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Abstract

The relationship between certain regularization methods for solving
ill posed linear operator equations and ridge methods in regression
problems is described. The regularization estimates we describe may be
viewed as ridge estimates in a (reproducing kernel) Hilbert space H. When
the solution is known a priori to be in some closed, convex set in H,
for example, the set of nonnegative functions, or the set of monotone
functions, then one can propose regularized estimates subject to side
conditions such as nonnegativity, monotonicity, etc. Some applications
in medicine and meteorology are described. We describe the method of
generalized cross validation for choosing the smoothing (or ridge)
parameter in the presence of a family of linear inequality constraints.
Some successful numerical examples, solving ill posed convolution equations
with noisy data, subject to nonnegativity constraints, are presented.
The technique appears to be quite successful in adding information, doing
nearly the optimal amount of smoothing, and resolving distinct peaks
in the solution which have been blurred by the convolution operation.

Prepared for the Proceedings of the Third Purdue Symposium on Statistical
Decision Theory, S. S. Gupta and J. 0. Berger, eds.
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1. Introduction

We are interested in the Hilbert space version of constrained

ridge regression, which we will show has many interesting applications.

The (ridge) regression setup is:

y X l)
nxl nxp pxl nxl

6 - N(OF 2I)

-~ N(O,bE)

where X and Z are known, a2, b are unknown. A "ridge-Stein" estimate of

8, call it 6a, is given by the minimizer of Q (M,

A n2
QA(8) = II-B + I -B

where If'-f is the Euclidean mean. If A is taken as G
2/nb, then it is

not hard to show that

J= E(8y). (1.2)

If it is known that B is in some closed convex set C in E., +'en one may

estimate a as the minimizer of QX(a) subject to the const. 3C. Some

interesting C are those determined by a finite number of linear inequality

constraints, for example 6i > 0, i = 1,2,...,p, or 81 62 ... 6B

M.E. Bock discusses a related setup in these proceedings.

We particularly want to allow a to have a partially improper prior,

for example, all = . Then E-l is defined in the natural way and will

This work was supported by the Office of Naval Research under Contract No,
N00014-77-C-0675.
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then not be of full rank. This causes no problem provided X and

Z-l are such that

1 V'X'XB + A1'I'1a = 0 ='1 = 0. (1.3)

n

An example of a Hilbert space version of this problem (an indirect

sensing experiment) is

1
Y(ti) = fK(tiss)f(s)ds + cit i 1,2,...,n, 0 < tI <..< t n < 1 (1.4)

0

E N(Oc 2 l)

where K is known, f is known to be in the Sobolev space W (14m= f:f,f,...,f(ml)

abs.cont., f(m)L 2[O,l]),see Adams (1975)), and 02 is unknown. A so called

"regularized" estimate f of f is given by the minimizer in W of

X) n Il(Y(t i) - JK(ti s)f(s)ds)2 + J(f(m)(s))2dS. (1.5)

ni=l ' 0 0

Q (f) is analogous to

Qk(8) M 1Iy-X8112 + A018,-1 .

1
If the linear functionals f +K(ti ,s)f(s)ds are bounded in m for

each i = 1,2,...,n, and

n 1 1 (n
-i (fK(ti,s)f(s)ds) 2 + Xf(f (m)(s))2 ds = 0 4f = 0 (1.6)
=0 0

then Q (f) will have a unique minimizer, call it fin W2 .m

If f is endowed with the zero mean Gaussian prior defined by: f is

vE times an unpinned m-fold integrated Weiner process (Shepp (1966)),

with a diffuse prior on the initial conditions, then it can be shown

(Kimeldorf and Wahba (1971), Wahba (1978)), that

:,-*/1 ,

-'LI
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f (t) = E{f(t)Iy(tl),...,Y(tn)), (1.7)

where X = a2/nb. This prior may be colloquially described as "f(m)=white noise",
1

However, with this prior Ef(f(m)(s))2ds is not finite, and the meaning
0

of b as a process parameter becomes unclear for fEW2. If it is assumed

that fEWm , then it appears to be more appropriate to view X as the2'
"bandwidth parameter" which governs the square bias-variance tradeoff.

If (1.6) holds, then Q (f) will have a unique minimizer in any

closed convex set C-H (see Wong (1980), Gorenflo and Hilpert (1980).

The set of non-negative functions {f:f(s)>O,O<s<l} is closed and convex

in Wm for m = 1,2,..., and the set of monotone increasing functions

{f:f'(s)zO, O<s<l} is closed convex in W for m = 2,3,..... See also

Wright and Wegman (1980).

We are interested in the general formulation of the above problem.

The model is

Yi = Lti f + i, i = 1,2,...,n

where it is known that feCcH, where H is a given Hilbert space, C is a

closed, convex set in H, and LtL...Lt are n continuous linear functions
i n

on H. J(-) is a seminorm on H with an m dimensional null space, and

it is "believed" that J(f) is not too large. We propose estimating

f as the minimizer of

Q : (Ltf-y) 2 + XJ(f) (1.8)

il i "

~subject to fsC.
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If

ini (Lt f)2  + XJ(f) : 0

C= 0, then there will be a unique solution, call it fC We will

refer to this solution as the constrained regularized estimate, sometimes

dropping the superscript C.

There are now two problems. One, given X, how does one compute a

good approximation to f C, and two, how does one estimate a good value

of X. In many interesting cases, when H is a reproducing kernel space,

the constraint set C can be discretized in a convergent way, see Wahba

(1973). For example, the minimizer of Q(f subject to frC = {f:f(s)>O,O<s<l}

is well approximated by the minimizer of QXf) subject to feCL = {f:

f(Q)>O,i = 1,2,...,L} for H = W2, J(.) 0 (f(m)(s))2ds, L large. If CL is any
0

(closed) set defined by L linear inequality constraints, the problem of

minimizing QX(f) subject to fECL can be reduced to a quadratic programming

problem with linear inequality constraints in at most n + m + L

variables. See Kimeldorf and Wahba (1971). The researcher interested

in numerical methods for this and related problems may consult Anselone

and Laurent (1968), Utreras (1979), Wahba (1978, 1980a, 1980b, 1981),

Wahba and Wendelberger (1980). (The formulae in Kimeldorf and Wahba are

inappropriate for computational purposes.) Remarks concerning the effect

of quadrature in this setting may be found in Wahba (1981). Library

software for solving the quadratic programming problem by the principal

pivoting method is available, for moderate n + m + L, see MACC (1979).

