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SECTION 1
INTRODUCTION

1. PROGRAM OBJECTIVE

The objective of this program is the exploratory development of doubly rotated cuts of quartz
possessing superior Surface Acoustic Wave (SAW) properties for applications invol\}ing environmentally
hardened devices. The key properties examined and optimized both theoretically and experimentally are:
first, second and third order Temperature Ceefficients of Delay (TCD), piezoelectric coupling factor, power
flow angle, Bulk Acoustic Wave (BAW) inverse velocity surfaces, leaky waves, and sensitivities of the above
quantities to misorientations and manufacturing tolerances.

2. PROGRAM SCOPE

The program consists of two major task areas comprising an interactive numerical/experimental
approach. Task | invoives the numerical computation of the key SAW properties for doubly rotated quartz
substrates for the purpose of locating promising angular ranges with properties superior to the singly
rotated cuts now in existence. More detailed calculations follow to refine the angular coordinates in order to
specify cuts for experimental verificationin Task Il. In Task Il, sets of substrates with promising orientations
identified in Task | are prepared and SAW device patterns fabricated for evaluation of the key SAW
properties. The experimental results of this task are correlated with the theoretical predictions and an
iterative process develops for refinement of both theoretical and experimental parameters. As the program

proceeds, working SAW device models are delivered as a demonstration of progress and an indication of the
future potential of the doubly rotated cuts.

3. TECHNICAL APPROACH SUMMARY OF TASK i

To accurately characterize the properties of doubly rotated quartz, three basic capabilities are
essential:

a. Theoretical approach and associated computer software which will accurately and quickly
locate promising zero TCD cut angles and characterize the other key SAW parameters

b.  Source of rotated quartz substrates of superior quality which can be quickly fabricated and
the angular orientation determined with a high degree of precision

c.  Required fabrication facilities and measurement tools to accurately determine the key SAW
device parameters.
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In the theoretical area, this program has characterized two basic theoretical approaches for the
identification of zero TCDs on rotated cuts of quartz. For this study, two computer programs available at
Motorola are used. The first program calculates the first, second and third order TCDs of rotated cuts using a
finite difference method.' This technique is simple, well established, and has been used for analytically
determining the temperature coefficient curves for singly and doubly rotated cuts of quartz. To more
accurately define the temperature coefficient properties, a second program which encompasses lattice
skewing effects is used. This more complete theoretical approach is based on the work of Sinha and
Tiersten?, and its utility has been verified.

The final theoretical work is the characterization of the other key parametars with standard SAW
programs used routinely for material characterization and device development.

Accurately oriented quartz bars, supplied by Motorola, Carlisle, are cut at Motorola, lapped and
finely polished at Motorola and Crystal Technology Inc. A mechanical polishing procedure is used. During
this program, several substrates from a single bar with incremental angular deviation about a promising
angular position are fabricated. By carefui organization of the angle selection and cut procedures, a
substantial savings in time and money is achieved.

The angular orientation of the doubly rotated substrates are defined to an accuracy of within £5
minutes using X-ray diffractometry. Equipment used includes Laue pattern X-ray equipment, X-ray
diffractometers, and precision wafer cut and polishing equipment.

4.  TECHNICAL APPROACH SUMMARY OF TASK Il

During this period the firstiteration theoretical calculations performed to characterize doubly rotated
cuts of quartz were completed. Theoretically temperature-stable cuts with zero TCF" and TCF*”' as smali as
—1.0 x 10~ were located. This represents a better than three-fold improvement over the ST cut. Experimental
measurements of the TCF's have been performed on some doubly rotated cuts. Zero TCF'"' SAW devices for
which the second order temperature term is the dominant term have been fabricated. Measured values of
TCF® of these devices as low as —1.5 x 10 have been obtained. The agreement between the experimental
and the calculated results was excellent. Measured first order TCF's and those calculated by Sinha and
Tiersten's perturbation program were found to differ by less than 3 ppm/C°, and second order TCF's
calculated by the finite difference method were found to differ by less than 0.005 ppm/C°. Both the
measured and calculated third order TCF's were found to be too small to be a signiticant factor in device
performance.

'“Numerical Computation of Acoustic Surface Waves in Layered Piezoelectric Media-Computer Program
Descriptions”, William Jones, William Smith, Donald Perry, Final Report F19628-70-C-0027, prepared for Air
Force Cambridge Research Laboratories by Hughes Aircraft Company.

*On the Temperature Dependence of the Velocity of Surface Waves in Quartz”, B.K. Sinha and H.F. Tiersten,
Proceedings of the 32nd Annual Symposium of Frequency Control, 1978, pp. 150-153.
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A complete SAW test area and optical laboratory form the basis for the experimental evaluation of the
key SAW parameters of the doubly rotated quartz delay lines, oscillators and resonators. The equipment is
set up for rapid display, measurement and recording of propagation directions, TCF's, velocities, beam
steering angles and diffraction.

The excellent agreement between the experimental and theoretical results, and the success with
which low TCF cuts have been located, confirmed the utility and accuracy of the techniques used in the
program. The second theoretical and experimental iterations promise to yield orientations and devices with
even greater temperature stability than those already obtained.




SECTION Il
TECHNICAL DISCUSSION OF TASK |

1. INTRODUCTION

Quartz is the most commonly used substrate for fabricating Surface Acoustic Wave (SAW) devices.

In SAW narrowband filter, oscillator, and resonator applications, the temperature stability of the device is
an important design parameter. Currently, almost all SAW devices fabricated on quartz use the ST-Cut,
which exhibits a parabolic frequency dependence in temperature. For many applications, the temperature
dependence of devices fabricated on ST quartz is too large. Thus it is desirable to find crystal cuts with
superior temperature performance. Of course, many other design parameters must be considered when
choosing a crystal cut. Some of the more important ones are the piezoelectric coupling coefficient, acoustic
losses, dependence of device performance on cut misorientation, excitation of bulk modes, and beam

steering angle. These parameters can all be determined for a given cut.

The abjectives of this program are to find crystal cuts which exhibit zero temperature coefficients of
delay so that there will be no frequency-temperature dependence observed in temperature stable

oscillators, resonators and filters. Computer models and experimental verification were used to investigate
the temperature dependence of different cuts of crystal for SAW devices.

Defining = as the delay time for an acoustic wave to propagate between two points on the surface of
the crystal, we wish to find orientations for which r is constant in temperature, or more formally (1/7)
(dT/dT) I I = 28 degrees C — 0

It F is the frequency of a SAW resonator, then the 1st order derivative is: (1/F) (dF/dT) = —(1/7)
(dr/dT). It is desirable to have the higher order derivatives to be as close to zero as possible, or (1/2+)
(le/dTZ) ‘ T = 25 degreces C = 0| etc-

Letting 2 be the length between two points, (7) is simply given by = = (2/V), (1/7)(d+/dT) =
(1/9)(da/dT) — (1/V.)(dV,/dT).

Two computer programs for calculating r as a function of the stress, the dielectric and piezoelectiic
constants of a substrate material are available for this study. Furthermore, the temperature variation of
those constants for quartz are available, allowing one to caiculate (1/V.(dVs/dT) by a finite difference
method (note that higher order terms can be calculated the same way). If the crystal expansion coefficients
are known, it is then a simple matter to calculate (1/7)(d/dT) for any particular orientation. Perturbation
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programs developed by Sinha and Tiersten to calculate (1/+)(dr/dT) are also available. Combined with a
search method, the cuts for which first order temperature coefficient of frequency vanishes can be found.

a. Calculation ot Temperature Coefficients

it has been shown that determining the temperature dependence of r (time delay) is equivalent
to determining the temperature dependence of F (frequency) via the relation F oo 1/,

Since the experimental data is derived from frequency measurements, the frequency
characteristics of the devices is first determined. The relation between the temperature coefficient of
frequency (TCF) and temperature coefficient of delay (TCD) are related as follows (See Appendix E):

) = i

aF Tra, (1)
of =-0;"+ (o) 2
a(.:_n = -a 111_: + 20(11_’ a(’{» -(a (11_»)3 (3)

where a:" is the ith order TCF, o . " is the ith order TCD.

Using the relations above, one can always relate one set of the temperature coefficients to the
other.

The various proiedures outlined in the following sections will yield the quantities o,”,i=1,2,
3, with V(T) = V(T))(1 + &' dT + & dT? + &V dT) and dT =T - T,

The problem of interest is not only, however, in finding the o"'s butin finding the delay time r
and the frequency dependence F of a device. The frequency dependence F(T) = F(To)(1 + o™ dT + a® dT2 +
o' dT’) is a function of not anly V. but of 2(To) = 4(To)(1 + o dT + o dT? + &' T°), the spacing between
reflectors in a resonator (or the length of the delay line in an oscillator)

From the above relations and (1 + X)=' =1-X + X2 - X’ if X <<1, then;
F=Vig= (V. (1+av" dT + av® dT? + av® AT}/ (1 + & dT + &® dT? + ™ dT) @
=F(T) (1+a'"dT + av? dT? + av® dT* 5)
— o dT — " &' dT? — &' av? dT? '

- mm de - a;‘z' a»‘" dTJ - m‘” dTJ

+ (o) T + (o) o, T
+ 20" o dT* — (o' dT)’] (6)

or
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th — h (1]

o' =o' —m 7
m__(‘l = a\l.‘) —_ a\m m(n + (m(l))l . mm (8)
o' =a"—a" a? +a'" (@) 9
—(a") + 20" o —a" o — ™

giving the frequency dependence directly. The calculation of the temperature coefficients of velocity, o, is
achieved by calculating the phase velocity with the Finite Difference Technique or other techniques
discussed below for a variety of temperatures. As the velocity is a function of temperature, a linear
regression program is used in the finite difference technique to curve fit the data to a third order
polynominal. The constants ., a.”’ and o.'* are thus obtained by optimum curve fitting of the data points
to the polynominal. The temperature coefficients of length, «'", are found in standard references. It should be
noted that the «'s also depend on the direction of prapagation, and must be calculated for each direction of
propagation considered by a simple geometrical transformation analogous to that used to rotate all of the
3 other physical constants.

B ——— e

b.  Rayleigh Wave

We will briefly discuss the Rayleigh wave solutions in their general form in this section. The
coordinate system is defined with the Z or 1 axis being the direction of propagation and the Y or 3 axis
normal to the crystal surface. V, will denote the Rayleigh wave velocity, 8x = w/V,, the wave number, u; (i=1,
2, 3), the particle displacements atong the 1, 2, or 3 axis, us = ¢, the electric potential. Also, T; denotes the
stress tensor.

Sy = (1/2){du:/dx; + du,/dx;), the strain tensor, c;., the elastic tensor, p the density of the
substrate, D, the electric displacement, E; the electric field, ¢; the dielectric constant, e, the piezoelectric
constant. We also use A for the difference, where, for example,

Ap = o(T) = p(To) = p(Toa ,"'dT + a p"’dT2 +a p"’ dT?), and let P = power/unit width in the
x direction.

We assume relations such as

T=—e-E+ctSorS=eE+S"T (10)
D=¢E+eS D=¢E+dT
paz u/ott - Cixi azlh’ax,‘ oX) — @y az¢/aX§ =0 (11)

i DU/ X, ~ € O® /0K, DX, = 0




The general solution for a wave traveling on the surface can be written
u=[ 2 Cn o expl-(iwiv) S b x ] expliat) for j =110 4 (12)
m =1

For the Rayleigh wave, this reduces to U, = i Cun 0™ 8XP (—iBrb™y) exp(iBz — iwt) (13)

m=

where the coefficient c.., o™ (weighting factors), Bz(wave number), and b*™(complex decay constants) are
to be calculated by the standard iterative procedure on a computer.

The fields are calculated as E = Vu, with Ex =0, E, = (—ig«b™)u. and E, = (i8x)u..
c.  Methods for Calculating the Temperature Dependence of the Rayleigh Velocity

In the following sections, four methods for calculating the temperature characteristics of the
Rayleigh wave are discussed.

(1) Finite Difference Technique of Calculating Temperature Dependence of the Rayleigh
Velocity

Before TCD™' = (1/+)(dr/dT) can be calculated, cne must first calculate the dependence
of the Rayleigh wave velocity on temperature. The most straightforward method for doing this is the finite
difference method. The Rayleigh wave velocities are calculated for different temperatures, yielding the
values V,(T), i=1,2,..., n. This is done by first calculating the fundamental constants at the temperature T, of
interest. The fundamental constants are then rotated into the coordinate system of interest. An iterative
procedure is used to calculate a velocity V. for which Christoffel's equation and the boundary conditions
are satisfied simultaneously (see Appendix D). Simple finite difference techniques can be used to calculate
(VINIAV./AT), (1/2V.)(d*V./dT?), etc. For example, after calculating V(T) for T, =To, T, =To+ AT, T, =T, -
AT, we can use (1/V)(dV./dT) at To = (1/Vo(To))(V.(To + AT) — Vi(To — AT))/2AT. Alternately, standard linear
regression of polynominals may be employed to yield those coefficients. Another approach consists of
calculating directly the frequency-temperature characteristics of the orientation for several widely differing
temperatures. A measure of the temperature stability is then used. Letting F(T) be the frequency of the
device, the measure of deviation is calculated as

RMS frequency deviation =
[( 2 EFm-rFap)in f 12] witn (14

FT) = V.(M/2(1 + a'(AT) + a.?(AT)? + a¥(AT)}),

although o', o1'”, and & are calculated for purposes of comparison.

7
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In much of the earlier work, the SAW velocities were calculated at three temperature
points, T, =-50°C, T.=25°C, and T, =100°C, to save on computer time. The following formulas were used for
the calculations of first and second order temperature coetficients af velacity.

n

ay = V(T - VT V(T) (7, - T)) (15)
= [V(100) - V(-50)]/[V(25) - 150]
a(\:l) = [V(T)) + V(T5) - 2 - VT)I/[V(T) - 2 (T, - )T, - Th)) (16)

= [V(100 + V(=50) - 2 - V(25)]/[V(25) - 2 (75)(75)]

In the more recent works, six temperature points were calculated for each orientation to provide data for the
linear regression analysis. The six temperature points were 100°C, 85°C, 75°C, —25°C, —10°C, and —50°C. The
results were used to calculate TCF'", TCF® and TCF?',

(2) Perturbation Technique of Calculating Temperature Dependence of the Rayleigh Velocity

Pertubation theory may be applied to the problem of calculating the first, second and
third order dependence of the Rayleigh velocity V. of a piezoelectric substrate, once the solution to the
Rayleigh wave propagation at a temperature reference T, is known.

