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Introduction

During the execution of contract 19628-78-C0202, ARCON

staff worked with and provided computer software and analysis

support for RADC technical personnel on numerous projects.

Most of the analysis and software development work involved

the following topics: circular antenna array theory; detection

and tracking of low flying targets by ground based radars;

null-filter mobile radar software for a CSP-30 system; detection

of a constant target in log-normal clutter; finite antenna su-

barrays irradiated with nonorthogonal illumination; calculations

of field and radiation power patterns for a dipole array embedded

in a wire mesh; radar data processing; simulation library for

ground-based radars; analysis of single wire individual resource

protection (WIRP) sensors; computation of received power from

OTH radars; LORAN-related programs and problems; multi-hop pro-

pa gation studies; modeling of VLF/LF propagations; whispering

gallery theory; magnetostatic surface wave analysis, computa-

tions, and plotting; 3-D plotting VLF/LF ionosounding data;

ducting in the ionosphere; ionogram construction; magnetic di-

pole radiation calculations; the analysis of bulk wave devices;

and an assortment of related problems. Representative examples

of the tasks performed will now be presented.
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1. Sky-Wave Signal Analysis and Calculations

1. 1 Introduction

Experimental methods for sounding the ionosphere have been

described in considerable detail elsewhere. Ref. I provides an

extensive list of such references. Of interest to us was the de-

termination of the sky-wave return signal based on assumed models

of the ionosphere and specification of a transmitted pulse.

Because the models are often specified in the frequency domain,

to obtain the sky-wave signal one is required to compute Fourier

Transforms. Some of the special issues that arise with regard to

reflection coefficient and full-wave models had to be taken into

account as will become evident. Because of the amount of time

required to perform the Fourier transforms using the classical

computation approach, recourse to the Fast Fourier transform al-

gorithm was deemed desirable.

1.2 Statement of the Problem

Under sufficiently quiescent conditions, it is reasonable to

assume that the ionosphere does not significantly change its fre-

quency-dependent propagation characteristics during one or more

transmission-reception time frames. Apart from additive noise,

one is justified in linearly relating the transmitted pulse,

C(t), to the sky-wave return signal, o(t), through the convolu-

tion relationship

0 W) C (6) ®SY hit)

h(t) corresponding to the impulse response of the ionosphere dur-

ing the locally quiet period and denoting aperiodic convolu-

tion.

m2
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With regard to ionospheric modelling, the evaluation of (1)

is frequently of interest. We discuss the implementation of an

off-the-shelf Fast Fourier transform (FFT) code to obtain o(t),

and provide results based on an analytical expression for the

frequency response of a slab ionosphere as well as data generated

using a full-wave model.

Equation (1) can be expressed in the frequency domain as

-00

where C and H are Fourier transforms of c(t) and h(t).

It is useful to partition the integration interval CO

into 3 regions:

+ + (3)

where

A A

( - C 0- )

A
If the product CCiO )HCi& ) vanishes outside some interval

C --.V , 3  ) the outer two integrals are zero. For the

3
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time-limited functions c(t) and h(t), this is strictly not possi-

ble, but often the approximation is very good. The prolate

spheroidal wavefunctions can be used as a basis if one is inter-

ested in confining, in some sense as "best as possible". func-

tions both in the time and frequency domains to Finite bands

[Ref. 2]. But this was not considered necessary for the task
A

requirements because the product C(iso)H(iW) was nearly zero out-

side ( -, e) ). The central problem was to develop a code

for expeditiously computing

W "C

for various models of H(iW), the ionospheric transfer or frequen-

cy response function.