We will go through a relatively simple example in Section 4.

Our main interest in this paper is the development of a method

for choosing X which is suitable for the constrained problem.

,. --... °= -" . - * 0.
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In this paper we propose an extension of the generalized cross

validation (GCV) method, to the constrained case. This method was

proposed in the unconstrained case in Craven and Wahba (1979),

Golub, Heath and Wahba (1979), and Wahba (1977). The GCV estimate of

X we propose in the constrained case can be expensive to compute. Thus

we propose a first order approximation to it which is very much cheaper

to compute, and appears to be satisfactory in the examples we tried.

We experimentally tested the constrained regularization method with

the approximate GCV estimate of X on a convolution equation with several

simulated data sets generated according to the model (1.4) with non-

negative f's. For comparison, we first estimated f by minimizing

Q (f) in W and using the (usual) unconstrained GCV estimate X for X.

We then estimated f by minimizing Q (f) in Cn where Cn = {f :f ( )>O i= l ,2 ,.. n),

and choosing X by the approximate GCV method for constrained problems.

The constrained estimates with the approximate GCV choice of X were all

dramatic improvements over the unconstrained estimates. As a

practical matter, they displayed a remarkable ability to resolve

closely spaced peaks in the solution that have been blurred in the data

by the convolution operation. The convolution equation is ill posed,

and the positivity constraints are apparently supplying much needed

information. Three cases of the exact GCV method for constrained problems

were tried for choosing A. It gave a very slightly better (and possibly

more stable) estimate of the optimal X. However it's much more expensive

to compute.

L -- - -. c-t
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2. Some Applications

i) Meteorology

In recent years several satellites have been put in orbit which carry

detectors which measure the upwelling radiation at selected frequencies.

The observed radiation at frequency v, when the subsatellite point is P,

may be modelled (after some linearization and approximation) as

I (P) = fK(P,P')T(P')dP',
QP

where P' is a point in the atmosphere, Rp is the volume within the

detector field of view when the subsatellite point is P, T(P') is the

atmospheric temperature at point P' and K is determined from the

equations of radiative transfer. See for example Fritz et al (1972),

Smith et al (1979), Westwater (1979). It is desired to estimate T(P)

to use as initial conditions in numerical weather forecasting. Occasionally,

outside information, such as the existence of a temperature inversion,

is available, thus providing some inequality conditions on the derivative

of T(P) in the vertical direction.

ii) Computerized Tomograpliy

Computerized tomography machines are in most well equipped hospitals.

Computerized tomography machines observe line (or more accurately, strip)

integrals of the X-ray density f of parts of the human body, and from

this data

Yi= ff(P)dP + ei, i = 1,2,...,n,

estimates of f(P) are made. Algorithms for estimating f must be capable
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of dealing with nzlO s , see Herman and Natterer (1981), Shepp and

Kruskal (1978). The true f is non-negative.

iii) Stereology

Scientists studying tumor growth feed laboratory mice a carcinogen,

so..rifice the mice, and then freeze and slice the livers. Images of the

liver slices are magnified and areas of tumor cross sections are

measured. It is expensive to examine the liver slices, thus it is

desired to take a sample of the possible slices and from the resulting data

infer numbers and (three dimensional) size distributions of tumors in

the entire liver from data from a few slices. In the "random spheres"

model, the tumors are assumed to be spherical with the radii density f(s).

If the slices are "random" then the cross sectional (two dimensional)

density g(t) is related to f by

g(t) = tf f(s) ds, p = fsf(s)ds.
to

See Anderssen and Jakeman (1975), Watson (1971), Wicksell (1926).

This setup does not fit into the model (1.4) because i) in theory a

random sample from the population with density g is observed (not

g(ti)+c i) and ii) in practice the liver is embedded in a paraffin block

and sliced systematically perpendicular to an axis which (roughly)

maximizes the cross sectional area of the liver being sliced. Nonetheless,

it is fruitful to think of this problem in the context of ill posed

integral equations (see Anderssen and Jakeman (1975), Nychka (1981)).
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iv) Convolution Equations

Convolution equations in one and higher dimensions arise in many

areas of physics. See, for example Chambless (1980), Davies (1979).

These equations can be surprisingly ill posed.

v) Other applications

Other applications may be found in the books of Anderssen, DeHoog

and Lukas (1980), Golberg (1978), Tihonov and Arsenin (1977), Twomey

(1977), Nashed (1981).

I

I
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3. Cross validation for constrained problems

We first define the ordinary cross validation (OCV) or "leaving

out one" method of choosing X.

Let Li = Lti and let f [k] be the minimizer of

n (Lif-yi) 2 + XJ(f) (3.1)

i k

subject to frCcH, where we assume sufficient conditions on the {Li}

and J(.) for existence and uniqueness. A figure of merit can be defined

for A by

Vo() = kl(L kf k (3.2)

where LkfX[k] is the prediction of Yk given the data Y'.... Yk-l'Yk+l"'9 .yn,

and using X. The OCV estimate of X is the minimizer of V0 (X). In the

unconstrained ridge regression case this estimate is 'known as Allen's

PRESS (see Hocking's discussion to Stone (1974)). The names of Mosteller

and Tukey (1968) Geisser (1975), M. Stone (1974) and others are associated

with early work on ordinary cross validation. See also Wahba and

Wold (1975). In the ridge regression case the OCV or Allen's PRESS

has the undesireable property of not being invariant under arbitrary

rotations y-Ny of the data space. If one observed Fy instead of y

the OCV estimate of X may be different. GCV (to be defined below) may

be thought of as a rotation invariant version of OCV, for which some good

theoretical properties may be obtained. For further discussion see

Craven and Wahba (1979), Golub, Heath and Wahba (1979), Wahba (1977),

Utreras (1978), Speckman (1981).