Pertubation technigues allow calculations of small changes in the solutions to a problem
caused by small changes in the physical parameters of the problem, once the solution to the unperturbed
problem is known. One can apply perturbation techniques either to boundary perturbation such as mass
loading on the surface or to volume perturbations such as adding a thin conducting layer to the interior of
piezoelectric substrates. As the boundary conditions are unaffected by changes in temperature while
material constants such as ¢, are temperature dependent, one can apply the volume perturbation theory to
the problem.

The general approach to the problem of determining the temperature dependence of V.,
will be as follows. First, the Rayleigh wave propagation problem will be solved in the standard way in its
entirety at room temperature, T,. Given the solution of the problem at T, and the dependence of the physical
constants (such as c,) on temperature at To, one will apply the volume perturbation formula, calculating the
temperature dependence of V.. The dependence of V. on T is then used to calculate the frequency
characteristics of the actual device given the thermal expansion coefficients as a function of temperature. At
this point, the frequency temperature dependence of the substrate as a function of the crystal cut and
direction can be thoroughly explored. See Appendix A for a complete discussion of this method.
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(3) Approach of Sinha and Tiersten

The primary difficulty with the perturbation technique is that it does not take into
account the change of coordinate systems induced by the thermal expansion in the material. This comes
about because the material distorts as temperature changes. Thus, the set of axes to which the
fundamental elastic constants refer, which is fixed to the crystal, is no longer equivalent to the axes used to
calculate V.. This problem is elegantly solved by Sinha and Tiersten'~. The first simplification which occurs
is that the density of the material remains constant with temperature. Furthermore, the " simply become
o' = a", as 3 length in this coordinate system does not change. The only difficulty is that the elastic
constants previously used no longer refer to the proper coordinate system and must be rederived from the
original experimental data. This procedure has already been carried out for the first order temperature
derivation of quartz’ but has not deen done for the second and third order coefficients. Nonetheless, the
procedure yields more accurate results for the first order dependence. See Appendix B for a mathematical
description of the salient features of this technique.

(4) Ditferentiation Method

A method for determining the theoretical temperature dependence of Rayleigh Surface
Waves consists of formally differentiating the wave equation and boundary conditions. The boundary
conditions and wave equation must be true at all temperatures, placing constraints on how the parameters
of the wave equation may vary. In this technique, the derivatives of these equations with respect to
temperature are set to zero and solved for the velocity-temperature dependence. This method follows the
methods used by Bechmann, Ballato, and Lukaszek to compute the temperature dependence of the
fundamental elastic constants from frequency data, except that the simplifying assumptions of assuming
bulk wave solutions cannot be made. This method was later used by Hauden® to search for temperature
stable cuts of quartz. See Appendix C for a discussion of this method.

(5) Summary of Approaches

0t all the techniques presented, the finite difference technique satisfies all of the basic
requirements for calculating temperature coefficients of delay. Arbitrary crystal structures may be

'“On the Temperature Dependence of the Velocity of Surface Waves in Quartz,” Sinha and Tiersten, 1978
Ultrasonics Symposium Proceedings, pp. 662-665.

“Temperature Dependence of the Fundamental Elastic Constants of Quartz,” Sinha and Tiersten,
Proceedings of the 32nd Annual Symposium on Frequency Control, 1978, pp. 150-153.

*Higher Order Temperature Coetficients of Quartz SAW Oscillators,” D. Hauden, M. Michael, J. J. Gagnepain,
Frequency Control Symposium (1978), pp. 77-86.
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investigated once the density, piezoelectric, elastic, and dielectric constants and their temperature
variation are known. When double precision on the computer is used and when the velocity over a large
temperature range is calculated, it becomes a very accurate numerical approach. The computational
efficiency of the finite difference method is not as high as some of the other techniques, owing to the need for
repeated calculation of the surface wave velocity.

A comparison between the experimental results of Schulz' and Motorola's finite
difference program adapted from Jones et al.” as shown in Figure 1. The results for this cut and many other
orientations studied have been found to be very good. The slight shift of the analytical curve versus
experimental curve can be explained by a crystal misorientation.

o = FINITE DIFFERENCE :'
METHOD CALCULATION f
20 (SINGLE PRECISION) d
X = DOUBLE PRECISION ’
3 — = LEAST SQUARES J
FIT TO EXPERIMENTAL ’
POINTS OF SCHULZ ;

PHASE DELAY (PPM)
8
°
(s

-50 -30 -10 10 30 50 70 % 110
TEMP °C 839735

Figure 1. Finite Difference Method Versus Experiment ST-Cut (Quartz)

'“Surtace Acoustic Wave Delay Lines with Small Temperature Coefficient,” Schulz, Manfred B., Proc. IEEE,
Sept. 1970, pp. 1361-1362.

**Numerical Computation of Acoustic Surface Waves in Layered Piezoelectric Media - Computer Program
Descriptions”, Jones, Smith, and Perry, Hughes Aircraft Company, Final Report, Air Force Cambridge
Research Laboratories, Contract No. F19628-70-C-0027.
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Figure 2 displays a phase delay versus temperature plot for the orientation (YXwit)
56/40/27 in quartz obtained from Hauden's graphs?. Using the difterentiation approach, he caiculated o+ '"' =
0, o'’ = —0.04 X 107 ppm/°C* .+ = —22.7 X 10" ppm/°C’ for a cut close to (YXwIt) 56/40/27. The Finite
Difference approach was used to verify his first order calculation but is in disagreement on the second and
third order calculations. This can be resolved by experiment.

. /

ANALYTICAL PREDICTION BY
FINITE DIFFERENCE TECH.

100

ANALYTICAL PREDICTION BY
DIFFERENTIATION TECHNIQUE BY HAUDEN

: A A4

PHASE DELAY (PPM) SINGLE PRECISION

-50
-50 -30 -10 10 & |] 50 70 90 110
TEMP °C 073

Figure2. Finite Difference Method Calculation for Hauden's Cut (YXwIt) 56°/40°/27°

Tiersten's Perturbation program, while very difficult to extend to higher orders, is
available for calculating the first order TCD.

Figure 3 shows the results of Tiersten's calculation' and compares those results with
the Finite Difference method as well as experiment. The cut used for comparison is the AT-Cut. The
improvement in accuracy is substantial. it offers the significant advantages of being quite cost efficient, as
well as being more accurate in the first order on off-axis cuts, our primary area of interest. In the task of
making quartz cuts along the surface of zero TCD, accurate values for the first order TCD prove more useful
than the less exact values for the first, second, and third order TCD's provided by other methods, because it

. is a necessary (but not sufficient) condition for zero TCD cut to get a zero first order. Since it is the

dominating term, it is important to first get an accurate first order zero TCD locus. Then one may search for
the intersection of this locus with the zero second and third order terms with the finite difference technique.

"“Temperature Dependence of the Fundamental Elastic Constants of Quartz,” B. K. Sinha and H. F. Tiersten,
Proceedings of the 32nd Annual Symposium on Frequency Control, 1978, pp. 150-153.

2Higher Order Temperature Coefficients of Quartz SAW Osciliators,” D. Hauden, M. Michael, J. J. Gagnepain,
Frequency Control Symposium (1978), pp. 77-86.
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Fwire 3. Tiersten's Method Versus Finite Difference and Experiment

{6) Investigative Approach

A necessary but not sufficient condition to find a temperature stable cut of quartz is that
o+ = 0. In practice, a sufficient condition for finding a zero temperature cut is that ar""’ = ar® = o = 0.
Thus every zero temperature cut must be on the locus of angles which satisfy the condition ar"’=0. Thus the
first problem is to locate accurately such cuts. Both the finite difference approach and Tiersten’s method
were used to calculate the TCF.

The approach used in this program is to identify the areas (angles) where TCF'"", TCF*
and TCF* are relatively low by using the Finite Difference Approach and then define the exact orientation
that has zero TCF'" in those areas by the Sinha and Tiersten approach.

In case the condition TCF"= TCF* = TCF*® =0 cannot be met, a compromise approach
would be to find an orientation where the first and third order effects tend to cancel out in the temperature
range of interest and to find the minimum second order effect orientation amount for those cuts. This
approach would provide an effective low TCF cut of quartz for SAW application.
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() Analytical Results on Zero TCF on Quartz

IRE standard angle definitions (YX wit) PHI/THETA/PSI for quartz were used throughout
the investigation'. Consider the TCFs to be functions of these angles, which define an angular volume 0 < PHI
< 30°, —90° < THETA < 90°, 0 < PS! < 180°,which spans the space of possible cuts and propagation
directions. The set of points at which TCF"’ (PHI, THETA, PSI) = 0 forms a surface in this angular volume.
Likewise, the set of points at which TCF® (PHI, THETA, PSI) = 0 also form surfaces in this angular volume.

Our object is to find a point where TCF"' = TCF® = TCF* = 0. If the surface of zero TCF'"
intersected with the surface of zero TCF, the result would be a line (or a point if the two surfaces are tangent
to each other) of angular points on which TCF"? = TCF® = 0. The intersection of this line with the surface on
which TCF = 0 would yield a single point at which TCF"' = TCF* = TCF" =0. Neglecting higher order terms,
we would have found a temperature stable cut.

The calculated values of TCF" versus propagation angles are shown in Figure 4. The
zero TCF" is identified by the areas where TCF changes sign.

Using the Finite Difference approach with the available crystal constants, the calculated
results show that the zerc TCF" surfaces do not intersect with the zero TCF® surfaces, based on the
interpolated results of the 10° x 10° x 10° resolution. It is not likely that a finer resolution will provide
contrary information because TCF"’ and TCF* are relatively slow varying functions as shown in Figiire 4.

1“Standards on Piezoelectric Crystals 1949,” Proc. IRE 14, Dec. 1949, pp. 1378-1395.
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THETA

Calculations were performed on a 10° x 10° x 10° grid over the angular ranges 0< PHI <
30°,0 < PSI < 180°, and ~90° < THETA < 90°. These angular ranges, due to the symmetry of quartz, include
all possible angular orientations. These initial calculations defined the “angular volumes” of low TCF
orientations. Calculations were then performed on a 2.5° x 2.5° x 2.5° grid near promising orientations. In
this way, the entire angular range was explored and a farge computer-based data file built. Maps of first and
second order TCF's are shown in Figure 5. Zero first order TCF contours are drawn. In addition, contours of
the second order TCF are drawn and shaded in areas where the second order TCF is less than0.01 PPM/°C2.
This represents a substantial improvement over ST quartz, for which the second order for TCF is
approximately 0.03 PPM/°C?. Where data points were missing, lines were connected by interpolation.

TCF MAP FOR PHI = 0°

90
TCF MAP FOR PHI = 20°

THETA

D) N

N
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PS|

TCF MAP FOR PHI = 0°

60

TCF MAP FOR PHI = 10°

THETA

70
%0 4 =N

7
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PS)

TCF MAP FOR PHI = 10°

Figure 5. TCF Map of SAW Device on Quartz
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Despite the number and density of points at which the first and second order TCFs were
calculated, wherever TCF'" was found to be less than or equal to zero, we found TCF to be less than 0. The
reason for this probably lies in the lack of independence of the crystal constants themselves. Using the

volume perturbation approach of Auld', one obtains equation A-8 of Appendix A.

'“Acoustic Fields and Waves in Solids,” Auld, B. A., Vol. Il, John Wiley & Sons, 1973, N. Y., p. 297.
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For small changes in p and ¢, one might expect that the TCFs are well correlated with the temperature
derivatives of the fundamental constants for Rayleigh waves in quartz. A list of some of the crystal elastic
constants’ temperature derivatives is in Table 1.

TABLE 1. CRYSTAL ELASTIC CONSTANTS' TEMPERATURE DERIVATIVES

T TC™ TC
Cn 485X 10 ~107x10” ~70x10™
Cu: ~3000 ~3050 ~1260
Cn 550 1150 ~750
Cis 101 ~48 ~590
G ~160 275 ~250
Cas -7 216 -216
Cun 178 118 21
p -34.92 ~159 5.3
a 137 65 19
an 75 29 15

Figure 6 shows a plot of these values. The correlation is quite high, except for the case of
C.. and suggests that the TCFs should be correlated also. Plots of TCF*" and TCF**' versus angles shown in
Figure 4 reflect this correlation.

Of course, if the two TCF surfaces do not intersect to form a line of zero TCF"’ and TCF**,
we must use a slightly different approach to finding temperature stable cuts. The largest variation in
constants occurs for C... As we are interested in the temperature range from —50°C to 100°C, the maximum
deviation of T from T, =25°C is| T —Ta| =75°C. Calculating the changes in the constant G, for this maximum
temperature change gives:

1 [}

N lAaC: | = 225x10"

1 It ()
<, A€ | = 172x10°

1 3
N | AC,! = 532x10*

"“Higher Order Temperature Coefficients of the Elastic Stiffnesses and Compliances of Alpha-Quartz”,
Bechmann, Ballato, Lukaszek, Proc. IRE, Aug 1962, pp. 1812-1922.
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Figure 6. Temperature Coefficients of the Fundamental Constants of Quartz
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Thus the most significant term is the first order term. The second order term is still quite significant but one
order of magnitude below the first, while the third order term is almost three orders of magnitude below the
first. Since the delay time r is dependent on the crystal constants, the most significant term should be TCF*"'.
The least significant term should be TCF*'. After numerous calculations of the TCFs for many orientations,
this appears to be the case.

The investigative approach used has been to first locate the surfaces of zero TCF"' (the
most significant term) with the finite difference program. Near these surfaces of zero TCF"", low values of
TCF® are sought, using already calculated results of the finite difference programs. Where low values of
TCF® have been found, the perturbation approach was used to more accurately locate the zero TCF"
surface, this being the most significant term in the total temperature dependence. TCF*'s are then
calculated to assure that their effect on the total temperature dependence is small. To date, this has always
been found to be the case.

