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Abstract

The relationship between certain regularization methods for solving
i11 posed linear operator equations and ridge methods in regression
problems is described. The regularization estimates we describe may be
viewed as ridge estimates in a (reproducing kernel) Hilbert space H. When
the solution is known a priori to be in some closed, convex set in H,
for example, the set of nonnegative functions, or the set of monotone
functions, then one can propose reqularized estimates subject to side
conditions such as nonnegativity, monotonicity, etc. Some applications
in medicine and meteorology are described. We describe the method of
generalized cross validation for choosing the smoothing (or ridge)
parameter in the presence of a family of linear inequality constraints.
Some successful numerical examples, solving i11 posed convolution equations
with noisy data, subject to nonnegativity constraints, are presented.

The technique appears to be quite successful in adding information, doing
nearly the optimal amount of smoothing, and resolving distinct peaks
in the solution which have been blurred by the convolution operation.

Prepared for the Proceedings of the Third Purdue Symposium on Statistical
Decision Theory, S. S. Gupta and J. 0. Berger, eds.
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1. Introduction

We are interested in the Hilbert space version of constrained
ridge regression, which we will show has many interesting applications.

The (ridge) regression setup is:

Yox1 = XnxpBpx1 ¥ Enx (1.1)
e ~ N(0,0%I)
B ~ N(0,bz)

where X and £ are known, o?, b are unknown. A "ridge-Stein" estimate of

g, call it BA’ is given by the minimizer of QX(B),

Q,(8) = ,,]-,lly-stH2 + a8z,

where ||-|| is the Euclidean mean. If A is taken as o?/nb, then it is

not hard to show that
8, = E(8]y). (1.2)

If it is known that 8 is in some closed convex set C in E,, *hen one may
estimate 8 as the minimizer of QA(B) subject to the const-. seC. Some
interesting C are those determined by a finite number of linear inequality

constraints, for example B,

20,1 =1,2,...,p, 0r 8y 28, 2 ... 2 Bp'

M.E. Bock discusses a related setup in these proceedings.

We particularly want to allow B to have a partially improper prior,

1

for example, o;y = =. Then £~ is defined in the natural way and will

This work was supported by the Office of Naval Research under Contract No,
’ N00014-77-C-0675.




L then not be of full rank. This causes no problem provided X and

-1

£ ' are such that

,}a'x'xe +28'c 18=028=0. (1.3)

An example of a Hilbert space version of this problem (an indirect
sensing experiment) is

1

y(t f ; f(s)ds + g5 1= 1,2,...40, 0 ¢ ty <ot < ] (1.4)

e ~ N{(0,02%1)

where K is known, f is known to be in the Sobolev space wg(wg= ef,60 ..., fmD
abs.cont., f(m)sL2[0,1]),see Adams (1975)), and o2 is unknown. A so called

"regutarized" estimate fx of f is given by the minimizer in wg of
1N 1 1 (m)
Q,(f) = h, z (y(t;) - éK(ti ,$)f(s)ds)? + Aé(f (s))2ds. (1.5)

Qx(f) is analogous to

0, (8) = Jly-xaf[2 + s’z 7.

1
If the linear functionals f» K(ti,s)f(s)ds are bounded in Hg for

each i = 1,2,...,n, and

Si—

ne-13

1 1 (m)
(fK(ti,s)f(s)ds)2 + xg(f (s))2ds =0 =>f=0 (1.6)
4]

i=1

then Q,(f) will have a unique minimizer, call it f,,in wg.

If f is endowed with the zero mean Gaussian prior defined by: f is
/B times an unpinned m-fold integrated Weiner process (Shepp (1966)), S
with a diffuse prior on the initial conditions, then it can be shown

(Kimeldorf and Wahba (1971), Wahba (1978)), that
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£,(t) = ECF(E)y(ty),n .oy (t,)), (1.7)

where A = o?/nb. This prior may be colloquially described as “f(m)=white noise".
1

However, with this prior Ef(f(m)(s))zds is not finite, and the meaning
0

of b as a process parameter becomes unclear for fewg. If it is assumed

that fswg, then it appears to be more appropriate to view ) as the

"bandwidth parameter" which governs the square bias-variance tradeoff.

If (1.6) holds, then Qk(f) will have a unique minimizer in any
closed convex set C=H (see Vong (1980), Gorenflo and Hilpert (1980). ?
The set of non-negative functions {f:f(s)>0,0<s<1} is closed and convex
in wg form = 1,2,..., and the set of monotone increasing functions
{f:f'(s)>0, 0<s<1} is closed convex in wg form = 2,3,... . See also
Wright and Wegman (1980).

We are interested in the general formulation of the above problem.