To extend the definition of the GCV estimate of X to constrained

problems, we will use the Theorem given below.
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Theorem: Let H be a Hilbert space, J(-) a semi norm on H and L...9

be n continuous linear functionals on H, with the property, that for any

fixed X > 0,

1 (L f)2 + XJ(f) =0 4 f = 0
i= 11 k

Let C be a closed convex set in H and let f X[k] [z] and f [z] be the

minimizers in C of

)+ Xj(f)

i ;l(L k z

and

1 ~ LK~k 2 + Xj (f),
5 i 1l z

respectively, where z = (z1, ... Szn )'. Then

f I+kI= f X[k1[y] ,k = 1,2,... ,n (3.3)

where 6k=(,. L0 ,Lf~[]y~~O..O (the non G entry is in the

kth position.

Remark: This theorem says, that given data

y1

Y-1

the minimizer of Q()in C is fA[k
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Proof: Proofs in special cases may be found in Craven and Wahba (1979)

and Golub, Heath and Wahba (1979). A proof in the generality cited here

is in Wahba (1980c), although no doubt the result is a special case

of classic optimization theory results.

Now define the "differential influence" of Yk when A is used, by

ak*kk(>,),

L kf [Y+ 6k]-Lkf[Y] (3.4)ak*k M = (3.4
kk k

where

6k = LkfX[k][y]'yk" (3.5)

ak*k() is a divided difference of Lkfx considered as a function of the

kth data point (and is well defined).

Applying Lk to both sides of (3.3) and substituting the result

into (3.4) and (3.4) into (3.2) gives the identity

1 n (Lkf -yk)2

(3.6

VO1) = (3.6)
nk -l (1-ak* (X)) 2

kkk

The GCV estimate of X is obtained by replacing ak*(X) in (3.6)

1 kk
by the "average differential influence" I ak*(X), that is, the GCV

k=l

estimate of X is obtained by minimizing V(X) = vC() defined by

1C n ~ (~ x y ) 2

VC(X) = i=I (3.7)
(l-i I ak*k(X))2

ni= l

Some properties of this estimate in the unconstrained case are

known. First, in the unconstrained (C=H) case, Lkf [y] is linear in y,

and there exists an influence matrix A() with the property

Nowel Will
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A(X)y.

In this case ak(X), the divided difference of Lkfx with respect to

Yk + 6k and Yk' is also the first derivative
aLkf aA

akk(X) - kk()

where akk(\) is the kkth entry of A(A). Then V() can be written

I[ 1I-A(x)yj 2

V(X) = n. x (3.8)(n'Tr(l-A()) )2

To understand the known (and potentially obtainable) properties

of the GCV estimate of A we will first compare it with the unbiassed

risk estimates of Stein (see Hudson (1974), Mallows (1973)).

Let L(f,A) be the predictive mean square error when X is used

lnL(f,X) = 6il(Lkf-Lk)

= ijjA(X)y-gjj
n

where g (L f,... f)' : Efy.

If o2 is known (or an unbiassed estimate of it is available)then an

unbiassed estimate R(X) of R(X) = EfL(fA) = -jj(I-A(x))gfj2 + 2LTrA2(X)

is available and is given by

S 1 IA(X))y2 Tr(IA(X))2
R( ) 6] 94(I-A(())y+ !LTrA2()

n n n

this corresponds to Mallows' CL, see Mallows (1973), Craven and Wahba (1979).
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To talk about convergence, consider a family Lt. te[0,l] of continuous

linear functionals on H, with Lt ,...,Lt a subset. Let K be the
t1 tn

operator which maps H into the real valued functions on [0,1] by (Kf)(t) = Ltf,

Loosely speaking, if K(H) is a reproducing kernel space with sufficiently

smooth reproducing kernel, then as tl,... ,tn become dense in [0,1],

EfV(X)zEfL(f,X) + G
2

for X in the neighborhood of the minimizer of EfL(f,X). See Wahba

(1977). Under various circumstances it can be shown (Craven and Wahba (1979)), that
EfL(f , )

mi EfL(fA) + 1 as n-a, feH (3.9)

where A is the minimizer of EfV(). Utreras (1978) and Speckman (1981)

have recently rigorized and strengthened these results.

In general for (3.9) to be true one appears to need that l(X)-O

and P1
2(A)/u2()O for A in the neighborhood of A* where

ii(X) = !TrAi(X) and A* is the minimizer of EfL(fX). Intuitively,

this means that the signal must be concentrated in a

small "corner" of the data space En' Optimal rates of convergence for

f corresponding to those given by C. Stone (1980) can be obtained in

some cases Craven and Wahba (1979), Wahba (1977a, 1977b, 1979b), Lukas (1981).

We now return to the constrained case, fEC . We consider only the

case where C is (or is well approximated by) the intersection of a

finite number of half-spaces,

CL = {f:N~fc( ), Z : 1,2,... ,L},
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where the NZ are continuous linear functions on H. Even in this special

case it appears that to evaluate V(X) of (3.7) for a single A one must

solve n quadratic programming problems in as many as n + m + L variables.

To avoid this we propose the following approximation:

Replace the divided difference

a Lkfx[Y+6 k]-Lkfx[y] (3.10)

ak() 6k

by the derivative

akk(X) = -L kfA[y]ly. (3.11)

C

Thus V(X) of (3.7) is replaced by V a x) = V () defined byapprox app rox
1 n (Lkf-Y)

V approx(A) = k 1 (3.12)
(ppro n LY 2

For each X, V approx(X) can be obtained by solving one quadratic optimization

problem. We outline the procedure, for more details, see Wahba (1980b)

and the example in Section 4. First, solve the quadratic optimization

problem to obtain f and determine which constraints are active. Suppose

these correspond to N I,N2, ... ,NZL,. f is then also the solution to

the quadratic optimization problem: Minimize QX(f) subject to N Zif =

c(zi), i = 1,2,...,L',. The solution to this latter problem is linear in

y and is related to the data through an influence matrix, call it AL,(X).

Then

1TrA (3.13)
il L k f n
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AL,(A) is given explicitly in Wahba (1980b), see also below.

The ingredients for computing TrAL°(X) will generally have been obtained

in the process of setting up and solving the quadratic optimization problem.

Unfortunately -I- LkfXIy may be only piecewise well defined and
Ty ky

continuous in A. If a change in X causes a change in the active

constraint set, then one or more of the --L Lkf~ly may have a jump.