(8) Results of the Investigative Appreach

Table 2 consists of a summary of the results of using the investigative approach
described in paragraph (7) above. There are three areas where low TCF cuts have been located. These areas
are centered near (YX wit) 0/27/138, (YX wlt) 7/27/135.5, and (YX wit) 15/40/40. These orientations have
zero TCF", calculated by the Sinha and Tiersten approach, with TCF* and TCF* calculated with Finite
Difference approach. These areas were chosen because of zero TCF", low TCF®, and a low TCF* which can
be mostly cancelled out by the first order TCF if the propagation direction is slightly rotated away from the
zero TCF" direction. Then the TCF® term will dominate the performance characteristics. The angular
resolution in these areas is 1° x 1° x 1°. The cuts potentially have one half to one third the temperature
coefficients of ST-Cut quartz.
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TABLE 2. PROPAGATION CHARACTERISTICS OF SELECTED ORIENTATIONS

Angles of ZTCF™", TCF®/°C? (x107*) TCF*/°C? (x107'%)
Degrees Finite Difference Finite Ditference
(S & T's Program) Program Program

Phi  Theta Psi

6 26 136.31 -14

6 27 135.93 -1.3 0.67

6 28 135.59 -1.3 0.57

7 26 135.99 -15

7 27 135.64 -14

7 28 135.27 -13 0.65

8 26 135.74 -1.4 0.65

8 27 135.36 -14

8 28 134.97 -13

1 26 137.78 -1.2 0.68

1 27 137.48 -1.2 0.65

1 28 137.17 -11 0.67

0 26 138.07 -1.2 0.67

0 27 137.78 -1.1 0.68

0 28 137.49 -11 0.62
-1 26 138.37 -1.2 0.60
-1 27 138.09 -1.2 0.62
-1 28 137.80 -1.1 073
14 39 40.195 -1.0 0.64
14 40 40.415 -1.0 0.66
14 41 40.64 -10 0.75
15 39 39.79 -10 0.63
15 40 40 -1.0 0.74
15 41 40.23 -1.0 0.73
16 39 394 -1.0 0.68
16 40 39.605 -1.0 0.66
16 41 39.825 -11 0.60
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d. Piezoelectric Coupling Factor

The piezoelectric coupling factor, denoted by k?, is a measure of the coupling efficiency for an
interdigitated electrode.

We can express k? in terms of the interdigital transducer's input conductance' as
Gm (‘Un) = —7"2 Wn lee.(ooll GsPn—lz (COS n 1l')lK2 (COS n 1l’/2) (18)

where w, = 27 (2n — 1)/As., M is the number of electrode pairs, w is the length of the electrodes, A is the
spatial periodicity of the array, the width of each electrode is nA/2, & is the value of the effective
permittivity at zero velocity, K is the complete elliptic integral of the first kind, and P, are the Legendre
polynomials. G. is the residue of 1/(s |e,.

kZis defined by

K = 26, (19)

Thus (18) becomes

G (wn) = (1/2) 7° wn M* We,'*' k.’ P,-i? (COS 1 )/K? (COS 7 7/2) (20)
ana we see that k% is related to the input conductance and hence to the coupling efficiency. A good

approximation to k’ is given by
ki = 2(V.- V)V, = 2aVWV @1

where V. is the shorted Rayleigh wave velocity and V, is the free Rayleigh wave velocity.

It is seen that the quantity AV/V is an important parameter as it is a direct measure of the
coupling efficiency and conductance of an interdigitated electrode pair on a piezoelectric substrate.
Furthermore, AV/V is easily determined once the shorted and free surface problems have been solved.
Programs are available for caliculating the Rayleigh wave velocity with either shorted or free boundary
conditions.

The shorted velocity calculations assumes a massless, pe.. .*ly conducting layer on the
surface of the crystal. The boundary condition which must be satisfied is that ¢ =0 at x; =0. The free surface
boundary conditions are such that the potential ¢ and the normal component of the displacement, D,, are
continuous at the surface. Furthermore, ¢ must satisfy Laplace’s equation above the surface, resulting in

o = o exp(—kx;) exp (~ik(x; = Vt)), (x;=0) (22)

"“Surface Wave Filters,” Matthews, Herbert, John Wiley & Sons, New York (1977).
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In both calculations the mechanical boundary conditions are the same, that there be no force
component in the x; direction, or

(23)
Tw = T = Tu = 0atxy = 0

AV/V for different crystal types with various orientations were calculated. Results have been

found to be in good agreement with experiments.

For example, on ST-quartz,

V. =23.1586x10’m/s
V. =3.159 %10’ m/s (24)

AV/IV =54 x 10
To insure the suitability of the cuts described in paragraph (8) above for SAW applications, the

coupling coefficients have been calculated for these cuts and are summarized in Table 3.

TABLE 3. PROPAGATION CHARACTERISTICS OF SELECTED ORIENTATIONS

Angles of ZTCF'", degrees Velocity K? Power Flow
(S & T's program) (msec) (x107) Angle (Degrees)
Phi Theta Psi
6 26 136.31 3296.84 1.12 -03
6 27 135.93 3293.60 1.12 0.2
6 28 135.59 3290.63 1.12 0.1
7 26 135.99 3303.33 1.12 -05
7 27 135.64 3299.70 1.12 -04
7 28 135.27 3296.33 1.12 03
8 26 135.74 3310.15 1.12 07
8 2 135.36 3306.11 1.12 06
8 28 134.97 3302.32 1.10 —05
1 26 137.78 3268.80 1.10 +0.7
1 27 137.48 3267.44 1.10 +0.9
1 28 137.17 3266.36 1.10 +1.0
0 26 138.07 3264.09 1.12 +09
0 27 137.78 3263.09 1.10 +1.1
0 28 137.49 3262.35 1.10 +1.2
-1 26 138.37 3259.65 1.10 +1.1
-1 27 138.09 3259.01 1.10 -13
-1 28 137.80 3258.64 1.08 +15
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TABLE 3. PROPAGATION CHARACTERISTICS OF SELECTED ORIENTATIONS (CONT)
Angles of ZTCF'", degrees Velocity K Power Flow
(S & T's program) (msec) (x107) Angle (Degrees)
Phi | Theta Psi
14 39 40.195 3298.60 0.96 -1.7
14 40 40415 3306.67 0.96 -8.1
14 41 40.64 3315.19 0.94 -8.6
15 39 39.79 3301.82 0.96 -1.8
15 40 40.00 3310.14 0.94 -83
15 4 40.23 3319.09 0.98 -86
16 39 394 3305.38 0.96 -8.0
16 40 39.605 3314.03 0.98 -84
16 41 39.825 3323.15 0.92 -9.0

e. Power Flow Angle

The power flow angle for a particular direction of propagation is an important design
parameter. While the phase fronts always remain parallel to the source transducer, the wave, as a whole,
does not propagate perpendicular to the wave fronts (see Figure 7). This is a characteristic of anisotropic
substrates where the phase velocity is asymmetric about the propagation direction; i.e., V(¢ + Ay) #V(y -
Ay). The major problem which arises is that the acoustic beam may steer off of the desired propagation
track, missing the output trandsucer unless it is properly designed.

The power per unit width carried in a surface wave is found by integrating the mechanical and
electrical Poynting vectors to obtain

0 w0
P. = —% Re J‘ Tij whdxs - e ‘f oDidxs[.1=1,2 (25)
—00 —c0

P, gives the power flow perpendicular to the wave front and P, gives the power flow parallel to
the wave front. P, =0 for the Rayleigh wave which is confined to the surface. The power flow angle may be
defined as

6 = arctan(P./P) = P./P. for P, P, (26)

The power flow angles are calculated using either the perturbation programs or the finite
difference routine. Table 4 gives results of calculations for the ST-Cut quartz. Note that for ¢ =0, the power
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flow angle is zero, within the single precision accuracy used, as a result of the crystal symmetry. Power flow
angles as high as 20 degrees are not uncommon on quartz.

1 TABLE 4. POWER FLOW ANGLES ST-CUT

{ ¥ Transverse/incident Power Power Flow Angle 8
0° 6.159 x 107 0
10° 6.145 x 10”* 3.5 degrees
20° 9.502 x 10°? 5.4 degrees
The beam steering angle was calculated for selected cuts of quartz with TCF=0. The analytical
] results were compared with experimental measurements. Table 3 contains the results of calculations for the

selected orientations described in paragraph (8) above.

@Pz

, 837-%
Figure 7. Nonzero Power Flow Angle

f.  Proximity and Excitation Strength of Bulk Acoustic Waves (BAW) Spectrum

The purpose of this task is to analytically determine the strength of spurious signals caused by
BAW. With this knowledge, one can predict the quality of the SAW device which has been selected for its zero
TCD cut.

Interdigital transducers do not couple all of their field energy into surface waves. Bulk waves
are also generated at various frequencies in the piezoelectric medium. These bulk waves can bounce off of
the bottom surface, undergoing mode conversions in the process, and be received by the output transducer,
resulting in unacceptable spurious signals. In most cases, this problem can be virtually eliminated by proper
preparation of the bottom surface.

E 5 A transducer with periodicity A excites surface waves at center frequencies

fsaw = (20 + 1)Vsaw/A @7)




where Vsaw is the surface wave velocity and nis aninteger,n=0,1,2,. . .. The coupling to higher harmonics
depends on transducer design. Bulk waves are radiated into the medium at an angle ¢ at a center
fundamental frequency

fu = Vu(6)/ [\ cos(6)] (28)

where Vy(6) is the velocity of the buik wave in that particular direction. Equation 28 is a statement of the
j Bragg condition (see Figure 8). If the medium is isotropic for each mode, V., is a constant. In the general
case, V. depends on the direction of propagation and hence on 6. To calculate V.(6), the matrix of elastic
constants are rotated through the angle 6 in the standard way. The quasi-longitudinal velocity and quasi-

F shear velocities are calculated as':
E V. = {{Ci() + enz(a)/en(a)]/p}“z
Var = {[Ces(8) + &16’(6)/ €11(6))/ 0} (29)

Viv = {[Css(8) + €15(6)/ e1(6))/ p}'”

fp = vpp (6)/(x COS (6))

ACOS (@) IS THE EFFECTIVE
WAVELENGTH OF THE IDT SEEN
BY THE BAW PROPAGATING IN
THE INDICATED DIRECTION

8387-31

Figure 8. Bragg Condition for Excitation of BAW
The inverse values of these velocities, plotted as a function of 8, form the inverse velocity curves.

Inverse velocity plots as a function of propagation are particularly useful, for as long as
V./cos 6, the effective velocity of the bulk wave on the surface, is greater than Vsaw, the effects of bulk
mode generation may be suppressed by appropriate design and by proper conditioning of the bottom
surface. Should V./cos 8 be less than Vsaw for any bulk mode, the SAW may couple to the BAW, resultingina

""Physical Acoustics,” Mason, Academic Press, NY, Vol. 1, Part A, 1964
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leaky surface wave. Inverse velocity plots have been made for orientations with promising SAW
temperature characteristics to check for the possibility of leaky surface waves and minimum values of f, #
calculated and compared with fsaw. '

The polar plots of the inverse velogcities for a (YX wit)0/27/137.8 and 7/27/135.59 are showniin
Figure 9 and Figure 10, respectively. The values of (1/v..) for the two shear modes and one longitudinal
mode for different propagation directions (6) into the crystal are also shown in Figures 9 and 10. The
inverse surface wave velocity for 0/27/137.8is 3.06x 107, thatfor 7/27/137.8is 3.03 x 10™*. These values are
larger than the maximum (1/vw.) cos 8 (<2.9 x 107), therefore, the analysis indicates that a leaky mode does
not exist (see Table 3 for the SAW velacities).

BULK WAVE INVERSE VELOCITIES
x10-3 FOR (YXWLT) 00/ 27.00/137.80

0.3

L A
[
t - 1
~—— //

0.1

N

A

-0.3
-03 -02 -0.1 0.0 0.1 0.2 03

x103 (1 /sEC)!

Figure 9. Polar Plots of Inverse Velocities for a (YXwit) 0/27/137.8 102
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BULK WAVE INVERSE VELOCITIES
FOR (YXWLT) 7.00/ 27.00/135.59

0.2

/<—_\ N
AR
| 4

f )
‘ /)//
‘ N /

NN

-03 -02 -0 0.0 0.1 02 03
x103
Figure 10. Polar Plots of Inverse Velocities for a (YXwit) 7/27/13559  xs
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g. Degeneracies |

Degenerate waves occur when the physical constants are such that equations (30) and (32)
decouple.

[ - V2 Fu)
' I
s I
- o




where
Fu=Cssb*+2Cis b+ cn
I = Caa D* 4+ 2Ci6 b + Ces
[ =C5 b* + 2035 b + Css
T2 = Ces b2+ (Cia + Cs6) b + Ci6

T =Css b* 4+ (Cis + Css) b+ Cis

T3 = €34 b? + (€36 + Cas) D+ Cse

T = (e b* + 2613 b + &) @31)
P Tiu=e b’ + (81s +€x) b+ ey

T2 =€ b* + (14 + €36) b + @46

T =831 b* + (8 + €) b+ ey

The boundary conditions become, in matrix form,

- -1 >

.(C33i1 + Ca3is b™ o™ + (813340333 b"')) ad™ ... G (32)
{C31ir +Cauis b(m)) o™+ (€11 +€3, bm) a™ ... C:
v(Cazirt €233 ™) '™ + (@132 + 83320™) ad™ ... C.] =0
(@301 + 833 B'™) @™ — (€31 + €33 D™ — &) ™. Cs
L , L J

The definition of the constants and derivation of the equations are given in Appendix C. The
condition for decoupling requires that the matrix in equation 30 has zero elements such that independent,
non-Raleigh wave solutions may exist. Equation 30 may decouple in many ways. If, for example, I', =T =
e =0, u, and u; are found to be coupled and u, and ¢ are found to be coupled, however u, and u; are

. decoupled from u. and ¢. If the physical constants are such that these two solutions are not coupled through
’ the boundary conditions (equation 32) then we find the Rayleigh like wave (u; and u,) is not coupled to ¢, the
potential term, and cannot be excited by electrodes in this cut.