1.3 Numerical Fourier Transforms

A
Because H(i&)) is often available as equispaced data samples,

(4) was approximated with a weighted sum, i.e., quadrature ex-
A A

pression. It should be noted that C(iw)H(iJ ) is an aperiodic

function in general. The standard procedure for constructing an

equispaced quadrature approximation to (4) involving an aperiodic

function is to sample 0 uniformly:

=) L.., = n Cn= o, ±1 1...± t) (5)
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It was further assumed that o(t) would be evaluated at uniformly

spaced time intervals t= t i At It then follows that

with quadrature weights , n

O o( C t -,2 (6)

A

or in more convenient notation

A OL2a. h 1

0,,= &t1). (8)!
10 -v Rli of

The angular sampling frequency is now given by and

must be consistent with the sampling theorems' requirement that

WEc S.A12 . For computational purposes# one can always choose a

higher cut-off frequency £3€, , than the actual A)= associated

with the data, by filling samples in the range q4 t o with

zeros. This is done so that

&f, (9)tC

Under these conditions, and setting

A A

00% C
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the quantity to be computed takes the form

Several problems arise using (11). It is easy to verify

that O..m . 0,. for =oj z ,..o. . By making use of discrete

orthogonality, (11) can be inverted and also shows the periodic

property that 6,% for po,*1, :t 2.- The original

aperiodic functions o(t) and Cet'J-i) -tu') have now been trans-

formed into periodic functions by virtue of the complex exponen-

tials and equispaced sampling in both domains. Furthermore,

whereas the original aperiodic functions correspond to different

frequency or time samples throughout their ranges, the induced

periodicity of 0,., and 0, creates a discontinuity, at their

endpoints P% (ov n)1=i : the points oh(e.. =t4 do not cor-

respond to distinct times or frequencies because

e:lr(;z ± JA

is independent of sign. Fig. I depicts the situation. Because

of the periodic replication of the original function, there will

be discontinuities at

In general, then, there can be discontinuities In the function

values and derivatives at the endpoints. With a function discon-
A

tinuity in OM) , there will be a corresponding component in

the time domain function that will fall off very slowly; namely,

as 1/m. To remedy this, one can initially subtract off a linear

6
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component from ON,&,) and treat its finite Fourier transform sep-

arately and analytically [Ref. 33. The remainder function will

then fall off at least as fast as 1/m , and can be treated numer-

ically using an FFT implementation of a DFT. Other methods are

also available to handle endpoint corrections for step, slope or

higher order discontinuites [Ref. 3 ]. They were judged unneces-

sary in our efforts because it was found that frr the data being

considered

0C* C,1%*J 1 0 eor4C

To avoid counting the endpoint contribution at N/2 twice,

resulting from the periodic replication, one can set 0Q,:o or

assign a weight of 1/2 to both 0.1% and 1 See

Harris [Ref. 4). For the former, this leads to the discrete

Fourier transform (DFT) expression

"J/2-

71 0 A e 1ri - (13)

It is often more convenient to make use of the periodicity

and use a different range of m and n; viz.,

0..) 0 (14)

As shown in Fig. 2 for the interval [C," ' 3 , the range

7
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corresponds to 4) w t o , while the range

E ,aJ-a 3 corresponds to j e -C 0 An FFT is particularly

convenient to use for the determination of 0. when N > 128.

Using 1024 complex samples in much of our work, the time required

to compute an FFT was found to be less than 0.15 seconds using

the CDC-6600 computer.

In the numerical Fourier transform program that was tailored

to sky-wave data, most of the time required to obtain 0, went

into "overhead" operations: Construction of the functions that

comprise IJ , choosing particular program options, putting the

data into arrays of special lengths, windowing various functions,

etc. Under these conditions, to obtain 0,. using a string of

full-wave data for H(iW) and a given c(t) pulse took about 6 sec-

onds of CP time. By way of comparison, it is interesting to note

that direct evaluation at only 13 time points of h(t) for 2000

samples of H(it) ) required about 26 seconds of execution time,A

whereas using an FFT on 2048 samples of H(i&J) gave all 2048 sam-

pies of h(t) while requiring about 2.3 seconds of execution time.