This can be seen in the examples in Section 4 and is the major drawback

of the method. The exact cross validation function V(X) of (3.7)

appears to be a continuous function of X for X > 0.
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4. Numerical Experiments

We numerically studied convolution equations with the model

1 i

= k(I-s)f(s)ds + ei, i 1,2,...,n, n even.
0

f(s)>O,O<s<l,

With J(f) = f(f(m)(s))2ds. The constraints will be discretized to

0

f(i) > 0, i = 1,2,...,n. To simplify the calculations while retaining many

of the features of the original problem we assumed that k(-) and f(.)

were both in the n dimensional subspace F of Wm spanned by

{l,cos2rvt, v=l,2,... ,n/2, sin2Tvt, v=l,2,... ,n/2-1}.

Thus all functions in Fn are periodic and the null space of J(-) in

Fn is spanned by the single function "1". Also, f and k are of the form

n/2-1 n/2-1
f(t) = aO + 2 1 a Vcos 2 nvt+21 a sin2r-t + n/2 cos7rnt (4.1)

v=l v- I
n/2-1 n/2-1

k(t) = 0 + 2 cos27vt+2 n,,sin27vt + cn2Cosnnt (4.2)
v=-l v1

where

= n n V n (a 1 = lCOS2m-v~f(I), 1 sin27T f(1) (4.3)
v =l n n n n

1n n
1 cos2irvk(i) , V sin2Tk(I). (4.4)

i=l i n

We have

41
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g(t) =fk(t-s)f(s)ds
0

n/2-1

Vl (a 2 )cos2rvt
v=1 Va-VyVV

n /2-1
+ 2 1 (a n +B~ )sin2iTrv t

and

n/2-12mm
J ) 2 (ct 2+a;2)(2Trv) 2m+ (1/2)a 212(irn2m. (4.6)

the minimizer in Fn Of

if) n 1 1

QXI(fk( -s)f(s)ds-yi )2 + AJ(f(m)(S))2 ds (4.7)

is given by

f~~~ ~ XctCI 21 cos2Trvt +2 1 avsin2rrvt

(4.8)

+ a/cosnrnt

where

(a E=

CV E 2 +rl2 +X V V I
V V V v 1 12.. ,n/2-1

-1 (a + )(4.9)
aV 2 +,2 +Ax (aA VV

V V V

Al /2 &2 .1 n/2&n/2

7- n/2 +AAn/ 2
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wi th

: (27rv) 2m (4.10)

1 n
a cos2wrAy, v=O,l .,n/2Snj=l

(4.11)
n

b= I sin27vly, v=1,2,...,n/2-1,bV nj=1  n

The cross validation function V() of (3.8) in the unconstrained

case becomes

n/2-1 XX 2 n/Xn -2 2
2 2+ [ XX I+.~ (a,+b V ;[1 2+X a a 2

= V n/2(4.12)f2n/2-l Xx 1! An/2 12

V~1 2+n7+X~+XXv 17 A/ 2J

In principle m can be chosen by cross validation (see Gamber (1979),

Wahba and Wendelberger (1980). In these experiments we have (arbitrarily)

set m = 2.

To study the constrained case we write this problem as follows:

Letting x = (f(n),...,f(R))', we have
n n

Q A (f)= IIKWx-WyjI2 + Xx'W'JWx (4.13)

where the nxn matrices K, J and W are given by

4
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EoI 0 1 0 0

0 0

1 0

Ii / - I I/ -

0 0

I %~/2-1 ~ /-

0 0 n/2- 0

0 0 0 ~ 2

0 1 A 1 ~n/2-1
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Vf ci 1
- CnlO

w = - ~ cn/ 2 -lW=

-C 2

/-S - I
1

- Sn/2-
1

where

c

o n

c 1(cos2rv! , cos2rv?,...,cos2rv n)CV n n n n"

s = 1(sin27NI , sin2m-v?,...,sin2Tnv2 )
n n

Note that WW' = I

We let fC be the minimizer of (4.13) subject to x > 0. The program

QUADPR in the Madison Academic Computing Center Library (MACC, 1977)

was used to find x to minimize the right hand side of (4.13) subject to x > 0.

This code employs the principal pivoting method of Cottle (1968). Call the

minimizer x. Letting the ith component of x be x (i), the indices

i ... iL ,for which xA(i) > 0 are determined.
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Let E be the n x L' indicator matrix of these indices, that is, E has a 1

in the ith row and jth column if i = i., j = 1,2,....L', and zeroes

elsewhere. The solution to the problem: minimize

IIKWx-Wy112 + Xx'W'JWx

subject to x(i) = 0 for i not one of il,..., iL is

= E(E'W'K'KWE+XE'W'JWE)-E'W'K'Wy (4.14)

Defining gC by

gC(t) = fk(t-s)fC(s)ds0

where fF nC satisfies (f n = x, we have Lif =gc in and

L1 fc(L*§JnW' Kk'x (?')y (4.15)

where

AL,(X) = nW'KWE(IK+Xlj)-IE'W'K'W,

with

K= E'W'K'KWE, I = E'W'JWE.

Therefore (provided all i for which x,(i) = 0 are active constraints!)

we have

n 3Lkf x
n I - = Tr(I'AL(X))

i=l Yk
= n-L'+XTrB
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where

B = jj(jK+Xj) -l

and the approximate cross validation function Vap x) = Va W(,)approx approx
is

V (KCxAWYII 2  (4.16)
Vapprox(() (nL,+XTrB))2

TrB =TrIJ(IK+XJ)
-1 is computed by first using LINPACK (Dongarra et al

(1979)) to solve L' linear systems for B defined by

(IK+XIJ)' = Yj

and then computing TrB.

We pause to caution the reader that roundoff error lurks everywhere

in calculating with ill posed problems (as this will be if k is at all

"smooth"), all calculations must be done in double precision and care

must be taken with such simple quantities as llu-vI12 (don't compute

(u,u)-2(u,v)+(v,v)!).

To get a nice example function h in Fn for our Monte Carlo study,

we began with a convenient analytically defined function hoo (t) with h o(O)zh o(1),

constructed a function h (t) satisfying h (0) - h (1) by setting

h (t) = h o(t) + (hoo(O)-h (1))t + 2(hoo(1)-hoo(O)).

