
-Ab-AII0 6" APPLIED SCIENCE AND TECHNOLOGY POWAY CA F/ 13/13
THE INTERAGENCY SOFTWARE EVALUATION GROUPS A CRITICAL EVALUATIO-ETClUl
DEC81 R 9' NICKELL N OIR79-CM4GO

UNCLASSIFIED AST-31-2

EN

,I1.. 111120

11111_L25

MICROCOPY RESOLUTION TEST CHART

SECURITY CLASSIFICATION OF THIS PAGE (Wl t Dta EIared

REPORT DOCUMENTATION PAGE EFORE COMPLETING FORM
I. REPORT NUMSER 2. GCQiT ACCESSION NO 3. RECIPIrT'S CATALOG NUMBER

AST-81-2 r-
4. ?ITL.E (and Subtitle) S. TYPE Of REPORT a PERIOD COVERED

The Interagency Software Evaluation Group:
A Critical Evaluation of the ADINA, Technc Report No. 2
NASTRAN, and STAGS Structural Mechanics 6. PERFORMING ORG. REPORT NUMBER

Computer Programs
7. AUTHOR(e) i6r S. CONTRACT OR GRANT NUM BER()

Robert E. Nickell N00014-79-C-0620

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM C.LEMENT, PROjECT' TASK

Applied Science & Technology AREA A WORK UNIT NUMBERS

16630 Sagewood LaneOPoway, California 92064
IC. CONTROLLING orriCE NAME AN ADDRESS IZ. REPORT DATE

Department of the Navy, Office of Naval December 1981
Research, Structural Mechanics Program 13. NUMBER OF PAGES
(Code 474) Arlington, Virginia 22217 30

M4. MONITORING AGENCY NAME & AORESS4'If diflerent Ium Controlling Office) IS. SECURITY GLASS. (o his reP ort)

UNCLASSIFIED
15a. OECL ASSIFI CATION/ DOWNGRADING

LEV • SCHEDULE

It. OISTRIUTION STATEMENT (o. uia Report)

This document has been approved for public release and sales
distribution unlimited.

17. DISTRIBUTION STATEMENT (ol the abstract entered in Sleek 20, It dfl et Ien RePort)

K .. ;IS. SUPPLEMENTARY NOTES

1 9." KEY WORDS (CuUmaeat on revee slato = aene, mtd femid , by bloek mambr)

Software evaluation; structural mechanics; computer programs;
finite element; computation

20. ABSTRACT (Canmm W rever e aide it neceeary and idetily by bWeek m)

This report provides the summary for the first round of structural
__ mechanics software evaluations by the Interagency Software

Evaluation Group, consisting of the evaluation of the codes ADINA,
NASTRAN, and STAGS. The evaluation criteria are discussed in
some detail.

DD FORM 17 IT|N O -I4NOV 66 ISt O SOLETE

SECURITY C .A IICATION OF TNIS PAGE MC Eei

, - - -'

THE INTERAGECY SOFTARE EVALUATION GROUP:
A CRITICAL EVALLJATION OF THE ADINA, NASTRAN, AND STAGS

STRUCITURAL MECHANICS (OMPUTER PROGRAMS

by

Dr. Fbbert E. Nickell
Applied Science & Technology

16630 Sagewood Lane
Poway, California 92064

FINAL REPORT
CONTRACT NO. N00014-79-C-0620

Office of Naval Research
Arlington, Virginia 22217

December 1981

"02

FORARD

This final report is the culmination of almost four years of involvement

with the Office of Naval Research (ONR) in developing the concept of critical

evaluation of engineering applications software. The mechanism for the

evaluations proved to be the Interagency Software Evaluation Group (ISEG), a

cooperative venture of Defense Department research and development

laboratories, and other government agencies. The initial exercise consisted

of the evaluation of the ADINA, COSMIC NASTRAN, and STAGS structural mechanics

codes, under the supervision of Dr. Nicholas Perrone, Director of ONR's

Structural Mechanics Program, and the ISEG governing body.

We hope that the results of this initial venture justify the continued

use of critical third-party evaluation as a means of providing improved

software quality assurance, better transfer of information between developers

and users, and a standardization of software comparisions. This writer would

also like to thank ONR and Dr. Perrone for their continued support, the ISEG

for the opportunity to be a part of an exciting project, and the evaluation

contractors for many stimulating and thoughtful discussions.

II

N,

..1

• .. . , , "j

I. INTRODUCTION

The finite element method has attained a level of maturity and

acceptability that few would have predicted three decades ago. In common with

many other developing technologies, the scientific origins of the method (as a

piecewise continuous variational approach) were insufficient to establish its

powerful capabilities until practicing aerospace and structural engineers

recreated an operational variant. Many years elapsed before the mathematical

basis and engineering practice were reconciled. The first decade can

therefore be characterized as a time of creativity and original application,

and the software was developed principally for use by the developer or by, at

most, a few sophisticated and personally-trained associates of the developer.

During the second decade the technology matured to the point that the

commercial potential of the associated software began to be realized. The

simultaneous improvements in finite element methodology, computer hardware,

and higher-order programming languages produced an entrepreneurial climate in

which developers began to write software specifically for second-party usage.

The second parties, called users, learned of software developments primarily

through the medium of the technical conference/symposium sponsored by the

professional engineering societies, such as the American Society of Mechanical

Engineers (ASME) and the American Society of Civil Engineers (ASCE), but the

concept of the short course to intensively train potential users became a

rapidly spreading adjunct.

The relationships between the first parties, or developers, and the users

evolved during the decade as the market place became more sophisticated. Many

developers failed to appreciate the user perspective, to whom the software was

opaque, while most users had little appreciation for the problems facing the

E_ A- ..

developer, who generally operated under severe organizational and financial

constraints. It should be noted that the commercial software market place was

born from an incorrect set of initial conditions; i.e., the cost of developing

and maintaining finite element software-and, in many organizations, the

computing costs, as well-were well hidden from the scrutiny of higher levels

of management. For most organizations, a finite element capability seemed to

be virtually free.

