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Introduction

During the execution of contract 19628-78~-C0202, ARCON
staff worked with and provided computer software and analysis

support for RADC technical personnel on numerous projects

Most of the analysis and software development work involved
the following topics: circular antenna array theory; detection
and tracking of 1low flying targets by ground based raders;
null-filter mobile radar software for a CSP-30 system; detection
of a constant target in log-normal clutter; ¢finite antenna su-
barrays irradiated with nonorthogonal illumination; calculations
of field and radiation power patterns for a dipole array embedded
in a wire mesh; radar data processing; simulation library for
ground-based radars; analysis of single wire individual resource
protection (WIRP) sensors; computation of received power from
OTH radars; LORAN-related programs and problems; multi-hop prTo-—
pabation studies; modeling of VLF/LF propagations; whispering
gallery theory; magnetostatic surface wave analysis, computa-
tions, and plotting; 3-D plotting VLF/LF ionosounding data;
ducting in the ionosphere; ionogram construction; magnetic di-~-
pole radiation calculations; the analysis of bulk wave devices;
and an assortment of related problems. Representative examples

of the tasks performed will now be presented




1. Sky-Wave Signal Analysis and Calculations
1.1 Introduction

Experimental methods for sounding the ionosphere have been
described in considerable detail elsewhere. Ref. 1 provides an
extensive list of such references. Of interest to us was the de-
termination of the sky-wave return signal based on assumed models
of the ionosphere and specification of a transmitted pulse
Because the models are often specified in the frequency domain,
to obtain the sky-wave signal one is required to compute Fourier
Transforms. Some of the special issues that arise with regard to
reflection coefficient and full-wave models had to be taken into
account as will become evident. Because of the amount of time
required to perform the Fourier transforms using the classical
computation approach, recourse to the Fast Fourier transform al-

gorithm was deemed desirtable.
1.2 Statement of the Problem

Under sufficiently quiescent conditions, it is reasonable to
assume that the ionosphere does not significantly change its fre-
quency—~dependent propagation characteristics during one or more
transmission-reception time frames. Apart from additive noise,
one is Jjustified in linearly relating the ¢transmitted pulse.
Cit)y, to the sky—-wave return signal, o(t), through the convolu-

tion relationship

Owr) = C1t) ® htt) (1)

h(t) corresponding to the impulse response of the ionosphere dur-—

ing the 1locally quiet period and@denoﬂng aperiodic convolu-
tion.
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With regard to ionospheric modelling, the evaluation of (1)
is frequently of interest. We discuss the implementation of an
off-the-shelf Fast Fourier transform (FFT) code to obtain o(t),
and provide results based on an analytical expression for the
frequency response of a slab ionosphere as well as data generated
vsing a full-wave model.

Equation (1) can be expressed in the frequency domain as

oD

A A —cwt
o) = \ Cruwy Hwwy e “Tde (2)
-oD

where C and H are Fourier transforms of c(t) and h(t).
It is useful to partition the integration interval ( —o0,00 )
into 3 regions:

o0 "“)C ‘\)C b
S( Yy do = |( ydd + \(  do + ( Ydw (3)
—od - oD - Oc
where

A A e .t
C Y= C(a'u) H((,'w)e ?

A A
1¢ the product C(iwW) I)H(iW ) vanishes outside some interval
(=@, & ) the outer two integrals are zero. For the
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time-limited functions c(t) and h(t), this is strictly not possi-
ble. but often the approximation is very good. The prolate
spheroidal wavefunctions can be used as a basis if one is inter-
ested in confining, in some sense as “"best as possible”, func-
tions both in the time and #frequency domains to finite bands
[Re¢f. 2]). But this was not cgnsid:red necessary for the task
requirements because the product C(iw)H(iv) was nearly zero out-
side ( -, e ). The central problem was to develop a code

for expeditiously computing

We

A A ~WT
o)= \ Crtiw) Hrw) e ded (4)

-0

”n
for various models of H(iw), the ionospheric transfer or frequen-

cy response function.
1. 3 Numerical Fourier Transforms

Because ﬁ(iu) is often available as equispaced data samples,
(4) was approximated with a weighted sum: i.e., quadrature ex-
pression. It should be noted that e(iu)ﬁ(ia)) is an aperiodic
function in general. The standard procedure for constructing an
equispaced quadrature approximation to (4) involving an aperiodic
function is to sample & uniformly:

A)‘ “
W=, = n o th=0, ¢ 21 .., +%) (5)
4
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It was further assumed that o(t) would be evaluated at wuniformly
spaced time intervals ¢= t,., = m at It then follows that
with quadrature weights ., ?m,

e

-~ N -t.t\)t—.
O. =0 = |\ Clew) Hiw) € dd (o
=&
g A A -t
~ AL Fn Croy Heenye (7)
n=-%

or in more convenient notation

~oh A +
LA _.,_' Nt o
=7
Om = AL Z %\ C. H.e * (8)
n= - N/

The angular sampling frequency 1$ now given by L),: 1W/A't s and
must be consistent with the sampling theorems’ requirement that
akgé tx/2 . For computational purposes, one can always choose a
higher cut—-off ¢frequency A%o + than the actvual Ak associated
with the data, by filling samples in the range quSQ' with
zeros. This is done so that

Q.. at = “-,-):" (9)

Under these conditions, and setting

A

O. = L éa l:’.. (10)




the quantity to be computed takes the form

wh A
O..= a0 Z O, exel-zwima /o ] (1)

az-sh

Several problems arise using (11). It is easy to verify
that O..g0 = O. for AL=0,2l 22 ... . By making use of discrete
orthogonality, g}l) can be inverted and also shows the periodic
property that OM,., = S ior -pio,t!,tt,--- . The original
aperiodic functions ol(t) and (:(do)14!£u) have now been trans-—
formed into periodic functions by virtue of the complex exponen-
tials and equispaced sampling in both domains. Furthermore.,
whereas the original aperiodic functions correspond to different
frequency or time samples throughout their ranges, the induced
periodicity of Cl" and 65. creates a discontinuity at their
endpoints m(ernYz 2w :  the points m(era)=tvA do not cor-

respond to distinct times or frequencies because

Y ) ('—" NA Y

= C—-l)ﬂ (12)

is independent of sign. Fig. 1 depicts the situation. Because
of the periodic replication of the original function, there will

be discontinuities at
N
m (or ny = T < + ,ZN (1‘-‘0,'—"—’, 2, ... )

In general, then, there can be discontinuities in the function
values and dotévatives at the endpoints. With a function discon-
tinuity in (Dhtﬂ » there will be a corresponding component in
the time domain function that will fall off very slowly; namely,
as 1/m. To remedy this, one can initially subtract off a linear

wr - AR T
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~N
component from Otw) and treat its finite Fourier transform sep-

arately and analytically ([Ref. 31. The rtemainder function will
then fall off at least as fast as 1/m , and can be treated numer-—
ically using an FFT implementation of a DFT. Other methods are
also available to handle endpoint corrections for step, slope or
higher order discontinvites [Ref. 3 1. They were Jjudged unneces-—
sary in our efforts because it was found that #rr the data being

considered

‘é\ tn’,’t’o and Jdblélb___ =0

L,

To avoid counting the endpoint contribution at N/2 tuwice,

”»
resuvlting #from the periodic replication, one can set (3“ =0 or
» ~ 4
assign a weight of 1/2 to both O.n and (2~h . See
Harris [Re#f, 43. For the former, this leads to the discrete

Fourier transform (DFT) expression

w/r

O.n = AL O, Qxe["‘j.ﬂ(:mn/l\):] (13)

az=-N/2

It is often more convenient to make use of the periodicity

and use a different range of m and n; viz..

Nl
O. = AW 7_ O,, exp [-‘lfu.nn /N ] (14)

As shown in Fig. 2 for the interval [o)N-!] , the Tange
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[0,’;'-!] corresponds to Wwer t 0 , while the range
[g,U'lj corresponds to LDert <O . An FFT is particularly
convenient to use for the determination of O, when N > 128
Using 1024 complex samples in much of our work, the time required
to compute an FFT was found to be less than O.13 seconds using
the CDC-6600 computer.

In the numerical Fourier transform program that was tailaored
to sky-wave data, most of the time required to obtain O, went
into "overhead"” operations: Construction of the functions that
comprise éiL » choosing particular program options, putting the
data into arrays of special lengths, windowing various functions.
etc. Under these conditions: to obtain @, wvusing a string of
full-wave data for ﬁ(iw) and a given c(t) pulse took about & sec—
onds of CP time. By way of comparison, it is interesting to note
that direct evaluation at only 13 time points of h(t) Ffor 2000
samples of ﬁ(iaD) required about 26 seconds of execution time.,
whereas using an FFT on 2048 samples of ﬁ(iu) gave all 2048 sam-

ples of h(t) while requiring about 2. 3 seconds of execution time.
1. 4 Fast Convolution

A fast convolution code for continuous—-time functions was
written and tested on cases that could be evaluated in closed
form. A standard method for effecting the convolution was adopt-
ed and will now be summarized. Variations of it appear in the
literature and depend primarily on accuracy and speed require-
ments, as well as the class of functions involved. The procedure

we adopted was the following:

1. The sampled input time signal, C; P is quadrature
weighted using the factors }..

2. The DFT of %;CL is computed using an FFT cade

3. The frequency response or transfer function of the sys-

T ettt
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tem (i.e.. ionosphere) is specified either from a tape

file or formulas evaluvated within the program.