Then we took as our example function h the trigonometric interpolant to ho

via (4.1)-(4.4). For n = 64 the hoo and h we used as example functions
cannot be distinguished visually on a 82 x 11 plot. For our examples we

L 82
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constructed k and several f'seFn from k00 and the f0 0 s given below:

1 e- t 2 / 2 s 2 +e ( - t ) 1/ 2 s ' =.4
k (t) - et + e-s .04300 s 04

-(t-. 3)2/2S 2 1 (t-W)2/2S2

-e + e

where

s 1 .015, s 2 = .045

and four different f's were generated by letting the peak separation
1

p-.3 be as in Table 1. In each example g(t) = fk(t-s)f(s)ds is computed

0
from (4.3)-(4.5) given k(-), f(-) for i 1,2,...,n. Figure 1 gives ann
plot of k(t).

4

, . .0
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Table 1

Example Peak separation IDOMAIN IRANGE

1 .2 1.005 1.002
2 .15 1.016 1.081
3 .10 1.224 1.081
4 .05 6.650 1.318

4a.

10.

-2.

5 J -. 4 .3 -. 9 -. 1 0 .1.2 I.3 .4 .5J

Figure 1. The convolution kernel k(t).

Mie
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1
Figures 2a, 3a, 4a and 5a give f(t), g(t) = fk(t-s)f(s)ds, and

0
Yi = g(l) + ei, for examples 1-4, where the ci were i.i.d. N(Oa 2)

pseudo random variables with a = .05. Figures 2b, 3b, 4b and 5b

C
give f, f% and fAfor these same 4 examples. A is the minimizer of

V() for unconstrained problems given by (4.12) and computed by evaluating

V(X) at equally spaced increments in logloX, performing a global search,

evaluating V(X) at a finer set of equally spaced increments centered at

the previous minimum etc. The final search is performed on V(X) evaluated

at increments of 1 in logX. is the minimizer of VC  (X) of (4.16).9 approx

In these examples the minimum was found by evaluating VC  () at values
approx

of X satisfying logX-logx = j(.l) for j = 0,±l,...,etc. The possible

perils of this process will be discussed later.

In each example, a "ringing" phenomena in the unconstrained solution

is very evident. Intuitively, the approximate solution retains some high

frequency components in an attempt to capture the two narrow peaks. In

each of the four examples the imposition of positivity constraints provided

a dramatic improvement in the solution. Anyone who has attempted a

numerical solution of an ill posed problem knows that the visual character

of the solution can vary significantly with A (and to a lesser extent

with m, given the optimal X for that m.) In the unconstrained solutions,

the cross validation estimate of A was near optimal in Examples 1 and 2,

good in Example 3 and poor (from the point of mean square error of the

solution) in Example 4. The data behind this remark are given in

Table 1. The inefficiencies IDOMAIN and IRANGE in that table are defined

by
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i n 2nln- (f ( ).f(1))2

DOMAIN 1 2min 1 (D!-f(1))

n 2

IRANGE n Amin 1 ~(gX(1)-g(!))

The theory (Equation (3.9)) concerning the GCV estimate A says (roughly)

that IRANGE = (1+o(1)) as n-,.

We now discuss Example 3 in greater detail. Figure 6 gives the

mean square error of fV, f , and g as a function of X.

(MSE(fA) = 1 (fA( ) - f() 2, etc.). We have taken the origin as

log;(logX=-9.889). Since the GCV estimate of A estimates the minimizer

of MSE(g.) or MSE(gC), it will generally be a good estimate of the minimizer

of MSE(fA) or r1SE(fC) to the extent that MSE(fA) and MSE(g,), or

MSE(fc) and MSE(gC) have the same minimizer. The minimizers of the

four curves are marked by arrows. In these and other cases we have tried

(nE[30,100], smooth f, a a few percent of maxlg(t)),the optimal X for
t

MSE(fA) and MSE(gX) appear to be close, as a practical matter. As a

theoretical phenomena for large n it may or may not be true, see Lukas

(1981) for some asymptotic results on the optimal A for different loss

functions in the unconstrained case.

q
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.8

.6

.4

MSE(f,)

.2

wu-LhI±IwLLHLllIliU III uI I uIIIIIliij.LUit iii ij LLLImJuj
-3.00 -2.50 -2-00 -1 .50 -1.00 -. 50 .00 .50

.012

.010

.008 MEg,

.006

.004

-3.00 -2.50 -2.00 -1.50 -1.00 -. 50 .00 .50
logx - logX

Figure 6. Comparison of mean square error of estimates of f and g, as a function of X~.
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Figure 7 gives V(X) of (4.12), Vp (X) of (4.16) and VC(x) ofapprox
(3.7) for Example 3. V(X) and Vc  ( were computed at increments of .1approx

in logX. XC was taken as the global minimizer of the computed V•approx

values. V and VC  at their respective minimizers A and XC areapprox

marked by a large *. In Figure 6, the corresponding MSE values at

X and AC are also marked by a large *. In Figure 7, some of the computed

Values of have been connected by a smooth curve. Two adjacentapprox

points have not been connected if the set of active constraints is different

for the two corresponding values of X. VC  can be expected to have
approx

at least one discontinuity somewhere between the two corresponding

values of A, (including the end points). Although the estimates C

worked well in this and the other three examples tried, there are obvious

pitfalls in minimizing a discontinuous function, e.g. sensitivity to the

increment in logX.

We decided to invest a fair amount of computer time to compute

vC(A) for this one example. The computed values are indicated by

in Figure 7. The computation was attempted for logX-logA from -3.00 to

.6 in steps of .1. There are missing values whenever the quadratic

optimization routine QUADPR terminated with an error message. This

happened during the constrained minimization of the leaving out one

version of (4.13) in the process of calculating ak* of (3.4), for some k

(typical error message:"no complement variable found"). Nevertheless it

appears possible to connect the computed values by a smooth curve and

find the minimum by a global search in a neighborhood about or below X.

..........
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.0058

-\\ --- V

0056 _ ,approx

. vc I

.0052 I

.0050 N.

•.0048

. 0046

.0044

,l •0042

N+

.0052

- + + b.

