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OPTIMIZATION OF AUTO~PILOT EQUATIONS
FOR RAPID ESTIMATION OF HELICOPTER CCNTROL SETTINGS

ABSTRACT

™
An automatic feedback system, based on continuous monitoring

of control loads, is used to find the control settings that are
required to obtain a given flight condltion of a helicopter rotor.

ot i oa e ane on

A program is developed that searches automatically for the optimum
gains and time constants of the system. Satisfactory results are

achieved for given conditions as an example.
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OPTIMIZATION OF AUTO-PILOT EQUATIONS

FOR RAPID ESTIMATION OF HELICOPTER CONTROL SETTINGS

1., INTRODUCTION

Previous work in the area of helicopter stability and vibrations
has shown that an accurate knowledge of the helicopter control settings
is a necessary prerequisite to the determination of blade damping or
rotor loads. The mathematical formulation of this problem involves
solution of a set of non-linear differential equations for the pericdic,
equilibrium sclution, This,in itself, 1s fairly straightforward; but i
the problem is complicated by the fact that the unknown control settirgs
appear as forcing functions ( and sometimes as coefficients ) in the
equations., These control settings must be chosen so as to satisfy
certain integral constraints on the solution, namely that the helicopter
be flying in trim at the desired flight condition.

In reference 1, a solution to the above problem is formulated

whereby a set of control equations ( called an "automatic pilot" )
is wused to bring the controls to appropriate values simultaneously
with the solution of the blade equations. The coefficients of this
controller (two gains and two time constants) are chosen by trial
and error to give the most rapid convergence to the desired settings.
Although the results in reference (1) are very satisfactory,
there are several aspects of the problem which merit further study.
First, the choice of parameters in (1) was made on the basis only of
a qualitative assessment of when the controls had converged. A more
quantitative (and automated) approach is needed before the method
can be extended to general problems. Second, several errors have

been found in the equations of motion of (1). Thus, the results

need to be verified for an accurate set of equations. Third, the
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results in (1) do not include a study of convergence or optimality
conditions (local minima, etc.).Therefore, a more complete aralysis
is warranted.

In this paper, the corrected equations are studied in more
detail in terms of convergence properties. Whereas reference (1)
concentrates on loss of stability in extreme conditions (stall,high
advance ratio, low torsional frequency), the present work concentrates
on the controller characteristics in the normal operating range.

To this end, a program is developed that searches automatically

for the optimum gains and time constants of the system.

D e

.
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2. MATHEMATICAL DESCRIPTION

o e W e e e e e e e 4 e e

2.1. Rotor Equations

The physical and mathematical models used here are the same
as in reference (1) with the exception that certain algebraic errors
in (1) have been corrected. The physical model, given in Figure 1,
shows a single section of a slender, rigid, inelastic blade, which
is hinged in the torsional and out-of-plane directions at the center
of rotation with restraints, KG and K5 . The Ttlade 2= assumed to
flap with angle 3, and to feather with angle 1. Fixed coordinaies
arce delined witﬁ the Z~direction along the rotor shaft and with the
X-direction opposite to the direction of flight. The blade rotates
about the shaft in the XY plane with constant angular velocity 12 .
The rotor shaft angle ¥, which is measured from down wind, is in
radians, The blade position with respect to the fixed coordirate
system is thus defined by the three angles ¥, », and ¢, which
uniquely define the blade position.

As the result of the derivation and simplication, we have

xr -—
Q*PZ:F"F*'M« (1)
, £ +8 = M- (& -1)E-6,- 8 sin2t) (2)
The aerodynamic force Fy and the moment about the pitch hinge
Mg are obtained from piecewlse linear, quasi-steady strip theory, :
F, = sfeday; (6 Lh/Ur )r;?fc'\c‘d(.’ (,9,./13-4,) (3)
My = - 33 pacd U (E v 24 - <p)+-facc/(.!. (%)
, Combining (1) (2),(3), and (4), we have
' /)’f (lr/usms‘)zs r[lnr(/r/u;,ny)( Sptesy -
',- ,r.rl.,)_'ﬁ" (/rlusmy)@~—E.'_[_(,+/,\5,,,y)
' (6 <p)-(:rp>nwu+(;-,)9/, (5)

€ 155 (1rpsiny) 6 + e e (Trpsny)CLe
’(L(.”-i)(@. ré; S,nl/ +€ c«.sy) r IC (I-r-ll.o-'v?)ﬁ

P2

= [ Pkl l+/u.nl{.')p' w( I+/um¢’)/(«ccs}t At
me'( |+ [asiny’ )qb e L Crirpsiny)A] Cn

(6)

.. - . . .- . P - -
- g tb B e g b = . - - - . -
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Figpure 1. Schematic of Blade Mcocdel




4 2.2. Auto-pilot Equations

In order to simulate the trimmed flight of a helicopter rotor,
the rotor is maintained at a fixed value of the thrust ccefficient
with forward speed. Furthermore, the cyclic pitch is adjusted to
suppress first harmonic cyclic flapping (f3,=84=0) and, therefore,
to eliminate rotor hub moments.

