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I   INTRODUCTION 

The central theme of our research Is the recovery of information 

about the three-dimensional structure and physical characteristics of 

surfaces depicted In an image — their shapes, locations, and 

photometric properties. The main obstacle to surface recovery is the 
i* ' 

confounding of the desired properties In the sensory data: images are 

Inherently ambiguous. Our approach to resolving this ambiguity rests on 

the application of generic, low-level knowledge (e.g., such basic 

assumptions as surface continuity and general position) to constrain the 

interpretation. The problem may be viewed as that of decomposing the 

image into its physically meaningful constituents — surface 

orientation, reflectance, illumination, and so on. The "intrinsic image 

model" provides a conceptual and computational framework in which this 

vlew Is made expl ici t. 

Surface perception plays a fundamental role in early visual 

processing, both in humans and in machines. An explicit representation 

of surface structure is necessary for many low-level visual functions 

Involved in such applications as terrain modeling, remote sensing, 

navigation, manipulation, and obstacle avoidance. It is also a 

prerequisite for general-purpose vision systems capable of human-level 

performance in such tasks as object recognition and scene description. 

Work on surface perception has focused on the discrimination of 

edge types (e.g., extremal boundary or cast shadow), on the three- 

dimensional interpretation of edges, and on surface reconstruction by 

interpolating from edges and using texture geometry. 

, 
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II       RESEARCH ACCOMPLISHV1ENTS 

Much  of    our   earlier    work  on     three-dimenslonal   InterpretatIon    of 

edges  and  texture  assumed a capability  to  d.scriminate  edges  of  distinct 

physical     types:   extremal     edges,   shadow    boundaries,   discontinuities  of 

surface orientation,     and    refIectance edges.       Each edge     type     Imposes 

distinct    constraints  on  surface  recovery,     but   these  constraints  cannot 

be    exploited unless  edges    can be  reiiably    classified.    Existing  edge- 

class i ficat ion     techniques  based    on   junction    catalogues and  constraint 

propaGation      depend    critically    on     ideal       data,     and    are     therefore 

inadequate  for  natural   imagery.       For   these  reasons,   our work   focused  on 

developing    new edge-classification  techniques  that    could be  applied   to 

natural   imagery,     and    as a    result  of    this     effort,  we    developed    and 

implemented    a . new  intensIty-based    approach     to     edge    classification. 

Using  basic    properties  of  scenes  and   images,    we  deduced  signatures   for 

several     edge     types     that    are    expressed     in     terms    of    correlational 

properties  of  the   image   intensities   in  the  neighborhood of  the  edge,  and 

developed    a  computer   program    that  evaluates   image    edges  against  these 

prototype    signatures.    The    program    effectively discriminates  extremaI 

boundaries     from    cast     shadow boundaries     in     cases    where     traditional 

junction  cues  are  absent  from the   image. 

Reports of our previous work on edge reconstruction, surface 

interpolation, and shape recovery from texture have been published in 

professional journals [Ref 1-7]; reprints of these papers are available 

on  request. 

A-       Edge Classification 

Edges play a central role in three-dimensional surface 

reconstruction. Crucial to exploiting the constraints imposed by edges 

is edge sorting-classifying the image edges according to the type of 

surface boundary they represent (e.g., extremal boundaries, shadow 

edges, su 'ice orientation discontinuities, or texture edges). Because 

each    edge    type     imposes    different     constraints    on     three-dimensional 
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interpretation, misclassIfication can  lead to serious  interpretation 

errors.  Edge cias sification in  iine drawings has been addressed  in 

terms of propagation of  junction constraints, giobal structural  cues 

such as parallelism and  symmetry, and global optimization criteria on 

the  three-dimensional interpretation.  Because these techniques depend 

on perfect  edge data,  their  applicability to natural  imagery  is 

quest ionable. 

An alternative approach to edge sorting is to use intensity and 

spectrai information in the neighborhood of the edge. Horn [8] 

suggested that the intensity profiles across edges (such as peak versus 

step) could provide signatures for some edge types. However, this 

technique has not worked for complex imagery. 

In this section we describe an intensity-based, line-sorting 

technique that distinguishes line types by statistically comparing 

intensity variations along opposite sides of the edge. We have focused 

on two line types—extremal edges and cast shadow boundaries—but 

extensions to other edge types have also been explored. 

B.  Defining the Problem 

Because line types are defined in terms of the scene events they 

denote, any method for line sorting must provide some basis for 

discriminating those events by their appearance in the image. We 

therefore begin by chzracterizing the distinctive properties of extremal 

boundaries and cast shadow edges, and defining the computational problem 

of identifying thos» edges. 

