;queue may have only one data entry

= 2 ;must be zero!
q-events = 1 ;queue has events (otherwise has data)

A library routine is used to initialize a dual queue. This

routine allocates a queue header and a block of memory for the

ring buffer. The ring buffer must be allocated within a single

64K block. The physical address of the first word is stored in

q queueh and qstadd. Copies of q stadd are stored in qexadd

and q-inadd. The ring length must be an exact multiple of 4

bytes; q-stadd plus the ring length is stored in q-endadd. To

determine the size of the ring buffer, it is necessary to

determine how many objects may be present and how many processes

may be waiting in the Dual Queue. The queue must be large enough

-37

Report No. 4845 Bolt Beranek and Newman Inc.

to support the larger number of items. Each item is 4 bytes long

and space for one item is unused. As a result, the minimum ring

length is 8 bytes.

The dual queue mechanism includes a number of debugging aids

of which the user should be aware. These include the various

legality and overflow checks mentioned above; in addition. the

microcode records the time of last insert and of last extract.

and the identity of the last extractor. When using poll you

should supply an Event Handle, as you would for dequeue. to keep

the debugging information valid. You should supply your process

handle whenever you use fetch, and when you use enqueue to unlock

a lock. A function which examines the current status of a lock

and prints its recent history will be provided to help in

debugging.

The actual Dual Queue algorithm is as follows:

1. Check the block type in the specified queue header.
2. Check the sequence number in the specified queue header.
3. If the dual queue is frozen, return 'frozen' reply.
4. Decode the function requested and the queue state to decide

whether to try to extract an entry or to insert an entry.

To extract:
5x. If queue is empty;

reverse queue state and try to insert instead (go to 6i).
6x. If last entry in ring,

reset extract address to start of ring.
7x. Save the user-data for debugging purposes.
8x. Extract an entry.
9x. Update the time-of-last-extract.

10x. Return entry with 'extracted something' reply code.

-38-

Report No. 4845 Bolt Beranek and Newman Inc.

To insert:
5i. If data queue is not empty and this is a lock:

return 'multiple unlock' reply code.
6i. Test if this is a 'polling' or 'fetch' request; if so,

return 'empty' reply code.
7i. Test if inserting at the beginning or end of the queue.
8i. Update the appropriate ring pointer, unless the queue was

full, otherwise return 'full' reply code.
9i. Insert the user data.

10i. Update the time-of-last-insert.
11i. Return 'inserted something' reply code.

3.9 Various Kernel Functions

This section describes microcode functions that involve

kernel mode access to control blocks or other data in physical

memory, in the range 0-64K bytes (segment F8). Manipulation of

true virtual addresses is not possible in these functions, and

only very limited error checking is provided. To initiate one of

these functions, the supervisor provides the 24-bit virtual

address of a parameter block in local memory (subspace two), via

a movl instruction. The block will have various formats,

depending on the function involved. Sometimes results are

returned in the parameter block, and sometimes various data

structures are modified. If errors are possible, error codes are

returned in the parameter block. The functions run as

uninterruptable units, which is their primary reason for

existence; their speed advantage, though possibly significant, is

secondary.

- 39 -

Report No. 4845 Bolt Beranek and Newman Inc.

The following functions are avail-able, depending on where

the address of the parameter block is stored:

Name Function

PNCenq Enqueue block on the end of a queue
PNCdeq Dequeue(pop) block from the beginning of a queue
PNC.push Push block onto the beginning of a queue
PNCrem Remove specified block from anywhere on a queue
PNC.oTx Clear-then-xor specified bits in memory word;

save old value
PNCcTa Clear-then-add specified bits in memory word;

save old value

In the specification of control blocks, starred parameters

(II) are parameters which are returned by the microcode, as

opposed to normal parameters which are supplied by the

supervisor.

3.9.1 Enqueue, dequeue, push. remove

The scheduler queueing functions expect queued items to have

following format:

word at 0: xx
word at 2: address of the next element on the queue.

or 0. which indicates that this is the last element
words at 4: arbitrary data

The microcode uses only the word at byte 2. The enqueue and push

functions set and maintain the contents of that word; dequeue and

remove use it, but do not modify it. The data in word zero is

established and used only by the 68000 code. The same is true

for all words specified as 'xx' in the other data structures

- 40 -

IH
Report No. 4845 Bolt Beranek and Newman Inc.

specified below.

