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1. INTRODUCTION

vibration is a phenomenon specially appealing to a

number of engineers due partly to a clearly defined, exten-
| sive and intriguing body of underlying mathematical analysis. §
From the late 1800's when attention was first paid to the

problem of ship hull vibration this body of analysis has been

expanded by a large number of active researchers to provide

the current comprehensive level of understanding of the subject.

It is apparent that vibration of the ship hull is a

source of concern for the naval architect (and shipowner).

| A passenger vessel with vibration amﬁlitudes above a certain.
threshold would have féw repeat passengers. Fatigue of

j structural components due to the cyclic stresses is a factor H
to be considered. The conventional method of determining the

strength of the hull girder does not explicitly take into

account the cyclic stress associated with hull vibration.

?* It would seem necessary to determine what these stresses

might be, how they vary with time and the effect of their

addition to stresses already present through ship loading

j and the quasistatic effect of wave support. The sophisticated
J equipment on board warships experience problems in an environ-
ment of excessive vibration. It is interesting to note that
with continued refinement of such equipment as navigation
instruments, radar, sonar, fire control computers, communica-

tions gear and electronic warfare devices the requirement for
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vibration free foundations becomes more stringent. There

are dangers to shipping from acoustic and pressure operated

offensive weapons. Attention has been focused on noise

emitted by hulls and hull vibration in general. The "acoustic
signatures" of vessels play an important part in tracking

3 foreign vessels, both surface and subsurface, by passive means.
It appears that the problem of vibration control is becoming
more important.

As stated, the body of analysis is large but it is
apparent that the complexity of hull structures in both form, ]
material and construction and the complexity of three-dimen-
sional hydrodynamics combine to limit the application of the

analysis to reality. It is not surprising then that the pro-

blems of hull vibration still remain and that work continues
on new methods of mathematical treatment, on models and on
full size ships where the adequacy of the technical progress

can be shown.

This thesis is concerned with one of the two broad
classes of ship hull vibration, that is synchronous or
resonant vibration as opposed to local vibration. In this

; case the entire hull acts like a beam vibrating under some
i excitation from machinery, the propellor or waves. In
'f serious cases the motion can clearly be seen by sighting

along the length of the ship. The importance of a resonant

vibration is dependent on the conditions of its occurence.
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If the engine at normal operating speed excites the hull then

a serious problem exists. If, however, this resonance occurs
at an engine speed that will be only infrequently maintained,
then there is a problem of considerably less significance.
Similarly, if a vessel is expected to operate in certain
known sea states then it is necessary to avoid an excessive
resonant condition by proper hull design.

The other class of hull vibration is a local effect.
Here specific parts of the ship or certain fittings such as
masts, stacks, superstructure or 'a panel of plating are set
into motion. Depending on the point of view local vibration
can also include the undesired motion of items as small as
light fixtures or stanchionchains. Local vibration can have
the same effects as hull resonance, that is personal discom-
fort and structural and equipment failures. This type of
vibration is not as readily predicted and analyzed as whole
hull vibration and is treated generally after the fact by
locating and removing the excitation or adding local
stiffening, pillars and similar structures. Obviously in
many cases the excitation cannot be eliminated and additional
structure is not feasible. Then the solution is the removal
of the object or relaxacion of the requirements.

It is apparent that the hull of a ship will vibrate
only if an external force is applied to it. When this force

is from slamming, the resulting shudder can be picked up by

PR WP T AR




accelerometers and can be shown to be transient in nature.

A similar force can be generated bv rapidly releasing a
haused anchor or rapidly braking a free falling one. The
transient response and information which can be obtained from
it will be discussed later. Other sources of excitation can
produce continuous vibration which is somewhat more insidious
due to its gradual deleterious action. Such sources include
those whose origin is some out-of-balance periodic force in
the diesel main engine, auxiliary machinery, shafting or
propellers.

It can therefore be reduced in any given instance by
proper attention to balancing during construction. Diesel
engine balancing is a well developed art which depends on the
type of engine, number of cylinders, auxiliaries which may be
run from the main engine and many other factors. Properly
operating turbine equipment runs at angular velocities well
above the frequencies of concern here.

The size of shafting and propellers makes perfect
balancing impossible. In addition other once per revolution
forces can be created if one blade of the propeller has a
different shape than the other blades. Even with a perfect
propeller, the blades work in a mixed wake behind the hull and
the fprce on each varies continuously throughout each revolu-

tion. These varying forces are conveniently divided into two

types according to the method of transmission to the hull.
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i "Propeller" forces are transmitted through the shafting to

struts ané bearings. "Surface" forces are transmitted

through the water to the stern. Both types have a frequency
of propeller angular velocity times the number of blades and
are referred to as blade-rate forces. Extensive work has been
carried out and resultantly the magnitude of these forces can

be calculated quite accurately. For example, the propeller

forces can be determined from lifting surface theory assuming
the hull induced velocity field in the propeller plane is !

known. With the requirement that the fluid particles should

remain in contact with the propeller blades, it follows
that the velocity componeats normal to the surface of the
blades due to the hull induced wake should be egqual to the
corresponding components of the propeller induced fluid
velocities. This requirement can be expressed as a three-
dimensional integral equation. The numerical computation is
}%\ formidable but computer solutions yield the pressure distri-
bution and the blade lift. Integration yields the forces.
It is interesting to note that due to the dynamic behavior
of the shaft, bearing reactions can be an order of magnitude
1 higher than the forces generated at the propeller. All of
J the forces can be kept within tolerable limits by careful
E manufacture and proper attention to stern and appendage
i design and particularly to blade tip clearance. Some

hydrodynamic disturbing forces have to be accepted, however,

as part of the price of mechanical propulsion.
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The excitation due to wave passage is at present an
active area of research. The circular freguency of encounter
of waves, war is dependent on the wave spectrum of the sea
surface and the speed of the vessel. Even for the swiftest
of destroyers the amount of energy available from excitation
of even the lowest natural frequency is very small, the
preponderance of wave energy being at lower frequencies.
Ships of more recent vintage, however, are longer with some
lengths over 1,000 feet and natural frequencies for the two
node mode of between 3 and S radians/sec. There is ample
energy for excitation in this range and numerous studies have
concluded that "springing" as two node vibration is called
is a significant addition to midship stress levels. (1] [12]
[16] [30]

When engines were first put on shipshull vibration
problems arose. Shortly thereafter an effort was made to
predict the frequency for the two node mode of vibration.

As a3 result of very early work by Otto Schlich and by F.W.
Todd, empirical formulae were developed which closely
correlated with observed frequencies. Schlich proposed a
modification to the natural frequency formula fcr a uniform

free-free beam which is

2
wy = (zfrm E14 (1)
/ mL




where SZL = 4,730, E is the Young's modulus, I is the section
moment of inertia, m is the beam mass per unit length, and
L is the length. This formula will be explained more fully

later. Then

(2)

W

where the units are tons for A, feet for L, ft4 for I, and

radians/sec for w Schlick gave the following values for N:

2

ships with fine lines..........1369.

passenger liners...............1252.

cargo ShipPS.ceiicereeesceasseaeaalllsb.

Another early effort which was twin steps in the
directions of simplicity and accuracy by F.W. Todd was based
on

I =CBD (3)

where B is the beam, D is the depth, and C a coefficient

RN

dependent on L/D and the ship type. In the Todd formula,

the virtual mass was used which was a function of the beam

!
1
t
; to draft ratio B/T. So

(4)
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where

A, = A(l.2 + B/3T) (5)

1

Values for B8 are listed in [32].

In the treatment which follows the natural frequencies
of a vessel are determined from offset data and other infor-
mation. The process is an iterative one and can be expedited
by an appropriate choice of a starting frequency. The choice

of this value is from a formula devised by L.C. Burrill.

I ]l/2
AL3(1+B/2T)(ltrs)

E
)

= 80,0007 [

(6)

where

_ 3.5D2[3(8/D) %+9(B/D) 2+6 (B/D) +1.2]
L (3B/D+1)

(7)

The Taylor shear correction term Iy is dimensionless.

The analysis of hull vibration has proceeded far beyond
that which produced the preceding empirical formulations and
this work attempts to explore the advances in considerations

of damping, excitation, added mass and the use of the computer.

11
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2. TECHNICAL TREATMENT

A. Uniform Beam Vibration

As previously stated, the mathematical base for the
analysis of vibrating bodies is large and acceptance of
certain broad assumptions allows c¢omplex problems to be
idealized and working solutions obtained. As more realistic
assumptions are made more intimate knowledge of the process
is obtained. The prices 0f course, is vastly more complex
solution techniques.

Consider a beam of length L. The vertical displacement
at any time, t, is y(x,t) where x is the longitudinal axis
of the beam. The total vertical force per unit length is
f(x,t). The system parameters are the mass per unit length
m(x) and the flexural rigidity EI(x) where E is Young's
modulus of elasticity and I(x) is the cross section area
moment of inertia about the neutral axis of bending at any
position x along the beam. Consider an element of length
dx of the beam. V(x,t) and M(x,t) are the shearing force
and bending moment. The simplifications to be included at
this point are 1) shear deformation is small in relation to
bending deformation and 2) rotary inertia effects are small.