300 -2.50 -2.00 -1.60 -1.00 -.50 .00 50

loglOx-logloxA

Figure 7. V, VC  and VC

S approx
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VC at its global minimizer is marked byO in Figure 7, and the MSE

curves for and gC in Figure 6 are also marked by a 0 at the minimizer

of VC . Out of concern for the computational failures with QUADPR noted

above, it was decided to try this example for n = 50. The difficulty

of the quadratic program increases with n. Two replications were tried.

In the first, VC() as well as Varx)) was successfully computedapprox

for logX-logX in steps of .1 from -2.4 to .6. The CPU time for n = 50

was around (X-( )) times that for n = 64. VC(X) was visually smooth

and convex near its minimum when plotted to the same scale as Figure 7

(equivalently, to 3 but not 4 significant figures). VC  showedapprox

the same apparently piecewise continuous behavior as in the example for

n = 64. Both functions had their global minimizers at logX-log = -.7
C C

while MISE(f X) was minimized at logA-logX = -.8, for an IDOMAIN Of 1.009
C.

(IDOMAIN is defined analogously to IDOMAIN with f replaced by fC, etc.)

In the second replication the computation of a vC() for a few scattered

values of X terminated in an error message but nevertheless a minimum

of V C(A) was easily found, and resulted in IDOMAN of 1.02.

The innocuous-looking convolution equation we have studied here is

very ill posed, a phenomena surprisingly common in many experiments.

We may write

Y = nW'KWx +

thus the design matrix X is nW'KW. If k is symmetric (as it is here),

then the ni's are all 0 and K is diagonal. Table 2 gives the 's of

(4.2) and (4.13), which are also the singular values of the design matrix.

1 .. n/21 are of multiplicity 2. Also given in Table 2 are the
A A

cy ev, a and defined by (4.3) and (4.9), with X = X. If & is

S -
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Singular
Fourier coefficients of f Fourier coefficients of f ' values of X

X(Eigenvalues of K)

V VV aVV

.21. Oi 0 01z2. 0.55

1 -(0. 62 0?t e C .692 1165 -0 .e62 i:3-2 0.6S~1E28 O.G641ee2
2 -0 .0293528 -C .?32 304 -0 .0E49-to1 -2 .?3Z43F57 0 .6e41653
3 V. 4 .2 37 1 C .254ze13? .4 W2 G17 6 0 . 24 DG33 3 0.7?072

14 5C. L:5S32 0.355E2 -O.l.;62951 0.0? OS-5: 0. ? 6P --
5 0~ .052? 27T 3.0Z21 -e0 53 3E0 0' .0 ~144 0 .4 7.1 -4 3
6 -Z -C e*I29-- -2. .1??24- 3 -V -Z. 5 15 i ,747 v'2~7
7 0 24-59~ e .26E1774 .240 51 ?E 209,5E229 O.1E722&9
8 -0.18 e9'- - 3 V.196t549 -3173 .16c?94 O.Z~e7(2?4

-9 -. 093e-54-3 -V.236141 -0.0-0045?2 -0.1S.4'5? e. 2029
10 0.2260386 - .2 oozZ . 2.05?2t,45 -0.e546176 0.0C259S69
11 -0 .2644608 e.1883329 0.00276649 e.0190262 .0 12 t7 ? e
12 -0 .141622.- -C-. 10 5362 G -0.0047038 - VO. 0 - 9--; -:.' -'5 1 ?S
13 .174S -e.2917606 0 .02-15128 0.2)017124 0 .002eg952
14 0."429244 e.1325941 e .e 00 VC53 -O.eov- 72E 0 .Y,0 07?8S1
15 -e .122P323 - e. . oeoe74 -0.2O20249c -. 0 -N ;53 0 - 00 027?14
1C 0.P33013F K366 -0-e2e0495 C . oz2 17 V.00-ce76
1? e2.07~q?326 e0542659 -e .0 e2043 0.,i'Y-0 e2 2 e."O:2E3
1 r -0.067,94E5 0.0464- 57 -e. -Y'000-0L9 e .o oi 12 o.0n-073
19 -Z .'?2V07593 -0 .e537932 0 e.0001'27 -. 2KC 3 0022"019
20 0.05C4273 -0.00002565 2. 000oo.0 U'0,11 63 O.VVM5
21 -e2.141456? L.?44?76c-, 0 . 0 0 PC P00 . C, 00 0 0. 0 0 e C VI l;1

23 'Z.025673z- -2.e16877?1 0.20ee2 -0 .C.: 0 C -V . 00,; 1 z20
24 C.. 02205- e. e24E512~- e~ooz o q oo z. V.Zqm2
25 -0 .223 0.0003692 0.000 OO Oie0.0 2,.

26 0.?045?42 -O.e16O679 -0." 2000 -0 .0020 0 .20e
7? 3.0112024 0.0072426 e-. 0 110.00,e0 0.00(,2. , ) 0 .V0 Ve k

2! -,,. 079q54 2.0070270 e2.02002o -0.eein22 P.320oCo~o
-0 . V 0 -9104 1- -C/2.'.075671 -0. 0 UOZ07 0 . !2.00 -0.?22?ee

0.06?7293 -i'.2018679 -O.Oeeove -O..e00:' -2. oeae22
31 o .266 vee .z - 00'594 C .002 -C "I'22 -C .2222.2
32 -13..20 57?113-.23 -0.00002

Eigenvalues of the design matrix and true and
(unconstrained) estimates of Fourier coefficients
of the solution, Example 3.

Table 2.
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sufficiently small then ctv, Bv are not estimable with double precision

arithmetic and it is seen that t and a. are 0 (to as many figures as

we have printed). Although XX' is theoretically of full rank (64),

the 40th largest eigenvalue is around 10-14 times the largest.

From the examples we have studied, it appears that the imposition

of positivity constraints can be an important source of information in

very ill posed problems, and that the GCV estimate for X for constrained

problems, and its approximate version appear to do a good job of estimating

X. Of course not all problems will show such a dramatic improvement,

with the imposition of constraints, since, if no constraints are active,

then no information has been added. In some sense the examples tried

here were chosen in anticipation of negative unconstrained solutions

(and, we must admit, with some subjective hunches on the part of the

author concerning the type of problem the method is likely to do well

on).

