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1. INTRODUCTION

For centuries, engineering design has been guided by the continuity of

successful practice and professional judgement. A first element of objec-

tive rationality has been provided by the principles of mechanics, the

application of which has become easier through the use of fast computing

devices. A second movement toward rationalization, based on the formal

treatment of quantifying uncertainty, is now under way. By itself, none

of the three elements--mechanics, computers, and quantitative analysis of

uncertainty--can produce intelligent engineering decisions, but their

combination seems to be both necessary and sufficient. Benefits from

probabilistic treatment of uncertainty are especially large in problem

areas, such as earthquake engineering, where solutions by traditional

means require a great deaT of experienced judgment and intuition.

1.1 The Problem of Accuracy in Seismic Hazard Analysis

Wherever a mathematical model, deterministic or probabilistic, is

used to represent a complicated physical phenomenon, the problem of de-

termining its accuracy arises. It is clear what accuracy means in the

case of deterministic models (one should just compare deterministic pre-

dictions with actual observations); this is not so for probabilistic

models. For example, there are statisticians who consider probability in

seismic hazard statements as quantified personal uncertainty about future

earthquake events. From this premise they conclude that if an individual

faithfully quantifies his own state of uncertainty, then calculated hazard

is necessarily exact, at least for that individual. This argument is

built around the so-called subjective, degree-of-belief (d.o.b.) interpre-

tation of probability. This interpretation will be discussed at length in
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Sec. 2 and conclusions will be drawn that it is inappropriate or at least

insufficient in the context of seismic hazard. One should notice, however,

that the issue of accuracy is legitimate within the d.o.b. interpretation

for two reasons: (1) because it is typical to use simple mathematical ap-

proximations of complicated states of uncertainty and (2) because there is

ample evidence that humans make mistakes in quantifying their own state of

uncertainty.

It will be proposed in Sec. 2.1 that probability be given a frequentist,

time-average interpretation in the quantification of seismic hazard; e.g.,

that the probability that the peak ground acceleration at a given site dur-

ing the next 50 years will exceed 0.2 g be interpreted as the relative

frequency with which the event occurs over periods of 50 years. Notice

that in this interpretation, the next time interval is replaced with the

generic time interval. The same interpretation has two major advantages

over the d.o.b. interpretation: (1) it is objective and (2) it applies

if the physical earthquake process is regarded as deterministic. It also

makes clear what is meant by an accurate model: an accurate model is one

which produces probabilities of seismic events close to the actual relative

frequencies in time.

Accuracy of a procedure for the estimation of seismic hazard is not

by itself a sufficient measure of engineering value. ("Seismic hazard" is

used here to denote a suitable rrobabilistic characterization of future

ground motions at the site, often simply in terms of the mean rate at which

peak motion amplitudes at the site exceed given values.) What is of greater

interest for engineering purposes is "seismic risk," i.e., the probabilistic

characterization of consequences from exposure of engineering facilities to

seismic hazard. For example, it may be of interest to know the yearly prob-

ability of overtopping of a dam due to earthquake events. If the dam is
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completely unsafe with respect to very severe ground motions, then in-

accuracy of seismic hazard in that range is inconsequential.

A second reason why accuracy is not sufficient is that simpler pro-

cedures are often preferred to more precise but complicated methods.

Decision-theoretic approaches to engineering model selection have been

proposed (e.g., Grigoriu, Veneziano, and Cornell, 1979) and they account for

m-lel errors, their consequences, and the cost of developing and using the

model. It would be interesting to examine the accuracy of seismic hazard

methods from this wider decision-theoretic perspective, but studies on this

subject are almost nonexistent. For some types of engineering systems, in-

formation is available on the dependence of risk on seismic hazard and also

on the sensitivity of risk to errors on seismic hazard. This information is

reviewed in Sec. 3, as it is useful to evaluate the practical relevance of

hazard estimation errors.

1.2 Seismic Hazard Procedures and Sources of Errors

Seismic hazard procedures or models, M, are sequences of analytical

or numerical operations that produce estimates of earthquake hazard from

suitable seismological information. Denote by z the available information

and by H the hazard estimate from z and from a given procedure M. The

form of H varies depending on the purpose of seismic hazard analysis: for

example, H might consist of a random sequence of earthquake times and in-

tensities at the site. In other cases H is simply a "hazard function,"

e.g., a function A (a) which, for each given peak ground acceleration a,

gives the mean rate at which a is exceeded at the site. In other cases

still, H may characterize seismic threat at several or even at all points

of a geographical region. Estimates of this last type are needed to
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characterize the vulnerability of spatially extended systems (networks,

lifelines, groups of facilities), to establish insurance risk, or to study

the socio-economic impact of earthquakes.

Although procedures of different types have been proposed, a certain

degree of standardization has been achieved in recent years in favor of

models, the elements of which are: a set of "seismic sources" near the site

of interest, a random process model of time, location, and size of earth-

quakes from each source, and an attenuation function that relates ground

motion amplitude at the site to earthquake size and distance from the energy

source (Cornell, 1968; Der Kiureghian and Ang, 1977). In the present study,

only procedures of this standard type are considered and H is assumed to be

a hazard function, e.g., of the type previously denoted by A(a).

In order to understand in which ways H may be in error, it is useful

to distinguish among the following:

MT = true (actual) but unknown model. This is a model which produces

probabilities of hazard-related events equal to the associated

relative frequencies in time. The associated true hazard is

denoted by HT.

= Jlass of (simple) seismic hazard models to which, for the purpose

of obtaining H, the true model MT is assumed to belong. For

example, %I = {M(X, 0)} = class of Poisson occurrence models with

constant mean activity rate X in space and time and independent

identically distributed (I.I.D.) earthquake sizes Yl, Y2' ...

The Yi have a given probability distribution function Fy(y, e)

with 6 an unknown vector of parameters. Hence, in this case

V is a family of Poisson models parameterized by X and G.



7

M : estimate of MT obtained from given information, under the assump-

tion that MT belongs to V. For example, M = M(X, e) in which

and 6 are point estimates of X and 0. The hazard estimate H

corresponds to the model M.

The empirical validation of H or the evaluation of estimation errors

by comparing predictions from H with observations from HT is impractical

because seismic events of engineering interest are too rare. More realistic

means of accuracy evaluation are as follows:

If indeed MT belongs to, then one can study properties of the random

estimation error H-HT by means of Bayesian analysis or by methods of clas-

sical statistics. In the former case, the properties of the error depend

on the distribution of MT in In; in the second case, the same properties

depend on which of the elements of TR is the true model. Of course, in both

cases the error distribution depends on the type and amount of information

available.

A simpler but less precise method for this type of error analysis

consists of calculating the sensitivity of H to the choice ofifl; for ex-

ample, sensitivity with respect to the form of the attenuation and size-

frequency functions.

If, contrary to the assumption in the calculation of H, MT does not

belong to In (e.g., if the actual sequence of times, locations, and earth-

quake sizes has memory, and Poisson processes with independent sizes are

the only models in )), then severe bias in hazard estimation may result.

If bias is small over a range of erroneous modeling assumptions, then the

hazard procedure is said to be robust over that range. Robustness is an

important property because in practice, MT is always known not to belong

to .
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Hazard estimation errors when MT is an uncertain model in N are con-

sidered in Sec. 4; those when MT does not belong to V are studied in Sec. 5.

Reliance on statistical analysis only with historical data treated as

a random sample may lead to exceedingly large uncertainty on some critical

parameters (typically source geometry and upper bound earthquake size) and

hence on calculated hazard. One way to reduce this variability is to use

parameter and uncertainty estimates by seismologists based on statistical

as well as geophysical and geological information. Expert opinion is es-

pecially valuable in regions of low seismicity for which historical samples

are small. Whenever statistical analysis is possible, experts should be

provided with results from it. Thus, use of expert opinion is not to be

viewed as an alternative to statistical analysis, but rather as a comple-

menting technique.

Expert opinion is not itself infallible, as demonstrated by the vari-

ability of estimates from different experts. It is therefore important to

understand any model errors from using this approach and to devise methods

to reduce these errors by combining estimates from different experts.

This is the subject of Sec. 6.

Unfortunately, errors in seismic hazard analyses have not been studied

systematically; contributions are sparse and fragmentary, each focussing

on a narrow aspect of the problem. A variety of techniques is used to ex-

press results in different forms. In spite of the effort to give unity to

the subject, voids and inconsistencies still remain. There is no accepted

procedure to rationally and systematically deal with uncertainty on seismic

hazard and, frequently in practice, elusive arguments of "conservatism" are

used to avoid direct confrontation with the problem.
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Additional work is needed on each topic in this report and a special

effort should be made to unify the language and coordinate the results.

Practical guidelines on how to deal with non-frequentist uncertainty would

be of much value. One possibility, which is advocated by many, is to

regulate safety in terms of events, the probability of which is high enough

to be accurately estimated by available procedures. For example, one might

base seismic design on the earthquake intensity with a return period of lO
3

years, as opposed to a return period of 106 years. Of course, higher pro-

tection against damage should be provided under the less intense motion.

It is hoped that considerations in this study, especially those on

the interpretation of seismic hazard, the classification of estimation

errors, and the treatment of expert opinion, will prove useful to future

endeavors.
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2. FREQUENTIST SEISMIC HAZARD AND UNCERTAINTY DUE TO ERRORS

The argument that uncertainty expressed by seismic hazard is the

product of ignorance and that seismic hazard probability therefore should

be regarded as a measure of strength of belief is unsatisfactory in many

respects because degrees of belief (1) do not necessarily satisfy the

axioms of probability theory, (2) are vaguely defined and variable from

individual to individual, and (3) are difficult to quantify. Due to (1),

the mathematical theory of probability does not strictly apply. Diffi-

culty (2) makes it questionable whether important engineering decisions

should be based on essentially subjective hazard assessments, and (3) in-

dicates that implementation faces problems of inference.

In Sec. 2.1, rephrasing of seismic hazard statements is proposed,

thus making it possible to interpret probability as relative frequency

in time. Such an interpretation overcomes the above difficulties and, con-

trary to the ensemble-frequentist definition, does not refer to a statisti-

cal population, which in the present case obviously does not exist.

