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OPTIMIZATION OF AUTO-PILOT EQUATIONS

FOR RAPID ESTIMATION OF HELICOPTER CONTROL SETTINGS

ABSTRACT

An automatic feedback system, based on continuous monitoring

of control loads, is used to find the control settings that are

required to obtain a given flight condition of a helicopter rotor.

A program is developed that searches automatically for the optimum

gains and time constants of the system. Satisfactory results are

achieved for given conditions as an example.
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OPTIMIZATION OF AUTO-PILOT EQUATIO1,S

FOR RAPID ESTIMATION OF HELICOPTER CONTROL SETTI11GS

1. INTRODUCTION

Previous work in the area of helicopter stability and vibrations

has shown that an accurate knowledge of the helicopter control settings

is a necessary prerequisite to the determination of blade damping or

rotor loads. The mathematical formulation of this problem involves

solution of a set of non-linear differential equations for the periodic,

equilibrium solution. This,in itself, is fairly straightforward; but

the problem is complicated by the fact that the unknown control settings

appear as forcing functions ( and sometimes as coefficients ) in the

equations. These control settings must be chosen so as to satisfy

certain integral constraints on the solution, namely that the helicopter

be flying in trim at the desired flight condition.

In reference 1, a solution to the above problem is formulated

whereby a set of control equations ( called an "automatic pilot" )

is used to bring the controls to appropriate values simultaneously

with the solution of the blade equations. The coefficients of this

controller (two gains and two time constants) are chosen by trial

and error to give the most rapid convergence to the desired settings.

Although the results in reference (1) are very satisfactory,

there are several aspects of the problem which merit further study.

First, the choice of parameters in (1) was made on the basis only of

a qualitative assessment of when the controls had converged. A more

quantitative (and automated) approach is needed before the method

can be extended to general problems. Second, several errors have

been found in the equations of motion of (1). Thus, the results

need to be verified for an accurate set of equations. Third, the

- ..-
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results in (1) do not include a study of convergence or optimality

conditions (local minima, etc.).Therefore, a more complete analysis

is warranted.

In this paper, the corrected equations are studiel in more

detail in terms of convergence properties. Whereas reference (1)

concentrates on loss of stability in extreme conditions (stall,high

advance ratio, low torsional frequency), the present work concentrates

on the controller characteristics in the normal operating range.

To this end, a program is developed that searches automatically

for the optimum gains and time constants of the system.

I
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2. MATHEMATICAL DESCRIPTION

2.1. Rotor Equations

The physical and mathematical models used here are the same

as in reference (i) with the exception that certain algebraic errors

in (1) have been corrected. The physical model, given in Figure 1,

shows a single section of a slender, rigid, inelastic blade, which

is hinged in the torsional and out-of-plane directions at the center

of rotation with restraints, K0 and KG . The blad(- ±s assuie6 to

flap with angle 3, and to feather with angle :: . Fixed coordirL. ',

dol.JiOLJ red with the Z-direction along the rotor shaft and with the

X-direction opposite to the direction of flight. The blade rotates

about the shaft in the XY plane with constant angular velocity .z2.

The rotor shaft angle 4', which is measured from down wind, is in
radians. The blade position with respect to the fixed coordinate

system is thus defined by the three angles ', 4, and 0, which

uniquely define the blade position.

As the result of the derivation and simplication, we have

The aerodynamic force F4 and the moment about the pitch hinge

Me are obtained from piecewise linear, quasi-steady strip theory,

F, 3 - }/Ur J 0 .-- c13- ,-P, - ) (3)
He =~ ~ f I b-c~ r~( *~Aq'tfccL 4

Combining (i),(2),(3), and (4), we have

•,, -,-':: -;. ,"! (-fr ,'i .),0 , L)L "6 -f (- ~-.t),:.,V- t- [)V z r ,'s -

SL ( Lp "h':/~ "'' -,, +" .c, r.
,2.3.r'y)jC. 1  (6)

............-. r..,l, ,,.- _-.. , .,,- .t , ps,.' ¢ f ,,/...r.)(b).

iL$



Figure 1. Schematic of Blade cl
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2.2. Auto-pilot Equations

In order to simulate the trimmed flight of a helicopter rotor,

the rotor is maintained at a fixed value of the thrust coefficie.t

with forward speed. Furthermore, the cyclic pitch is adjusted to

suppress first harmonic cyclic flapping (P,=8=0) and, therefore,

to eliminate rotor hub moments.