1.4 Fast Convolution

A fast convolution code for continuous-time functions was

written and tested on cases that could be evaluated in closed

form. A standard method for effecting the convolution was adopt-

ed and will now be summarized. Variations of it appear in the

literature and depend primarily on accuracy and speed require-

ments, as well as the class of functions involve6. The procedure

we adopted was the following:

1. The sampled input time signal, C is quadrature

weighted using the factors .

2. The DFT of W.C is computed using an FFT code.

3. The frequency response or transfer function of the sys-

8



tem (i.e., ionosphere) is specified either from a tape

file or formulas evaluated within the program.

4. The product of the transformed input signal and frequen-

cv response is computed.

5. The product is smoothed using Lanczos T'-factors, and

the inverse DFT is computed to give the output signal.

The achieve aperiodic convolution, the duration of the C(t)

pulse and the effective duration of the impulse response of the

system must be less than 1/2 the number of DFT sample points

times the sampling interval, At . If this condition is not met,

the output signal is not convolved aperiodicall1 [See Oppenheim

and Schaffer, Ref. 5]. To insure that this was met, the impulse

response, h(t), was usually computed first with a numerical Four-

ier transform code and examined. This provided us with informa-

tion relevant tn the effective time duration of the impulse res-

ponse function.

For discrete functions the 7-factors take the form

J(15)

(15)

9



remembering that for an L-point DFT, the samples indexed by L/2 <

i < L corresponds to the negative frequency (or time) region.

The use of O'-factors is usually employed for finite Fourier ser-

ies, for discrete or continuous functions, especially if the

transformed function is suspected of exhibiting strong Gibb's

phenomena, which was the case when a slab ionosphere model was

used. See Appendix I. The impulse response for the ionosphere

in this situation was observed to have a "switch-like" behavior,

being "switched on" for about 50 microseconds and off thereafter.

The pulse or switch behavior was quite noticable for normal inci-

dence to the slab ionosphere. Using the Cr-factors, severe ring-

ing effects were suppressed, accompanied by negligible pulse bro-

adening.

As an alternative means for suppressing ringing and ripples,

a 4-term Blackman-Harris window was also tried. While it greatly

suppressed the out-of-band ripples in the pulse-like h(t) func-

tion, it was at the expense of considerable broadening and dis-

torting of the pulse. The Blackman-Harris window coefficients

had been obtained from a paper by Harris [Ref. 43. and the

weights were good to only 5 significant digits. This created ac-

curacy problems when the number of DFT samples was increased

above 1024. In the end, this particular filter was eliminated

from out work.

Because of the nonrecursive filtering methods adopted in our

investigations, the broadening of the pulse, h(t), makes it ap-

pear as if the ionosphere begins to respond prior to t = 0.

This, of course, is not the case; rather, the non-causal appear-

ance is due to the limitations of the mathematics in the vicinity

of the sudden response at t-0.

10
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APPENDIX I

- Slab Ionosphere Model

For the slab ionosphere, the frequency-dependent reflectivi-

ty for TM radiation is of the follcuaing form:

Q= 2 I, .Le

-R u Q2 % K. Cot,.

(A-I)

where

Qb' ].Th ]. -
E- + (o 1 4e

]' 4 [.1 -S: -,

-;E - "/
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I

To avoid the "apparent" singularity at 0 R ,O) was evaluated

numerically at t3 - e 1. E-9. Using Rift as the

frequency-response of the ionosphere, the impulse response was

then determined through a numerical Fourier transform computa-

tion.

14
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2. Bulk Wave Investigations

2.1 SSBW Transducers

Surface-skimming bulk wave (SSBW) transducers were of inter-

est to us in the context of analysis and design. An interest in

materials and crystal cuts that would support certain acoustic

modes for filter applications led us to solve the Christoffel

equations for the allowed propagation cq .-:s similar to the

analyses developed by Milsom CRef. 1 ,,' Hussein and Ristic

[Ref. 23. The condition for allowet *wd- ;s that the determi-

nant of the Christoffel equations vanii kh a given surface wave

velocity, V& With this informatit. uni- could proceed to satis-

fy the inhomogeneous boundary conditions, in k-space. for a line

source. Our intermediate objective w4:5 to be able to arrive at

the effective permittivity function for an material and crystal

orientation specified.