Not all uncertainties that contribute to seismic hazard are of the

same type or admit the time-average frequentist interpretation; for example,

uncertainty about seismicity parameters does not. In this case, how should

one combine probabilities with different meanings and what interpretation

should one give to the results? We shall address these questions in Sec. 2.2

by analyzing three different ways of dealing with multiple interpretations:

(1) avoid combination, (2) combine probabilities and accept a weaker interp-

retation of the results, and (3) avoid explicit treatment of non-frequentist

uncertainty by using so-called predictive analysis. The second alternative

relies on the hierarchical order that exists among some probability inter-

pretations. Much of the contents of this section is from current research
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by Veneziano and Chung (1980).

2.1 The Time-Average (t.a.) Interpretation of Probability

In the case of zeismic hazard, the interpretation of probability as

degree of belief can be avoided. Consider, for example, the sequence of

times at which strong earthquakes occur. It is typically found that these

earthquakes take place without significant regularity or clustering in

time, in a way that has been effectively described by Poisson point pro-

cesses (the specific form of the process has no relevance in the present

argument). Although the Poisson model--as any random point process--cannot

describe the deterministic physical sequence exactly, there are at least two

ways in which it may be correct:

1. It may be correct in the sense of degree of belief (d.o.b.

correct) if it exactly quantifies uncertainty about (not

intrinsic in) actual seismicity or, more important here,

2. It may be correct in the frequentist sense that probabilities

calculated from the Poisson model coincide numerically with

limits of relative frequency in time. In this case, the

Poisson model is t.a. correct. As the definition makes

obvious, t.a. models have the form of stationary random

processes.

For the second interpretation to be possible, the physical sequence of

earthquakes must possess some degree of regularity, so that limits of

relative frequency in time exist. This condition does not imply time-

invariance of the process that generates the natural sequence; geophysical

laws, earthquake mechanism, tectonic stress or strain rates might vary in

time and cause clustering of the earthquake events, and yet a stationary
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t.a. process may exist. Of course, in this case the process must have

memory and not be one of the Poisson type. Limits of relative frequency

in time satisfy the axioms of probability theory.

The t.a. interpretation of probability is not new; it was one of the

first interpretations proposed in the physical sciences (Hofstetter, 1964).

For example, it was used to represent the erratic variation of voltage at

the terminals of a resistor and of velocity at a given point in turbulent

air flow. Its spatial analogue (probability as limit of relative frequency

in space) was exploited by Matheron (1971) to justify certain geostatistical

procedures of mineral exploration and estimation.

Let x(t) denote the physical function of interest, e.g., x(t) = average

shear stress on the plane of a fault at time t . It may not be easy to

prove that for a given function x(t) an associated t.a. process X(t) exists,

but this is of little consequence here. In application, x(t) is not known

and assumptions are made directly on the random process X(t).

In this context, one faces the opposite problem, i.e., to establish

whether a given random function X(t) is a legitimate t.a. process (whether

or not a function x(t) exists that has X(t) as its associated t.a. process).

It is clear that t.a. processes do exist. For example, all processes

X(t) that are ergodic in the sense that mean squares are legitimate

t.a. processes.

It is also clear that there are infinitely many deterministic functions

that are compatible with any legitimate t.a. process X(t); let x(t) be one

such function. Then, translates of x(t) and functions that differ from x(t)

only inside a finite interval of time still have X(t) as their t.a. process.

More importantly, and as shown by the theory of ergodic processes, the family

of deterministic functions that share the same t.a. process includes functions
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of most diverse form. Nor should one only think of deterministic functions

that are realizations of stationary processes. Because of time-averaging,

functions with nonstationary character also belong to this family. This

indeterminacy of x(t), given X(t), is the mechanism through which t.a.

probability represents uncertainty.

The point should be stressed that, although there are mathematical

links between the theory of ergodic processes and the partial character-

ization of an unknown function through its t.a. process, there are also im-

portant differences. In the first case, one views the physical function

itself as a random process, whereas in the second case, one deals with the

t.a. properties of a class of deterministic functions.

The t.a. interpretation requires some modification of seismic hazard

statements. Suppose that seismic hazard is expressed in terms of the

probability distribution of At = peak ground acceleration at a given site

during the next t years. The ensemble-frequentist interpretation is not

applicable in this case because a statistical population of seismic his-

tories at the site cannot be defined. In t.a. analysis, the definition of

At must be changed and FAt(a) = P[At s a] interpreted as the relative fre-

quency in time with which a is exceeded during intervals of t years.

Although specific reference to the next time interval is lost due to time-

averaging, one may argue that this is a very reasonable interpretation of

seismic hazard, if degrees of belief are to be avoided. Reference to

selected intervals of time can still be made by way of conditional t.a.

analysis, as shown next.

Making seismic hazard predictions on the basis of the stationary process

X(t) alone may not be appropriate if one has specific information on the

present state of the physical system (e.g., from knowledge of the recent A
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spismic history at the site). Information of this type can be incorporated

into t.a. hazard statements by way of conditional probabilities. With A

and B as any two events, the conditional t.a. probability P[AjB] is defined as

the limit of relative frequency in time with which event A occurs, given

that event B occurs. It satisfies P[AJB] = P[AnB]/P[B], in which all proba-

bilities are t.a. probabilities. In application to seismic hazard, B rep-

resents information on the physical function x(t) other than that already

contained in the random process X(t). It often happens that event B occurs

with zero frequency in time, so that P[B] = P[AnB] = 0, hence the previous

equation for P[AIB] cannot be used. In this case one must replace proba-

bilities with probability densities that have the t.a. meaning of densities

of relative frequency in time.

In the estimation of seismic hazard, all available information on the

physical function x(t) should be used, not only to infer properties of the

associated t.a. process X(t), but also to update seismic hazard by calcu-

lating conditional t.a. probabilities. This is the mechanism through which

t.a. analysis can express time dependence. It is only when no information

on x(t) is available--other than knowledge of the process X(t)--that seismic

hazard predictions are independent of current time.

The t.a. interpretation makes it possible to give frequentist meaning

to probabilistic statements of seismic hazard and suggests itself as a

measure of rational d.o.b., whenever applicable. This is an extension of

the notion that whenever the ensemble relative-frequency interpretation is

possible, the beliefs of a rational individual should be consistent with

frequentist probabilities.
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2.2 Combination of Frequentist and Non-Frequentist Uncertainty

The frequentist interpretation of seismic hazard is conditional on a

given t.a. process representation of seismicity, symbolized here by the

random process X(t). However, X(t) is not always known. For example, one

may know that X(t) is a homogeneous Poisson impulse process with random

event sizes Yi at the times ti of earthquake occurrences,

X(t) =  Yi 6(t-ti)

but parameters of the process (the mean rate of events and the marginal
distribution of the I.I.D. variables Yi) may not be exactly known. In other

cases, the form of the process X(t) may also be unknown.

Uncertainty about the form and the parameters of the t.a. representa-

tion of seismicity cannot bemeasured by probabilities with frequentist in-

terpretation. This fact causes some difficulty; if probability is to be

used, then it becomes necessary to allow for subjective interpretations and

the problem arises whether or not different interpretations "mix," i.e.,

whether or not in the course of analysis, d.o.b. probabilities can be mean-

ingfully combined with frequentist probabilities. How should results be

interpreted? This problem, which has important implications on the pro-

cedure of seismic hazard analysis and on the format and numerical value of

hazard results, is currently the source of much controversy.

Advocates of the d.o.b. interpretation observe that measures of strength

of belief are numerically compatible with frequentist probabilities whenever

a frequentist interpretation is possible. Therefore, all probabilities--

including those that result from mixing operations--can be interpreted in

the same d.o.b. sense.
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Other statisticians disagree, either because they object to quanti-

fying the d.o.b. through probability, or because they cannot attribute

any meaning to mixtures. At most, they accept statements of the type

"The d.o.b. that A(a) 5 A is Pdob( )" (a)

(2.1)

"The d.o.b. that {Pfr[At ! a] : P is Pdob(P).'  (b)

In the first equation, A(a) is the mean rate at which peak ground accelera-

tion at the site exceeds the value a. Subscripts fr and d.o.b. denote fre-

quentist (for example, t.a.) and d.o.b. interpretations, respectively.

In case (b), {Pfr[At 5 a] : P} is viewed as an event to which a d.o.b.

probability is assigned. Hence in this case--that of multiple interpreta-

tions without mixing--it is possible to talk of the "probability of a proba-

bility," in the sense of the d.o.b. in the relative frequency" of an event.

With reference to Eq. 2.1b, practical interest is in P[At 5 a]. If one

decides that mixing is possible, e.g., because frequentist probabilities

also have the meaning of d.o.b., then P[At 5 a] can be found from the Total

Probability Theorem, which gives

1

P[At : a] = J p dPdob(P) (2.2)

We have therefore identified three different attitudes toward the

use and mixing of probability interpretations:

'I



17

1. Different interpretations are allowed and probabilities can

be mixed (Eq. 2.2).

2. Different interpretations may coexist without mixing (Eq. 2.1).

3. Only frequentist interpretations are allowed.

In order to focus on conceptual issues, we have been purposely schematic

in classifying probability interpretations ' t-Ier "frequentist" or

d.o.b." Other interpretations exist aii , 4so-; etimes subtle) variants

have been proposed with the frequentist Lem .b. frameworks (Fine, 1973;

Lucas, 1970). In the case of more ' t ' ..nterpretations, generalization

of Eq. 2.1 (espec'dlly, the second statement) produces very confusing

language, and option 2 should be ivoide.

Option 1 (mixing) seems to be available only for probabilities with

identical interpretations, and since a number of interpretations may be

acceptable for the same probability, one should first determine whether

it is possible to have a single common interpretation. A hierarchical

order exists for some probabilities; for example, frequentist interpreta-

tions are stronger than d.o.b. interpretations, since for rational in-

dividuals the former imply the latter, whereas the reverse is not true.

Similarly, the rational d.o.b. interpretation is stronger than the personal

d.o.b. interpretation. Ordering is not possible in all cases, e.g., there

is no ordering between the ensemble and the t.a. frequentist interpretations.