The following auto-pilot equations, taken from reference (J)

represent the strategy whereby the controls (67 , L ) are adjusted

in order to reach the desired thrust (T=T.) and moments (PKL:P =,

R=RMc=O). The cross-coupling, B, accounts for the coup~ng between

roll and pitch in a helicopter rotor.

The final form of the auto-pilot equations are found from

evaluation of the instantaneous thrust and moments (T,P,R1K) in

terms of the flapping angle, .L AJLn -,- . . (1C)

C :

r(A,i

61, L, f

A, r. (12)'C

2.. ,:ethod of Solution

For the whole system, we combine all the above eqation-s,

and write them in matrix form,

~~~- LayLL

S.C

4'I
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I -7 I4-A~...4.' - t- 5P( '1 .V-) 't (rf'1)/p

----i

-, o(,';,' 0-ce (13)

L -

oL

((3

,i . 2[ (f-a)C .-

0

The following blade parameters and flight conditio::s are

used in equations (13) and (14) for the numerical examples to

follow

(=5.0
e =0.05
c' =0.1

. ,LA



-7-

C-./,,=0 05/0314=0. 0159

PS =0.0

'~=0.2

X~ ~ ~ (r)L/~J8 33012xl0

t'2=3.5 , P-1.12 (7p~ neglected

We select3,3,c 6
c'

6 
se and ~as the state variables

and rewrite equation~s (13) and (14) in first-order state variable

form.

i(1)=Y(2)

Y(2)=-t1.25Li4+(0.3cosx-0.2)(0.625i-0.1875sinx)JY(l)
-(0.6251-0.1875sinx)Y( 2)
+(0.625i-0.1875sinx)(1+0.3sinx)Y(3)

+0.025(0.625+0. lS75sinx)Y (4)
-(0.00520632+0 .00156189sinx)

Y(3)=Y(4)
Y(4)=-(0.625i-0.1875sinx) (0.25)Y(l)

-12 25Y'(3)
-. (0. 6 25i-0.1875sinx) (0.25)Y(4)
+11.25Y(5)
+11.25sinx *Y(9) (1.5)
+11.25oosx *Y(7)

i(5)=Y(6)
i(6)-(A/T,*0.25088Y (1) -Y (6)/T. T,0. 0159)

Y(8)=-(A /T, )(0.05088)(0.4Ooosxtsinx)Y(l)
-Y (8)/T,

y(q)=Y(10)

i(10)z-(A /T, )(0.05088)(0.4O7O4sinx-cosx)Y(l)
-Y( 10)/Tl

where X--=

'31 =

6')=,
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Y(6)= e
Y(7)= e
Y(8)=

Y(9)= e6
Y(10)=

We solve the first-order differential equation set (1-5) by the

Runge-Kutta program provided by IBM Scientific Subroutine Package (TSP).

Figure 2 shows a typical response of a stable system with all zero

initial conditions.

- -
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3. OPTIMALITY CRITERIA AND SEARCH FOR OPTIMUM POI NTS

3.1. Optimality Criteria

For a system to be optimal, some kinds of criteria must be used

to decide on the utility of the solution.

In our case, for a stable system, the angles 4 , , 04 will

ultimately reach the final, stable position. It is our desire that

these final values are reached in as short a time as possible. Thus,

we choose as a cost function the time required ( i.e. the number of

rotor revolutions required ) for all controls to be within ±0.5' of

their final values. To do this we designate TT,,TT, and TT4 as the

respective times for ,, 9 , and to converge to within tO.5' of

a final value; and we designate the largest of these three as Tmax,

Figure 2. Then, we use the minimum of Tmax as the optimality criterion.

3.2. Search for Optimum Points

As we have seen in previous sections, it would be quite diffi-

cult to obtain explicit expression for TT,, TT., TT , and Tmax.

Furthermore, analytical derivatives of Tmax with respect to A., A,,

T., and T, are not readily available, so we use the derivative-free

method in our search program. That is, we evaluate functions only;

and no derivatives are involved.

The controller used here has four parameters that must be con-

sidered: A,, A,, To, T,. The procedure is as follows,

(1) A base point is chosen and Tmax is evaluated.

(2) Local searches are made by stepping Ac a distance 0.2 to each

side ( Mi direction in Table 1 ) and by evaluating Tmax to see if
a lower Tmax is obtained.

(3) If there is no Tmax decrease, we do the same to M2 direction,

and then to M3, M4, ..., until M42 direction, or until a decrease