Because of the goal to treat arbitrary crystal orientations,

it was necessary to develop or obtain software that would be gen-

eral enough to express the 4th, 3rd, and 2nd rank tensors (stiff-

ness, piezoelectric, and dielectric tensors, respectively), for

any particular crystal cut, in the Christoffel and boundary con-

ditions equations. An existing program called LAYERS [Ref. 3]
appeared to fill many of these needs, and it was decided to make

use of as much of it as we could.

Our efforts were Ftymied very early using the LAYERS code

because the Christoffel equations did not yield slowness surfaces

in agreement with published curves. Gualitatively they were sim-

ilar; but the magnitude of the deviations were intolerable when

compared with the work of Milsom, Wagers, and Ristic [Ref. 2

43. There was no way to scale our results to agree with theirs.

Some of our slowness curves appeared to exhibit symptoms of

numerical instability and poor convergence. Tolerances were

16

1,, !



tightened and loosened to very little avail. We then examined

the root-finding code (Muller's inverse parabolic interpolation

algorithm) for evaluating the determinant, and convinced our-

selves that it was among the very best off-the-shelf codes one

could use. It converged rapidly and accurately in actual tests.

The Christoffel matrix itself was examined as best we could, con-

sidering that rotated tensor expressions were invilved. Some un-

usual scaling was noted in the code but we wer- unable to ascer-

tain its possible role in generating errors. The project was

eventually terminated.

2.2 Power Patterns for SH-Wave IDTs

2.2.1 Analysis

Because of the potential applications of microwave frequency

array-steered bulk wave devices, it was decided that the radia-

tion characteristics of shear horizontal (SH) waves should be in-

vestigated. One quantity of particular interest that needed to

be computed was the far-field power pattern of a planar array of

electrodes. The derivation of it is carried out belnw. Fig.

3 shows, for a double-electrode array and relevant geometry.

As several inve3tigators have shown, radiation into an isotropic

medium is often a reasonable physical approximation to make. and

certainly makes the analysis simpler.

For the double-electrode array shown in Fig. 3 , we note

that

Y" + L -1 2. (2)

17

-V,- .q i



1W I I vINDfa.el e(e cfm.*Je c o er d,Ate

Expanding leads to the following:

VL

-=R~c + e - x.,, 0 + X
(3)

L V

+ W I

For the far-field power distribution, i.e.,

+- i,

the quadratic term is negligible by comparison. It follows that

L ~~t) 4* (5)

By; far-field we also mean that the half-aperture of the transmit-

ting array is much less than the distance to the observation

point at R.

18
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Following Farnell's analysis [Ref. 3, it is clear that

the far-field potential due to all the line sources comprising

the array is given by

= = "3J.( -

where

k+ w&.~VenvoJher 4v +rAntVeIY fo~aruted I~ve

A L - T'LRI '*-R-L6) (7)

I-1 e'-'e o-L.f 4•I. .. I &o_.

Using the asymptotic form for the Hankel function gives

A ( (8)

Denoting the integral by

A -t U WA#L V

19



and expanding the charge density as usual [Ref. 3s I.e.,

=~ot 6T..(, . (10)

leads to

A

~cJ~)= -t I (JR (-J d v'e) (11)
J0

where

2 - k. I - . (12)

Collecting terms and normalizing h) leads to the final ex-

pression:

Ay/ ILLdt A ut

+ 'Tc) e (13)

20
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where

and

2.2.2 Results and Discussion

For J = 200, i.e., 100 pairs of electrodes, Fig. shows

the far-field power pattern for = 1/2. For an isotropic sub-

strate ' ) .JC-) This is not the case for an

anisotropic medium, but the difference has been shown to be quite

small in many situations by Lewis [Ref. 5]. It is clear that

the DE array tuned to its fundemental frequency behaves like an

end-five antenna. For these computations the array was assumed

to have a periodic polarity impressed on the pairs of electrodes.