The displacement u. which is coupled to ¢ is called the Bleustein — Gulyaev wave and is

excited by interdigital transducers. These two waves (us, u, and u,, ¢) are degenerate as they propagate with

j the same velocity. The simplest method to determine whether equation 30 has decoupled for a particuiar

; orientation is to calculate the matrix of equation 30. This is presently accomplished using the Rayleigh wave

' velocity calculation program, which calculates and prints the matrix in equation 30. Because of the variety

of special cases' which may arise, some of which may ultimately prove useful, each case in which we find
| the wave equation decouples wili be considered on an individual basis.

™Propagation  Piezosier*" 3urface Waves on Cubic and Hexagonal Crystals,” Cambell & Jones, J.A.P..
Vol. 41:2796-28u7 /* J70).
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The anaiytical results of this section allow us to determine which modes can be generated on
the selected zero TCD cut of quartz. At the three areas tabulated in Table 2, only Rayleigh wave modes were

found.

h.  Sensitivities Due to Crystal Misorientation

In cutting quartz and aligning masks on it, there is always some maximum achievable
accuracy. Thus it is useful to know how all of the acoustic quantities considered vary with angle. Quantities
such as TCD, phase velocity, power flow angle, AV/V, bulk wave spectrums, and bulk wave velocity
surfaces, are of interest to this program. These quantities can be accurately determined by directly
calculating the quantities at ¢ = (¢. + A¢), 8= (8. + A6), and y = (¢, + Ay) with the same computer program
discussed in paragraph 1, where .. 6, and y, are the desired angles, A¢, A6 and A ¢ are the actual
directional deviation from the desired direction due to the fabrication tolerance. It is important to calculate
the sensitivity of the parameters to the crystal misorientation; i.e., amount of change of a function as a result
of small angular misorientation.

For case of the power flow angle (PFA)

d[PFA (¢ = 0, 6 = 42.75, ¥ = 10°)}/dy (33)
= (PFA (¢ = 20°) — PFA (y = 0°))/20°
== 0.27°/degree.

The quantities d[PFA (¢ =0°, 6=42.75, »=10°)]/d¢ and d[PFA(¢ =0°, §=42.75°, = 10°)]/d@ are computed in
an equivalent manner.
In the case of TCD:

(34)
arco) = 2000 g + agg‘” do + a(;go) "
2ICD). _ [TCD(gy, B, ) ~ TCD(w,Bu-+ A6, W/ A0

00 a5

aggoz = [TCD(dor 0o, ¥o) — TCD(bo+ A, 85, ¥o))/ Ad

ag;ﬁD) = [TCD(bo, 86, ¥o) — TCD(cbo, 8o, ¥o + AY))/ AW

All the TCD (¢, 6, ) and TCD (¢, 6, ¥ + Ay) etc., are calculated with the computer programs discussed in
paragraph 1. Therefore, all the 2(TCD)/26, 2(TCD)/2y, a(TCD)/a¢ can be accurately calculated. Hence the
sensitivities due to crystal misorientation are determined.

Calculation of the angular dependence on the first, second, and third order TCDs is, of course,
our primary task. Of these three quantities, the first order TCF is most sensitive to angular variation. The

9
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angular dependence on these parameters were calculated in the same way as all of the other quantities but
on a much smaller angular grid (A6, A¢ and Ay) about the zero TCD locus. The size of this grid varies,
depending on the magnitude and smoothness of the variation about each point on the locus of zero first
order TCD orientations as verified by experiment and calculation. In case the tunction is smooth or linearly
varying with angles, large A angles may be used.

By performing the above mentioned calculations, we have precise information on the
sensitivities due to crystal misorientation. This information will allow us to impose a practical tolerance
limit on fabrication and still be able to achieve the required superior performance specification.

Quantities such as velocity (Table 3), power flow angles (Table 3), BAW spectrum (Figures 50
and 51), coupling coefficients (Table 3), and second and third order TCFs (Table 2) do not vary quickly with
angle. This is not the case for TCF". Table 5 contains a summary of 3TCF'"/2y. The large values of
aTCF"/ay impose strict fabrication tolerances on the SAW cuts and mask alignment. Fabrication accuracy
to within 6 minutes is required to keep the total temperature variation due to TCF'" within 45 ppm for
ATCF'" /2y = 3(PPM/°C)/degree over the temperature range —50°C to 100°C. Table 6 contains summaries ot
oTCF'" /3¢ and 2TCF"'/a6. These values impose fabrication tolerances on the rotated quartz plate angles ¢
and 6 of 12 minutes to keep the total temperature variation due to 3TCF'"'(15/40/40) /3¢ within 45 ppm over
the temperature range —50°C to 100°C. This linear temperature variation may be compensated for by varying
¥ on any particular cut if all other cut parameters vary slowly with angle.

TABLE 5. oTCF'"/2y FOR SELECTED CUTS

Angles of ZTCF'", degrees
(S & T's program) ATCF" /2y
Phi Theta Psi
6 26 136.31 +2.7 (ppm/C®)/degree
6 27 135.93 +2.7
6 28 135.59 +2.7
7 26 135.99 +2.7
7 27 135.64 +2.7
7 28 135.27 +27
8 26 135.74 +2.7
8 27 135.36 +2.7
8 28 134.97 +2.7
1 26 137.78 +2.8
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TABLE 5. 9TCF'"/3y FOR SELECTED CUTS (CONT)

Angles of ZTCF'", degrees

(S & T's program) oTCF" /oy

Phi Theta Psi

1 27 137.48 +2.8

1 28 137.17 +2.8

0 26 138.07 +3.0

0 27 137.78 +3.0

0 28 137.49 +3.0
-1 26 138.37 +3.0
-1 27 138.09 +3.0
-1 28 137.80 +3.0
14 39 40.195 -35
14 40 40.415 =35
14 41 40.64 -35
15 39 39.79 -35
15 40 40 -35
15 41 40.23 -35
16 39 39.4 =37
16 40 39.605 -3.7
16 41 39.825 -37

TABLE 6. oTCF'"/o¢ AND aTCF"/2¢ FOR SELECTED CUTS

Angles of ZTCF'
(S&T's Program), Degrees aTCF™"/a¢ aTCE™/ 28
Phi Theta Psi
7 27 135.64 —0.7(ppm/C°)/degree "~ —0.5(ppm/C°)/degree
0 27 137.78 -08 0.8
15 40 40.00 +15 -07

2. WAFER FABRICATION

During the developmental phase of the doubly rotated cut SAW Devices program, a large number of
wafers with 30 different crystal orientations were fabricated and evaluated. To perform this task with good
quality control, minimum cost and in a short time, Motorola developed the techniques and processes to
fabricate the doubly rotated cut of quartz wafers internaily. The crystal boules are supplied by Motorola,
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Carlisie, Pennsylvania; the X-ray wafer cutting is performed at Motorola’s Semiconductor Group; polishing,
tabrication and testing are performed at the Motorola Government Electronics Division. The methods used to
tabricate the quartz wafers are described in the following sections.

A computer program was developed to calculate the incident angles and reflected angles for any
given cut of crystal. The basic mathematical relations were derived in R.A. Heising's “Quartz Crystals for
Electrical Circuits.” The relations were formulated to computer programs. The flow diagram is shown in
Figure 11. The results are shown in the printout (see Appendix F). The incident angle G, exitangle (G +G'), are
defined for each plate position. The plate positions are determined by the direction of the rotated axis, (+1,
+2, +3), relative to the measuring stage. Once the angles of (YX wit) ¢/6/y are defined, all of the reflection
angles will be calculated for the different reflection planes, defined by Miller indicies. The useful reflection
planes that provide intense reflection with low skewed angles (<5 degrees) are selected for printout. These
results, after modification due to change in standards, are used to check the accuracy of the cuts.

a. Face Definitions

The following is an outline of the procedure to be used in this program to make a doubly
rotated cut (YX wit) ¢/6/0. The quartz bars have four lumbered faces with the minus X axis marked. The
opposite face is marked by coloring it with a magic marker (biue). One other face not opposite the —X face is
colored also with a magic marker (red). The red face is now defined to be the +2 axis as in Figure 12. The
direction of the +Y axis may be found by using the right-hand rule (+X crossed into +Y gives +Z). The +Y axis
will lie along the fength of the crystal. Note that there are two ways to set up the axes on the crystal
corresponding to choice of the red face (see Figure.12).

b.  Running the X-Ray Program

The X-ray orientation program XRAY is run with the angles ¢/6/0. The sequence of
instructions on the Honeywell 560 under the CP-V operating system is as follows:

ISET F:103 DC/MILDAT .538; IN
(This instruction assigns to unit 103 the file containing all of the Miller indicies to be searched.)

ISET F:104 DC/ERRDAT .538;IN
(This instruction assigns to unit 104 the file containing all of the angle perturbations defined in
Heising for use with the Laue photographs.)

IXRAYL M.538
(This instruction loads and begins execution of the program.)

The program will ask for the angles ¢/6/0. These angles are entered in 3G format[i.e., 10.0,3.0,
0.0 (carriage return)] and the results of the X-ray analysis printed.
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Figure 11. Flow Diagram of Calculation for Reflected Angles in Doubly Rotated Cut of Quartz
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Figure 12. Two Possible Ways of Defining the Crystal Axes on a Lumbered Bar

c. Analysis of X-Ray Program

The X-ray program used follows the development of Heising's which uses a book written
before the 1949 IRE Standard we use now. His X, Y, and Z axes will be denoted as X, Y, and Z. The relation to
our standard is as follows:

Heising 1949 (RE Standard
R +i -X
} +Y -Y
+Z +Z

Furthermore, Heising’s incident beam comes from the left, while our incident beam comes from the right.
When these differences are accounted for, the “position chart” shown in Figure 13 must be used instead of
the charts Heising uses in order that our X-ray machine and the 1949 standard may be used. P,, P, and P, in
the “position chart” are the +X, +Y, and +Z axes of the rotated plate. An important note of caution: the ¢
crystal face off of which we reflect the X-ray beam has Y or-Y as its normal. Since we may not assume that
the crystal faces are parallel, we must propagate the surface wave on this face. This is important, because to
{ achieve the same crystal properties, we must rotate by y about the +Y axis, resulting in a change of the sign
: of the third rotation (see Figure 14).

‘4

103




A

w

Je— AXIS OF INSTRUMENT
|
> !
[ PLANE OF
| INSTRUMENT
|
[ g’ ——
EXIT ANGLE -k\
| 9
|
|
[ \
INCIDENT BEAM
> \ P‘
-p
2 -Py
) P1 | -P3
POSITION 1 POSITION 2
" \ ’
-P2 P2
Y -P4 | B2
POSITION 3 POSITION 4 210-7

P\, P, and P; are the rotated plate axes X, Y, and Z.

Figure 13. X-ray Position Chart
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Figure 14. Direction of Mask Alignment Angle Rotation ¢

d. Determination of the Actual y Angle

25106

The third angle of rotation must be measured from a reference. The reference used is the tace
opposite the red face of the crystal (—Z face). To determine the actual orientation of the finished crystal edge,

we must know the orientation of this plane exactly (see Figure 15).

42

EDGE USED TO DENOTE ¥ = 0
LIES IN X-Y PLANE

X VECTOR Py IS NORMAL TQ PLATE 25104

Figure 15. Crystal Rotation (YX wit) ¢/8/0




if the angles « and gin Figure 16 are measured using the (003) plane, whichis parallel to the X and Y axes, Ay

is given by:

Ay = —tan"'[(—c0s ¢ Sin a — sin ¢ sin B)/(sin 8 sin ¢ Sin a — Sin 6 C0S ¢ Sin B + €0s 8 /1 —sin’a - sin’g)]
(36)

}:

ACTUAL -Z FACE

Figure 16. Actual —Z Face, Crystalline Axes, a, 8, and Ay

Thus, given a v desired which we wish to obtain, we must actually rotate the mask by Yucua = Ve —A¥ a$

shown in Figure 17.

e. Determination of « and 8

The most appropriate crystal plane to use for determining « and 8 is the 003 plane. This plane
has all of its atoms lying in planes perpendicular to the Z axis, and for a perfect Z face the X-ray deflection

angles will be;
G = Angle of incidence = 25 degrees 19 minutes
G + G’ = Exit angle = 50 degrees 38 minutes
For all positions on the X-ray machine with the +Z or —Z face being X-rayed. To determine o and g for the —Z

face, we use the following relationships.
37

(38)

a= 1,2 (G-X TOWARD INCIDENT — G*X TOWARD lNClDENT)

B =1/_ (Gsy rowarn incipent — G-y TowarD INCIDENT)
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Figure 17. Mask Rotation to Obtain Desired v

To determine o« and B for the +Z face we use
dl = 1/2 (GQX TO INCIDENT — G-X TO lNClDENT)

B =1/2 (G-v 10 vcipent = Gey 0 inciDENT)

o and g are the « and 8 we would have measured for a —Z face that is parallel to the +Z face measured,

which means that equation (36) is still valid for o' and 8'.

The quartz crystal will now have the orientation (YX wit) /6/ — Av(a, B) it we use the ~Z edge
as a reference and (YX wit) ¢/6! — Ayle’, B) it we use the +Z edge as a reference. The computer
X-ray program for these angular orientations must be used if we are to get an accurate measurement. The
integrity of these measurements of « and 8 is checked by comparing 1/2 (G-x + G.x) and 1/2 (G-v+ G.v) with

the theoretical result, Gavc = 25 degrees 19 minutes.

f.  Procedure Used to Zero X-Ray Machine:

(1) Use reference quartz plate marked 10.1
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(2) Set X-ray exit angle to 26.5 degrees (marked AT cut on machine)

(3) Set plate in X-ray machine with marking toward you (X-ray bounces off unmarked
surface) and blue line up (width direction vertical). (See Figure 18).

(4)  Adjust with clutch till X-ray reading occurs at incident angle 13 degrees 18 minutes

(8) Set plate in X-ray machine with marking toward you (X-ray bounces off unmarked
surface) and blue line down (width direction vertical). (See Figure 19).

(6) Angle of incidence should ~~ - at 13 degrees 18 minutes + A angle.
(7)  Adjust clutch until apgis 2 ~aidznce is at 13 degrees 18 minutes + 1/2 A angle.

(8) Check alignment by m=4-.. . g in positions of steps 3 and 5. The average of the two
readings should be 13 degrees 18 minute:. 4:+; ¥:screpancy represents error in zeroing the machine and may
be made less than iess than 1 minute.

