


tI

USCIPI Report 1050

IMAGE UNDERSTANDING RESEARCH

Final Technical Report

Covering Research Activity During the Period
1 April 1981 through 30 September 1981

R. Nevatia

A.A. Sawchuk
Principal Investigators

(213)743-5506

Image Processing Institute I

University of Southern California
University Park

Los Angeles, California 90007
30 September 1981

This research was supported by the Defense Advanced Research
Projects Agency and was monitored by the Air Force Wright
Aeronautical Laboratories under Contract F-33615-80-C-1980,
ARPA Order No. 3119.

FIAwroved fcf pubic rOTO ,3S'

4 !ti ida i it1iuoa UlIuited



UNCLASSIFIED
SECURITY CLASSIFICATION Of THIS PAGE (When Data Entered).

READ INSTRUCTIONSREPOT DMAENTTIONPAGEBEFORE COMPLETING FORM
IREPORT NUMBER 12. GOVT ACCESSION NO, 3, RECIIENT'S CATALOG NUMBER

USCIPI Report 1050 La-M
4. TITLE (d Subtitle) .TYEOF REPORT & PERIOD COVERED

Final Technical Report
IMAGE UNDERSTANDING RESEARCH 1 April 81-30 Sept. 81.

6. PERFORMING 040. REPORT NUMBER

7. AUTMOR(s) 8. CONTRACT OR GRANT NUMBER1(8)

(Principal Investigators) F-33615-80-C-1080
Ramakant Nevatia
Alexander A. Sawchuk

9. PERFORMING ORGANI ZATION NAME ANDO ADDRESS i0. PROGRAM ELEMENT,' PROJECT. TASK

Image Processing Institute AE OKUI UBR

University of Southern California DARPA Order No. 3119
University Park, Los Angeles, Ca. 90007 ____________

11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

Defense Advanced Research Projects Agency 30 September 1981
1400 Wilson Boulevard I3 NUMBER OF PAGES
Arlington, Virginia 22209 137 pages

lb. MONITORING AGENCY NAME & AOORESS(if different from Cotrolling Office) IS. SECURITY CLASS. (of this report)

Air Force Wright Aeronautical LaboratoriesUCASFE
Wright-Patterson Air Force Base __________

Dayton, Ohio 45433 1I5.DCLASSIFICATIOW,'OWNGRADING
SCHEDULE

I6. DISTRIBUTION STATEMENT (of this Report)

APPROVED FOR RELEASE; DISTRIBUTION UNLIMITED

17. DISTRIBUTION STATEMENT (of the abstraet entered In Blockh 20, it differenit from, Report)

IS. SUPPLEMENTARY NOTFS

IS. KEY WORDS (Contintue on reverse side it necessary and Identifly by block numers)

image analysis, feature extraction, statistical and structural
texture analysis, symbolic image representation, image to map
correspondence, image understanding, image matching, building

This technical report summarizes the image understanding and

the 1 April 1981 through 30 September 1981 under contract number
F-33615-80-C-1080 with the Defense Advanced Research Projects
Agency, Information Processing Techniques Office. This contract
is monitored by the Air Force Wright Aeronautical Lboratories,

DI A721473 EDITION OF I NOV 05 IS OBSOLETEUNLSIED r
SECURITY CLASSIFICATION OF THIS PAGE SM.e Date Ente,4)



UNCLASSIFIED
SCUNITY CLASSIPICATION OF THIS PAGIEgWen Da EnfIevo

Wri ht-Patterson Air Force Base, Dayton, Ohio.

The purpose of this research program is to develop tech-
niques and systems for understanding images, particularly for
mapping applications. The research activity includes low level
image analysis and feature extraction, statistical and structural
texture analysis, symbolic image representations, and image to
map correspondence using relational structures. Additional
activity is concerned with VLSI architectures for implementation
of image analysis and image understanding operations.

"The views and conclusions in this document are those of the
authors and should not be interpreted as representing the
official policies, either expressed or implied, of the
Defense Advanced Research Projects Agency or the U.S. Government."

UNCLASSIFIED
- SIMURITY t AS%,''ICATI c (

., I,





TABLE OF CONTENTS

1. IMAGE UNDERSTANDING PROJECTS 1

1.1 Research Overview 1

1.2 Symbolic Matching Applied to DMA 4
Control Point Location
- K.E. Price

1.3 Matching of a Map with an Aerial Image 12
- G.G. Medioni

1.4 Object Detection in Synthetic Aperture 38
Radar Images
- J. Burns, A. Huertas, and R. Nevatia

1.5 Shape Matching and Image Segmentation 52
Using Probabilistic Labeling
- Bir Bhanu

1.6 Corner Detection for Finding Buildings 61
in Aerial Images
- A. Huertas

1.7 Structural Texture Analysis Applications 69
- F. Vilnrotter and R. Nevatia

1.8 Texture Synthesis Using a Piece-Wise 98
Linear Model
- D.D. Garber and A.A. Sawchuk

2.0 DEVELOPMENT OF VLSI IMAGE UNDERSTANDING SYSTEMS ill

- S.D). Fouse, A.D. Cumming, V.S. Wong, and G.R. Nudd

3.0 RECENT PUBLICATIONS AND PRESENTATIONS 129

- -, ,~nnnnnnnmn • nmnm idlAMP-mm iNnmn ll



* U
* a

* 1. IMAGE UNDERSTANDING PROJECTS

1.1. RESEARCH OVERVIEW

This is the final semi-annual report of our research under

contract F-33615-80-C-l080. Our research includes work at many

levels of an Image Understanding system, including low level

feature extraction, symbolic descriptions and image matching. We

have also been working with Hughes Research Laboratories on

hardware implementation of IU algorithms using VLSI technology.

The research results are summarized below.

Image Understanding Projects

Much of our work has concentrated on the matching of a map

to an image or one image to another image. An application to the

problem of control point location was performed as part of a

study conducted by the Defense Mapping Agency. Our results are

summarized in Section 1.2.

Another technique of matching map descriptions to image

descriptions that primarily relies on line matching is described

in Section 1.3. Good results are obtained for tasks such as

location of roads, rivers, and buildings in DMA supplied images

of the Ft. Belvoir area. We have also applied same techniques

-I r -
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for object detection to Synthetic Aperture Radar (SAR) images.

These results are given in Section 1.4. Another approach using

probabilistic relaxation is given in Section 1.5 and is a summary

of Bir Bhanu's thesis, which is published as a separate report.

Initial attempts at locating objects, such as buildings, in

aerial images without a map are described in Section 1.6. Such

processing is necessary for change detection.

Applications of our previously described structural texture

description techniques to the problems of texture recognition and

inference of surface orientation from texture gradients are

presented in Section 1.7. This section contains a summary of

parts of Felicia Vilnrotter's Ph.D. thesis, also published as a

separate report.

Section 1.8 contains a description of texture synthesis

techniques using piecewise-linear models, an extension of

previous linear techniques for texture synthesis. A comparison

of results with previously developed methods is given. The

Ph.D. thesis of D.D. Garber, published as USCIPI Report 1000,

contains details and comparisons of all the texture synthesis

methods developed.

Hardware Development

Our hardware development work with the Hughes Research

Laboratories has concentrated primarily on the development of a

Sl
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residue arithmetic based programmable processor called RADIUS.

Other activities have included development of tools for design

automation and preliminary definitions of a local area logic

processor.

7,je RADIUS processor can be programmed to perform a variety

of local arithmetic operations. Our initial task will be to use

it for computing 5X5 convolutions common to many low level

processing tasks. A custom circuit has been fabricated and is

being tested. Also, this processor has been designed to

interface with a PDP-11 UNIBUS.

7W.
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M1.2 SYMBOLIC MATCHING APPLIED TO DMA CONTROL

* POINT LOCATION

•••lm•••••••••••••••••••••••••••••mommmmummmmmammmaammmmmmammmummumm

K.E. Price

This report presents the results of applying our relaxation

based scene matching systein I1] to a new domain - automatic

matching of pairs of images. The task was part of a study by the

Defense Mapping Agency (DMA) to evaluate various image matching

techniques. Because our matching system was designed to work

with entire objects (in aerial images - roads, buildings, etc.)

we could not perform the task as given finding small sub-images

containing parts of objects (corners of buildings) within the

large image. But we did demonstrate the ability of our system to

automatically segment, describe, and match two images producing a

set of objects which can be used as control points.

The two images, shown in Fig. 1, as a substance from a pair

of consecutive mapping photos (the black triangle is an artifact

on the image). Figure 2 shows the region based segmentation

results using only intensity information where very dark and very

bright regions may be as small as 100 points and others must be

at least 1000 points (2]. These segments form the symbolic

representation of the 2 ima-ies which Is used for the matching

VW
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(a) Image 1

(b) Image 2

Fig. 2. Segmentation-outlines of regions from the
region-based segmentation. The region is the
area inside the boundary, except for any holes.

1*m -
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The matching is performed in 2 steps, the first was image I

as the model and finds the regions in image 2 which correspond to

the regions in image 1. The second step in the reverse (switch

the roles of image 1 and image 2). Only the regions which match

the same in both steps are retained as valid matches. Figure 3

shows the results for matching when image 1 is the model (the

labels in the 2 views correspond to the region numbers assigned

in the segmentation of image 1). Figure 4 is the results for the

second step. Figure 5 shows the final valid control point

regions (with labels from image 1). Table 1 give the disparities

for each of the regions (in pixels). The region locations are

computed as the center of the mass of the pixels in the region.

REFERENC ES

(1] O.D. Faugeras and K.E. Price, "Semantic Description of

Aerial Images Using Stochastic Labeling," IEEE Trans. on

Pattern Recognition and Machine Intelligence, Nov. 1981.

[2] R. Ohlander, K. Price and R. Reddy, "Picture Segmentation

Using a Recursive Region Splitting Method," Computer

Graphics and Image Processing, Vol. 8, 1978, pp.313-333.
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(a) Image 1F °D

(b) Image 2
Fig. 3. Matching: Given Image 1 as a model find the objects

in Image 2.
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(a) Image 2

(b) Image 1

Fig. 4. Matching: Given Image 2 as a model find the objects
in Image 1.
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0

(a) image 1

IO0

Co

(b) Image 2

Fig. 5. Matching: The matches which were the same in the
results in Figs. 3 and 4.
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1.3 MATCHING OF A MAP WITH AN AERIAL IMAGE* U
* U
mmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm

Gerard G. Medioni

Abstract

Discrete relaxation is applied to the problem of matching

linear features extracted from an aerial image with a set of

linear features derived from a map. The method is adapted to

take into account the inaccuracy inherent to real world data. It

is first used to find the most prominent features in the low

resolution version of the image (rivers, large roads), then to

find man made local structures such as buildings in full

resolution windows of the image. This relaxation algorithm

departs substantially frnm previous methods because of the

non-symmetric character of the relations. Very promising results

are shown and extensions are outlined.

