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ABSTRACT

This thesis presents a computer program designed to estimate the first
seven natural frequencies and their respective modes for ships and to estimate
ship response in a Pierson-Moskowitz sea. The program was designed to function
on a minimum of input. Hull offsets and deck edge height for each station are
the major data required. The program computes the hydrodynamic added mass, the
polar moment of inertia J, thesecond moment of area I, the effective shear
stiffness KAG and the ship mass for each station. A Prohl sequence is used to
determine hull natural frequencies and mode shape. A wave forcing function is
presented which sums buoyancy, added mass and damping factors due to wave passage
The program can be used for all vessels, but program development was based on a
single beam model so superstructure effects are not considered. A minimum of 20
stations is required.
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numbr o eniners de prtl toa clearly defined, exten-

siv an inrigingbod ofunderlying mathematical analysis.

Fromthelat 180's henattention was first paid to the

prolemof hiphul viratonthis body of analysis has been

expnde bya lrgen,.berofactive researchers to provide

thecurentcomrehnsie lvelof understanding of the subject.

It is apparent that vibration of the ship hull is a

source of concern for the naval architect (and shipowner).

A passenger vessel with vibration amplitudes above a certain.

threshold would have few repeat passengers. Fatigue of

structural components due to the cyclic stresses is a factor

A to be considered. The conventional method of determining the

strength of the hull girder does not explicitly take into

account the cyclic stress associated with hull vibration.

It would seem necessary to determine what these stresses

might be, how they vary with time and the effect of their

addition to stresses already present through ship loading

and the quasistatic effect of wave support. The sophisticated

equipment on board warships experience problems in an environ-

ment of excessive vibration. It is interesting to note that

with continued refinement of such equipment as navigation

instrumients, radar, sonar, fire control computers, commnunica-

tions gear and electronic warfare devices the requirement for
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vibration free foundations becomes more stringent. There

are dangers to shipping from acoustic and pressure operated

offensive weapons. Attention has been focused on noise

emitted by hulls and hull vibration in general. The "acoustic

signatures" of vessels play an important part in tracking

foreign vessels,both surface and subsurface, by passive means.

It appears that the problem of vibration control is becoming

more important.

As stated, the body of analysis is large but it is

apparent that the complexity of hull structures in both form,

material and construction and the complexity of three-dimen-

sional hydrodynamics combine to limit the application of the

analysis to reality. It is not surprising then that the pro-

blems of hull vibration still remain and that work continues

on new methods of mathematical treatment, on models and on

full size ships where the adequacy of the technical progress

can be shown.

This thesis is concerned with one of the two broad

classes of ship hull vibration, that is synchronous or

resonant vibration as opposed to local vibration. In this

case the entire hull acts like a beam vibrating under some

excitation from machinery, the propellor or waves. In

serious cases the motion can clearly be seen by sighting

along the length of the ship. The importance of a resonant

vibration is dependent on the conditions of its occurence.
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If the engine at normal operating speed excites the hull then

a serious problem exists. If, however, this resonance occurs

at an engine speed that will be only infrequently maintained,

then there is a problem of considerably less significance.

Similarly, if a vessel is expected to operate in certain

known sea states then it is necessary to avoid an excessive

resonant condition by proper hull design.

The other class of hull vibration is a local effect.

Here specific parts of the ship or certain fittings such as

masts, stacks, superstructure or'a panel of plating are set

into motion. Depending on the point of view local vibration

can also include the undesired motion of items as small as

light fixtures or stanchion chains. Local vibration can have

the same effects as hull resonance, that is personal discom-

fort and structural and equipment failures. This type of

vibration is not as readily predicted and analyzed as whole

hull vibration and is treated generally after the fact by

locating and removing the excitation or adding local

stiffening, pillars and similar structures. obviously in

many cases the excitation cannot be eliminated and additional

structure is -not feasible. Then the solution is the removal

of the object or relaxation of the requirements.

It is apparent that the hull of a ship will vibrate

only if an external force is applied to it. When this force

is from slammingthe resulting shudder can be picked up by

6



accelerometers and can be shown to be transient in nature.

A similar force can be generated by rapidly releasing a

haused anchor or rapidly braking a free falling one. The

transient response and information which can be obtained from

it will be discussed later. Other sources of excitation can

produce continuous vibration which is somewhat more insidious

due to its gradual deleterious action. Such sources include

those whose origin is some out-of-balance periodic force in

the diesel main engine, auxiliary machinery, shafting or

propellers.

It can therefore be reduced in any given instance by

proper attention to balancing during construction. Diesel

engine balancing is a well developed art which depends on the

type of engine, number of cylinders, auxiliaries which may be

run from the -main engine and many other factors. Properly

operating turbine equipment runs at angular velocities well

above the frequencies of concern here.

The size of shafting and propellers makes perfect

balancing impossible. In addition other once per revolution

forces can be created if one blade of the propeller has a

different shape than the other blades. Even with a perfect

propeller, the blades work in a mixed wake behind the hull and

the force on each varies continuously throughout each revolu-

tion. These varying forces are conveniently divided into two

types according to the method of transmission to the hull.
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"Propeller" forces are transmitted through the shafting to

struts anO bearings. "Surface" forces are transmitted

through the water to the stern. Both types have a frequency

of propeller angular velocity times the number of blades and

are referred to as blade-rate forces. Extensive work has been

carried out and resultantly the magnitude of these forces can

be calculated quite accurately. For example, the propeller

* forces can be determined from lifting surface theory assuming

the hull induced velocity field in the propeller plane is

known. With the requirement that the fluid particles should

remain in contact with the propeller blades, it follows

that the velocity components normal to the surface of the

blades due to the hull induced wake should be equal to the

corresponding components of the propeller induced fluid

velocities. This requirement can be expressed as a three-

dimensional integral equation. The numerical computation is

formidable but computer solutions yield the pressure distri-

bution and the blade lift. integration yields the forces.

It is interesting to note that due to the dynamic behavior

of the shaft, bearing reactions can be an order of magnitude

higher than the forces generated at the propeller. All of

the forces can be kept within tolerable limits by careful

manufacture and proper attention to stern and appendage

design and particularly to blade tip clearance. Some

hydrodynamic disturbing forces have to be accepted, however,

as part of the price of mechanical propulsion.



The excitation due to wave passage is at present an

active area of research. The circular frequency uf encounter

of waves, e' is dependent on the wave spectrum of the sea

surface and the speed of the vessel. Even for the swiftest

of destroyers the amount of energy available from excitation

of even the lowest natural frequency is very small, the

preponderance of wave energy being at lower frequencies.

Ships of more recent vintage, however, are longer with some

lengths over 1,000 feet and natural frequencies for the two

node mode of between 3 and 5 radians/sec. There is ample

energy for excitation in this range and numerous studies have

concluded that "springing" as two node vibration is called

is a significant addition to midship stress levels. (1][12]

[16] [30]

When engines were first put on shipshull vibration

problems arose. Shortly thereafter an effort was made to

{ predict the frequency for the two node mode of vibration.

4 As a result of very early work by Otto Schlich and by F.W.

Todd, empirical formulae were developed which closely

correlated with observed frequencies. Schlich proposed a

modification to the natural frequency formula for a uniform

free-free beam which is

2
(8 2 L) E ()

2 2w / mL4
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where 2L = 4,730, E is the Young's modulus, I is the section

moment of inertia, m is the beam mass per unit length, and

L is the length. This formula will be explained more fully

later. Then

2 =  N -(2)/ AL 3

where the units are tons for A, feet for L, ft4 for I, and

radians/sec for w2 ' Schlick gave the following values for N:

ships with fine lines .......... 1369.

passenger liners ............... 1252.

cargo ships .................... 1116.

Another early effort which was twin steps in the

directions of simplicity and accuracy by F.W. Todd was based

on

I = CBD 3  (3)

where B is the beam, D is the depth, and C a coefficient

dependent on L/D and the ship type. In the Todd formula,

the virtual mass was used which was a function of the beam

to draft ratio B/T. So

= BD (4)'2 =8 (4
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where

a= A(1.2 + B/3T) (5)

Values for B are listed in [32].

In the treatment which follows the natural frequencies

of a vessel are determined from offset data and other infor-

mation. The process is an iterative one and can be expedited

by an appropriate choice of a starting frequency. The choice

of this value is from a formula devised by L.C. Burrill.

W = 80,000w [3/2 (6)
AL3(I+B/2T) (ltrS)

where

3.3D2 [3 (B/D) 3+9(B/D) 2+6 (B/D) +. 2] (7)
s L2 (3B/D+l)

The Taylor shear correction term rs is dimensionless.

The analysis of hull vibration has proceeded far beyond

that which produced the preceding empirical formulations and

this work attempts to explore the advances in considerations

of damping, excitation, added mass and the use of the computer.
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2. TECHNICAL TREATMENT

A. Uniform Beam Vibration

As previously stated, the mathematical base for the

analysis of vibrating bodies is large and acceptance of

certain broad assumptions allows complex problems to be

idealized and working solutions obtained. As more realistic

assumptions are made more intimate knowledge of the process

is obtained. The price of course, is vastly more complex

solution techniques.

Consider a beam of length L. The vertical displacement

at any time, t, is y(x,t) where x is the longitudinal axis

of the beam. The total vertical force per unit length is

f(x,t). The system parametersare the mass per unit length

m(x) and the flexural rigidity EI(x) where E is Young's

modulus of elasticity and I(x) is the cross section area

moment of inertia about the neutral axis of bending at any

position x along the beam. Consider an element of length

dx of the beam. V(x,t) and M(x,t) are the shearing force

and bending moment. The simplifications to be included at

this point are 1) shear deformation is small in relation to

bending deformation and 2) rotary inertia effects are small.