The infinite array approximation was used in the sense that the

expansion coefficients were the same (apart from a sign) for

all electrode pairs. The expansions were calculated using N = 6,

and the coefficients had the following magnitudes:

C = 0. 145814

C'"= 0.0591B5

C'= 0.002699

C" = 0.001402

C = 0. 000047

C = 0. 000031

C = 0.000001

Element factors based on calculations and derivations developed

above will be determined for both simple and double-electrodes,

and will appear in a journal publication.

21
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Double- Electrode Array

Figure 3
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3. Message Identification

A low-frequency method of communication was tested between

Forestport, New York and Troy, New Hampshire. This method in-

volved the transmission, reception and subsequent analysis of

time-delayed low-frequency groundwaves (25 KHz) which were digi-

tized and stored on magnetic tape. The analysir, detailed below,

included determining the time-delay of the groundwave in each re-

cord. A message was encoded by varying the time-delay of a

number of consecutive records wherein each delay corresponded to

certain alphabetic character.

A computer program was designed to perform correlations

between a standard waveform and that of each record on tape by

mathematically shifting the former along the latter to determine

the position of maximum correlation. This point represents the

time-delay of the given waveform.

A well-known cross-correlation function

I tY 4 Y 1 g + Z) R I Y.)~
(K t - e(1)

was used in which x and y are the values of the standard waveform

and the one being tested, n, is the total number of elements in

each waveform and k is the particular shift of the standard along

the waveform being compared.

The field tapes consisted of records of length 256; each

representing a time-frame of the same number of microseconds and

L 25
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each containing one waveform 40 microseconds long. Blocks of 22

records were created by transmitting 22 consecutive waveforms

with the same time-delay. Many tapes containing waveforms of

varying signal strengths were created for later analysis.

Initial results, comparing the standard waveform to those of

a tape of high signal-to-noise ratio were successful, i.e., the

message was easily decoded. There were problems, however, decod-

ing tapes having low S/N ratios. Averaging five consecutive re-

cords before cross-correlating was tried but since there is no

physical indicator of the beginning of a given block, it was im-

possible to be sure whether one was averaging records in the same

block (same time-delays) or those in two different blocks.

Understandably, averaging records in two different blocks would

tend to worsen results since an additional waveform would be in-

troduced into the averaged record and this was found to be the

case.

It was determined that more advanced signal processing tech-

niques are necessary to improve the S/N ratio prior to applying

the cross-correlation method. Current investigations include the

use of fast Fourier transforms and filtering to eliminate noise

and improve the S/N ratio.
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4. Nonlinear Transcendental Equations

Our objective was to solve a system of 5 nonlinear transcen-

dental equations. The first 3 pertained to the reflection of an

incident ray from a flat facet having a slope angle P and an ori-

entation angle OL with respect to the transmitter-receiver line of

sight. The last two equations ensured that the reflected ray ar-

rived at the receiver if the height of the point of reflection

was required to be H and the distance between the transmitter and

the receiver, D.

An attempt to solve the equations analytically failed. The

next effort was to obtain an approximate solution of the system

of equations. The system was transformed through several substi-

tutions into a system of algebraic equations with the hope of di-

minishing the computer time demands, because it was known that

searching for the solution using an iterative process would be

computationally expensive, especially when there was no informa-

tion for good starting values. A rapidly converging iterative

process was applied to the algebraic system; the subroutine ZCNT

from the IMSL library was used. However, it turned out to take

considerable computer time, 2000 sec. For this reason, the

paper from which these equations were derived was reexamined and

found to have a misprint. A careful examination of the geometry

showed the equations weren't necessary at all for the determina-

tion of the directions C1,6 ) of the incident ray and direc-

tions ( /4,1 ) of the reflected ray. All unknown angles could be

found directly from the geometry of the reflection by solving

simple solid geomtery problems.