INTRODUCTION

Suppose we are given a very high resolution aerial picture

with a known orientation and a known altitude, together with a

detailed map of the area. How can we determine which parts of

the picture correspond to given elements of the map?

....1,-i jl . _ ..
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This is a very complex problem for many reasons, the main

one being that the picture is described in term of pixel

intensities when the map is a set of high level abstracted

objects represented in a schematic form and with implicit

geometric relations with each other. Therefore, we need to

change the representation of both the picture and the map

knowledge to make them identical or at least comparable.

There are two extreme "solutions" that we shall reject:

1) Represent the map in terms of an intensity array and compare

it to the picture. The problem then becomes equivalent to

change detection between two pictures, which has been treated

with variable success by many researchers, but here the

transform map image would require knowledge of illumination

conditions and reflectance maps and models of the region,

which are not readily available.

2) Represent the image in the same terms as the map (road,

buildings, rivers, lakes,...) and perform some kind of

subgraph isomorphism, alas the day is not near when we are

able to successfully segment an image into constituting

semantic components.

Instead, we first extract the edges from the'picture, along

with the strength and orientation information. We follow this

with a linear approximation of these edge elements. The edge

detector used is either six 5x5 masks with different orientation
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convolved with the image, or a Laplacian-Gaussian mask suggested

by Marr [] and implemented in the USC linear feature extraction

system (2,3].

The two different features we consider are called SEGMENTS

and APARS. Segments are linear pieces approximating a set of

edge points. Apars are a representation of 2 segments running in

two opposite directions and separated by a known width. They are

very convenient for representing roads and rivers. The process

of encoding pieces of the map in terms of these linear features

is then an easy task performed manually so far. With now both

the map and the image in the same format, we can formulate the

problem as: what elements, in the model do the elements in the

picture correspond to, if any, based on geometrical constraints.

A previous paper (4] dealt with local preprocessing of the input

in order to remove small edges and to fill gaps in long features

and will not be described again here.

The input we will consider is then obtained as shown in

Fig. A. The next section provides definitions of the terms and

description of the method. The third section is concerned with

implementation, the fourth discusses results and possible

extensions.

i*
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DEFINITIONS AND DESCRIPTION OF THE METHOD

Assumptions

- The model and image have approximately the same orientation.

This is justified by the fact that the wr is oriented and

that the orientation of the plarv , K. time of the picture

is registered with it.

- The scale factor from the model image is known, we

shall call it 1j.

This is justified because the camera characteristics are known

and the altitude of the plane is known at the time of the

picture.

Definitions

We will denote the linear features of the image as ai, i in

[l..n] and call them objects. We will denote the linear features

of the object as X., j in [l..m] and call them labels. We areJ

interested in computing the quantity p(i,j) which is the

posslbility for object a i to have label Xj . V (i,j) in [l..n,

l..ml p(i,j) in [0,11. This quantity is NOT a probability for

the following reasons:

- It is possible for an object a. to have no oossible label x.

and we did not define the "no label" as a label, and hence

p(i,j) can be 0.

- It is possible for several objects to have the same label A

due to some fragmentation occurring during segmentation,

• - 4- ~ "l
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Therefore p(i,j) is not restricted.

- Finally, an element ai may have several labels, therefore

p(i,j) may be greater than one.

J
Method

Rough Description:

The idea is the following: first, assign possibilities based

on angular orientation, then at each step, assign a label Aj

to an element ai and see if the rest of the picture "fits"

the model to accept or reject this label. Iterate until you

reach a stable configuration.

Formal Description

(a) Initial Assignments of Possibilities

Let 0 be the angular orientation of ai, let Oj be the

angular orientation of X

Then

V(i,j) in [1..n,l..m], p 0(i,j) = 1 ifWei-ji<15'

= 0 otherwise

(B) Window Definition

Any object a. can be represented by a vector A.B.. Any

label Aj can be represented by a vector PjQj. Assigning

label A. to object a. means that we should find objects

)
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ak in the position where one would expect to find the

other labels of the model. So, for each label Ak

different from Aj, we define a window w(i,j,k) in which

we look for an object ak with possible label Xk to

confirm the labeling of object a i as Xj,

(y) Window Description

We consider object a. (A.B.) with possible label Xj(P.Qj)

and we look for ah with label Xk(PkQk).

To define w(i,j,k) we consider 2 extreme cases:

- First we identify Ai with P. to define the points

OR 1 = OA i + P p

- Then we identify Bi with Qj to define the points

OR 2 = OBi + Jul Q

OS = +R

This defines the rectangular window w(li,j,k) with the

points R1 'R2 'S1 'S2  as the four corners. An example is

shown in Fig. B.

With each window w(i,j,k), we associate a characteristic
6t

function updated at each iteration, 6 (i,j,k) defined by

t
6 (i,j,k) = 1 if there is an element ah with label Xh k

in w(i,j,k) at iteration t

= 0 otherwise.
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(6) Core of the Method

- First Pass

At each iteration, the quantity pt(i,j) is derived from

the following formula m

V(i,j) in [l..ml..n], p(t+l)(i,j)= 1 if [1+ E 6t(ifj's)]

> q and p (i,j) = 1

= 0 otherwise.

The quantity q is a variable provided by the user and is

a measure of the way model and image agree. Setting q to

m(the number of labels in the model) suggest that we

expect a perfect match that is a one to one or many to

one mapping from the image into the model.

Setting q to a low percentage of m is rather

meaningless since a lot of elements will be labeled, even

though they are very partially matched. The stopping

criterion is simply that

V(ij) p(t+l) (ij) = pt(i,j)

Claim 1

This process converges in a finite number of iterations.

Proof

The way the method is presented, at each iteration after the

initialization, an element cannot acquire a new label but only

4.n ._ . . ..

* 1' -sv-lm



20

t
discard an existing one. Let N be the total number of labels

attached to all the elements.

Yt, N(t+1) < Nt and Vt Nt > 0

The sequence of positive integers Nt is decreasing and has 0 as

(t+1)
a lower bound, hence it converges to a limit N£. If N

N t then N t = N . since it means that no labels have beer

removed during the (t+l) iteration. If N. is 0, then the pattern

in the model has no match in the image, otherwise we found a
(0)

stable configuration. The algorithm converges in less than N

(0)
iterations since 0 < Ni < N and the numbers in the sequence
N(0) 1
N0,N ,. N are all different.

- Second Pass

So far, the method used here is a slightly modified

version of the basic discrete relaxation technique

described by Rosenfeld [5]. It provides multi-arc

consistency without being as powerful as the scheme

proposed by Freuder (6]. However, the results after this

first pass sometimes accept labels for an object out of

place because this object is supported by the correctly

labeled objects. To take care of these effects, we use

the fact that our relations are not symmetric: ak in

w(i,j,k) does not imply ai in w(h,k,j). So, we use what

we call "reverse compatibility", that is, given that a.
has label Aj , how many object does ai support? If it does

not support at least q objects, we can remove it at no

.t
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cost.

Formally, at each iteration t, we compute the

function a(i,j,k,z):

a t(i,j,k,k)=l if ak in w(i,j,k) and pt (i,j) = 1

=0 otherwise.

and now

p (t+l) (k,k): 1 if 1+E E t (i,j,k,£, >_ q

i=l j=l

= 0 otherwise.

Once again we stop when V(i,j) , p (t+1) (i,j) = pt (ij)

Claim 2

This process converges in a finite number of iterations.

Proof

Identical to proof of claim 1.

IMPLEMENTATION

A computer program in the programming language SAIL was

written to implement the previously described method. However,

variations were made to improve the running time:

- We do not compute and store the values of 6(i,j,k) because it

is a sparse array and because the updating of 6(i,j,k) at each
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iteration requires a lot of bookkeeping. Instead, we scan the

window w(i,j,k) until we find an object with the desired label,

if any.

(t+l)
- If at iteration t we find that p (ij) = 0, we set

p (t)(i,j) to 0 immediately.

Claim 3

This modification does not alter the final solution.

Proof

- If 6 (t+) (i,j,s) = 6 t(i,j,s) then obviously replacing one by

the other does not change anything.

- If 6 (  (,j,s) = 0 and 6 t(i,j,s) = 1 there are 2 cases:

(t+1) t (t+l)
1) P (i,j) is the some computed with or 6

Then again it does not change anything.

2) p(t+l)(i,j) becomes 0 when computed with 6 (t+1
) . Then at

the next iteration, p(t+2)(i,j) would have become 0, so

setting it to 0 at iteration t+l simply speeds up the

convergence rate.

- Degenerate Cases.

There are two of them which will be treated in the same way:

a) the length of AiB and PjQj are the same.

-..
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b) X.(P Q ) and Xk (PkQ k) have exactly the same

orientation.

In these two cases, the rectangular window becomes a

single line UV, allowing no errors between image and model,

not even a single pixel. When this happens we simply

generate a rectangular window, one of the axis being UV, the

other one a vector normal to UV of length 4. This takes

care of small errors at the time of generating the model.

RESULTS

We worked on the image DMA3 representing part of the Fort

Belvoir Military Reservation in Virginia. The original picture,

shown on Fig. 1 has a resolution of 2048 x 2048 pixels.

Figure 2 represents a picture of the part of the map

corresponding to the DMA3 image. As we can see on Fig. 1, the

original image is very detailed, and in order to segment it we

proceed hierarchically: to find the most prominent features such

as large roads and rivers, we use a smoothed version of the

original image. This is shown in Fig. 3 which has a resolution

of 256x256 pixels.

Now, as explained in the introduction, we extract the linear

features from the picture in Fig. 3.

LI
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Figure 4 shows the oriented segments; as we can see, most of

the small details have disappeared. Since we are interested in

roads and rivers, we extract the apars having a maximum width of

8 pixels and filter out the very small apars.

The result is shown in Fig. 5, and we are applying our

matching algorithm on the corresponding file.

By looking at the map, we know that the major features wc

expect to find are the largest road, denoted as highway 95 on the

map, and the river called Accotink river on the map, so we hand

generate a piecewise linear approximation of these two features,

that is a set of apars representing them. Figure 6a represents

the model of the river and Fig. 7a represents the model of the

road.

We now use our matching algorithm to find which elements in

Fig. 5 correspond to which part of the hand generated model

description.

Figure 6b represents the apars that have been successfully

ideritified as corresponding to the description of the river and

Fig. 7b represents the one identified as corresponding to the

description of the road. The results obtained here are similar

to the ones expected from a human observer.

Once the prominent features are identified in the low

resolution image, it becomes easy to compute better estimates of

the scale and orientation changes between image and map, one

. . . .
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a) Hand generated model of the river.

I

,

/

/

b) Apars from Fig. 5 identified with the
river as described in the model in Fig. 6a.

Fig. 6. Matching apars.
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a) Hand generated model of the road.