These simplifications are valid if the beam's length

to depth ratio L/D is about 10 or greater and if deflections

and slopes are small. Most ships underway fall into this

category. [141 Another major assumption is that damping is

12
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small enough to be neglected. This is sufficiently accurate

for vibrating ships particularly in the free vibration

analysis which follows. (12] The small damping present

serves to limit vibration amplitude rather than modify

frequency or vibration pattern. The force equation of motion

in the vertical direction is then

[V(x,t)I aV(x,t) dx] - V(x,t)+f(x,t)dx-m(x)dx 2 Y(X ' t)
ax at2

(1)

The moment equation of motion, ignoring the inertia torque

associated with the element rotation is

[M(xlt) + aM(x,t) dx]M(x,t)+[V(x,t)v(xt) dx
ax ax

x -x

+f(x,t)dx !L = 0 (2)2

Here we assumed that the elemental length dx is small enough

so that f(x,t) is constant along the element. Equation (2)

reduces to

aM(xt) + V(x,t) = 0 (3)
ax

Using (3) in (1) and simplifying results in

+ f(x,t) - (4)
ax2  at2

13



From basic strength of materials it is known that

272 (x't)(5
M(x,t) = EI(x) x(

Dx2

(5) into (4) yields

2 2 (x 't  2 (x,t)
-EI(x) 2t+f(x t) = m(x) 21, (6)

ax x 2  at 2

which is the differential equation for the flexural vibration

of a beam. (251 This is a fourth order linear nonhomogenous

partial differential equation. General solution theory re-

quires a number of boundary conditions equal to the order of

the equation. Since this equation must be integrated four

times to get a solution, four arbitary constants are intro-

duced, thus the requirement for four boundary conditions.

In the case of interest the beam ends are free. Thus the

shear and moment at the ends equal zero. From equations (3)

and (5)

M(x't) = EI(x) a2Y(x't) = 0 (7)
x 2

V(xt) = -([EI(x) a2y(x,tl] = (8)x2
ax Dax2

x =0, L

14

.



The next analytical step is consideration of free vibration.

The equation of motion reduces to

a 2[EI(x) 2 (x t) m(x) a2 y(xt) (9)

ax2  ax 2  at 2

with the boundary conditions (7) and (8). This forms a

classic "boundary value" problem. It is opportune at this

point to explore the possibility of synchronous motion. This

is a motion in which the general shape of the beam displace-

ment does not change with time. That is to say, every point

of the beam executes the same motion, passing through the

equilibrium position and the point of maximum excursion at

the same time. This implies that the deformation g(x,t) is

separable in space and time. Therefore a possible solution

of this boundary value problem is of the form

y(x,t) y(x) F(t) (10)

where Y(x) represents the general beam configuration in

vertical vibration and depends on x alone, and where F(t)

indicates the type of motion the beam executes and depends

on t alone. Introducing (10) into (9)

-1 2[EI(x) a 2Y(x)]1 a2 F(t)
ax ax 2at

is5



where partial deriviatives have been replaced by total

derivatives. In addition, the variableshave been separated

so that the left hand side depends on x along and the right

hand side on t alone. It is apparent, therefore, that both

sides must equal a constant. Let A be that constant, then

d2F(t) - XF(t) - 0 (12)
dt

where, since Y(x), m(x) and I(x) are real, X is real.

Let F(t) be of exponential form

F(t) - Ae s t (13)

then substitution of (13) into (12) yields

Ase - AAest  0

or on dividing by Aest (for Aest € 0)

s 2 0

so

(14)

16
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If X is a positive number then the two roots (14) are both

real and equal but opposite in sign. This suggests that

there are two solutions for Fit), one increasing and one

decreasing exponentially with time. Both of these solutions

are inconsistent with an undamped conservative system so

the possibility of A being positive can be discarded.

Letting A = 2 we have s = ±iw and

F(t) 1 e i t + A2 e - i  (15)

Expansion of this expression where

e - cos wt + i sin wt

yields

F(t) = ACos wt + iA sin wt + A2cos wt - iA2sin wt

- (A1 +A2 )cos wt + i(A1 -A2) sin wt

This must reduce to a real expression and will if

A1 + A2 - Ccoso

i(A 1 -A 2 )= Csino

17



then

F(t) =Ccos(Wt - )(16)

Proceeding with the other part of (11) yields

d 2 E~)d2Yx]=W m(x) Y(x) (17)
dx dx

No general closed form solution of (17) exists. How-

ever, for certain special cases solutions can be obtained and

for illustrative purposes the following major simplification

will be made, EI(x) and M(x) are made constant along the

beam's length. This takes all ships with the possible ex-

ception of some box shaped barges out of consideration but

the information derived from such a step will provide some

weight into the problem. (17) reduces unmder these assumptions

to

4 2
d Y(x) 4m4(18)

-x 4 Y(x) 0 = El (8

The general solution of (18) can readily be verified to be

Y (x)- A1 sin8x+A 2cosex+A3 sinhex+A 4coshex (19)

18



Simplifying the boundary conditions (7) and (8) yield

d2 y (x) d3Y
-= = 0 x = 0,L

d 2x dx

The second and third derivatives of Y(x) are

Y'I(x)Ai 2sinSx-A2$ 2cos~x+A 3 2sinh~x+A 4 2coshSx (20)

YI'(x)=Aia3cos.x+A2$3  - irix4A4 S3 sinhEx (21)1x+ 2 4 i x '.. (1

At x=O (20) and (21) yield

A2 = A4  and A1 = A3  (22)

At x-L substitution into (20) yields

4 A1 (sinhBL-sinOL) +A2 (cosh6L-cosBL)=0 (23)

and substitution into (21) yields

A1 (cosh8L-cos8L) +A2 (sinh$L+sin6L) =0 (24)

Parenthetically, these two equations in two unknowns can be

reduced to one equation leaving A2 in terms of A1

19



-A1 (coshaL-COSBL)
A2  sinh6L+sinBL (5

Inserting (25) and (22) into (19) yields

Y (x)=A [sin~x+sinh~x _cshSL-csnL) (cos~x+cosh~x)] (26)

From linear algebra the determinant of the coefficients in

(23) and (24) must equal zero for non-trivial values of A~

and A2 to exist. That is

sinhSL-sinBL coshaL-cosBL
-o0

coshBL-cosBL sinhBL+sinSL

This is known as the "characteristic determinant" and reduces

to

2
(sinhBL-sin$L) (sinhBL+sin8L)-(cosh$L-cosaL) =0

After simplification this yields

coshSLcosBL = 1 (27)

This is known as the "characteristic equation" and it is

apparent that it can be solved for an infinite number of

values of $,that is,for S r where r-1,2,3... which are defined

by

20



.1

34 2 m/El (28)
r r

From (28) an infinite set of frequencies, w r' are obtained.

These are natural frequencies. For each wr equation (26)

yields a prescribed vibration shape Yr (x) known as a "natural

mode."

The general problem of determining the values of $ in

(18) for which nontrivial solutions Y(x) exist where certain

boundary conditions are prescribed is called the "characteris-

tic-value" or "eigen-value" problem with the parameters w r

being the eigenvalues and the functions Y (x) being eigen-r

functions. [19] [25] It is to be noted that the eigenfunctions

are precise as to configuration but not to absolute value.

Since (18) is homogeneous and Yr (x) is a solution, then so

is Yr (x) where a is a constant multiplier. A unique property

of these eigenfunctions forms the basis for this entire train

of analytical thought. For the general case of beam vibration

as expressed in (6) this property known as "orthogonality"

is expressed by

L
f m(x) Yr (x) Y (x) = 0 r#s (29)
0 r

This orthogonolity is with respect to the mass function which

serves as a weighting term.

21
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This orthogonality imp'lies that any possible configura-

tion of the beam can be represented as a linear combination

of the natural modes of the beam. That is

y(x) = Cr Y r(x) (30)
r=1

This is true for any and all time t so

y(x,t) = Z r (t) Y (x) (31)
r-1l r

where the Cr have been replaced by the time functions nr(t)

which are known as the "natural coordinates."

As previously stated the eigenfunctions are not deter-

mined in regards to absolute value. A convenient normaliza-

tion scheme is such that the eigenfunctions satisfy

L
I mr(x) )r (x) Y. (x) =6rs r,s=l,2,3... (32)
0

where drs is the dirac delta function

0 r#s
rs =1 r-s

In the uniform beam example insertion of one eigenfunction

and eigenvalue into (18) yields

22



d 4 Yr (x) 2
El = d4r m Y (x) (33)dx4  r i x

Multiplying both sides by Y (x) and integrating over thes

length gives

L d4 (x) L
Y (x) EI r =f W r m Ys (x) Yr (x)

o dx4  o

2= 6 (34)
r rs

Now substituting the assumed solution (31) into the beam

equation (9) and assuming a uniform beam yields

z r (t) m Y r(x) + Z qr (t) Ed 4  =0 (35)
r=l r=l

Multiplying through by Ys (x) and integrating over the length

and considering (32) and (34) yields the independent set of

ordinary differential equations

2r(t) + wr n r(t) = 0 r=1,2,3... (36)

The solution to each of these equations can be shown to be

Cr cOS(W t " r (37)

where Cr and 0 r are determined from initial conditions of the

beam, y(x,o) and (x,o).

23



Using (37) and vA) and setting t=O yields

y(x,o) Z z C cos r Y (X) (38)
r=1 r r r

(xo) - -E tCr w rsinr Y (X)
r=l

multiplying by mYs(x) and integrating over the length yields

L
CrCOSo r = f mYr(x) y(x,o) dx

0
(39)

Lm
CrSinor = f - Yr(x) (x,o) dx

which can be solved for Cr and "

The free vibration case for the uniform free-free

beam has now been completely solved. The natural modes

Yr (x) and the natural frequencies wr have been computed.

It is the orthogonality of these modes and the fact that

they span the vector space in which they are contained that

makes the expansiorn theorems (30) and (31) correct. The

natural coordinates nr (t) can be determined front initial

conditions.

The forced vibration case is slightly more complex.

Here substitution of the assumed solution (31) into the

beam equation (6) yields

24
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CO ~ ~ 00 d 4 Yr-W

d 4 y (x)

7 Lr(t)mYr(x)+ qr(t) El 4 = (Xt) (40)r=1 r= dx 4

By multiplying by Y (x) and integrating over the length ands

considering the normalization integrals (32) and (34) the

following independent set of ordinary differential equations

are obtained

(t) + W2r (t) = Fr (t) (41)r r rr

where

L
F (t) -f Y (x) f(x,t) dx (42)r 0 r0

The solution to (41) generally involves the use of the

convolution integral

r r(t) W f Fr (t) sin Wr(t-r)dT
rt) 0

+ 11r (0) cos Wrt + r (0) sin wrt  (43)

where nr (0) and r (0) are as determined by (39).