Because of these false precepts, the decade 1965 - 1975 proved to be most

instructive with respect to the appreciation of true costs on the parts of

both users and developers. Research and development conducted by the federal

government was the cornerstone in this learning process. When the National

Aeronautics and Space Administration (NASA) undertook the NASTRAN project, not

only did the sponsor and the project personnel gather accurate data on the

true costs of general purpose finite element software creation, but the

elements of the commercial software industry were able to calibrate their

kj efforts accordingly, often to their chagrin. At the same time, organizations

essentially characterized as users--including those doing some software

development on a cost-concealed basis--began to realize the true costs of

software development and maintenance, even when practiced or. a small scale.

I,. By the late 1970's, agencies of the federal government began to realize

that the NASTRAN project and other budgetary-visible projects were but the tip

of a software iceberg, and pressure began to build to evaluate--both from

technical and cost-benefit points of view-the software being developed (both

directly and indirectly) under federal government sponsorship. One of the

lead agencies in this regard was the Office of Naval Research, through its

Structural Mechanics Program. One of the early contributions was the

2

sponsorship of the Gonference on Numerical and Computer Methods in Structural

Mechanics, held in Urbana, Illinois, September 8-10, 1971 [1]. In addition to

a discussion of the ONR STORE Project (The Structures Oriented Exchange), this

conference produced critical reviews of a variety of general purpose

structural mechanics software, including ASKA, NASTRAN, DAISY, STARDYNE,

STRUDL, and MARC.

At that Particular stage of development of general purpose finite element

software, the market place forces were marginally effective. Developers and

users had significant commitments to each other, involving a synergy of effort

to develop, debug, enhance, and qualify the particular software for the

production computing environment. Thus, although the reviews were meant to be

critical, the distinction between the first party and the second party was

blurred. In spite of this, the conference offered the first attempt to

evaluate software from a user's perspective, generally emphasizing such

transparent features as the element library and the results of sample

problems. An exception to this emphasis was the article by Tocher and Herness

[2) on NASTRAN, a contribution which was an outgrowth of an extensive

evaluation of the NASTRAN code by the Boeing Company.

ONR next cosponsored with the National Science Foundation a symposium at

the University of Maryland in June 1974 dedicated to a different approad to

4 software evaluation [31. A group of investigators were asked to write

assessments of the state of structural mechanics software capability in

prescribed technical subdisciplines -- such as plastic analysis, fracture

mechanics, shock wave propagation, welding, composites, thin shells, etc.

Such a subdisciplinary assessment would have permitted some direct

comparisions between different programs purporting to have the same

3

subdisciplinary capability. The contributors were selected with a concern

toward balance between developer and user, but with some emphasis on a degree

of contributor sophistication felt to be necessary to properly assess the

f ield.

The symposium was successful in meeting its cbjectives. Nevertheless,

both during the planning of and following the symposium, the individuals

involved developed a greater appreciation for the talent, the degree of

commitment, and the resources required for an investigator to assess the

applications software in even one subdisciplinary area. Hand in hand with

this realization was the fact that such talent is relatively scarce,

especially outside the commercial software developer organizations and the

national laboratories. From this point on, the thrust of much of the effort

within the professional engineering societies and the federal research

establishment was reoriented toward more effective use of available human and

financial resources, including discussions of such new institutional forms as

a national engineering software center.

II. THE INT'ERAGENCY SOFTWARE EVAUAJATION GROUP

Based upon the foregoing considerations, a meeting was held at ONR on

February 11, 1977, to review the current state of affairs with respect to

software evaluation and to discuss the feasibility of formal third-party

evaluation. epresentatives of all three armed services attended, along with

others from the U.S. Nuclear Regulatory Commission and the then Energy

Research and Development Administration. Representatives of the National

Science Foundation and the National Bureau of Standards were invited, but were

unable to attend. The meeting produced a concensus that: (1) third-party

4

evaluation was useful and, perhaps, essential; (2) a means for

institutionalizing such third-party evaluations should be sought; (3)

realistic costs for such efforts should be recognized at the outset; and (4)

criteria were needed for selecting the software to be evaluated, the

institutions and individuals to carry out the evaluations, and criteria for

the evaluations themselves.

A follow-up meeting was held at ONR on April 5, 1977, at which time an

draft document was presented by N. Perrone describing the Interagency Software

Evaluation Group (ISEG). The ISEG was envisioned as a preliminary step on the

way to a national engineering software center concept, an institutional

framework that could have responsibility for continuous evaluation of various

engineering applications software, in addition to other functions. Since the

national engineering software center was felt to require a significantly

higher threshold of concensus, the ISEG route was seen as being feasible in

the short term. In addition, a set of preliminary criteria for selecting

software, selecting contractors, and evaluating software were developed.

These criteria will be discussed briefly in subsequent sections of this

report, but have already been published [4].

The ISEG is formally composed of Army, Navy, and Air Force contributors,

but other government organizations - such as the National Science Foundation,

the Department of Energy, and the Nuclear Regulatory Commission -- are advised

of progress because of their interest in both engineering applications

software and .he ISEG. The initial funding received from the contributing

armed service units was sufficient to examine between three and four

applications software packages, depending upon the complexity of the

particular code. The National Science Foundation was expected to idependently

5

fund another evaluation effort, using the same criteria developed by the ISEG.

Since the directly contributing agencies were the three armed services,

the screening of software involved a survey of software usage* within armed

service research and development laboratories, such as the U.S. Army Materials

and Mechanics Pesearch Center, the U.S. Army Missile Research and Development

Center, the David W. Taylor Naval Ship Research and Development Center, the

Naval Research Laboratories, the U.S. Air Force Flight Dynamics Laboratory,

and the U.S. Air Force Weapons Laboratory. In most cases the software had

already been screened for other purposes [5,6], but some additional data was

gathered from personal contacts within the R & D laboratories. Based upon

this data, the codes were identified by type (large general purpose linear,

large general purpose nonlinear, special purpose plate and shell, etc.);

frequency of use; multi-laboratory interest; availability of developer

support; and potential.