These simplifications are valid if the beam's length
to depth ratio L/D is about 10 or greater and if deflections
and slopes are small. Most ships underway fall into this

category. [l4] Another major assumption is that damping is

12
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small enough to be neglected. This is sufficiently accurate

for vibrating ships particularly in the free vibration
analysis which follows. [12] The small damping present
serves to limit vibration amplitude rather than modify
frequency or vibration pattern. The force equation of motion

in the vertical direction is then

2
[V(x,t)+3¥i§éEl dx] - V(x,t)+f(x,t)dx=m(x)dx2—zigéﬁl

ot
(1)

The moment equation of motion, ignoring the inertia torque
associated with the element rotation is

M(x,t) + a—”";-)’%t—’ dx]-M(x,t)+[V(x.t)+-3-V§—§£ dx] dx

+£(x,t)dx de =0 (2)

Here we assumed that the elemental length dx is small encugh
so that f£(x,t) is constant along the element. Equation (2)

reduces to

IM(x,t)

3% + V(x,t) =0 (3)

Using (3) in (1) and simplifying results in

2 2
I ™M(x,t) + £(x,t) = m(x)3°y(x,t) (4)

Ix 3t
13
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From basic strength of materials it is known that

2
M(x,t) = EI(x) X8 (5)
oxX

(5) into (4) yields

2 2 2
-'a__f[EI(X)‘a—%'t_)]'ﬁf(xlt) = m(x)a z(’Z{’t) (6)
ox 8x 3t

which is the differential equation for the flexural vibration
of a beam. [25] This is a fourth order linear nonhomogenous
partial differential equation. General solution theory re-
quires a number of boundary conditions equal to the order of
the equation. Since this equation must be integrated four
times to get a solution, four arbitary constants are intro-
duced, thus the requirement for four boundary conditions.

In the case of interest the beam ends are free. Thus the

shear and moment at the ends equal zero. From equations (3)

and (5)

32y (x, t)

M(x,t) = EI(x) L =0 (7)
ax
3 3%y (x, £)

Vix,t) = s=[EI(x) &L220] = 0 (8)

IxX

x =0, L

14




The next analytical step is consideration of free vibration.

The equation of motion reduces to

2 2 2
- -a-—[EI(x) Q_Y_(_E‘J..EL] = m(x) 3 y(x,t) (9)
2 2 2
X IxX at
with the boundary conditions (7) and (8). This forms a

classic "boundary value” problem. It is opportune at this
point to explore the possibility of synchronous motion. This
is a motion in which the general shape of the beam displace-
ment does not change with time. That is to say, every point
of the beam executes the same motion, passing through the
equilibrium position and the point of maximum excursion at
the same time. This implies that the deformation g(x,t) is
separable in space and time. Therefore a possible solution

¢ of this boundary value problem is of the form

yix,t) = Y(x)F(t) (10)

- -
S el T

where Y(x) represents the general beam configuration in
. vertical vibration and depends on x alone, and where F(t)
indicates the type of motion the beam executes and depends

on t alone. Introducing (10) into (9)

4 -1 32

Y(x)m(x)

2vge . 1 a%r(y)
ax? T8 g

5 [EI(x) (11)
X

3
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where partial deriviatives have been replaced by total

derivatives. In addition, the variableshave been separated
so that the left hand side depends on x aleng and the right
hand side on t alone. It is apparent, therefore, that both

sides must equal a constant. Let A be that constant, then

2
d°F (t) -
ve and AF(t) = 0 (12)

where, since Y(x), m(x) and I(x) are real, A is real.

Let F(t) be of exponential form
F(t) = AeSt (13)
then substitution of (13) into (12) yields
2_st

As"e - AAeSt = 0

or on dividing by 2eS*t (for aeSt # 0)

(o]

s = /X (14)




If A is a positive number then the two roots (l4) are both

real and equal but opposite in sign. This suggests that

there are two solutions for F(t), one increasing and one

; decreasing exponentially with time. Both of these solutions
are inconsistent with an undamped conservative system so

the possibility of A being positive can be discarded.

] Letting A = -wz we have s = *iw and

L F(t) = A e*Y® + 2,67t (15)

Expansion of this expression where

i . .
2 | el 2 cos wt + i sin wt

yields

F(t) Alcos wt + iAlsin wt + Azcos wt - iAzsin we

(A1+A2)cos wt + i(Al-Az)sin wt

This must reduce to a real expression and will if

Al + A2 =chos¢




F(t) = Ccos(ut = ¢) (16)

Proceeding with the other part of (ll) yields

2

2
d ayY(x), - 2
T e e Y H

0 <x <L

No general closed form solution of (17) exists. How-
ever, for certain special cases solutions can be obtained and
for illustrative purposes the following major simplification
will be made, EI(x) and M(x) are made constant along the
beam's length. This takes all ships with the possible ex-
ception of some box shaped barges out of consideration but
the information derived from such a step will provide some
weight into the problem. (17) reduces under these assumptions

to

a4y (x)
dx

-
=S
=

- gdvx) =0 g% =

(18)

t
H

The general solution of (18) can readily be verified to be

Y(x)=Alsinsx+A2cosex+A331nhex+A4coshex (19)




{ Simplifying the boundary conditions (7) and (8) yield

2 3
d7Y (x) a’y
7—:-1-80 x = 0,L
d%x dx

3 The second and third derivatives of Y(x) are

g

2sin8x-A232cosBx+A3stinth+A432costh (20)

E Yll (x)aAlB

Y"'(x)=A183cosex+A283sinwaiji%rusan+A4B3sinth (21)

At x=0 (20) and (21) yield

Az = A and Al = A3 (22)

At x=L subsgtitution into (20) yields

}E*é | A, (sinhBL-singL) +A, (coshBL-cosfL) =0 (23)

and substitution into (21) yields
Al(coshSL-coseL)+A2(sinh3L+SinBL)=0 (24)

Parenthetically, these two equations in two unknowns can be

reduced to one equation leaving Az in terms of Al

19
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-Al(coshSL-cosBL)
2 ¥ T sinh@L+sinfL

A (25)

Inserting (25) and (22) into (19) yields

(coshB8L~-cosBL)

¥ (x)=A[sinBx+sinh8x sinhRL+sinBL

(cosBx+coshBx)] (26)
From linear algebra the determinant of the coefficients in
(23) and (24) must equal zero for non-trivial values of Al

and Az to exist. That is

sinhBL=-sinRL coshB8L-cosBL

]
o

coshBL-cos8L sinhfL+sinBL

This is known as the "characteristic determinant" and reduces

to

(sinhBL-sinBL)(sinhSL+sinBL)-(coshBL-cosBL)2 =0

After simplification this yields

coshBLcosBL = 1 | (27)

This is known as the "characteristic egquation" and it is
apparent that it can be solved for an infinite number of

values of 8, that is, for Br where r=1,2,3... which are defined

by




4,
N

3

= mi m/EI (28)

4
r

From (28) an infinite set of frequencies, w,., are obtained.
These are natural frequencies. For each Wy equation (26)
yields a prescribed vibration shape Yr(x) known as a "natural
mode."”

The general problem of determining the values of 8 in
(18) for which nontrivial solutions Y (x) exist where certain
boundary conditions are prescribed is called the "characteris-
tic-value" or "eigen-~value" problem with the parameters w

r
being the eigenvalues and the functions Yr(x) being eigen-

functions. {19)])(25] It is to be noted that the eigenfunctions
are precise as to configuration but not to absolute value.
Since (18) is homogeneous and Yr(x) is a solution, then so
is aYr(x) where o is a constant multiplier. A unique property
of these eigenfunctions forms the basis for this entire train
of analytical thought. For the general case of beam vibration
as expressed in (6) this property known as "orthogonality"
is expressed by

L

g m(x) Yr(x) Y;(x) =0 r#s (29)
This orthogonolity is with respect to the mass function which

serves as a weighting term.

21




This orthogonality imp_ies that any possible configura-

tion of the beam can be represented as a linear combination
of the natural modes of the beam. That is

yix) = L L C. Yr(x) (30)
r=

This is true for any and all time t so

yix,t) = 2 nr(t) Y (x) (31)
r
r=1

where the Cr have been replaced by the time functions nr(t)
which are known as the "natural coordinates."”