(9) Ifthe 10.1 cutis not aailable, the same procedure may be used if, for the cut to be used,
the theoretical angles of incidence are equal for the particular crystal plane used in both positions.

BLUE LINE

MARKED FACE

UNMARKED
FACE

REFLECTED BEAM

INCIDENT BEAM 2510-11

Figure 18. Position of Step 3, 10.1 Alignment Wafer

z
/
BLUE LINE MARKED FACE
REFLECTED BEAM UNMARKED
F
INCIDENT BEAM ACE 2510-12

Figure 19. Position of Step 5, 10.1 Alignment Wafer Rotated by 180 Degrees About —Y Axis ;
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g. Cutting Techniques for Doubly Rotated Orientations

A slicing machine built by Meyer and Burger Company, model TS3, was used to slice the quartz
boule. The 6 inch diamond impregnated blade is supplied by Maurice Dessau, New York. The drift accuracy
of the 2 inch cut is approximately 3 mils (~5 minutes).

The stage of the saw has the capability to rotate in two dimensions; it is designed to make the
doubly rotated cut. The adjustment accuracies are graded to 0.5 minute. The X-ray beam resolution is about
2 minutes.

The combined accuracy of the wafers obtained experimentally has been better than 15
minutes. lterative adjustment of the cutting stage can bring the cutting accuracy to within 10 minutes. The
cutting procedures are the following:

(1) Heat brass plate, glass plate and quartz boule.

{2) Melt wax on brass plate and mount glass plate.

(3) Melt wax on glass and mount quartz boule on glass.
{4) Let cool to room temperature.

(5) Screw mount brass plate to slice machine.

(6) Initial cut of boule along the XZ plane for directly to the desired angle if the boule was
lumbered).

(7) Determine true atomic plane using diffractometer and X-ray computer program.
(8) Adjust stage to correct for true atomic ptanes, and obtain the desired rotation.
(9) Perform doubly rotated cut of quartz.

(10) Measure the reflection angle and check against the calculated result of the X-ray
program. Iterative adjustment of stage can be done if cut accuracy is critical.

These procedures are presently used to cut the wafers with low TCF orientation required for
this program.

h.  Wafer Polishing

The polishing process for the quartz wafers was established during this period. The procedure
includes the following:

(1) The crystal axis orientation is marked on the back surface of the wafers with marking ink
and baked dry. The markings have been demonstrated to stay on the crystal throughout the
photolithographic process for easy identification.
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(2) The corners of the wafers are ground prior to lapping and polishing to prevent corner
breakage.

(3) The polishing is a two step process. The first step is a 15 um lapping to obtain surface
flatness with Microgrit, type WCA, Size 15, on a LAPMASTER, Model 24. The second step is to polish the
surface with Cerium oxide on a LogiTech, Ltd. Model PM2 polisher. The polish wheel is made of pitch wax
supplied by Hacker Instruments, Inc. The polished wafers have a surface finish with no observable grains or
pits under a 50X microscope. The wafers are suitable for surface wave application. X-ray orientation was
performed before and after the lapping and polishing processes. The change is normally less than 6 minutes.
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SECTION il
TECHNICAL DISCUSSION OF TASK i

1. INTRODUCTION

The search for a temperature stable cut of quartz for application to SAW devices has led to the
investigation of the doubly rotated cuts. Theoretical studies have indicated that doubly rotated cuts of
quartz promise much better temperature stability than the commonly used ST cut. Task ! of this program,
which encompassed the first iteration calculations of the doubly rotated cuts of quartz was successfully
completed. Task Il, with major emphasis on experimental work, is discussed in this section.

In Task | theoretical analyses have been performed and angular rotations promising very low TCF"
and TCF® have been plotted. Important SAW device design parameters, such as coupling coefficient,
velocity and power flow angle, have also been computed to characterize each area. As part of Task I,
experimental results establishing the degree of correlation with theory have been obtained.

Theoretical propagation characteristics, as discussed in paragraph 2 below, impose strict
fabrication tolerances on the SAW cuts and mask alignment due to large values of 3TCF1/2y. Thus a mask
had to be designed to compensate for fabrication errors. This design work is presented in paragraph 3. Since
experimental technique is an important criteria in the determination of correlation between theory and
experiment, all procedures followed as well as equipment used are discussed in paragraph 4. Paragraph 5
presents experimental determination of propagation characteristics which illustrate an excellent agreement
between theoretical calculation and experimental results. Paragraph 6 contains the results of the doubly
rotated cut TCF measurements made to date.

Theoretical calculations have been in good agreement with experimental results. Doubly rotated cuts
of quartz with an improvement of TCF by at least a factor of two over the ST cut have been obtained. A
further improvement was expected after a second iteration and these results are discussed in Section IV.

2. THEORETICAL PROPAGATION CHARACTERISTICS

In cutting quartz and aligning masks on it, there is always some maximum achievable accuracy. Itis
also useful to know how all of the acoustic quantities considered vary with angle. Quantities such as TCF,
phase velocity, power flow angle, AV/V, and bulk wave velocity surfaces are of interest to this program.
These quantities can be accurately determined by directly calculating the quantities at ¢ = (¢o+Ad), 8 =
(60+46), and v = (yo+Ay). Calculation of the angular dependence on the first, second, and third order TCF's
is, of course, our primary task. Of these three quantities, the first order TCF is most sensitive to angular
variation (refer to Tables 2, 3 and 5). Quantities such as velocity (Table 3), power flow angles (Table 3),
coupling coefficients (Table 5), and second and third order TCF's (Table 2) do not vary quickly with angle.
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This is not the case for TCF'" Table 5 contains a summary of 3TCF'/ay. The large values of oTCF'"/ay
impose strict fabrication tolerances on the SAW cuts and mask alignment. Therefore it is essential to design
a mask with reference registration marks to accurately determine the transducer orientation relative to the
crystal edges. These reference markers are fabricated on all of the measured devices, so that propagation
direction is accurately determined to within +25 minutes. Fabrication accuracy to within 6 minutes is
required to keep the total temperature variation due to TCF" within 45 ppm for 9TCF"/2¢ = 0.3
(PPM/°C)/degree over the temperature range of —50°C to 100°C. Table 10 contains summaries of 2TCF'"'/ 3¢
and aTCF'"/24. These values impose fabrication tolerances on the rotated quartz plate angles ¢ and 6 of A¢
and A6 less than 12 minutes to keep the total temperature variation due to 3TCF"! (15/40/40)/ ¢ within 45
ppm over the temperature range of —50°C to 100°C for example. This linear temperature variation may be
compensated for by varying v on any particular cut if all other cut parameters vary slowly with angle. To
date all other cut parameters have been found to vary slowly with Phi, Theta and Psi.

3. MASK DESIGN

A mask was designed to take into account the sensitivity of TCF'"’ due to small variations in the cut
angles. The design incorporates rotated structures. Each device is offset with respect to its neighbor by 0.2°.
Three individual devices are illustrated in Figure 20. The device specifications are as follows:

1 Transducer periodicity: 12.192 um (center frequency ~260 MHz; varies with crystal
orientation)

b. Delay time: 360A (~1.4 us) (varies with crystal orientation)
c Number of sets in output transducer: 15

d. Electrode pairs per set: 2.25

e. Electrode pairs in input transducer: 24

f. Aperture width: Input: 70 wavelengths
Output: 50 wavelengths




Figure 20. SAW Oscillator Device
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Figure 21 is a photograph of a wafer fabricated using the above-mentioned design. Twelve oscillators
propagating in different y directions are fabricated on a single wafer. The principal advantage of this design
is the ability to compensate for fabrication errors. From the experimental results plotted in Figure 22, we are
able to observe significant frequency shifts due to small variations in PSi angle. These results confirm our
theoretical calculations.

4. EXPERIMENTAL MEASUREMENT OF TCF

Wafers with orientations that provide low temperature coefficients of frequency were used to
fabricate SAW oscillator devices. Considerable care has been taken to minimize fabrication tolerances. For
angles ¢ and 6, the estimated accuracy is within +4 minutes; for angle y, the accuracy is within £25 minutes.

The delay line oscillators described previously were used to measure the frequency stability at
different temperatures. The experimental apparatus is shown in Figure 23. No coils were used to match the
devices in order to eliminate inductance changes in the matching circuit over the temperature range tested.

The switches are designed to test ten oscillators in the same temperature chamber. The phase
stability of the switches is essential to the measurements. The circuits are shown in Figure 24. The phase
stability of the switches was found to be adequate for measuring the temperature stability of the device.

A digital thermocouple (Fluke 2160A-T) was taped :u the bottom of the fixture to measure device
temperature. The Fluke 2160A-T is accurate to within +2°C over the temperature range of —75°C to +150°C. A
thermometer was also used to measure the oven air temperature. Semi-rigid cable constitutad all
interconnections. This reduces loss, shields against feedthrough, and makes the apparatus less s¢nst*. ¢ sto
the testing environment. ANZAC DS109 power splitters and AVETEK AWL500M amplifiers were used :n the
feedback loop. A Systron Donner (PLS 50-1) provided the DC power supply voltage. The mean supply voltage
was maintained at 15.000 + 0.001 volts during the measurements.

Frequency measurements were taken every 10°C, spanning the range from —55°C to +135°C.
Stabilization of temperature and frequency was attained for each measurement before data was taken. This
ensures that the device is in thermal equilibrium with its environment. The total experimental error is
estimated to be less than +10 PPM.

5.  EXPERIMENTAL PROPAGATION CHARACTERISTICS

The propagation characteristics of selected devices were measured to verify the calculations. The
experimental measured velocity is

v=1A A =12192 um

Table 7 lists the experimental velocities for the various cuts. The deviation (up to 0.2%) is in part caused by
the slight deviation of crystal orientation due to the fabrication process, and in part caused by the
uncertainty of center frequency due to the unknown phase shitt in the teedback loop (+0.25 MHz).
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Figure 21. Photograph of a Fabricated Wafer With Propagation Directions of
8°27'/27°54'/133°54' + n(0.2°)
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The power flow angle of the doubly rotated cut quartz water has been measured by the laser probe

technique. The measured result is in good agreement with calculations.

TABLE 7. EXPERIMENTAL VELOCITIES OF CUTS

Measured Calculated
Phi Theta Psi Velocity Velocity
-1.05 28.0667 136.534 3257.4 3260.9
—0.9667 26.233 138.449 3256.8 . 32594
—0.133 28.1 137.692 3259.0 3261.5
~0.033 26.7 138.859 3262.1 3262.5
0.633 26.15 137.016 3267.6 3267.7
5.583 27.833 135.194 3289.7 3288.9
5.583 27.833 135.994 3290.7 3288.9
6.0 26.9667 135.812 3288.9 3293.7
6.067 25.933 133.099 3298.8 3299.4
7.41 27.83 134.2 3296.8 3299.1
8.033 26.9667 134.618 3304.1 3306.1
14.2833 39.1167 40.227 3294.8 33014
14.2833 39.1167 40.627 329.8 3304.6
15.25 39.2 39.6187 3300.7 3303.4
15.3 40.6833 40.0308 3314.0 33173

The block diagram of the experimental set-up is shown in Figure 25.

In this procedure, the first order deflecting light due to the presence of the acoustic wave is measured by the
photomultiplier. The light intensity is proportional to the acoustic power, while the angle of deflection is

given by:
Sin 6,

Where 6,
0,

: na
°+_
Sin 6.

angle of defiection of nth order

angle of specular reflection
optical wavelength
acoustic wavelength
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The angular relation is demonstrated in Figure 26. The optical beam is provided by a He-Ne laser with spot
size of =100.. The acoustic waves are generated by a 260 MHz transducer with A equal to 12.192. During
the measurement, the SAW device is transiated up and down so that the optical beam is scanned across the
acoustic path to detect the acoustic beam intensity distribution. The test equipment is shown in Figure 27.

Figures 28 and 29 show examples of plots of the relative acoustic beam intensities indicated by the
deflected laser beam. These plots were taken in the near- and far-tield regions, respectively. The exact
distance between the near-field scan and the far-field scan is 8.131 mm. The center of the beams is estimated
to be 0.05 mm in separation. 3

|
j

The Measured power flow angle for this cut is

YT e, TR EER

= tapt 006 _ 0
6, = tan 8.131 —0.352
‘ The calculated power flow angle for this cut is
r
6 = 03 !

The good agreement between the measurement and the calculated results indicates that the calculation is
accurate. Acoustic dispersion and loss can also be calculated from this data.

6.  EXPERIMENTAL MEASUREMENT OF FREQUENCY VERSUS TEMPERATURE

A few representative frequency-temperature measurements are presented in Figures 30 though 34.

The stars represent experimental data points. The solid lines are linearly regressed curves used to define the

measured first, second, and third order TCF's for these cuts, given in Table 8. Figures 30 through 34 are

representative of cuts in region (YX wit) 7/27/135. Cut (YX/wit) 6.57/26.88/134.9 of Figure 30 has a small

linear frequency term at room temperature and is well suited for use at both high and low temperatures. Its

: second order TCF is in good agreement with the computer calculations and is considerably smalier than that

. of ST-cut quartz (see Table 8). Cut (YX wit) 5.58/27.83/135.1 of Figure 31 displays a larger total frequency

variation over the range shown but is much more stable at higher temperatures. This illustrates how a

simple change of crystal orientation can be used to temperature-compensate doubly rotated cut SAW

devices for different mean operating temperatures. A slight rotation of v, as shown in Figure 22, could be

used to set the first order TCF to zero while slightly altering the second order TCF of the device. This cut also

! represents a substantial improvement over the ST-cut (see Table 8). Figures 30 through 34 summarize some

l of our typical measurements to date. Results in this area are in excellent agreement with the theory. One of

) ~ these cuts (8.033/26.967/134.6) has temperature stability of approximately 40 ppm from 0°C to 130°C; it is
' suitable for systems or weapons operating in elevated temperatures (see Figure 33).