It may be that common interpretations are too weak to be useful. For

example, one might interpret all probabilities as personal d.o.b., thus

losing objectivity and having to face problems mentioned earlier in this

section. Before mixing probabilities, one should therefore look for the

strongest possible common interpretation. Also, in the context of seismic

40
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hazard, many seismologists and engineers seem to prefer statements of the

type illustrated by Eq. 2.1 to the alternative of mixing probabilities and

producing results with weaker d.o.b. interpretation.

Since mixing (Eq. 2.2) reduces the strength of interpretation and

multiplicity of meanings (Eq. 2.1) produces unappealing statements, it would

be valuable to develop procedures that combine uncertainties of different

types and still retain a strong interpretation of the results (Option 3). This

would seem to be an impossible task in the light of what has been just

said. However, some such procedures are available which, for specific

problems, account for parameter uncertainty using frequentist analysis ex-

clusively. Results are in the form of prediction regions of given proba-

bility content and are obtained by the method exemplified next.

Consider for simplicity a stationary, independent sequence of variables

Xi (i=l,2,...), the marginal CDF of which, Fx(x), depends on an unknown

vector of parameters 0. This might be the sequence of earthquakz intensi-

ties at the site. Statistical information on 6 is obtained by observing

n variables of the sequence, and we want to characterize uncertainty on

the next unobserved variable X n+l. One can do this by calculating "pre-

diction" sets on the real line with given probability content. A predic-

tion set of P-content is a random set D = D(Xl, ..., Xn) such that for any

given e, D has probability content P, i.e.,

n
E P[D(XI,...,Xn)I8] = xJ JI dFxle(x i)

X, ...Xn .. xn i=

(2.3)

* dFxie(x) = P

D(Xl""f*Xn)
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"otice that Eq. 2.3 treats the quantities X1,...,X n as random variables

and that uncertainty in 6 is not being quantified. In particular, one

may constrain D to be a one-sided interval of the type (--, (Xl .... 9Xn ,P)].

Then (X1, ... 9XnP) is the random P-fractile of the so-called predictive

distribution of Xn+l* As the sample size n increases, uncertainty in 6 de-

creases and prediction regions tend to become smaller. It should be em-

phasized that frequentist prediction sets may not exist (the problem is

analogous to that of finding confidence intervals for unknown parameters).

The literature is rich in results on frequentist prediction regions

for univariate and multivariate sequences and for simple and multiple

(simultaneous) prediction (Proshan, 1953; Aitchison, 1964; Aitchison and

Sculthorpe, 1965; Aitchison and Dunsmore, 1975; Chew, 1968; Guttman,

1970). For a review, see Veneziano (1974). In the case of multiple pre-

diction (Chew, 1968), D(Xl,....Xn) is a random set in the sample space of

m unobserved variables from the sequence, Xn+l , .... Xn+m .

Frequentist prediction regions are often numerically identical or very

close to Bayesian prediction regions if, for the latter, e has (essentially)

noninformative prior distribution.

The definition of the frequentist prediction region in Eq. 2.3 applies

also to probabilities with t.a. frequentist meaning.

2.3 Representation of Seismic Hazard

It is proposed that an objective probabilistic measure of seismic hazard

be defined as the frequency in time of relevant earthquake events. The pur-

pose of hazard analysis is to estimate this objective probability from given

information.

If information is limited, then estimation is imperfect and, whenever

possible, one should obtain "predictive" frequentist statements of hazard
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which incorporate uncertainty on seismicity parameters without recourse

to d.o.b. interpretations. If frequentist predictive statements are

impossible, then an alternative is to quantify estimation uncertainty

through d.o.b. probability on true hazard. That is, hazard probabilities

are themselves considered as uncertain quantities with non-frequentist dis-

tributions. Bayesian analysis produces probabilities that correspond to

the mean value of these distributions. The mean value is not necessarily

the best estimate of seismic hazard; the very fact that many engineers do

not make decisions only on the basis of Bayesian hazard indicates that other

characteristics of the non-frequentist distribution of hazard are also im-

portant. When viewed from a "no-mixing" perspective, the Bayesian approach

is correct but incomplete; it is still useful to quantify the bias of pro-

cedures that neglect estimation errors. In this sense we shall use Bayesian

analysis in Sec. 3.2.2. Knowledge of the non-frequentist distribution of

hazard is important to assess the impact of future research and data-gathering

efforts aimed at improving knowledge of seismicity and procedures of hazard

analysis.
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3. RISK CONSEQUENCES OF ERRORS

Typical seismic hazard procedures generate single (point) estimates

of frequentist hazard. ossibly wrong assumptions (e.g., spatial and

temporal independence of earthquake events) and uncertainty on the value

of parameters (e.g., of the magnitude-frequency and intensity-attenuation

functions) are sources of estimation errors. Before quantifying these

errors in Secs. 4, 5, and 6, we shall look at the influence that uncer-

tainty on seismic hazard has on engineering risk. Should one find that

risk is insensitive to this uncertainty, the importance of errors in

hazard analysis would be much reduced.

The present task is complicated by two facts: (1) non-frequentist

uncertainty on hazard depends on the seismic province and site in question,

and (2) seismic risk depends on seismic resistance, which is itself uncer-

tain and variable from facility to facility. Nevertheless, some informa-

tion about typical uncertainty on hazard and variability of seismic resistance

is available, thus allowing exploratory treatment to the problem. This can be

done by:

1. Fitting parametric seismic hazard models and resistance distributions

to available data (Sec. 3.1).

2. Calculating seismic risk with parameters either fixed to their mean

values (thus ignoring estimation errors, Sec. 3.2.1) or treated as

random variables (thus including the effect of uncertain estimation

errors, Sec. 3.2.2).

3.1 Simple Models of Seismic Hazard and Seismic Resistance

For the purpose of calculating engineering risk (e.g., the probability

or the mean rate of "failure" events), seismic hazard and resistance should
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be described in terms of the same ground motion intensity parameter, Y.

For example,

Y = in a, where a = peak ground acceleration, or

Y = in v, where v = peak ground velocity, or
(3.1)

Y = in Q(w, E), where Q(w, C) = maximum pseudo-velocity of an

oscillator with natural frequency w and damping ratio C, or

Y = I, where I = Modified Mercalli (MM) intensity

Models of Seismic Hazard. Much experience has been accumulated on

hazard functions in terms of the above intensity measures. Some such func-

tions obtained for Boston under different modeling assumptions are shown in

Fig. 3.1 as relationships between MM intensity I and the mean rate A(I) at

which events of larger local size occur (Cornell and Merz, 1975).

When plotted on semilog paper (knA versus Y), hazard functions are

typically well approximated by straight lines in the low-to-medium intensity

range but decay faster at higher intensities. LetR denote the resistance of the

statistical population of facilities under consideration, expressed in the

same units as Y, and denote by mR and OR the mean value and vriance of R,

respectively. Then failure occurs if Y > R or equivalently if Y' > R', in

terms of the normalized variables

: (R-mR)/OR (3.2)

y, = (Y-mR)/OR

A few simple analytical hazard functions of the type A'(y') = mean rate at

which normalized site intensity y' is exceeded are given in Table 3.1 and

plotted in Fig. 3.2 for selected parameter values. The associated hazard
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CASE MODELD MEAN EXCEEDANCE RATE PARAMETERS
MODEL______ A'(Y')

a Linear eA' e y

V' e6 Y ' <

b Truncated linear A' ,j' y

0, y' > Y

c Truncated linear X'e ey '<,y1
C dA'(y')/dy'1 _____

d d2 A'(y')/dy' 2  1 6: '(yl'-y')e 'l]1,,y, xt,61,y 18

e Quadratic A' e I~ y _

TABLE 3.1 Simple normalized hazard models.
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functions in terms of abnormalized intensity, A(y), can be found from

A(y) = A'((Y-mR)/OR) (3.3)

For example, in the case of the first model in Table 3.1, Eq. 3.3 gives

A(y) = X e-ay  (3.4)

in which X= 'e and a = W/oR '

The hazard functions of Table 3.1 are flexible enough to accurately

fit nearly all practical cases. For example, the hazard curves in Fig. 3.1

are well approximated by "linear" models with slope parameter = 1.1 (curves

UB 12 and RANDOM 12) or 6 = 1.77 (curve CA 12), or by "truncated linear"

models with 6 between 1.7 and 2.0 (remaining curves). More sophisticated

models in Table 3.1 would provide even better fits. They would also be

conceptually more satisfactory because, as observed by many authors,

there should be a physical upper limit to intensity; however,

the truncated linear model unrealistically associates a nonzero mean rate

(of magnitude )e'e I) with this limit.

Models of Seismic Resistance. Errors in the hazard function may have

substantially different consequences on risk, depending on the resistance

characteristics of the exposed facility. Safety engineers have been es-

pecially concerned with estimation accuracy at high levels of intensity,

hence for return periods 1/A that require extrapolation beyond the duration

of historical records. This concern is justified by the increase of un-

certainty on knA given y (on y given A) with increasing y (with decreasing A).

m~ m u mm~h !
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However, rare high intensity events may not be of determining impor-

tance in the calculation of risk.

Consider a population of engineering facilities (e.g., rockfill dams

or high-rise buildings) the seismic resistance R of which has probability

density function fR(y). The associated cumulative distribution function,

F R(y) = fR(r)dr, is sometimes referred to as the "fragility curve." It

gives the probability of failure (the fraction of population that fails) if

an earthquake occurs with site intensity y. Also, denote by X(y) = dA(y)/dy

the mean rate density of events with site intensity exactly y, and let seis-

mic risk be measured by the mean failure rate Xf, For example, a value

Xf = 10-2 failure/year means that if facilities from the population were

exposed to probabilistically independent but otherwise identical seismic

environments, the average life of the generic facility would be E[T] =

l/Xf = 100 years. Under the assumption of Poisson events, the failure

probability of the generic facility in t years would 
be Pf(t) = l-eXf

The definition of R as the resistance of the generic facility of a sta-

tistical population makes risk results meaningful in a frequentist sense. If,

nowever, only one facility exists, then fR expresses non-frequentist uncer-

tainty on the resistance of that facility and calculated risk can have

only d.o.b. interpretation. For example, Xf = 10-2 failures/year must be

taken to mean that the d.o.b. distribution of time to failure has a mean

value of 100 years. In order to avoid statements of this type, which are

often obscure, uncertainty on seismic resistance will always be given fre-

quentist interpretation here.