is found, see Table 1. We select 0.2 as increment for A,, 0.3,7 for

To, 0.2 7 for T, .

(4) If there is a Tmax decrease, we then use the new point as a base
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Increments of Parameters

Direction A, A, T,* - T,
Mi 0.2 0.0 0.0 0.0
M2 0.0 0.2 0.0 0.0 Change one parame-
M3 0.0 0.0 0.3 0.0 ter at a time.
M4 0.0 0.0 0.0 0.2

M5 0.2 0.2 0.0 0.0
M6 0.2 -0.2 0.0 0.0
M? 0.2 0.0 0.3 0.0
M8 0.2 0.0 -0.3 0.0
149 0.2 0.0 0.0 0.2M10 0.2 0.0 0.0 -0.2 Change two parame-
11.0 0.2 0. 0.0 -02 ters at a tine.
Mi2 0.0 0.2 0.3 0.0
M12 0.0 0.2 -0.3 0.0
M13 0.0 0.2 0.0 0.2
M14 0.0 0.2 0.0 -0.2
M15 0.0 0.0 0.3 0.2
m16 -- - - - -00 -- -- 0.0 - 0.3 -0.2 - - - - - - - - - - - -

M17 0.2 0.2 0.3 0.0
m18 0.2 0.2 -0.3 0.0
M19 0.2 -0.2 0.3 0.0
M20 -0.2 0.2 0.3 0.0
M21 0.2 0.2 0.0 0.2
M22 0.2 0.2 0.0 -0.2
M23 0.2 -0.2 0.0 0.2 Change three para-
M24 -0.2 0.2 0.0 0.2 meters at a time.
M25 0.2 0.0 0.3 0.2
M26 0.2 0.0 0.3 -0.2
M27 0.2 0.0 -0.3 0.2
M28 -0.2 0.0 0.3 0.2
M29 0.0 0.2 0.3 0.2
M30 0.0 0.2 0.3 -0.2
M31 0.0 0.2 -0.3 0.2
M32 0.0 -0.2 0.3 0.2

M33 0.2 0.2 0.3 0.2
M34 0.2 0.2 0.3 -0.2
M35 0.2 0.2 -0.3 0.2
M36 0.2 -0.2 0.3 0.2
M37 -0.2 0.2 0.3 0.2 Change four para-
M38 0.2 0.2 -0.3 -0.2 meters at a time.
M39 0.2 -0.2 0.3 -0.2
M40 -0.2 0.2 0.3 -0.2
M41 0.2 -0.2 -0.3 0.2
M42 -0.2 0.2 -0.3 0.2

Table 1 Searching Directions

• ,,_I •I.i - , -t ... - - -, . . . . " ' ".. .-
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point and go back to (2). If there is no decrease in Tmax, then we

assume that a local minimum point is found.

A flow diagram illustrating the above procedure is given in

Figure 3.
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4. RESULTS AND DISCUSSIO-N

4.1. Stepping Distance

Although, in principle, a smaller stepping distance implies a more

accurate convergence, from an engineering point of view, it is often more

efficient to take larger steps such that a meaningful change in cost

function can be found. Thus, in this case, we have used steps 0.2 for A,

and A, , 0.3 Iz for T. , and 0.2 1. for T/

4.2. Choice of Stable Points as Starting Points

For the starting points, the system must be stable, otherwise Tmax

will be equal to infinity (in our progra. 'ax is approximately equal

to 40 cycles), and the search prog m tail.

4.3. Local Minimum and Global MiniC

Since local minima are potent " ;osIible, several different

starting points are considered. _ tould .nese converge to several different

local minima, the global minimum can be chosen from the local ones.

4.4. Optimality Criteria

The minimum Tmax is selected as the optimality criterion in our

case. As we can see in Figure 4 and 5, however, the difference i:n Tmax

between two local optima is only 1.28 cycles. On the other hand, one

optimum has larger oscillations (in the steady-state) than the other.

Therefore, it might be good in future studies to consider these oscilla-

tions in the selection of optimality criteria.

4.5. Optimal Control Setting

With blade parameters and flight conditions as shown. in pages

7 and 8, and with the minimum Tmax criterion, the optimal control zetti.C

is as follow,

A, = 2.6

A i = 3.6

T. = 2.1 rt

T= 0.6 ,t

and

TTc = 4.85 cycles

TT, = 5.29 cycles
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TTS = 4.92 cycles

Tmax : TT, = 5.29 cycles

8.5627 degree

( 1.1347 degree
1(c ) =-4.5841 degree

The optimum results (Figure 4) can be compared with another local

optimal (Figure 5). For the optimum settings, in Figure 4, the low cyclic
time constant (0.6t ) causes ±0.5- oscillations which are on the boundary

of the accepted level. In Figure 5, a larger time constant is chosen (T,

= 1.2 70) This reduces the oscillations to ±O.10, but also necessitates

lower gains (A., A, reduced from 2.6,3.6 to 2.0, 2.0). The lower gains