The survey revealed that, although literally hundreds of different

* structural mechanics codes are available for use by engineers in the armed

service R & D laboratories, a few codes constitute the bulk of actual

applications. In general, these few codes are also those with the greatest

multi-laboratory interest, those with the greater availability of developer

support (in a few cases, notably NASTRAN, the armed service R & D laboratories

have made the commitment to support the software in house with personnel

having qualifications equal to those of a developer), and those with the

greatest potential for expanded usage. This generality should be tempered by

* Structural mechanics software was selected for this initial series of
evaluations, with the understanding that the evaluation criteria should be
generally applicable to fluid mechanics and heat tansfer software, as well as
that from other sub-disciplines of applied physics.

6

the observation that individual users develop strong loyalties and attachments

to software with which they become familiar. Many of these users tend to

overestimate the potential value of this software, to the exclusion of other

packages with equal or greater capability. It is for this reason that some

organizations spend substantial sums of money to create preprocessors that

accept input in a variety of formats--corresponding to the special purpose

codes with which the organization's users are familiar-but then transform the

input into the format required for some standard general pupose package. A

similar transformation may be required for the output, as well. The success

of this approach depends upon the cost trade-offs between continuing to

maintain-either directly or indirectly--a large number of special purpose

codes and the costs of developing the encode/decode pre- and post-processors.

An additional factor is that all new users can be introduced to the standard

general purpose format.

It should be pointed out that the availability of developer support and

the potential of the software go hand in hand, and both are related to the

life span of the package. A good deal of the undocumented or partially

documented structural mechanics software, much of it written at universities

for specific research projects by neophyte programmers, has a lifetime of only

a year or two. The average lifetime of a piece of applications software is

estimated to be between five and seven years, while only those packages with

extensive developer support (maintenance, debugging, additional features,

reissue of software on a periodic basis) seem to survive for a decade or more.

Therefore, the potential of the software to impact the acquiring organization

depends on long-term availability which, in turn, depends upon the degree of

developer support.

7

!Lz -1

With these items in mind, the ISEG selected one code from each of the

major types. Within the category of linear, general purpose structural

mechanics software, the selection of COSMC NASTRAN was obvious-primarily

because of its frequency of use and its multi-laboratory interest. The SAP

family of codes were a distant second, but had a strong following. For this

reason SAP was recommended to the National Science Foundation as a package to

be evaluated outside the ISEG framework, although using the same evaluation

criteria. No other piece of structural mechanics software in the linear,

general purpose category received sufficient support to be considered in the

initial series of evaluations.

Within the category of nonlinear, general purpose structural mechanics

software, several codes received strong support-including MARC, ADINA, and a

relatively new entry, ABAQUS. All of these codes are marketed in a quasi-

proprietary mode, involving paid-up leases on source/object code, commercial

data center royalties, user group fees, or other arrangements. Because of the

quasi-proprietary status, each user organization makes a virtually independent

financial arrangement with the developer, which generally restrict the

transfer of the code to a third party. Since it was the desire of the ISEG to

place no non-technical impediments in the way of the contractor selection

process, ADINA was chosen. ADINA is a research (as opposed to a production)

code available through Professor K. J. Bathe at the Massachusetts Institute of

Technology. The acquiring organization becomes a member of a loosely-defined

users group for an annual fee which is nominal in comparison to the fees

charged for production codes. Because of the relative simplicity of the

coding structure, many organizations use ADINA as the basic building block for

in-house capability.

8

MARC and ABAQUS were reasonable alternatives. However, few potential

contractors (other than the developer) were available who would have been in a

position to evaluate the MARC programming architecture in any other than a

transparent sense. Ite code is also not widely used within the armed service

R & D community because of the training required to use it effectively. The

ABA=JS code was a late entry in the discussions with strong support from those

who felt that its robust programming and data management architecture offered

a potential for long-term use. At the time the decisions were made, however,

the code was not yet available for evaluation except in a rather primitive

form. Any future ISEG evaluation effort should consider ABAQUS as a prime

candidate.

Within the category of special purpose plate and shell structural

mechanics software, a type that is widely applied within the armed services R

& D laboratories, the leading candidates were the BOSOR series of codes and

the STAGS code. All of this software is readily available from the Lockheed

Palo Alto Research laboratory, and the software receives continuing support at

various levels and from various sources within the Department of Defense (DOD)

and the National Aeronautics and Space Administration (NASA). Both candidates

are fairly widely used, but the ISEG collectively reasoned that STAGS had a

greater potential for future applications. Also, the BOSOR user community

seemed to be relatively comfortable with their product, whereas STAGS was a

somewhat more controversial and misunderstood quantity. Therefore, the STAGS

code was chosen for evaluation in this category.

Another possible choice might have been to examine an entire spectrum of

shell-of-revolution codes-finite element, finite difference, and other-so as

to compare one code to another directly. This approach was not selected for

9

AL-

two reasons: first, users tend to select a shell-of-revolution code on a

somewhat subjective and specialized basis (e.g., branched-shell capability,

ability to model discontinuous curvatures, sandwich shell capability,

orthotropy, etc.); second, the evaluation criteria do not require direct

comparison between codes, since it was realized that such comparisons can

often be tailored to produce a desired result.

Therefore, the codes selected for the ISEG evaluation were COSMIC

NASTRAN, ADINA, and STAGS, with the SAP code recommended to the National

Science Foundation for their evaluation. The ABAQUS code was targeted for

future considerations.

III. EVALUATION CRITERIA

The details of the evaluation criteria are provided in [4], but are

summarized briefly here for completeness. The original criteria have been

slightly modified to reflect the experiences and discussions of the past two

years.

First, the criteria must reflect the third-party status of the evaluator.

