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The central theme of our research is the recovery of information about the
three-dimensional structure and physical characteristics of surfaces depicted
in an image -- their shapes, locations, and photometric properties. The main
obstacle to surface recovery is the confounding of the desired properties in
the sensory data: images are inherently ambiguous. Our approach to resolving
this ambiguity rests on the application of generic, low-level knowledge (e.g.,
such basic assumptions as surface continuity and general position) to constrain
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the interpretation. The problem may be viewed as that of decomposing the
image into its physically meaningful constituents -- surface orientation,
reflectance, illumination, and so on. The 'intrinsic image modei" provides a
conceptual and computational framework in which this view is made explicit.

surface perception plays a fundamental role in early visual processing,
ooth in humans and in machines.

Wiork on surface perception has focused on the discrimination of edge
types (e.g., extremal boundary or cast shadow), on the three-dimensional

interpretation of edges, and on surface reconstruction by interpolating from
edges and using texture geometry.
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| INTRODUCT ION

The central theme of our research is the recovery of information
about the three-dimensional structure and physical characteristics of
surfaces depicted in an |Image -- their shapes, locations, and
photometric propfrtles. The maln obstiacie to surface recovery Is the
confounding of the deslred properties in the sensory data: images are
inherentiy ambiguous. Our approach to resolving this ambiguity rests on
the appiicatlon of generic, lTow-level knowledge (e.g., such baslc
assumptions as surface continuity and general poslition) to constrain the
interpretation. The probiem may be viewed as that of decomposing the
image Into its physicaily meanlngfui constituents - surface
orientation, refiectance, Iliumiratlon, and so on. The "Intrinslc image
modei" provides a conceptuai and computational framework in which this

view Is made expiicit.

Surface perception plays a fundamental role In early wvisual
processing, both In humans and in machlnes. An expilclt representation
of surface structure is necessary for many iow-level visual functions
invoived 1in such appllications as terrain modeiing, remote sensing,
navigation, manipuiatlon, and obstacie avoldance. it Is aiso a
prerequisite for generai-purpose vision systems capabie of human-ievel

performance in such tasks as object recognitlon and scene description.

Work on surface perception has focused on the discrimlnation of
edge types (e.g., extremal boundary or cast shadow), on the three-
dimensional Interpretation of edges, and on surface reconstruction by

Interpoiating from edges and nsing texture geometry.
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il RESEARCH ACCOMPL I SHMENTS

Much of our eariier work on three-dimensionai interpretation of
edges and texture assumed a capablilty to discriminate edges of distlnct
physical types: extremal edges, shadow boundaries, dlscontinuitles of
surface orientation, and refiectance edges. Each edge type imposes
distinct constraints on surface recovery, but these constraints cannot
be expioited uniess edges can be reliabiy ciassified. Existing edge-
classification techniques based on junction catalogues and constraint
propagation depend critlcaiiy on ideal data, and are therefore

inadequate for natural Imagery. For these reasons, our work focused on

deveioping new edge-classification techniques that could be applied to
naturai imagery, and as a result of thls effort, we developed and
h impismented a new intensity-based approach to edge classification.
Using baslc properties of scenes and images, we deduced signatures for
several edge types that are expressed in terms of correlatlonai
properties of the image intenslties in the neighborhood of the edge, and
deveioped a computer program that evaiuates image edges against these
prototype signatures. The program effectiveiy discriminates extremai
boundaries from cast shadow boundarles In cases where traditlional

junction cues are absent from the Image.

Reports of our previous work on edge reconstruction, surface
Interpoiation, and shape recovery from texture have been publlshed in
professional journals [Ref 1-7]; reprints of these papers are available

on request.

A. Edge Ciassification

Edges piay a centrai role In three~dimenslonai surface
reconstruction. Crucial to explolting the constraints Imposed by edges
is edge sorting--ciassifylng the image edges according to the type of
surface boundary they represent (e.g., extremai boundaries, shadow

edges, su"face orientation discontlnuities, or texture edges). Because

cach edge type Imposes different constraints on three-dimensional
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interpretation, misciassification can lead to serious interpretation
errors. Edge ciassification in 1iine drawings has been addressed in
terms of propagation of junction constraints, giobai structural cues
such as paraiieiism and symmetry, and giobai optimization criteria on
the thkree-dimensional interpretation. Because these techniques depend
on perfect edge data, their appiicabiiity to naturai imagery s

questionabie.

An aiternative approach to edge sorting is to wuse intensity and
spectral information 1in the neighboriiood of the edge. Horn [8]
suggested that the intensity profiies across edges (such as peak versus
step) couid provide signatures for some edge types. However, this

technique has not worked for compiex imagery.

in this section we describe an intensity-based, iine-sorting
technique that distinguishes iine types by statisticaily comparing
intensity variations aiong opposite sides of the edge. We have focused
on two iine types-—extremai edges and cast shadow boundaries--but

extensions to other edge types have aiso been expiored.