Extremal Boundaries—Projective mapping from image to scene 

tends to be continuous because physical surfaces tend to 

be continuous. Almost everywhere in a typical image, 

therefore, nearby points in the image correspond to 

nearby points in the scene. This adjacency is preserved 

over any change in point of view or scene configuration, 

short of rending the connected surfaces of which the 

V 
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scene  is  composed.  The distinguishing  property of 

extremal   boundaries   (which  can  be  defined  as 

discontinuities  in  the  projective mapping)  is  their 

systematic  violation  of  this  rule:   the  apparent 

juxtaposition of two surfaces  across an extremal  edge 

represents  no fixed property of either  surface, but is 

subject  to   the vagaries  of viewpoint  and  scene 

configuration.  For example.  If you position your finger 

to coincide with a particular feature on the wall  or 

outside  the window, a smaI I  change in  the position of 

head  or  hand may drastically  affect  the  apparent 

relationship.  Because the false appearance of proximity 

is  the hallmark of extremal  edges,  the  problem in 

identifying  those edges  is to distinguish  In the image 

the actual  proximity of nearby points on connected 

surfaces from accidental proximity imposed by projection. 

Casi  Shadows-Cast  shadows  in  outdoor  scenes  represent 

transitions from direct to scattered illumination caused 

by the interposition of an occluding body between the sun 

and the viewed  surface. The problem in identifying cast 

shadows  is to distinguish these  transitions in incident 

illumination  from  changes  in  albedo  or  surface 

orientation, for  example. This  kind of discrimination 

presents a problem because  the  effects of all  these 

parameters are confounded  in the image data-a change in 

image brightness may reflect a change  in  albedo or 

surface orientation, as well as in incident Illumination. 

Because the  relation among  illumination,  reflectivity, 

orientation, and  image  Irradiance  is well  known,  the 

presence of shadows in an Image could be readily detected 

if a constant planar reference pattern could be placed in 

the scene;  when the apparent brightness of a  constant 

pattern varies with  location, the change in brightness 

must,  by elimination,  be attributed to a change  in 

v 
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illumination. Of course, such active intervention is 

generally impractical; the problem is to achieve the 

effect of viewing a constant pattern across the shadow 

edge without actually placing such a pattern in the 

scene. This effect could be achieved if some fixed 

relationship were known to hold between the surface 

strips on each side of the shadow edge. 

In short, extremal boundaries are curves across which distant 

points in space are placed in apparent juxtaposition by projection, 

violating the continuity of the projective mapping that holds over mosi 

of the image. To identify extremal boundaries requires, therefore, that 

actual proximity be distinguished from apparent proximity imposed by 

projection. Cast shadow edges are contours across which the pattern of 

surface reflectance has been systematically transformed by an abrupt 

change in 11luninatIon. To identify cast shadow edges, the effects of 

illumination must be distinguished from those of albedo and surface 

orientation, as if a constant planar reference pattern had been placed 

across the edge. 

C  Computational Theory 

Our solution rests on the simple principle that coherence in the 

Image reflects real coherence in the scene, rather than a coincidence of 

the structure and aligment of distinct scene constituents. We measure 

coherence in the neighborhood of an edge by performing a normalized 

correlation on intensity values at corresponding points across the edge. 

(Other measures of coherence are possible, such as continuity of linear 
structure.) 

A high correlation implies that the edge and its neighborhood 

correspond to a strip on -. connected surface. Therefore, the edge is 

not an extremal boundary, and furthermore, the regions on either side 

can be regarded as instances of a (statist leally) constant pattern. In 

that case, the presence of a shadow can be detected by constructing a 

regression equation whose parameters signal  any systematic photometric 

■ 

*.*-»"•"-••- 

.  -)*»■. ."»''^^nf 

mm rtBBI 



distortion of the pattern across the edge. Idealiy, this distortion is 

iinear, but noniinearites are introduced in practice by complex lighting 

effects, film or sensor response, and so forth. 

A low correlation does not necessarily signal an extremal boundary, 

but could reflect low contrast or fragmented surfac» structure. 

However, the local disruptions of correlation that signal extremal edges 

can be distinguished from a global lack- of structured surface markings 

by using a neighborhood of the image around the edge to set a baseline 

for correlation. A contour of low correlation surrounded by regions of 

high correlation is likely to denote an extremal boundary. 

To obtain a baseline, the given edge is embedded in a family of 

parallel curves, and a sequence of regressions performed from one curve 

onto the next. In terms of this regression sequence, the various edge 

types display distinctive "signatures" that can be computed from the 

image data: extremal boundaries display a sharp notch in correlation 

where the fabric of the projective mapping is torn by the boundary. 

Cast shadow boundaries sustain high correlations across the edge, but 

sharp spikes occur in the regression parameters where the surface 

structure is systematically transformed by the illumination transition. 

A low correlation throughout implies that either the contrast is too low 

or the surface structure too fragmented for any positive conclusion to 

be drawn. 

This strategy follows from the assumption that coherence in the 

image—as measured by correlation—implies a connected surface. The 

rationale for this assumption follows from some elementary observations 

on the character of natural scenes and Images. First, as mentioned 

above. It follows from the fact that surfaces tend to be continuous so 

that nearby points In the Image usually correspond to nearby points in 

the scene (i.e., the projective mapping Is, in general, continuous). 