This completes the classical analysis of the forced

vibration of the free-free uniform beam. It is not difficult

to see that significant complications arise when the desire

is present for a closer representation of reality. In (7)
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inclusion of the beam theory damping term results in

M(x,t) EI(x) 2y(xt) + 8(x) a3y(x't), (7a)
ax ax2at

where W(x) represents viscous structural damping. More on

this in Section E. The equation of motion (6) then becomes

M(X) ad2(xt) +--(EI(x) 2Y(Xt) + a (x)3y(xt)
at 2  +r ax2  x-D( x2

f(x,t) (6a)

A free vibration analysis would proceed with the solution of

(9) as before but no assumption as to uniformity would be

made. The resulting general solution

P(x) = AF(x) + BG(x) + CA(x) + DJ(x) (44)

can be obtained for sufficiently well behaved EI(x) and rn(x).

Boundary conditions (7) and (8) require that

AF"(0) + BG"(0) + CH"(0) + DJ"(0) = 0

iA"(L) + BG"(L) + CH"(L) + D"(L) = 0

AFro(0) + BG"'(O) + CH"'(0) + DJ"'(0) = 0

AF (L) + BG'(L) + CH"'(L) + DJ"'(L) = 0
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This leads to the characteristic determinan.

F" (0) G" (0) H" (0) J" (0)

F"(L) G"(L) H"(L) J"(L) = 0
F"(0) G'"(0) H"'(O) J'(O)

F"'(L) G" (L) H '"(L) J' (L)

This is an equation in w and its roots are the system

natural frequencies. For each root wr there correspond

specific values of A, B, C, and D and therefore a specific

eigenfunction Pr" The nature of the four solutions F, G, H,

and J may make the solution of the determinant quite complex.

This is indeed an understatement. The general solution

(44) will be a combination of transcendental functions and

infinite series. Solution of the determinant would be very

time consuming and costly. Additionally, inherent in the

previous work has been the assumption that shear defection

and rotatory inertia are small factors. This is reasonable

for the lowest vibration modes but increasingly becomes a

source of error as the mode number increases, say for three

or more nodes. The shear defection, for example, is about

15% of the bending deflection for the lowest vibration mode,

that of two nodes for L/D - 15. [14] For vibration of about

four nodes shear deflection becomes greater than bending

deflection.
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B. Prohl Sequence

A method which allows account to be taken of shear and

rotary inertia and can be solved for the eigenvalues and

functions is the technique devised by M.A. Prohl in 1945.

It was originally produced for calculating the angular

velocities at which flexible rotors would resonate. The

actual rotor was simulated by a "lumped mass" system in

which the rotor mass was concentrated at a number of stations.

Station spacing was a matter of convenience though obviously

the greater the number of stations the greater the accuracy.

The stations were connected by weightless rods whose bending

stiffness and shear characteristics were identical to those

of the rotor section. This effective discretization allows

problem solution by numerical techniques. The procedure is

directly applicable to the analysis of ship hull vibration

as will be shown. Let

mi = station mass plus added mass

Mi = bending moment

V. = shear force

gi = vertical deflection

9i = slope

Li = length between adjacent stations

= angular velocity

KGA i - shear stiffness which is constant along Li
El. = bending stiffness which is constant along Li
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J. = mass moment of inertia1

and i = subscript denoting consecutive stations.

The equatiorsfrom strength of materials which govern the

motion of the stations and which include shear and rotary

inertia terms are

MiL l Vi+ILi+12
6 =e+ i - + (1)i+1 1 Eli+1  2Eii+l

Mi+ =M i + Vi+iLi+l- Ji+I 2ei+i (2)

MiLi+12 Vi+ILi+13 V i+Li+l
+ i 1 + 2EIi+1  6EIi+ 1  KGAi+ 1 (3)

Vi+ 1 , Vi + m i 2yi  (4)

It is to be noted that the mass term mi includes the mass of

hull and cargo and the entrained water or "added mass."

This will be discussed in Section C.

The relationshipsbetween the loading (shear), bending

moment and deflection curves are well known from strength of

materials. As w increases, the effect of including the rotary

inertia and shear deflection terms in the equations becomes

obviousthe shear and moment terms are altered increasingly.

The boundary conditions for this free-free beam are

Ms i MB 0
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and

Vs = B Q

where subscripts s and B represent the stern and bow respec-

tively (more accurately the after terminus and the forward

terminus). Thus for station one

V vs = 0 (5)

Ms L1  V1 V2

1 +  El = 1 
=  (6)

2 3
M1 - Ms + VILI-JI,1 W -J 2es  (7)

Yl ' Ys +  aLl +  2 .1  + 
E I  KGA

s I 5 1 2  1 . GEl1  KGA1

or

Yl= Ys + L (8)

It can be seen by inspection of equation (1) through

(4) that the values for the bending moment and shear force at

any point in the ship will be a function of ys, 9 and w ins

addition to the calculated ship parameters. If, at the start,

y is set equal to one, a unit defection of the stern, then

the equationsfor the shear and bending moment at the bow will

be expressed by the following:
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VB = a + be s

MB - -c + d8s

where a, b, c and d may be functions of w. From the boundary

condition requirement it is known that both of these equations
bc

must equal zero. Arbitrarily setting MB = 0 and VB = a +

and performing the sequence calculation a number of times for

various values of w a curve of VB versus w can be obtained.

This curve represents the exciting force VB which would need

to be applied at a specific frequency w to generate a unit

deflection at the stern. The zeros of this curve, that is

where the curve crosses the w-axis, represents the natural

frequencies of the vessel where, with the absense of damping,

a vanishingly small exciting force would set up synchronous

motion. With the natural frequencies obtained the governing

equations (1) through (4) will yield the displacement, shear,

moment and slope for each station. The displacements for

each frequency w r are considered for this discrete case to

be equivalent to the continuous system eigenfunctions and

are called eigenvectors. Indeed as the number of stations

becomes large the eigenvector will converge to the eigenfunc-

tion. As for the continuous case, the eigenvector must be

normalized. A convenient normalization scheme is according

to the following
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N 2
z Miy. 1 (9)

which is the discrete representation of (32) in Section A.

C. Added Mass

The preceding technical treatment of the free and

forced vibration of a ship like beam involved a mass term

which was either uniform or not along the length. This term

included not only the mass of ship structure, machinery,

cargo, etcetra as might be obtained from a weight curve but

also a hydrodynamic "added mass." When a vibrating body is

immersed in a fluid (air or water, for example) the fluid

surrounding the body is put into continual motion which

requires the expenditure of energy. Under conditions of

synchronous or resonant motion, the body with this entrained

water vibrates. This additional mass serves to lower signi-

ficantly the natural frequencies of the vessel. It is

therefore critical that a determination of this mass be made

and added to that of the vessel. The total mass then, called

"virtual" mass is the sum of the ship mass and the added mass.

This phenomenon has been observed and treated for a few

objects in classical hydrodynamics. In the case of an

infinitely long circular cylinder having a cross-section of

radius r translating perpendicularly to its axis with velocity

V i.n an infinite inviscid fluid it is possible to derive the
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potential flow and to calculate the kinetic energy in the

fluid. It is found to be [201

1 2V
T = -p7r2

per unit length of cylinder where p is the fluid density.

Letting M' = Pir 2 it is apparent that M' is the mass of

fluid that is displaced by unit length of the cylinder. It

is also apparent that the effect on the cylinder motion from

the presence of the fluid can be allowed for by an addition

of M' to the mass per unit length of the cylinder. An energy

balance equation for forced motion becomes

where F is the external force.

On simplifying

dV(M+M')- = F

or

- "=F- d
dv M,
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Here the presence of the fluid is equivalent to a force per

unit length opposing motion. obviously this virtual -a.49

effect is only present in the case of accelerated mocions

such as vibration. For a sphere of radius r the kinetic

energy of the fluid has been shown to be (201

12V
23

2 3Here MI = spwr which is one half of the mass of displaced

fluid. In general

M= C times the mass of displaced fluid

where C is a vertical added mass coefficient. Comparison

of the added mass coefficients for the cylinder and sphere

both of radius r shows the former to be twice the latter.

This reveals the three dimensional effect. The general

method for determining the added mass coefficients of a

ship hull is a stepped procedure utilizing first a two

dimensional analysis then multiplying by a three dimensional

correction called a "J" factor which will be discussed later.

The discrete analysis of the Prohi sequence is inherently

compatible with this. At each station the geometric and

material characteristics are assumed to be constant along

the station length. Thus the station can be considered to
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be a portion of an infinitely long cylinder and the added

mass can be determined. The cylinder is supposed to consist

of the underwater hull cross section and its above water

mirror image. The actual ship added mass is thus one-half

of this computed amount. This analysis is based on the fact

that the fluid motion is streamline throughout, that is,

irrotational. This is reasonable since the amplitudes and

absolute velocities are small.

This assumption of irrotational flow implies that the

curl of the fluid particle velocity vector field is zero, that

is,

7 xV 0

where V is the "del" operator. This implies that the

velocity vector field is the gradient of a potential

* function

S= ( 1)

Additionally where the flow is incompressible and there are

no sources or sinks a fluid continuity equation can be

written in the form

vx  avy 0 (2)

ax ay
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or upon substitution of (1) into (2)

72 (3)

This is the well known Laplace's Equation. The kinetic

energy of any flow where a potential exists is [20]

2T =IP(VO )

where dv is a volume element and p is the fluid density. As

has been shown the added mass can be determined from the

kinetic energy of the flow. It remains then to compute the

potential for the flow around a ship section.

Classical hydrodynamics has evaluated the potential

j for a very few geometric shapes. In two dimensions flows

past circles and ellipses have closed form equations and

spheres and ellipsoids of revolution have equations for the

potential in three dimensions. A method which greatly

expands the number of shapes which can be analyzed is called

"conformal mapping" which involves application of analytic

function theory and functions of a complex variable.