The evaluation of VC(0) required n + 1 calls to QUADPR at a cost

per call for n = 64 of around 5 to 8 seconds CPU time on the Madison

UNIVAC 1110 while the computation of VCpprox( ) requires one such call.

It is possible that a clever search procedure utilizing information from

VW or V () could be used to obtain the minimizer of vC(X) with aapprox

small number of functional evaluations, particularly with an improved

quadratic optimation routine. On the other hand the minimizer of

Vappro may be adequate in many situations. It is clear that both the

exact and the approximate GCV method warrants further study, both theoretically

and numerically.

4,!

AIL



-37-

5. Acknowledgments

We thank D. Chambless for providing us early drafts of his work

involving positivity constraints, A.R. Davies and P. Merz for stimulating

conversations concerning problems with nonnegative solutions, E. Wegman

for encouragement, J. Fleisher for help in using QUADPR and last but not

least C. Sheridan, who wrote the computer program.



-38-

REFERENCES

Adams, R.A. (1975). Sobolev Spaces. Academic Press, New York.

Anderssen, R.S., and Jakeman, A.J. (1975). Abel type integral equations
in stereology,II. Computational methods of solution and the random
spheres approximation. J. Microscopy 105, 2, 135-153.

Anderssen, R.S., de Hoog, F.R., and Lukas, M.A., eds. (1980). "The
application and numerical solution of integral equations". Sijthoff
and Noordhoff.

Anselone, P.M. and Laurent, P.J. (1968). A general method for the
construction of interpolating or smoothing spline-functions.
Numerische Mathematik 12, 66-82.

Aronszajn, N. (1950). Theory of reproducing kernels. Transactions of
the American Mathematical Society 68, 337-404.

Chambless, D.A. (1980). Radiological data analysis in the time and
frequency domain II. Auburn University, Department of Mathematics,
Montgomery, AL, report.

Cottle, R.W. (1968). The principal pivoting method of quadratic
programming. Mathematics of the Decision Sciences, 1, 144-162.

Craven, P. and Wahba, G. (1979). Smoothing noisy data with spline
functions: estimating the correct degree of smoothing by the method
of generalized cross-validdtion. Numer. Math., 31, 377.

Davies, A.R. (1979). The numerical inversion of integral transforms
in laser anemometry and photon correlation. To appear, Proceedings
of the International Conference on Ill Posed Problems, M.Z. Nashed, ed.

Dongarra, J.J., Moler, C.B., Bun-., J.R., and Stewart, G.W. (1979).
LINPACK User's Guide. SIAM, Philadelphia, PA.

Fritz, S., Wark, D.Q., Fleming, J.E., Smith, W.P., Jacobowitz, H.,
Hilleary, D.T. and Alishouse, J.C. (1972). Temperature sounding
from satellites, NOAA Technical Report NESS 59, National Oceanic
and Atmospheric Administration, Washington, D.C.

Gamber, H. (1979). Choice of an optimal shape parameter when smoothing
noisy data. Commun. Statist. A8, 14, 1425-1436.

4



-39-

Geisser, S. (1975). The predictive sample reuse method with applications.
J. Amer. Statist. Assoc., 70, 320-328.

Golberg, M.A. (1978), ed. "Solution methods for integral equations, Theory and
Applicationg'. Plenum Press, New York.

Golub, G., Heath, M. and Wahba, G. (1979). Generalized cross-validation
as a method for choosing a good ridge parameter. Technometrics, 21,
215-223.

Gorenflo, P. and Hilpert, M. (1980). On the continuity of convexly
constrained interpolation, in "Approximation Theory III", E.W.
Cheney, ed., Academic Press, 449-454.

Herman, G.T., and Natterer, F. (1981). "Mathematical aspects of computerized
tomography".Springer-Verlag, New York.

Hudson, H.M. (1974). Empirical Bayes Estimation, Technical Report No. 58,
Stanford University, Department of Statistics, Stanford, CA,

IMSL (International Mathematical and Statistical Library)(1980).
Version 8, Subroutine ICSSCV.

Kimeldorf, G., and Wahba, G. (1971). Some results on Tchebycheffian spline
functions, J. Math. Anal. and Applic., 33, 1, 82-95.

Lukas, M. (1981). Regularization of linear operator equations, Thesis,
Department of Pure Mathematics, Australian National University, Canberra.

MACC (radison Academic Computing Center), University of Wisconsin-Madison
(1977). QUADPR/QUADMP Quadratic Programming Subroutines. Madison, WI.

Mallows, C.L. (1973). Some comments on Cp. Technometrics 14, 661-675.

Merz, P.H. (1980). Determination of adsorption energy distribution by
regularization and a characterization of certain adsorption isotherms.
J. Comput. Physics 38, 64-85.

Mosteller, F., and Tukey, J.W. (1968). Data analysis including Statistics,
in"Handbook of Social Psychology'" Vol. 2. Addison-Wesley, Reading
Madd. 80-203.

Nashed, M.A., ed. (1981). Proceeding of the International Conference on
Ill-Posed Problems held at Newark, Delaware, November 2-6, 1979, to
appear.

Nychka, D. In preparation.

Shepp, L.A. (1966). Radon-Nikodym derivatives of Gaussian measures.
Ann. Math. Statist. 37, 2, 321-354.

Shepp, L.A. and Kruskal, J.B. (1978). Computerized tomography: The
new medical x-ray technology. Amer. Math. Monthly 85, 420-439.



-40-

Smith, W.L., Woolf, H.M., Hayden, C.M., Wark, D.Q., and McMillin, L.M.
(1979). The TIROS-N Operational vertical sounder. Bull. American
Meteorological Society, 60, 10, 1177-1187.

Speckman, P. (1981). Spline smoothing and optimal rates of convergence
in nonparametric regression models, UNiversity of Oregon, manuscript.

Stone, C.J. (1980). Optimal rates of convergence for nonparametric
estimators. Ann. Statist. 8, 6, 1348-1360.

Stone, r1. (1974). Cross-validitory choice and assessment of statistical
prediction, JRSS, Series B, 36, 2, 111-147.

Tihonov, A.N. and Arsenin, V.Y. (1977). "Solutions of ill-posed problems".
Translation editor Fritz John, V.H. Winston and Sons, Washington,
D.C.