The model is

¥y = Lt.f +eg.,1=1,2,...,n

1

-i!

where it is known that feCeH, where H is a given Hilbert space, C is a

closed, convex set in H, and L are n continuous linear functions

...L

on H. J(-) is a seminorm on H with an m dimensional null space, and
it is "believed" that J(f) is not too large. We propose estimating

f as the minimizer of

0,(f) = & T (L, f-y)2 + AI() (1.8)

1

1

nr-13
-—

subject to feC.




If

=1—

] (L, £)2 + (F) = 0
=1 Y

=>f = 0, then there will be a unique solution, call it fxc. We will
refer to this solution as the constrained regularized estimate, sometimes
dropping the superscript C.

There are now two problems. One, given )\, how does one compute a
good approximation to fAC, and two, how does one estimate a good value
of X. In many interesting cases, when H is a reproducing kernel space,
the constraint set C can be discretized in a convergent way, see Wahba
(1973). For example, the minimizer of Ql(f) subject to feC = {f:f(s)>0,0<s<1}
is well approximated by the minimizer of Qk(f) subject to feCL = {f:
f(g)zo,i =1,2,...,L} for H = wg, J(-) = }(f(m)(s))zds, L large. If L is any
(closed) set defined by L linear inequa]igy constraints, the problem of
minimizing Qx(f) subject to fsCL can be reduced to a quadratic programming
problem with Tinear inequality constraints in at most n + m + L
variables. See Kimeldorf and Wahba (1971). The researcher interested
in numerical methods for this and related problems may consult Anselone
and Laurent (1968), Utreras (1979), Wahba (1978, 1980a, 1980b, 1981),
Wahba and Wendelberger (1980). (The formulae in Kimeldorf and Wahba are
inappropriate for computational purposes.) Remarks concerning the effect
of quadrature in this setting may be found in Wahba (1981). Library
software for solving the quadratic programming problem by the principal
pivoting method is available, for moderate n + m + L, see MACC (1979).
We will go through a relatively simple example in Section 4.

Our main interest in this paper is the development of a method

for choosing A which is suitable for the constrained problem.

ar




In this paper we propose an extension of the generalized cross
validation (GCV) method, to the constrained case. This method was
proposed in the unconstrained case in Craven and Wahba (1979),

Golub, Heath and Wahba (1979), and Wahba (1977). The GCV estimate of

X we propose in the constrained case can be expensive to compute. Thus
we propose a first order approximation to it which is very much cheaper
to compute, and appears to be satisfactory in the examples we tried.

We experimentally tested the constrained regularization method with
the approximate GCV estimate of ) on a convolution equation with several
simulated data sets generated according to the model (1.4) with non-
negative f's. For comparison, we first estimated f by minimizing
QA(f) in wg and using the (usual) unconstrained GCV estimate ; for A.

We then estimated f by minimizing Q,(f) in C where C = {f:f(%)30,1=1,2,...,n},
and choosing A by the approximate GCV method for constrained problems.

The constrained estimates with the approximate GCV choice of A were all
dramatic improvements over the unconstrained estimates. As a

practical matter, they displayed a remarkable ability to resolve

closely spaced peaks in the solution that have been blurred in the data

by the convolution operation. The convolution equation is i11 posed,

and the positivity constraints are apparently supplying much needed
information. Three cases of the exact GCV method for constrained problems

were tried for choosing A. It gave a very slightly better (and possibly

more stable) estimate of the optimal A. However it's much more expensive

to compute.




2. Some Applications

i) Meteorology

In recent years several satellites have been put in orbit which carry
detectors which measure the upwellina radiation at selected frequencies.
The observed radiation at frequency v, when the subsatellite point is P,
may be modelled (after some linearization and approximation) as

Iv(P) = éiv(P,P')T(P')dP',
where P' is a point in the atmosphere,nP is the volume within the
detector field of view when the subsatellite point is P, T(P') is the
atmospheric temperature at point P' and KV is determined from the
equations of radiative transfer. See for example Fritz et al (1972),
Smith et al (1979), Westwater (1979). It is desired to estimate T(P)
to use as initial conditions in numerical weather forecasting. Occasionally,
outside information, such as the existence of a temperature inversion,
is available, thus providing some inequality conditions on the derivative

of T(P) in the vertical direction.
ji) Computerized Tomograpiy

Computerized tomography machines are in most well equipped hospitals.
Computerized tomography machines observe line (or more accurately, strip)
integrals of the X-ray density f of parts of the human body, and from
this data