As previously stated the eigenfunctions are not deter-
mined in regards to absolute value. A convenient normaliza-
tion scheme is such that the eigenfunctions satisfy

L
J m{x) {,(x) Ys (x) =6rs r,s=1,2,3... (32)
o

where srs is the dirac delta function

0 r#s

) =
rs l r=s

In the uniform beam example insertion of one eigenfunction
and eigenvalue into (18) yields

22
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d4Yr(x)
EI e w— w, MY (X) (33)
dx

Multiplying both sides by Ys(x) and integrating over the

length gives

o %, o . (%) ¥y (
Y (x) EI ——=——— = w_omY_(x) Y. (x)
o S dx4 o) o s r

= 8 (34)

Now substituting the assumed solution (31) into the beam

equation (9) and assuming a uniform beam yields

m - d4Yr(x)
z ﬁr(t) m Y. (x) + I qr(t) EI =0 (35)
r=1 r=1 dx

Multiplying through by Ys(x) and integrating over the length
and considering (32) and (34) yields the independent set of
ordinary differential egquations
A_(t) + w2 n () =0 r=1,2,3 (36)
r r r rer=ese
The sclution to each of these equations can be shown to be

n. = cr cos(wrt - ¢r) (37)

where cr and ¢r are determined from initial conditions of the

beam, y(x,0) and ¥(x,0).




Using (37) and (.1l) and setting t=0 yields

y(x,0) = §=l C. cosé . Y _(x) (28)

3
v(x,0) = L tCrw

sin¢_ Y_(x)
r=1 r'r

r

multiplying by mY g (x) and integrating over the length yields

L
Crcosd)r = é m¥,.(x) y(x,0) dx
(39)
Ln
crsinq>r = é 5; Y_(x) ¥(x,0) dx §

which can be solved for Cr and ¢r.

The free vibration case for the uniform free-free
beam has now been completely solved. The natural modes
Y. (x) and the natural frequencies 0. have been computed.
It is the orthogonality of these modes and the fact that
they span the vector space in which they are contained that
makes the expansior. theorems (30) and (31) correct. The
natural coordinates nr(t) can be determined from initial
conditions.

The forced vibration case is slightly more complex.
Here substitution of the assumed solution (31) into the

beam equation (6) yields

24
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- . - d Yv- (X)
z nr(t)er(x)+Z qr(t) EI —=— = £(x,t) (40)
r=1 r=1 dx

By multiplying by Ys(x) and integrating over the length and
considering the normalization integrals (32) and (34) the
following independent set of ordinary differential equations
are obtained
f(e) + win () = F_(t) (41)
r Wrlp r
where

L
F_(t) = /[ ¥ (x) £(x,t) dx (42)
r o T

The solution to (41) generally involves the use of the

convolution integral

nr(t) = Fr(t) sin wr(t-r)dr

Fl
i
Ot

+ nr(O) cos mrt + ﬁr(O) sin wrt (43)

where nr(O) and ﬁr(O) are as determined by (39).

This completes the classical analysis of the forced
vibration of the free-free uniform beam. It is not difficult
to see that significant complications arise when the desire

is present for a closer representation of reality. 1In (7)

25

PR S N o Y g



Ll T

- —

inclusion of the beam theory damping term results in

22y (x, t) 33y (x,t)
M(x,£) = EI(x) SX=54=s + 8(x) 5=t (7a)
Ix Ix“at

where B(x) represents viscous structural damping. More on

this in Section E. The equation of motion (6) then becomes

2 2 2 2 3
m(x) 3 y(g,t) + 3 Z(EI(x)a y(xét)) + 3 Z(B(x)a %(x,t)
3t ar Ix ax Ix“at
= £(x,t) (6a)

A free vibration analysis would proceed with the soclution of
(9) as before but no assumption as to uniformity would be

made. The resulting general solution

P(x) = AF({x) + BG(x) + CA(x) + DJ(x) (44)

can be obtained for sufficiently well behaved EI(x) and m(x).

Boundary conditions (7) and (8) require that

AF"(0) + BG"(0) + CH"(0) + DJ"(0) =0
AF" (L) + BG"(L) + CH"(L) + DJ"(L) =
AF™(0) + BG™(0) + CH™(0) + DJ"(0) = 0

o

AF™(L) + BG™(L) + CH"™(L) + DJ™(L) =
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This leads to the characteristic determinant

F" (0) G" (0) H" (0) J" (0)
F" (L) G" (L) H" (L) J"(L)

FI"(O) G"'(o) Hll'(o) J'"(o)

it il B a0 Lg e i

F'"(L) G'"(L) HIN(L) JIII(L)

This is an equation in yu and its roots are the system
natural frequencies. For each root W there correspond
specific values of A, B, C, and D and therefore a specific
eigenfunction wr. The nature of the four solutions F, G, H,
and J may make the solution of the determinant quite complex.

This is indeed an understatement. The general solution

(44) will be a combination of transcendental functions and
infinite series. Solution of the determinant would be very
time consuming and costly. Additionally, inherent in the
previous work has been the assumption that shear defection
and rotatory inertia are small factors. This is reasonable
for the lowest vibration modes but incfeasingly becomes a
source of error as the mode number increases, say for three
or more nodes. The shear defection, for example, is about
15% of the bending deflection for the lowest vibration mode,
[ that of two nodes for L/D = 15. [l14] For vibration of about

i four nodes shear deflection becomes greater than bending

deflection.
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B. Prohl Sequence

A method which allows account to be taken of shear and
rotary ing;}ia and can be solved for the eigenvalues and
functions is the technique devised by M.A. Prohl in 194S5.
It was originally produced for calculating the angular
velocities at which flexible rotors would resonate. The
actual rotor was simulated by a "lumped mass" system in
which the rotor mass was concentrated at a number of stations.
Station spacing was a matter of convenience though obviously
the greater the number of stations the greater the accuracy.
The stations were connected by weightless rods whose bending
stiffness and shea; characteristics were identical to those
of the rotor section. This effective discretization allows
problem solution by numerical techniques. The procedure is
directly applicable to the analysis of ship hull vibration

as will be shown. Let

m, = station mass plus added mass
Mi = bending moment
Vi = shear force

g; = vertical deflection

@
[}

slope

L. = length between adjacent stations

w = angular velocity

RGA, = shear stiffness which is constant along Li
EIi = bending stiffness which is constant along L,
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Ji = mass moment of inertia

and 1 = subscript denoting consecutive stations.

The equatiors from strength of materials which govern the
motion of the stations and which include shear and rotary

inertia terms are

9. = §. + Ei+l + VL+1Lj_+12 )
i+l i EIi+l 2EIi+l
= - 2
M =¥ Y Vialiag Jiv1 9 %4 (2)
Viiqg = ¥. + 0.L,,, + Miliv12 | VierRien3 | VisaPisl
i+l i i7i+l ZEIi+l 6EIi+1 KGAi+1
(3)
2
Viep = Vg ¥ myuyy (4)

It is to be noted that the mass term m, includes the mass of
hull and cargo and the entrained water or "added mass."
This will be discussed in Section C.

The relationshipsbetween the loading (shear), bending
moment an&.aeflection curves are well known from strength of
materials. As w increases, the effect of including the rotary
inertia and shear deflection terms in the equations becomes
obvious, the shear and moment terms are altered increasingly.

The boundary conditions for this free-free beam are

Ms = M.B = 0
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where subscripts s and B represent the stern and bow respec-

tively (more accurately the after terminus and the forward

terminus). Thus for station one

V=V =0 (5)
2
M L V.V
= s1 11 _ ;
|
. |
M, = M_ + V.L,=J,028, = =Ju28 (7) |
1 s 1817v1v Yy s
2 3
ey +or sostr, Vol N
Y1 = ¥g s“1 ¥ ZEI GEI KGA
1l 1 1
or
¥ = ys + esLl (8)

It can be seen by inspection of equation (1) through

(4) that the values for the bending moment and shear force at
any point in the ship will be a function of Ygr 95 and w in
addition to the calculated ship parameters. 1If, at the start,

f Yg is set equal to one, a unit defection of the stern, then

the equationsfor the shear and bending moment at the bow will

be expressed by the following:
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VB=a'l-b8s i

MB = -C + des

where a, b, ¢ and d may be functions of w. From the boundary

condition requirement it is known that both of these equations

must equal zero. Arbitrarily setting MB = 0 and V_ = a + be

B d
and performing the sequence calculation a number of times for i

B 1 Lol -

various values of w a curve of VB versus w can be obtained.

This curve represents the exciting force VB which would need
to be applied at a specific frequency w to generate a unit
deflection at the stern. The zeros of this curve, that is
where the curve crosses the w-axis, represents the natural
frequencies of the vessel where, with the absense of damping,
a vanishingly small exciting force would set up synchronous
motion. With the natural frequencies obtained the governing
equations (1) through (4) will yield the displacement, shear,
moment and slope for each station. The displacements for
each frequency w, are considered for this discrete case to
be equivalent to the continuous system eigenfunctions and

{ are called eigenvectors. Indeed as the number of stations

becomes large the eigenvector will converge to the eigenfunc- i

tion. As for the continuous case, the eigenvector must be

normalized. A convenient normalization scheme is according

to the following




0 s 7 g Baaid T—T—

-1

2
Myy = 1 (9)

=1

which is the discrete representation of (32) in Section A.