The following auto-pilot equations, taken from refererce (1)
represent the strategy whereby the cortrols (€ ,( ,Q) are adjusted
in order to reach the desired thrust (T=T, ) and moments (FN=F¥_ =G,
RM=RM,=0). The cross-couplirg, B, accounts for the couping tetweer

roll and pitch in a helicopter rotor,

.. € = A (T -T) (7)
7,6 ¢ 8 = A Lpr-Pri )+ BIRM = RiE)] (&)
T8 ra = A [(RM-RMY B Cpr-FPrL)] (9)
The final form of the auto-pilot equations are found from
evaluation of the instantaneous thrust and moments (T,PH,RN) ir
terms of the flappirﬁ argle, f .
6 - _.,_‘E,/; -+ A L (1()}
. "C
. . - - 5
6 =% - —J——~“ 'L—ff—’) RS- TR 9V
L, c, .
rA (11)
- @ls , C i )Cc.nl, £ - . ,
A e
~A, (12)
bl
2.5. Hbethod of Solution

A For the whole system, we combine all the above equations,

and write them in matrix form, .
fom | - ' r C oot p
- =t Sny’)
3 i |- = Furk - "{Ir,(«:.al,)—.\ A
- rhoesy 2 }
é E‘-m ct I ' h lf) “' L‘L . e
- - —— I~ s "'
\ t—f(,.,'“s;,,l') & ' Lot et I(. 4 %‘-(,rf\s.nv) o & ] —
- { i <
i c )
A EFP R
| 1 1
' e 0 ] T 0 4] E
- ,‘:r(frl\«b.nv) -




_AT
H(nﬁ&nv)‘ z ¢('*P5HV)+(f'”/%c )
)

. ""L,,./\(H,LJ ")+ I-Y_—E“C”v¢(”l‘" nlf)-f{k, -,)({ '&)m(/ Pl ey

(4
A ) |
o o o O
{
0 .'Ei |2
]
2] -

- O g 7
- 0 o o
¢ -\ 0 0

2 o -l o
AP/J - A;.(-_
ch Z-

_Acp- v){c“(p-')Sny
t,r | r

_ A lé( P )ty
z,r 7

&
o
0

The following blade parameters and flight conditions are

used in equations (13) and (14) for the numerical examples to

follow.
[« <o
¥ =5.0
€ =0.05

C =0.1

o O
¢
o o
o ¢
o (/-
Jd o

/g-c— - Lc,t/_]/S I"A

&

TP ECarSet]s -4

73

B S R

(13)
&)
£
O =
48
ﬁs
.

7|
(14)

J
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C:/62=0,0050/0.314=0,0159
¢, [5a=0.,0
Ch/54=0.0
Py =0.0
N, =0,2 ‘ .
A= Ffpte 0 - 2 1 8. 33012x00
B,=0.0 )
u%=3-5 , r=1.12 , P neglected
We select g, ./'5, €,0, €, (_o;, € CZ’ @, and @ as the state variables
and rewrite equations (13) and (14) in first-order state variable
form.
Y(1)=Y(2)
§(2)=~[1.2544+(o.3cosx-o.2)(o.625+o.1875sinx)]Y(1) ]

~(0.625+0.1875s1nx)Y( 2)
+(0.625-0,1875sinx) (1+0.3sinx)Y(3)
+0.025(0,625+0.1875sinx)Y (4)

' -(0.00520632+0.00156189s1nx)

Y(3)=1(4)

Y(4)=~(0.625+0,1875s1nx) (0.25)¥(1)
~12.25Y(3)
~(0.,625+0.1875sinx)(0.25)Y(4)
+11.25Y(5)
+11.25sinx *Y(9) F (15)
+11.25¢c0sx *Y(7)

¥(5)=1(6)