¥ = [f(P)dP + €5s i=1,2,...,n,
'3
i

estimates of f(P) are made. Algorithms for estimating f must be capable




of dealing with nx10%, see Herman and Natterer (1981), Shepp and

Kruskal (1978). The true f is non-negative.
iii) Stereology

Scientists studying tumor growth feed laboratory mice a carcinogen,
sacrifice the mice, and then freeze and slice the livers. Images of the
liver slices are magnified and areas of tumor cross sections are
measured. It is expensive to examine the liver slices, thus it is
desired to take a sample of the possible slices and from the resulting data
infer numbers and (three dimensional) size distributions of tumors in
the entire liver from data from a few slices. In the “random spheres”
model, the tumors are assumed to be spherical with the radii density f(s).
If the slices are "random" then the cross sectional (two dimensional)

density g(t) is related to f by

oo

g(t) = E? fs) ds, u = [sf(s)ds.
t (212 0

See Anderssen and Jakeman (1975), Watson (1971), Wicksell (1926).
This setup does not fit into the model (1.4) because i) in theory a
random sample from the population with density g is observed (not
g(ti)+€i) and ii) in practice the liver is embedded in a paraffin block
and sliced systematically perpendicular to an axis which (roughly)
maximizes the cross sectional area of the liver being sliced. Nonetheless,

it is fruitful to think of this problem in the context of i11 posed

integral equations (see Anderssen and Jakeman (1975), Nychka (1981)).




iv)} Convolution Equations

Convolution equations in one and higher dimensions arise in many
areas of physics. See, for example Chambless (1980), Davies (1979).

These equations can be surprisingly i11 posed.
v) Other applications

Other applications may be found in the books of Anderssen, DeHoog
and Lukas (1980), Golberg (1978), Tihonov and Arsenin (1977), Twomey
(1977), Nashed (1981).
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3. Cross validation for constrained problems

We first define the ordinary cross validation (OCV) or "leaving
out one" method of choosing A. ;

let Ly = L, and Tet f [k] be the minimizer of
.i

(L1.f-y1.)2 + AJ(f) (3.1)

Sl—
+H 133 >

i=1
ik
subject to feCeH, where we assume sufficient conditions on the {Li}

and J(-) for existence and uniqueness. A figure of merit can be defined
for X by

n

L

(k1 42
L f -y, )2, (3.2)
N 1( k Yk

_ 1
Vo(A) = 3 A

where kax[k] is the prediction of Yk given the data Yyseoe oY 1o ¥pa1oeeYps
and using A. The OCV estimate of A is the minimizer of VO(A). In the
unconstrained ridge regression case this estimate is known as Allen's
PRESS (see Hocking's discussion to Stone (1974)). The names of Mosteller
and Tukey (1968) Geisser (1975), M. Stone (1974) and others are associated
with early work on ordinary cross validation. See also Wahba and

Wold (1975). In the ridge regression case the OCV or Allen's PRESS

has the undesireable property of not being invariant under arbitrary
rotations y»Ty of the data space. If one observed I'y instead of y

the OCV estimate of A may be different. GCV (to be defined below) may

be thought of as a rotation invariant version of OCV, for which some good
theoretical properties may be obtained. For further discussion see
Craven and Wahba (1979), Golub, Heath and Wahba (1979), Wahba (1977),
Utreras (1978), Speckman (1981).

To extend the definition of the GCV estimate of A to constrained

problems, we will use the Theorem given below.




a¥

-10-

Theorem: Let H be a Hilbert space, J(-) a semi norm on H and L]""’Ln

be n continuous linear functionals on H, with the property, that for any

fixed A > 0,
.In
R I (LA +M(f) =0f=0
};; K=1,2,....0n.

Let C be a closed convex set in H and Jet fk[k][z] and fx[z] be the

minimizers in C of

1

(L F-2,)2 + 23(F)

—#+ U3

i=1
ik

and

S

n
f-z )% + A(f),
DACLERERSTY

respectively, where z = (21,...,zn)'. Then

£,y 0 = £, k= 12, (3.3)

where §, = (0,...,O,kak[k][y]-yk,o,...,0)', (the non 0 entry is in the
kth position.

Remark: This theorem says, that given data
4
Yk-1
L F, KAyl
Vi1 "

\yn

the minimizer of Q,(f) in C is fA[k].




=11~
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Proof: Proofs in special cases may be found in Craven and Wahba (1979)

and Golub, Heath and Wahba (1979). A proof in the generality cited here

is in Wahba (1980c), although no doubt the result is a special case
of classic optimization theory results. |

Now define the "differential influence" of Yi when A is used, by

a8 (),
ag () = ka*[y+§k§;ka*[YJ (3.4)
where
5 = L F 0y Ty, (3.5)

a;;(x) is a divided difference of kaA considered as a function of the
kth data point (and is well defined).

Applying Lk to both sides of (3.3) and substituting the result
into (3.4) and (3.4) into (3.2) gives the identity

10 (hefoy)?

VO(A) =) (3.6)
K1 (1-a (1)?
The GCV estimate of A is obtained by replacing ai;(x) in (3.6)
n
by the "average differential influence" % ) ag;(x), that is, the GCV
k=1
estimate of A is obtained by minimizing V(}) = VC(A) defined by
1 0 2
c ﬁiZ (Lefrmvi)
VE(A) = (3.7)

Some properties of this estimate in the unconstrained case are

known. First, in the unconstrained (C=H) case, L f [y] is linear in y,

and there exists an influence matrix A(X) with the property
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!