The queue header:

word at 0: xx
word at 2: address of the first element on the queue,

or 0, which indicates that the queue is empty
word at 4: xx
word at 6: address (0-64K) of the last element on the queue,

or garbage if the queue is empty

The parameter block for the enqueue/push functions:

word at 0: xx
word at 2: address of the queue header
word at 4: xx
word at 6: address of the element to add

The parameter block for the dequeue(pop)/remove functions:

word at 0: xx
word at 2: address of the queue header
word at 4: xx
word at 6: address of the element dequeued,'*

or 0, which indicates that the queue was empty**
(for remove, this address is supplied by the 68000,
and is cleared if the element is not found**)

No validity checking is attempted for these parameters.

3.9.2 Clear-Then-XOR and Clear-Then-Add

The clear-then-xor PNC.oTx and clear-then-add PNCoTa

functions are used to modify a word in supervisor memory and read

back the old value at the same time. They are mostly used to

solve potential interrupt bugs. The old word is read from memory

and stored in the parameter block. Then the bits specified in

the parameter block mask word are cleared from the value of old

- 41 -

Report No. 4845 Bolt Beranek and Newman Inc.

word, the parameter block data word is xor'ed (or added) to the

result, and the word is stored back into memory.

The parameter block for the clear-then functions has the

following format:

word at 0: xx
word at 2: address of the word to modify
word at 4: a word which contains the mask of bits to clear
word at 6: a word which contains bits to xor or add to memory
word at 8: old value of the word specified**

Note that this can be used to exchange bits, bytes, or entire

words; it can also be used to xor, and, ior. and add to memory,

etc. It is an extension of the idea of using exchange to provide

indivisibility.

3.10 Misc register

The PNC misc register has two sections:

bits 7.4 - path enable selection, paths 3.0
bits 3.0 - header checksum. bits 3.0

This register can only be set as a unit by the 68000, so the

operating system should maintain a shadow copy to enable the

fields to be updated separately.

-42-

j Report No. 4845 Bolt Beranek and Newman Inc.

3.11 Interprocessor Interrupts and Resets

To request a remote processor level-7 interrupt, store the

processor number, as a byte, into rrint. This is not really

useful as a high-bandwidth signaling mechanism, since the remote

processor's supervisor pushdown list could overflow if too many

level-7 interrupts arrived at once.

To request a remote processor reset, store the processor

number, as a byte, into rreset. Note that this will completely

destroy the state of the remote 68000 and PNC, and will restart

the remote operating system. Although main memory will be

preserved by the reset, parts of it will be reused by the

operating system during the restart; therefore, important

debugging information may be lost. The reset will always

succeed, except in the presence of broken hardware. It should be

used only in emergencies. The identity of the processor which

last reset a given processor can be read, as a byte. from rrpnn

in the processor which was reset.

3.12 Interrupt Control Register

The interrupt control register (INTr) contains a number of

independent bits, some of which can be set directly by the PNC.

Therefore. non-interruptable methods for setting and clearing

these bits are necessary. This is the INTr layout (a leading n

or means the function is active when the bit is zero):

-43-

Report No. 4845 Bolt Beranek and Newman Inc.

bit 7 - nliteLED red LED on PNC board
bit 6 - rand stop the randomizer clock
bit 5 - niR5 -68000 level 5 interrupt request
bit 4 - niR2 -68000 level 2 interrupt request
bit 3 - niR1 -68000 level 1 interrupt request
bit 2 - (Reserved) Used by the PNC - do not change
bit 1 - (Reserved) Used by the PNC - do not change
bit 0 - niR7 -68000 level 7 interrupt request

Data written into the variable andint is bitwise ANDed into

the INTr, while data written into orint is bitwise ORed into the

INTr; these functions allow bits to be set or cleared with no

chance of error due to interrupt bugs. A 68000 IOR-to-memory

instruction would not work since the PNC might modify the INTr

between the 68000 read and rewrite cycles.

All 8 bits are saved in the low byte of an alu register, and

an attempt to read the INTr actually references that register

instead; the register is also used to restore the real INTr after

certain protection checking functions in the microcode. We plan

to use the high-order byte of the INTr to report certain error

conditions detected by the PNC of the type which do not cause

level 7 interrupts, thus expanding the PNC status register by

eight bits. [This is simply a warnirg of things to come.]

The microcode reset code ;urns on the LED and clears all

interrupts; once the local operating system has successfully

joined the global operating system, it turns off the light to

indicate that the node is in service. If the node goes out of

service the light will be turned on to indicate which Processor

- 44 -

I
Report No. 4845 Bolt Beranek and Newman Inc.

INode is having the problem.

I The switch randomizer must be initialized to a different

point in each Processor Node. This is done during initialization

by turning off the clock to the switch randomizer with rand for a

time proportional to the Processor Node number.

Bits 1 and 2 are used exclusively by the microcode; do not

tamper with them.