Y(6)=~(A, /T, )*0.25088Y(1)-Y(6)/T, +T {0.0159)

Y(?7)=Y(8)

Y(8)=-(A,/T, )(0.05088)(0.4070cosx+sinx)Y (1)

o)/

Y(9)=Y(10)

Y(10)=-(a, /T, )(0.05088) (0,40704s1inx-cosx)Y(1) J

-¥(10) /7T,
where X= ¥
Y(1)=14
Y(2)=1
Y(3)= Q
Y(4)= @

1(5)= €
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L; ' 1(6)= €.
¥(7)= @
Y(8)= ¢
Y(9)= &
: Y(10)= &
L We solve the first-order differential equation set (15) by the
: Runge-Kutta program provided by IBM Scientific Subroutine Package (SSP).

Figure 2 shows a typical response of a stable system with all zero

initial conditions.

i
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3. OPTIMALITY CRITERIA AND SEARCH FOR OPTIMUM POINTS

3.1. Optimality Criteria

For a system to be optimal, some kinds of criteria must be used
to decide on the utility of the solution.

In our case, for a stable system, the angles & , &, & will

ultimately reach the final, stable position. It is our desire that
these final values are reached in as short a time as possitle. Thus,
we choose as a cost function the time required ( i.e. the number of
rotor revolutions required ) for all controls to be withir £0.5° of
their final values. To do this we designate TT.,TT , and TTy as the
respective times for £, 8 , and £ to converge to within $0.5 of
a final value; and we designate the largest of these three as Tmax,

Figure 2. Then, we use the minimum of Tmax as the optimality criteriorn,

3.2, Search for Optimum Pcints
As we have seen in previous sections, it would be quite diffi-

cult to obtain explicit expression for TT,, TT , T, , and Tmax.

y !
Furthermore, analytical derivatives of Tmax with respect to A,, A,,
Tes and T, are not readily available, so we use the derivative-free
nethod in our search program, That is, we evaluate functions only;
and no derivatives are invelved.

The controller used here has four parameters that must be con=-
sidered: Ao, A,, To» T, . The procedure is as follows,
(1) A base point is chosen and Tmax is evaluated.
(2) Local searches are made by stepping A, a distance 0.2 to each
side ( M1 direction in Table 1 ) and by evaluating Tmax to see if
a lower Tmax is obtained.
(3) If there is no Tmax decrease, we do the same to M2 direction,

and then to M3, M4, ..., until M42 direction, or until a decrease

is found, see Table 1. We select 0.2 as increment for A, 0.3« for
Tos 0.2/ forT, .

(4) If there is a Tmax decrease, we then use the new point as a base
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Increments of Parameters
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Table 1 Searching Directions
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point and go back to (2). If there is no decrease in Tmax, then we i

| assume that a local minimum point is found.
A flow diagram illustrating the above procedure is given in

Figure 3.

[ ] - . . . G e pertmt Ao e g S

. W
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4, RESULTS AND DISCUSSION

4.1, Stepping Distance

Although, in principle, a smaller stepping distance implies a more
accurate convergence, from an engineering point of view, it is often more
efficient to take larger steps such that a meaningful change in cost ‘
function can be found. Thus, in this case, we have used steps 0.2 for A,

and A, , 0.3/ for T, , and 0.2 7% for T, .

4,2, Choice of Stable Points as Starting Folnts
For the starting points, the system must be stable, otherwise Tmax
will be equal to irfinity (in our prozra:. ax is approximately equal

to 40 cycles), and the search prog::.am - . .ail.

4.3, Local Minimum and Global Miny:
Since local minima are potent ° 2ossible, several different
starting points are considered. acula .hese converge to several different

local minima, the global minimum can te chosen from the local ores.

4.4, Optimality Criteria

The minimum Tmax 1s selected as the optimality criterion in our
case, As we can see in Figure 4 ard 5, however, the differerce in Tmax
between two local optima is only 1.28 cycles. On the other ha:d, ore
optimum has larger oscillations (in the steady~state) than the other.
Therefore, it might be good in future studies to consider these oscilla-

tions in the selection of optimality criteria.