B. Defining the Probiem

Because iine types are defined in terms of the scene events they
denote, any method for iine sorting must provide some basis for
discriminating those events by their appearance in the image. We
therefore begin by characterizing the distinctive properties of extremai
boundaries and sast shadow edges, and defining the computationai probiem

of identifying thoss edges.

Extremai Boundaries--Projective mapping from image to scene

tends to be continuous because physicai surfaces tend to
be continuous. Aimost everywhere in a typicai image,
therefore, nearby points in the image correspond to
nearby points in the scene. This adjacency is preserved
over any change in point of view or scene configuration,

short of rending the connected surfaces of which the




Cast

scene s composed. The distinguishing property of
extremaij boundaries (which can be defined as
discontinuities in the projective mapping) is their
systematic vioiation of this ruie: the apparent
juxtaposition of two surfaces across an extremnai edge
represents no fixed property of either surface, but is
subject to the vagaries of viewpoint and scene
configuration. For exampie, if you position your finger
to coincide with a particuiar feature on the waii or
outside the window, a smaii change in the position of
head or hand may drasticaiiy affect the apparent
reiationship. Because the faise appearance of proximity
is the haiimark of extremai edges, the probiem in
identifying those edges is to distinguish in the image
the actuai proximity of nearby points on connected

surfaces from accidentai proximity imposed by projection.

Shadows--Cast shadows in outdoor scenes represent

transitions from direct to scattered iiiumination caused
by the interposition of an occiuding body between the sun
and the viewed surface. The problem in identifying cast
shadows s to distinguish these transitions in incident
iiiumination from changes In aibedo or sur face
orientation, for exampie. This kind of discrimination
Presents a probiem because the effects of aii these
Parameters are confounded in the image data--a change in
image brightness may refiect a change in aibedo or
surface orientation, as weii as in incident iiiumination.
Because the reijation among iiiumination, refiectivity,
orientation, and image irradiance s weii known, the
presence of shadows in an image couid be readiiy detected
if a constant pianar reference pattsrn couid be piaced in
the scene; when the apparent brightness of a constant
pattern varies with location, the change in brightness

must, by eiimination, be attributed to a change in




lllumlna;lon. Of course, such active intervention s
generaiiy impractical; the probiem is to achieve the
effect of viewing a constant pattern across the shadow
edge without actualiy placing such a pattern in the
scene. This effect could be achieved if some fixed
relationship were known to hoid between the surface

strips on each side of the shadow edge.

in short, extremai boundaries are curves across which distant
points in space are placed In apparent juxtaposition by projection,
viotating the continuity of the projective mapping that hoids over most
of the image. To identify extremai boundaries requires, therefore, that
actual proximity be distinguished from apparent proximity imposed by
projection. Cast shadow edges are contours across which the pattern of
surface refiectance has been systematicaily transformed by an abrupt
change in fiiiumination. To identify cast shadow edges, the effects of
iliumination must be distinguished from those of aibedo and surface
orientation, as if a constant pianar reference pattern had been placad

across the edge.

C. Computationai Theory

Our soiution rests on the simpie principie that coherence in the
image refiects real coherence in the scene, rather than a coincidence of
the structure and aiignment of distinct scene constituents. We measure
coherence in the neighborhood of an edge by performing a normaiized
correlation on intensity vaiues at corresponding points across the edge.
(Other measures of coherence are possibie, such as continuity of iinear

structure.)

A high correlation implies that the edge and its neighborhood
correspond to a strip on 4 connected surface. Therefore, the edge is
not an extremai boundary, and fur thermore, the regions on either side
can be regarded as instances of a (statlstlcally) constant pattern. in
that case, the presence of a shadow can be detecter by constructing a

regression equation whose parameters signal any systematic photometric
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distortion of the pattern across the edge. ideaiiy, this distortion is

iinear, but nonlinearites are introduced in practice by compiex iighting

effects, film or sensor response, and so forth.

A low correlation does not necessariiy signai an extremal boundary,
but couid refiect iow contrast or fragmented surfacs structure.
However, the iocai disruptiens of correiation that signal extremai edges
can be distingulshed from a giobal lack- of structured sur face markings
by using a neighborhood of the Image around the edge to set a baseiine
for correiation. A contour of low correiation surrounded by regions of

high correiation is ilkeiy to denote an extremai boundary.

To obtain a baseiine, the glven edge Is embedded in a famiiy of
paraiiei curves, and a sequence of regressions performed from one curve
onto the next. in terms of this regression sequence, the various edge

'types display distinctive "signatures" that can be computed from the
image data: extremal boundaries dispiay a sharp notch In correiation
where the fabric of the projective mapping 1is torn by the boundary.
Cast shadow boundaries sustain high correiations across the edge, but
sharp spikes occur in the regression parameters where the surface
structure is systematicaliy transformed by the iifumination transition,
A fow correiation throughout impiies that either the contrast is too i ow
or the surface structure too fragmented for any positive conciusion to

be drawn.