4, The product of the transformed input signal and frequen-—

€ty response is computed.

S. The product is smoothed using Lanczos J ~factors, and

the inverse DFT is computed to give the output signal.

The achieve aperiodic convolution. the duration of the C(t)
pulse and the effective duration of the impulse response of the
system must be less than 1/2 the number of DFT sample points
times the sampling interval, at . If this condition is not met,
the output signal is not convolved aperiodically (See Oppenheim
and Schaffer, Ref. 51. To insure that this was met, the impulse
response, h(t), was vsvally computed first with a numerical Four-
ier transform code and examined. This provided us with informa-
tion relevant to the effective time duration of the impulse res-—

ponse function,

For discrete functions the (r-Factors take the form
. 2T - 2T v o

Ji = - (3T /(—i:)t

jl.-;'

n

G:

(15)

NS
d. -1

U;_, =0.
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remembering that for an L-point DFT, the samples indexed by L/2 <
i < L corresponds to the negative frequency (or time) region
The use of O -factors is usvally employed for finite Fourier ser-
ies, for discrete or continuous functions, especially if the
transformed function is suspected of exhibiting strong Gibb‘s
phenomena, which was the case when a slab ionosphere model was
used. See Appendix I. The impulse response for the ionosphere
in this situation was observed to have a “switch-like” behavior,
being "switched on" for about 50 microseconds and off thereafter.
The pulse or switch behavior was quite noticable for normal inci-
dence to the slab ionosphere. Using the J ~factors, severe ring—
ing effects were suppressed, accompanied by negligible pulse bro-

adening.

As an alternative means for suppressing ringing and ripples.,
a 4-term Blackman—-Harris window was also tried. While it greatly
suppressed the out-of-band ripples in the pulse-like h(t) func-
tion, it was at the expense of considerable broadening and dis-~-
torting of the pulse. The Blackman—-Harris window coefficients
had been obtained +from a paper by Harris [Re¢f. 4], and the
weights were good to only 5 significant digits. This created ac-
curacy problems when the number of DFT samples was increased
above 1024. In the end, this particular filter was eliminated

from out work.

Because of the nonrecursive filtering methods adopted in our
investigations, the broadening of the pulse, h(t), makes it ap-—
pear as if the ionosphere begins to respond prior to t = O
This, of course, is not the case; TrTather, the non-causal appear-
ance"is due to the limitations of the mathematics in the vicinity

of the sudden response at t=0.

10
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APPENDIX I
-F?T"((A)’ - Slab Ionosphere Model

For the slab ionosphere, the freguency-dependent reflectivi-

ty for TM radiation is of the follcwing form:

< Cn ©
Q("‘J) ’___l _ o 2KL _]

’RTH(JU) =

2 J1KLCn 6
, — Q((.D) (=}

(A-1)
where
Q(iu): ’[_‘ erca?e] ['+ ]
['*W:‘ ['* we. (A-2)

ty

< = & Lisi0/ (e, cr0)]
! K, = awf/e = O/
| T = cndutivity ey. 2.E-4 ..\L.s/.“
L = slab iomespheve Hickaess  e.q. 7. ha
€, = LE-19 /3c-n

9 = MQL of incidence

13
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To avoid the "apparent" singularity at W= o R"§O) was evaluated
numerically at O = o* = 1. E-9. Using R,, @as the
frequency-response of the ionosphere. the impulse Tesponse was

then determined through a numerical Fourier transform computa-
tion.

14
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2. Bulk Wave Investigations

2.1 SSBW Transducers

Surface-skimming bulk wave (SSBW) transducers were of inter-
est to us in the context of analysis and design. An interest in
materials and crystal cuts that would support certain acoustic
modes for ¢filter applications 1led us to solve the Christoffel
equations for the allowed propagation carz- :~is similar to the
analyses developed by Milsom C[Re#f. 3% and Hussein and Ristic
[Ref. 2). The condition for allowes #v#¥.> (s that the determi-
nant of the Christoffel equations vanis<d “.r a given surface wave
velocity, V¢ . With this informatiass ond could proceed to satis-
fy the inhomogeneous boundary conditione., in k-space:. €for a line
source. Qur intermediate objective wiys to be able to arrive at
the effective permittivity function for an material and crystal
orientation specified.