C. Added Mass

The preceding technical treatment of the free and
forced vibration of a ship like beam involved a mass term
which was either uniform or not along the length. This term
- included not only the mass of ship structure, machinery,
cargo, etcetra as might be obtained from a weight curve but

also a hydrodynamic "added mass." When a vibrating body is

immersed in a fluid (air or water, for example) the fluid

surrounding the body is put into continual motion which

requires the expenditure of energy. Under conditions of
synchronous or resonant motion, the body with this entrained
water vibrates. This additional mass serves to lower signi-
ficantly the natural frequencies of the vessel. It is
therefore critical that a determination of this mass be made
and added to that of the vessel. The total mass then, called

"virtual" mass is the sum of the ship mass and the added mass.

[
j This phenomenon has been observed and treated for a few

A objects in classical hydrodynamics. In the case of an

| infinitely long circular cylinder having a cross-section of

‘ radius r translating perpendicularly to its axis with velocity

V in an infinite inviscid fluid it is possible to derive the
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potential flow and to calculate the kinetic energy in the
fluid. It is found to be (20]

T = %pnzzvz
per unit length of cylinder where p is the fluid density.
Letting M' = pﬂrz it is apparent that M' is the mass of
fluid that is displaced by unit length of the cylinder. It
is also apparent that the effect on the cylinder motion from
the presence of the fluid can be allowed for by an addition
of M' to the mass per unit length of the cylinder. An energy

balance equation for forced motion becomes

Srguv? + 2u'v?) = v

where F is the external force.

on simplifying
av
’ ——— L
(M+M )it P

or

Mdv 4av
= F - Mg
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i Here the presence of the fluid is equivalent to a force per

i unit length opposing motion. Obviously this virtual mass

' effect &s only present in the case of accelerated mocions
such aé vibration. PFor a sphere of radius r the kinetic

energy of the fluid has been shown to be [20]
12 3
T -2- 3-“'0 r V2

Here M' = %pan which is one half of the mass of displaced

; fluid. 1In general
M' = C times the mass of displaced £luid
where C is a vertical added mass coefficient. Comparison
of the added mass coefficients for the cylinder and sphere

both of radius r shows the former to be twice the latter.

f

J This reveals the three dimensional effect. The general
’ method for determining the added mass coefficients of a
i

ship hull is a stepped procedure utilizing first a two

dimensional analysis then multiplying by a three dimensional

: correction called a "J" factor which will be discussed later.
i The discrete analysis of the Prohl sequence is inherently

i compatible with this. At each station the geometric and

i material characteristics are assumed to be constant along

the station length. Thus the station can be considered to .
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be a portion of an infinitely long cylinder and the added
mass can be determined. The cylinder is supposed to consist
of the underwater hull cross section and its above water
mirror image. The actual ship added mass is thus one-half
of this computed amount. This analysis is based on the fact
that the fluid motion is streamline throughout, that is,
irrotational. This is reasonable since the amplitudes and
absolute velocities are small.

This assumption of irrotational flow implies that the

curl of the fluid particle velocity vector field is zero, that

is,

where V is the "del" operator. This implies that the
velocity vector field is the gradient of a potential

function
V=90 (1)

Additionally where the flow is incompressible and there are

no sources or sinks a fluid continuity equation can be

written in the form
v

3V
X ., _X
% g -0




or upon substitution of (1) into (2)
726 = 0 (3)

This is the well known Laplace's Equation. The kinetic

energy of any flow where a potential exists is [20]
2
2T = [ p(V¢)“av

where dV is a volume element and p is the fluid density. As
has been shown the added mass can be determined from the
kinetic energy of the flow. It remains then to compute the
potential for the flow around a ship section.

Classical hydrodynamics has evaluated the potential
for a very few geometric shapes. In two dimensions flows
past circles and ellipses have closed form equations and
spheres and ellipsoids of revolution have equations for the
potential in three dimensions. A method which greatly
expands the number of shapes which can be analyzed is called
“conformal mapping” which involves application of analytic
function theory and functions of a complex variable.

To illustrate, let




z =x + iy

(4) then represents a mapping of all points in the z plane

: onto the w plane. If the function £(z) is single valued

then the mapping is one to one, that is to each point 2

where f(z) is defined there exists one and only one value

of w=u + iy in the w plane. The inverse will also be

true if £(z) is analytic and £'(z) # 0. If these conditions ;

are met, then it is also true that relative angle and shape

{
i
?
are preserved in such a mapping (thus the term name "con- b
1
formal"). Right angles in the z plane will be mapped to
right angles in the w plane. Another property of complex
analytic functions is that the real and imaginary parts
satisfy Laplace's equation and therefore can represent fluid
flows. Knowing that the potential and stream functions

satisfy the Cauchy-Riemann equations

! 3 _ 3y
" X Yy
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and Laplace's equation (3) an analytic complex function can
be generated by setting the potential equal to the real part

and the stream function equal to the imaginary part
$(2) = ¢(le) + iW(le)

This function is often called the complex potential. Now

returning to (4) and writing its inverse
z = F(w)

it is apparent that the complex potential %(z) is expressible
as a function of w in the form ¢[£(w)]

Further this function is analytic and therefore repre-
sents a new fluid flow in the w plane. Each of the equipo-
tential lines, boundary lines and streamlines in the original
plane are mapped into the w plane. The orthogonal relationship
is present and thus the actual flow around the transformed
boundary is known. For example, the flow past a two dimensional
body of arbitary shape can be determined (theoretically) by
generating a transformation function w = £(2z) which will map
the points of the boundary of a unit circle in the z plane

onto the boundary of the arbitary shape in the w plane. The

inverse of the function is then substituted into the complex




potential for the flow in the z plane which is well known.

Thus a complete solution for the flow about the arbitary
shape is obtained. In practice the inverse may not be
manageable or only a rough approximation to the desired
shape can be transformed from the unit circle. Cross-
sections of ships can, with good accuracy, be transformed
from a unit circle however.

The first and definitive work in this area was pre-
sented in 1929 by Professor Frank M. Lewis in the Transactions
of the Society of Naval Architects and Marine Engineers. The
language of the paper is a bit quaint and some of the gques-
tions raised have long since been answered, but the method
presented for computation of added mass has seeg-only very
minor modifications to the present day.

Let x,y be the coordinates of any point in a two
dimensional flow and ¢,y the values for the velocity potential

and stream function at the same point. The equation

2 =x+ iy = £(¢ + iy)

where f designates an arbitrary function represents a two
dimensional irrotational flow. The flow in the x, y plane
can be further transformed to any other plane X, Y by the

relation

Z =X+ iy = fl(x + iy)
39




where fl is another arbitratry function. Z is of course

still a function of ¢ + iy.

. Take the flow past a unit circle

er in polar form

and transform it by means of the relation

~

2 = X+i¥ = Z+%+§§ = z+az L+bz™3 (5)
Now

z=x + iy = reie = eie (6)
so

X+ i¥ = et? + ae71? 4 pemeit (7)
Since

e:Le = cosgf + isin®




it follows on equating real and imaginary parts that

X = (l+a) cosf + bcos3t

(8)

Y = (l-a) sin® =~ bsin3®

These are the parametric equations of the transformed circle.

The semi-axis parallel to the flow (6=0) will be of length

and the semi-axis perpendicular to flow (6=7/2) is
Y, =1-at+ b
so the ratio of half beam over draft will be
l-a+b

H=3/D =I5 (9)

For the flow past a unit circular cylinder ¢ and ) are given

by
1 1 .
o = U(r + ;) cos§ Y = U(r - ?) sin8g

and on the boundary n=1




¢ = 2Ucos9 Yy =0
This represents the flow at the boundary of a stationary
cylinder and, also represents the flow at the boundary of

the transformed cylinder. To obtain the solution for a

position of a uniform flow of -U must be made. For this

uniform flow
$ = -UX and ¢ = =-UY

i so using (11) and (8) in (10)

¢ = U[(l-a)cosd - bcos3d]
p = =U[(l=-a)sing - bsin3g]
The kinetic energy of the fluid is

2 2
2T = o[ (V} + V) dxdy

.j and since
é
; V-ﬁ Vaig
X Ix Y Yy
- 38,2 | (29,2
2T = oSS [(5) " + (gy) ]dxdy

(10)

moving cylinder in a fluid stationary at infinity a super-

(11)

(12)

(13)




An application of Green's theorem allows the double
integral to be replaced by a line integral computed on a
path which encloses the area. In this case the £f£fluid is
hounded by the cylinder surxface and by a circle whose

radius is allowed to approach infinity.