This strategy foilows from the assumption that coherence in the
image--as measured by correiation--impiies a connected surface. The
rationale for this assumption foilows from some eiementary observations
on the character of naturai scenes and images. First, as mentioned
above, It foliows from the fact that surfaces tend to be continuous so
that nearby points in the image usuaiiy correspond to nearby points in
the scene (i.e., the projective mapping is, 1in generai, continuous).
Second, because the structure of surfaces tends to be coherent, such
properties as refiectance and orientation at a given point on a
connected surface are (statisticaily) good predictors of the properties

at nearby points. Third, because scenes are made up of distinct objects
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whose structure and spatial configuration are governed by extremely
complex factors, the properties of wideiy separated surface polnts, or
points on surfaces of distinct objects, car wusually be regarded as

unreiated and independent.

Because of these three principles—-surface contlnulty, coherence,
and independence--we can expect intensity values at nearby Image polnts
to be highiy correiated. (It Is easliy verlfied that this s so for
most Images.) That Is, a smali step in the Image usuaily corresponds to
a smail step on some connected surface, so surface coherence Imposes a
statistical relation on the properties of nearby polnts. Thus, when we
place the points on elther side of an arbitrary image curve in
correspondence, we should often expect to see a high correiatlon between
the Intensity values at those polnts. However, when that small step
happens to cross an extremal boundary, the corresponding surface points,
belong In general, to distinct objects, and might be wideiy separated in
space. In that case, the properties of the points are independent.
Thus, when the polnts on either side of an extremal boundary are placed
in correspondence, we should never observe a high correiation unless the
surfaces meetlng at the boundary possess identlicai structures, and
happen to lie in perfect register from the observer's viewpoint. The

iikellhood of this occurrence I's vanishingly smali.

Thus, we may confidently conclude that coherence of structure
across an image curve (as measured by correlation) denotes true
coherence of scene structure rather than an accldent of scene

conflguratlion.

D. Implementation and Results

Our impiementation assumes that an edge has been iocated by edge-
finding techniques. In practice, edges were often traced by hand;
automatlicaily detected zero-crossing edges were also used as Inputs. We
construct a parallel family of curves around the edge by imposing a new
coordinate system on the Image as foiiows: arc length on the edge Is

taken as the y-coordinate, and orthogonai distance from the edge (right-
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handed) as the x-coordinate. This amounts to coercing a strip around
the edge into a rectanguiar region whose central column corresponds to
the original edge. The surrounding coiumns correspond to paraiiei
curves on either side of the edge. The rectanguiar strip was
constructed using biiinear interpoiation of intensity vaiues to reduce

quantization artifacts.

Once the rectified strip was constructed, a sequence of iinear
regressions was performed between coiumns. To avoid spurious
correiation imposed by the imaging and digitizing process, regressions
were computed between the i-th coiumn and the (i + 2)th. 7VThe outcome of
this computation was a normaiized correiation coefficient, additive
regression term, and muitipiicative regression term, each a function of
the iocation of the coiumn. The midpoints of these piots represent the

regression across the originai edge.

in terms of these regressloh sequence piots, we define the
foiiowing expected edge signatures (see Figure 1 for ideaiized piots):
* An extremal boundary is indicated by a sharp notch in an
otherwise high correiation at the nominai edge iocation.

* A cast shadow boundary s indicated by high correiation
malntained across the edge, but sharp spikes or notches can
be present in the additive and multipiicative regression
parameter, depending on the sense of the shadow transition
and the digitization function.

* A high correiation coefficient with no disturbance in the
regression parameters impiies that the edge is not
physicaliy significant.

* Sustained 1iow correiation Impiies iow contrast or iack of

surface structure, and no ciassification can be made.

No attempt has yet been madc to ciassify the edge type signatures
automaticaiiy; however, the <computation was performed on a number of
edges in both aeriai and ground imagery. Exampies of the images, edges,
and regression sequence piots are shown in Figures 2 through 6. The
regression piots shouid be compared to the ideaiized signatures of

Figure 1.
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The edge-sorting method presented above, derived from basic

properties of visuai scenes, shows promise as a useful technique,
particulariy in connection with estabiished iine-junction techniques.
Potentiai speciaiized applications of the technique inciude shadow

detection for use in raised-object cueing and camera-modeli recovery.

A detaiied report of this technique s being prepared for
publication.
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on the left or right), end on detells of the imeging end digitlzing process. In prectice, nonlineerities per-
turb the correletlon slightly,

No Edge Present — sustelned high correletlon, no disturbence in regression peremeters,

FIGURE 1 IDEALIZED REGRESSION PLOTS
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FIGURE 4 EXAMPLE OF LOW-CONTRAST EXTREMAL EDGE
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