Because of the goal to treat arbitrary crystal orientations,
it was necessary to develop or obtain software that would be gen-
eral enough to express the 4th, 3rd, and 2nd rank tensors (stiff-
ness, piezoelectric, and dielectric tensors. respectively), for
any particular crystal cut, in the Christoffel and boundary con-
ditions equations. An existing program called LAYERS [Re#. 31
appeared to fill many of these needs, and it was decided to make
use of as much of it as we could.

Our efforts were ctymied very early using the LAYERS code
because the Christoffel equations did not yield slowness surfaces
in agreement with published curves. Gualitatively they were sim-
ilar; but the magnitude of the deviations were intolerable when
compared with the work of Milsom, Wagers, and Ristic ([Re#f. 2,

4]. There was no way to scale our results to agree with theirs.

Some of our slowness curves appeared to exhibit symptoms of

numerical instability and poor convergence. Tolerances were

16
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tightened and loosened to very little avail. We then examined
the root-finding code (Muller’s inverse parabolic interpolation
algorithm) for evaluating the determinant, and convinced our-
selves that it was among the very best off-the-shelf codes one
could use. It converged rapidly and accurately in actual tests

The Christoffel matrix itself was examined as best we could, con-
sidering that rotated tensor expressions were invulved. Some un-
vusval scaling was noted in the code but we wer= unable to ascer-
tain its possible role in generating errors. The progect was

eventually terminated.
2. 2 Power Patterns for SH-Wave IDTs
2.2.1 Analysis
Because of the potential applications of microwave frequency

array—-steered bulk wave devices, it was decided that the radia-

tion characteristics of shear horizontal (SH) waves should be in-

vestigated. One quantity of particular interest that needed to
be computed was the far-field power pattern of a planar array of
electrodes. The derivation of it is carried out belnsw. Fig.

3 shows, for a double-electrode array and relevant geametry.
As several investigators have shown, radiation into an isotropic
medium is often a reasonable physical approximation to make. and

certainly makes the analysis simpler.

For the double-electrode array shown in Fig. 3 » we note

that

’_F;?== Const.

-
1)

J!'ﬂ"a-rc S.... fouvea fo-'-\"’ LA 'Fic.u (..'A‘f
"
[(’Rcﬁ-e)‘ + (RA‘.&Q"X|)‘] (1)

s : L \ . g
X, = TW+ g L = 3 f3n3) ‘=!|’:;’_..,I * (2)
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\Wls ‘ normalited electrede coerdinate

Expanding { leads to the following:

[} 8

¢ = { R0 + Rut6 - 2Rx20 + x|

(3)
= R{1- 24i6 (Few + iR - 3w D)
.’L
S S L -)"i
+ (W + T — 3¢ o
For the far-field power distribution, i.e.,
{+'I'L"";'

‘ Lot << 1, (4)

R

the quadratic term is negligible by comparison. It follows that

. . L o
€ =‘R{I"N\\6 (fiw + J'_}-:i - ;—-R- ng('))_..... g (5)

By far~field we also mean that the hal¢—aperture o¢ the transmit-
ting array is much less than the distance to the observation

point at R.

18
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Following Farnell‘s analysis [Ref. J, it 1is clear that

the far-field potential due to all the line sources comprising
the array is given by

3/
0y
o = (£) Jw Ty H, [ ree] (6
i=-3,
+¢°
where
()
k¢ = —‘IT =  wavenumber Qr +rantverfe"/ fo'nr-'%cJ tuaves

[T eR]) o LHR-F]

A

T.l:-(w)

csee  bebw) (7)

CI\A'F Jenﬁ"\l on ‘» ° e l(cfvo-’(

O
L-\o‘ = 2ewm -order '—(a.ﬁg( -(‘unc"‘n'm ol ‘g knd

Using the asymptotic form for the Hankel function gives

AZ -kl a0 (i - wair/a)

(8)
g:-ﬂx
; $0 ~ched Wan 6
¢ de G‘(N) ¢ Ren
Denoting the integral by
]
A
. -LhedWwai 6
q Leianb] = de V(N)Q 9
19
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and expanding the charge density as usual (Re#f. lJ, i.e..,

N -

Ty = O-w)" 2 O Towy

leads to
2 < @), .4
U;'(’X) = 7 z C. (-¢) Jn &9 (11)
n=o
where
? = k-c-"% A";e (12)

€
Collecting terms and normalizing (#%9) leads to the final ex-

pression:

A 2LG-4) |

cFu A _c2%Get
() = Z iQ:('l)e + G:‘-('l’)e (13)
i
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where Cf;DE : dD/EA

and

M, = s/Q.-

2.2 2 Results and Discussion

For J = 200, i.e., 100 pairs of electrodes, Fig. shows

the far-field power pattern for = 1/2. For an isotropic sub-
DE vae ?)