The mean failure rate xf can be calculated by any of the following

expressions: I
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C-
Af : fR(y)A(y)dy (a)

= J' F (Y)A(y)dy (b)

(3.5)

fR,(y' )A'(yI)dy (c)

= FR , (y')X'(y')dy' (d)

in which R' is the standardized resistance in Eq. 3.2 and ' is the deriva-

tive of A'.

Errors may be present not only in the estimated hazard (functions A

and X) but also in the estimated resistance distribution (functions F and

f). According to Eqs. 3.5a and 3.5b, Af is a weighted average of FR, fR'

A, or X with weight functions X, A, fR' and FR, respectively. Hence, for

example, in order to evaluate the seismic risk consequences of errors in

A(y) for different intensity values y, one should look at the corresponding

weight function, fR: where the latter function is maximum (at the mode of

R) errors in A are most critical. This is actually true for errors of

fixed magnitude, but in the case of A, errors tend to be larger for smaller

intensities (notice that interest here is in A, not in kn A). One con-

cludes, then, that the most critical region for accuracy of A is below the

mode of R.

It is also of interest to look at the whole integrands of Eqs. 3.5a

and 3.5b, as they vary with y. The integrand of the first equation,

fR(y)A(y), gives the contribution to the failure rate from facilities with

different resistance, whereas the integrand of the second equation,
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F R(Y)(y), gives the contributioi to Xf from earthquakes of different

intensity. The first function is maximum below the mode of R; this is

usually true also for the second function.

The early belief that uncertainty on seismic resistance contributes

little to overall risk and that even models with deterministic resistance

produce valuable results has been seriously questioned. Analysis in Sec.

3.2 also indicates that variability of R may be critical, especially when

site intensity has an upper bound or statistical uncertainty on resistance

distribution parameters is included. It appears that for some engineering

facilities a substantial fraction of risk comes from medium-size earthquakes

that, although associated with small failure probabilities, are much more

frequent than large and more destructive events.

At the present time, the probabilistic prediction of seismic resis-

tance by explicit analytical means (e.g., random vibration) is unreliable

for all but the simplest systems. Repeated deterministic analyses,using

simulated ground motions conditional on site intensity and simulated sys-

tem behavior and resistance parameters, are more general but also very

expensive procedures. For some types of facilities such as earth dams,

building frames, and major structural components of nuclear power plants,

simplified analytical procedures (Banon and Veneziano, 1981; Hasselman and

Simonian, 1980) that may prove feasible and sufficiently accurate are now

under development. In many cases, however, the best source of information

is historical seismic performance. Much of this information has been col-

lected in terms of the damage ratio (DR), which is the cost of repair

divided by the cost of replacement. Data on wooden frame buildings and on

ordinary or reinforced masonry construction has been available for some

time. In the last few years, damage statistics on high-rise buildings,

large dams, and important engineering facilities have also been gathered,

in part (e.g., in the nuclear industry) through large-scale testing (see
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Proceedings of SMiRT Conferences: Berlin, 1971, 1973; London, 1975;

San Francisco, 1977). For high-rise buildings, reliable information

has been collected from the 1971 San Fernando earthquake. The most

extensive survey (Whitman, 1973) documents 368 buildings of five stories

or more, classified by age, structural material, and height. Fig. 3.3

displays mean damage ratio (MDR) data on high-rise buildings from the San

Fernando as well as other earthquakes. The only classification here is

by UBC zone where all heights and construction materials (steel and

concrete) are lumped together. Based in part on statistical data, in

part on professional judgement, curves relating MDR to MM intensity have

been proposed by several authors. Those in Fig. 3.4 for high-rise build-

ings are from Whitman (1973). Other estimates can be found in Mann (1974),

Whitman and Hong (1973), and Benjamin (1974). For most cases and over a

wide range of intensities, the expected log damage ratio varies almost

linearly with I and can be represented as

E[kn DRII] = ad + bDI (3.6)

with constants aD and bD that depend on the type of facility.

Some information is also available on the dispersion of the condi-

tional damage ratio, DRII. Benjamin (1974) found that for broad classes

of buildings, the damage data for given intensity are fitted well by either

lognormal or gamma distributions. If the lognormal model is used, then

(Zn DRII) has normal distribution. The same author found that the vari-

ance of (kn DRII) is approximately constant with I. Damage statistics in

Whitman (1973) confirm that otnDRIi is not sensitive to I and is compati-

ble with a normal distribution of (kn DRII).
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In later analyc s, it is not the value of aknDRIl that counts, but

rather the ratio

bD

D= 0 n DRiI (3.7)

Table 3.2 collects some statistics and subjective evaluations of the

parameters bD and aD" The values from Newmark (1974) and Vanmarcke (1971)

are not strictly compatible with those from Benjamin (1974) and Whitman

(1973) because the former refer to given peak ground acceleration, a, in-

stead of given MM intensity. For example, Newmark suggests values of

on(response)/a for ordinary buildings and nuclear reactor structures and

equipment (parameter BETA in his Table 3). If the level of response is

proportional to a and a varies by a factor of 2 per unit of I, then the

response varies also by a factor of 2 per unit of I and estimates of D in

Eq. 3.7 can be found from

in 2 (3.8)
D  n(response)/a

This last relationship has been used to calculate values of aD in Table 3.2

from estimates of a~n(response)ja

In making a model of probabilistic resistance, the following assump-

tions are introduced:

1. "Failure" occurs when the damage ratio reaches a critical value D*;

2. The conditional expected in damage ratio is a linear function of I,

of the type in Eq. 3.6; and

3. The conditional distribution of in given I is normal, with con-

stant variance a 2

...... .. ... m ,,,mm l mm mmm . .



34

________________ _____________________b bD _ _ _ _

Benjamin (1974) upper bound 0.484 1.64
lower bound 0.347 1.54

Whitman (1973) Post-1947 Buildings
San Fernando, I=6 =1.13 =1.88
San Fernando, I=7 =1.13 =2.13
San Fernando, I=7.5 =0.91 =1.90

Newmark (1974) Nuclear Reactor Structure 1.33
Nuclear Reactor Equipment 1.16

Vanmarcke (1971) I=6.7 =0.68 1.24
I=7.8 =0.59 1.53

TABLE 3.2 Values of b D and Din

Eqs. 3.6 and 3.7.

........ j
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It follows from 1, 2, and 3 that the probability of failure from an earth-

quake of intensity I is

Pf(I) = D [(D*-aD-bDI)/GD] (3.8)

in which 4 is the standard normal CDF. From the fact that Pf(I) is also

the probability that R < I, one concludes that, when expressed in units of

MM intensity, R has normal distribution N(mR, aR), with parameters

MR  = (D -aD)/b D (3 9

I 2 2o/bD = B_2

Also, in terms of normalized intensity Y' = I = (I-mR)/GR, resistance R'

has standard normal distribution.

Results on the distribution type for R are not expected to change if

ground motion intensity at the site is measured in terms of any other param-

eter Y in Eq. 3.1.

3.2 Calculation of Seismic Risk

Given the models of seismic hazard in Table 3.1 and given normality

of the distribution of R, the mean failure rate Xf is conveniently calcu-

lated from Eq. 3.5c. Results should first be obtained when all uncertainty

is of the frequentist type (when the parameters of A' and fR are known)

and then consider a few cases in which parameter uncertainty is included.

3.2.1 Cases with Known Seismic Hazard

Combinations of R'- N(O, 1) with any of the functions A' in Table 3.1

are considered first. Sensitivity to the distribution of R' is then checked
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by assuming that resistance has gamma distribution and that A' has untrun-

cated linear form. In all these cases, Xf is found by closed-form integra-

tion of Eq. 3.5c.

a. Linear Hazard

X' 6 1 - Y'0-Y'2/12 6'2/12

Af : -= e dy' = 'e (3.10)

For hazard expressed in units of MM intensity and using Table 3.2 for 6.,

one finds that the parameter B' = 6/6D (a is the slope of the seismic hazard

curve) varies between 0.6 and 1.2, with a typical value of 0.9. The constant

' in Eq. 3.10 is the mean rate at which earthquakes occur with intensity in

excess of the mean resistance; hence, the quantity y = eB '2/2 can be viewed

as a penalty factor for uncertain resistance; it increases with oR (= 116D)

and with a and is 1 if either parameter is zero. In the present model,

typical values of y are in the range 1.2 to 2.1, but much higher values may

result from using nonlinear A' models or from including statistical uncer-

tainty on OR into the analysis.

b. Truncated Linear Hazard

In this case Xf is given by

Xf = e-6 Y 2/2 dy'

= ' e6' 2/2 O(yl'+6') (3.11)

in which yj (yl-mR)/OR is normalized upper bound intensity. The factor

e a2/2 (yi + '), which includes the effect of truncation, is plotted in
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Fig. 3.5 as a function of yj for selected values of B'. For Yj >

the mean failure rate in Eq. 3.11 is essentially the same as for the un-

truncated case. In order to reduce Xf to 1/2 the value for untruncated

hazard, it must obviously be that yl = mR - GR6' i.e., the upper bound

intensity at the site must be about one standard deviation of resistance

below the mean resistance.

An example of application to Boston is given in Fig. 3.6 and Table 3.3.

The figure shows five truncated or untruncated linear approximations to the

hazard curves of Fig. 3.1. For the case of resistance R (in units of MM

intensity) with normal distribution N(8, (0.8)2), the parameters ' = oR 9

V, and yj = (yl-mP)/oR for the five approximations are given in Table 3.3,

columns 2, 3, and 4, respectively. Column 5 gives the associated failure

rate. Consideration of the modeling assumptions behind each case indicates

that truncation of the site intensity-frequency law has relatively small

effect on Xf unless truncation is significantly below the mean resistance

(compare cases 2 and 3). However, truncation of the epicentral intensity-

frequency relationship is more important because it also reduces the value

of '. Compare case 1 (truncation at I = XII for all the sources) with cases

3 and 5 in which upper bound intensities between 6.3 and 7.3 were assumed

for seismic sources near Boston. The increase of 8' due to truncation of

epicentral intensity has only a minor balancing effect.