LF)
D= Ay,
Lafa
In this case ai&(x), the divided difference of kak with respect to
Y * Gk and Yio is also the first derivative
Bka

* = Ao
() = =72 = 2 )

where akk(k) is the kkth entry of A(A). Then V(A) can be written
a0yl 2
(drr(1-a(1)))2

n

To understand the known (and potentially obtainable) properties

of the GCV estimate of X we will first compare it with the unbiassed

risk estimates of Stein (see Hudson (1974), Maliows (1973)).

Let L(f,)) be the predictive mean square error when )\ is used

"

n
L(f,A) 21(kax'ka)2

1
n;

1Ayl 12
where ¢ = (L]f,...,Lnf)' = Efy.

If o? is known (or an unbiassed estimate of it is available)then an

~ 2
unbiassed estimate R(x) of R(A) = E.L(£,2) = 3]|(I-A(N)g] |2 + & TrAZ(2)

is available and is given by

5 1 g? g?
R(A) = ﬁll(I-A(x))y|]2- 7;¢r(I-A(X))2 + ==TrAz(h),

(3.8)

this corresponds to Mallows' CL’ see Mallows (1973), Craven and Wahba (1979).
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To talk about convergence, consider a family Lt’ te[0,1] of continuous
linear functionals on H, with Lt]"“’Ltn a subset. Let K be the

operator which maps H into the real valued functions on [0,1] by (Kf)(t) = L f.
Loosely speaking, if K(H) is a reproducing kernel space with sufficiently

smooth reproducing kernel, then as tysee ooty become dense in [0,1],
Efv(k):EfL(f,A) + g2

for X in the neighborhood of the minimizer of EfL(f,A). See MWahba

(1977). Under various circumstances it can be shown (Craven and Wahba (1979)), that
ELL(F,R)
min EL(F X + 1 as n»», feH (3.9)
A

where X is the minimizer of EfV(A). Utreras (1978) and Speckman (1981)

have recently rigorized and strengthened these results.
In general for (3.9) to be true one appears to need that u](x)*o

and u]Z(A)/uZ(A)»O for X in the neighborhood of \* where

ui(k) = %TrAi(A) and A* is the minimizer of EfL(f,A). Intuitively,

this means that the signal must be concentrated in a

small "corner" of the data space En. Optimal rates of convergence for

fi corresponding to those given by C. Stone (1980) can be obtained in

some cases Craven and Wahba (1979), Wahba (1977a, 1977b, 1979b), Lukas (1981).
We now return to the constrained case, feC . We consider only the

case where C is (or is well approximated by) the intersection of a

finite number of half-spaces,

¢ = {(f:N f2a(R), £ = 1,2,...,L0,
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where the N2 are continuous linear functions on H. Even in this special
case it appears that to evaluate V(i) of (3.7) for a single X one must
solve n quadratic programming problems in as many as n + m + L variables.
To avoid this we propose the following approximation:

Replace the divided difference

kak[y+§k]_l‘kf)\['y]

ai&(x = 5 (3.10)
by the derivative
. 2
M) = gyl (3.11)
Thus V(X) of (3.7) is replaced by Vgpprox(x) = Vapprox(X) defined by
1 2
nkZ] LeFave)
approx(x) g N ) (3.12)
for each X, V (1) can be obtained by solving one quadratic optimization

approx
problem. Ve oztline the procedure, for more details, see Wahba (1980b)
and the example in Section 4. First, solve the quadratic optimization
problem to obtain fx and determine which constraints are active. Suppose
these correspond to N21,N22,...,N1L'. fA is then also the solution to
the quadratic optimization problem: Minimize Qx(f) subject to Nlif =
a(li), i=1,2,...,l's. The solution to this latter problem is linear in
y and is related to the data through an influence matrix, call it AL.(A).

Then

)
= ATrA L (A). (3.13)

1
n 2 ayk k A
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AL.(A) is given explicitly in Wahba (1980b), see also below.
The ingredients for computing TrAL,(A) will generally have been obtained

in the process of setting up and solving the quadratic optimization problem.

)

Unfortunately 3y
k

kaxly may be only piecewise well defined and

continuous in x. If a change in ) causes a change in the active

constraint set, then one or more of the 2 L f,|  may have a jump.
Byk k Ay

This can be seen in the examples in Section 4 and is the major drawback

of the method. The exact cross validation function V{()) of (3.7)

appears to be a continuous function of X for A > 0.
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4. Numerical Experiments
We numerically studied convolution equations with the model
1
i = fk(ﬁ-s)f(s)ds * e, 1=1,2,...,0, n even.
0
f(s)>0,0<s<1,

1
With J(f) = f(f(m)(s))zds. The constraints will be discretized to
0

f(%) >0,1i=1,2,...,n. To simplify the calculations while retaining many
of the features of the original problem we assumed that k(-) and f(-.)

were both in the n dimensional subspace F of Ng spanned by
{1,cos2mut, v=1,2,...,n/2, sin2mvt, v=1,2,...,n/2-1}.