strate & (¥) = (-7) . This is not the case for an

anisotropic medium, but the difference has been shown to be quite
small in many situations by Lewis [Ref. S513. It is clear that
the DE array tuned to its fundemental frequency behaves like an
end-five antenna. For these computations the array was assumed
to have a periodic polarity impressed on the pairs of electrodes.
The infinite array approximation was used in the sense that the
expansion coefficients were the same (apart from a sign) for
all electrode pairs. The expansions were calculated using N = 6,

and the coefficients had the following magnitudes:

¢ = 0. 145814
¢ = 0. 059185
) = 0. 002699
" = 0.001402
¢t = 0. 000047
c¥ = 0. 000031
¢’ = 0. 000001

Element factors based on calculations and derivations developed
above will be determined for both simple and double—-electrodes,

and will appear in a journal publication.
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Double-Electrode Array

Figure 3
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3. Message ldentification

A low~frequency method of communication was tested between
Forestport, New York and Troy, New Hampshire. This method in-
volved the transmission, reception and subsequent analysis o#
time-delayed low~frequency groundwaves (25 KHz) which were digi-
tized and stored on magnetic tape. The analysi-, detailed below.
included determining the time-delay of the groundwave in each rTe-
cord. A message was encoded by varying ¢the time-delay of a
number aof consecutive records wherein each delay corresponded to

certain alphabetic character.

A computer program was designed to perform correlations
between a standard waveform and that of each record on tape by
mathematically shifting the former along the latter to determine
the position of maximum correlation. This point represents the

time—delay of the given waveform.

A well-known cross—-correlation function

"

oY
zkvai + 72.:«. +T<Z.7; - (MK) XY

Nik) = 2 - el _ (1)
. _a a - ]"
[; éz; ‘Xt - aY ;Z: )4 - NnY
< L XN}

was used in which x and y are the values of the standard waveform
and the one being tested, n, is the total! number of elements in
each waveform and k is the particular shift of the standard along

the waveform being compared

The field tapes consisted of records of length 256; each

representing a time-frame of the same number of microseconds and
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each containing one waveform 40 microseconds long. Blocks of 22
records were created by transmitting 22 consecutive waveforms
with the same time—-delay. Many tapes containing waveforms of
varying signal strengths were created for later analysis.

Initial results. comparing the standard waveform to those of
@ tape of high signal-to-noise ratio were successful, i.e., the
message was easily decoded. There were problems. hcwever, decod-—
ing tapes having low S/N ratios. Averaging five consecutive re-
cords before cross—correlating was tried but since there is no
physical indicator of the beginning of a given block, it was im-
possible to be sure whether one was averaging records in the same
block (same time—delays) or those in two different blocks.
Understandably, averaging records in two different blocks wovuld
tend to worsen results since an additional waveform would be in-
troduced into the averaged record and this was found to be the

case.

It was determined that more advanced signal processing tech-
niques are necessary to improve the S/N ratio prior to applying
the cross—correlation method. Current investigations include the
vse of fast Fourier transforms and filtering to eliminate noise

and improve the S/N ratio.
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4. Nonlinear Transcendental Equations

Our objective was to solve a system of 9 nonlinear transcen-—
dental equations. The first 3 pertained to the reflection of an
incident ray from a flat facet having a slope angle F andé an ori-
entation angle o{ with respect to the transmitter-receiver line of
sight. The last two equations ensured that the reflected ray ar-
rived at the receiver if the height of the .oint of reflection
was required to be H and the distance between the transmitter and

the receiver, D.

An attempt to solve the equations analytically failed. The
next effort was to obtain an approximate solution of the system
of equations. The system was transformed through several substi-
tutions into a system of algebraic equations with the hope of di-
minishing the computer time demands, because it was known that
searching for the solution using an iterative process would be
computationally expensive, especially when there was no informa-
tion for good starting values. A rapidly converging iterative
process was applied to the algebraic system; the subroutine ZICNT
from the IMSL library was used. However, it turned out to take
considerable computer time, 2000 sec. For this reason, ¢the
paper from which these equations were derived was reexamined and
found to have a misprint. A careful examination of the geometry
showed the equations weren’t necessary at all for the determina-
tion of the directions (9,0 ) of the incident ray and direc-
tions (/M,v ) of the reflected ray. All unknown angles could be
fuund directly from the geometry of the reflection by solving
simple solid geomtery problems.