This is a generalization of the independent test organization approach

suggested by Deutsch [7] in his discussion of software verification and

validation. The independent test organization serves a quality assurance

purpose, which is certainly within the scope of the ISEG evaluations, but the

concept of a third-party evaluator can go much further. Technology transfer

can be accommodated, provided that the third party has the requisite skills to

bridge the gap between the developer, or first party, and the user, or second

party. The evaluation may help the user to better understand the technical

capabilities and limitations of the software, while at the same time helping

10

the developer to plan orderly improvements. Principally, however, the third-

party critical review criteria may help to establish some uniformity in the

procurement of structural mechanics software.

Second, the criteria should reflect the several manifestations of the

software being evaluated. To some individuals, only the documentation is of

interest. These people are concerned about how easily analysts, system

programmers, etc. can be trained to use the software, whether or not the

theory behind the program has an adequate basis, and whether or not

rudimentary steps toward program verification have been taken. To other

individuals, the source code itself is the manifestation of interest. These

people are concerned about data management, modularity, logical flow, comment

cards, and other features that will help or hinder the task of software

maintenance and modification. A third group of individuals are interested

only in the results generated by the software. They treat the code as a black

box which must be characterized for each new range of application.*

The evaluation criteria were divided into four groupings: (i)

documentation criteria; (ii) program architecture criteria; (iii) functional

description criteria; and (iv) advanced evaluation criteria, also referred to

as advanced evaluation exercises.

The documentation criteria were adapted from Henrywood [81 and from

personal observations. The documentation should ideally consist of four

manuals-a theoretical manual, a programmer's manual, a user's manual, and a

verification example manual; an adequate set of comment cards throughout the

* We refer to this characterization as qualification; i.e., the user
attempts to demonstrate that for this particular combination of geometry,
material response, loadings, and program configuration, the code executes
successfully.

11

&17

coding; and adequate documentation throughout the output files. The latter

two items are somewhat subjective, but the intent is clear: the number of

comment cards should permit the skilled programmer to define the purpose of

blocks of coding; also, the output file documentation should enable the user

(or, for that matter, a reader other than the user) to identify, for example,

stress, strain, and displacement components, their units, material data, etc.

The theoretical manual should contain the basic information on such items

as the kinematic formulation, the constitutive theory, the element

formulations, the eigenvalue extraction algorithm, the time integration

approach, and other features. The programmer's manual should provide the

description of the code architecture, subroutine definitions, common block

arrangements, array definitions, file management information, and similar data

sufficient to permit a transfer of code maintenance responsibility from the

developer to another organization. The user's manual is critical, since it

will leave a lasting impression on the largest number of people. A good piece

of software with a poor user's manual will be poorly received by the market

place, whereas a code with limited capability can be commercially successful

with an excellent user's manual. The principal criteria are clarity, use of

established terminology, good indexing, and judicious use of default options

in the coding to avoid excessive user decision-making. Finally, the

verification manual should contain a sufficient number of examples to provide

confidence in the theories upon which the code is built, as well as to enable

the user to find data input profiles that cover a wide variety of applications

and options.

The program architecture evaluation begins with the programmer's manual

and continues on to a study of the software design. This is particularly

12

. . .

important for applications for software of the type evaluated in the ISEG

effort. When software is designed at the outset with multiple users and

multiple host machines in mind, greater attention is paid to the trade-offs

between efficiency and reliability. Since efficiency is so often dictated by

local machine characteristics, such as input/output, loader, and vectorizing

options, the developer may choose to isolate those functions within readily

accessible modules. The remainder of the code should then adhere strictly to

established FORIRAN standards, in order to assure portability. Reliability

can be designed into the code in many ways. Some of the more obvious are:

(i) Subroutine length and function control, i.e., the length and the range of

function of the subroutine are tightly controlled, so that extraneous logic

paths are avoided, and the range of input and output variables does not go

beyond valid limits; (ii) organization ard management of data bases, eg., in

finite element codes, the data bases are rather naturally aggregated into a

nodal point data base, an element data base, an integration point data base,

and a material data base; (iii) careful use of logical flags, which are one of

the foremost contributors to unreliable coding, primarily because of the

2 tendency to override complex logic, rather than restricting the logic, when

adding capability or fixing bugs; (iv) global, rather than local, control of

dynamic storage; (v) use of calling sequences, rather than common blocks, to

transmit data to and from subroutines; and (vi) modularization of common

procedures, such as matrix operations, invariant calculations, etc.

The functional description begins with the theoretical manual, where

physical principles underlying the code are defined, the mathematical

statements of these principles are given, and the mathematical algorithms are

developed. The coding practice used by the developer completes the story.

13

The functions to be described include, but are not limited to:

1. The discretization approach - finite element, with its weak

satisfaction of equilibrium and traction boundary conditions, and

its strong satisfaction of energy conservation and kinematics; or

finite difference, which differs in that the kinematic relations

also possess weak solutions; or some other method.

2. The time integration approach - whether modal superposition or

direct integration, whether the particular approach has

unconditional stability, built-in stability controls, artificial

damping, its order of accuracy, and other factors.

3. The approach for solution of simultaneous equations -

(including procedures for treatment of nonlinear terms) whether by

iterative, direct, or semi-direct methods; whether pivoting is

used; what the measures of ill-conditioning are; storage

limitations and file manipulation required; etc.

4. The kinematic approach - the strain-displacement relations

incorporated; kinematic constraints and transformations allowed;

5. The constitutive approach - the stress-strain relations

allowed; whether strain-rate effects are included; any limitations

with respect to anisotropy; and others.

6. Special Features - an example might be a simultaneous solution

of heat transfer or fluid mechanical fields, or the ability to

interface with such solutions.

The critical evaluator has the responsibility for determining the

validity of functions alleged or implied by the developer.