/
1f

/

b) Apars from Fig. 5 identified with the

road as described in the model in Fig. 7a.

Fig. 7. Matching apars.
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method being described in [6,7]. This step has not been

implemented so far, but only hand simulated.

We now can concentrate on the details of the image by going

back to the full resolution image. Since we established a good

correspondence between image and map, we now are able to define

for each object in the map, such as buildings, a small window in

which we are certain to find this specific object, if present.

We present two examples of matching using this scheme:

1) Figure 8a represented the window where we located two known

buildings. These appear clearly to a human observer because

the picture is quite crisp, no sides are missing and there

are not too many segments.

Figure 8b is the hand made model of these two buildings.

Their shape has been voluntarily distorted slightly to show

that the method is not sensitive to such small variations.

Figure Sc represents all the segments from Fig. 8a that have

been assigned a label after the first pass, and we can see

that two of these segments have been assigned a label even

though they do not belong to the buildings.

Figure 8d represents all the segments that are matching the

model at the end of pass 2. The second pass efficiently

removed the two incorrectly matched segments because they do

not support the others, that is they do not confirm the
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A d

a) Segments extracted from a window of the
high resolution image in which we expect
to find 2 given buildings.

b) Model representing the 2 given buildings.

Fig. 8. Matching segments.

-.-- ~~~-- _ nI I -
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c) Segments from Fig. 8a that have been
matched with the model at the end of pass 1.

d) Segments from Fig. 8a that have been matched
with the model at the end of pass 2.

Fig. 8. Continued.

4, -t "" 'V--__ __ ___-_ ___ __"_ __'__-__ __ __
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labeling of any other segments.

2) Figure 9a represents a window in which we located the two top

most buildings. It is a very dense picture in terms of

number of segments, furthermore it is of great interest

because the leftmost wall of the leftmost building is noL

found by the edge detector, and therefore the match with the

model will be imperfect.

Figure 9b represents the hand generated model of the two

buildings. Once again, the model has been drawn with only

moderate accuracy to show the robustness of the method.

Figure 9c represents all the segments from Fig. 9a that are

matched with a segment in the model at the end of the first

pass. We can observe that no segment has been matched with

the missing edge of the building and that once again two

segments have been matched that do not belong to any

building.

Figure 9d shows that these two selments have been

successfully removed by the processing in the second pass

because they are "parasites": They are supported by the

correct segments but do not support them in return.

CONCLUSION

This paper describes a successful application of the

now" " m mJ~ i i p. A-i
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a) Segments extracted from a window of the I

high resolution image in which we expect
to find 2 given buildings.

b) Model representing the 2 given buildings.

Fig. 9. Matching segments.

-,- ;4 -
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'N /

c) Segments from Fig. 9a that have been
matched with the model at the end of pass 1.

d) Segments from Fig. 8a that have been matched
with the model at the end of pass 2.

Fig. 9. Continued.

*
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relaxation process to matching an image with a known description

of it. Related work can be found in [8,9]. Limitations of the

method are that if the model is too poor, that is, contains very

few elements, it is very likely that the program will find a lot

of possible matches with each label in the model. This

phenomenon is also due to the fact that we do not take the length

of the linear features into account (to respect the fragmentation

segmentation that occurs when we extract them), hence voluntarily

reducing the knowledge we have of the scene. Along the same

line, if the image is very dense in terms of linear features and

has not been preprocessed, some unwanted match may appear due to

the very short linear features.

We can extend this method to problems where the orientation

is not know either by rotating the model based on histogram

comparison, or by trying to match with a set of models, each one

being rotated from the other by a 150 angle, or even by assigning

all possible labels to all possible objects to start with. We

can also extend it to the detection of an occluded object in a

simple environment, such as a bin of auto parts, and eventually

to the tracking of an object through a sequence of frames.
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:1.4 OBJECT DETECTION IN SYNTHETIC APERTURE RADAR IMAGES a

J. Burns, A.Huertas and R. Nevatia

INTRODUCTION

This section describes a study to evaluate the effectiveness

of some of our image analysis techniques to the tasks of

processing Synthetic Aperture Radar (SAR) images. These images

are typically characterized by high speckle noise and relatively

poor resolution. However, for some applications specific objects

are to be located and several cues to use are given a priori.

The 384x352 SAR images in this study were supplied by the

Avionics Laboratory, Wright-Patterson Air Force Base, Ohio.

Our study included the extraction of linear features in the

SAR images and matching them to corresponding wire frame models

that could be available from a simple map of the area.

The linear feature extraction technique has been previously

described in (6]. The local edge detection is performed by

convolving the image with a set of step masks or by detecting the

zero-crossings in the convolution of the image with a Laplacian

Gaussian filter as described in 11) and 121. The matching

technique is described in another section of this report [4].

* moor.-
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LINEAR FEATURE EXTRACTION

The linear features in the SAR images studied are generated

by objects such as roads, canals and long building structures.

High speckle noise and poor resolution result in heavy

fragmentation and a high density of texture elements with similar

contrast and width to that of the features of interest.

Two directions were investigated. First the use of large

convolution masks for local edge detection and second, improving

the extracted segments by grouping techniques to provide

sufficient feature information to achieve successful matches.

Object boundaries are obtained in the form of line segments

and linear features are defined by anti-parallel segments

(apars). Apars are pairs of segments of opposing contrast and

are labelled bright or dark depending upon the brightness of the

feature relative to its background (6].

Successful edge detection is highly dependent on the content

of the image. Early experiments showed the need to use

convolution masks of larger size than those we have used for

conventional aerial images. A minimum size of 9x9 pixels for

step masks and 17x17 for Laplacian Gaussian masks proved useful.

In some cases the use of rectangular or long strip masks step

masks produce marginally superior results but the main problems

still remain.

4 ________________i,4~
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The use'of Laplacian Gaussian masks provides for better

continuity along the features. On the other hand, small bright

regions are detected as oversized blobs if their width is smaller

or comparable to the width of the central excitatory region of

the filter. This may cause considerable fusion of nearby

features with the boundaries of the desired linear features.

However, in some cases such fusion is desirable. The clusters of

bright small regions corresponding to objects such as buildings

and vehicles become fused and their boundaries are more apparent.

A great deal of noisy edges are suppressed during the

thinning and thresholding steps if step masks are used. For

Laplacian-Gaussian masks, the energy on both sides of a

zero-crossing is used as thresholding criteria. If the linear

features are defined by anti-parallel (apars) segments, a

difficulty arises when only one of the boundaries of a linear

feature is distinguishable, as enough apars are not produced.

This suggests, in some cases, the processing of the line segments

rather than the processing of the apars. The matching technique

is able to work with either segments or apars.

The success of our matching technique depends on sufficient

number of extended linear features being extracted. Longer

linear features can be obtained by segment or apar grouping on

collinearity and proximity. Our apar grouping technique follows

an algorithm previously reported [3]. For segment grouping we

developed a one pass technique that combines segment grouping and
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selection, and is described later in this section.

OBJECT DETECTION BY MATCHING

Object detection is accomplished by matching the extracted

linear features to corresponding wire frame models that could be

available from a simple map of the area. The matching technique

is described in another section of this report [4]. We discuss

now some of the results obtained.

Figures la and lb show the SAR image CANAL and its

corresponding wire frame model. The main features are the two

canals which have a high contrast with the background. Both

local edge detection techniques produce fairly good and

equivalent results. Figures lc-le show the line segments

obtained using 9x9 step masks, the corresponding grouped dark

apars, and the successful result of the match to the wire frame

model of Fig. lb.

Figures 2a and 2b show the BUILDINGS image, which includes

groups of building structures, and the corresponding wire frame

model. The features are of high contrast and adequate width and

length located against fairly low background texture.

Although a set of six rectangular (llx5) step masks leaves

the outlines of the buildings fairly distinguishable, their lack

of continuity causes few useful apars to be produced. A 23x23

Laplacian Gaussian mask, with a central region 6 pixels wide, was

4 ."__ _ _._ _ _ _ _ _ __,,._ __._
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Fig. la. Canal.

Fig. lb. Canal Model.
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used to produce the line segments shown in Fig. 2c. Figures 2d

and 2e show the grouped bright apars and the successful resulting

match to the model of Fig. 2b.

In some cases, low contrast and texture prevent the

extraction of good segments and apars. A segment grouping and

selection technique was used to improve upon the initial results.

Collinearity and gap size are the basic criteria used for segment

grouping. Collinearity is defined in terms of lateral and

angular disparity between the segments. Referring to Fig. 3a,

lateral separation is considered to be the distance (a) between

the segment midpoints along the normal to the average of the two

segment orientations . The gap size has been defined as the

distance (b) between the two nearest endpoints along the axis

determined by the segments' orientation. Notice that this

measure allows for backward bridging, which can be considered

useful in some cases (see Fig. 3b).

The process of pairing the candidate segments before the

actual decision ought to reduce the large number of possible

tests while still guaranteeing that each genuinely bridgable pair

is tested. A scheme for segment classification with respect to

orientation [5] was adopted in this case. Classification is

followed by sorting the segments within the classes in descending

order of lateral position, so that collinear segments tend to be

within a short search distance from each other. In order to

ensure that all useful pairs are tested, these classes are

... == ==nm m rn,= m mm m m m I 7I I
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overlapped to ,over the maximum acceptable angular disparity

between segments. Selecting the most desirable bridge is based

on the length that the bridged segments would have taken together

along the segments' direction as in the pairing of segments (a)

and (b) over other possibilities in Fig. 3c. Since segment

grouping creates new or longer supersegments (families of

segments (6]) their length is used to reduce the size of the set

of segments to be matched to the wire frame model.

Figures 4a and 4b show the FIELD image and its corresponding

wire frame model. The contrasts of the field boundaries and

roads, the principal features of the image, are very low. Figure

4c shows the segments obtained by using a 23x23 Laplacian

Gaussian mask with central region of width 6. The above segment

grouping technique was applied to these segments with the result

shown in Fig. 4d. The result of the match to the model of

Fig. 4b is shown in Fig. 4e.

CONCLUSIONS

Our techniques have been successful in locating desired

objects in a variety of SAR images in spite of the poor quality

and high speckle of these images. The performance of our

techniques is dependent on the ability to extract sufficient

number of linear features. Our techniques may fail if the scene

is very complex and contains no extended linear features.

• ...............
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Fig. 3a. Segment Collinearity Fig. 3b. Backward bridging.
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d

Fig. 3c. Segment pair selection.
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I1.5 SHAPE MATCHING AND IMAGE SEGMENTATION USING

* PROBABILISTIC LNBELING

Bir Bhanu

INTRODUCTION

In this contribution we present an introduction and summary

of the work in the areas of shape matching and image segmentation

using the technique of probabilistic labeling. Details about the

work can be found in [1].