The new calculations took less than 1 second of computer

time, and the results had obvious geometrical meaning. Plots

were made oOf vgﬁ) for different values of the parameters.
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5. Tropospheric Range Error Correction Utilizing

Excatmospheric Sources
5.1 Introduction

Tropospheric refractive range and angle errors 1limit the
performance of rtadar and navigation systems that operate at low
elevation angles. For some locations and for many applications,
antenna pointing corrections based on surface refractivity alone
or, if necessary, a vertical refractivity profile are adequate.
However, new systems that operate at very low elevation angles
require improved accuracy. More accurate angle error corrections
can be obtained by wvtilizing calibration sources (such as the
limb of the sun, radio sources, satellites) the angular positions
of which are precisely known to a sufficient accuracy~--the range
error correction is still a problem. It has been shown that it
is possible to develop a method for obtaining an improved range
error correction by utilizing measured angle error data for the
same ray path. An expression for the refractive angle correction
for a target, based on the measured angle error of the calibra-

tion source is first derived (1).

Both the target and calibration source are assumed to be
outside the troposphere where the index of refraction n(r) is ap-
proximately unity., hence the angular refraction 7T is the same for
both

-~y

/.vim. (T- €.,) [ V(aﬂn.\‘-ra‘ Cn’(e.-en) ~a '4‘;.(94‘61 )]

T (’l"’ex\‘_v&whd\ —art G (6-6) ~a s (9. 'ez\J
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In this equation, €, , the angle error of the calibration source,
and the initial elevation angle of antenna are known, as are ap-

proximate heights h, and h, of the target and calibration source
(see Fig. 5 ).

There is a direct formula to express the angle error correc-
tions €, , €, (for the target or for the calibration source res-—
pectively) through the angular refraction

- - CaT- Aim ﬁ.e, - 0> /0a :)
;T La.
A /0 - Tas B - pin T - CaT T |

(2)

where

nir) =1
Gl\l‘

9.' T AN Cv\g;

T.

[ 4

under assumptions mentioned above
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However, before the angle error of the target € can be de-

termined, the angular ro@raction'f must be found

VT4 €, - O B recatl]

(3)

il Cnll-€) )

AA-k

The angular position of calibration sources are precisely
known, $0 it is possible to calculate the angle correction €; by
taking the difference of the apparent position él which is meas-
ured and the true position which is tabulated:

= B —{.k . (4)

#It should be emphasized that the following formula is correct as

well.

T=wh + € - ' [230 Ma n&]

- /1‘- o\-t—k Q’-(e é)]

(3)

since the angular rofraction'z for the target is the same. Then
with T known ¢from (3) the angle error of the target €.can be
calculated from (1).
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It is then shown that the range error correction for & ar-
get can be expressed as a function (integral) of the angu.ar re-
fraction. The angle error for the target €, is also involved.
Therefore, the range error correction can be calculated from a
set of angle error measurements (4).

The range error ARe (a. C,_. T, ) correction is defined by

AR(G\, C., ) =—Re(a,C.,r.) “ R ta, Ca, 1) (5)

where R, and R are the apparent (or radio) range and the true (or
slant) range respectively.

The expression for calculating the range error correction is
given by
Ca -

3
A—R(a,c.‘r,) = \}(ad ls.\t - (an . C. ) {6)
Ca=C

*

"V(MA.\‘ -a* L CuCne, + (1-CXY™4€.,]

Ca

- [Ca 2 € + (0o - cﬁe.)(l-d\"‘]}
c:C

e

+ an, [C’A(a, Ca,”) - CTa, e, - ana Tla, Ca, 7V dCa

0 CC—
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with following denotations:

Ca - is ras¢( €L ), where Q— the elevation angle of the
antenna;

C - is cos (6), where © the elevation angle of the

calibration source:;

QA - the distance of the antenna from the center of
the earth;
d*k,e . — the distance of the target from the center of the
earth;

Na - the quotient (a + h, )/a;

63. ~ the angle error of the target;

i d (q,C;’n) is the total angular Trtefraction along the ray
path (the ray path 1lies in the great circle
plane, determined by the locations of the anten-

na and target, see Fig. 1).

n _dr
NV - (@ani Gy (7
a

T(G,C,,l‘.) = - an‘C‘

The function n{(r) is expressed as follouws:

-€
N = | 4+ N(rea) » 10

’

Ny 4+ AN & (v-a) o & v« ¢!
N(r—“) - N. (Kf [- C‘rﬂ‘)‘] ] € T-a £ }
los e [-o0.1924(r-a-9)] o v-a
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here

N‘-': 3% .0

AN

=732 exe(0.005S577 N,)
N,

C T %L(N,/los)

Ny, 4+ AN

This formula for N(r-a) corresponds to "Modified Effective
Earth’s Radius Model" which is usually used to solve refraction

problems.