The advanced evaluation exercises are intended to develop an

14

understanding of the software beyond that which can be gained by examining the

verification examples. During the process of describing the program

architecture and functions, the evaluator may identify features and

characteristics that should be explored further, perhaps through pathological

examples. The advanced evaluation exercises are intended to address this

need. The exercises themselves can be divided into three groupings, depending

upon the module to be investigated--the pre-processor module, the analysis

module, or the post-processor module. A series of typical examples are

offered here to point out the methodology to be used. For the pre-processor

module, these examples will be lumped under the general category of

discretization checks. Although the use of automatic mesh generation has led

to an easing of the burden of data preparation and an elimination of many

associated errors, modern mesh generators should have an additional

capability--they should be designed so that the "condition" of the mesh is

evaluated and automatically altered, if necessary. The condition of the mesh

is related to the acuity of the vertex angles of the individual elements,

which then determines the possible energy states and convergence

characteristics of a particular mesh. Pathological examples involving

reentrant corner geometries and graded mesh interfaces can be used to test

these features of a mesh generator.

For the post-processor module, the examples will be lumped under the

heading energy checks. Such checks, together with carefully selected

benchmark problems, will expose errors due to deformation incompatibility.

Also, an energy check can provide information on the convergence of nonlinear

problems (stress states not satisfying flow criteria in plasticity, out-of-

balance forces due to geometric nonlinearities or creep deformation, etc.).

15

+ . - - - -

Also, these energy checks can provide a global measure of the effort expended

by the mesh to deform in accordance with applied forces. These energy checks

are broken up into two categories: (1) internal/external - where the total

(or incremental) internal energy is compared to the total (or incremental)

external energy; for elements that lose energy (but often appear to converge

to exact solutions with small numbers of elements), selected multi-element

models should serve to expose such incompatible deformation behaviour; and (2)

internal energy hierarchy - through selective volume integration (centroidal,

two-point Gaussian, three-point Gaussian, etc.), the mesh effort can be

determined, based on the energy partition between constant-straining modes and

higher-order element deformation modes. Nickell [9] has examined this concept

for two-dimensional configurations.

For the analysis module, there are several classes of examples designed

to address questions of convergence, efficiency, and general capability.

After "pseudo-convergence" due to deformation incompatibility has been

eliminated, the element libraries should be tested with respect to real

convergence. Similar element libraries should converge similarly; however,

some errors in formulation may be exposed at this level. Also, convergence of

transient and nonlinear solution algorithms, as well as eigenvalue/eigenvector

extraction routines, should be examined. Particular topics of concern are:

1. Convergence rates of elements should be determined to be

correct (bounds are known a priori),

2. Convergence rates and regions of convergence of Newton-Raphson,

modified Newton-Raphson, Picard iteration, or other nonlinear

solution algorithm should be tested and deemed to be correct;

3. Transient solution algorithms should be tested for stability

16

and artificial propagation properties; and

4. Eigenvalue/eigenvector extraction routines should be evaluated

for multiplicity, separability, deterioration, and convergence.

IV. EVALLATION RESULTS

The three codes selected for evaluation--ADINA, NASTRAN, and STAGS--

demonstrate the diversity of the origins of structural mechanics software.

ADINA (Automatic Dynamic Incremental Nonlinear Analysis) is an outgrowth of

the SAP family of codes from the University of California, Berkeley. Strictly

speaking, it is a derivative of the nonlinear research code, NONSAP,

extensively modified at the Massachusetts Institute of Technology by one of

the original NONSAP authors--K. J. Bathe. ADINA retains much of its

university research orientation. NASTRAN (NASA STructural ANalysis), on the

other hand, was developed through a government procurement process, with

project management, specifications, and all the rest of the trappings that

* accrue to software originating from a well-defined (at least, at the project

outset) environment. The original version is attributable to the Computer

Sciences (brporation, with MacNeal-Schwendler, Martin Baltimore, and Bell Aero

Systems as subcontractors. The STAGS series of codes, including the version

evaluated by the ISEG effort (STAGSC-l), were developed in a contract research

environment at the Lockheed Palo Alto Research Laboratory. Because the

funding to develop the code was subject to the vagaries of contract research

cycles, STAGS would be expected to be of less uniform quality than software

developed under sustained sponsorship.

ADINA was evaluated by Professors T. Y. Chang and J. Padovan of the

University of Akron, using the 1977 version of the code. Their two-volume

report [10, 11] divided the results of the evaluation into descriptive

17

material and advanced evaluation exercises (called operating characteristics

by the authors). The descriptive material was subdivided into a general

description, a discussion of the theoretical basis of the code, and a

programming description. The latter item will prove to be a most valuable

contribution to the organizations that use ADINA as the basis for a production

structural analysis tool, especially Appendix A (Flow Diagrams for Various

Solution Phases) and Appendix B (Dynamic Allocation of Arrays in the Blank

Common Block). This information will also be invaluable to the developer who,

although obviously aware of needed improvements, can use the programming

constructions of the third part- ,_ . planning device. The major findings of

this Fhase of the evaluati.i 4

* The documentation was < good to excellent-the user's manual,

theoretical manual, and the coding practice (including liberal use

of omment cards) were -ll given good marks;

* For a relatively small general purpose finite element program,

ADINA has good capability to treat production analyses and the

efficient coding practices employed enhance that capability;

* The principal deficiencies of the code are the lack of

comprehensive pre- and post-processing capability,* a shortage of

element types in the element library, the lack of a structured data

base management system, and a limited capability with respect to

large deformation problems.

Some of the criticisms of ADINA offered by the evaluators in their examination

of operating characteristics could be directed at virtually all nonlinear

* Users may find it advantageous to examine stand-alone pre- and post-
processors, such as GIFTS or PATRAN, with the potential to interface with
ADINA, which then becomes the analysis module only.