The problem of assigning names o- labels to a set of

units/objects is the key problem in computer vision, image

analysis and pattern recognition. Since all the labels are not

possible for a given unit, constraints based on contextual

information, called the world model, are used to obtain a

consistent and unambiguous valid assignment of the units. Local

parallel processes are a very efficient way of assigning labels.

The features of such algorithms include the propagation of local

contextual information in a paradigm of competition and

cooperation, locality and speed. In general the task of

assigning names to units only on the basis of features of the

units is very difficult since any segmentation based on low-level

analysis is bound to contain errors and the computed features are

,no
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noisy. The solution to this problem is to delay any firm

commitment until all the contextual information has been used.

Depending upon the type of constraints embodying the world model,

the problem can be attacked by discrete methods (discrete

relaxation) or continuous methods (continuous relaxation, also

called probabilistic or stochastic labeling). Recent surveys on

these algorithms applied to low level vision and symbolic

matching can be found in [2, 3]

Waltz [4] used the notion of constraints imposed by the

world model for the description of scenes made up of complex

polyhedra. Rosenfeld, Hummel and Zucker [5] proposed a parallel

version of this algorithm. Barrow and Tenenbaum [6] and

Rosenfeld et al. [5] introduced the idea of stochastic labeling.

The nonlinear algorithm proposed in [5] has been extensively used

in various applications [3]. Marr et al. [7] have used similar

ideas. Theoretical analysis of convergence and stability

properties of this algorithm have proven to be difficult as shown

by Zucker et al. [8, 9]. Faugeras and Berthod [10 to 12]

reformulated the stochastic labeling problem by explicitly

maximizing a criterion function based on the inconsistency and

ambiguity of classification. This criterion is maximized using a

gradient projection method. A similar idea has been proposed by

Ullman [13].

In this work we extend the stochastic labeling technique of

Faugeras and Berthod (11] to do shape matching of two and three

, , .'- 1- ,,.
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diin-sional objects in a hierarchical manner and to perform the

segmentation of images. New results are presented [l] in the

areas of shape matching of nonoccluded and occluded objects in

two-dimensions, three-dimensional data acquisition, surface

approximation by polygons, shape matching of three-dimensional

objects and the segmentation of images having unimodal gray level

distributions. The same stochastic labeling technique is used in

both shape matching and segmentation with variojs extensions.

The power of the techniques in 2-D is demonstrated by the

examples taken from synthetic, aerial, industrial parts and

microscope images where the matching is done after using the

actual segmentation methods. In 3-D the complexity of the

objects viewed is typified by a complicated casting of an

automobile. In shape matching our concern will be with the shape

properties of an object only. Other cues such as color and

surface texture etc. have not been used. For the segmentation of

images, aerial and biological gray level images have been

considered. In the next section, we present an overview of the

work and summary of contributions.

OVERVIEW AND SUMMARY OF CONTRIBUTIONS

The stochastic labeling technique developed by Faugeras and

Berthod [I] is extended to do shape matching of two-dimensional

objects in a hierarchical manner. The technique explicitly

maximizes a criterion function based on the ambiguity and

inconsistency of classification. Shape matching is viewed as a

.. .......... .,
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segment matching problem, where a piece of a shape is recognized

as an approximate match to a part of a larger shape. The

hierarchical nature of the algorithm reduces the computation time

and uses results at low levels to speed up and improve the

accuracy of results obtained at higher levels. The

two-dimensional shapes are represented by their polygonal

approximation by finding the points of maximum curvature on their

boundary. As compared to the previous studies in 2-D shape

matching, the hierarchical stochastic labeling technique

developed here, has been applied not only to the synthetic

images, but also to the real images taken from the aerial,

industrial parts and biological fields. The technique allows for

the changes in scale, rotation, translation and significant

changes in shape. The results of shape matching are used to

compute the rotation. Various strategies that lead to faster

computation are described. Although the technique is

computationally more costly than the other feature based or

correlation techniques, it is more robust and flexible. It

allows for the parallel implementation in hardware. This method

is also used when the the objects partially occlude, but our

objective is to match only the object of interest.

The hierarchical stochastic labeling technique as described

above is further extended to do shape matching of two-dimensional

occluded objects. For each of the objects participating in the

occlusion, there is a hierarchical process. These processes are

executed in parallel and are coordinated in such a way that the
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same segment of the apparent object, formed as a result of

occlusion of two or more actual objects, is not matched to the

segments of different actual objects. This problem is solved by

combining the gradient projection method and penalty function

approach. Results are presented on synthetic objects, a sequence

of microscope images and industrial images when two or three

objects partially occlude.

In three dimensional scene analysis, a method based on a

laser triangulation principle to acquire 3-D data is described.

The problems related with the 3-D data acquisition and geometric

processing are addressed. Generation of 3-D object descriptions

in terms of polygons which approximate the surface of an object

has been studied. A new technique for the approximation of 3-D

objects by a set of planar faces is proposed. This is used to

generate a 3-D model of an object in terms of faces approximated

by polygons. The technique is a sequential region growing

algorithm. It is not applied to range images, but rather to a

set of 3-D points. It is not directly related to how the 3-D

surface points were acquired, but is tied to the sampling

distances between the points on the object. It is not restricted

to single view range data images, but is applicable to a

composite object and does not require the ordering of points. It

finds the convex faces of the object, but the information exists

to merge convex parts of nonconvex faces. The 3-D model of an

object is obtained by combining the object points from a sequence

of range data images corresponding to various views of the

1W. ..
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object, applying the necessary transformations and then

approximating the surface by polygons. Such a representation

should be of use not only in 3-0 scene analysis, but also in

computer graphics and reduction of terrain data obtained by

synthetic aperture radar etc. Results are presented on a fairly

complex industrial object.

The problem of shape matching of real world 3-D objects has

been attacked by using the hierarchical stochastic labeling

technique used in 2-D. In 2-D the matching is "segment

matching," but now we have "face matching." A system for 3-D

scene analysis is presented. This is useful for shape matching

of real world 3-D objects. Using several examples of an

automobile casting, it is shown that hierarchical stochastic

labeling technique can be successfully used to accomplish partial

shape recognotion in 3-D. The results of shape matching are used

to compute the orientation of the object in space.

The segmentation of images having unimodal gray level

distributions is also considered. Here we use the same

stochastic labeling technique used for shape matching. Unimodal

histograms are typically obtained when the image consists of a

large background region with other small but significant regions.

For example, in the biomedical area the extraction of the

boundaries of various types of cells is complicated by the fact

that cells are very close together, their boundaries are poorly

defined and the gray level histogram is unimodal. Similarly

1,-- ., I : - il
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unimodal histograms are obtained for aerial pictures because the

range of intensities of the many different objects overlap. The

technique developed here provides control over the relaxation

process by allowing the user to choose three parameters which can

be tuned to obtain the desired segmentation results at a faster

rate. This is the major advantage of the technique compared to

the classical nonlinear relaxation method used in segmentation

[14]. Aerial and biological cell examples are presented.

Finally we present several directions for future research in

shape matching of two and three dimensional objects, segmentation

of images and use of these concepts in the analysis of a real

sequence of images Eil.
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*1.6 CORNER DETECTION FOR FINDING BUILDINGS

* IN AERIAL IMAGES

A. Huertas

INTRODUCTION

Building structures can be detected using several

approaches, two of which are: a) By obtaining a set of elementary

features such as object boundaries and matching groups of them

against specific object models stored in a visual memory (see (I]

in this technical report), and b) By implementing a reasoning

system that operates on a similar set of elementary features,

knowing what it is looking for, and following the hypotheses

formation/validation paradigm to provide consistent

interpretations about the presence of building structures in

aerial images.

One of such sets of elementary features is the subject of

this section. In particular, the corners formed by long line

segments obtained by a line finder that exhibits good corner

detection characteristics, can be used to form building

substructure hypotheses under a general set of assumptions.

Untrained human observers may have some difficulty locating
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buildings in aerial images and therefore rely on familiar cues

such as shadows, nearby roads, and apparent structure. But

perhaps the most important feature are the observed geometric

corners formed by building sides.

In this section we give a set of general assumptions

regarding the perception and interpretation of corners derived

from detected image features and a priori knowledge that could be

available such as the direction of illumination.

CORNER DETECTION AND INTERPRETATION

A corner is defined at the intersection of two lines if the

angle between them is approximately 90 degrees. For our purpose,

lines forming approximately 180 degree corners are also extracted

since otherwise straight lines can be broken for a variety of

reasons.

When corners are extracted, several parameters can be

associated with them for further processing. Some parameters

include location, the characteristics of its components, the

direction of the bisector, connectivity with other corners, and

color (the brightness of the surrounded region). Other

hypothesized parameters can also be associated with them, such as

kind (object corner, shadow corner), compatibilities with other

corners and type (concave, convex, straight).

.. ..... ,_~~~~ , - m
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Consider non occluded buildings (by other buildings, or

clouds, or by shadows cast by other buildings) as having the

appearance of box like objects. The boundaries of such boxes

consist of straight sides forming 90 degree corners if the sides

have only two possible orthogonal directions. Hence, regardless

of direction of illumination, the following assumptions are made:

Corners formed by long segments correspond to either object

corners or to shadow corners in the image. Shadow corners are

formed by pairs of line seginents detected as a result of a shadow

cast by an object corner. Shadows cast by buildings sides on the

ground have a predictable wldth .nd therefore can be defined by

pairs of dark anti-parallel segments (2].

Assuming a bright object against a dark background for the

building shown in Fig. 1, the following interpretations are

given: 1) A pair of line segments forming a corner around a

bright region correspond either to an object convex corner

(cl,c3,c4,c5) or to a shadow corner (c8) cast by an object

concave corner (c5). If the bright corner is a shadow corner,

there exists one, possibly two, dark anti-parallel segments

parallel to one or both of the shadow segments. If these dark

apars lie between the shadow line segments and the projected

position of the sun, then the bright corner is a shadow corner.

Otherwise, the bright corner is an object convex corner. A

similar interpretation can be derived for pairs of segments

forming corners around dark regions.

,-.



64

C~4-

CY 
4-

Fig. 1. Object and shadow corners.



65

In addition, or in the absence of shadow information,

building corners must meet basic sets of geometric compatibility

constraints. A single corner presupposes the existence of a

compatible corner along their line segment components. Groups of

corners can be taken together to satisfy even more complex

compatibilities and consistent global interpretations can be

given.

Figure 2 shows a detail of an aerial image containing

buildings. The image was convolved with a Laplacian Gaussian

filter for local edge detection [3]. Figure 3 shows the line

segments obtained by a previously reported technique [2].

Figures 4 and 5 show all the corners extracted and those formed

by long segments. Only corners whose components actually

intersect were detected but suitable search windows can be

defined for less well defined corners.