The new calculations took less than 1 second of computer

time, and the results had obvious geometrical meaning. Plots

were made of f94) for different values of the parameters.
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5. Tropospheric Range Error Correction Utilizing

Exoatmospheric Sources

5.1 Introduction

Tropospheric refractive range and angle errors limit the

performance of radar and navigation systems that operate at low

elevation angles. For some locations and for many applications.

antenna pointing corrections based on surface refractivity alone

or, if necessary, a vertical refractivity profile are adequate.

However, new systems that operate at very low elevation angles

require improved accuracy. More accurate angle error corrections

can be obtained by utilizing calibration sources (such as the

limb of the sun, radio sources, satellites) the angular positions

of which are precisely known to a sufficient accuracy--the range

error correction is still a problem. It has been shown that it

is possible to develop a method for obtaining an improved range

error correction by utilizing measured angle error data for the

same ray path. An expression for the refractive angle correction

for a target, based on the measured angle error of the calibra-

tion source is first derived (1).

Both the target and calibration source are assumed to be

outside the troposphere where the index of refraction n(r) is ap-

proximately unity , hence the angular refraction T is the same for

both

(1)
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In this equation, £ the angle error of the calibration sources

and the initial elevation angle of antenna are known, as are ap-

proximate heights h, and h' of the target and calibration source

(see Fig. 5 ).

There is a direct formula to express the angle error correc-

tions C , Ct (for the target or for the calibration source res-

pectively) through the angular refraction

where

under assumptions mentioned above.
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However, before the angle error of the target C, can be de-

termined, the angular refraction r must be found

17r- 1 (No [z A CEJjk
(3) *

- A. L 2a-COj

The angular position of calibration sources are precisely
known. so it is possible to calculate the angle correction C,. by

taking the difference of the apparent position e which Is meas-

ured and the true position which is tabulated:

~a j~. *(4)

*It should be emphasized that the following formula is correct as

well.

(3')

AA-

since the angular refractionZ for the target is the same. Then

with't known from (3) the angle error of the target Ccan be

calculated from (1).
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It is then shown that the range error correction for a ar-

get can be expressed as a function (integral) of the angu.ar re-

fraction. The angle error for the target Ei is also involved.

Therefore, the range error correction can be calculated from a

set of angle error measurements (4).

The range error ARe (a, C,, r, ) correction is defined by

where R and R. are the apparent (or radio) range and the true (or

slant) range respectively.

The expression for calculating the range error correction is

given by

AT-eI- (,.s)I0.41 X X (6)

-o- + C _- C '(e e + Of._ .o,,C0- ,-_

CA

an, C a., cr)] - a ,= C% ,_.Cd
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with following denotations:

C, - is TO,(e, ). where the elevation angle of the

antenna;

C - is cos (e), where e)the elevation angle of the

calibration source;

0. - the distance of the antenna from the center of

the earth;

akt, • - the distance of the target from the center of the

earth;

fla, - the quotient (a + ho )/a;

- the angle error of the target;

Fe(,,r.) - is the total angular refraction along the ray

path (the ray path lies in the great circle

plane, determined by the locations of the anten-

na and target, see Fig. 1).r. I
- -~l . J ,1- 7

A" C

The function n(r) is expressed as follows:

n(v) = 4- MJ(,u-) #0O

SJ 4 &N. (V-4) 0 I-f(I
N4(-) - N,, @LL[- r..a--J' I 4 r-e. 4

log e,,f L-o.142-4(r-A-t)j .( -.
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here

AW -3 2 e .0 0o 77 N

C L 5105

This formula for N(r-a) corresponds to "Modified Effective

Earth's Radius Model" which is usually used to solve refraction

problems.