17 On all cuts tested, the agreement between the experimental and calculated results has been excellent.

These results establish a firm basis for performing the second iteration search for the optimum TCF
orientations.
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Figure 27. Test Set-up for Laser Probing of Acoustic Wave Beam-Steering Characteristics
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SECTION IV
TECHNICAL DISCUSSION OF 2ND ITERATION

1. INTRODUCTION

The search for a temperature stable cut of quartz for application to SAW devices has led to the
investigation of the doubly rotated cuts. Theoretical studies have indicated that doubly rotated cuts of
quartz promise much better temperature stability than the commonly used ST cut. The first iteration of tins
program, which encompassed the Task | calculations of the doubly rotated cuts of quartz, and the Task Il
experimental work, were discussed in Sections Il and Ill. The second iteration calculations and analysis and
experimental results are shown in this section.

In Task |, theoretical analyses were performed and angular rotations promising very low TCF"" and
TCF* were plotted. Important SAW device design parameters, such as coupling coefficient, velocity and
power flow angle, were computed to characterize each area. As part of Task I, experimental results
establishing the degree of correlation with theory were obtained.

Theoretical calculations have been in good agreement with experimental results. Doubly rotated cuts
of quartz with an improvement of TCF® by at least a factor of two over the ST cut have been obtained. A
further improvement was obtained after a second iteration.

Paragraph 2 presents experimental determination of propagation characteristics which illustrate an
excellent agreement between theoretical calculation and experimental results. It also contains the results of
the doubly rotated cut TCF measurements made to date. In Paragraph 3 the second iteration theoretical
results are presented. Doubly rotated cuts with superior temperature characteristics to those discovered in
the first iteration are presented. In Paragraph 4 the temperature variation of the power flow angle and a new
mask design insensitive to this variation are discussed.

2. EXPERIMENTAL RESULTS

In Section Ill, experimental results were presented demonstrating the good agreement with the
theory. The results of the experimental work performed are summarized in Table 9. The orientations of
Table 9 are expressed in the notation of the IRE 1949 standards® and were obtained by selecting
measurements with zero first-order temperature coefficients of frequency. This was done to ease the
comparison between the experimental and theoretical results because these angles can be accurately

Standards on Piezoelectric Crystals 1949, Pro. IRE 14, Dec. 1949, pp. 1378-1395.
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calculated theoretically, and because it is a necessary condition for low TCF orientation. A more accurate
measurement of the second-order temperature coefficient of frequency usually results when the first-order
coefficient is small. The experimental and calculated results, as can be seen from Table 9, have maintained
their high degree of accuracy.

Figure 35 shows a typical frequency-temperature curve used to generate the data in Table 9. The
stars represent experimental data points. The solid lines are lineariy regressed curves used to define the
measured first-, second-, and third-order TCF's for these cuts found in the table. The first order temperature
coefficient is small enough so that only a light mask rotation is required to arrive at an orientation with a
zero TCF'"'. This small rotation is not enough to significantly change the second-order TCF. Experimental
devices with a near zero first-order TCF and a second-order TCF of approximately —1.0 x 10°*/C°* have been
measured. These measured second-order TCF's are significantly lower than the lowest previous
measurements of approximately —1.5 x 107 with a zero TCF"''. Figures 36 through 41 are graphs of
experimental frequency temperature characteristics of devices fabricated at optimum orientations.
Changes in the frequency behavior as a function of mask alignment can be seen clearly.

TABLE 9. COMPARISON OF EXPERIMENTAL AND CALCULATED RESULTS

ANGLES CALCULATED MEASURED
o | THET | P8 TCF 1t TCF 1t TCFattt TCP3Mt1t Tcr! vcr? (- ]
[ a@rs ot] -0.07%10°5| 0,08 X103 | 040X 10-7|011%X10-10 | -0.1x103 | 037 x 107 | 097X 10-10
805 | 259 (1357 | -0 0.74 -0.15 0.42 0.18 -0.18 0.58
6.57 | 2688 | 1349 | -0.24 0.55 043 043 0.025 -0.18 047
803 | 2697 | 1348 | -0.18 0.60 -0.18 0.48 0.087 -0.13 0.48
741 | 2703 | 1342 | -028 054 -0.18 0.49 -0.08 -0.15 083
600 | 2697 | 1358 | -0.0¢ 015 -0.14 0.4 0.18 -0.13 0.30
558 | 2783 | 1352 | -0.15 085 -0.14 0.49 0.12 -0.13 0.20
-003 | 2670 [ 1309 | o 110 0.1 0.48 0.43 -0.11 049
013 | 201 | 1377 | o.0e 0.89 -0.11 0.53 0.2¢ -0.007 0.25
0633 | 2645 | 1370 | -0.2¢ 0.57 -0.13 047 -0.11 -0.18 0.08
-0987 | 2623 | 1304 | o0t 0.82 -0.12 051 0.34 -0.13 0.79

tWAFER OBTAINED COMMERCIALLY. ANGULAR TOLERANCE IS UNKNOWN.
1+CALCULATED USING SINHA AND TIERSTEN'S PROGRAM.
t11CALCULATED USING FINITE DIFFERENCE APPROACH.

3. THEORETICAL RESULTS

The first iteration results were utilized to refine the theoretical results obtained earlier. The close
agreement between theory and experiment demonstrated earlier prompted a more thorough thecretical
search for promising temperature-stable doubly rotated orientations. An attempt to determine optimum
orientations was felt justified in light ot the accuracy of the calculated results Second-order TCF's zre
predicted by the finite difference method to within 0.005 ppm/C°2. First-order TCF's are predicted to within 3
ppm/C° by the Sinha and Tiersten perturbation method.
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Figure 35. Frequency-Temperature Dependence for (YX wit) 0.633/26.15/137.0

A more thorough search in and near previously discovered near-optimum orientations did not yield
any new results. Other areas previously considered as not quite optimum, on closer examination, were
found to have a greater predicted temperature stability than any other orientations yet measured. A second-
order TCF of —0.93 x 107*/C°* with a zero first-order TCF is predicted for a new family of cuts. The
significance of this family of temperature-stable cuts will become evident only after devices are built and
experimental results are compared, as the difference in TCF**’s is about 10 percent. The addition of this
family of cuts to our investigation is also significant as it opens up the possibility of selecting cuts not only
for improved temperature stability but for improved stress compensation.

Table 10 contains a list of crystal orientations with zero first-order TCF’s and low second-order TCF's.
Two new families of cuts, centered about (YX wit) 15°/30°/38° and (YX wit) 12.5°/35°/130° are included in
Table 10. Second-order TCF*"s of —1.0 x 10 and —0.93 x 10™* are predicted for the two families. Each of the
families extends over a surface with a PHI variation of 20° and 15° respectively, and a THETA variation of
about 5° and 10° respectively, the PSI angle for obtaining a zero TCF® being fixed far each PHI and THETA.
Figures 42 through 45 show these areas in detail. Both the zero TCF'" curves calculated by Sinha and
Tiersten’s perturbation approach and the finite difference method are shown. Overlapping second-order TCF
contours are also plotted.




100

W

<

Iu.

~350

" — e e

-25

35
TEMPERATURE °C

95 125
44532

Figure 36. Frequency-Temperature Dependence for (YX wit)-1.05/28.0667/136.534

134

et &,
To X X Sl T VT oy ra



100

-50

(]
hp = 137016 L= 136,813
-55 -5 5 3 65 9 125
TEMPERATURE °C “s33

Figure 37. Frequency-Temperature Dependence for
(YX wit) 0.633/26.15/136.813 to (YX wit) 0.633/26.15/137.016

135




- l

¥ =135.794 v-= 134.9jld

-«
n

135.194

50

-100

-250

-55 25 5 35 65 95
TEMPERATURE °C
Figure 38. Frequency-Temperature Dependence for
(YX wit) 5.583/27.833/134.994 to (YX wit) 5.583/27.833/135.794

138

125




e s A

150

100

-50
e

<

lu.

-150

¥ =135812

ANS

136.012

-55

Figure 39. Frequency-Temperature Dependence for
(YX wit) 6/26.967/135.812 to (YX wit) 6/26.967/136.012

-25 5

35
TEMPERATURE °C

137

65

125




b e ——

200
150
100 7@
¥ = 13520
| /
“ —t—
/'-‘ _‘._h—‘"
/
0
. / \
- A
Y {
-100 / ,\
¥ = 134°
-150
) ]l; = 1350 [ ]
1 \

-200
i i »
!
t

B
f -300
-85 25 35 85 125
TEMPERATURE °C

Figure 40. Frequency-Temperature Dependence for

(YX wit) 7.417/27.833/134 to (YX wit) 7.417/27.833/135.2

138

v W A

- ——— e e

» e i P

Ve R A Al .
BIRPAYE" 45T S A



100

. 106

-250

R T

¥ = 136818
V- 134618
1
° ;
i
-55 -25 5 35 65 % 125
TEMPERATURE °C w37

Figure 41. Frequency-Temperature Dependence for
(YX wit) 8.033/26.9667/134.618 to (YX wlt) 8.033/26.9667/136.818

139




TABLE 10. PROPAGATION CHARACTERISTICS OF CRYSTAL ORIENTATIONS
‘""‘52.,‘:.'22}""” TCF2)r €2 (X10-8) | TCFIN/2 €3 (x10-19)
(8 AND T'S PROGRAM) | FINITE DIFFERENCE | FINITE DIFFERENCE
PROGRAM PROGRAM
PHI |THETA| Ps!
] 26 |136.31 14
8 21 [135.93 1.3 0.67
8 28 (13559 13 0.57
7 26 [135.99 -15
7 27 [135.64 -14
7 28 [135.27 -13 0.65
8 2% |135.74 -1.4 0.65
8 27 |135.38 14
8 28 |134.97 1.3
1 26 |137.78 1.2 0.68
1 27 {13748 -1.2 0.65 ]
1 28 |137.147 1.1 0.67
! ) 26 [138.07 1.2 0.67
; 0 21 [13r78 -1 0.68 oo
; ( 28 (137.49 -1 0.62 :
| -1 | 26 (13837 12 0.60 -
' -1 271 [138.09 1.2 0.62
i -1 | 28 [137.80 1.4 0.73
1" 39 | e0.195 -1.0 0.64
14 a0 | e0.a1s -0 086
14 41 | a0.64 -1.0 0.75
15 39 | 3979 -1.0 0.63
15 w0 | a0 -1.0 0.74
15 a1 | 4023 -1.0 0.73
18 39 | 3904 10 0.68
18 40 | 39.605 -1.0 0.08
18 &1 | 39825 -1 0.60
75| 350 | @77 -0.95 0.58 1
10 35 | 40.82 -0.94 0.58
125 | 30 | 38.88 -0.93 0.57
125 [ 325 { 304 -0.93 0.57
15.0 | 300 | 3812 -0.93 0.57 :
, 150 | 325 | 2855 -0.93 0.57 g
; 178 | 300 | 37.35 -0.94 056 i
! 200 | 300 | 366 -0.97 0.ss
] 225 | 300 | 3585 -10 0.54
i 250 | 300 | 35.07 -1.0 052
A 278 | 300 | 3428 -1 0.50
"' 75| 350 |13288 1.4 0.54
. 100 | 40.0 |120.4 -1 0.57
{ 125 | 350 |13062 10 0.41 5
125 | 425 [121.18 -1 0.58 i
150 | 450 [124.43 -1 0.58 !
. 125 | 400 [126.14 11 0.54
200 | 0.0 |124.92 -1.0 0.04
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Table 11 contains some of the propagation characteristics of these selected orientations. The
velocities, coupling coefficients, and power flow angles are seen to be quite reasonable. Tables 12 and 13
contain the derivatives of the first-order temperature coefficients of frequency with respect to angular
changes in orientation. These derivatives determine the accuracy with which one must fabricate to ensure a
negligable TCF'"'. The nonzero value of 2TCF'"'/2¢ allows a compensation for misalignment of the wafer
orientation by a compensation in mask orientation as the values of 2TCF* /3¢, 2TCF*/26, and 8TCF*/2y
are small. In the first iteration of Task I, it was demonstrated that devices with these TCF'"' angular
derivatives are easily fabricated with low TCF'". These two families of cuts are believed to be entirely

suitable to temperature-stable SAW device fabrication.

TABLE 11. PROPAGATION CHARACTERISTICS OF SELECTED ORIENTATIONS

ANGLR e o g‘;’.‘:m‘m VELOCITY a2 POWER FLOW
e T MsEC) | (x10-3) | AnOLE (DEGREES)
. 26 198.31 20804 112 03
. ) 19893 3293.00 112 02
. P9 15550 329083 112 01
7 2 1359 3303.33 112 08
7 r 135.04 3200.70 112 04
7 » 13827 3206.33 112 03
N ) 135.74 331018 112 07
s 2 125.38 3308.11 112 08
s » A 3302.32 1.10 05
1 2 1.7 3268.00 1.10 07
1 2 137.48 3267.04 1.10 0.9
1 » 1717 3208.¢ 1.10 10
° 26 13007 3204.00 112 w09
° ) 19170 3263.00 110 "
0 » 13709 326235 1.10 "2
-1 2 138.37 3250.85 110 "
-1 2 130.00 3250.01 110 13
-1 n 17.00 3250.84 1.08 “s
" » wies | 320000 0.98 K2
" P was | 3%0es7 0.8 1
1 “ 0.4 318.19 ™ Y
" » Y, 3%01.82 .98 -8
" © 40.00 3310.14 ™ .3
" “ w2 3319.00 0. .
1 » »a 3308.38 ™ .0
1 © e0s | 33140 ™ a4
18 8.0 an 320243 100 a8
10 %.0 w82 320423 101 -3
128 2.0 nn 32427 101 a1
128 328 24 3284.40 100 -
"o 2.0 a2 s2um ™) a8
180 528 s 82 o -3
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TABLE 12. aTCF'"/ay FOR SELECTED CUTS

Angles of ZTCF", Degrees
(S and T'S Program) o
PHI THETA PSI oTCF oy
6 26 136.31 +2.7 (PPM/C°)/DEGREE
6 27 135.93 +2.7
6 28 135.59 +2.7
7 26 135.99 +2.7
7 27 135.64 +2.7
7 28 135.27 +2.7
8 26 135.74 +27
8 27 '135.36 +2.7
b 8 28 134.97 +2.7
: 1 26 137.78 +2.8
1 27 137.48 +2.8
1 28 137.17 +2.8
0 26 138.07 +3.0
0 27 137.78 +3.0
0 28 137.49 +3.0
-1 26 138.37 +3.0
-1 27 138.09 +3.0
-1 28 137.08 +3.0
14 39 40.195 -35
14 40 40.415 -35
14 41 40.64 -35
15 39 39.79 -35
15 40 40 -35
15 | 40.23 -35
16 39 394 =37
| 16 40 39.605 =37 -
{ 16 ]| 39.825 =37
- 75 35.0 a7 -33
i 10.0 35.0 40.82 -34
’7 12.5 30.0 38.88 -33
: 125 325 394 -3.2
15.0 30.0 38.12 -34




TABLE 12. 9TCF'"/ay FOR SELECTED CUTS (Cont)

Angles of ZTCF", Degrees

-~. (S and T'S Program) TCF"/ 2y
PHI THETA PSI
15.0 325 38.55 -36
17.5 300 37.35 -34
20.0 30.0 36.6 -35
25 300 35.85 -35
25.0 30.0 35.07 ~-3.3
215 30.0 34.28 -34

75 35.0 13268 327
10.0 40.0 129.40 +2.8
125 35.0 130.62 +2.0
12.5 425 127.15 +25
15.0 45.0 124.43 +2.6
17.5 40.0 126.14 +2.1
20.0 40.0 124.92 +2.6

TABLE 13. 2TCF"'/a¢ AND aTCF'"/26 FOR SELECTED CUTS

Angles of ZTCF'", Degrees

" ® a"dTLsE:rgram) - aTCF /20 2TCF"/20

7 27 1564 | —07(PPM/C?)/DEGREE | —0.5(PPM/C)/DEGREE
0 27 19778 | 08 08

15 0 00 | +5 07

150 | %5 8% | 12 08

125 | 0 13062 095 11

4.  TEMPERATURE VARIATION OF THE SAW POWER FLOW ANGLE

An unexpected rapid fluctuation of the surface acoustic wave power flow angle on doubly rotated cut
quartz saw devices was discovered during the testing of temperature-stable SAW devices. In this paragraph

the phenomenon of a temperature variation in the SAW power flow angle will be discussed.