We are currently working In the definition of rules for

hypotheses that could be derived from corner information, as well

as the required compatibility functions among corners for the

purpose of building detection in aerial images.
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:1.7 STRUCTURAL TEXTURE ANALYSIS APPLICATIONS

F. Vilnrotter* and R. Nevatia

INTRODUCTION

In previous reports, we have described programs used to

generate descriptions of natural textures 11-2] and extract and

describe texture primitives (3] and the spatial relations between

them [4-5]. Short descriptions of some of these programs may

also be found in [6-7]. These techniques are useful for

generating structural texture descriptions. We have applied them

to the tasks of texture recognition, and surface orientation

determination (the latter application is only partially

Implemerted) . This section describes these applications; a

complete report on this work including the texture description

programs will be available separately [8].

Next, the problem of determining the orientation of surface,

using the gradient of the texture is discussed. Work done by

Bajcsy [9] and Stevens (10], [11] in this area is briefly

discussed. An orientation analysis scheme is suggested which is

*F. Vilnrotter was supported by a Hughes Aircraft Company

Doctoral Fellowship.
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based on these methods and incorporates some of the texture

analysis techniques presented earlier. Preliminary results for a

number of texture images exhibiting texture gradients are

discussed.

TEXTURE RECOGNITION

A texture recognition algorithm that uses the descriptions

generated by our texture analysis programs is discussed below.

The descriptions consist of the periodicity of the texture and

the size and shape of the texture elements. Details of

descriptions are given in part in [1-3,6] and all details may be

found in (8]. Hopefully, the discussion of the recognition

algorithm below is self-explanatory in terms of the descriptions

used. The recognition scheme is basically a decision tree.

Eleven types of textures were used in our experiments.

Texture Recognition Algorithm

The structure of the algorithm used for texture

classification is shown in Fig. 1. The texture classified are:

floor grating (dark dot pattern), brick wall, aerial view of

city, raffia (woven palm), herringbone material, wood grain,

aerial view of water, straw, grass, sand, and wool.

Most of the textures used are from the Brodatz album [12].

The exceptions are the floor grating, brick wall, and aerial city

patterns. Aerial city pictures taken at different orientations

and different scales were used. Only 11 samples are found. All
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other texture groups consist of 16 samples each. Pictures of

both shifted and unshifted brick patterns are used.

The decision tree form was chosen for this texture

classification scheme. The structure of the tree allows the

classification information to be weighted by means of relative

ordering. For example, the test for periodicity is encountered

at an earlier stage than any of the aspect ratio tests. Clearly

texture period information is being given more significance than

aspect ratio information according to this classification scheme.

The first texture characteristic considered is periodicity.

If a texture is non-periodic it will be classified by the subtree

to the right of the root node. However, if the texture exhibits

signs of periodicity but fails the tests for each of the 5

regular texture patterns it is sent back to the root node,

re-labeled as a non-periodic texture. Due to this loop in the

structure, the classification algorithm does not have the exact

form of a binary decision tree. However, for convenience tree

terminology will be used in the discussion. The loop is

introduced to accommodate textures which are basically

non-periodic, but may show evidence of periodicity some of the

time. The wood grain, water and straw textures exhibit this

characteristic. The opposite is not as likely to occur, i.e.,

the periodic textures are not mistakenly sent down the

non-periodic branch.

7W 1 #~ r
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No absolute texture element dimensions or intensity values

are used; and all directional information is relative as well.

In this way, the analysis should be insensitive to scaling,

rotation and degree of contrast within the image. Measures which

are used are primitive eccentricity, dimension to period ratio,

the number and significance of texture element types, and

relative intensities and orientations of texture primitive types.

The details of each decision box for the two main decision

branches is given below:

Periodic Branch

1) Dark Round Primitives - More than four dark primitives are

merged into one primitive ty-pe.

2) Multiple Sized Primitives - Multiple sized primitives are

found in two perpendicular directions. The texture period

is equal to the sum of the element sizes. The sum of the

(size/period) ratios for the four most significant

primitives is less than .2.

3) Most Significant Primitives are Periodic in the Same

Direction - The two most significant primitives exhibit an

element spacing value for the same scan direction.

41 Large (Dark Element Size/Light Element Size) Ratio - The

dark primitive is at least twice as wide as the light

primitive in the most significant scan direction.
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5) Light Elongated Primitives - The ratio of the dimension in

the most significant scan direction to the dimension in the

direction perpendicular to the direction of scan is less

than .4.

Non-Periodic Branch

1) Uni-Directional Texture - The two most significant

primitives are found in the same scan direction. The

significance numbers associated with these two primitive

types are greater than all other significance numbers by at

least .66 (out of a possible 1.0).

2) Less Elongated Primitives - The sum of the aspect ratios for

the two most significant primitives Is at least as great as

.175.

3) Most Significant Primitive is Relatively Dark.

4) Elongated Texture Primitives - The minimum aspect ratio of

the four most significant texture primitives is no larger

than .18.

5) Two Primitives Types - Primitives are found for the two most

significant (intensity,direction) pairs.

6) Gradual Loss of Significance - There is no abrupt loss of

significance after the fourth (intensity,direction) pair.

The difference is smaller than .3.
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7) Primitives Found in Two Perpendicular Directions.

8) Low Size/Spacing Ratio - There is a low (element

size/element spacing) ratio for relatively dark primitives

in two perpendicular directions. The sum of both ratios is

less than .53.

9) Less Gradual Loss of Significance - The loss of significance

after the fourth (intensity,direction) pair is at least .3.

No attempt has been made to optimize this decision scheme.

The classification results are discussed in the following

section.

Classification Results

Classification results are given in the confusion matrix

shown in Table 1. The types of samples to be classified are

listed to the left of the matrix. Each row shows how a specific

set of samples was classified. For example, 15 aerial water

texture samples were correctly classified, while one sample was

incorrectly classified as wood grain. One hundred seventy-one

samples were classified in all. In most cases the samples came

from 512 x 512 pixel texture images. These were divided into

sixteen 128 x 128 pixel non-overlapping texture subwindows.

However, in the case of the aerial city samples only 11 samples

were available. These were cropped from two different satellite

images of the San Francisco area. The 16 brick wall samples were

taken from three separate brick wall images. One hundred

1,.. '
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fifty-six samples were correctly classified to give an overall

success rate of 91.23%. It should be noted that additional

contextual information, e.g., color, scale, and type of scene

would probably have improved the results obtained. However, no

information of this type was used in the classification scheme in

order that the strength of the texture descriptions used could be

tested in isolation.

There are no mismatches for the highly structured, regular

texture group. However, there are a number of non-periodic

texture samples which are classified incorrectly. One source of

confusion is between the water and wood grain textures. Both are

one-dimensional textures made up of elongated texture primitives.

The wood grain primitives tend to be more elongated than the

water wave primitives. There is little else which is noticeably

different from a structural point of view. Hence, confusion of

these two texture types is predictable. Additional contextual

information, e.g., the scale information for both textures, would

improve the classification esults.

Another area for confusion is the set of textures consisting

of (grass, sand, and wool) exhibit the least amount of structure

of the entire set. The edge images, ERAs, ERA descriptions,

composite texture primitive masks, and text,:'e primitive

descriptions are very similar for all three types. This is

because the program is not designed to measure the types of

features which most readily differentiate these textures. In

* It- u -nm~ _______mn_
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light of these description similarities, confusion among members

of this group is to be expected. It should be noted that none of

these texture samples were confused with textures from outside of

the group and none of the other texture samples were mistakenly

classified as one of these. The same can be said of the subgroup

formed by the water and wood grain textures.

In summary 156 samples out of 171 were correctly classified

to give an overall success rate of 91.23% for this classification

scheme. These results are extremely encouraging. It would seem

'hat the information extracted by the algorithms presented

earlier in this thesis describe meaningful texture

characteristics.

SURFACE ORIENTATION ANALYSIS

In Figs. 2 and 3 two texture gradient images are shown.

Figure 2 is an image of a brick wall and Fig. 3 is an image of a

redwood shake roof. In each case the textured surface is at a

non - zero angle with respect to the image plane. The brick wall

recedes to the left of the image, while the shake roof slants

away from the viewer toward the top of the image.

One cue which we use to infer information about the

orientation of textured surfaces is the texture gradient, i.e.,

the relative change in size or period of the elements making up

the textured region within the image. Assuming that the textured

surface being viewed is homogeneous, the element sizes of like
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texture primitives should decrease with increased distance from

the viewer. The direction of maximum rate of change of depth

with respect of the observer should be discernible as well as the

degree of surface slant in this direction. A convenient way to

represent these two surface characteristics is via the gradient

space.

Let z = f(x,y) be a function defining a planar surface in

3-Space, where the image plane is parallel to the x-y plane, (see

Fig. 4). The surface normal, N, can be defined as follows:

N = (fx,f y,-l). Letting p = fx' and q fy, we have the gradient

vector, G = (p,q). The direction of G is TAN-I(q/p), while the

magnitude of G is SQRT(p2 + q2 ). The direction of G denotes the

direction of the greatest rate of change within the image, while

the magnitude of G determines its quantity. Also, the tangent of

the angle that the surface makes with the x-y (or image) plane is

.qual to the magnitude of G. Therefore, the orientation of a

surface in 3-Space can be represented as a point in the gradient

space.

In E101 Stevens suggests an alternate set of coordinates to

represent surface orientation. He suggests the pair (o,i), where

a= tan
- ((p2+q) 1/2),

and

T= tan (q/p).
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Stevens' slant and tilt angle terminology will be used. The tilt

angle, T , is an angle made with the horizontal axis of the image

plane. It is the projection of the surface normal onto the image

plane. Stevens has shown that this direction coincides with the

direction which exhibits the greatest rate of change of distance

from the observer to the surface. This is precisely the

direction of the texture gradient. Therefore, by calculating the

texture gradient one can determine the tilt angle. The slant

angle, a, is the angle which defines how much the image plane

orientation differs from the surface plane orientation. For a

discussion of various forms of surface orientation representation

see the works of Stevens (10] and Kender [13].

Calculating the tilt angle is fairly straightforward. It

entails determining the direction of the gradient of any texture

measure which is scaled (due to distance), foreshortened (due to

surface orientation), or both scaled and foreshortened.

Determining the slant angle, a , is more involved. One

method suggested is to determine which texture measure

corresponds to the characteristic dimension. That is, which

texture measure is scaled but not foreshortened. The normalized

gradient of this dimension, taken in the direction of the texture

gradient, is equal to the tangent of the slant angle.

Vdd tan a, (1)



83

where d is the characteristic dimension. Characteristic

dimensions are parallel to the image plane and are perpendicular

to the local surface tilt. Therefore, after the surface tilt has

been determined the orientation of the characteristic dimension

is known. This scheme for calculating s cannot be used if the

image is an orthographic projection, or if the elements exhibit

successive occlusion. Alternative schemes are explored in [10]

for handling these problems. Here it will be assumed that

neither problem exists.