18

I . • . •-

-- ~ "" W AkJ_

general purpose finite element codes. For example, the modified Newton-

Raphson incremental solution method for the nonlinear equations (i.e., tangent

stiffness with occasional reformation) can be criticized for a number of

situations-such as local unloading in an elastic-plastic analysis. A full

Newton-Paphson (i.e., reformation at every iteration of every load step) may

be prohibitively expensive. If equilibrium load correction is available as an

option, the user may simply have too many solution control parameters to

consider. Therefore, a nonlinear solution algorithm should automatically take

advantage of the information available at each step/iteration to adjust the

load increment (static analysis) or the time step (dynamic analysis), either

increasing or decreasing, depending upon equilibrium or momentum error

residuals. Such residuals at successive iterations indicate the current

convergence status.

The advanced evaluation exercises for the ADINA project tended to

concentrate on this aspect of nonlinear analysis, but the extensive

benchmarking did produce some praise for the ADINA eigenvalue/eigenvector

extraction algorithm. This volume, in addition to a rather complete treatment

of convergence properties of the modified Newton-Raphson method for both

plasticity and large deformation problems, also contains results for the

direct time integration operators contained in ADINA, including an examination

of the differences for mild, moderate, and strong nonlinearities. Adaptive

solution strategies are offered as an alternative to strict modified Newton-

Faphson methods at the close of the report.

The NASTRAN evaluation was understood at the outset by the ISEG to be a

difficult undertaking for a number of reasons. First of all, the Level 17.5

Version of COSMIC/NASTRAN selected for the evaluation is not widely used,

19

- -T ..

since a number of commercial versions (eg., MacNeal-Schwendler Cbrporation's

MSC/NASTRAN and Universal Analytics Inc. UAI/NASTRAN) have drawn users away

by virtue of improved support. Second, the code is so large and so opaque to

the user (and to the third-party evaluator) that a description of the

programming architecture has to be somewhat superficial. In spite of these

difficulties, COSMIC/NASTRAN is so widely used that its inclusion in the

initial ISEG effort was assured.

The Swanson Service Corporation was selected as the evaluation

contractor, and the report describing the evaluation [12] was issued in August

1980. In addition to the evaluation criteria cited previously, Dr. J. William

Jones and his associates produced an instructive user survey, which helped to

identify those areas to be stressed during the evaluation itself. The

remainder of the report followed the evaluation criteria precisely-including

sections on NASTRAN documentation, program architecture, the functional

description, verification exercises, and an excellent section of advanced

evaluation exercises.

COSMIC/NASTRAN documentation was obviously designed to meet requirements

similar to the evaluation criteria, since the NASTRAN Theoretical Manual, the

NASTRAN Programmer's Manual, the NASTRAN User's Manual, and the NASTRAN

Demonstration Manual are available. However, this set of manuals was rated

poor, probably because of inadequate attempts to maintain and update these

4 manuals during the life of the program. Instead, it appears to have been

cost-effective to issue a separate NASTRAN User's Guide with each new Level,

which supplies in a single volume the information necessary to use the program

effectively.

The evaluation of the program architecture turned out to be less

20

-S!

I I I I I . . .

superficial than anticipated. The gross program architecture is well

described, with a heavy concentration on input/output and data base

management, which is of primary interest to the readers. Of particular

interest are Tables 4-1 and 4-2, which illustrate the characteristics of

NASTRAN on three main frames-IBM360/370 series, UNIVAC 1108/1110 series with

the EXEC 8 operating system, and CDC CYBER 6000 series with NOS--and which

compares NASTRAN gross program architecture with MARC, ADINA, AGGIE I, and

The section on functional description is concisely written, considering

the wide variety of options available to the NASTRAN user. Beginning with a

brief discussion of rigid formats (of which there are 20 in Level 17.5 of

COSMIC/NASTRAN), the report goes on to describe the macro programming language

of NASTRAN, called DMAP (Direct Matrix Abstraction Program), which enables the

skilled user to define additional analysis formats not contained within the

set of 20. An example might be an acoustic-structural transient analysis.

The geometric library, including elements and constraints, and the rather

limited constitutive library are described next, with Table 5-2 providing a

summary of elements and their characteristics. The procedures library is

dominated by eigenvalue/eigenvector extraction methods and time integration

schemes, which are tabulated and compared to other general purpose codes

(e.g., MARC, ADINA, AGGIE I, ANSYS, STARDYNE, SAP VI, EASE 2, SUPERB, and

MSC/NASTPAN) in Table 5-3. Plotting, restarting, nonlinear capabilities, and

substructuring are also addressed. Extensive use of tables enable the reader

to grasp the information handily.

The highlight of the report is the section on advanced evaluation.

Unlike ADINA, which has a limited element library but an extensive nonlinear

21

capability, (OSMIC/NASTRAN contains a wide assortment of element types. Many

of these elements were selected for convergence studies, beginning with

single-element checks, then to multiple-element benchmarks, to the patch test

for those elements displaying any pathology (e.g., non-monotonic convergence),

and element stiffness eigenvalue extraction when "false" deformation modes

were suspected. The examination of the plate bending element QDPLT is a

classic case of step-by-step investigation of non-conforming behaviour, even

though it performed satisfactorily on most benchmark problems. The element

TRSHL was also singled out for criticism, and its eventual removal from the

COSMIC/NASTRAN element library is foreseen.

In this same section, a comparison of three three-dimensional elements

(HEXAI, HEXA2, and IHEXI), in terms of their respective stiffness matrix

eigenvalue spectra, offered the evaluators an opportunity to also compare a

number of eigenvalue/eigenvector options available to the COSMIC/NASTRAN user.

Section 7.9 offers a discussion of pre- and post-processors, ostensibly

for NASTRAN, but readers may find the topic of general interest, irrespective

of the code being considered. For example, the ADINA code was cited for its

lack of adequate pre- and post-processing capability, as well, and many of the

commercial pre- and post-processing packages would be applicable to both ADINA

and NASTRAN.

A short section on solution efficiency confirmed the intuitive

observation that COSMIC/NASTRAN is costly for small problems, but becomes more

cost-effective as the problems increase in size.