Bits 0, 3, 4, and 5 control interrupts to the 68000. If any

of these bits are cleared, an interrupt is caused on that

interrupt level. Except for level-7 interrupts, the operating

system must logically clear (really set) the appropriate

interrupt request bit in each interrupt service routine,

otherwise the interrupt will immediately recur when the routine

terminates. Level-? requests are automatically cleared by the

PNC (or the 68000) just as the interrupt routine is being

initiated; thus the level-? handler must be written to be

reentrant, and level-7 events which occur while the handler is

running will cause nested interrupts -- otherwise such events

might be lost completely.

Note that interrupt requests can be lost if a second request

o occurs before the previous request at the same level has been

serviced. You are safe if you do not initiate any action which

could result in an interrupt until you have logically cleared the

-. corresponding interrupt bit.

I45

Report No. 4845 Bolt Beranek and Newman Inc.

There is a microcode routine which provides an interrupt

vector to the 68000 for all external interrupt conditions. The

68000 requests a vector for a specific interrupt level. Levels

1,2.5,6,7 are assigned in the microcode to coincide with the
68000 'Interrupt Auto-Vector' of the corresponding level (see the

68000 manual, page 5-5). Levels 3 and 4 use an interrupt vector

provided by an I/O board (if valid, otherwise the Auto-Vector is

used). The full 16-bit interrupt vector supplied to the 68000 is

stored by the microcode in the intVEC array in main memory, with

one entry per interrupt level [1-7J. Currently, this array is of

little interest except for I/0 interrupts.

3.13 Microcode Version Number

Each version of the microcode PROMs will have a distinct

version number which can be read by the 68000 as rdvern. This

version number is specified in the revision line on page 1 of the

microcode listing. When a new set of PROMs is created it will be

assigned a number P and will initially have the version number

OxPO00. Each time the PROMs are patched, a bit will be set in

the low 12 bits of the version number, starting from the right.

For example, PROM set seven will begin as version OxTOO (7.000);

as it is patched its version number will change to 7.001, 7.003,

7.007, 7.OOF, etc.

-46-

I
Report No. 4845 Bolt Beranek and Newman Inc.

3.14 Memory Control Registers

JUp to 4 memory boards may be attached to a Processor Node.

Each board contains several control registers. The variables

that control these boards are actually arrays where the subscript

indicates which board is being addressed. For example, to clear

the parity error on board 2. the programmer writes into

mCrCPE[2]. It does not matter what is written into this

variable.

These boards are able to detect parity errors and to report

the address that contains the error. When a parity error is

detected, the physical address (bits 18.0) is saved in mCrPEH

and mCrPEL, the sign bit of mCrPEH is set. and an interrupt is

requested on level 6. The data in these words is not valid

unless the sign bit is set. The sign bit is cleared by writing

anything into mCrCPE.

The dynamic memory chips used on the memory boards must be

refreshed to maintain their data. Normally the PNC does this,

but when power fails, the PNC stops. To prevent loss of data,

battery power may be provided to the memory boards, and special

auto-refresh circuitry may be enabled to support the memory ohile

the rest of the Processor Node is turned off. A memory board

will not do normal read or write operations while in auto-refresh

mode. mCrDAR is used to disable auto-refresh and mCr_EAR is

used to enable it. The proper procedure to be followed during a

-47-
I-

Report No. 4845 Bolt Beranek and Newman Inc.

reset is described under the section on the PNC Status Register.

3.15 PNC status register

The PNC status register includes various bits which are

useful for diagnosis of bus errors, resets, switch errors, etc.

All of the bits but Ipwr.lowt are cleared automatically when the

status register is read, so they must be processed by the 68000

at once. The bits marked with an asterisk produce a level 7

interrupt when set. Those with two asterisks produce a bus

error.

pwr.low = 8000 PNC power is low
pwr.int = 4000 * PNC power just went low
rm.int = 2000 * remote interrupt request
rmPerr.int = 1000 * remote memory read reply had an error
rep.long = 0800 ' waited too long to get a reply
req.long = 0400 waited too long to send a request
unex.reply = 0200 receiver got an unexpected reply message
ack.hce = 0100 error detected in header checksum
ack.err = 0080 error detected in acknowledgeme.t message
req.err = 0040 error detected in request message
vlm.err = 0020 error detected in variable length message

0010 unassigned
unimpl.fnc = 0008 unimplemented misc. function
unimpl.int = 0004 I unimplemented 68000 request
halt.reset = 0002 68000 halted, initiating a reset
unspec.int = 0001 ' unspecified microinterrupt occurred

When power starts to fail, the 68000 will get a level 7

4 interrupt; the handler must check pwr.int and take appropriate

action. A second bit, pwr.low, is also set and is not cleared;

it prevents multiple level 7 interrupts. When the 68000 has done

what it can about the situation it should halt (the way to halt

- 48 -

Report No. 4845 Bolt Beranek and Newman Inc.

is to make the supervisor push-down list inaccessible, then cause

a bus error). The microcode will set halt.reset, clear all the

other bits, put memory in auto-refresh mode, and start to reset.