Thus all functions in F, are periodic and the null space of J(-) in

Fn is spanned by the single function "1". Also, f and k are of the form

n/2-1 n/2-1 _
f(t) = ag+2 v§1 avc052nvt+.iz] B sinzmit + % 7pC0S™E (4.1)
n/2-1 n/2-1 )
k(t) = g+ 2 \)Z] gvc052wvt+ ?_\)Z} n,sin2mt + gn/zcosmt (4.2)
where
19 i, ! i
a, = ﬁiz1c052wvﬁf(ﬁ), B, = 5121S1n2“vﬁf(ﬁ) (4.3)
17 i i 10 i, i
£, =1 ) cosvaﬁk(ﬁ), n, = ﬁizls1n2nvﬁk(ﬁ). (4.4)
i=1

We have
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1
g(t) gk(t-s)f(s)ds

n/2-1
€9 * 2 Z] a £ =B n )cos2mut
\)=

V'V vy

n/2-1 .
+ 2 VZ1 (avnv+evgv)s1n2nvt

f%an/ZEH/ZCOSﬂnt,
and

n/2-1
=2 z (o2+82) (2mv) 2" + (1/2)02 1 (n) >"

fx, the minimizer in Fn of

n 1 i
0,(F) =17 ¢ LG Ls)f(s)ds-y,)? + Af(f ™ (s))2ds
is given by
~ n/2-1, n/2-14
fx(t) =09 * 2 z o cos2mit + 2 ) B sin2mvt
v=1 v=1
+ an/zcosnnt
where
% = 3p/&g
av - —1 (ava bvnv)
5\2)+n\2)+)\)\v v =

1,2

se+.n/2-1

(4.5)

(4.6)

(4.7)

(4.8)

(4.9)
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with
- 2m
A, = (2mv) (4.10)
a =1 'Z‘ COSZT!'\)iy v=0,] n/2
Vv nj___] n j 3ty
(4.11)
b = 17 sinzmidy, vel,2,...,n/2-1
v nj:] n J R I ] ]

The cross validation function V{)) of (3.8) in the unconstrained

case becomes

n/2-1 AN, 2 . M /2 2 ,
0 2 vZI [£3+ng+xxv] (av+bv)+[%£§+xxn/2] n/2
V(A) = d

[gn/2-1 AN, .1 *An/z 12

Ln v=1 g5+n3+kkv |1%£6+Akn/2J

(4.12)

In principle m can be chosen by cross validation (see Gamber (1979),
Yahba and Wendelberger (1980). In these experiments we have (arbitrarily)
setm= 2.

To study the constrained case we write this problem as follows:

Letting x = (f(%),...,f(g))', we have
Q,(f)= | | KWx-Wy| |2 + Ax'W'JWx (4.13)

where the nxn matrices K, J and W are given by
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/
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_ )
Co-ﬁ(],...,])

1 1 2 n
c, = j(cos2mus , cos2mus,...,cos2m:)

R VEVSPNN B S
s, = plsin2mug , sin2mi,... sin2mos) .

Note that WW' = %I.

We let ff be the minimizer of (4.13) subject to x > 0. The program

QUADPR in the Madison Academic Computing Center Library (MACC, 1977)

was used to find x to minimize the right hand side of (4.13) subject to x > 0.
This code employs the principal pivoting method of Cottle (1968). Call the
minimizer Xy - Letting the ith component of Xy be xx(i), the indices

i],...,iL. for which xx(i) > 0 are determined.

R R R Y SNVOR
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Let E be the n x L' indicator matrix of these indices, that is, E has & 1
in the ith row and jth column if i = ij, j=1,2,...,L', and zeroes

elsewhere. The solution to the problem: minimize
| | KWx=Wy| |2 + Ax'W'JIWx

subject to x(i) = 0 for i not one of H""’iL' is

X, = E(E'W'K' KNE+XE W' JWE) ™ VE'H'K' Wy (4.14)
. C
Defining 9y by
C 1
95(t) = ék(t-s)fg(s)ds
c ‘s C1 Conyy _ C . &/
where fAEFn satisfies (fx(ﬁ)""’fx(ﬁ)) = Xy, we have Lifx = gx(n) , and
c
LlfA
: nW'KW Xy = AL.(h)y (4.15)
C
Lnfl
where
- t ‘] ENAR"A
AL (X) = nWKWE(Y #AL5) TETWIK'H,
with

XK = E'W'K'KWE, ZJ = E'W'JHE.