In [9] Bajcsy presents a method for calculating the angle

formed by the image and surface planes. However, the dimension

used in this case is the dimension oriented in the gradient

direction. Therefore, it is both foreshortened and scaled.

Using the principles of projective geometry, the

trigonometric rules pertaining to similar triangles and some

small angle approximations, Bajcsy derives an expression for c,

the angle formed by the surface and image planes.

-tan a - Fractional Change in Element Size (2)

Focal Distance Baseline in Image

where the fractional change in element sise and the baseline

within the image are both measured in the direction of the

texture gradient. Details of the derivation can be found in [8].

Both methods assume proximity to the line of sight defining

the local image plane. All of the examples used in the following
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section have maximum off center angle less than 10 degrees.

Further work is necessary to define the transformation needed to

correct for large off center angular separations. This

transformation should take into account the image plane and lens

system characteristics as well as the geometry needed for

coordinate transformations.

A General Orientation Analysis Technique

Application of our structural texture analysis techniques to

surface orientation analysis problem is in a preliminary stage.

The process has not been fully defined or automated. An outline

of a proposed algorithm is discussed below, and some preliminary

results are presented in the following section. Although only

part of the program is operational, see 2 below, most of the

remaining program sections are defined and seem feasible from a

programming point of view.

One effect which must be anticipated by this technique is

the possible changing orientation of the texture primitives. If

the texture gradient was strong enough the height of the brick

primitives in Fig. 2 would be found in the 120 degree scan

direction in the lower left hand part of the image and in the

vertical scan direction in the right and central areas. One

possible solution is discussed in (3) below.

A possible scenario for detecting surface orientation is as

follows:

4.
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1. Divide the textured region into locally uniform subwindows,

i.e., subwindows which exhibit very little, if any, element

size variation. This algorithm is not yet defined. However,

as a first approximation the image can be divided into

subwindows which accommodate the largest texture elements.

Then element sizes can be averaged over each texture

subwindow to produce an element size for that location in the

image. This was done manually for the two examples discussed

below. (In order to automatically determine the largest 2

element size, one might calculate modified ERAs (see 2 below)

for a large range of distances, say up to one third of the

largest image dimension, over the entire texture image. Then

an ERA interpretation routine, similar to the one presented

in (21, can be used to determine the largest texture element

dimensions.)

2. Calculate modified ERAs for each subwindow within the region.

Only the first match encountered will be recorded for a

particular directional scan. Hence, no element size or

spacing repetitions should be counted. It is hoped that this

will prevent repetitions from being interpreted as element

size variations within a given subwindow. The modified ERA

calculation scheme is operational and has been used to

produce the results shown in Fig. 5.

3.. Look for a dimension exhibiting strong results for each

subwindow. A dimension, d, which is locally uniform but

____
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which reflects the gradient of the texture is sought. It

should be verified that all of the ERA results chosen refer

to the same texture primitive type. One way to achieve this

end is to extract texture primitives for overlapping

subwindows and verify that enough of the primitives extracted

belong to both subwindow neighbors. In this way textural

elements which shift orientation due to the effect of angular

perspective can be found in each subwindow.

4. Create a matrix, M, of the centroid values of the element

size peaks for d. Use a gradient operator on M to calculate

the value of the tilt, or gradient, angle of the surface

within the image.

5. Knowing the tilt angle means that the orientation of the

characteristic dimension is also known. It can then be

ascertained if either the characteristic dimension or the

gradient dimension is already available as part of the set of

ERA results. If this is the case then the rest of this step

can be skipped. If this is not true then the characteristic

or gradient dimension of some non-background texture

primitive type must be measured from texture primitive masks.

(These measurements should proceed outward from the e emental

centers of mass.) Either of these two dimensions can be used

for the slant angle calculation. Histograms of these

dimensions should be kept so that the final calculations can

be made using the highest amplitude/lowest standard deviation
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results. When measuring the characteristic dimension the

original set of subwindows can be used. However, when

calculating the gradient dimension the subwindows might have

to be recropped to provide the correct center to center

angle.

6. At this point either Eq. 1 or 2 can be used to calculate the

surface slant angle to complete the procedure. If the

characteristic dimension is known then Eq. 1 would be used.

If the dimension oriented in the texture gradient direction

is known then Eq. 2 would be used. Both slant angle

calculation methods are discussed above.

Texture Gradient Examples

In this section two texture gradient examples are presented

and discussed. They make use of the general method outlined in

above.

Example 1

Consider the brick wall image in Fig. 2. This image is

512 x 512 pixels. It was divided into 16 128 x 128 pixel

subimages, and ERAs were calculated for each of these. The

vertical element size ERAs for each subwlndow are shown in

Fig. 5. As expected the element sizes decrease toward the left

side of the image. Figure 6(a) shows the brick vertical element

size dimension matrix. In Fig. 6(b), the results of the gradient

calculation are shown; and Fi. 6(c) shows the results of the

?'
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19.759 22.547 25.644 28.551

19.515 22.406 25.176 27.450

19.368 22.496 25.306 28.182

18.938 21.868 24.965 28.029

(a) Brick Vertical Dimension Matrix. Each value, d,
is a dark, vertical element size.

Sx = -23.146 S = 21.778(1) x (2)

S = -. 83 S = -1.094y y

sx = -23.566 S, = -22.577
(3) x(4)

S = -1.864 S = -. 381y y

(b) Gradient Results for (a).

T = tanlib) = tan-1 ; d -
x

2.050 28 40.900

0452E 46.42 ' 41.74I

(c) Tilt and Slant Angle Matrices.

Figure 6. Analysis for Example 1.
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tilt and slant angle calculations. In this case the vertical

brick dimension is the characteristic dimension, hence, the

method developed by Stevens will be used to calculate the surface

slant. The slant and tilt calculations are carried out for the 4

interior subwindows of the image (Fig. 2). The tilt angle

measured from the image is approximately 3° . The tilt angle

results range from .967 ° to 4.520. Unfortunately, the actual

slant angle is not known for this image. However, the results

found for this angle seem to be reasonable. The angle made by

the image and surface planes, or similarly, the angle between the

principle ray and the surface normal seem to be in the

neighborhood of 450. In the next example the approximate angle

formed by the surface and the image plane is known.

Example 2

Consider the shake roof image in Fig. 3. This image is

512 x 512 pixels. It was divided into 9 170 x 170 pixel

subimages. (The last two rows and columns were not used.) ERAs

were calculated for each of the nine subimages. The vertical

element size ERAs for each subwindow are shown in Fig. 7. As

expected the element sizes decrease toward the top of the image.

Figure 8(a) is the matrix of the centers of mass for the vertical

element size ERAs of Fig. 7. In Fig. 8(b) the results of the

gradient and tilt angle calculations are shown, and Fig. 8(c)

shows the results of the slant angle calculation for three image

locations. The gradient direction dimension, i.e., the vertical
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1 2 3

d 1 16.029 15.855 16.286

d2  21.223 21.317 22.104 Image Baseline
(340 pixels)

d3  28.808 29.347 28.146

(a) Redwood Shake Vertical Dimension Matrix. Each
value, d, is a light vertical element size.

S = 1.357 T = tan - (A

S = 51.623 T = 88..49 °
Y

(b) Gradient and Tilt Angle Calculation.

a=tan-l(d 3-dl)* Focal Distance

i(d3+d1)* Image Baseline /
Focal Distance = 50 mm = 2008.33 pixels

a1 2 a3

173.460 74.170 72.410

(c) Slant Angle Result Matrix.

Figure B. Analysis for Example 2

-- , 4T,
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dimension, of the wood shake elements was already known via ERA

calculation. Therefore, the the surface slant angle was

calculated using the method developed by Bajcsy. (It would be

very difficult to use the characteristic dimension in this

example since the widths of the wood shake are variable.) The

slant angle computations are carried out for 3 sets of data. The

tilt angle is calculated once since there are only enough windows

for one gradient computation. The tilt angle for the image

(Fig. 3) is approximately 900. The tilt angle was computed to be

88.490. The slant angle was calculated to be approximately

71.970. (See Fig. 9.) The slant angle calculation results range

from 72.405°to 74.167 °.

Determination of window size is a problem which must be

addressed. One possible solution is to calculate a set of ERAs

for the entire image, initially, for a wide range of distances.

The maximum element sizes found would then dictate the

appropriate window size.

SUMMARY AND CONCLUSIONS

Structural texture analysis techniques previously developed

were applied to 2 texture analysis problems, namely, texture

recognition and surface orientation determination. The results

obtained in both cases appear to be very promising.

First, a classification scheme using both one-dimensional

texture descriptions and texture primitive descriptions was
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presented and classification results were discussed. The

algorithm was designed to classify 12 different types of

textures, including 6 random and 5 periodic textures. The random

textures were taken from the Brodatz album [12]. These are

grass, sand, wool, water, wood, and straw. The 5 periodic

textures came from a variety of sources ranging from aerial

imagery to pictures taken by the author. They are raffia,

herringbone material, floor grating, aerial city, and brick wall.

The algorithm achieved an overall success rate of 91.23%. The

classification scheme worked well for the non-periodic texture

group, and extremely well for the highly structured regular

textures, achieving 100% correct classification for this group.

In those cases where there was confusion additional contextual

information would have been helpful. For example, knowing scale

information would have aided in distinguishing wood grain from

the aerial water texture. As might be expected the amount of

algorithm success varied directly with the amount of structure

present in the texture. Since the range of textures handled by

this algorithm is varied and any confusion encountered is

restricted to small groups, (2-3) of similar textures it is fair

to say that the description information extracted thus far

corresponds to meaning textural features.

The surface orientation determination scheme presented is in

preliminary form. The method described is only partly automated.

It uses schemes developed by Bajcsy (9] and Stevens (10]. It

also utilizes the techniques discussed in earlier reports. Some

v, -1 i
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preliminary results are presented and discussed. Tilt and slant

angles are calculated for two images exhibiting non-zero texture

gradients. The results for all known quantities are accurate to

within 5 degrees. These results appear to be promising.

However, more work needs to be done to completely automate the

process.

REFERENCES

[] R. Nevatia , K. Price and F. Vilnrotter, "Describing

Natural Textures," USCIPI Semiannual Technical Report 860

March 1979, pp. 29-54.

121 F. Vilnrotter, R. Nevatia and K. Price, "Automation

Generation of Natural Texture Descriptions," USCIPI

Semiannual Technical Report 910, September 1979, pp. 31-63.

(3] F. Vilnrotter, R. Nevatia, and K. Price, "Extraction of

Texture Primitives," USCIPI Semiannual Technical Report 960,

March 1980, pp. 48-59.

(41 F. Vilnrotter, R. Nevatia, and K. Price, "Determining

Spatial Relationships Between Texture Primitives in

Homogeneous Regular Textures," USCIPI Semiannual Technical

Report 990, September 1980, pp. 10-26.