To illustrate, let

w =f(z) (4)
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where

w = u + iv

z = x + iy

(4) then represents a mapping of all points in the z plane

onto the w plane. If the function f(z) is single valued

then the mapping is one to one, that is to each point z

where f(z) is defined there exists one and only one value

of w = u + iy in the w plane. The inverse will also be

true if f(z) is analytic and f' (z) # 0. If these conditions

are met, then it is also true that relative angle and shape

are preserved in such a mapping (thus the term name "con-

formal"). Right angles in the z plane will be mapped to

right angles in the w plane. Another property of complex

analytic functions is that the real and imaginary parts

satisfy Laplace's equation and therefore can represent fluid

flows. Knowing that the potential and stream functions

satisfy the Cauchy-Riemann equations

ax 3y

=J
Dy ax
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and Laplace's equation (3) an analytic complex function can

be generated by setting the potential equal to the real part

and the stream function equal to the imaginary part

P(2) = p(x,y) + i(x,y)

This function is often called the complex potential. Now

returning to (4) and writing its inverse

z = F(w)

it is apparent that the complex potential D(z) is expressible

as a function of w in the form (D[f(w)]

Further this function is analytic and therefore repre-

sents a new fluid flow in the w plane. Each of the equipo-

tential lines, boundary lines and streamlines in the original

plane are mapped into the w plane. The orthogonal relationship

is present and thus the actual flow around the transformed

boundary is known. For example, the flow past a two dimensional

body of arbitary shape can be determined (theoretically) by

generating a transformation function w = f(z) which will map

the points of the boundary of a unit circle in the z plane

onto the boundary of the arbitary shape in the w plane. The

inverse of the function is then substituted into the complex
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potential for the flow in the z plane which is well known.

Thus a complete solution for the flow about the arbitary

shape is obtained. In practice the inverse may not be

manageable or only a rough approximation to the desired

shape can be transformed from the unit circle. Cross-

sections of ships can, with good accuracy, be transformed

from a unit circle however.

The first and definitive work in this area was pre-

sented in 1929 by Professor Frank M. Lewis in the Transactions

of the Society of Naval Architects and Marine Engineers. The

language of the paper is a bit quaint and some of the ques-

tions raised have long since been answered, but the method

presented for computation of added mass has seen only very

minor modifications to the present day.

Let x,y be the coordinates of any point in a two

dimensional flow and ,t the values for the velocity potential

and stream function at the same point. The equation

z = x + iy = f( + it)

where f designates an arbitrary function represents a two

dimensional irrotational flow. The flow in the x, y plane

can be further transformed to any other plane X, Y by the

relation

Z - X + iY = f1 (x + iy)
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where f is another arbitratry function. Z is of course

still a function of 0 + iW.

Take the flow past a unit circle

~2 =1X2 + =I

or in polar form

r=l

and transform it by means of the relation

Z X+iY =Z+ + = z+az -+bz -3  (5)z3z

Now

z =x + iy =re i = eie (6)

so

X + iY= e + ae - i 9 + be- e i e (7)

Since

e =, cose + isin6
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it follows on equating real and imaginary parts that

X = (l+a) cose + bcos3e

(8)

Y = (1-a) sinO - bsin38

These are the parametric equations of the transformed circle.

The semi-axis parallel to the flow (8=0) will be of length

X 1 = + a + b

and the semi-axis perpendicular to flow (8=v/2) is

Y1 1- a + b

so the ratio of half beam over draft will be

H = B/D 1-a+b (9)l+a+ b

For the flow past a unit circular cylinder ¢ and ;p are given

by

1 1
- U(r + -) cose = U(r - -) sine

r r

and on the boundary n-i

41
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= 2Ucose =0 (10)

This represents the flow at the boundary of a stationary

cylinder and, also represents the flow at the boundary of

the transformed cylinder. To obtain the solution for a

moving cylinder in a fluid stationary at infinity a super-

position of a uniform flow of -U must be made. For this

uniform flow

= -UX and 4 = -UY (11)

so using (11) and (8) in (10)

S= U[(l-a)cose - bcos3e] (12)

= -U[(l-a)sine - bsin3e] (13)

The kinetic energy of the fluid is

2T - pff(V2 + V )dxdyx y

and since

x ax y ay

2T - p (21)x, +2(2 ) dxdy

42

•.



7]

An application of Green's theorem allows the double

integral to be replaced by a line integral computed on a

path which encloses the area. In this case the fluid is

bounded by the cylinder surface and by a circle whose

radius is allowed to approach infinity.

2T ( +. LO = - pf ds (14)
CI1+C 2

where ds is an element of path length, an is an inwardly

pointing element normal to the curve, C1 is the cylinder

circumference and C2 represents the circle with radius

approaching infinity. Since the fluid is at rest far from

the cylinder the line integral over C2 will be zero. Since

an = -

the kinetic energy is given by

2T = pf104 (15)
Cl

which considering that the expressions for and p are

dependent only on 8 equals

2T - pf U[(l-a)cose-bcos3e] [-U[(l-a)cose-3bcos3e]]de
0

- 7U2 [(l-a) 2 +3b2] (16)
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If the semi-axis of the transformed circle is to be B

instead of (1-a+b) this energy becomes

B22T IU2 p[(l-a) 2+3b21

2T= 2
(l-a+b)

= WTU2 PB2 [ (la) 2+3b 2 (17)
(l-a+b) 2

As previously mentioned the kinetic energy of flow past a

circular cylinder of radius B is

2T = UU2pB 2 - MU 2

therefore the virtual mass coefficient for the transformed

circle is

C M (1-a 2 )+ 3b6 2 (8
2 2

~(l-a+b)

and (17) becomes

2T = C7 2BU2 . M'U 2

and the adc mass per unit length is

M, CwB 2
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For the ship hull floating on the surface this is reduced

by one-half so

M'B l 2(19)

Solving (18) and (9) simultaneously for a and b yields

b = H[-(2CH-H+)+(H+I )V4C)(2-3)

2 (CH2H 2 H_1)

(1-H) (l+b) (21)a I -I+H7 (21

and the parametric equation of the transformed circles when

of draft D instead of (l+a+b) are

X M D[ (l+a)cose+bcos3e (22)(l+a+b) ,](2

Y = D( (l-a)sinO-bsin3l (23)
(I+a+b)

X in this case being vertical and the line 9=0 coinciding

with the X axis. In (22] is a collection of graphs for

various values of H(half beam to draft ratio) and C. The

H values correspond to common ship cross sections. For each

of the paired values of C and H the constants a and b were

computed from (21) and (20) then the shapes of the transformed

circle were plotted from (22) and (23) for values of 9 from

0 to 1/2. The added mass for any ship section is then
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computed as follows: a visual comparison of the shapes

in [221 is made with the body plan for the station. Of

course, the body plan must be properly dimensioned and the

value of H known. The C value for the actual ship section

is obtained by interpolation between adjacent curves and the

added mass per foot for the ship section is obtained from

(15) remembering that B is half beam. This procedure is the

basis for present day calculations. Some refinements which

make the procedure programmuable are presented in a paper by

L. Landweber and M. Macagno in 1967 in the Journal of Ship

Research. An equation of the form

z M w + A1 + 2 +3 (24)w w3  _'w w

(of which (1) is a truncated version) can describe either

the mapping of a hull shape to a circle or a circle to a

hull shape. The constants A.i will of course be different.

Furthermore, inversion formulas exist which enable the co-

efficient of one transformation to be determined if the

inverse coefficients are known. Let (24) represent the

mapping of a wetted hull-shaped contour consisting of a

wetted hull and its mirror image across the waterline from

the z plane into the w plane. S is the bounded area of the

hull contour and r 0 is the radius of the circle in the w

plans. An expression for the added mass coefficient C v is (211
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C 1 [2 (r2+A- (25)

B

Let the inverse of (20) be of the form

B B B
T = z + + 2 + !3 . . . (26)

z z

A method of determining the coefficients Bi is based on the

property that, among the closed curves obtained from (22)

by varying the coefficients, the curve which will bound the

maximum area will be a circle. Let the ship curve be

termed CT and its mapping in the t plane be termed C1 . If

z = r(e)e then

d 7 dz = 6 r(dr+ird8) = i i r 2 d8 - ZiS
CT CT CT

where i is the complex conjagate of z. Simlarly for C1

dt = ZiSl (27)

C1

where S1 is the area bounded by C1 . Also

B 1 B 2 B3

Sz + . . . (28)
z zz

and
B 1  3B 2

dT - (1 - B- -2 . .)dz (29)

z z

47



After substitution of (28) and (29) into (27) the condition

that S 1 be a maximum that is

IS, 0 i =1 rj..n
aB.i

yields a set of n linear equations for the coefficients Bi,

i = 1 to n. Standard matrix manipulation techniques are

available for then determining the Bi* The difficulties

with this method are that the convergence rate with respect

to n is relatively low and the accuracy of some intermediate

terms decays with increasing n. The solution to this problem

is to cut off the first mapping at n=8 and then map the

nearly circular curve C 1 from the t plane into a much more

nearly circular curve C 2 in the w plane where

t t

The C.i are determined in much the same way as were the B.

The coefficients A.i of equation (24) can then be determined

from the intermediate coefficients B.i and C..* The added mass

coefficient C v is then determined from (25).

This thesis makes use of the above outlined procedure

to compute the added mass for vertical vibration of hull

sections as defined by offset data for each section.
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Another significant item in this treatment is to

calculate the three dimensional effect mentioned briefly

earlier. Lewis, in his paper, talks of a "J" factor where

Actual Kinetic Energy of Fluid
= Kinetic energy of fluid if motion

is confined to transverse planes

J obviously depends on the underwater configuration and will

approach unity as the ratio of length to beam gets larger

and larger. That is to say as variations of the hull from

section to section diminishes.

An ellipsoid of revolution is one of the very few

shapes for which an exact solution has been obtained for the

three dimensional flow. It is this shape that is used for

the computation of the J factor for a vibrating ship. As

the vibration mode goes up, and the number of nodes increases,

it is apparent that the movement of water becomes more

longitudinal and less transverse so that Ji values, where i

represents the ith mode, will decrease. The calculation of

J2 and J3 was made in the paper by Lewis. The treatment is

similar to that presented for the two dimensional case in

that an equation like (1) for the kinetic energy of the fluid

i used

2T - -pfft. ds (31)an
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where in this case ds is an element of area. The solution

of this equation can be obtained due to a closed form solu-

tion to Laplace's equation having been found for this flow.