Therefore (provided all i for which xx(i) = 0 are active constraints!)
we have
akax

: -—é-yT = TP(I-ALn()\))

=}
]
ne-13

.i

= n-L'+ATrB
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where ]
¢
5 = 1,30y
JYLK LY ! !
and the approximate cross validation function Vapprox(x) = Vipprox(x) iA
is :
[ | KWx, -Wy| |2
C _ )\
v (A) = . (4.16)
2PProxT - (dpL 4aTrB))2

TrB = TrZJ(ZK+AZJ)'] is computed by first using LINPACK (Dongarra et al
(1979)) to solve L' linear systems for B defined by

(LHrLge = 1,

and then computing TrB.

We pause to caution the reader that roundoff error lurks everywhere
in calculating with i11 posed problems (as this will be if k is at all
“smooth"), all calculations must be done in double precision and care
must be taken with such simple quantities as ||u-v|[* (don't compute
(u,u)-2(u,v)+(v,v)t).
To get a nice example function h in Fn for our Monte Carlo study,
we began with a convenient analytically defined function hoo(t) with hoo(O):hoo(1),

constructed a function ho(t) satisfying ho(o) - ho(l) by setting

1

ho(t) = hoo(t) + (ho(0)-hy (1))t + J(h o (1)-h (0)).

00

Then we took as our example function h the trigonometric interpolant to ho

via (4.1)-(4.4). For n = 64 the hoo and h we used as example functions

cannot be distinguished visually on a 8% x 11 plot. For our examples we




-23-

constructed k and several f'san from k00 and the foo's given below:

where

_$2 /902 (112 /9c2
Koo(t) = —— e 87257 4 o7 (11127 oo 43
V2ns
- ta 2 2 ¥ty )2
1 (t-.3)72s3 , (t-u) /2s5
foolt) =3 ——e¢ i e
v2ns, V2rs,

sy = -015, Sy = .045

and four different f's were generated by letting the peak separation

1
u-.3 be as in Table 1. In each example g(t) = [k(t-s)f(s)ds is computed
0

from (4.3)-(4.5) given k(

%), f(%) for i = 1,2,...,n. Figure 1 gives a

plot of k(t).

L ——e -
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Table 1

Peak separation

I

Tpomarn RANGE
1 .2 1.005 1.002
2 .15 1.016 1.081
3 .10 1.224 1.081
4 .05 6.650 1.318

|

12.p

i

10.}~
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o.L

6.1

.

™ i

>~ 4o

2.}

0..

-2.}

-4,.@@“@@ W e

-5-4-3-2-10 .1 ,2 .3 .4 5

Figure 1.
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The convolution kernel k(t).
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1
Figures 2a, 3a, 4a and 5a give f(t), g(t) = [k(t-s)f(s)ds, and
0

. were i.i.d. N(0,02)

y; = 9(3) + e, for examples 1-4, where the e,

pseudo random variables with o = .05. Figures 2b, 3b, 4b and 5b

give f, fﬁ and fgc for these same 4 examples. i is the minimizer of

V(1) for unconstrained problems given by (4.12) and computed by evaluating

V()) at equally spaced increments in 1og]0A, performing a clobal search,

evaluating V(1) at a finer set of equally spaced increments centered at

the previous minimum etc. The final search is performed on V()\) evaluated
1

. . ~ C
at increments of g in Togh. x 1is the minimizer of Vapprox(x) of (4.16).

In these examples the minimum was found by evaluating VC (A) at values

approx
of X satisfying 1ogA-logi = j{.1) for j = 0,+1,...,etc. The possible
perils of this process will be discussed later.

In each example, a "ringing" phenomena in the unconstrained solution
is very evident. Intuitively, the approximate solution retains some high
frequency components in an attempt to capture the two narrow peaks. In
each of the four examples the imposition of positivity constraints provided
a dramatic improvement in the solution. Anyone who has attempted a
numerical solution of an i11 posed problem knows that the visual character
of the solution can vary significantly with X (and to a lesser extent
with m, given the optimal A for that m.) In the unconstrained solutions,
the cross validation estimate of A was near optimal in Examples 1 and 2,
good in Example 3 and poor (from the point of mean square error of the

solution) in Example 4. The data behind this remark are given in

Table 1. The inefficiencies IDOMAIN and IRANGE in that table are defined

by

e

Satiad bl i lhin e

.
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n . .
1Y trpchy-rid”
- 1=
foomay =~
min ﬁ'gl(f)‘(ﬁ)-f(ﬁ))

The theory (Equation (3.9)) concerning the GCV estimate \ says (roughly)

that I = (1+0(1)) as n»o.