The power flow angle for a particular direction of propagation is an important parameter. While the
_ phase fronts‘always remain parallel to the source transducer, the wave as a whole does not propagate
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perpendicular to the wavefronts. This is a characteristic of anisotropic substrates where the phase velocity
is asymmetric about the propagation direction; i.e.»( + Aw) # v(y — Aw). The major problem which arises is
that the acoustic beam may steer off the desired propagation track missing the output transducer unlessiitis
properly designed.

The power per unit width carried in a surface wave is found by integrating the mechanical and electrical
Poynting vectors, to obtain

0
P = —;—Re f L™ dxs—iwf ¢D; dx; (i=12)
—o0

—o0

where u; is the particle displacement, T; the stress tensor, ¢ the electric potential and D the electric
displacement. P, and P, give the power flow perpendicular and parallel to the wavefront, respectively. P; =0
for the Rayleigh wave which is confined to the surface. The power flow angle may be defined as 6 = arctan
(P-/P\). Power flow angles as high as 20° are not uncommon on quartz.
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Figure 46. Power Flow Angle Against Temperature for (YX wit) 14-283/39-117/40-6




Calculations’™* of the power flow angle at different temperatures for doubly rotated cuts of quartz
have been performed. The cuts are designated by the 1949 IRE’® standard. Figure 46 illustrates the
temperature variation of the power flow angle for the doubly rotated cut of quartz (YX wit)
14-283/39-117/40-6. The important feature of this dependence is the large variation of the power flow angle
over the temperature range shown.

Figure 47 contains a pictorial representation of a device fabricated at (YX wit) 14-3/39-1/40-6. The
input transducer on the left generates an acoustic wave which only partially illuminates the output
transducer on the right. Figure 48 (a and b) are photographs of the device response with a short gated RF
pulse as the input, showing the response at 131°C and 34°C, respectively. The first notch is a result of
missing finger pairs. The anisotropy parameter’ was calculated to be 0-625 at —50°C, 0-614 at 25°C and 0-586
at 150°C. The transducer apertures are 34 mils and 24 mils, the length of the device is 260 mils and the
acoustic wavelength is 0-48 mils. The temperature dependent effects of diffraction on the envelope were
found to be negligible. The shortening of the device response is clearly evident from the photographs and is
due to the rapidly decreasing power flow angle successively illuminating more of the output transducer as
the temperature increases. The power flow angles estimated from these photographs are displayed in Figure

42, alongside the theoreticat results. Table 14 contains a summary of the power flow angies temperature
dependence for several temperature-stable doubly rotated cuts.

A
150°C
e —150°C
25°C
-50°C
8 \\
150°C
c \
25°C
D \
-50°C

A. DEVICE GEOMETRY

B. IMPULSE RESPONSE AT 150°C

C. IMPULSE RESONSE AT 25°C “s313
D. IMPULSE RESPONSE AT -50°C

Figure 47. Pictorial Representation of Device Response

““Higher Order Temperature Coefficients of the Elastic Stiffness and Compliances of Alpha-Quartz",
Bechmann, R., Ballato, A., and Lukaszek, T., IRE Trans., 1962, pp. 1812-1822.

s“Compensation for Diffraction in SAW Fiiters”, Savage. E. B., and Matthaei, G. L., 1978 (EEE Ultrasonics
Symposium, CH1482-9/79/, pp. 527-532.
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a. AT 131°C

b. AT°C

Figure 48. Device Response to Short Gated 270-4 MHz Input Pulse

TABLE 14. TEMPERATURE DEPENDENCE OF THE POWER FLOW ANGLE ON DOUBLY ROTATED
CUTS AT ORIENTATIONS (YX WLT) PHI/THETA/PSI

Orientation Power Flow Angle
PHI THETA PSI T=25°C T=150°C T=-50°C
-1.330 28.100 137.692 +1.2 0.1 +1.8
-1.050 28.067 136.534 +25 +1.0 +3.2
—0.967 26.233 138.449 +1.1 0.2 +1.8
-0.33 26.700 138.859 +0.5 0.7 +1.1
0.633 26.150 137.016 +14 +0.1 +2.1
5.583 27833 135.194 +0.3 -09 +1.0
5.583 27833 134.940 +0.5 +0.1 +1.1
5.583 27833 134.994 +0.4 -08 +1.1
6.000 26.967 135.812 -0.1 -1.2 +.5
6.067 25.933 133.099 +1.7 +03 +24
6.567 26.883 134.925 +0.1 -10 +0.7
7410 27.380 134.2 +0.1 -1.0 +0.8
8.033 26,967 134.618 -03 -14 -03
8.05 25.900 135.71 -0.7 -16 0.1
14.283 39.117 40.627 -8.1 6.2 -8.0
15.300 40.683 40.031 -86 68 -96
16.117 41.267 37.309 -12 ~5.5 -8.1




When the oscillator frequency is not exactly at the synchronous frequency of the SAW deicy 1 the
phase response of the delay line becomes temperature dependent. The use of doubly rotated cut SAW
devices clearly requires designs which can accommodate a large variation in the SAW power flow angle.
Consequently, a special mask used for testing was designed.

Figure 49 contains an illustration of the pattern to be used for doubly rotated cuts with a large power
flow angle temperature variation. The large aperture of the output transducer is required to accommodate
rapid variation of the power flow angle.

The center frequency of the device is approximately 260 MHz. The electrode and line spacing are 0.06
mil (double electrodes), so the acoustic wavelength is 0.48 mil. The input transducer has 40 pairs of
electrodes and the output transducer has 11 sections of electrodes with 4.5 pairs in each section. The
spacing of each section is 19.2 mils. The width of the input transducer is 36 mils, and that for the output
transducer is 120 mils. The design allows a maximum of 12 degrees beam steering, which is adequate for
most of the desired cuts in this study. The final mask is a stepped and i 2duced design having a family of
patterns with relative rotation of a fraction of a degree, so that a family of TCF's with smal! increments of the
propagation angle 0.4° can be measured.

The input transducer is divided into two sections. Selecting the upper or lower section ersures the*
the complete wavefront of the acoustic waves will propagate over the output transducer aperture
throughout the temperature range of interest.

In designing filters and reflective array devices on rotated cuts of quartz, additional care must be
taken to ensure that the temperature dependent power flow angle does not degrade device response. 1§
improperly designed, device time delay, bandwidth and phase all become temperature dependent when
fabricated on a rotated cut. These observations are especially important for reflective array devices in
which rotated cuts of quartz are often used to achieve temperature compensation in two different
propagation directions. Suitable device design can overcome these problems and result in temperature
compensated delay lines useful for oscillator applications. The moving acoustic beam may be made to
illuminate different parts of the output transducer at different temperatures in such a way as to maintain a
steady phase over the entire temperature range. A design using the temperature dependent PFA is currently
being fabricated in which a compensation signal maintains a relatively constant output phase despite the
temperature dependent delay time. Input beam aperture compression may be used to achieve increasingly
accurate adjustments of the output phase. Materials such as lithium niobate with higher coupling
coefficients may be useful in this respect.
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4453-17
Figure 49. Transducer Design

By proper selection of the output transducer location, one may obtain temperature stable SAW
oscillator due to the power flow angle sweeping as a function of temperature. Figure 50 shows
compensated SAW oscillator using the combination of two 90° out of phase transducers shown in Figure 49.

Where the combined output phase of the transducers is compensated to a minimum change as the
temperature varies; hence improved temperature characteristics are obtained.

5. REPRESENTATIVE EXPERIMENTAL DATA IN THE SELECTED AREAS

Several selected areas have zero first order TCF and low TCF*® and TCF*’ have been fabricated and
evaluated. These areas provide some of the best results in the study. The cut YX wit ¢/6/¢ of
12.01/31.21/39.8 has less than 80 PPM shift of frequency in the temperature —40°C to +140°C. The
experimental result is shown in Figure 51. This cut has measured TCF'" 0f0.55x 10" TCF* 0f —1.19x 10"* and
TCF* of 0.45 x 107" Figure 52 shows the experimental resuits of a device in the 15.13/31.13/37.33
orientation. The device has TCF" of 1.1x 107, TCF® of —1.18 x 107 and TCF"” 0f 0.253 x 107"°. This device has
less than 50 PPM shift from —30°C to +100°C temperature range. Other selected cuts are shown in Figures 53
and 54. These cuts all have relatively good temperature characteristics.
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SECTION V
CONCLUSION

The temperature coefficients of frequency (TCF) have been analyzed for doubly rotated cuts of
quartz for surface acoustic wave devices. The analysis procedure is shown below:

(1)  Using Finite Difference program, identify angular areas withzer ~ _F"'and low TCF**’ on
10° x 10° x 10° grid.

(2) Calculate in these areas with 2.5° x 2.5° x 2.5° grid to locate the rotation with minimum
TCF* which has TCF" = 0.

(3) Identify the accurate zero TCF'" with Sinha and Tiersten's program in areas obtained
in (2).

(4) Calculate TCF'", TCF'* and TCF"" in selected areas obtained in (3) with 1° x 1° x 1° span.

(5) Calculate the coupling coefficients, propagation velocities, power flow angles and
inverse bulk wave velocities for these angles.

The conclusions of the study are:

(a) The zero TCF" surface and zero TCF* surface data does not show an intersection
in the 10° x 10° x 10° grid. However, orientations with frequency variation = 100 ppm from —50°C to 100°C,
better than ST Cut by a factor of two, have been found in several areas where TCF*' =0 and TCF"'is less than
-1.5x 10=4/C° 2.

(b) The ATCF/A angle is normally very large in the areas with zero TCF'" and low
TCF?, therefore accurate crystal orientation is critical. It is estimated that the orientation accuracy of 6
minutes is required to obtain a TCF"" of = 50 ppm in the —50°C to 100°C temperature range in the three areas
investigated. These are ¢/6/y 0f6/27/135.93 (4.45x 1072 ppm/°C - minute), 14/40/40.415(5.83 » 10~ ppm/°C
- minute) and 0/27/137.78 (5.00 x 102 ppm/C° - minute). Orientations with less sensitivity to orientation
accuracy have been evaluated. These are the cuts that have a[TCF"')/ay = 0 when TCF" = 0. The cuts
evaluated were ¢/6/y = 20/30/155, 20/20/150, 10/40/168. The TCF* of these cuts are approximately
4 x 10™*/C°, comparable or higher than ST cut.

(c) Coupling coefficients, velocities and beam steering angles were defined for the
selected areas, no leaky modes were found in these areas. Determinations of experimental propagation
characteristics using the laser probe technique demonstrated good agreement between measured and
calculated values.
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(d)  Methods to X-ray orient the quartz crystals, cut the doubly rotated wafers and
polish such crystal wafers were developed.

(e) It has been determined that TCF'"' is the most sensitive to angular variations;
thus the large values of 8TCF1/y imposes strict fabrication tolerances on processing. it was necessary to
incorporate a mask design using rotated structures to compensate for processing errors within the altowed
fabrication tolerances.

()  Theoretical calculations of power flow angle, coupling coefficients, and second
and third order TCF's indicate that they do not vary quickly with angle. Thus, by varying ¢ on any particular
cut, linear temperature variations can he compensated for while all other cut parameters vary only slightly.

(9)  Experimental design and procedures followed during the measurements of the
TCF's indicate that the experimental error is within 10 PPM. Tables 8 and 9 which display the comparison of
theoretical and experimental results, iliustrate the excellent agreement.

(h)y  Experimental results of the st iteration indicate that an improvement in TCF®
by at least a factor of two over ST quartz can be obtained. A second iteration approach using a higher
resolution and better selected areas has improved the TCF™ of the doubly rotated quartz over the STcutby a
tactor of three or better.

The best experimental data was obtained with the devices in the
12.01/31.21/39.8 orientation. The total shift of frequency of less than 80 PPM in the —45°C to +140°C was
obtained. Several other areas that will provide comparable temperature characteristics are described.

(i)  T-e temperature variation of the power flow angle on doubly rotated cuts of
quartz and its effect on device design was discussed. An oscillator design accommodating large
temperature-varying power flow angles was discussed. The utilization of the temperature variation of the
power flow angle to achieve temperature compensation of the oscillator was demonstrated.
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!- APPENDIX A i
VOLUME PERTURBATION OF AULD

Perturbation techniques, as used here, allow calculations of small changes in the solutions to a
[» problem caused by small changes in the physical parameters of the problem, once the solution to the
L unperturbed problem is known.