Integration of Eq. 3.5c for cases c and d in Table 3.1 gives the fol-

lowing failure rates.

c. Truncated Linear First Derivative of A

Xf = ' [e W 212 D(yl'+a') - e 1 (Iyl')j (3.12)
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HAZARD
CURVE ' :Yl f

(Fig. 3.6)

1 0.88 5.9 x 10-4  8.7 x 10-4

1.55 8.6x 10- 5  2.9 10

3 1.55 8.6 x 0- 5  2.7 x 10- 4

4 1.58 2.6x10- 5  9.1 lO- 5

5 1.58 2.6 x 10- 5  -0.625 5.3 10- 5

TABLE 3.3 Parameters and failure rate for the
five hazard curves in Fig. 3.6.
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d. Truncated Linear Second Derivative of A

ef = ' 12 P(yI'+VB) - e L[(IBY'yI')J(yI') + 0'0(yl')]

(3.13)

in which 4 is the standard normal probability density function. The

parameter ' in the last two equations is the mean rate of failure for

R = mRs in the case of no truncation, i.e., yl+w.

One should be cautioned against directly comparing the mean crossing

rates of the last three models because when using them to approximate actual

hazard functions, one would conceivably select different values of yj and

possibly also of ' and ('

e. Quadratic Hazard

=X C J e-Y dyV77- --

- X' eB'2/(4 '+2) (3.14)

2c '+ 1

Drawbacks of the quadratic hazard model are that it has no upper bound and

that it violates the condition that A should be a nonincreasing function of

y. Results using this model are typically very close to those from model c.

f. Linear Hazard and Gamma Distribution of Resistance

In order to test sensitivity of risk to the shape of the distribution

of R, suppose that R' has shifted gamma distribution with zero mean and

unit variance, hence with probability density function
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0 ,y < -D

D[Dty u)] e-D(y'+D) y'>-D
r (D 2  e _ -

in which D is a positive constant. Plots of this function are shown in

Fig. 3.7 for selected values of D. Notice that the above gamma distribution

reduces to a shifted exponential for D = I and to the standard normal for

D- -. For A' that corresponds to the untruncated linear model, the mean

failure rate is

= 2' e-l'y ' D(y'D)]D - e- D(y'+D) dy'

A'D (0 (DID (3.16)

The ratio between this rate and that for normal resistance distribu-

tion with the same mean value and variance (see Eq. 3.10) is given by

Xf(gammna) D2l ~ 'l'/
= [-]e, D B ' /

fg(normal) a D)J e 
(3.17)

This ratio is shown in Fig. 3.8 as a function of B' for D = 1, 2, 3, 5, 8.

The failure rate ratio is generally smaller than 1, primarily because the

gamma density vanishes for y' < -D. This fact shows the importance of left

truncation of the resistance distribution. However, if one excludes the

artificious cases when D s 1 and for typical values of 6' (e.g., B' < 1.5),

the mean failure rate is insensitive to the present change of resistance
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0
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FIGURE 3.7 Shifted gamia densities with zero
mean and unit variance, Eq. 3.15.
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distribution. Higher sensitivity is found with respect to distributions

that allocate more probability to values of R below the mean.

3.2.2 Cases with Uncertain Seismic Hazard

Non-frequentist uncertainty on the mean failure rate Xf is contributed

by:

1. Possible errors in the seismic hazard procedure (MT might not belong to

)R; see Sec. 1.2). One might call these "model errors";

2. Uncertainty on which model in m corresponds to the true model MT, given

that MT E:). If V is a parametric family of models, then this source

of error might be called "parameter uncertainty";

3. Errors in the form of the distribution of R and on the resistance

parameters, mR and aR2

Except for very few cases, the distribution of Xf induced by these

possible errors and uncertainties must be found through straightforward

but tedious numerical integration, which requires that very maiy risk cal-

culations be made, each conditional on different modeling assumptions or

parameter values. The fact that realistic approximations to the hazard

function lead to explicit expressions for Xf suggests an alternative two-

step procedure which, although approximate, is much more expeditious. First,

one quantifies uncertainty on the hazard function A(y) due to possible

errors in the assumptions and to uncertainty on the para..:eters of the seis-

mic hazard procedure. (Results on uncertainty on A will be given later in

Secs. 4, 5, and 6.) Then one relates uncertainty on A(y) to the probability

distribution or at least to the expected value of XR' The second step be-

comes particularly simple if A(y) has the form of model a in Table 3.1, with

uncertain parameters ' and s'. Uncertainty on the parameters of the resis-

tance distribution can also be considered. The results that follow on the mean



46

of X f are limited to this case. In Bayesian analysis, one is interested

only in the probability E[Pf(t)] and for small risk this is closely approx-

imated by E[Xf]. t. In classical analysis, one would typically be interested

in the full distribution of Af (or of Pf(t)), but one can still use the mean

value E[f] to calculate the bias of estimates that do not account for un-

certainty on seismic hazard or on resistance distribution parameters. In

some cases the full distribution of Af is obvious from its dependence on

the uncertain parameters; in other cases it can be found in approximation

or through numerical convolution.

Under the assumption that A' has untruncated exponential form (model

a in Table 3.1) and that R has normal distribution N(mR, o), non-frequentist

uncertainty is limited to the four parameters ', ', mR, and a 2 Results on

E[Xf] for all combinations of known/unknown parameters with appropriate dis-

tributions are given in Veneziano (1975); those for known resistance distri-

bution are reproduced here in terms of the ratio y between E[Xf] and the

mean failure rate when the uncertain parameters are fixed to mean values,

Eq. 3.10. Hence, y can be interpreted as a bias factor due to parameter

uncertainty. Let mR and a2 be known. Then for uncertain ' or a' one finds:R R

1. If ' is known and ' is uncertain with lognormal distribution such that

kn ' - N (m ain~ ) , then

nE ,] (2n/

'= m = exp(a 2 12) (3.18)YX' = fIX'=exp(mknX,) Z

In the range of exp(o(ny,) from 0.4 to 1.1, which corresponds to a

1-sigma uncertainty factor on ' between 1.5 and 3, the ratio y., var-

iesfroml.l to 1.8. In this case, Xf has itself lognormal distribu-

tion.
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2. If ' is known and B' has normal distribution N(mB,, a,), then the

mean failure rate ratio Y,, is

/EBI[Af] - ,f I/2 e 2, 2

For realistic distribution parameters (m,, between 0.8 and 1.6 and aW

between 0.1 and 0.3), y,' varies in the range 1.01 to 1.20, with the

upper limit very sensitive to the assumed maximum value of a,.

3. If A' and B' are independent with the marginal distributions given

above, then the factor y,, is simply the product of the marginal

factors, Yx',B' = YX'Y' ' Most often, however, the assumption of

independence is inappropriate. It is found that if kn ' and B' have

correlation coefficient p, then the factor YA',' can be decomposed

into three partial factors:

YX',I = Yx'(P)'Y ' "Yp (3.20)

where y,' is given by Eq. 3.19,

yX,(p) = exp[(l-p2) a2 12]knx'

and

yp = exp[paon,(pOtn ,.+2m boB,)/2(l-o ,)]

For p = 0, Eq. 3.20 reproduces the result for independent parameters.

If p = 1, then uncertainty on ' is totally explained by B' and
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y ,(l) = 1; if in addition oknA , : 0, then ' is known and , , S.

Explicit results when mR and ay are uncertain (with conjugate distributions

in random sampling) are not quoted here. Whereas uncertainty on mR has

moderate consequences on E[Xf], uncertainty on aR may be very important be-

cause it considerably increases the probability of small resistance values to

the point that for exponential hazard, many failures may result from ground

motions of small intensity. For detailed results, see Veneziano (1975).

Although limited by the simple forms of the hazard and resistance dis-

tribution functions, results of this section should be kept in mind when

evaluating the consequences of errors in hazard analysis; in particular,

errors that affect the upper bound intensity and errors in the seismicity

rates and in the slope of intensity-frequency relationships.
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4. ERRORS FROM UNCERTAINTY ON MODEL PARAMETERS

Error analysis in engineering seismic risk encompasses two prob-

blems: (1) evaluation of non-frequentist uncertainty on seismic hazard,

and (2) calculation of the consequences of this uncertainty on risk.

Problems of the second type have been examined in the last section,

whereas the remainder of the report focuses on the first task. This

is a complicated one because of the multiplicity of error sources and

seismic hazard procedures. It is subdivided into three parts and each

part treated in a separate section.

The present section looks at the variation of hazard due to modeled

uncertainty on or to reasonable variations of the parameters, while

Sec. 5 quantifies the consequences of unmodeled errors. Hence, it is-

assumed here that the true model MT is of the type hypothesized in

hazard analysis (that MT £TR) whereas the opposite assumption is made

in Sec. 5. In application, there is a tendency to rely on expert

opinion in order to include nonstatistical information and reduce

estimation errors. Expert-based estimates are themselves not error-

free. Conceptual and mathematical models and some results on the

variability of expert opinion will be presented in Sec. 6.

Returning to the objective of the present section, the aim is to

quantify the uncertainty on hazard (e.g., on the mean exceedance rate

A(a)) due to the uncertainty of the form and parameters of the seismicity

model, e.g., to uncertainty on shape, size, and location of earthquake

sources, on the activity of each source (magnitude distribution and

upper bound, earthquake occurrences in time and space), on the form and

parameters of the attenuation function, and on site amplification effects.
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Use of probabilistic analysis to propagate uncertainty through hazard

calculations is made difficult by two factors: (1) the relationship

between the uncertain quantities and hazard may not be explicit but

rather given in algorithmic form and (2) it is difficult to quantify

uncertainty about some aspects of the model, e.g., the magnitude dis-

tribution or the spatial dependence of earthquake epicenters. As a

consequence, one must resort to different procedures for different

parameters, ranging from exact analytical treatment to numerical sensi-

tivity. Powerful, although approximate, analytical techniques have been

recently developed by McG{ire and Shedlock (1980) and will be reviewed

first in Sec. 4.1. Results from parameter sensitivity analyses given

the form of the model will follow in Sec. 4.2. Finally, Sec. 4.3 will

comment on the effect of changing basic assumptions in the hazard model.