RANGE
We now discuss Example 3 in greater detail. Figure 6 gives the
mean square error of f fC, 9, and gg as a function of A.

n .
(MSE(f Z ))2, etc.). We have taken the origin as

:l—l

1ogx(1ogx=-9.889). Since the GCV estimate of A estimates the minimizer
of MSE(gA) or MSE(gg), it will generally be a good estimate of the minimizer

of MSE(f.) or HSE(fg) to the extent that MSE(fA) and MSE(gA), or

A
MSE(fg) and MSE(gg) have the same minimizer. The minimizers of the

four curves are marked by arrows. In these and other cases we have tried
(ne[30,100], smooth f, o a few percent of max|g(t)(), the optimal A for
MSE(fX) and MSE(gA) appear to be close, as ; practical matter. As a

theoretical phenomena for large n it may or may not be true, see Lukas

(1981) for some asymptotic results on the optimal A for different loss

functions in the unconstrained case.
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Figure 6. Comparison of mean square error of estimates of f and g, as a function of A.
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Figure 7 gives V(1) of (4.12), V¢ (1) of (4.16) and V¢(p) of

approx

(3.7) for Example 3. V(1) and VC (1) were computed at increments of .1

approx

in Togr. Ao was taken as the global minimizer of the computed Vgpprox
C

approx at their respective minimizers A and Ac are

marked by a large *. In Figure 6, the corresponding MSE values at

values. V and V

X and XC are also marked by a large *. In Figure 7, some of the computed

values of Vgpprox have been connected by a smooth curve. Two adjacent

points have not been connected if the set of active constraints is different
C

Vapprox

at lTeast one discontinuity somewhere between the two corresponding

for the two corresponding values of A. can be expected to have
values of A, (including the end points). Although the estimates XC
worked well in this and the other three examples tried, there are obvious
pitfalls in minimizing a discontinuous function, e.g. sensitivity to the
increment in Toga.

We decided to invest a fair amount of computer time to compute
VC(A) for this one example. The computed values are indicated by [
in Figure 7. The computation was attempted for 1ogx-1ogi from ~3.00 to
.6 in steps of .1. There are missing values whenever the quadratic
optimization routine QUADPR terminated with an error message. This
happened during the constrained minimization of the leaving out one
version of (4.13) in the process of calculating aiﬁ of (3.4), for some k
(typical error message: "'no complement variable found"). Nevertheless it

appears possible to connect the computed values by a smooth curve and

find the minimum by a global search in a neighborhood about or below i.
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Ve at its global minimizer is marked by in Figure 7, and the MSE

curves for fg and gg in Figure 6 are also marked by aJat the minimizer

of Vc. Qut of concern for the computational failures with QUADPR noted

above, it was decided to try this example for n = 50. The difficulty
of the quadratic program increases with n. Two replications were tried.

. C c
In the first, V°()) as well as Vapprox(A)) was successfully computed

for 1ogx-1ogi in steps of .1 from -2.4 to .6. The CPU time for n = 50
¢

was around%(%%%-’) times that for n = 64. V“()) was visually smooth

and convex near its minimum when plotted to the same scale as Figure 7

C
approx

the same apparently piecewise continuous behavior as in the example for

(equivalently, to 3 but not 4 significant figures). V showed

n = 64, Both functions had their global minimizers at 1ogx-1ogi = -.7
. c ~ C

while MSE(fx) was minimized at logi-logr = -.8, for an IDOMAIN of 1.009

C, etc.)

t . . .
(IDOMAIN js defined analogously to IDOMAIN with f replaced by f
In the second replication the computation of a VC(A) for a few scattered
values of )\ terminated in an error message but nevertheless a minimum

C . . C
of V’()) was easily found, andgresg}ted in Inomarn ©F 1.02.

The innocuous-looking convolution equation we have studied here is
very i1l posed, a phenomena surprisingly common in many experiments.

We may write
y = nW'Klix + ¢,

thus the design matrix X is nW'KW. If k is symmetric (as it is here),
then the “i's are all 0 and K is diagonail. Table 2 gives the gv‘s of

(4.2) and (4.13), which are also the singular values of the design matrix.

g1,...,gn/2_] are of multiplicity 2. Also given in Table 2 are the

A

o, B85 0 and 8, defined by (4.3) and (4.9), with x = x. If £, is

s gt B o e 80
.. -
L S X atiat 4 ik
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Fourier coefficients of f Fourier coefficients of f2