1t should be emphasized that (6) provides the difference in
range error for elevation angles corresponding to the limits
Ca and C. For example, for the case of the sun as a calibration
saurce., it is the difference of range errors for C and
C, corresponding to elevation angles of 60 and C, : Tespectively

In order to obtain the total range error for an elevation
angle Ca ( with 6L s s ) it is necessary to estimate the
total range error for an angle of 66’. This is not considered a
serious limitation since the angular refraction for very high an-
gles is minimal; also, the corresponding range error is rela-

tively small.
5.2 Task Description
The problem to analyze consisted of the following steps:

1) to select the numerical integration technique which provides
the least number of measurements required to guarant : a

given accuracy of integration for the integral

S T (aq,c, 1) dCa (8)
[ o
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2)

3)

4)

to analyze the sensitivity of this integral to the small per-

turbation of 9 values (the measurement errors).

to analyze the sensitivity of the angle error €, to the small

perturbations of 9 values (the measurement errors).

to analyze the sensitivity of the range error correction
¢
AK‘ to the small perturbations of 6 values. Values

of G in expression (3) are supposed to be exact, so

A€, = AB..

To obtain the range error correction from (6) the following

procedure was suggesed:

n

2)

3)

4)

Select a set of elevation angles between Q and 6 and obtain
the corresponding set of the angle errors of the calibration
source, utilizing the relation (4). Elevation angles 6 are
to be measured, the appropriate true angular positions P of
the calibration source are to be found from tables (if’ for
example, the sun is the calibration source, the solar ephem-—
eris is to be utilized).

Calculate the appropriate angular refractions i’for the se-

lected set of elevation angles from the relation (3).

Calculate the angle error €, from the equation (1). For this

calculation only one measurement is needed

Use the obtained set of T values for the approximate numeri-

tal calculation of the integral on the right side of the ex-
pression (64).
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The accuracy of this technique is dependent on many factors
Especially, of primary importance are the accuracy with which the
angle error can be measured, the refractivity structure of the

tropusphere and the number of angle error measurements

Of secondary importance are the accuracy of the heights and
angular coordinates of the calibration sources, the height of the
térget. the measurement of the surface index of refraction ’
the numerical integration techniques that are employed, and the
estimate of the total range error contribution from the angular
refraction at elevation angles above the maximum elevation angle

of calibration sources.
5.3 Work Description

1) A numerical experiment was designed to select the appropriate
numerical integration technique which would guarantee a given ac-
curacy with the least number of nodes » i.e., that would use
the least number of required measurements. The exact theoretical

expression for the angular refractivity

by |

nery dr
T(A,C&)r\) = - a-ngcu ﬂ(')V[rn(r)Jﬂ_ [a'naca ]‘ ° (9)

a

was uvtilized in this experiment.

It should be emphasized that this integral is <close ¢to an

integral with a singularity when e‘—o 0.
The relative accuracy of calculations considered to be equal

1o O.Sl—|04 i there was no reason to consider higher accura-

cies since the value a, the antenna distance from the center of
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the earth, had no more than 3 correct significant digits. Three
methods for numerical integration were compared: Romberg rule,
Simpson formula and Hermite formula., the nodes being selected auv-
tomatically. It turned out that Simpson’s method gave noticable
better results; for example:

Number of Nodes
)
a Simpson Rule Romberg Rule
3° 25 41 .
o
N
O U (S -
]
a
0..01° 53 73

The nodes selected by Simpson’s method were utilized for
calculation of the in£egra1 (B), but the angular refractivity
was computed from the expression (3) with the appropriate in-
terpolation along the table. Results of two different ways
of the calculation of the integral (8) coincided with 3 signifi-
cant digits. Therefore, the set of angles obtained from the
first preliminary calculation utilizing the expression (9) ¢for

the angular refractivity can be used as the set of measurement
angles.

2) The sensitivity of the integral (8) to perturbations was
checked numerically. Three significant digits of the integral

remained unchanqged while perturbations didn’t exceed

-3
O.S % 10 in absolute values. Such precise measurement
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can be accomplished practically, so the sensitivity is suitably

low.

3) The sensitivity of angle error €, with respect to perturbation
of angle error €, of the calibration source, (under assumption
that Q.,Q., h,
turned out that

are exact), has been checked numerically. 1t

|Se, | ¢ 2 \S‘e,‘l

when angles 6, belong to the interval o ¢ 6. ¢S
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Geometry of Interest

Figure 5
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6. Maximum Signal Power at @ Critical Down—-Range Distance
6.1 Introduction

Over-the-horizon (OTH) radar signals are reflected from sev-
eral layers of the ionosphere before illuminating some point of
the earth. The optimum frequency f and launch angle P to be
utilized may be predicted via ray—-tracing techniques. The goal
of the program PWRMAX is to determine $ and @»For maximum signal

power at a critical down-range T Both maximums were needed;

<
the local maximum of power and absolute maximum of power.