4.1 Analytical Results

Cases of parameter uncertainty that lend themselves to analytical

treatment become fewer as complexity of the model increases. The

following model, simple but realistic, has been studied by McGuire and

Shedlock (1980).

Earthquake sources are independent. They generate events at Poisson

times, with truncated exponential distribution of magnitude. Earthquakes

originate from fault ruptures and, given magnitude, rupture length has

truncated lognormal distribution (truncation is due to the finite length

of the faults). Peak ground motion characteristics at the site are

related by an attenuation fu,. ,ion to magnitude and shortest distance to

the rupture segment. Conditional on magnitude and distance, they too

have lognormal distribution. Uncertainty on hazard at the site is studied
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by treating model parar; rs either as known constants, or as mutually

independent random variables.

The main approximation of the method consists of treating earth-

quake sources as points in space, thus replacing the random distance

to the site with a given constant for each source. Similarly, single

values are used to replace magnitude distributions.

Seismic hazard is given in terms of the peak ground acceleration

aPO that corresponds to a specified annual probability of exceedance,

P0*PO.

It was found by McGuire and Shedlock that the distribution of aPO

due to parameter uncertainty has a mean value (= Bayesian estimate)

practically identical to the value calculated by fixing all parameters

to their mean value. This unbiased property of conventional hazard

procedures was attributed to almost linear dependence of ap on the

uncertain parameters. (But notice that bias may be large if there are

errors in model assumptions,as shown in Sec. 5, or if hazard is nonlinear

in the uncertain parameters; see e.g. Fig. 4.4).

Sources and magnitude of non-frequentist uncertainty vary from case

to case. In an application to the San Francisco Bay area, McGuire and

Shedlock considered the following parameters to be uncertain: the depth

of energy release, the activity rate and Richter b value for each fault,

and the mean attenuation relationship from magnitude to acceleration. An

additional source of uncertainty for sites in the central Mississippi

Valley was taken to be the exact geographical location of faults. For

each active fault, the method that these authors propose to calculate the

distribution of ap due to parameter uncertainty is as follows.
a0
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First, one uses standard methods of hazard analysis to calculate ap

as a function of P, with all uncertain parameters and relationships

fixed to mean values. In particular, the value of ap fcr P = P0 is

considered to be the mean value of ap when parameter uncertainty ic

included.

One then calculates an "effective magnitude" M and an "effectivee

distance" Re2 defined as the mean magnitude and mean distance of events

that cause peak site acceleration larger than apO, i.e.,

Me = I M • P[A > aPoIM] • P[M]/P 0
M 0

(4.1)

Re = I R • P[A > aPoIR] • P[R]/P 0

The method proceeds by calculating sensitivity factors on the peak site

acceleration ap due to variations of the uncertain parameters. Parametersa0

are varied one at a time, and in each case, one utilizes the quantities in

Eo. 4.1 to replace lengthy seismic hazard convolutions with closed-form

calculations using point sources and single magnitude values.

For each parameter combination (parameters are assumed to have discrete

distribution) one finds ap by using the best estimate of ap and pre-a0 a0

viously calculated sensitivity factors. One also finds the associated

probability as the product of individual parameter probabilities.

The final result is a discrete distribution of ap. In the case of a

single active fault, this approximate distribution was compared with the

exact distribution from repeated seismic hazard analysis for each parameter

combination and found to be very accurate.
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Numerical results using realistic representations of uncertainty are

as follows. For the San Francisco Bay area, the coefficient of variation

of a0.00 2  Vao" , ranges from less than 0.2 at sites located about

50 km from the main faults to more than 0.4 near these faults. Inter-

mediate coefficients of variation are obtained at sites far away from

the earthquake sources. The reason for this peculiar dependence of

Va0.002 on distance R from the high intensity region is that a large

contribution to uncertainty on ap comes from uncertainty on the mean

attenuation function. Data to which attenuation relationships are

fitted are abundant at distances of about 50 km; and for these distances,

alternative attenuation functions are nearly the same. For sites with

R z 50 km, more important sources of hazard uncertainty 're tie activity

rate and the Richter b value, whereas close to the faults, another

important source of variation of aPO is the depth of energy release.

In the calculation of V for the central Mississippi Valley,
a0.0 02

uncertainty on the actual location of the faults was also modeled. In

this case, location of the earthquake sources and depth of energy release

were found to be the main sources of hazard uncertainty, especially at

sites close to the faults. Away from the epicentral region, uncertainty

on attenudtion becomes relatively more important. The largest values of

Va0.002 in excess of 0.4 were found in the regions of higher activity.

4.2 Sensitivity Analyses

Quite likely, methods of error analysis of the seiianalytical type

described in the previous section or of the type by enumeration will

become of common use in the near future. They allow one to represent

hazard not in terms of a single frequency-intensity curve, but as a
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continuous or discrete family of curves, each associated with an exceedance

probability. This representation of seismic hazard is being advocated by

several authors, e.g. Kaplan (1980) and Kaplan and Garrick (1980), as a

way to express confidence in the results of standard procedures of hazard

analysis. The same representation corresponds to the no-mixing option of

Sec. 2.2; it has the conceptual appeal of avoiding the combination of

probabilities with different interpretations and of separating objective

hazard from subjective or non-frequentist uncertainty. Its main draw-

backs are (1) the nonavailability of practical instruments of computation

(the algorithm by McGuire and Shedlock is the first of this kind to be pro-

posed) and (2) the added complication and expense of analysis. Also, as

observed by McGuire and Shedlock, the representation of seismic hazard is

useful when making decisions about research and data gathering efforts,

but it is not clear how one should utilize it when dealing with the safety

of given facilities. In the latter context, it seems that only the average

hazard counts. If this is so and if, as found by McGuire and Shedlock, the

average hazard is nearly identical to the hazard when uncertain parameters

are fixed to their mean values, then the seismic safety of individual

facilities can be calculated through conventional, one-curve analysis

algorithms, ignoring parameter uncertainty.

One may conclude that both types of hazard analysis (with and with-

out mixing frequentist and non-frequentist uncertainty) are useful,

but in different circumstances. When faced with a specific problem, one

should first ask whether quantified non-frequentist uncertainty about

frequentist hazard would be of use. If the answer is no, as it seems to

be the case for the safety evaluation of given facilities, then standard
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procedures with best estimates of the parameters are usually adequate.

If, on the other hand, decisions depend on non-frequentist uncertainty

about hazard, as it is the case in research resource allocation, then

quantification of this uncertainty is also needed.

There are cases of the first type (only the average hazard is

relevant) that cannot be solved by simply performing one hazard analysis

with parameters fixed to mean values, because the results would be biased

or because it is difficult to define or work with mean parameter values.

For example, it may be impractical to define a mean random arrival process,

given several alternative representations of earthquake times, and it may be

impossible to combine the opinions of different experts to obtain a "mean

opinion." In this case, expectation of hazard should be taken after each

model has been analyzed (possibly in combination with input from each of

several experts). Associated with each model-expert combination there

is a probability and a conditional hazard curve and the average hazard is

obtained by weighing the conditional hazard functions by the associated

probabilities.

Sensitivity of the average hazard to modeling alternatives depends on

the site under consideration and on the expert whose opinion is being con-

sidered. This dependence has been amply documented in a recent study by

TERA Corp. (1980) of seismic hazard at sites of the central and eastern

United States. The same study shows that sensitivity to reasonable param-

eter variations depends also on the level of hazard (the return period) be-

ing considered and on the measure of site intensity; e.g., it is different

for peak ground acceleration (PGA), peak ground velocity (PGV), and for peak

spectral response depending on the natural frequency. It is therefore
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clear that only general qualitative conclusions can be drawn about the

influcice of parameter variations and errors on seismic hazard. When

dealing with specific situations, these conclusions should be taken as

guidelines, not as absolute facts.

Some results from the TERA Corp. (1980) study of seismic hazard

in the central and eastern United States will be discussed. Nine nuclear

central power plant sites were analyzed using input information from ten

different experts. Each expert responded to a comprehensive questionnaire

on seismic source zonation, seismicity of each identified source, and

spatial attenuation of motion intensity, prov dinq not only best estimates

of the parameters but also quantified uncertainty on inges of values. In

the analysis, zonation and seismicity parameters (mean rate of occurrence,

decay of the magnitude-recurrence law, and upper bound magnitude) were allowed

to vary from expert to expert. Three different attenuation models were

used and kept the same for all experts. Two of them have the form

zn(GM) = C1 + C210 + C3r + C4 n r (4.2)

in which GM is ground motion intensity at the site (PGA, PGV, or spectral

response), the coefficients Ci have the values in Table 4.1 for the at- )
tenuation of peak acceleration and velocity, and r is epicentral distance

in kilometers. The two sets of coefficients in the table correspond to

using different MM intensity attenuation relationships: one,

is = 10 + 3.2 - 0.O011r -2.7 lOglor ,I S  IV (4.3)

r > 20 km

• • .. ." --, .... .. .....i , i i i g .. rlnm i .. .... .. ... .... .. ". ....I.
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Intensity GM Units C C C3  C4
Attenuation

PGA cm/s2  1.18 0.56 -0.007 -0.189
Ossippee PGV cm/s -1.84 0.64 -0.006 -0.167

PGA cm/s 2  2.70 0.56 -0.0007 -0.733
Gupta-Nuttli PGV cm/s -0.50 0.64 -0.0006 -0.645

TABLE 4.1 Constants in the attenuation function
of Eq. 4.2 for GM = PGA, PGV (after
TERA, 1980).
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was adapted from Gupta and Nuttli (1976); the other,

is + I0 + 0.774 - 0.00117r - 0.302 kn r (4.4)

was obtained from analysis of the Ossippee 1940 earthquake data. A

comparison of median attenuation models is shown in Figs. 4.1 and 4.2.

The figures include three other attenuation relationships, one of which

(denoted August 1979) was used by TERA in a previous evaluation of seismic

hazard. The comparison is in terms of sustained acceleration (= 0.7 PGA)

for magnitudes 5.5 and 6.5 and uses the relationship 10 = 2mb 3.5,

where mb = body-wave magnitude. The two more recent models (denoted by

"JAN 80" in the figures) intersect around 20 and 200 km; the Ossippee

attenuation is more conservative in this intermediate range of epicentral

distances and less conservative for r > 200 km.