2T = pﬁﬂ(%%)z + (%%)zldxdy = - of ¢§§ ds (14)
C,+C
1*C;

where ds is an element of path length, 3n is an inwardly
pointing element normal to the curve, C1 is the cylinder

circumference and C, represents the circle with radius

2
approaching infinity. Since the fluid is at rest far from

the cylinder the line integral over c, will be zero. Since

the kinetic energy is given by

27 = o/ 63y (15)
€1

which considering that the expressions for ¢ and y are

dependent only on 8 equals

g=2T
27 = pf Ul (l-a)cosg6=bcos38] [-U[(l~a)cosf=3bcos38]]1d8
0
= 10%s [ (1-a) 2+3b?] (16)

PO T AL M




o s

If the semi-axis of the transformed circle is to be B

instead of (l-a+b) this energy becomes

2
27 = 1up[(l-a)2+3b?] 2
(l=a+b)
2 2
= nungz[lilél;ﬁig_] (17)

(L-a+b) 2

As previously mentioned the kinetic energy of flow past a

circular cylinder of radius B is

2T = WUZDBZ = M'U2

therefore the virtual mass coefficient for the transformed
circle is

(1-a2)+3b2 (18)
(1-a+b)

C =

and (17) becomes

27 = C‘.’rszU2 = M'U2

and the adc mass per unit length is

M' = Cﬂsz




For the ship hull floating on the surface this is reduced

by one-~half so

M = %CWBZD (19)

Solving (18) and (9) simultaneously for a and b yields

] b = H["(ZCH;H+1)+(H+1)/4C-3] (20)

b 2(CH -HZ-H-l)

' (1-H) (1+b)
s a = =T (21)

and the parametric equation of the transformed circles when

of draft D instead of (l+a+b) are

- (l+a) cosf+bcosis

(22)

7 = D[(l--a)s:i.rx()--bsirﬂe]

(1+a+b) (23)

X in this case being vertical and the line 8=0 coinciding
with the X axis. 'In [22] is a collection of graphs for
various values of H(half beam to draft ratio) and C. The

H values correspond to common ship cross sections. For each
of the paired values of C and H the constants a and b were
computed from (21) and (20) then the shapes of the transformed
circle were plotted from (22) and (23) for values of 3 from

0 to 7/2. The added mass for any ship section is then
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computed as follows:

a visual comparison of the shapes

in [22] is made with the body plan for the station. Of
course, the body plan must be properly dimensioned and the
value of H known. The C value'for the actual ship section
is obtained by interpolation between adjacent curves and the
added mass per foot for the ship section is obtained from
(15) remembering that B is half beam. This procedure is the
basis for present day calculations. Some refinements which
make the procedure programmable are presented in a paper by

L. Landweber and M. Macagno in 1967 in the Journal of Ship

Research. An equation of the form
A A A
1 2 3
Z =W+ ==+ ==+ « . . (24)
% w3 ;3

(of which (1) is a truncated version) can describe either

the mapping of a hull shape to a circle or a circle to a

hull shape.

Furthermore,

The constants Ai will of course be different.

inversion formulas exist which enable the co-

efficient of one transformation to be determined if the
inverse coefficients are known. Let (24) represent the
mapping of a wetted hull-shaped contour consisting cf a
wetted hull and its mirror image across the waterline from
the z plane into the w plane. S is the bounded area of the
hull contour and T, is the radius of the circle in the w

plane. An expression for the added mass coefficient Cy is [21]
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1 2 S
CV = 3—2-[2(ro+Al)-ﬁ,-] (25)

Let the inverse of (20) be of the form

1 2 3
T=z+_+__+_“. (26)
z z3 z5

A method of determining the coefficients Bi is based on the
property that, among the closed curves obtained from (22)
by varying the coefficients, the curve which will bound the
maximum area will be a circle. Let the ship curve be

termed C. and its mapping in the t plane be termed Cl. If

i T
l z = r(e)ele then

6 Zdz =4 r(dr+irde) = i é r°de = zis

Cop Cop Cop

where z is the complex conjagate of z. Simlarly for Cl

¢ dt = zis (27)
c 1
1

where Sl is the area hounded by C;- Also

| _ _ B, B, B
| T=2 + :l + :% + :% e e (28)
o F4 ¥4 4 {
|
5 and
3 r4 2
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After substitution of (28) and (29) into (27) the condition

that sl be a maximum that is

3s
-—=0 i=l,2,.-.n

1
9B;
yields a set of n linear equations for the coefficients Bi’

i =1 to n. Standard matrix manipulation techniques are
available for then determining the Bi' The difficulties

with this method are that the convergence rate with respect
to n is relatively low and the accuracy of some intermediate
terms decays with increasing n. The solution to this problem
is to cut off the first mapping at n=8 and then map the
nearly circular curve Cl from the t plane into a much more

nearly circular curve Cz in the w plane where

The Ci are determined in much the same way as were the Bi'
The coefficients A of equation (24) can then be determined
from the intermediate coefficients By and C;. The added mass
coefficient Cy is then determined from (25).

This thesis makes use of the above outlined procedure
to compute the added mass for vertical vibration of hull

sections as defined by offset data for each section.
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Another significant item in this treatment is to
calculate the three dimensional effect mentioned briefly

earlier. Lewis, in his paper, talks of a "J" factor where

; = Actual Kinetic Energy of Fluid
Kinetic energy of fluid if motion
is confined to transverse planes

J obviously depends on the underwater configuration and will
approach unity as the ratio of length to beam gets larger
and larger. That is to say as variations of the hull from
section to section diminishes.

An ellipsoid of revolution is one of the very few
shapes for which an exact solution has been obtained for the
three dimensional flow. It is this shape that is used for
the computation of the J factor for a vibrating ship. As
the vibration mode goes up, and the number of nodes increases,
it is apparent that the movement of water becomes more
longitudinal and less transverse so that Ji values, where i

represents the ith

mode, will decrease. The calculation of
J2 and J3 was made in the paper by Lewis. The treatment is
similar to that presented for the two dimensional case in
that an equation like (1) for the kinetic energy of the fluid

i used

27 = -pJ’M%% ds (31)




where in this case ds is an element of area. The solution

of this equation can be obtained due to a closed form solu-
tion to Laplace's eéuation having been found for this flow.
That is, the potential ¢ for vibration of two and three nodes
can be substituted into (31) and values for the actual three
dimensional kinetic energy can be calculated. The denominator
in the expression for J (30) is computed by summing (integra-
ting) the values obtained from a two dimensional analysis of
cross sections of the body. Lewis tabled the values of J

2
and J3 for a variety of ratios of L/B. The values are

shown in Table 1.

The analysis performed by Lewis required that the
vibrating cross section remain in the same plane, that is,
the motion results from pure shear. This does not reflect
reality and consequently there has been much discussion on
the subject beginning with a written comment of Lewis' paper
by his peer J. Lockwood Taylor [22][30] and continuing to
the present day.

Current procedure [(32] involves the determination of
J by accurate measurement of the natural vibration fregquencies
of a given bedy in air and in water. For Lewis' circular
ellipsoid of revolution a simple analysis is possible because
the distribution of added mass is directly proportional to
the distribution of actual mass (CV = constant along the i

entire length). The mass distribution is
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MB = nrzpB (32)

where r is the radius of the circular cross section and a

function of longitudinal position, p is density and subscript
B refers to the body. The corresponding added mass is

2
M' = CVJwr P (33)

where Cv=l and subscript w refers to the water in which the
body is immersed. J here is considered to be a constant
value applied at each cross section so that the actual three
dimensional added mass is obtained from the two dimensional

analysis performed. From basic vibration theory (22]

w = vE/M

n

where K represents stiffness and M mass. Put another way

()" = (34)
E; M

where f represents frequency and subscript a represents air.

This equation for the circular ellipsoid considered is
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TABLE 1

LEWIS TOWNSIN LEWIS TOWNSIN
L/B 3, 3, 3, 3,
L Y
i
: ® 1.000 1.000
* ‘ 30 .947 .924
] 22.4 .954 .932
E 16 .883 .842
i 15.82 .922 .890
; 12.95 .897 .859
' 12 .837 .793
10.02 .859 .808




£ 2 p InrzdL+Jo InrzdL
(—a) = B 4dw
fw pBIvr L
Jp
=1 + —2 (35)
Py

where the vibrating mass in air Ma is assumed to be due only
to the mass of the body and 4L is differential length.
Equation (35) is reduced to

Te 2 -1 Z—B (36)

w w

Values from this equation obtained by R.L. Townsin [32] are
listed in Table 1 and a comparison with the Lewis values
shows » significant decrease reflecting the fact that no
restrictions or assumptions were made concerning the cause
of the motion. For ship-like vibrating bodies the procedure
is somewhat more complex. Frequencies in water and air ave
both measured experimentally and calculated. For the water
calculation several assumed values of J are used to obtain
a plot of Jn versus £. A reduction constant obtained from
comparison of the two air frequencies is used to correct
the measured water frequency. This abscissa is used to
obtain the Jn ordinate from the Jn versus £ plot. Townsin
proposes and this thesis employs the following empirical

formula for Jn as a function of B/L
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Jn = 1.02 - 3(1.2-1/N)B/L n=2,7

4 This formula agrees closely with data through J,.
The remaining consideration which is presented deals

; with a "sectional longitudinal inertia correction" labelled,

by the author, ji (the lower case to reflect a relation with ?

i the Lewis J factor). In most determinations of actual added

mass per section an equation of the form of (19) is consis-

tently used. That is

(38)

(39)

(40)
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where m, represents the 2-D section added mass, Ci and Bi

are the section added mass coefficient and half beam respect-

[

ively, M' is the 3~-D added mass for the entire body and Mi
is the supposed 3-D section added mass. The departure from , %
reality in (40) is apparent. J of the entire body represents

a fixed fraction which when multiplied by the added mass of

a 2-D flow gives the actual 3-D added mass for the entire body.