Among the numerous conclusions and recommendations offered by the

evaluators, two should be emphasized: (1) the NASTRAN program architecture is

flexible, but outdated, and major changes in the architecture to bring it up

22

to date would be prohibitively expensive and unjustified from a cost-benefit

point of view; (2) the COSMIC/NASTRAN version should continue to be maintained

for public use, since the code continues to be popular with many analysts,

especially in the armed service R & D laboratories. This latter point should

be reexamined periodically, however, since analysts are switching to the

commercial versions of the code in sufficient numbers to cause concern about

the continued viability of the public version.

The STAGSC-l code was evaluated by Dr. Kevin Thomas and Dr. Larry H.

Sobel of the Westinghouse Electric Corporation's Advanced Reactors Division in

Madison, Pennsylvania. Their report [13], issued in August 1981, also follows

the prescribed evaluation criteria precisely--beginning with a section on

STAGS documentation, followed by sections on program architecture, functional

description, verification exercises, and advanced evaluation. Since the STAGS

series of codes are basically for special purpose shell analysis with an

emphasis on nonlinear geometric and material behavior, the evaluation was

relatively less concerned with element convergence (in contrast to NASTRAN)

while concentrating more heavily on the performance of the procedure library

(eg., eigensolution and transient response performance).

The section on program documentation is extremely thorough, resulting in

the conclusions that: (1) the theoretical manual is obsolete, having not been

updated since the code was converted to finite element from a finite

difference formulation; (2) a useful problem demonstration manual does not

exist, since the problems given are also based upon the earlier finite

difference version of the code; and (3) no programmer's manual exists. In

fairness, however, the user's manual received a good-to-excellent rating and,

similar to the NASTRAN Version 17.5 User's Guide, was deemed sufficient to

23

-'* . -]1*.. . . -- * . - -. .. -.. -*- it -" .* , -,

permit a user to work problems effectively.

The section on program architecture was also excellent, concentrating on

the overlay structure, including the graphical representation in Figures 3.1

to 3.4. The discussion of the data management system could have been enhanced

by some qualitative comparisons with the data management procedures in other

finite element codes.

The section on functional description gives the reader some insight into

the reason for the popularity of STAGS, especially for advanced aerospace and

defense structural analysis. Although STAGS is a special purpose shell code,

its procedure library together with a wide variety of built-in shell

geometries, makes it attractive for nonlinear applications. The code contains

five options for transient integration--central difference, trapezoidal rule,

Gear's 2nd and 3rd order stiffly stable, and the Park averaging method. The

element library contains truss and beam elements, in addition to a wide

assortment of membrane, plate, and shell elements. Two other fej:._Xrz_5

make STAGS attractive for aerospace/defense applications are the ty-,es of wall

construction permitted (eg., multiple anisotropic layers, walls reinforced by

a corrugated skin, smeared stiffeners, etc.) and the ability to treat initial

imperfections for an instability analysis.

Following a short section on verification, which was aimed at ensuring

that three selected demonstration problems could be solved correctly on the

Westinghouse CDC-7600 system, the advanced evaluation exercises were

described. Four areas were investigated--element convergence, eigenvalue

extraction, transient integration, and features of the nonlinear solution

scheme. This section is again excellent, producing results that are

invaluable to potential users of the code. The convergence study pointed out

24. I

some problems with the 420 series of shell elements, and provided some

comparisons between the 410 series of shell elements and elements in other

codes, such as ABAQUS, MARC, COSMIC/NASTRAN, and MSC/NASTRAN. The element

library, in fact, seems to be a major disappointment for a code dedicated to

shell analysis, since the elements in the general purpose finite element

programs appear to be superior. Another disturbing observation was made

during the eigenvalue/eigenvector extraction exercises, where spurious mode

shapes corresponding to identical eigenvalues were calculated. While the

reason was not identified precisely, it appeared to be associated with element

characteristics, rather than with the eigensolution procedure.

Exercises using the transient integration operators seem to demonstrate

that the trapezoidal rule was the most effective for both linear and nonlinear

examples. The central difference operator did not perform efficiently because

of the relatively small size of the examples.

An interesting conclusion was drawn as the result of geometrically

nonlinear collapse load analyses of a point-loaded venetian blind, a pinched

cylinder, and a poked cylinder. STAGS permits the user to control the

nonlinear solution convergence through parameters that measure error within a

load or displacement step, and that establish the frequency of refactoring.

The evaluators recommend a simple computational procedure for use with a

displacement-controlled analyses of "softening" structures that are near the

collapse load.

Finally, program efficiency for STAGS was studied by comparing computer

resource statistics on a variety of problems--linear and nonlinear static

analyses, linear and nonlinear dynamic transient analyses and nonlinear

collapse analyses-with those generated by the MARX general purpose code and

25

other structural codes available to Westinghouse. Based upon the ratio of

computer resource units (CRU) to central processor (CP) hours, STAGS used more

total resources per CP hour than MARC, WECAN, ANSYS, and PLACRE. On a direct

comparison between MARC and STAGS on one particular problem, however, the

total resources used by MARC exceeded those used by STAGS by a factor of

three. These apparently contradictory results imply that program configuration

(i.e., central memory allocated, backing storage arrangements) at execution

dominates other considerations, and also indicates that MARC had been

optimized with respect to the charging algorithm while STAGS had not.

Oterall, the evaluators rated the code acceptable to good, with the major

deficiencies being the documentation, the plasticity models, the element

library, and the post-processor. In order for the program to continue to be

viable, these deficiencies should be corrected.

V. CONCLUSIONS AND RECCMMENDATIONS

The major purpose of this report is to examine the evaluation criteria

together with the resulting evaluations of ADINA, NASTRAN and STAGS in order

to determine their adequacy. Based upon the work of the evaluation

contractors-Professors T. Y. Chang and J. Padovan of the University of Akron,

the Swanson Service Corporation, and the Westinghouse Advanced Reactors

Division--the original evaluation criteria seem to have stood the test of

application well. In retrospect, somewhat less emphasis should be placed on

program architecture.* The most pleasant surprise was the information

gathered during the advanced evaluation exercises. This can be attributed to

* The evaluators, in fact, placed the emphasis appropriately-by using a
coarse description for the programming architecure and a finer description for
the program functions.