That is, the potential 0 for vibration of two and three nodes

can be substituted into (31) and values for the actual three

dimensional kinetic energy can be calculated. The denominator

in the expression for J (30) is computed by summing (integra-

ting) the values obtained from a two dimensional analysis of

cross sections of the body. Lewis tabled the values ofJ2

and J3for a variety of ratios of L/B. The values are

shown in Table 1.

The analysis performed by Lewis required that the

vibrating cross section remain in the same plane,*that is,

the motion results from pure shear. This does not reflect

reality and consequently there has been much discussion on

the subject beginning with a written comment of Lewis' paper

by his peer J. Lockwood Taylor [22] [301 and continuing to

the present day.

Current procedure [32] involves the determination of

J by accurate measurement of the natural vibration frequencies

of a given body in air and in water. For Lewis' circular

ellipsoid of revolution a simple analysis is possible because

the distribution of added mass is directly proportional to

the distribution of actual mass (C~ v constant along the

entire length). The mass distribution is
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2(32)
NB rr P B (2

where r is the radius of the circular cross section and a

function of longitudinal position, p is density and subscript

B refers to the body. The corresponding added mass is

M' CvJ~rr 2 PW (33)

where Cv=l and subscript w refers to the water in which the

body is immersed. J here is considered to be a constant

value applied at each cross section so that the actual three

dimensional added mass is obtained from the two dimensional

analysis performed. From basic vibration theory (22]

W n= VKM

where K represents stiffness and M mass. Put another way

f M
(T-) = M (34)

w a

where f represents frequency and subscript a represents air.

This equation for the circular ellipsoid considered is
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TABLE 1

LEWIS TOWNSIN LEWIS TOWNSIN
L/BJ J3 J3

1.000 1.000

30 .947 .924

22.4 .954 .932

16 .883 .842

15.82 .922 .890

12.95 .897 .859

12 .837 .793

10.02 .859 .808

9 .764 .696

8.48 .829 .,70

7.11 .789 .725

7 .683, .591

5.83 .741 .670

5.07 .704 .629

5 .593
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f PpB f rdL+JQW, Tr dL
w = PB i~r~dL

wJ w

+ W + (35)
PB

where the vibrating mass in air Ma is assumed to be due only

to the mass of the body and dL is differential length.

Equation (35) is reduced to

f a 2 PB
[( a_2 _ 1] - (36)

U?(-) P (6
w w

Values from this equation obtained by R.L. Townsin [32] are

listed in Table 1 and a comparison with the Lewis values

shows P significant decrease reflecting the fact that no

restrictions or assumptions were made concerning the cause

of the motion. For ship-like vibrating bodies the procedure

is somewhat more complex. Frequencies in water and air a*e

both measured experimentally and calculated. For the water

calculation several assumed values of J are used to obtain

a plot of Jn versus f. A reduction constant obtained from

comparison of the two air frequencies is used to correct

the measured water frequency. This abscissa is used to

obtain the Jn ordinate from the Jn versus f plot. Townsin

proposes and this thesis employs the following empirical

formula for Jn as a function of B/L
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J = 1.02 - 3(I.2-1/N)B/L n-2,7 (37)

This formula agrees closely with data through J7 "

The remaining consideration which is presented deals

with a "sectional longitudinal inertia correction" labelled,

by the author, Ji (the lower case to reflect a relation with

the Lewis J factor). In most determinations of actual added

mass per section an equation of the form of (19) is consis-

tently used. That is

m=1 2 (8

and

MI

or

N
M= J i m. (39)

so

H ' 1  2 (0

S4

!

.



where m. represents the 2-D section added mass, C. and B.

are the section added mass coefficient and half beam respect-

ively, M' is the 3-D added mass for the entire body and M!

is the supposed 3-D section added mass. The departure from

reality in (40) is apparent. J of the entire body represents

a fixed fraction which when multiplied by the added mass of

a 2-D flow gives the actual 3-D added mass for the entire body.

There are some sections of a vibrating ship where the fluid

motion is in fact very close to two dimensional and the added

mass should be very close to that calculated from (38). At

other sections, particularly near bow and stern, the flaw

departs quite significantly from a pure two dimensional flow

and the added mass would be less than that obtained from (40).

To take into account these aspects the author proposes to

use ji.

Let the added mass at section i for a 2-D analysis be

1 2M! Ci7rBi,, (38)
1

and let the actual 3-D added mass be

. 1 2%1i  SC TiBipji (41)
2 irB
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then

N N
M' = W = M " (42)i-i 1 i=l i

The requirement that equations (39) and (42) yield the same

value for M' requires that

N N
j Z m! - Z miJ. (43)

i=1 1 i zli 1

Let

Ji = 1 - dib (44)

where di is a difference factor computed for each section by

N
: n Z: M!

i. +1 1 3. i-l + i=l1S'd. = 2+ 2
S2 2N

N. ,; _ mi~~mi~ I +n i~r M!
Im il-Mi-11+ il 1(45)

2 2N

and b is a normalization constant to be determined by substi-

tution of (44) into (43). In (45) N is the number of stations

and n is the number of nodes in the vibrating mode. As the

number of nodes increase three dimensional flow increases at

all stations so Ji -J. An example will serve to illustrate.

Assume that an analysis has determined the 2-D sectional
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added masses to be as listed in column 2 of Table 2. The

difference factors from (45) are listed in column 3. Sub-

stituting the totals of columns 2 and 4 into (43) yield

.81(692) = 692 - (28380 + 47886n)b

b = 131.5/(28380 + 47886n)

b(xlO- ) n

4.633 0

1.723 1

1.059 2

0.764 3

Column 5 lists M! or the m!J. Columns 6, 7 and 8 show the

actual added mass at each station for vibrations of 0, 1 and

3 nodes respectively. Notice as n increases the added mass

approaches the values in column 5.
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D. Wave Excitation

The forcing function f(xit) used in the previous

treatment represents the total external force per unit length

at any section x. and any time t. It includes the many effects

of the waves encountered, the motion of the ship and the fluid

flow. It is, as such, very complicated and the subject of

much research. [12](16]

The most simple formulation of wave excitation would

be due strictly to buoyancy changes from wave passage.

V
f(xilt) = y y dV

Vo

where an elemental volume dV is equal to bidy to give

~(t)

f(xit) = f ybidY (1)0

where bi is the breadth of the ship and a function of y,

is the wave height at any time t and y is the specific

weight of water. It has been traditional in naval architec-

ture to use a trochoidal wave [141 to model the wave form

for deep water waves. With sharper crests and flatter

troughs it makes a very close approximation to the actual

sea surface. However, this wave form cannot be derived from

the velocity potential for surface waves and the parametric

equations which describe a trochoid are an additional

complexity in any analysis.
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A wave form which is more manageable and is derived

from hydrodynamic theory of waves of finite amplitude was

prepared by G.G. Stokes in 1847 [14].

-2
= Tcos (wt-Kx) +K cos2 (wt-Kx) (2)2

where is half wave height from trough to crest and the

circular frequency w and the wave number K are related by

w2K =  2/g = 2r/Lw = g/Vw (3)

for deep water waves where Lw is the wave length and Vw is

the celerity or wave velocity. In (2) a simple traveling

cosine wave is modified by a harmonic which is half the

length of the fundamental but which moves with the same

celerity. This wave form has the same sharp peaks and wider

troughs as does the trochoid but the fact that it is nonlinear

with respect to height makes it somewhat less attractive. In

the program suitable approximationswill be made.

It is well known that the pressure in a still body of

water is equal to yh where h is the distance below the still

surface. It is also well known that in deep water the water

particles have a circular motion which serves to reduce the

pressure according to Bernoulli's theorem. That is, for a

simple harmonic wave,

60



11r W: :- ... . .
F-Y

p = Yh + 'yeKhcos(wt-Kx} (4)

This is the Smith effect. The pressure on the hull due to

the wave passage is then

-Kh= ye-Kh  (5)

where ; is given by (2). The buoyancy due to this pressure

is an integration of the vertical component of the pressure

over the surface area of a hull slice of unit length. That

is

f(x,t) = - Pw nj ds
0 |

where n is an outward pointing unit normal to the hull and

j is the unit vector in the positive y direction. For a

ship vertically sided to the baseline this reduces to

f(x,t) = Pw (T)b

or with (5)

f(x,t) = bye"KT (6)

where T is the draft.
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Since the pressure given by (5) is seen to, in effect,

reduce the waveheight , an effective wave height ;* can be

defined so that

fI(x,t) = ybC* (7)

where the assumption is made that the ship is vertically

sided at the waterline so that b is constant over the range

of *. The subscript I indicates that this buoyancy force

is only part of the total excitation. * is given by (161

K0 K
* - zeKYdy] (8)

where z is the hull offset and y is distance to the design

waterline. The integral serves to weigh the determination

of the reduction factor by the hull shape. For a section

with a vertical side to the baseline (8) would reduce to

0 K
* [l-K f e Ydy]

-T

[lfe KYKdy ]= [-IT

-T

-- [i- (l-e - KT)]

-KT
e
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so that

f1 (x,t) = Ybe - KT

which is identical to (6). The discrete form of (8) is

n

= [i- Z z1 eKyi Ayi ] (9)
i=l

and for the discrete forcing function per unit length

fl(xijt)= yb.C*=yb. JiL- Z z. eKyi Ayi] (10)

where is given by (2).

The behavior of the bracketed term is to reduce the

wave height as K increases. For small K the term is very

close to 1. Consider the straight sided vessel again. A

reduction in wave height to one-tenth of the long wave value

requires

.1 = e-KTeK

-2.30 = -KT

K = T/2.30
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For a draft of 20 feet K = 8.70 which corresponds to a wave

length of .72 feet. So as K increases the correction term

approaches zero. Thus there are two major effects taking

place to reduce the energy available for excitation of the

higher modes of a ship hull. First the wave height decreases

as the frequency increases and the effect on an immersed body

decreases as the frequency increases.

Due to the logarithmic decrease in (9) the discrete

form of the correction term, hereinafter called D, causes

some convergence problems, that is, as K increases D fails to

approach zero if the increment Ay is too large. In the pro-

gram four foot waterlines are used and the following slightly

modified expressions must be employed.