imply that the over-all convergence of the mean is slowed, making the mew',

the critical criterion for convergence. It should be noted that, for an

analysis with more than one blade (we only have one), the oscillations

would greatly decrease since the rotor would filter out once-per-rev

from the controller. This would alter the optimum in Figure 4 (were ±0.50

is critical) but would not greatly change the optimum in Figure 5 since

the oscillations are not driving the solution.

In conclusion, we can say that the gains and time constants fowd

in Reference (1) are very close to the optimum found here. On the other

hand, the research in this report shows that there are two local optima

with nearly equal convergence. A comparison of these indicates that ar.

improved optimality criterion might be obtained from a more stringent

penalty on steady-state oscillations.

"*|
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6. N0 NGLATURE

A area of the blade section

a slope of the lift curve

A0 ,A!  gains

B coupling

c blade chord, m

c nondimensionalized blade chord, c
r

Ci blade lift coefficient
C

CL normalized blade moment coefficient, L

C blade moment coefficient
m C

C normalized blade vorent coeffrcieit, .m

C root -rroment coefficient
s C S

Cs  normalized root moment coefficirnt,
S

CT blade thrust coefficient

C normalized blade thrust coefficient,T

d length of blade section

e inertial ratio,
I tMr,

FA lift force

nondimensionalized lift f)re,

h constant tecm in alqoriz,.,ic ,,-\.irt.i

method

I total inertia, I + mr
Y

Ix ,I blade section inertis, kg-m-
x y
J total number of perio:ds of itugr.ti n
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k reduced frequency, r
1.

Ko,K rate gains, such that - is number of
01 K

radians to full application of linear

control predictions

K spring stiffness at the center of rotation

KP flapping spring constant

K& torsional spring constant

b number of blades

2 lift on blade

L rolling moment at hub

m mass of the blade section, number of

controls

M pitching moment at hub

me moment about the pitch axis

Me nondimens±onaiized moment about the

pitch, -

N number of second-order degrees of freedom

P dimensionless rotating fia :_,];q frlaqupric"

,*1 Ps slope of the pitcn moment ooeffioient

PM0  pitch moment desired

RM0  roll moment desired

r blade radial coordinate

S steady root torerit on hub in rotatiing

s',s tem

t time
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T thrust on the blade

U total velocity of blade section relative

to air

U vertical component of air speed

UT  horizontal component of air speed

'x , z V-Z components of V' at the blade's

V vertical ccmpoi.e,- sf wi d sc-d

17 velocity of the blade's center of gravitY

C( angle of attacl<

C(C critical angle of attack

angular velocity Of blade at center

of gravity

CX'(F'z components of

flapping angle, rad., o +/3s sinY

+ cos

components of flapping

l lock number, 2
I y+mr 2

G total'pitch ang le, rad, Q, e i-,Y,
+ e cos t

ee elastic portion of pitch angle

Q, , Gs collective and cyclic pitch

inflow ratio
U

advance ratio, U

/0 density of air

bc
T rotor solidity, Z.T

Uo, IVI time constants
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inflow angle

rotor azimnuth angle, I.-=ft

ft angular speed at the axes of rotation

L~e pitch frequency
d

- (
dt

d~ J
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7. BIBLIOGRAFMY

1. Kim,Byung S. , Control Setting for a Trimmed, Stalled Rotor by an
Automatic Feedback System , Master of Science Thesis, Washington
University, December 1980.

2. Kuester,James L. ,and Mize,Joe H., Optimization Teclmiques with
Fortran ,McGraw-Hill Book Company,1973.

3. Shinners,Stanley M., Modern Control System TheoryadAjplicaticn
Addison--Wesley Publishing Company, 1978.

I



0 A