Resetting cannot succeed until power is normal again; if power

goes all the way down and comes back later, the power supply will

initiate a new-power type reset, which will clear halt.reset.

3.16 Verify User Write-Access

When the supervisor stores data at an address provided

directly by a user, it must ensure that the user has the right to

modify that location. It can do this by first storing the

ADDRESS (as a long) into Uprobe. The microcode will determine if

the address would have been legal for a user-mode nonkernel

write, and will otherwise generate a bus error. Addresses in

subspace zero will always generate bus errors, which prevent this

type of store from directly triggering PNC functions, whether or

not such a function would have been legal for the user to reques'*

independently.

For example, imagine a kernel-mode subroutine which stored

the location of a block of data at an address specified by a user

program. If the user specified the address ffdOOO, and the

subroutine did the store without checking, the block transfer

microcc - would be invoked, and it would interpret the address as

the location of a control block specifying block transfer

4

Report No. 4845 Bolt Beranek and Newwan Inc.

para ',ters. Even though the block transfer function checks its

parameters for validity, those checks might well be defeated by

the fact that the subroutine is in kernel mode, and thus valuable

information might be destroyed. Thus the need for checking is

established. Using the checking function solves this problem.

since the address supplied by the user is in subspace zero, and a

bus error is generated during the check function, before the

store instruction is executed in the subroutine.

The checking function considers all addresses in subspace

zero to be illegal for the following reason. Assume instead that

it allowed access to addresses which the user himself could have

accessed. Since the user can write into the address which

triggers a block transfer directly, the previous example would

pass the tests, and still potentially destroy information. More

subtle tests seem impractical in the microcode. If the

restriction that all subspace zero addresses are illegal is

unacceptable in a particular case, it is always possible to leave

kernel mode before doing the requested store operation, and

reenter as necessary.

3.17 Conclusion

This document describes microcode version 1.003 (see

Section3.13). The microcode occupies approximately 3/4 of the

1024 available words of micromemory. The unused space may

- 50 -

Report No. 4845 Bolt Beranek and Newman Inc.

eventually be used for additional PNC functions that will speed

up the system or provide additional functions. Some prime

candidates include the process multiplexer (currently in assembly

language), object management functions, and floating-point

control functions.

The functions described here are the lowest level facilities

of the Processor Node. Many of them will never be seen by the

application programmer since they are used by higher level

operating system functions. We expect to describe those

functions in a future technical report.

5

I

I. - 51 -

Report No. 4845 Bolt Beranek and Newman Inc.

DISTRIBUTION OF THIS REPORT

Defens Ada Reearch Prje Agncy
Dr. Robert E. Kahn (2)
Dr. Vinton Cerf (1)

D s Supply Service -- ahinLton
Jane D. Hensley (1)

Defense Documentation Center (12)

Dr. Danny Cohen (2)

1=iT/~nln lab"
Dr. Clifford J. Weinstein (3)

SR. International
Earl Craighill (1)

Romp Ar Dv t itolmln Cent er
Neil Marples - RBES (1) Julian Gitlin - DCLD (1)

Defense Communications Agengy
Gino Coviello (1)

Ik Branek a-d Newman in.
Library
Library. Canoga Park Office
R. Bressler
R. Brooks
P. Carvey
P. Castleman
G. Falk
J. Goodhue
E. Hahn
E. Harriman
F. Heart
M. Hoffman
M. Kraley
A. Lake
W. Mann
R. Rettberg
P. Santos
E. Starr
E. Wolf

- 52 -

' - III " '.

Report No. 4845 Bolt Beranek and Newman Inc.

INDEX

ASR............................. 25, 27

Btran.Ot ... o...........f*..... 40.000............... 24, 30

KurQode........... .oo..*oooe.*..... o@....... e.....Sooo 27

PNCd.............................69.0......... 0*. Qo 24,3

PNC-rem.. 24, 404
PNCsRc... 24 1
SAR.. 254

Penr............................ .. *so. 24, 27

inN 2......................o.. 273
iornt.............................*s*... 244
1Nek .. 24, 27

mis... 24

pnn....o.....oe........ o.e..o...........*...............*. 24

Urit................................ 244
rndven.. 24, 46

dq eq........... .-53- 3
dq~~ ...-. o .. -.. -s 24-3

Report No. 48A45 Bolt Beranek and Newman Inc.

rt 2 , 2

24, 29

-514 -