There are some sections of a vibrating ship where the £fluid

motion is in fact very close to two dimensional and the added

mass should be very close to that calculated from (38). At

other sections, particularly near bow and stern, the flaw

departs quite significantly from a pure two dimensional flow

and the added mass would be less than that obtained from (40).

To take into account these aspects the author proposes to

use ji'

Let the added mass at section i for a 2~D analysis be
' 1l 2
m; = iciwaio (38)

and let the actual 3-D added mass be

1l 2 .
M; = icinipji (41)




then
N N
M' =2 MY = L mj (42)
j=1 *  i=1 P

The requirement that equations (39) and (42) yield the same

value for M' requires that

N N
- ] = ]
J ;=l L Esl miJ; (43)
Let
j; =1 =-d;b (44)

where di is a difference factor computed for each section by

N
' -m’ 1. nt m!
4 = [ miggmmpdrmi-ms D1~ a1
i 2 p3
N
ni m!
B~y | i=1 *
= 3 + N (45)

and b is a normalization constant to be determined by substi-
tution of (44) into (43). 1In (45) N is the number of stations
and n is the number of nodes in the vibrating mode. As the
number of nodes increase three dimensional flow increases at
all stations so ji-tJ. An example will serve to illustrate.

Assume that an analysis has determined the 2-D sectional
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added masses to be as listed in column 2 of Table 2. The
difference factors from (45) are listed in column 3. Sub-~-

stituting the totals of columns 2 and 4 into (43) yield

.81(692) = 692 - (28380 + 47886n)b i

b = 131.5/(28380 + 47886n)

3

b(x10 °) n
4.633 0
1.723 1
1.059 2
0.764 3

Column 5 lists Mi or the miJ. Columns 6, 7 and 8 show the
actual added mass at each station for vibrations of 0, 1 and
3 nodes respectively. Notice as n increases the added mass

approaches the values in column 5.
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D. Wave Excitation

The forcing function f(xi,t) used in the previous
treatment represents the total external force per unit length
at any section Xy and any time t. It includes the many effects
of the waves encoﬁntered, the motion of the ship and the fluid
flow. It is, as such, very complicated and the subject of
much research. [12]([16]

The most simple formulation of wave excitation would
be due strictly to buoyancy changes from wave passage.

v
f(xi,t) = [ y 4dv
v

o

where an elemental volume dV is equal to bidy to give

g(t)
0

where bi is the breadth of the ship and a function of vy,

¢ is the wave height at any time t and y is the specific
weight of water. It has been traditional in naval architec-
ture to use a trochoidal wave [14] to model the wave form
for deep water waves. With sharper crests and flatter
troughs it makes a very close approximation to the actual
sea surface. However, this wave form cannot be derived from
the velocity potential for surface waves and the parametric

equations which describe a trochoid are an additional

complexity in any analysis.




A wave form which is more manageable and is derived

from hydrodynamic theory of waves of finite amplitude was ;

prepared by G.G. Stokes in 1847 [14].

-2
g = Ecos(wt-Kx)+5%- cos2 (wt~-Kx) (2)

where 7 is half wave height from trough to crest and the
f circular frequency w and the wave number K are related by
2 2

; K=uw/g= 21r/Lw = g/V

‘ (3)

for deep water waves where Lw is the wave length and Vw is
the celerity or wave velocity. 1In (2) a simple traveling
cosine wave is modified by a harmonic which is half the

length of the fundamental but which moves with the same

-

celerity. This wave form has the same sharp peaks and wider
troughs as does the trochoid but the fact that it is nonlinear
rf with respect to height makes it somewhat less attractive. 1In

the program suitable approximationswill be made.

It is well known that the pressure in a still body of

water is equal to vyh where h is the distance below the still

surface. It is also well known that in deep water the water

. e —

particles have a circular motion which serves to reduce the
L pressure according to Bernoulli's theorem. That is, for a

simple harmonic wave,
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p = Yh + Tye  cos(wt-Kx) (4)

This is the Smith effect. The pressure on the hull d&g to

the wave passage is then

P =gye KB (5)

where § is given by (2). The buoyancy due to this pressure
is an integration of the vertical component of the pressure
over the surface area of a hull slice of unit length. That

is
s - -
f(x,t) = -f p_n-j ds
w
0
where n is an outward pointing unit normal to the hull and
j is the unit vector in the positive y direction. For a
ship vertically sided to the baseline this reduces to
f(x,t) = pw(T)b
or with (5)
KT

f(x,t) = bgye (6)

where T is the draft.
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Since the pressure given by (5) is seen tc, in effect,
reduce the waveheight &, an effective wave height Z* can be

defined so that
fl(x.t) = yhg* (7)

where the assumption is made that the ship is vertically
sided at the waterline so that b is constant over the range
of ¢*. The subscript 1 indicates that this buoyancy force
is only part of the total excitation. ¢* is given by [16]

0
b

o* = zllg / zeYay) (8)

-T

where z is the hull offset and y is distance to the design
waterline. The integral serves to weigh the determination
of the reduction factor by the hull shape. For a section
with a vertical side to the baseline (8) would reduce to

0

z[1-k / eXYay)
-

;*

0
g[1-s eKyKdy]
-T

z[l=(1l-e
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so that

£, (x,8) = ybze KT

which is identical to (6). The discrete form of (8) is
= X Ryj
g* = ¢ [1 5 z z,.. e <1 Ayi] (9)

and for the discrete forcing function per unit length

n
= = X Ryji
fl(xj,t)- ijc*-ij g (1 . z z, e Ayi] (10)

j i=1

-

where 7 is given by (2).
The behavior of the bracketed term is to reduce the

wave height as K increases. For small K the term is very

close to 1. Consider the straight sided vessel again. A

reduction in wave height to one-~-tenth of the long wave value

requires

K= T/2.30
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For a draft of 20 feet K = B8.70 which corresponds to a wave

length of .72 feet. So as K increases the correction term

approaches zero. Thus there are two major effects taking

place to reduce the energy available for excitation of the
higher modes of a ship hull. First the wave height decreases
as the frequency increases and the effect on an immersed body
decreases as the frequency increases.

Due to the logarithmic decrease in (9) the discrete
form of the correction term, hereinafter called D, causes
some convergence problems, that is,as K increases D fails to
approach zero if the increment Ayi is too large. In the pro-
gram four foot waterlines are used and the following slightly

modified expressions must be employed.

e-KTS

(11)

Equation (11l) has the proper limiting values and
accounts for the hull shape also.

There are two other parts to the forcing function to
be presented. As the wave passes down the side of the ship
the vertical component of the orbital velocity has a damping

effect and this force can be expressed by

fz(xj,t) = (N'-vdm'/dx)Z* (12)
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where (N'-vdm'/dx) is the sectional hydrodynamic damping
coefficient which will be discussed later and %* is the
time derivative of the effective wave height. The third

force is due to the inertia of the added mass
f3(xj,t) = m5 ] (13)

where £ is the effective vertical acceleration of the wave
height. As was discu. sed in Section C the added mass may be
incorporated into the equation of motion in two ways, either
as an addition to the mass of the vessel and placed on the
left hand side or as an exciting term and placed on the right
hand side. The superposition principle allows the separation
of the added mass effect in this case since two separate
motions are being superposed, the vibratory motion of the
vessel and the harmonic motion of the waves.

In (13) m% is the added mass calculated for immersion
to the still water waterline. As the wave passes, the draft
at a section changes and so does the added mass, but here
the sides at the waterline are assumed to be nearly vertical
and the change in added mass is very small so the effect can
be neglected.

The total excitation force is then

3

£(x,t) = L fi(x,t) (14)
i=1

g e N oy LN




and the modal excitation force is obtained by multiplying

by Yr and summing over the ship length as shown in Section A.