Twomey, S. (1977). "Introduction to the mathematics of inversion in
remote sensing and indirect measurements." Elsevier, New York.

Utreras, F. (1979). Cross validation techniques for smoothing spline
functions in one or two dimensions. In "Smoothing Techniques for
Curve Estimation". T. Gasser and M. Rosenblatt, eds. Lecture Notes
in Mathematics, No. 757, Springer-Verlag, Verlin.

Utreras, F. (1978). Quelques resultats d'optimalite pour la methode
de validation crossee. Seminaire d'Analyse Numerique No. 301,
Universite Scientifique et Medicale de Grenoble, Grenoble, France.

Wahba, G. (1973). On the minimization of a quadratic functional subject
to a continuous family of linear inequality constraints, SIAM J.
Control, 11, 1.

Wahba, G. (1977a). Practical approximate solutions to linear operator
equations when the data are noisy, SIAM J. Numerical Analaysis,
14, 4,651-667.

Wahba, G. (1977b). Comments to "Consistent nonparametric regression, by
C.J. Stone, Ann. Statist., 5, 4, 647-640.

,* Wahba, G. (1978). Improper priors, spline smoothing and the problem
of guarding against model errors in regression. J. Roy. Stat.
Soc. Ser. B., 40, 3.

Wahba, G. (1979a). Smoothing and ill posed problems, in "Solution Methods
for Integral Equations with Applications". Michael Golberg, ed.,
Plenum Press, 183-194.

Wahba, G. (1979b). Convergence rates of "thin plate" smoothing splines
when the data are noisy in "Smoothing Techniques for Curve
Estimation". T. Gasser and M. Rosenblatt, eds. Springer-Verlag,
Heidelberg, 232-245.

- - -~---. -. .. .. , - ~ - -- - ---



-41-

Wahba, G. (1980a). Spline bases, regularization, and generalized cross
validation for solving approximation problems with large quantities
of noisy data, in"Approximation Theory III",E.W. Cheney, ed.
Academic Press, 905-912.

Wahba, G. (1980b). Ill posed problems: Numerical and statistical methods
for mildly, moderately, and severely ill posed problems with noisy
data. University of Wisconsin-Madison Department of Statistics
Technical Report No. 595.

Wahba, G. (1980c). Cross validation and constrained regularization
methods for mildly ill posed problems. University of Wisconsin-
Madison Technical Report No. 629, to appear, Proceedings of the
International Conference on Ill Posed Problems. M.Z. Nashed,
ed. Academic Press.

Wahba, G. (1981). Numerical experiments with the thin plate histospline.
University of Wisconsin-Madison, Department of Statistics
Technical Report No. 638, to appear, Commun. Statist. A.

Wahba, G. and Wendelberger, J. (1980). Some new mathematical methods
for variational objective analysis using splines and cross validation.
Monthly Weather Review, 108, 8, 1122-1143.

Wahba, G. and Wold, S. (7975). A completely automatic French curve:
Fitting spline functions by cross-validation. Commun. Statist. 4, 1,
1-17.

Westwater, E.D. (1979). Ill posed problems in remote sensing of the
earth's atmosphere by microwave radiometry. Manuscript, to
appear, Proceedings of the International Confernece on Ill-Posed
Problems, M.Z. Nashed, ed., Academic Press.

Watson, G.S. (1971). Estimating functionals of particle size distributions,
Biometrika 58, 3, 483-490.

Wicksell, S.D. (1925). The corpuscle problem, Part I. Biometrika 17,
87-97.

Wong, W.H. (1980). An analysis of the volume-matching problem and related
topics in smooth density estimation. Ph.D. thesis, University of
Wisconsin-Madison.

Wright, I.W. and Wegman, E.J., (1980). Isotonic, convex and related
splines. Ann. Statist. 8, 5, 1023-1035.



Unclassified
SECUAk.TY C.. ASSIFICATION OF TmIS PAGE *'bhon Date Entered)

PAGE READ INSTRUCTIONS
REPORT DOCUMENTATION PAEBEFORE COMPLETING FORM

1. REPORT NUMBER 2. GOVT ACCESSIO1 NO. 3. RECIPIENT'S CATALOG NUMBER

Technical Report No. 646 .-
4. TITLE (and Subtitle) S. TYPE OF REPORT & PERIOD COVERED

CONSTRAINED REGULARIZATION FOR ILL POSED LINEAR Scientific Interim
OPERATOR EQUATIONS, WITH APPLICATIONS IN 6. PERFORMING ORG. REPORT NUMBER
METEOROLOGY AND MEDICINE

7. AUTHOR(s) 6. CONTRACT OR GRANT NUMBER(s)

Grace Wahba
N00014-77-C-0675

S. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT, TASK

AREA A WORK UNIT NUMBERS

Department of Statistics
1210 W. Dayton St.
Madison, WI 53706

II. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

Office of Naval Research August 1981
Arlington, VA 13. NUMBER OF PAGES

41
14. MONITORING AGENCY NAME & AODRESS(If different Irom Controlling Office) IS. SECURITY CLASS. (of this report)

IS&. DECLASSIFICATION/DOWNGRADING
SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20. It different from Report)

18. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reveres side If necessary mid Identify by block number)

Ill posed problems, constrained regularization, cross validation in the
presence of constraints.

20, ABSTRACT (Continue on reverse side It necIessay nd Identify by block number)

(see reverse sheet)

DD J 1473 EDITION OF I NOV 65 IS OBSOLETE
S IN 0102-LF.014-6601

SECURITY CLASSIFICATION OF THIS PAGE (When Dae Entered)

4q - . . ...



Abstract

The relationship between certain regularization methods for solving
ill posed linear operator equations and ridge methods in regression
problems is described. The regularization estimates we describe may be
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in medicine and meteorology are described. We describe the method of
generalized cross validation for choosing the smoothing (or ridge)
parameter in the presence of a family of linear inequality constraints.
Some successful numerical examples, solving ill posed convolution equations
with noisy data, subject to nonnegativity constraints, are presented.
The technique appears to be quite successful in adding information, doing
nearly the optimal amount of smoothing, and resolving distinct peaks
in the solution which have been blurred by the convolution operation.