It should be emphasized that (6) provides the difference in

range error for elevation angles corresponding to the limits

C, and C. For example, for the case of the sun as a calibration

source, it is the difference of range errors for C and

C. corresponding to elevation angles of 60 and Cg, , respectively.

In order to obtain the total range error for an elevation

angle Co ( ei4r BL ) it is necessary to estimate the
C

total range error for an angle of 60 This is not considered a

serious limitation since the angular refraction for very high an-

gles is minimal; also, the corresponding range error is rela-

tively small.

5.2 Task Description

The problem to analize consisted of the following steps:

1) to select the numerical integration technique which provides

the least number of measurements required to guarant - a

given accuracy of integration for the integral

C
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2) to analyze the sensitivity of this integral to the small per-

turbation of e values (the measurement errors).

3) to analyze the sensitivity of the angle error 4, to the small

perturbations of 0 values (the measurement errors).

4) to analyze the sensitivity of the range error correction

€4 1 to the small perturbations of 6 values. Values

of ( in expression (3) are supposed to be exact, so

To obtain the range error correction from (6) the following

procedure was suggesed:

1) Select a set of elevation angles between i and e and obtain

the corresponding set of the angle errors of the calibration

source, utilizing the relation (4). Elevation angles e are

to be measured, the appropriate true angular positions P of

the calibration source are to be found from tables (if, for

example, the sun is the calibration source, the solar ephem-

eris is to be utilized).

2) Calculate the appropriate angular refractions 't for the se-

lected set of elevation angles from the relation (3).

3) Calculate the angle error 1E from the equation (1). For this

calculation only one measurement is needed.

4) Use the obtained set of 't values for the approximate numeri-

cal calculation of the integral on the right side of the ex-

pression (6).
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The accuracy of this technique is dependent on many factors.

Especially, of primary importance are the accuracy with which the

angle error can be measured, the refractivity structure of the

troposphere and the number of angle error measurements.

Of secondary importance are the accuracy of the heights and

angular coordinates of the calibration sources, the height of the

target, the measurement of the surface index of refraction

the numerical integration techniques that are employed, and the

estimate of the total range error contribution from the angular

refraction at elevation angles above the maximum elevation angle

of calibration sources.

5.3 Work Description

1) A numerical experiment was designed to select the appropriate

numerical integration technique which would guarantee a given ac-

curacy with the least number of nodes I i.e., that would use

the least number of required measurements. The exact theoretical

expression for the angular refractivity

was utilized in this experiment.

It should be emphasized that this integral is close to an

integral with a singularity when e-O.

The relative accuracy of calculations considered to be equal

. . * i6- ; there was no reason to consider higher accura-

cies since the value a, the antenna distance from the center of
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the earth, had no more than 3 correct significant digits. Three

methods for numerical integration were compared: Romberg rule,

Simpson formula and Hermite formula, the nodes being selected au-

tomatically. It turned out that Simpson's method gave noticable

better results; for example:

Number of Nodes
6
a Simpson Rule Romberg Rule

3 25 41

N

II

0.01 0 53 73

The nodes selected by Simpson's method were utilized for

calculation of the integral (8), but the angular refractivity

was computed from the expression (3) with the appropriate in-

terpolation along the table. Results of two different ways

of the calculation of the integral (8) coincided with 3 signifi-

cant digits. Therefore, the set of angles obtained from the

first preliminary calculation utilizing the expression (9) for

the angular refractivity can be used as the set of measurement

angles.

2) The sensitivity of the integral (8) to perturbations was

checked numerically. Three significant digits of the integral

remained uncqanged while perturbations didn't exceed

05 1 in absolute values. Such precise measurement

36
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can be accomplished practically, so the sensitivity is suitably

low.