For each (median) attenuation function, attenuation uncertainty was

expressed by modeling kn(GM) as a truncated normal random variable with

standard deviation o. The value of a was considered to be either 0.7 or

0.9 (values around 0.6 result from direct regression of acceleration data

in the west, whereas values about 0.9 are often obtained from the mathe-

matical combination of various sources of uncertainty). Use of the

untruncated normal distribution for kn(GM) is not satisfactory, especially

for large median values of GM and large a; for example, in the case when

o = 0.9, a 3- a departure from the mean of in(GM) corresponds to an un-

realistically high factor of about 15 on GM. Truncation of the distribu-

tion of kn(GM) was therefore introduced, at 2 or 3 standard deviations from

the mean. A model with variable a was also considered, with a value of 0.6
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for r <40 km and 0.9 for larger distances. Unfortunately, there is little

physical or statistical basis for selecting the truncation point, which is

often a critical parameter.

Sensitivity analyses were conducted with respect to possible inter-

pretations of each expert input and, in all cases, with respect to the

median attenuation model and the attenuation error distribution mentioned

above. The main results are as follows.

In nearly all cases, sensitivity to upper bound magnitude and zonation

alternatives as specified by each expert was found to be small. Sensitivity

to the upper bound magnitude MU is a function of the slope of the magnitude-

frequency relationship and of the return period. If the return period is

short (e.g., 1000 years or less) and the slope is steep, then MU is

usually unimportant. For all sites located in the Central Stable Region,

sensitivity to zonation alternatives was found to be negligible because

the main contributing sources are the host region with rather well-defined

boundaries, and the New Madrid region, which is too distant to reflect

minor variations in its boundaries. Higher sensitivity was noticed at

northeastern sites where zonation is more complex and zonation uncertainty

is larger. However, also in this case, the variation of hazard when using

zonations from different experts exceeds the variation associated with

zonation uncertainty of individual experts.

The median attenuation model and the distribution of attenuation error

were found to be the most critical parameters, especially for PGV and long-

period spectral ordinates. Sensitivity of PGA and PGV to the median attenua-

tion at four sites in the central United States and five sites in the eastern

United States are summarized in Tables 4.2 and 4.3, respectively.
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Sensitivity varies from site to site depending on its relative location

with respect to the main sources; it is highest for PGV and for sites

where hazard is largely influenced by distance sources.

At sites in the east, sensitivity of PGA to the median attenuation is

smaller than in the central United States because of absence of important

distant sources (the St. Lawrence source is too far to give appreciable

contributions). However, sensitivity of PGV remains high.

The distribution of the attenuation error is also critical, especially

for high intensities (long return periods). For a return period of 1000

years, changing the truncation point from two to three standard deviations

increases the PGA from 20 to 35 percent if a = 0.9 and from 15 to 25

percent if a = 0.7. For PGV, these quantities are respectively 8 to 15 per-

cent and 6 to 12 percent. Higher sensitivity, up to 45 percent, is found for

a return period of 4000 years. Reducing the attenuation error variance

at short distances (using o = 0.6 for r <40 km anda = 0.9 for r > 40 km,

as opposed to a = 0.9 for all r) produces very minor changes in the hazard,

except for the few sites where hazard depends on near sources.

As one would expect, the importance of far-away sources increases

with increasing period (from PGA to PGV) and the importance of soirces with

higher upper bound magnitude increases with decreasing hazard. Also, the

relative importance of different sources depends, in some cases rather

importantly, on the form of the attenuation function.

Average hazard and sensitivity results for firm-soil sites in Boston

have been obtained by Cornell and Merz (1975). The zonation for the base

case is shown in Fig. 4.3 and best estimates of the seismicity parameters

for each source are given in Table 4.4. The attenuation law, in terms of

. . . . .
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No. of events
SOURCE MI with k2  Slope Upper bound intensity

1 3.16 0.48 7.7

2 0.42 0.48 8.7

3 0.180 0.48 6.7

4 0.150 0.48 7.3

5 0.010 0.48 6.3

6 0.215 0.48 6.7

7 0.200 0.48 6.7

8 0.380 0.48 7.3

TABLE 4.4 Best estimates of source parameters for hazard
analysis of Boston (Cornell and Merz, 1975).



67

Modified Mercalli intensity, was estimated from the isoseismals of large

historical earthquakes in the region; it has the form

10, r < 10 miles
IS = (4.5)

2.6 + 10 - 1.39n r, r k 10 miles

Attenuation intensity is expressed by an additive normal random variable

with mean 0 and standard deviation 0.2. The main sensitivity cases

considered by Cornell and Merz correspond to the following variants of

the base case:

1. is increased or decreased by 1/2 unit;

2. Source 8 replaced with a more conservative or a less

conservative source.

3. The upper bound epicentral intensity of all sources increased

or decreased by 1/2 unit.

4. The upper bound epicentral intensity for sources 1 and 2 (off

Cape Ann) increased to XII.

Hazard curves corresponding to these and other parameter perturbations

are shown in Fig. 3.1. Decreasing site intensity by 1/2 unit in the

attenuation equation (curve AL) produces appreciable changes only for

short return periods. For long return periods the hazard remains the

same because the contributing events are primarily those very close to

the site, within a 10-mile radius. Conservative modification of Source 8

(curve GP) produces similar qualitative results, with noticeable effects

only for short return periods. More important sensitivity is found with

respect to the upper bound intensities. If these bounds are increased

by 1/2 unit (curve UBP), then the hazard curve moves to the right by an
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amount of up to 0.4 for long return periods. Larger increases of intensity

over long return periods are observed if the Cape Ann sources are assigned

upper bound intensity XII (curve UBI2).

For calculation of the composite (average) hazard curve, probabilities

were subjectively assigned to discrete alternatives about the parameters of

the attenuation function, the geometry of Source 8, and the upper bound

intensities. These probabilities are given in Table 4.5. They correspond

to 36 different cases. The resulting composite hazard curve is compared

in Fig. 4.4 with the curve for parameters fixed to most likely values.

The very significant divergence for return periods larger than 10,000

years is due to the possibility that the maximum intensity is XII for

the sources near Cape Ann.

Additional sensitivity analyses for Boston have been conducted by

TERA (1980) with respect to expert input, median attenuation model (Eq.

4.4 vs. Eq. 4.5), and dispersion of the attenuation error (o = 1.0 in

place of a = 0.2). The results are summarized in Table 4.6 for return

periods of 1,000 and 10,000 years. As shown in Fig. 4.5, the Gupta-

Nuttli attenuation model produces site-intensity values about 1/2 unit

higher than the Cornell-Merz attenuation. The effect on hazard is a

variation of about 0.3 units of intensity. More sensitive parameters

are the expert opinion and the dispersion of the attenuation error.

Although the expert in the TERA analysis basically agreed with the

zonation by Cornell and Merz, he assigned different values to upper

bound intensities and occurrence rates, with a net effect of decreasing

the hazard by approximately 0.9 units of intensity. An even more

critical choice is that of a which, when varied from 0.2 to 1.0,
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BEST
LOW ESTIMATE HIGH

ATTENUATION LAW 0.25 0.50 0.25

MMI Xll

ZONATION 0.25 0.50 0.25 for Cape Ann

MMI UPPER BOUNDS 0.20 0.30 0.20 0.30

TABLE 4.5 Subjective probabilities for the calculation of
the composite hazard curve (Cornell and Merz, 1975).

I
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produces an increase of site intensity of 1.1 and 1.45 units, for -Iturn

periods of 1,000 and 10,000 years, respectively.

Sensitivity results for the La Crosse site (Fig. 4.6) from Dames and

Moore (1980) and TERA (1980) are given next. Sensitivity involves

zonation, recurrence parameters, and median attenuation. In all cases,

the attenuation error on £n(PGA) is modeled as an untruncated normal

variable with standard deviation o = 0.6. Two alternative zonations

are considered: the Central Stable Region only, or the Central Stable

Region and the Wisconsin Arch source shown in Fig. 4.6. In each case,

sensitivity is evaluated also with respect to inclusion or exclusion of

the New Madrid source. The median attenuation functions, based on the

Ossippee and Gupta-Nuttli models, are the same as described earlier in

this section. Table 4.7 gives the seismicity parameters, as assigned by

Dames & Moore (D&M) and by TERA (E9). Especially noticeable in the table

is the difference in mean activity rate (which is much higher in the TERA

report) and in the upper bound magnitude (the three values in the last

column correspond to the best estimate and to lower and upper bounds).

The difference in the best estimate is about 1/2 magnitude unit for all

sources.

Hazard results in Table 4.8 show that the effects on PGA of changing

the mean rate a and the upper bound magnitude MU are about 15 and 10

percent, respectively. Sensitivity to the inclusion or exclusion of the

New Madrid source is entirely dependent on the attenuation model: it is

negligible for Ossippee and about 25 percent for Gupta-Nuttli. Finally,

the effect of including or excluding the Wisconsin Arch source is not

large but about the same for both attenuation functions.
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PGA (9) AT LA CROSSE FOR
1000 AND 10,000 YEAR RETURN PERIOD

Ground Motion central Stable Region Centrol Stable Region
Model without New Madrid and New Madrid

D&M a value D&M a value E a value E, a value Eqa value
D&M Mu D&M Mu i&m m E9 Mu E9 M

RP I RP 2 RPI RP2 RP I RP2 RP I RP2 RP. I RP 2

Ossippee 0.061 0.15 0.061 0.15 0.081 0.18 0.085 0.20 0.085 0.20

Gupta-Nuttli 0.052 0.12 0.065 0.1'. 0.075 0.15 0.076 0.17 0.079 0.17

New Madrid Central Stable Region and Northern Illinois (E9)
Exc luded and New Madrid

D&M a valve D&M a value E a value E a value E9 a value
O5M Mu D&M M tImu 9E9 Mu L9 m

RP I RP 2 RP I RP 2 RP I RP 2 RP I RP 2 RP I RP 2

Ossippee 0.05R 0. 12 0.058 0.12 0.068 0.1'. 0.08. 0. 1? 0.085 0.17

Gu4pta-rjuttli 0.04.9 0.096 0.06? 01.12 01.0)6. 0.13 0.074. 0.15 0.075 0.15

*Considering mb- 4 .0 and greater

RP 1 =1,000 year return period
RP 2 = 10,000 year return period

TABLE 4.8 Sensitivity results for
La Crosse site (TERA, 1980).
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All parameter sensitivity results up to here refer to essentially

identical seismic hazard models. If the model is changed, then not only

the numerical value of estimated hazard will change (see Sec. 4.3) but

also sensitivity to parameter variations may be different. One example

is the line source model of Der Kiureghian and Ang (1975). The main

departure from the standard model is that earthquakes are now associated

with fault ruptures of finite dimension and site effects are related to

t;ie (minimum) distance to the rupture zone as opposed to the epicentral

or focal distance. As a consequence of this modification, calculated

hazard increases and parameter sensitivity changes. With regard to the

latter effect, Der Kiureghian and Ang challenge the conclusions by

Cornell and Vanmarcke (1969) based on point-source models, that

1. The major contribution to hazard comes from frequent, small-size

earthquakes from sources close to the site.