26

_&7

the diligence of the evaluation contractors, who were able to translate

minimal guidelines into effective action.

For future studies it is recommended that the programming

architecture description be limited to data management, data base

structure, and gross program flow; a greater emphasis should be

placed on the advanced evaluation exercises--which should be

retitled Intrinsic Evaluation (the documentation, programming

architecture, and program function evaluations should be sub-topics

of the Extrinsic Evaluation); sub-topics under intrinsic evaluation

would be element library convergence, transient operator

characteristics, eigensolution characteristics, nonlinear solution

convergence, program efficiency, and others.

A secondary purpose of this report is to discuss additional evaluation

projects, should they be warranted. Based upon the ADINA, NASTRAN, and STAGS

evaluations, it would seem appropriate to continue the ISEG effort, with one

proviso. One of the major beneficiaries of an ISEG evaluation is the code

developer, who is able to have access to informed third-party opinion. To

some extent, evaluations of codes such as COSMIC/NASTRAN, which have a less

than promising future, or ADINA, which was in the stage of being completely

rewritten at the time of its evaluation, could be cost ineffective.

* For future studies it is recommended that the criteria for code

selection be slightly altered to emphasize future potential, with

somewhat less emphasis on frequency of use and multi-laboratory

use; if this recommendation were to be adopted, likely candidates

to be evaluated would be ABAQUS, the nonlinear general purpose

finite element code being developed by Hibbitt, Karlsson &

27

Associates, and the upward-compatible microcomputer finite element

code being developed by E. L. Wilson at the University of

California; other candidates might be the Lawrence Livermore

Laboratory code DYNA3D or the Sandia Laboratories code HONDO II.

A final concern of this report is the institutional form and the

concentration of talent needed to conduct the evaluations. Normally, a source

for this type of research would be educational institutions, one of which-the

University of Akron-was used in this ISEG effort. It should be pointed out,

however, that most university researchers consider the evaluation of foreign*

software not fundamental and perilously close to teaching students how to use

existing software, which is an anathematic. Outside the universities, and

excluding the national laboratories and the software vendors themselves, the

type of talent required-a blend between a developer and a skilled user-is

relatively rare, but does exist. One of the positive features of a national

engineering software center would be that, as an institutional form, it would

be ideal to attract the talent and be the medium for continuing applications

software evaluations. Even if the national engineering software center were

unable to atttract such talent in sufficient numbers, the institution would be

capable of training a new generation of critical evaluators within a short

period of time.

It is recommended that, as the discussion of the national

engineering software center concept continues, one of its functions

be to institutionalize the critical evaluation of engineering

applications software.

• Foreign means, in this context, written outside the university or not in
current use at the university.

28

REFERENCES

11. Numerical and Computer Methods in Structural Mechanics, edited by S.J
Fenves, N. Perrone, A.R. Robinson, and-W.C. Schnobric, Academic Press, New
York (1973).

[2]. Tocher, J.L. and Herness, E.D., "A Critical Review of NASTRAN," in:
Numerical and Computer Methods in Structural Mechanics, ed. by S.J. Fenves, et
al., Acdeu-c- Press, New York (1973T), W. 151-7-4.

[3]. Structural Mechanics Computer Programs : Surveys, Assessments, and
Availabilit, edited by W. Pilkey, K. Saczalski, and H. Schaeffer, nversTE-
Press of Virginia, Charlottesville (1974).

[4]. Nickell, R.E., "The Interagency Software Evaluation Group : A Critical
Structural Mechanics SoftWare Evaluat-lon Concept," Repor No. PT-U78-0246,
Pacifica Technology, Del Mar, California (August 1978).

[5]. Matula, P., "Navy Engineering Software System (ESS) and Preliminary
Selection of Comp-uter Programs," TM-184-77-01, Naval Ship Research and
Development Center, Bethesda, Marylar(October 1976).

[6]. Aerospace Structures Information and Analysis Center (ASIAC), Wright-
Patterson Air Force Base, Oh-lo. The Air Fore FlighE Dynamics Laboratory
sponsors ASIAC as a central agency to collect and disseminate information on
aerospace structures, including structural software, to Air Force contractors
and other government contractors.

[7]. Deutsch, M.S., "Software Project Verification and Qualification,"
Computer, pp. 54-70 (April 1981).

[8]. Henrywood, R.., "The Design, Development, Documentation and Support of
a Major Finite Element System," Computer Aided Design, Vol. 5, pp. 160-165
(July 1973).

[9]. Nickell, R.E., "Structural Mechanics Software Evaluation : A Bigeneric
Diagnostic Framework," Applied Science & Technology, La Jolla, California
(June 1980).

[10]. Chang, T.Y. and Padovan, J., "Evaluation of ADINA : Part I, Theory and
Programming Descriptions," report No. AUE-801, The University of Akron, Akron,
Ohio (June 8, 1980).

[11]. Padovan, J. and Chang, T.Y., "Evaluation of ADINA : Part II, Operating
Characteristics," Report No. AUE-802, The University of Akron, Akron, Ohio
(June 8, 1980).

...

[12]. Jones, J.W., Fong, H.H., and Blehm, D.A., "Evaluation of the NASTRAN
General Purpose Computer Program," SSC Report No. 81980, Swanson Service
Corporation, luntington Beach, Califori-a (August 9-80).

[13]. Thomas, K. and Sobel, L.H., "Evaluation of the STAGSC-1 Shell Analysis
Computer Program," R No. WARD-10881, Westinghouse Electric Corporation,
Advanced Feactors Divsion, Maison, Pennsylvania (August 1981).

T