-KTS
D= e

n

Sb n Zj
ii=li

Equation (11) has the proper limiting values and

accounts for the hull shape also.

There are two other parts to the forcing function to

be presented. As the wave passes down the side of the ship

" the vertical component of the orbital velocity has a damping

effect and this force can be expressed by

fz (Xjt) - (N'-Vdm'/dx),* (12)
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where (NI-Vdm'/dx) is the sectional hydrodynamic damping

coefficient which will be discussed later and t* is the

time derivative of the effective wave height. The third

force is due to the inertia of the added mass

f3 (xj1 t) = m! * (13)

where t is the effective vertical acceleration of the wave

height. As was discu-sed in Section C the added mass may be

incorporated into the equation of motion in two ways, either

as an addition to the mass of the vessel and placed on the

left hand side or as an exciting term and placed on the right

hand side. The superposition principle allows the separation

of the added mass effect in this case since two separate

motions are being superposed, the vibratory motion of the

vessel and the harmonic motion of the waves.

In (13) m! is the added mass calculated for immersion

to the still water waterline. As the wave passes, the draft

at a section changes and so does the added mass, but here

the sides at the waterline are assumed to be nearly vertical

and the change in added mass is very small so the effect can

be neglected.

The total excitation force is then

3
f(x,t) Z fi(x,t) (14)

i=l
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and the modal excitation force is obtained by multiplying

by Yr and summing over the ship length as shown in Section A.

N
F r(t) = r (x .)f(x.,'t) (15)

The correct surface height, velocity and acceleration are

-2
*=D~cos(wtK) 1 I cos2(wt-Kx)

=-Dw~sin(wt-Kx)-_DKwg
2 sin2(wt-Kx) (16)

-w2-Cs (tK)2w2-2
= -D ~cs~w-Kx-2Dw ~cos2(wt-Kx)

and

f(x.,t) =ybi.*+(NI-Vdm'/dx)--* + i*

= (Yb -M!Diw 7) cos (wt-Kx)

-DiW (N'-Vdm'/dx) sin (wt-Kx)

1 -12-
+( ___ 2D XW m)cos2 (wt-Kx)

2 1

-Di Kw - (N'-Vdm'/dx)sin2(wt-Kx) (17)
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Let

G~1  yb~D- - 2-

G 12= -Diw (N'-Vdmf'/dx)

i22-
-2 (18)

211

Gi -D iKw (N -Vdm '/dx)

then

f(xilt) = GiicoswtcOs~rx + rin~wtsinKx

+ G.2 sinwtcos~x - G 2coswtsinKx

+I G.cos2wtcos2Kx + Gi3sin2LJTsin2Kx

+ Gi sin2wjtcos2Kx - Gi4cos2cwTsin2Kx (19)

Substitution into (15) yields

N
F(t) -coswjt r Y (x. G 1cosKx.A

+ sinwt Z Y~ (x )G 1sinKx B



+~ sinwt Z Yr (x) G 2cosKx C

-coSwt Z Y (x) G. sinKx D
r i2 1

+ cos2wt Z Y r (x i) G i3 cos2x .

+ sin2wt Z Y r(x.i) G 13sin2Kxx.

+ sin2wt Z Y r(x.i)G 4csx

- cos2wt Z Y (x) G 4sin2Kx. (20)
r 1 i4 1

Or

F r(t) =P rlcos(wt- 1)

+ p r2cos(wte62)

+ P cos(2wt-63

+ pr4 cos(2wt-a 4) (21)
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-Mjj~jF'JjjjjC- --

where

N 2 N 2 1/2
p = {Z (x.) G. cos, +(Z Y (x.)G. sin~x.)}

pr (Z r (Ax.) G csKx) +(Z Y (x.)G. sinKx)2J/
r2 i=i 1~ c 12 i i.2

(22)
N 2 N)21/

r3= {( Y (x.)G. cos2Kx ) +(Z Y r (x.i)G i3sin2KX.) 2 1
r3 i=1 r 1 i3 i=1

N 2 N2 1/2
P = {(Z yx )Gi o2 )+(Z Yr(X i)G i.4 snKr4 YrXiG.CS 2 X i=1 snK.

N

a arctan N=

Z Yr(x i)G iiCOSKX i
1

N
Y1 (x )G 2 cosKX~

= 7 -arctan N

SYr(X i)Gi 2 sifKx i

(23)

N
Z= Yr(x i )G 0 sin2Kx .

e3=arctan i 11
3 N

Y= r (x i)G 0 cos2Kx i

N
z Y (x.)G cos2Kx.

8 T-arctan im1 r 1 i4 1

Y (x )G sin2Kx.
r1 i4 1
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The Pri i-l,2,3,4 are known as "participation factors"

and were obtained by weighting the wave forces by the mode

shape. The factors indicate the participation of the wave

forces in exciting a vertain mode. Solution of the independent

equationsfor the modal response as discussed in Section C

yields

4 P ricos(it-i+1r)
r ( t ) = E 2 2 2  2)1/2 (24)

wherei= 
l (( r - ) +(Cr W)

Cr rwhere C

Er = arctan ( 2 2

r

The most significant part of this exact time history

is the magnitude of the response. Equation (24) may be mani-

pulated to yield the amplitude of the sinusoidal response

4 2 421/

nr = {(Z P ricose.) + (Z Prisinei) 2 }i/ 2  (25)
i=l ri

The nonlinearity of the expression for the height of

the sea surface can be eliminated by dropping the modifying

harmonic. Although the simple cosine term is not an exact

representation of the sea surface it is ideal for representing

the many component waves of the general sea. It also allows

the principle of superposition to be applied and for these

reasons the program encorporates this modification. Result-

antly G3=G4=P3=P 4=0 with significant subsequent simplification

of the program.
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This analysis assumes that the presence of the vessel

does not disturb the wave motion which it, in fact, does.

This, then, provides an upper bound to excitation and real

forces will be less. How much less is a matter for speculation

and research.

E. Damping

It would not be incorrect to say that relatively little

is known about damping associated with ship hull vibration.

To be able to calculate the amplitudes of desired quantities

such as stress levels, bending moments and displacements,

the distribution of damping in the hull, cargo and surrounding

water should be known. The available literature is sparse,

[4] (11] [16] [17] but it is generally assumed that energy is

dissipated thru a number of mechanisms. A convenient cate-

gorization divides the mechanisms into those which are hydro-

dynamic and those which are not. Water friction and the
generation of both surface and pressure (sound) waves are

the hydrodynamic effects. Structural and cargo damping are

non-hydrodynamic. Another possible way of differentiating

the loss mechanisms is to determine where the damping takes

place, either within or external to the hull.

As described previously, superposition of the natural

modes of the ship yields for vertical vibration

y(x,t) = Z r (x)r(t) ()r= 0 r
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where Y r(x) is the normalized mode shape and n r (t) is the

natural coordinate which incorporates the natural frequency,

initial conditions and modal damping factor into a time de-

pendent function. Motion for r=0,1 is heave and pitch

respectively. Fortunately the damping in ship hull vibration

is relatively small so that calculations for the natural

modes and frequencies can be carried out assuming no damping

without significant error. This is especially true for the

lower modes.

other qualitative information concerning damping has

been known for some time. Higher modes are less affected by

hydrodynamic damping due to in part the smaller displacements

involved. In these modes structural damping is the major

factor. The situation is reversed for lower modes. The

generation of sound waves increases as the vibration fre-

quency goes up Zut this remains a very small quantity through-

out the range of interest, that is w less than about 35 rad!

sec. For rigid body motion there is, of course, no structural

damping. If vibration analysis is of concern and sea-keeping

is not then discussion can be limited to distortion modes

r ! 2. Surface wave generation increases with decreasing w.

For even the largest of vessels, however, wis greater than

about 2.5 rad/sec and wave making damping is far less than

structural damping.[f17]
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in a discussion of damping it is common to refer to

the logarithmic decrement 5 associated with a mode or given

damping mechanism.

= 27;/1F7 = ln(x 1/x 2 ) (2)

where C is the critical damping ratio associated with the mode

or mechanism and x and x2 are values of the response separated

by one wave period.

Since struc:ural damping is the significant factor and

appears to be manageable there has been some effort directed

at its analysis. [4] This damping derives from hysteresis in

the steelwork. The logarithmic decrement for this is a power

function of the stress. For levels of stress less than about

30,000 psi

6 = Con (3)

where C is a material constant and n 3. At higher stress

the exponent increases rapidly and other effects such as

stress history become important. For steel plate (3) becomes

6 x 10 - 5 < 6 1.6 x 10 - 4
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Values for a welded structure go up with the complexity of

the structure and may lie in the range

-3 < 2
9 x 0- -1 3 x 10 2

This dramatic increase is explained in part by the high

residual stresses from welding and stress concentrations at

joints. There may also be as yet undiscovered hysteresis

effects which are structure related instead of material

related.

Ships of current design are usually welded but in

riveted ships coulomb friction at the joints is very important.

In traditional analysis this dry friction is treated differ-

ently from other damping effects. The coulomb damping force

is not a function of velocity rather it has a constant value

for all velocities and varies only in sign. This directional

force is treated as an excitation force which opposes motion

and equations for each direction arc solved. One test

concluded that riveted ships have twice the structural

damping of welded ships. (17] This would obviously vary

with ship age and history.

Experiments have been performed on loaded and unloaded

vessels to determine cargo damping effects. Results show

that cargo does increase the logarithmic decrement but for-

mulations which have been made to quantify the effect have

failed to predict well. (17]
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The literature separates the generation of surface

waves from the other damping mechanisms. It is that part

of the hydrodynamic damping that can be derived from potential

theory and the only part of ship damping with a solid mathe-

matical base. However, the literature goes on to say that in

the distortion modes the natural frequencies are relatively

high and the displacements so small that for most existing

vessels the effect can be taken as zero. A bit ironic. in

equation (11) of Section D the term in parentheses (N'-Vd'/dx)

is the sectional hydrodynamic damping coefficient according to

the strip theory approach used in this paper. N' is a para-

meter which quantifies the generation of surface waves and

Vdm/dx is a forward speed correction term. V is velocity and

m' is the added mass. This coefficient, it is seen, varies

along the hull length and this distribution of damping effect

is important for computation of exciting forces. The normal

mode analysis in Section A required that the damping be pro-

portional to the mass and stiffness distribution. Otherwise

the modal equations would not be uncoupled. Since the pre-

dominant damping source is structural this assumption is not

too far off, even though the distribution of the sectional

hydrodynamic damping is weighted at the bow and stern. N' is

nearly zero amidships but gets larger at the bow and stern.