3) The sensitivity of angle error C, with respect to perturbation

of angle error CL of the calibration source, (under assumption

that , are exact), has been checked numerically. It

turned out that

when angles 4M belong to the interval O o
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6. Maximum Signal Power at a Critical Down-Range Distance

6. 1 Introduction

Over-the-horizon (OTH) radar signals are reflected from sev-

eral layers of the ionosphere before illuminating some point of

the earth. The optimum frequency ; and launch angle P to be

utilized may be predicted via ray-tracing techniques. The goal

of the program PWRMAX is to determine f and for maximum signal

power at a critical down-range rc . Both maximums were needed;

the local maximum of power and absolute maximum of power.

In order to reach this goal the program PWRMAX combines a

high-speed ray-tracing computer code with a power versus range r

curve-fitting algorithm.

6.2 General Discussion

The search for the optimum frequency is performed over the

initial intervals of frequencies CF F 3 and angles 1B, ,

B-. 3, the intervals being determined from physical considera-

tions.

The ray-tracing computer code allows one to obtain the cor-

responding values of power p and range r for each pair

For each fixed frequency I FIJI.J , and

variable . C ,,.3 , a table of "power p..
versus "range r. " may be obtained:
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Such tables represent functional dependencies of "power" versus

"range" and must be examined at the beginning.

The functional dependencies may be described approximately

by the quadratic obtained using standard least squares. Denoting

the appropriate polynomial by P (r) , the following approximate

equality is correct:

The value of power at the point rc may be approximately calculat-

ed as V. (ri)

This leads to a table of the form

which may be treated as an approximate representation of the

functional dependence PL (f) 'the value of power at the

41
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down-range r " versus "frequency". Using the functional form of

the above table, the absolute maximum may be obtained with stan-

dard methods (involving either simple selection of the least

square curve fitting with further selection of absolute maximum

for a parabola.

With regard to the local maximum of power, the least squares

curve-fitting usually is not a suitable method to investigate

local properties of fitted curves. But if certain conditions

apply. the fitting curve may be used for approximate calculations

of the local maximum.

Functional dependencies #.(,) (EI=,.,,) were assumed to

be quite smooth and to have the single local maximum in the

neighborhood of the point r, This assumption was justified

physically and with numerical experiments.

If a curve is shaped as assumed, the coordinates

K0&X, P.P.) of the fitting parabola 6?'r local maximum
may be regarded as an approximation to the coordinates

(rj , " ) of the local maximum of "v) . The func-

tional dependency "frequency" versus "range-coordinate of local

Maximum", F -,m may then be approximately restored using

standard least square so that

A

Z (3)

whore is a polynomial of second degree.

Finally, the frequency that provides the local maximum of

power at the point re may be calculated approximately as
A

, F... (4)
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7. Multi-Hop Propagation

7.1 Introduction

The computation of the number of hops versus launch angle

for geometric multi-hop propagation between concentric boundaries

presents certain analytical problems.

This problem is mainly due to the implicit form in which re-

lations between number of hops, launch angle, relative transmis-

sion delay, distance and height of transmission boundary are pre-

sented.

To obtain iso-height and transmission-delay contours, expli-

cit formulas for number of hops and launch angle of the ray were

derived.

This representation also obviates the separate treatment of

multi-hop round-the-world propogation as an additional case to

the propagation over a certain distance along the surface of

earth.

7.2 Analysis of Parametric Equations

For mirror reflections between concentric spherical ionos-

phere and earth over a distance (d) along the surface of earth

the following parametric equations apply for the height of re-

flection boundary (h) and relative transmission-delay (8)
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where R is radius of earth, is launch angle of the ray, n is

number of hops and c is velocity of light.

In addition, the round-the-world case is presented by equa-

tions

zk CIA I~ (9f~~ _ (3)

(4)

An analysis of given parametric equations yields a unique set of

formulas for launch angle (9) and number of hops (h).
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where

A-- cI(6)

Thus, the round-the-world case could be derived easily by substi-

tuting distance d with 2ffA and iso-height and transmission delay

contours could be easily obtained.
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