Singular
values of X

(Eigenvalues of K)

v a, Bv a, B Ev
2 1.2¢22¢2¢ - 1.2238¢E2 1.90220¢0¢0
1 -C.€20272z¢24 € .€GZ211ck -Q.€2182¢2 (.6CrlE28 @.CF4a1EQZ
2 -3.08333528 —-C.7328304 -2 .@ELRE3]1 -2.73,4237 {.6€21622
3 & 4@2371Z €.2542137 £.402GC176 2.24°53%2 @.720¢172
£ -2.128529Z2 @.23353€2 -&.1362351 @.@S25-3% P.3Z7EPTE
2 -2 .2528778 2.Q72¢0Q71 -C.23373Ep -2.¢ze0144 2.421%213
6 -¢ .£4¢12Q97 -0 .17724¢3 ¢ .¢€Z158 -2. 7 ¢.2ER7EL3
7 @ .24209C923 7.Z3E1774 2.24¢5517€ ¢. 2.1€722¢£¢
€ -Q.18502E2 (C.1CEEB4C -2.1173722 2 .1€c7C34 @.7CET274
9 -2.0G3C243 —-¢.23€6¢141 -£.22C04372 -2.1524027 @.25222%9
1¢ @ .22682388 -2.Q2320@2 @.2572243% -Q2.2546175 C.P2ELCeG
. 11 -2.2€44c¢8 €.1883329 R.027864% @.21272€2 €.212L7CE
12 -2.12181¢0 -C-.122382¢S -2.2Q47¢38 -L.2Q£882> g.@¢5217%
12 € .127248C -0 .2S5176¢E @ .Q215128 @ .2@171z4 @ .20z2eG5e
14 @.042024¢ ¢.1325G41 Q2.CCICERI —-Q.C2s 1728 @.zCewsezl
15 -¢.122F322 - €.2¢€R2C74 -Q.2c2@24c -¢ Q.ceez714
1E @ .033¢138 ~£.121€884 -2.2202205 .22 wll7 @.222€87¢
1 2.0747202€ Q@ .ZCL2EEC -Q.0LC2043 -Q.C7TCR22 €.7LQPZEZ
18 -2.68324E3 7 .2464257 -Q.20080.2 -€.0¢2v2¢12 @.2222273%3
1 -2 .722078Q3 -¢ .€337932 7.¢2¢yzev -0 ¢.ecece1c
RA 2.25€4273 -2.Q002Z85 Z.0¢0200C¢ 2.2€8702¢2 Q.uvdleed
21 -@.21445E62 L .24476TZ 2.20%c0e C.oeefwrz 2.07€22e1
22 -2 .031521C -¢.02278241 -¢ .QLCZ2C @.LevQ22e @ .d2eceec
23 2.025673<¢ -C.R1EE771 Q.QZ2CQ2C -Q.¢G.ezecl -P.ocee?e
24 C.CQ825C0% @.C24ZE12-- 2.822202e¢ @ g.2C0e02¢?
PS5 -2 .220R2362 0.2003832 C.200C3C0 Q.¢0.vCod 0Q.202¢e0¢
26 2.72045742 -2.216Q67C -0.0CQ722C -~@.22.00@¢2 e.z7zeece
K7 2.211202¢4 @€.337242€ -€.22220¢2 ¢ g.ezocCCe
22 -2.087C3822 € .Z207027@ @.2¢@2Cvg -2 ¢.202¢2¢
£C -2 .Q2284TF -¢ .0275671 -¢.Qceezie @ - .o0ceece
B¢ & .2@E7297% -¢.2Q81EE7TS -@.0CR00¢T -0.€Q. 200¢ -2.0geeeee
N 31 © .CCCECFE Q@ .225CLte Q.@L722€C —-C.L2vRC2e ~¢.2eecece
3 32 -2.2057113 -¢.2¢22€cC -g.2202e2¢

Eigenvalues of the design matrix and true and
(unconstrained) estimates of Fourier coefficients

of the solution, Example 3.

Table 2.




-36-

sufficiently small then a,,s B, are not estimable with double precision
arithmetic and it is seen that ;v and Ev are 0 (to as many figures as
we have printed). Although XX' is theoretically of full rank (64),

14 times the largest.

the 40th largest eigenvalue is around 10
From the examples we have studied, it appears that the imposition

of positivity constraints can be an important source of information in

very i11 posed problems, and that the GCV estimate for ) for constrained

problems, and its approximate version appear to do a good job of estimating

x. Of course not all problems will show such a dramatic improvement,

with the imposition of constraints, since, if no constraints are active,

then no information has been added. In some sense the examples tried
here were chosen in anticipation of negative unconstrained solutions
(and, we must admit, with some subjective hunches on the part of the
author concerning the type of problem the method is 1ikely to do well
on).

The evaluation of VQ(A) required n + 1 calls to QUADPR at a cost
per call for n = 64 of around 5 to 8 seconds CPU time on the Madison

UNIVAC 1110 while the computation of Vgpprox(x) requires one such call.

It is possible that a clever search procedure utilizing information from

c
V(2) or Vapprox

small number of functional evaluations, particularly with an improved

(1) could be used to obtain the minimizer of VC(A) with 2

quadratic optimation routine. On the other hand the minimizer of
c . . .
vapprox may be adequate in many situations. It is clear that both the

exact and the approximate GCV method warrants further study, both theoretically

and numerically.
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