The effect is still very small. Only the forward speed

correction will be considered in this work and consequently

the amplitude obtained will be slightly high.
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Consideration of equation (2) brings up the fact that

in much practical usage all the damping effects are lumped

into one parameter and its value obtained from a spectral

analysis of stress data taken from a vessel which is loaded

impulsively so that all modes are excited. Several full scale

measurements from slamming or mechanical excitation (anchor

drop test) have been obtained and modal damping constants

calculated. [111 [171 Some convenient empirical relations have

been devised from such experiments and other means so that

values for the Cr can be obtained quickly. From basic vibra-

tion theory [24]

Cr = 2w r 6r

2w r= rr(4)

V(27) 2+6
2
r

and a formula for the logarithmic decrement which seems to

give intermediate and hopefully representative values is

(171

1r =l.065 x 10 2 W r1 2  < 31.5 (5)

Equations (4) and (5) will be used in this paper to determine

the Cr.
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3. PROGRAM OVERVIEW

Estimation of the parameters for use in the Prohl

sequence calculations is a choice made by the author. The

values of m, A, I and J for each section could be obtained

from scantling lists and a weight curve but their assembly

would be time consuming and defeat one of the purposes of

this work, that is rapid vibration information with a minimum

of data required as input. Therefore the subroutine HULL for

estimating these quantities has been incorporated into the

program. Input required is station spacing, number of

stations, displacement, thickness of side shell, main deck

and bottom plating, offset data and deck edge heights for

each station.

Sectional mass is computed by first obtaining the

total sectional area from the offset data for each station.

A partial sectional area is computed by the use of the five-

eight rule [14] and the offset data. An additional area is

computed which is equal to the deck edge height minus the

highest waterline for which offset data is input times the

offset at that waterline. The sectional area equals the

sum. A uniform permeability is a reasonable assumption for

naval vessels so that the mass is proportional to the area

at each station. The sum of the sectional areas is divided

into the displacemen:. to get an area density. The density

is then multiplied by each sectional area to obtain a
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sectional mass. No attempt is made to account for super-

structure concentration of mass or its effect on stiffness.

A two beam ship model would be the next step in sophistication.

The mass moment of inertia, J, about the neutral axis

is determined by first assuming that the beam cross section

has a uniform distribution of mass. Naval vessels are

characteristicly longitudinally framed. In the midship

section the hull strength is provided by the main deck,

side shell and bottom plating and their associated longi-

tudinals. A thirty inch spacing is not uncommon and the

stiffener area to plate area ratio is about .3. So, the

effect of longitudinal is taken into account by increasing

the plating thickness by 30%. The neutral axis is determined

by a calculation of the first moment of the hull steel. The

sectional area density is then used along with the offset

data in a second moment calculation about the neutral axis.

Each hull cross section is divided by waterlines with four

foot spacing. The area from the baseline to the first water-

line is assumed to be bounded by a parabola. All subsequent

areas are assumed to be trapezoids. The distance from the

neutral axis to the centroid of each incremental area is

computed, squared and multiplied by the area. The second

moment of the area about its own centroid is computed. The

sum of all these terms equals the sectional second moment.

This is multiplied by the sectional area density to obtain J.
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The moment of inertia, I, is obtained by a second

moment calculation of the hull steel around the neutral

axis.

The effective shear area KA in a hull shape is very

difficult to determine. Traditional practice has been to

use only the vertical side shell and any continuous longi-

tudinal bulkheads in the calculation. Analytically obtained

values for K are for simple symmetric shapes only. [15]

Calculations by the author for box type sections with

various side, deck and bottom thickness and beam/draft ratios

shows that an approximate value for the effective shear area

can be obtained from the following

(KA) i = .87(2tD) = 1.74tD (1)

where t is the sideshell thickness and D is the depth. Then

for steel

KAG i = 1.74tDE/2(+)

or

8
KAGi = 2.35 x 10 tD (2)

for t in inches and D in feet.
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Subroutine NMODES first computes the virtual mass

of each station which varies with the mode of vibration for

which a solution is sought. Burrill's formula [141 is used

to estimate the frequency of two mode vibrations and the J

factor for that mode is formed and virtual masses computed.

Equations (1) through (4) of Section B are solved for each

station given a value of w in the following way: the shear,

bending moment, displacement and slope at any station i are

assumed to be of the form

V. = a. + b.a

Mi = -c. + di9s

(3)

Yi = ei + fis

e - gi + hi9s

where s is an unknown initial slope at the stern. Then (1)

through (4) of Section B are used to determine the conditions

at station i+l

~2
a i+1 a i + mi ei

b i+ 1 = bi + miW
2 fi
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ciL ai+L2
gi+1 gi - +

= El i+ 1  2EIi+ 1

diL b i+L2
hi+ 1 h + +

= h+El.i+ 2Ei1.
2E2i ~ f. +l i-i-

di+l = di + b i+L - Ji+l hi+l (4)

L2i + i+L i+L

ei+l ei i 2EIi+l 6EI i+ KGAi+

diL2  bi+ lL
3  bi+lL

fi = f. + hiL + - +
1+1 1 1 2EIi+ 1  6EIi+1  KGAi+1

From the treatment in Section B

cN%s d N5

and

bNcNaN + -- O ( 6)

at a natural frequency. The subr-uitine performs the sequence

calculation until opposite signs are obtained for the quantity

on the left hand side of (6) for two values of w. A natural

frequency is then known to lie between these two values.
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The subroutine is designed to determine the natural fre-

quencics to an accuracy of ±.04 radian/sec. After a natural

frequency is obtained the mode shape is determined from

yi - ei + f N (7)

and normalized by the method discussed in Section B

N 2
Smi Yi=l

i=l 1

Data obtained from the Andersson reference [21 for a

60,000 ton tanker was input into NMODES. The resulting

natural frequencies obtained are compared with the measured

frequencies in radians/sec.

NMODES (21%

1 4.92 4.89 + .6

2 10.63 10.43 +1.9

3 16.68 16.41 +1.6

4 23.20 22.91 +1.3

5 29.26 29.17 + .3

6 34.88 35.03 - .4

7 39.77 40.33 -1.4

The percent difference is quite small.
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The input subprogram reads data which is punched

according to the format listed after each read statement.

The data must be placed in the proper fields, decimal points

must be punched and all integers must be right justified.

STA is an integer variable and is the number of stations

for which offset data is given. STASPA is the station

spacing in feet, DISPL is the displacement of the vessel in

long tons. The program later changes this value and does

all calculations in slugs, BEEM is the beam of the vessel

in feet. (Another variable with the correct spelling is used

in the program.) Ti, T2 and T3 are the main deck, side shell

and bottom plating thicknesses respectively of the midship

section in inches. DECKE is the deck edge height from bow

to stern in feet. There must be one entry per station. DATA

is offset data, one card per station. All entries are in

decimal feet. The first field is a real integer (decimal

point must be included) which is closest to the draft at

that station divided by 4. The remaining twelve fields are

offset data starting from the bottom and proceeding upward

at four foot intervals. The first field must have a real

integer less than or equal to twelve and only 12 waterlines

may be input, unused fields may be punched with zeros.
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The output will list the computed station mass in

slugs, the mass moment of inertia J in slug ft2 , the second

4moment of area I in ft , shear stiffness KAG in lbf and

the 2-D added mass for each station in slugs. The program

will list the first seven natural frequencies and the

normalized made shapes. The program will also list the

response amplitude operator over the frequency range of

interest for speeds of 0, 10, 20 and 30 knots. It will also

list the response of the vessel to a Pierson-MOskowitz

fully developed sea with a wind speed of 50 knots. Response

amplitude is in inches measured at the bow.

It is obvious from a look at the Pierson-Moskowitz

formula that precious little energy exists at frequencies

above the first mode of vibration, springing. it is reason-

able then to assume that wave excitation is significant only

for large, long and shallow vessels. The large masses and

the low stiffnesses (due to reduced depth) are responsible

for a relatively low first natural frequency, one low enough

that sufficient energy is available for excitation. Too, as

wave frequency goes up the effect on a vessel of constant

draft drops off logarithmicly as has been shown. The only

times then that the higher modes will be excited are when

slamming occurs or under some other impulse type loading.

The value of the program lies in the beam parameters obtained
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from the HULL subroutine, the natural frequencies and mode

shapes obtained from NMODES and the forcing data which can

be retrieved from FORCE. The node location in the natural

modes is important as possible locations for placement of

machinery operating at or near that natural frequency since

excitation at a node will not excite vibration.

Numerous comment cards have been inserted in the

program and can be used to understand the many small pro-

cedures, which are a natural part of any project of this

dimension. The text of this thesis serves only to discuss

the major technical areas and not the interesting but

obviously minor structural details of software construction.