[51 F. Vilnrotter, R. Nevatia, and K. Price, "Automatic Grid

Relation Extraction and Texture Reconstruction for

Homogeneous Regular Textures," USCIPI Semiannual Technical

7W- V.



97

Report 1010, March 1981, pp. 27-42.

(5) R. Nevatia, K. Price, and F. Vilnrotter, "Describing

Natural Textures," Proc. of the Sixth IJCAI-79, Tokyo,

Japan, August 1979.

[7] F. Vilnrotter, R. Nevatia, and K. Price, "Structural

Description of Natural Textures," Proc. of the Fifth

IJCPR-80, Miami, Florida, December 1980.

(8] F. Vilnrotter, "Structural Analysis of Natural Textures,"

USC Computer Science Ph.D. Dissertation, to be published in

1981.

(91 R. Bajcsy, "Computer Identification of Textured Visual

Scenes," Computer Science Report, Stanford University, 1972.

[101 K.A. Stevens, "Analysis and Representation of Visual

Surface Orientation," Ph.D. Dissertation, MIT, 1978.

111] K.A. Stevens, "Representing and Analyzing Surface

Orientation," Artificial Intelligence: An MIT Perspective,

pp. 104-125, Cambridge: MIT Press, 1979.

(12] P. Brodatz, Texture: A Photographic Album for Artists and

Designer. New York: Dover, 1979.

[13] J.R. Kender, "Shape from Texture," Ph.D. Dissertation,

Carnegie-Mellon University, 1980.

t4 "~

m -- obmm m mlllIl E il



98

E1.8 TEXTURE SYNTHESIS USING A PIECEWISE-LINEAR MODEL

D.D. Garber and A.A. Sawchuk

INTRODUCTION

Work presented earlier by Garber and Sawchuk [1-4] has shown

that a carefully chosen linear model can be used to simulate a

variety of natural textures. As an extension of first-order

linear model a piecewise-linear model Is proposed in this paper.

Previous limited studies indicated that the slight improvement in

simulation quality did not justify the added computational

expense required to estimate parameters of the piecewise-linear

model. Nevertheless, additional texture simulations using this

method were done on a variety of textures and the results are

presented in this paper. These results indicate that a single

linear model produces texture simulations superior to those

generated using a piecewise-linear model.

SINGLE LINEAR MODEL

A method of texture synthesis based on the linear model was

presented by Garber and Sawchuk In earlier studies [1-4]. The

model used is most simply stated as

7 ,
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VN+1 = BiVI+B 2 V2 +.- .+BNVN+B0+e. (1)

Each individual pixel of a synthesized texture is computed

as a linear combination of previously generated pixel values plus

a noise term according to Eq. (1). The pixels are generated

one-at-a-time along each row, row by row, until the entire

synthesis image space is filled. Each pixel is a linear

combination of only those pixels above it and thus, the synthesis

process is causal.

A least-squares method is used to estimate the ai

coefficients of the linear equation by fitting the equation to

the sample texture data. Selection of the spatial relationship

of the V is of the generation kernel is accomplished using ideas

commonly employed in stepwise linear regression studies. This

process is detailed in [1]. The variance of the random noise, C,

is chosen to be equal to the unexplained variance when the model

is applied to the original sample parent texture data. The

distribution of the noise used in this paper was Gaussian.

Synthesis results using this single linear-model method are shown

in Figs. 2(b) to 8(b). The original parent textures are shown in

Figs. 2(a) to 8(a). The synthesis results are relatively good,

especially when the vast data reduction is considered. The

number of terms in each of the models used was less than 70.

__ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
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PIECEWISE-LINEAR MODELS

When generating textures using the general linear model

described by Eq. (1), the same model is used regardless of the

values of the pixels V,...,VN. By developing more than one

linear model and allowing the choice of the model at each pixel

generation step in the synthesis process to be dependent on some

functional value of V1 ,...,V , F(VI,...,V N ) a new synthesis model

is formed.

To illustrate this concept consider the data in Fig. l(a).

If we were to fit one linear model to the data in order to

predict V 2 from V 1 it would look like the single line running

through the data in Fig. l(a). This linear model could then be

used to predict V 2 based on the value of V1 . But if we allow the

choice of our linear model to be dependent on the value of V 0,

then for an incoming value of V we choose a model whose domain

includes V1 to predict V2. For 6 linear models, the straight

lines are shown in Fig.l(b). The fit to the data using multiple

linear models will always be as good as or better than that of

the single linear model. That is, the mean square error will

generally be reduced using multiple models.

Using multiple linear models for texture synthesis we would
generate pixels VN+1 based on pixels V I,..V N in the following

way. First, we compute a function, F, of the Vi,...,V pixels
1 "N
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which allows us to choose the proper linear model. Then, using

this model with the values VI,...,VN, we predict VN+ 1 and add

noise.

Ideally, the function F should be chosen to minimize the

total mean square error resulting from fitting the limited number

of models to the sample data. This is very difficult to do in

practice however as for N larger than 3 we are fitting multiple

hyperplanes to data in an N+1 dimensional space.

Texture synthesis results using the piecewise-linear model

are shown in Figs. 2(c) to 8(c). In these cases, eight models

were used and the model number was chosen by examining the pixel

immediately to the left of the pixel being generated. The range

of this pixel, 0 to 255, was divided into 8 equal subranges and

the model was chosen according to the subrange into which the

value fell. For each piece of the piecewise-linear model, a

unique set of V. pixels and . coefficients was chosen using the

stepwise approach employed in model selection for the single

linear model.

CONCLUSION

Generally speaking, the synthesis results using the

piecewise-linear model approach are less successful than those

obtained using a single linear model. At first, this seems to

contradict the simple analysis indicated in Fig. 1. However,
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what the example does not show is the potential instability of

the Oi coefficient estimation for each of the line segments. As

the number of models used increases, the range of the V N+ being

estimated by the model decreases, and the sample size used to

estimate the coefficients is reduced. It is conjectured that

this causes instability in the . estimation leading to

usually-poor synthesis results.

In any case, it appears that the quality of the synthesis

results do not warrant the expenditure of additional effort

required to derive eight instead of one linear models.
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* 2.0 DEVELOPMENT OF VLSI IMAGE UNDERSTANDING SYSTEMS

S.D. Fouse, A.D. Cumming, V.S. Wong, G.R. Nudd

Hughes Research Labs

Malibu, CA.

INTRODUCTION

It is generally understood that iaa'. processing systems

have very large computational throughput requiirements.

(Typically greater than 25 million operations per frame.) If the

system is to operate in real time (30 frames per second (FPS)

then the required throughput is of the order of 1 billion

operations per second. Obviously a special purpose processor is

required to achieve real time performance, and because of the

extreme computational requirements it is clear that Image

Understanding systems can benefit greatly from the VLSI

technologies. To be able to utilize VLSI, however, one must be

able to overcome the anticipated high costs of design and test.

One way to reduce the cost is to develop a processor which is

very modular and can be described in a heirarchical manner, which

is how the modern computer design tools will handle the

complexity of a VLSI circuit. Another way to reduce the costs is

to use regular structures on the chip, such as memory. This

willl reduce design costs as well as the cost of testing.

V
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Finally, probably the most significant way to handle the cost

problem is to make a processor which has application to a wide

range of systems. This will allow the cost of the chip to be

amortized over a large user base.

For the last year we have been developing an LSI prototype

of a VLSI processor which performs arithmetic operations over a

sliding 5x5 window of an image. The RADIUS (Residue Arithmetic

based Digital Image Understanding System) processor was described

in the previous USC semiannual report (1]. This processor has

several features that makes it very well suited to a VLSI

implemetation, including modularity, extensive use of memory, and

application to a large number of image understanding systems

currently being developed.

As indicated by the acronym, the processor utilizes the

technique of residue arithmetic [2] to perform the computations.

The processor converts the incoming binary image data into a

residue representation by calculating the MOD or remainder

function over multiple, relatively prime bases. The data is then

processed, in parallel independent channels, one for each base,

with identical operations being performed for each base. In each

channel the data is processed using modular arithmetic in the

respective base. Finally the data from each base channel are

combined to form a binary result.

Our prototype processor uses commercially available

read-only-memories (ROMs) for the conversions from binary to

'A-
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residue and residue to binary. For the computation portion of

the processor we have developed an LSI nMOS circuit which can

perform 5xl local area computations for a single 5 bit base

(<32). The processor, which uses 20 of these custom circuits (4

bases, 5 lines per base) Is currently programmed to process data

in the bases 31, 29, 23, and 19 and can accept 8 bit binary data

at a 10 MHz rate.

This paper describes the critical aspects of the development

of RADIUS and the progress that has been made. In addition we

describe the status of the essential related projects we have

been working on. These include:

" RADIUS-UNIBUS interface

• Applications of RADIUS

• Design Automation

" A Local Area Logic Processor.

PROGRESS ON RADIUS DEVELOPMENT

The RADIUS development work can be decomposed into three

areas:

• Development of residue custom LSI circuit

, Fabrication of processor board

System integration

Each of these are critical in that the system will not operate

wihout the successful completion of the work in all three areas.
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During the last six months we have made considerable

contributions in all three areas.

The development of the residue custom circuit has

significantly progressed in the past six months. In June,1981

the first parts were packaged and tested. Software was developed

for testing all of the major components of the circuit including

the input shift registers, RAM's, base latches, and modular

adders. A problem was detected with the adders and soon

diagnosed to be a design error. At this point we started a

redesign of the circuit to correct the error as well as

continuing to thoroughly test out the circuit for functional

correctness and operating speed. The chip was run at 2.5 MHz

with very clean waveforms. The limit on the speed was due to the

bandwidth of the clock generator and clock drivers. In addition

it was determined that there was only that single fatal error but

several minor problems were also corrected in the redesign, which

was completed in September, 1981. The new masks were produced

and the processing of the new lot is due to be completed by the

middle of October.

The actual processor consists of a 12x14 inch wire-wrap

board. The majority of the wire-wrap was complete prior to the

arrival of the first lot of chips. The board was tested without

the chips and it was verified that all of the data paths were

correct and the encoder, adder, and decoder ROMs were correct.

When the chips did arrive, they were tested in the processor

,.o .-' . " . ' .
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itself. This provided the benefit of developing the processor

programming software simultaneously with the test software. The

current status of the processor board is that it is 95% complete

with only fine tuning of the clocks remaining to be done. This

will be done when the second lot of chips arrive.

The last area of work instrumental in the development of

RADIUS is the integration of the custom chip, processor board,

and external control. This work has proceeded in conjunction

with the other two areas of effort, since all of the testing was

accomplished through the use of the external control. The

external control consists of a microcomputer with a 24 bit

parallel I/O card. The programs that were written for test and

programming have all been written in assembly code and execute on

the microcomputer. This work is essentially complete except for

insuring that the system is compatible with the new chips, and

there is no reason to expect that the chips won't be compatible.