In order to reach this goal the program PWRMAX combines a
high-speed ray-tracing computer code with a power versus range v

curve-fitting algorithm.
6. 2 General Discussion

The search for the optimum frequency is performed over the
initial intervals of frequencies [F , F ] and angles (B, .
Ba J, the intervals being determined from physical considera-

tions.

The ray—tracing computer code allows one to obtain the cor-

responding values of power p and range r for each pair

(s,)e LF,,Rh] ® LB, B.].

For each fixed frequency “- € [F.,F,] {".—.l,x,...,N) and
variable é-‘ € CLB,B,]) ¢=1,3,...,4) a table of “power p‘,‘_ "

versus "range q, " may be obtained:
5 & %
@t'i p P Bg‘ 3 ¢ o0 pc'ﬂ
':'. Cir Y.y e o o Y
ﬁ ‘rc ﬁ't toe Pem
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Such tables represent functional dependencies of “power"” versus

“range" and must be examined at the beginning

The functional dependencies may be described approximately
by the quadratic obtained using standard least squares. Denoting
the appropriate polynomial by ﬁ (vr) : the following approximate
equality is correct: ‘

A
?(T) ~ —E(") (1)

The value of power at the point T may be approximately calculat-
ed as T:(Q):

A
ey = Rin (2)

This leads to a table of the form

£ | fa $.

A

ﬁm)i P:("'c) e B ()

which may be treated as an approximate representation of the
functional dependence Pe (£) “the value of power at the
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down-range T,

the above table:, the absolute maximum may be obtained with stan-

* versus “frequency". Using the functional form of

dard methods (involving either simple selection of the least
square curve fitting with further selection of absolute maximum
for a parabdola.

With regard to the local maximum of power, the least squares
curve-fitting wusually is not a suitable method to investigate
local properties of fitted curves. But if certain conditions
apply. the fitting curve may be used for approximate calculations
of the local maximum.

Functional dependencies 13(7) (c=h2,... W) were assumed to
be quite smooth and to have ¢the single local maximum in the
neighborhood of the point n, . This assumption was justified
physically and with numerical experiments

If a curve 13(*» is shaped as assumed, the coordinates

A ~ Fad

(Q"‘., F}”" ) of the #fitting parabola 13(n local maximum
may be regarded as an approximation to the coordinates
(=, ) of the 1local maximum of T:(v» . The func-

tional dependency "frequency" versus “"range-coordinate of local

maximum", El_‘-:'\ may then be approximately restored using
standard least square so that

A
F‘/—( (vr) < F; (r) (3)

where F¢ (" is & polynomial of second degree.

Finally, the ¢frequency that provides the local maximum of
power at the point Tz may be calculated approximately as

A
fort. = Fao tro) (4)
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7. Multi-Hop Propagation
7.1 Introduction

The computation of the number of hops versus launch angle
for geometric multi-hop propagation between concentric boundaries

presents certain analytical problems.

This problem is mainly due to the implicit form in which re-
lations between number of hops, launch angle, relative transmis—
sion delay, distance and height of transmission boundary are pre-

sented.

To obtain iso-height and transmission-delay contours, expli-
cit formulas for number of hops and launch angle of the ray were

derived.

This representation also obviates the separate treatment of
multi-hop round-the-world propogation as an additional case to
the prapagation over a certain distance along the surface of

earth.
7.2 Analysis of Parametric Equations

For mirror reflections between concentric spherical ionos-
phere and earth over a distance (d) along the surface of earth

the following parametric equations apply for the height of re-
flection btoundary (h) and relative transmission-delay «8)

he Roae(2R) G0+ Z2) - R(1- enl&)) o

- d d
Sn g—%gw(zm)/uf-(a*;:‘i') - < (2)
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where R is radius of earth,é? is launch angle of the ray, n is

number of hops and ¢ is velocity of light.

In addition, the round-the-world case is presented by equa-
tions

Soa = 2R Cab cnb '
T = |- == I N o (3)
w5 | MU S 1200 c..(eﬂf)] -

(4)

An analysis of given parametric equations yields a unique set of

formulas for launch angle (6) and number of hops (h).

S(s,+ ey - nnb ]

n

(5)

B [B- G- xe- 3]

| — !l:
At L]
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ma -

where

(6)

B - 61;;":-.; (7)

Thus, the round—-the-world case could be derived easily by substi-
tuting distance d with 2mR and iso-height and transmission delay
contours could be easily obtained.
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