Our general approach to the problem of determining the temperature dependence of V, will be as
1 follows. First, the Rayleigh wave propagation problem will be solved in the standard way in its entirety at
; room temperature, To. Given the solution of probiem at T, and the dependence of the physical constants
(such as c.,) on temperature at T,, we will apply the volume perturbation formula, calculating the
temperature dependence of V.. The dependence of V, on T is then used to calculate the frequency
characteristics of the actual device given the thermal expansion coefficients as a function of temperature. At
this point, the frequency temperature dependence of the substrate as a function of crystal cut and direction
E ‘ can be thoroughly explored.

The Volume Perturbed Formula.

Denoting v, (To) by u,, etc., the volume perturbation formula is given by':

t=uf [Aldylf uT —uTe

+ ¢* (iwD) + ¢' (iwD)®) - 2 dy (A-1)
[Al=[apu*-u' +T* (As®: T + Ad - E)
+E* - (A - E + adT))
This equation is exact, but involves knowing the solution u'. However, we can setu = U’ if the temperature

dependence of the solution is small and use P = (1/2) Re f (—u*-T + E-H*) dy to obtain the approximate
. solution

88 =(/4?) [ lap | u |+ acS (A2)

+E"- A’ -E+E* - Ae:S + S:ae - E] dy
| The u's and E's, and » come directly from the computer solution at To.

'Auld, B.A., “Acoustic Fields and Waves in Solids,” Vol. II.
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The A terms can be written as expansions of the form:

8Bx = Ba (T)(ag" AT + ag™ AT + ag™ dT)
Ap= p(To)(a"',’ dT + a‘:,' ar’ + a‘:,’ dm)
= p(l) dT + p(ll d"'l + p(!) dam

ACiw = i’ dT + Ci,um ar + C.,'uu' dm?, etc.
to obtain
ABR = Bk (To) (GB(” dT + Bg (To) aBm de + ﬁg (To) aB"’ dT’)
= (wdT/4P) j': (o (T ol [ul?+S:c"S+E - e -E
+E* -e"-S+8Se"-E)dy

+ TP [ (M) o @ | u | 4SS +..) dy
o

+@dP/4P) [ (1) o, | u | 4SS +..) dy
(o]

or

ag = (wl4Pgx (T.)) j: (o(Te) o | u] * +S:c9:8 + ) dy

(A-3)

(A-4)
(A-5)
(A-6)

(A7)

(A-8)

For the problem of quartz, the electrostatic coupling is small and the electric terms can be ignored.

Thus Ad and Ae in (A-8) may be set to zero resulting in the simplified equation.

ag” = (w/4Pge) § LTI ag lul?+S:c:8) dy

The integrals are calculable, for instance, from (14),

00

S el 1ul2dy

=oll) o) %, J':° [3 G o™ expici on b y)]
[; C: o™ exp (iBxb™ y)*| dy

(A-9)

(A-10)

[P




sl Shliaaid

The problem can easily be extended to multi-layered media by simply performing the integral over
each layer separately. For the double layer (A-9) becomes:

fu o (T)ap) [ul?dy+ § nm o [uldy +- (A-11)
o

o
Because the dependence of u; is given explicitly by (13), it is not necessary to use numerical
integration procedures, as demonstrated in (A-10).
Once the aB“) have been calculated from (A-9) the v are simply determined. Using 8= w/V,, and
(A-9) we determine o'

|
|
!
|
|
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APPENDIX B
VOLUME PERTURBATION FORMULA OF SINHA AND TIERSTEN

The approach used by Sinha and Tiersten includes the effects of distortion caused by heating a
substrate of quartz and is based in the coordinate system to which the fundamental elastic constants refer.

In this reference system, the density is constant and the o+ are equivalent to the av".

In this new reference system, the perturbation formula becomes'

(Avdv) = (1/28:V?) (HIND),

N = (i) 2 3 (@ o™ ¢ a®)/(a - .)
1 n=

m=

% w/ Br
H = —‘f dy f dZ (Ku U;,: + Kgy Uy,g + Ku Us: + K_vz Uny + Kyy uy,y + ny u:.y)
0

—~1l Br
KL“/ = (CL'ma + AEL'YMG) Ua, m
For the first order perturbation in T we have:
Ciyma = (?L‘YMVAB ayt gn'xu ayy + Eumv “'h) a7

Aen'ua = (d ?L-yMa/dT) dT ;

3
™,

(B-1)

(8-2)

(B-3)

(B-4)

(B-5)

(B-6)

Where Cuyma are the second order elastic constants previously denoted simply as ¢.yma and
Cuymvanare the third order elastic constants. The terms A(Z:L'YMG as calculated by Tiersten? is available only

to first order in T, and the higher order elastic constants CLymvanco have never been determined.

'“On The Temperature Dependence Of The Velocity 0f Surface Waves On Quartz,” B.K. Sinha and M.F.

Tiersten, 1978 Ultrasoncs Symposium Proceeding, IEEE, pp. 662-665.

*Temperature dependence of the Fundamental Elastic Constants of Quartz,” B.K. Sinha and H.F. Tiersten,

Proceedings of the 32nd Annual Symposium on Frequency Control, 1978, pp. 150-153.
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APPENDIX C
THE DIFFERENTIATION METHOD

A method for determining the theoretical temperature dependence of Rayleigh Surface Waves
consists of formally differentiating the wave equation and boundary conditions. The boundary conditions
and wave equation must be true at all temperatures, placing restraints on how the parameters of the wave
equation may vary. In this technique, the derivatives of these equations with respect to temperature are set
to zero and solved for the velocity temperature dependence. This method follows the methods used by
Bechmann, Ballato, and Lukaszek' to compute the temperature dependence of the fundamental elastic
constants from frequency data, except that the simplifying assumptions of assuming bulk wave solutions
cannot be made. This method was later used by Hauden’ to search for temperature stable cuts of quartz.

Christoffel's wave equation can be written in matrix form as

Tu-pV?  Ta T I o]
| P! T2 = oV I I a =0 (C-1)
I | o9 Ty — pV:? s as

| I I I T [ @]

where

Pn=cssb*+2cisb+cyy I3 = C1a b? + (C36 + Cas) b+ Cse

T'22 = Cas D* + 2046 D + Css T =— (e b* + 2e13 b + €n)

T3 =C1 b? + 2Css b + Css Tu=esb +(@s+e)b+ey,

T2 = Cas B + (Cia + Cs6) b + €6 T2 =83 D% + (81 + 836) b + €46 (€-2)

Tis=Cis b* + (Cis + Css) b + Cis T =050  + (813 + €35) b+ &5

"“Higher Order Temperature Coefficients of the Elastic Stiffnesses and Compliances of Alpha Quartz,”
Bechmann, Ballato, and Lukaszek, Proc. IRE, Aug 1962, pp. 1812-1822.

**Higher Order Temperature Coefticients of Quartz SAW Ocsillators,” D. Handen, M. Michael, J.J. Gagnepain,
Proc. Frequency Control Symposium (1978), pp. 77-86.
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following the notation used in the previous section and in Matthews'. This equation holds for .ach of the four
modes, hereafter designated by a superscript m.

The boundary conditions become, in matrix form,

oG + €333 ™) @™ + (8435 + 8333 D'™) 2™ 1 CF
wACsnn + €213 D™) '™ + (8451 + 8331 D™) '™ .|| C2
wo{Cazit + €233 D™) &™ + (€132 + €31:0"™) aa™ ..|]|Cs] =0 (C-3)

(@i + €33 D'™) '™ (e31 + €33 D™ — i€o) ™.

JL

where only the m'th column is shown and the C.'s are the amplitudes of each mode. This formulation
assumes a normalization of the a's

(m“.n)z + (az(my)z + (a’lm))z + (a‘(m)z =1. (C'4)

The first condition we can place on the wave equation is that the determinant of Christoffel's
equation vanishes for all temperature, or

rn—-pVd T ) BT | oM
I Ma~poVi Iy I _

o/dT I'n ) %) Py —pV2 T =0 (C-5)
T T T Tu

For each of the four modes, this equation is valid, resulting in four equations in five unknowns, dV,/dT, and
db™/dT of the form F,*™ (dV./dT, db™/dT)=0,m=1,2,3, 4.

For each mode, Christotfel's matrix equation (C-1) must vanish, yielding the set of equations

(d/dT) ('™ (P'i'™ - pVi) + '™ T™ + ™ Ti™ + ad™ P‘\T’) =0
(d/dT) ('™ {7+ '™ (P4 pV.) + o™ Tu'™ + ™ I“;‘I") =0
(@/dT) (@™ Tis™ + a0™ '™ + o™ (T™ - pV2) + ™ T30 ) = 0 (C-6)

(d/dT) (on""’ Ci™ + o™ ™ + ™ ™ + ™ r“lnl) =0.

This results in 16 equations (four per mode) and an additional 16 unknowns (the a™'s) of the form

Fo™ (@V./dT, db™/dT, d au™/dT, d a;™/dT, d as™/dT, d o™/dT) = 0

"“Surface Wave Filters,” H. Matthews, John Wiley and Sons, New York (1977).
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Using (C-3) we obtain the single equation

........ (Coa + Cn.:b("") ™+ (8133 + 83:0™) ad™ .........

........ (Cy + Cn.;b""’) a'™ + (8 + em"") o™ ...
(d/dv) =0 €7

of the form F,'™ (db™/dT, db*'/dT...., da™/dT) = 0

and four equations of the form

1' (d/dT) 2 Cn [(Casu + C333b™) '™ + (6155 + €3330"™) @™ ] =0
? " (C8)
' (d/dT) z Cn [(CJm + C313b™) a'™ + (8131 + €33:0"™) @™ ] =0
!. :
' of the form Fy'™ (db*™/dT, da'™/dT, dC./dT) =0 (C9)
From (5) a'™ (da'™/dT) + 0™ (dey™/dT) + '™ (dxs™/dT) ) (C-10)
+ ai™ (dm"'/dT) =0
or
Fé™ (d «'™/dT) =0 (C-11)

Combining the above results gives 25 equations in the 25 unknowns.
dv./dT, db™/dT, da:"™/dT, dC./dT

which are solved simultaneously. Once the temperature dependence of the Rayleigh wave velocity is found,
the frequency dependence is found in the usual way.

To obtain the second order dependence of V,, the 25 equations are differentiated again. The values of
dv,/dT, db™/dT, da™/dT and dC../dT previously obtained are used to obtain d°V./dT?, etc.
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APPENDIX D
SOLUTION METHOD

Calculating the velocity of a Rayleigh wave requires a complete solution of the problem to be
performed. All of the constants in equation (13) must be evaluated. The standard used at Motorola as
developed by Campbell and Jones is outlined below.

First the fundamental constants are rotated into the coordinate system of interest. Next a value of V,
is picked. The coefficients r; of equation (C-2) are evaluated and the determinant of the matrix in equation (C-
1) is set to zero, as it must be if a solution of (C-1) is to be found. This results in an eighth order equationin b.
This equation is solved for the eight complex roots. The four roots b*™ in the lower complex plane are
retained, the four discarded roots not satisfying the boundary conditions at infinity. Equation (C-1) is then
solved for the four eigenvectors ™. The bi™ and the corresponding eigenvector ;"™ are substituted into
equation (C-3) and the determinant of the matrix in equation (C-3) is evaluated. This determinant must be
zero for a solution to (C-3) exist. If it is not zero, V, is varied, and the whole procedure repeated, until it is.
Once a value of V,is found such that the determinant in equation (C-3) vanishes, the solution to (C-3) is found,

giving the values for C.. These constants completely describe the solution of equation (13), as well as
providing the exact velocity.
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APPENDIX E
EQUIVALENCE OF TEMPERATURE COEFFICIENTS OF FREQUENCY AND DELAY

in the following section, the relations relating the first, second, and third order temperature
coeffieients of detay and frequency will be derived. These relations show implicitly the equivalence of each
representation of the device temperature characteristics, and justify their interchangeable usage.

In the text, we have used the following notation:

r = delay time of delay line oscillator (E-1)
ith order temperature coefficient of delay = TCD" = o’ (E-2)
F = frequency of delay line oscillator (E-3)
ith order temperature coefficient of frequency = af" (E-4)
T = rn(ltal T-T)+a(T-T) +a W (T-T)  +..) (E-5)
F =F(1+af"(T-T)+ar?T-T) +ae®(T-To)* +..) (E-6)

where T is temperature and T, is a reference temperature, 25°C in.our case. For a SAW oscillator, Fr =
constant or

T/To = Fo/F
=Y+ T-T)+ar® (T-T) + o™ (T-T)' +..) (E-7)

Using the relation

1 +X) =1-X+X2- X for X<<1 (E-8)

we can write

tlro=1-[ar'" (T-To) + ar™ (T-To) + o™ (T- 1))
+ [(ae (T - To) + 2a¢" (T - To) o™ (T - To)})
- [as'" (T - To))* + higher order terms (E-9)
- 1 - GF“’ (T . To) + ('OF(" + (aF(ll)Z) (T - To)z + (‘UF(” + zarll) arl!) - (apll))l) (T - To)) (E'10)




Equating powers of T - T, in (E-5) and (E-10), we obtain

o, =" (E-11)
"rm =o' + (aFu))z (E-12)
o, =-ar” + 205" ar® - (ar™)’ (E-13)

As the only assumption on F and - used is that of equation (E-7) which is symmetric in F and r, we
immediately obtain

o'l = - arm (E'M)
o' = _arm + (arn))z (E-15)
o’ = -ar” + 2o ar'? - (o)’ (E-16)

Using (E-11) through (E-16), we can always relate one set of temperature coefficients to the other.
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APPENDIX F
X-RAY RUN
The following is an example of the computer results from the FORTRAN X-ray orientation computer

program for the doubly rotated cut 7/27/0. File MILDAT contains only the two Miller indices shown on the
printout on this run.
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{ APPENDIX G
]
X-RAY PROGRAM

(RN

The following is the FORTRAN computer program used to calculate X-ray diffraction angies for a
] doubly rotated cut of quartz.
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