N
F_(t) = i=l Y (x;)E(x;,t) (15)

The correct surface height, velocity and acceleration are

=2
DZcos(wt-Kx)+z§—§— cos2 (wt~Kx)

g* =
t* = -DuTsin (wt=-Kx)~DKwZ’ sin2 (wt-Kx) (16)
- 2— 2=2
% = =Du” zcos (wt-Kx)-2DKy 7~ co0s2(wt=-Kx)
and
f(xi,t) =ybic*+(N'—Vdm'/dx)t* + miz*
=(yb,-m!D sz)cos(wt-Kx)
i 7ivie e
-DimE(N'—Vdm'/dx)sin(wt-Kx)
YD KT 22
+( 3 - ZDin 4 mi)COSZ(wt-Kx)
(17)

-DiKuJEZ (N'-Vdm' /dx) sin2 (wt-Kx)
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D, wz (N'-Vdm' /dx)

i2 ©
~2
P;D Kz 2-2
Gi3 = — 77— - MRDjug
G;4 = -D KT’ (N'-Vdn'/dx)

then
f(xi,t) = Gilcoswtcosxx + GilsinmtsinKx

+ GiZSantcost - Gizcoswt51nKx

+ Gi3c052mtc052Kx + Gi351n2wT51n2Kx

+ Gi451n2mtcoszxx - Gi4c032stxn2Kx

Substitution into (15) yvields

N
gr(t) = coswt §=l Y&(xi) Gi1c°SKXiA

N

+ ginwt I Y (x.)G,,sinKx.B
i=1 17741 i
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sinwt z Yr(xi) Gizcostic

- coswt I Yr(xi) GizsanxiD

+ cos2wt I Yr(xi) Gi3c052Kxi

+ sin2wt I Yr(xi) Gi3s.1n2Kxi

:
F +
i
{
?
?4
E
]

f + sin2wt I Yr(xi) Gi4c052Kxi

- cos2wt I Yr(xi) Gi4sz.n2Kxi (20)

or

i Fr(t) P cos(wt-el)

rl

+ Przcos(mt-ez)

L L S R Y

+

Pr3cos(2wt-63)

e .

+

Pr4cos(2ut-e4) (21)




Aak. £

rl

r2

r3

r4

N

N
_ 2 . 2.1/2
= {(Z Y, (x;)G; cOSKx,) +(§_ ¥, (x;)G;;sinkKx,) }
i=1 i=1
N N
_ 2 . 2:1/2
= {(§=1¥E(xi)Gizcosxxi) +(§.= (xi)Gi251nKxi) }
(22)
N N
_ 2 . 2.1/2
= {(Z Yr(xi)Gi3c052Kxi) +(;_ Yr(xi)Gi351n2Kxi) }
i=1 i=1l
N N
_ 2 . 2.1/2
= {(§=1Yr(xi)Gi4coszxxi) +(i=er(xi)Gi451n2Kxi) }
N
iler(xi)GiISLnKxi
arctan N
I Y_(x.)G,,cosKx,
i=1 r**i’ Vil i
N
g Yr(xi)Gizcosti
= gp-arctan ;=l
T Y. (x.)G,,sinkx,
i=1 r*“i’vi2 i
(23)
N
§=1Yr(xi)Gi3SLn2Kxi
arctan
N
T Y _(x.)G,,cos2Kx,
i=1 r'"i’vi3 i
N
X Yr(xi)Gi4coszxxi
T -arctan ;’l
T Y (x,)G,,sin2Kx,
j=1 T i’ 7i4 i




The Pri i-1,2,3,4 are known as "participation factors"
and were obtained by weighting the wave forces by the mode
shape. The factors indicate the participation of the wave
forces in exciting a vertain mode. Solution of the independent

equationsfor the modal response as discussed in Section C

yields
4 P_.cos(wt=8.+c)
np(t) = I Fre—e b, 173 (24)
i=1 ((mr-w ) +(Crw) )
where Crw
€, = arctan (—2—5—)
W -
r

The most significant part of this exact time history
is the magnitude of the response. Equation (24) may be mani-
pulated to yield the amplitude of the sinusoidal response

4 4
- 2 o 1241/2
L {(z Pricosei) + (Z Pri51nei) ) (25)

i=1 i=1

The nonlinearity of the expression for the height of
the sea surface can be eliminated by dropping the modifying
harmonic. Although the simple cosine term is not an exact
representation of the sea surface it is ideal for representing
the many component waves of the general sea. It also allows
the principle of superposition to be applied and for these
reasons the program encorporates this modification. Result-
antly G3=G4=P3=P4=0 with significant subsequent simplification

of the program.
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This analysis assumes that the presence of the vessel

does not disturb the wave motion which it, in fact, does.
This, then, provides an upper bound to excitation and real
forces will be less. How much less is a matter for speculation

and research.

E. Damping

It would not be incorrect to say that relatively little
is known about damping associated with ship hull vibration.
To be able to calculate the amplitudes of desired quantities
such as stress levels, bending moments and displacements,
the distribution of damping in the hull, cargo and surrounding
water should be known. The available literature is sparse,
(4] [11] [16] [17] but it is generally assumed that energy is
dissipated thru a number of mechanisms. A convenient cate-
gorization divides the mechanisms into those which are hydro-
dynamic and those which are not. Water friction and the
generation of both surface and pressure (sound) waves are
the hydrodynamic effects. Structural and cargo damping are
non-hydrodynamic. Another possible way of differentiating
the loss mechanisms is to determine where the damping takes
place, either within or external to the hull.

As described previously, superposition of the natural

modes of the ship yields for vertical vibration

0

yix,t) = ﬁ-o Xf(x)nr(t) (1)
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where Yr(x) is the normalized mode shape and nr(t) is the

natural coordinate which incorporates the natural frequency,

; initial conditions and modal damping factor into a time de-
pendent function. Motion for r=0,1 is heave and pitch

] respectively. Fortunately the damping in ship hull vibration

is relatively small so that calculations for the natural

TR

modes and frequencies can be carried out assuming no damping

without significant error. This is especially true for the

lower modes.

Other qualitative information concerning damping has
been known for some time. Higher modes are less affected by
hydrodynamic damping due to in part the smaller displacements

involved. In these modes structural damping is the major

factor. The situation is reversed for lower modes. The
generation of sound waves increases as the vibration fre-
quency goes up Lut this remains a very small quantity through-
out the range of interest, that is w less than about 35 rad/
sec. For rigid body motion there is, of course, no structural
damping. If vibration analysis is of concern and sea-keeping

is not then discussion can be limited to distortion modes

) r = 2. Surface wave generation increases with decreasing w.
For even the largest of vessels, however, wy is greater than
about 2.5 rad/sec and wave making damping is far less than

structural damping. [17]
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In a discussion of damping it is common to refer to
the logarithmic decrement ¢ associated with a mode or given

damping mechanism.
§ = 2mg//1-32 = In(x;/x,) (2)

where ¢ is the critical damping ratio associated with the mode
or mechanism and 31 and X, are values of the response separated
by one wave period.

Since struc:ural damping is the significant factor and

appears to be manageable there has been some effort directed
at its analysis.[4] This damping derives from hysteresis in

the steelwork. The logarithmic decrement for this is a power

function of the stress. For levels of stress less than about

30,000 psi

R SV T T,

‘“ ‘ § = Co (3)

where C is a material constant and n = 3. At higher stress
the exponent increases rapidly and other effects such as

stress history become important. For steel plate (3) becomes

6 x 100° 2 55 1.6 x 107¢

73

j e - IR Y <& <> " cw v : e A ——- . ~
' - EEE . e T T T e QECT FIPCT A s 5 YR ~
e g o 2 o . . * i ! MREL




hiaith® S

T T— e

T e e m et e — . —

Values for a welded structure go up with the complexity of

the structure and may lie in the range

3 < < 2

9 x 10~ § =3 x 10
This dramatic increase is explained in part by the high
residual stresses from welding and stress concentrations at
joints. There may also be as yet undiscovered hysteresis
effects which are structure related instead of material
related.

Ships of current design are usually welded but in
riveted ships coulomb friction at the joints is very important.
In traditional analysis this dry friction is treated differ-
ently from other damping effects. The coulomb damping force
is not a function of velocity rather it has a constant value
for all velocities and varies only in sign. This directional
force is treated as an excitation force which opposes motion
and equations for each direction arc solved. One test
concluded that riveted ships have twice the structural
damping of welded ships.[l7] This would obviously vary
with ship age and history.

Experiments have been performed on loaded and unloaded
vessels to determine cargo damping effects. Results show
that cargo does increase the logarithmic decrement but for-

mulations which have been made to quantify the effect have

failed to predict well. [17]
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P




S ey e

-t L

The literature separates the generation of surface
waves from the other damping mechanisms. It is that part
of the hydrodynamic damping that can be derived from potential
theory and the only part of ship damping with a solid mathe-
matical base. However, the literature goes on to say that in
the distortion modes the natural frequencies are relatively
high and the displacements so small that for most existing
vessels the effect can be taken as zero. A bit ironic. In
eguation (1ll) of Section D the term in parentheses (N'-vVdm/dx)
is the sectional hydrodynamic damping coefficient according to
the strip theory approach used in this paper. N' is a para-
meter which quantifies the generation of surfacq_waves and
Vdm/dx is a forward speed correction term. V is velocity and
m' is the added mass. This coefficient, it is seen, varies
along the hull length and this distribution of damping effect
is important for computation of exciting forces. The normal
mode analysis in Section A required that the damping be pro-
portional to the mass and stiffness distribution. Otherwise i
the modal equations would not be uncoupled. Since the pre-
dominant damping source is structural this assumption is not
too far off, even though the distribution of the sectional
hydrodynamic damping is weighted at the bow and stern. N' is

nearly zero amidships but gets larger at the bow and stern.