4.5. Optimal Control ZJetting
With blade parameters and flight conditions as shown irn pages
7 and &, and with the minimum Tmax criterion, the optimal control settirg

is as follow,

Ag = 2.6

A, = 3.6

Te = 2.1 T7C

T, = 0.6 &

and
TTe = 4.85 cycles
TT, = 5.29 cycles
- e T SR P -y -

~
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| Ao= 20
6.0 A, =20
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4.0 T| = |27T
e.or TT,= 6. Cycles
1 N 1
0 5 10 15 Cycles
A
o 2.0
e
o
D
o
O
(09
.o}
TTc= 6.36 Cycles
_ 1 ] I
o 5 o) IS Cycles
o 4
o i
. o 0.0
D
Q
©-2.0
TTg=6.57 Cycles
-4.0
_ L 1 1 -
605 5 10 15 Cycles
Figure 5. Time History




- 17 -

TTy = #.92 cycles

Tmax = IT, = 5.29 cycles
B,(0c ) = §.5627 degree
@(») = 1.1347 degree
é{(a ) =-4.5841 degree

The optimum resulte (Figure &%) can be compared with another local

optimal (Figure 5). For the optimum settings, in Figure 4, the low cyclic
time constant (0.6 1) causes £0.5° oscillations which are on the boundary
of the accepted level. In Figure 5, a larger time constant is chosen (T, f
= 1.2 7). This reduces the oscillations tc +0.1°, but also necessitates i
lower gains (A,, A, reduced from 2.6,3.6 to 2.0, 2.0). The lower gains
imply that the over-all convergence of the mean is slowed, making the mean
the critical criterion for convergence. It should be noted that, for an
analysis with more than one blade (we only have one), the oscillations
would greatly decrease since the rotor would filter out once-per-rev
from the controller. This would alter the optimum in Figure 4 (were +0.5°
is critical) but would not greatly change the optimum in Figure 5 since
the oscillations are not driving the solution.
In conclusion, we can say that the gains and time constants found
in Reference (1) are very close to the optimum found here, On the other
hand, the research in this report shows that there are two local optima
with nearly equal convergence. A comparison of these indicates that ar
improved optimality criterion might be obtained from a more strirgent

penalty on steady-state oscillations.
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6. NOMENCLATURE

area of the blade section
slope of the lift curve
gains

coupling

blade chord, m

. . .
nondimensionalized blade chord, >
blade 1lift coefficient
CL
normalized blade mcment coefficient, &é
blade moment ccocefficient
Cﬁ
normnalized blade moment coeflicient, &é
root roment ceoerfficient
Cs
normalized root moment coefficiant, F3
blade thrust coefficient
nermalized blade thrast ccetfficrient, jﬁ
length of blade section
inertial ratio, —~11——7
I, +mr
B o)
lift force
. el - Br
nondimensionalized 1ift for.e —_—

"Iy +mrd)
constant term in algoriz..al¢ Runjez-Ratta

method

p
total inertia, IY + mr®

N
blade section inertias, kg-m~

total numker of periods of 1ntogratinn
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reduced freqguency, %

La B

rate gains, such that % is number cof

radians to full application of linear

control predictions

spring stiffness at the center of rotation

flapping spring constant
torsional spring constant

numnber of blades

lift on blade

rolling moment at hub

mass of the blade section, number of
controls

pitching moment at hub

moment ahout the citch axis
nondimensionalized moment about the

M

pitch, i—‘—?

-
LS

number of sscond-order degrees 0of freedo

dimensionless rotating flapping freguency

slope of the pitcen moment coerficient
pitch moment desired

roll momenc Jdesired

blade radial coordinate

steady root morment on hub in rotating

gystem

time

o

H

—; V7
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T thrust on the blade
U total velocity of blade section relative
to air
Up vertical component of air speed
U’I‘ horizontal component of air speed
U.x’vy'v_z components of V at the klade's 2.g
v vertical comporent ol wind 3g=:sd
v velocity of the blade's center of gravity :
A angle of attack T
dc critical angle of attack ]
& angular velccity <f blade at centsr
of gravity .i
dx’&y’az components of ] \
A flapping angle, rad., /30 + A sin¥ :’
+ A, cos¥
/QO,/AS,/BC components of flapping -
a" lock number, ito_a_c_:_c_i_z_
ly+mr :
S] total '‘pitch angle, rad, 6;3 + eo + es siny
+ E% cos ¥
ee elastic portion of pitch argle

collective and cvclic pitch

inflow ratio

S

A

M advance ratlo,ﬂ—u——
r

/O density of air

T

o he
rotor solidity, ==
nr

to'rl time constants
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inflow angle
rotor azimuth angle, ¥ =Lt
angular speed at the axes oI rctation

pitch freguency

() =

1
a ()

) L

t

B I R o

.
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