Second, because the structure of surfaces tends to be coherent, such 

properties as reflectance and orientation at a given point on a 

connected surface are (statistically) good predictors of the properties 

at nearby points. Third, because scenes are made up of distinct objects 
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7*-. ."."; äm&mr 



'. 

whose structure and spatial configuration are governed by extremely 

complex factors, the properties of widely separated surface points, or 

points on surfaces of distinct objects, can usually be regarded as 

unrelated and independent. 

Because of these three principles—surface continuity, coherence, 

and independence—we can expect intensity values at nearby image points 

to be highly correlated. (It is easily verified that this is so for 

most images.) That is, a small step in the image usually corresponds to 

a small step on some connected surface, so surface coherence imposes a 

statistical relation on the properties of nearby points. Thus, when we 

place the points on either side of an arbitrary image curve in 

correspondence, we should often expect to see a high correlation between 

the intensity values at those points. However, when that small step 

happens to cross an extremal boundary, the corresponding surface points, 

belong in general, to distinct objects, and might be widely separated in 

space. In that case, the properties of the points are independent. 

Thus, when the points on either side of an extremal boundary are placed 

in correspondence, we should never observe a high correlation unless the 

surfaces meeting at the boundary possess identical structures, and 

happen to lie in perfect register f'om the observer's viewpoint. The 

likelihood of this occurrence is vanishingly small. 

Thus, we may confidently conclude that coherence of structure 

across an image curve (as measured by correlation) denotes true 

coherence of scene structure rather than an accident of scene 

configuration. 

D.   impi ementat ion and Results 

Our implementation assumes that an edge has been located by edge- 

finding techniques. In practice, edges were often traced by hand; 

automatically detected zero-crossing edges were also used as inputs. We 

construct a parallel family of curves around the edge by imposing a new 

coordinate system on the image as follows: arc length on the edge is 

taken as the y-coordinate, and orthogonal distance from the edge (right- 
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handed) as the x-coordinate. This amounts to coercing a strip around 

the edge into a rectangular region whose centra! column corresponds to 

the original edge. The surrounding columns correspond to parallel 

curves on either side of the edge. The rectangular strip was 

constructed using bilinear interpolation of intensity values to reduce 

quantization artifacts. 

Once the rectified strip was constructed, a sequence of linear 

regressions was performed between columns. To avoid spurious 

correlation imposed by the imaging and digitizing process, regressions 

were computed between the i-th column and the (i + 2)th. The outcome of 

this computation was a normalized correlation coefficient, additive 

regression term, and multiplicative regression term, each a function of 

the location of the column. The midpoints of these plots represent the 

regression across the original edge. 

In terms of these regression sequence plots, we define the 

following expected edge signatures (see Figure 1 for idealized plots): 

* An extremal boundary is indicated by a sharp notch in an 
otherwise high correlation at the nominal edge location. 

* A cast shadow boundary is Indicated by high correlation 
maintained across the edge, but sharp spikes or notches can 
be present in the additive and multiplicative regression 
parameter, depending on the sense of the shadow transition 
and the digitization function. 

* A high correlation coefficient with no disturbance in the 
regression parameters implies that the edge is not 
phys icaily s igni fleant. 

* Sustained low correlat ion implies low contrast or lack of 
surface structure, and no classification can be made. 

No attempt has yet been made to classify the edge type signatures 

automatically; however, the computation was performed on a number of 

edges in both aerial and ground imagery. Examples of the images, edges, 

and regression sequence plots are shown in Figures 2 through 6. The 

regression plots should be compared to the idealized signatures of 

Fi gure 1. 
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The edge-sorting method presented above, derived from basic 

properties of visual scenes, shows promise as a usefui technique, 

particularly in connect ion with established line-junction techniques. 

Potential specialized applications of the technique include shadow 

detection for use in raised-object cueing and camera-model recovery. 

A detailed report of this technique is being prepared for 

publication. 
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(a)    Extremal Boundary— notch In correlation across the edge. Slope and Intercept in the low-correlation area 
are meaningless. 

(bl   Cast Shadow — sustained high correlation across the edge, with disturbance of one or both regression 
parameters.   The nature of this disturbance depends on the sense of the edge (i.e. whether the shadow lies 
on the left or right), and on details of the imaging and digitizing process.   In practice, nonlinearities per- 
turb the correlation slightly. 

(c)    No Edge Present — sustained high correlation, no disturbance in regression parameters. 

FIGURE 1    IDEALIZED REGRESSION PLOTS 
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FIGURE  2     EXAMPLE  OF   EXTREMAL  EDGE 
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FIGURE  3    EXAMPLE  OF   EXTREMAL  EDGE 
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FIGURE  4     EXAMPLE  OF   LOW CONTRAST EXTREMAL   EDGE 
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FIGURE  5    EXAMPLE  OF  CAST-SHADOW  EDGE 
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FIGURE  6     EXAMPLE OF   REGRESSION  PLOTS WHERE  NO  EDGE   IS  PRESENT 
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