The effect is still very small. Only the forward speed
correction will be considered in this work and consequently

the amplitude obtained will be slightly high.




Consideration of equation (2) brings up the fact that
in much practical usage all the damping effects are lumped
into one parameter and its value obtained from a spectral

analysis of stress data taken from a vessel which is loaded

impulsively so that all modes are excited. Several full scale
measurements from slamming or mechanical excitation (anchor §‘
drop test) have been obtained and modal damping constants _

calculated. [(11] [17] Some convenient empirical relations have

been devised from such experiments and other means so that

values for the cr can be obtained quickly. From basic vibra- <

aer e

tion theory [24]

Cr = Zmrdr

2w_§
- r'r (4)
/(21r)§+o“r

and a formula for the logarithmic decrement which seems to

give intermediate and hopefully representative values is

(171]

2 w 172

r w<3l.5 (5)

Gr = 1.065 x 10

R

Equations (4) and (S5) will be used in this paper to determine

the cr.




PROGRAM OVERVIEW

Estimation of the parameters for use in the Prohl

sequence calculations is a choice made by the author. The
values of m, A, I and J for each section could be obtained
from scahtling lists and a weight curve but their assembly
would be time consuming and defeat one of the purposes of
this work, that is rapid vibration information with a minimum
of data required as input. Therefore the subroutine HULL for
estimating these gquantities has been incorporated into the
program. Input required is station spacing, number of
stations, displacement, thickness of side shell, main deck
and bottom plating, offset data and deck edge heights for
each station.

Sectional mass is computed by first obtaining the
total sectional area from the offset data for each station.
A partial sectiocnal area is computed by the use of the five-
eight rule [14] and the offset data. An additional area is
computed which is equal to the deck edge height minus the
highest waterline for which offset data is input times the
offset at that waterline. The sectional area equals the
sum. A uniform permeability is a reasonable assumption for
naval ves;els so that the mass is proportional to the area
at each station. The sum of the sectional areas is divided

into the displacemen: to get an area density. The density

is then multiplied by each sectiocnal area to obtain a




sectional mass. No attempt is made to account for super-

structure concentration of mass or its effect on stiffness.
A two beam ship model would be the next step in sophistication.
The mass moment of inertia, J, about the neutral axis
is determined by first assuming that the beam cross section
has a uniform distribution of mass. Naval vessels are
characteristicly longitudinally framed. In the midship
section the hull strength is provided by the main deck,
side shell and bottom plating and their associated longi-
tudinals. A thirty inch spacing is not uncommon and the
stiffener area to plate area ratio is about .3. So, the
effect of longitudinal is taken into account by increasing
the plating thickness by 30%. The neutral axis is determined
by a calculation of the first moment of the hull steel. The
sectional area density is then used along with the offset
data in a second moment calculation about the neutral axis.
Each hull cross section is divided by waterlines with four
foot spacing. The area from the baseline to the first water-
line is assumed to be bounded by a parabola. All subsequent
areas are assumed to be trapezoids. The distance from the
neutral axis to the centroid of each incremental area is
computed, squared and multiplied by the area. The second
moment of the area about its own centroid is computed. The
sum of all these terms equals the sectional second moment.

This is multiplied by the sectional area density to obtain J.
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The moment of inertia, I, is obtained by a second

moment calculation of the hull steel around the neutral
axis.
B

The effective shear area KA in a hull shape is very
difficult to determine. Traditional practice has been to
use only the vertical side shell and any continuous longi-
tudinal bulkheads in the calculation. Analytically obtained
values for K are for simple symmetric shapes only.[l5]
Calculations by the author for box type sections with
various side, deck and bottom thickness and beam/draft ratios
shows that an approximate value for the effective shear area

-~

can be obtained from the following

(KA)i = ,87(2tD) = 1.74¢tD (1)

where t is the sideshell thickness and D is the depth. Then

for steel
KaG; = 1.74tDE/2 (1+u)
or
8

KAGi = 2.35 x 10" tD (2)

for t in inches and D in feet.
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Subroutine NMODES first computes the virtual mass

of each station which varies with the mode of vibration for
which a solution is sought. Burrill's formula [14] is used
to estimate the frequency of two mode vibrations and the J
factor for that mode is formed and virtual masses computed.
Equations (1) through (4) of Section B are solved for each
station given a value of w in the following way: the shear,
bending moment, displacement and slope at any station i are

assumed to be of the form

<
"
[*1]
+
o
(5]

(3)

o~

0
o
+
H
<D

@
i

i =9y *hydg

where as is an unknown initial slope at the stern. Then (1)
through (4) of Section B are used to determine the conditions

at station i+l

. = .+ m. .
al+l al lw el

. = b, + m.: ,
i+l b; My fl
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s = X
s d.
N
and
b..c
a, + SN 0

at a natural fregquency.

2
.. - g, - ciL . ai+lL
i+l i EIi+l §EIi+l
2
h. ., =h, + ik + Pist
i+l i EIi+l fEIi+l
-C =-c+a, ,L~-2J w? g
i+l i+l i+l i+l
d,., =d, +b, . L=-2J w? h (4)
i+l i i+l i+l i+l
2 3
. ce. + gL ciL . ai+lL ) ai+lL
i+l i i ZEIi+l 6EIi+l KGAi+l
2 3
f o ehL e i L U5 ol TS b
i+l i i ZEII+1 6EIi+l KGAi+l

(5)

(6)

The subrnutine performs the sequence

calculation until opposite signs are obtained for the quantity

on the left hand side of (6) for two values of u.

A natural

frequency is then known to lie between these two values.

8l




The subroutine is designed to determine the natural fre-
guencies to an accuracy of *.04 radian/sec. After a natural

frequency is obtained the mode shape is determined from

y; =e; * £ I (7)

Data obtained from the Andersson reference [2] for a
60,000 ton tanker was input into NMODES. The resulting
natural frequencies obtained are compared with the measured

frequencies in radians/sec.

NMODES 21 s
1 4.92 4.89 + .6
2 10.63 10.43 +1.9
3 16.68 16.41 +1.6
4 23.20 22.91 +1.3
5 29.26 29.17 + .3
6 34.88 35.03 - .4
7 39.77 40.33 -1.4

The percent difference is quite small.
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The input subprogram reads data which is punched

according to the format listed after each read statement.

The data must be placed in the proper fields, decimal points
must be punched and all integers must be right justified.

STA is an integer variable and is the number of stations

for which offset data is given. STASPA is the station
spacing in feet, DISPL is the displacement of the vessel in

: long tons. The program later changes this value and does

all calculations in slugs, BEEM is the beam of the vessel

in feet. (Another variable with the correct spelling is used
in the program.) T1, T2 and T3 are the main deck, side shell
and bottom plating thicknesses respectively of the midship

section in inches. DECKRE is the deck edge height from bow

to stern in feet. There must be one entry per station. DATA
is offset data, one card per station. All entries are in
decimal feet. The first field is a real integer (decimal

point must be included) which is closest to the draft at

Ay

that station divided by 4. The remaining twelve fields are
offset data starting from the bottom and proceeding upward
at four foot intervals. The first field must have a real

integer less than or equal to twelve and only 12 waterlines

f may be input, unused fields may be punched with zeros.
|
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The output will list the computed station mass in
slugs, the mass moment of inertia J in slug ftz, the second
moment of area I in ft4, shear stiffness KAG in 1bf and
the 2-D added mass for each station in slugs. The program
will list the first seven natural frequencies and the i
normalized made shapes. The program will also list the
response amplitude operator over the frequency range of
interest for speeds of 0, 10, 20 and 30 knots. It will also
list the response of the vessel to a Pierson-MOskowitz
fully developed sea with a wind speed of 50 knots. Response
amplitude is in inches measured at the bow.

It is obvious from a look at the Pierson-Moskowitz
formula that precious little energy exists at fregquencies
above the first mode of vibration, springing. It is reason-
able then to assume that wave excitation is significant only
for large, long and shallow vessels. The large masses and
the low stiffnesses (due to reduced depth) are responsible
for a relatively low first natural frequency, one low enough
that sufficient energy is available for excitation. Too, as
wave fregquency goes up the effect on a vessel of constant
draft drops off logarithmicly as has been shown. The only
times then that the higher modes will be excited are when
slamming occurs or under some other impulse type loading.

The value of the program lies in the beam parameters obtained
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from the HULL subroutine, the natural frequencies and mode
shapes obtained from NMODES and the forcing data which can
be retrieved from FORCE. The node locat}en in the natural
modes is important as possible locations for placement of
machinery operating at or near that natural frequency since
excitation at a node will not excite vibration.

Numerous comment cards have been inserted in the
program and can be used to understand the many small pro-
cedures, which are a natural part of any project of this
dimension. The text of this thesis serves only to discuss
the major technical areas and not the interesting but
obviously minor structural details of software co;struction.

The program listing which follows is divided into the sub-

routines. A sample input record and cutput record are shown.
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