The program listing which follows is divided into the sub-

routines. A sample input record and output record are shown.
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STATI CN IASS J i G AD D::Az

1 0 215E 6 C.2 b72. 38 0 .272 5 X 7: I1 3. -1'6

2 0.2422' )6 0.642t 08 0.264 C5 9.2'i7Z 1! i .224; 4S

3 0.274E 06 0.72 jE 08 0.293! 05 ).2477 11 ).236Z :0

4 J.2o9E C,6 C.596Z 08 0 .2563 E,5 2.226 11 '.333- -

5 '.2-2Z 0r .26- 03 0.267E 05 3.22E - 11 0.3 z

6 0.2)0' 06 0.6437 0d 3.273' 05 J.2 3o 16 F.3 6- ,

7 0.2)43 Z6 C.653: J03 ,.277i 05 C.2Z1 6 11 C.3, 7 t ;o

8 0.296. 06 0.b58. 08 0.278E 05 0.226: 11 0. 43 ZU 6b

9 0.297?s 06 0.6603 J8 0.279Z G5 3.226L 11 .16Z £6

10 0.297 )6 U.660E 08 0.2792 05 0.226L 11 5FC5 ,6

11 0.297 06 0,6b0:; 08 0.279 05 .226; 11 0.405 06

12 C. 297s 06 0.66C 08 0.2792 05 ).226-- 11 .15E 306

13 0.297 06 .b61)& 0J 0.2793 05 0.22b . 11 405E 6

14 0.2h06'.3::3 27E5 .26 11 0 06

15 0.29 4Z G 6 C.b53"- 03 0.277% C5 0.226L 11 0.3 TZ ?6

16 .29 )o 0' 0.6-3J 6 0.273Z 5 Q.22- 1 1 .3 Z

17 0.2322 06 . bir' Q2 d .267 5 0.226: 1 Z2 36,- =

18 C0.269 Z 6 3.596 08 C.256-- . .X2 11 .333: "0

19 .2 '2 o 0.551 "  ) .239: .D5 0.226 2 11 .. 2 16"

20 J .2427 ,96 0.6'42 3 d 3.264-- 05 .247T 11 0.224: )6

Sample Output
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!1ATURAL iRA[UiJCY "J 13?1 IS 2.407 FAD/57C
0.578 -03 .4416 i-J3 .3 9 -0 3 1. 1632L-43 .329Z-

-0.7721--'-0 -). 176IE-3 -. 2527L-0.3 -C.303t,:-)3 -0.32452-7'3
-1.3159E-'3 -C.2778E-03 --.2124--03 -0. 1230Z-03 -3.14 4 7----4
'.10@I1-0J 0.23P2E-03 ).3733.-03 50 6 01-1-03 ".o34L-33

MNATUEAL FREQa,"iCy NUABR 2 IS 6.040 FAD/S7C
0.5409E-03 0.32442-03 0.10 6 2E-03 -0.9475--04 -;.25342-X3

.34o5 -03.3&o4.-3-. 3% "-d3-. 1835,-C3 -0.233_- ,;
0.1359L-03 ).27072-03 3.35.)5!-03 0.3579--C3 C.2 37E- 3
0.1486B-03 J.4 060-O4 -0.2555E-03 -,.47 I9-J3 -0.o69E-':3

NATUEAL FP7QU:ICY NU.MBEB 3 Z3 10.611 ZRAD/S C
0.4966 -C3 1).215. -. 3 -C.6335.5-Q4 - .28C6E-13 - *.74-8-3

-0.31832-03 -3.1375E-03 0.9663Z-04 3.3022Z-03 J. 39J 31'- 3
0.3511E-03 j.1787'-03 -0. 552 OE-04 -0. 2 U34'-73 -0.3667-,:3

-0.3225E-03 -1).1 361-G3 3.1351E-03 C.4253:-03 6.718 - 3

NATURAL FaEQU5NCY NUIB R 4 IS 15.573 rAD/S7C
4.45472-t3 0.11362-T3 -0.2053z-03 -0.3765Z-C3 -1.3153Z-03

-0.5 812E---0 0. 23'9 E-03 0.39935-03 0.32332:-33 .55367-,, 4
-0.2454i-C3 -t;.40C6.2-U03 -C.319 1-3 -ko 119:- V .3s~
0.3773E-03 0.2712--03 -0.31992-04 -0.3396o-03 - Z63 - 3

HATULIL ?iEQOIUEICY NU B5B 5 1S 20.577 RA/SZC
0. 4191E-03 0.2339Z-0'0 -0.3101E-03 -0.3719E-03 -0. i 161-03
0.2551E-03 ).4097'-03 0.2133E-03-0.16622-03-tX39DS-C3
-0.2809Z-03 0.8392E-04 0.3776--03 0.3450L-03 O.la,0.Z-G4
-0.3131E-03 -).35582-03 -0.6133s- 4 0.3565:-03 . 45:-J3

NITUa.L FR ,f1ff:1CY :U.B£a 6 IS 25.436 RAD/S3C
0.3874 E-03 -0'.57b5z-,4 -0.3748E-03 -0.27731-:3 x.-:3
0.41705-03 V .2 39 '3 -'J.244--U3 -0 . 43 22- 13 -).3~%-~
3.3340-0 3 J.3545E-03 -).484 z-)4 -0.367 -3
0.1571 -03 0.3 2-03 1).1463!- ,3 -:5.3332--; -C.o'77-3

SN'TUIA. ZR!J'I.Y I:LS3E 7 iS 29. 965 A D/3'C
0.3545 -C3 -0.12603-.3 -X.3935-u3 -. 1221=-3 3
).3276Z-03 -,.1 7 3 3E-03 - ).L 79;-03 -0. 1972:-')4 ;.4;: 3
C.21061-03 -0.29b9&-03 -C.3505Z-u3 :.135 -)3 . 21Z-'3
0.806o-04 -C.3612 -C3 --,.2413--03 i.2863-,G3 .95 -- 3

Sample Output
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-3 '7=1U'_ U : 7 F AC -A .3 ,'INS

3.2596 , 5 29 24.34 1.2,2
3.2770 5.9-a ,. 793 4 26.32 2.13
.294 5 d.)1, 1.218 23.33 2.9 6
.311 9 10 . 2 1. o79 29.-33 3. o81

0.32j3 12.77 2. 13 28.79 4.142
0.3468 15.27 2.533 27.34 4.259
"3b42 17.72 2.do1 24.49 3.991
0.3817 19.99 3. 396 2C. 1 1 3.346
0.3991 21.95 3. 227 14.32 2. 3,
0.4165 23.46 3.253 8.223 1.356
0.434) 24.4v' 3. 176 8. 562 1.383
0.4514 24.66 3.033 17.34 2.721
C.U689 24. 17 2.748 23.26 ,. " i3
0.4363 2-.ad 2. 427 3).49 5. 768
0.5037 2.-81 2.,159 49. 95 7. 0 j I

0.5212 1,3.04 1.664 51.59 7.845
0.5386 14.70 1.265 64.37 3.-0
0.5560 1,3.98 0.6b2d 66.38 . 145
0.5735 7.134 3.5359 63.93 7.4,38
a.590 y 3.430 40.2410 56.58 (.331
0.6084 0.5410 ,).3560L-C1 44.57 4.753
0.6258 2.690 0.1659 28.67 i.925
0.6432 4.5,45 3.2631 10.31 !.C54
0.6607 5.501 0. 2.993 11.73 1. Ys
0.6781 5.552 3.2841 29.24 t.5
0.6956 4. 3.05 0.2316 43.73 3.748
3.7130 3.466 0.1575 52.54 4.2 8
0.7304 1. 309 0.7762E-01 54.10 4.230
0.7479 0.1637 0.6a41!-u2 47.9) 3.593
0.7653 1.2tO 0.49 1l.-0 1 34.oO 2.492
0.7828 2.2.7 .ao 16:-- 1 16.78 1.15,3
0.8002 2.345 0.3764-O1 8.525 5).5u53
3.dl7o 2.3^7 ,.754 -0-1 25.43 1.6zI
3.6351 1.62 '.5036-7-01 39.16 2.395

0.8525 j.7)51 0. 2032Z-31 44.76 2.643
10.8699 J.2318 65!4-,2 41 .. 1
).8874. .2406E-0 1 2J.74 1.575
0.9048 1.213 C.3103r-:j1 11.57 3.6115
0.9223 1.142 u. 275 1E-01 13.62 ;.o445
0.9397 ).7ig9d ,3.179,:!-01 29.b6 1.461
3.9571 .. 2937 X.02az-,)2 3a.32 1. e47

J.9746 ).3 354 6492"-02 37.71 1.73
.3.9920 -,.5443 3.11)7 -01 26.50 117;

1.CC9 3.54 ,3 ,)72;-01 10.15 ).4323
1.)27 :,.3514 0.65667-02 15.o8 :. 341
1.044 ).1576 ,.2625z;-2 3,.52 1."34
1.062 -).2912 3.5V'09E-02 36.3a 1.426
1. 379 '.3596 ).5941Z-02 33.6) 1.153
1.097 ;.2442 ;.3d77z-c2 15.54 ;.5731
1.114 1.52323-)1 0.79diE-3j 13.26 3.3632

Sample Output
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V=2) 7=33
FAO 7. SPO I SL c a 5 P. .0NS 3T

52.31 1. 39 79. 6b 57 19
58.28 2.253 89.12 1.472
63.44 3.619 96.67 2.97'4
67.29 5.570 11)5.6 5. 035
69.27 7.213 103.9 7.301
68.83 8.450 113.5 9. 467
65.42 9.025 106.6 11.r,6
58.60 8.767 97.41 11.68
41. 13 7.599 .2.57 11.02
34.11 5.568 ol.96 8.951
17.89 2.971 36.54 5.590
13.36 2.231 15.57 2.478
32.81 5.454 37.64 6. 148
56.21 9.237 72.96 12.10
79.11 12.73 1A.3 IP..07
99.14 15.67 139.7 23.29
114.1 17.37 163.7 27.13
121.8 18.25 177.2 29.04
120.7 17.54 177.4 26.65
1C9.7 15.46 162.9 25.85
89.03 12.14 133.5 24.76

59.83 7.889 91.01 13.35
25.40 3.236 40.07 5.955
18.50 2.277 25.38 3.66%)
52.96 6.297 76.68 1C.84
82.65 9.492 121.6 16.73
101.6 11.27 150.7 20.19
106.4 11 .40 158.7 20.69
95.66 9.903 143.4 18.19
70.56 7.060 1'6.5 13.13
35.54 3.438 54.31 6.515
15.42 1.442 22.39 2.612
48.58 4.396 71.73 i.137
76.50 6.700 113.9 '2.57
68.86 7.535 132.3 1,.e7
82.41 6.768 123.7 12.92
58.36 4.646 ia.)2 3.943
24.12 1.8361 36.68 3.ba
26.24 1., 63 36.36 3.742
53.55 4.231 87.44 8. 198
77.39 5.453 11 6.) 10.5
75.64 5.175 113.6 10.12
53.54 3.559 oC, .5a 6.9 d,7
20.54 1.327 31.03 2.623
31.04 1.950 46.40 3.824
6C.94 3.724 91.37 7.346
72.93 4.336 119.5 6.53a
61.48 3.558 92.36 7.371
31.29 1.764 47.35 3.517
20.62 1.132 30.95 2.259

Sample Output
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