RADIUS-UNIRUS INTERFACE

The RADIUS processor is designed to accept data at 100

nanosecond intervals, which is fast enough for real-time stand

alone operation. This means, however, that when the processor is

used as a peripheral device attached to a general purpose

computer, the data transfer will be limited by the memory cycle

of the general purpose computer and not by the processor speed.

The Hughes Image Understanding Installation is based on a PDP

11/34, and the fastest access to this is provided by a so-called
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Direct Memory Access module- type DRlIB. This is able to

communicate with the computer memory along the UNIBUS lines,

without intervention by the CPU. About 500,000 words per second

can be transferred in this way, which translates to a data rate

of I megabyte/sec at the RADIUS processor.

The 11/34 uses a page addressed memory structure, each page

being 32k words in length. in order to store a complete image it

is necessary to cross page boundaries by a technique known as

dynamic region allocation. Software has been written to do this,

which stores a 256x256x8 bit image buffer ready for processing.

Our display unit, a COMTAL, can store two 512x512x8 bit images,

each of which is split into four quadrants giving a further eight

image buffers. It is anticipated that nine buffers in all should

be adequate for the development of most of our Image

Understanding algorithms.

The dynamic region allocation and direct memory access

techniques will provide a string of 8 bit values, originally

generated by a raster scan of the image. We will include in the

processor interface the means for generating the two dimensional

kernal. This kernel generation function is most easily

envisioned as a series of shift registers. For a five line

kernel four shift registers are required, each one containing as

many elements as there are pixels on a line. However, since the

system is being designed with variable line lengths a variable

length shift register would be hard to implement. For this and

...... ,7"O W
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other reasons (including component availability, price,

performance, reliability, etc) Hughes has developed a line delay

system using random access memory. A system of address counters

and crossbar switches is used to both load and retrieve the data

on a line by line basis, and also to access the 5x5 kernel

itself.

Another design issue in the computer to RADIUS processor

interface is that of gaining access to the lookup tables carried

in each of the 20 custom residue chips. This could be either

done with a seperate interface module to the 11/34 or by using

some of the existing control lines on the DR11B DMA module. We

will take the latter course of action to avoid unnecessary

clutter on the 11/34 backplane. This will, however, necessitate

some extra switching on the interface module so that data from

the DR11B can be routed to either the four line delay or to the

lookup tables. For reasons described below, we intend to pass

information to and from the RADIUS processor through lookup

tables, composed of 256x8 bit RAMS. This will make it possible

to apply nonlinear operations on a pixel by pixel basis, and will

also control the dynamic range of signals fed to the RADIUS

processor.

APPLICATIONS OF RADIUS

The primary motivation for developing this processor was to

do 5x5 convolutions for such applications as edge enhancement,

statistical differencing, low/high pass filtering, statistical

, p .. ..
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moment calculations, integer coefficient transforms, and texture

analysis. However, the processor is capable of performing a much

wider range of computations. The reason for this flexibility is

due to the fact that we used a lookup table to perform a unary

operation and the table is completely programmable. The general

form of the computation that can be performed by the processor

is:

y - f x

where y is the output, xi are the 25 elements in the 5x5 kernel,

and fi are any allowable residue arithmetic computations.

The exact nature of what constitutes an "allowable residue

arithmetic computation* is an interesting one and we are

performing ongoing studies of this. Basically, the integer

operations of addition, subtraction, and multiplication are

allowed, but division is not, since the result of a division is

not, in general, an integer. In the residue arithmetic as

implemented on the RADIUS machine, any number is uniquely

represented by an array of four residues in bases 19, 23, 29, and

31. If any addition, subtraction, or multiplication operation is

performed on all four residues (modulo the base in question),

that is equivalent to performing the same operation on the input

number. The largest number that can be represented, M, is given

by the product of the bases, in this case 392863. Overflow

cannot occur in any one base since the answer is always taken

modulo the base, but it is possible for the output number to

- " ---. L
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exceed M. In this case, the computed result appears modulo M,

giving a 'wrap around' effect similar to that in binary

arithmetic. However, there is no convenient way to determine

that this overflow has occurred, necessitating considerable care

in developing an algorithm to generate fi(xi). (It is imperative

that the final result of the algorothm does not exceed M). An

advantage of residue arithmetic, however, is that intermediate

values in a calculation can be arbitrarily high, and the algoithm

can be arbitrarily complex. This arbitrary complexity is a very

powerful feature of residue arithmetic, and it arises because the

results are stored in a lookup table. However much computer time

is needed to generate the tables themselves, the computations are

still performed on Image data at the full 10 MHz rate.

Since the RADIUS processor can evaluate any arbitrary

integer coefficient polynomial and many useful operations can be

approximated by polynomial functions, we have decided to

investigate this approach. The polynomial may be of arbitrarily

high order with arbitrarily large coefficients, although the

coefficients must be integer. In particular, no coefficient can

be less than one so that in a high order term, a large input

number raised to a high power may exceed the maximum M. This is

not a problem if other terms in the polynomial are sufficiently

negative to reduce the overall result to less than M, and we are

working on polynomial curve fitting techniques to achieve this.

Figure I shows an approximation to the function y-a V-X, useful as

part of the Sobel operator. As may be seen an accurate fit is

.~%K 42--#%-
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obtained with a cubic polynomial everywhere except the origin,

and it is possible to improve the fit at the origin if necessary

by adjusting the polynomial coefficients. There is a tradeoff

between accuracy of the fit and the maximum allowable input

value, and this is rapidly improving as we improve our curve

fitting procedure. The preliminary results shown in Fig. 1 was

produced simply by performing a least squares fit and then

rounding the coefficients to the nearest integer value, but this

is far from being the optimal technique. It is possible to fit a

polynomial curve to practically any desired function, so that

such operations as contrast enhancement, thresholding, etc.,

become possible. Furthermore, it is possible to perform a

different function for each element of the kernel, so that the

RADIUS processor is expected to open a new vista in

convolution-type processing algorithms.

DESIGN AUTOMATION

This work is not directly part of the I.U. effort but will

be of great benefit in terms of cost and speed of our designs.

We have set ourselves the goal of investigating and implementing

a design automation system capable of designing large VLSI chips

in an efficient and reliable manner. If the predicted

downscaling of devices and Increase of chip density materializes

in the near future, we will need much better design tools to

organize and design VLSI chip systems, since we see that design

productivity and system complexity will be the bottlenecks in

i i,
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Implementing VLSI systems.

To help us develop these tools for VLSI design, we have at

our disposal several computer systems and devices. These include

a VAX 11/780 where we are developing most of our software, an

AVERA IC designer which is a complete IC design system in itself,

a PDP 11/34 which is used as a controller, and several plotters

and graphics terminals. We also have access to an Amdahl 470

processor and a PDP 10 computer for running simulations and for

program development.

The AVERA unit is a self contained IC design system

including layout graphics and symbolic representation of designs.

It includes dual floppy disks where designs and system programs

are kept, a 17 in. black and white CRT, a keyboard, and

digitizing tablet. The capabilities include symbolic recognition

of commands and up to 64 levels of design representations. The

design output can either be in CALMA GDS II or CIF format.

We are also investigating the design automation approaches

being pursued at the Universities. One example is a STICKS-type

design package called CABBAGE developed at UC Berkeley. It

enables a designer to use symbolic representations to formulate

his designs, and as a final step, compacts the design to minimum

geometry while observing the programmed design rules. Another

approach being taken at Caltech and MIT is to specify the designs

in a structured and algorithmic way. Standard VLSI components

such as PLAs and ALUs can be designed in this way with alterable

*
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parameters controlling the size and configuration of the

component. Other groups have looked at the testing and

simulation of complex VLSI system designs. In order to design

error free systems it is necessary to be able to simulate complex

chip designs. Research on this is being done at MIT, where they

have developed a program for logic simulation called MOSSIM.

A LOCAL AREA LOGIC PROCESSOR

RADIUS has wide application to image understanding and can

perform the vast majority of arithmetic operations required.

There is, however, a need for additional high-speed processing at

the pixel level for operations such as those requiring logical

decisions. Examples of the need for this type of processing are

operations such as edge thinning, edge tracing, and region

formation. Recognizing the need for this type of high speed

processing, we are working to define and develop a logic

processor to complement RADIUS.

The first step in the development of the logic processor is

to define an instruction set. This set of instructions should

allow a wide range of functions to be performed on an image, in

single and multiple passes. The processor will access a local

neighborhood of each pixel and will produce an output based on a

comparison of the neighborhood to a template or a set of

conditions. This concept is illustrated for three image frames

in Fig. 2. The development of instructions or constraints

required for the logic processor are not difficult to develop and

f
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have been generated for processors such as PICAP [31. What we

shall aim for is an efficient set of operations to allow high

speed performance, matched to the RADIUS machine. The type cf

neighborhood that is accessed, the types of conditions that can

be specified, and the types of mappings from the combination of

local neighborhood and conditions to an output pixel determino

the instruction set parameters and specify a minimum capability

for the processor.

Once the processor instruction set is defined, we will

determine an appropriate architecture. As with the RADIUS

processors we will look towards architectures that will be suited

to VLSI implementation. For the same reasons that motivated the

design of RADIUS, we will probably utilize look-up tables to

perform some of the operations, making good use of memory

structures which are easily designed.

A high level block diagram of a processor which could

probably perform the range of operations required of a logic

processor is shown in Fig. 3. This processor is comprised of

logic to form the local neighborhood, which can be controlled to

perform comparisons on the data in the neighborhood, and two

look-up tables to provide the mapping from the results of the

comparisons and the center pixel to an output pixel. The look-up

tables, in addition to making a chip easy to design, will also

give the processor a great deal of flexibility. As a benchmark

example, we have Investigated the median function. Using this

• .. ,-
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architecture, the processor would be capable of performing a

median calculation of some local neighborhood with only 8 passes.

This is just an indication of the power a table driven processor

could provide.

SUMMARY

We have described ongoing work on the developmenT of RADIUS,

a real-time image understanding system which is well suited to

VLSI. The prototype system is due to be operational in November,

1981. In addition to the development work we have described, we

are working on several related tasks, Including developing an

interface between a PDP 11/34 and the RADIUS processor,

investigating further applications of residue arithmetic to image

understanding, and developing an integrated design automation

capability that will allow us to design and simulate LSI and VLSI

circuits.

Our future work will include further development of the

RADIUS processor and the development of the local area logic

processor we described. When they are both complete we will have

an integrated pixel level processor that can perform a wide range

of functions in real-time and many more functions in near

real-time. We will also develop an interface to the PDP 11 for

the intergrated RADIUS-LOGIC processor, and this will allow all

pixel operations to be performed at high speed, reducing greatly

the CPU time needed for image understanding programs.

i ____.....__ ___.............__ ___ ___ __
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