2. Hazard is seldom sensitive to the upper tail of the magnitude

distribution or to the upper bound maqnitude.

From the line-source model, Der Kiureghian and Ang find that

I. Distant sources may have significant effects on seismic hazard

when large-magnitude earthquakes are possible.

2. Seismic hazard is sensitive to the upper bound magnitude MU,

particularly for MU 5 8.5.

These conclusions are especially significant for long return periods.

The main reason why point and line source models have different sensitivity

to high magnitude earthquakes is that these events are usually associated

with long rupture zones, which may propagate close to the site and produce

effects much larger than expected from epicentral distance.
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For practical applications, Der Kiureghian and Ang conclude that

the choice of MU is innaterial at low intensity levels, that in all cases

events of extremely large size (magnitude larger than 9) give negligible

contribution to hazard, and that the choice of MU is critical only for

long return periods and when contributing sources exist far from the

site with MU below 8.5. They also conclude, somewhat contrary to findings

in the TERA study, that sensitivity to MU is not much affected by the value

of the slope parameter b.

Fig. 4.7 shows a comparison of the point and line source models and

some sensitivity results for the latter model. All curves in the figure

estimate hazard in San Francisco and neglect attenuation uncertainty.

With reference to the line-source model, curve I represents the base case

evaluation; curve 2 results from neglecting events with magnitude below

4.5; and curve 3 corresponds to increasing the slope of the magnitude

recurrence law from 1.22 to 1.30. The remaining two curves account for

incompleteness of the data when fitting the magnitude recurrence relation-

ship (curve 4) and reinterpret the rate of activity along the San Andreas

fault (curve 5). The last curve may be considered to quantify sensitivity

to zonation. In all cases, the upper bound magnitude was fixed to 8.5.

Sensitivity is clearly small, especially when compared with the effect

of including or excluding attenuation uncertainty. The latter effect and

the importance of the choice of the median attenuation curve is demonstrated

in Fig. 4.8 for which the three attenuation models of Table 4.9 have been

used, with and without uncertainty. It is interesting to note that

models 2 and 3, which are substantially different ir their median pre-

dictions, produce nearly identical results when attenuation uncertainty

is included, whereas the opposite is true for models 1 and 2.
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Eq. MEDIAN ATTENUATION 0

1 a = 1320e0.58m (r+25)-1.52 0.894

2 a = 1080e O '50m (r+25)- '.32  0.755

3 a = 472.3e0 "64m (r+25)-1' 301 0.573

TABLE 4.9 Attenuation models used in the
sensitivity analysis of Fig. 4.8.

a
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The exact determination of source boundaries is usually not of critical

importance for "area" sources, but there are notable exceptions. One ex-

ception is when different interpretations are possible for the mechanism of

earthquake generation. For example, it has been suggested by Long (1976)

and McKeown (1978) that high intensity seismicity in some regions of the east-

ern United States might be due to (or might be statistically associated with)

the presence of plutons. More frequent situations in which source geometry

plays an important role are when it is uncertain whether a major fault is

active or not. A study summarized in Donovan and Bornstein (1978) shows

that the change of hypothesis about activity or inactivity of a fault in the

Los Angeles areas leads to error factors of up to 50 percent on site accelera-

tion for a given exceedance probability. This should be regarded as a

rather extreme case. Sensitivity of hazard to upper bound magnitude depends

on the value of the maximum magnitude and on the location of the site

relative to the source, but it is now recognized that this parameter is not

as critical as previously believed (see, for exa-1ple, Cornell, 1980; McGuire

and Shedlock , 1980; Donovan and Bornstein, 1978).

The diversity of conclusions from sensitivity studies in this section

demonstrates the impossibility of giving absolute rules about the influence

of parameter uncertainty on hazard. At most, one can identify sources of

uncertainty that tend to dominate the results; among these sources are the

form of the attenuation function and the distribution of the attenuation

error. Expert opinion should also be included as a major source of hazard

variation, as will be said in Sec. 6.

I
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4.3 Alternative Models

Alongside the development of what we now regard as standard seismic

hazard procedures, many alternative modeling hypotheses have been explored.

Much work has been done on the representation of earthquake times

(sometimes also locations) through random point processes other than Poisson.

The motivating idea is that earthquakes produce changes in the state of

the physical system and must therefore affect the occurrence of other

seismic events at close times and lucations. Perhaps the simplest way to

introduce dependence of earthquakes in time is through so-called renewal

and clustering models.

In a renewal point process, interarrival times Tl, T21 ... are indepen-

dent and identical variables as in the Poisson model, but not necessarily

with exponential distribution. Therefore, memory extends only between

consecutive events. Kameda and Ozaki (1979) fitted a simple renewal model

to historical data from Kyoto. They found that these data are compatible

with a piecewise constant hazard function v(t) = fT(t)/[l-FT(t)], with

only two values: v for small t and v2 > vl for large tand compared

hazard predictions from this model with those when v(t) =v(Poisson events).

After observing that in the Kyoto catalogue, longer interarrival times

usually terminate in larger earthquakes, Kameda and Ozaki generalized the

model to account for this dependence and again compared results with

the standard assumptions of Poisson arrivals and independent sizes. The

difference in hazard is sometimes large, depending on the interval of

prediction and on the time of occurrence of the last earthquake. One set

of results is shown in Fig. 4.9. Each curve in the fiqure gives the



84

I--intensity ratio
- -MCenCe-timle dist. I

-- simple Poisson
s,(Q-23. ta(EA)-65 !o4 so(E-A18

r~years

1978 2000 2050
year In A.D.

FIGURE 4.9 Probability of future earthquakes of
JMA intensity VI or greater in Kyoto,
starting from year 1978. Poisson
and renewal models. (Kameda and
Ozaki, 1979).
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probability of at least one earthquake in Kyoto with JMA (Japan Meterological

Agency) intensity VI or greater (approximately MM intensity IX or greater)

as a function of time, starting from the year 1978. The dashed-dotted

line corresponds to the hypothesis of Poisson events with independent sizes.

The other two lines are for arrivals according to the renewal process: the

dashed line continues to assume independent sizes, whereas the solid line

incorporates dependence of size on interarrival time. In the latter case,

the distribution of intensity has either of two forms, depending on whether

the earthquake occurs when v = v, or v = "2 . It is interesting to observe

that in the present case and for short to moderate time intervals, dependence

of size on interarrival time counteracts the effect on hazard of non-Poisson

arrivals,. A different renewal process of earthquake times was proposed

earlier by Fsteva (1976).

Clustering models have been developed more extensively (see for example,

Vere-Jones and Davies, 1966; Walley, 1976; Schlien and Toksoz, 1970; Knopoff

and Kagan, 1977). Each cluster comprises one "main shock" and the associ-

ated family of "aftershocks." Clusters are typically assumed to occur at

Poisson times (and Poissen locations in space), in spite of some evidence

of secondary "clustering of clusters" over long times and distances (Walley,

1976). Clustering has of course the effect of increasing hazard at sites

and times close to sites and times of past earthquake occurrences. However,

it is found that if the main event is also the most intense event of the

cluster and aftershocks are confined to a small region near the epicenter

of the parent earthquake, then the hazard consequence of excluding after-

shocks is small (Merz and Cornell, 1973).

An interesting extension of the concept of uncertain seismicity rate

A has been explored by Walley (1976), who considers as random the intensity
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function X(XI, X2, t) of the Poisson process of epicentral coordinates

X, and X2 and times t. This assumption transforms the Poisson process

into a so-called doubly-stochastic Poisson process. Realizations of doubly-

stochastic Poisson processes are very similar to realizations of clustering

models. The effect of seismic hazard is also similar. In an application

to New Zealand, the same author finds that hazard is sensitive to the depth

of energy release (a similar conclusion for sites near major faults is

reach! by McGuire and Shedlock , 1980) and cautions that significant errors

may come from the assumption of stationary seismicity.

On the basis that major earthquakes release large amounts of strain

energy and that such energy gradually accumulates in time, one would expect

that the interarrival time be related to the magnitude of the previous and

the next earthquake. Convenient mathematical representations of this depen-

dence have been given in terms of Markov and semi-Markov processes (Patwardhan

et al., 1978, Kiremidjiat et al., 1980). Hazard predictions are sometimes

very different from those using the Poisson model, depending on the time and

magnitude of the last major earthquake.

As remarked previously in Sec. 4.2, hazard is usually sensitive to the

attenuation function, and even more to the variance and upper tail distri-

bution of the attenuation error. The variance depends not only on the data

set and on which quantities are used to characterize source and site intensity,

but also on the method by which the data are analyzed. Multistep procedures

which utilize prediction of intermediate parameters lead to particularly

large estimates of dispersion (Cornell et al., 1979).

Errors on hazard at New Zealand sites from neglecting azimuth-dependence

of the attenuation are reported in Walley (1976). He finds that when an

isotropic model is replaced with a set of highly eccentric elliptical iso-

seismals, hazard at some sites varies by 0.6 to 0.8 units of MM intensity.

. .. ... m mmmmmmmmm m mmmmmmmmmm mmm,,, m mmmmm mmm. -
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Of course, the effect of anisotropy is less pronounced if seismic activity

is uniform over large regions.

Sensitivity of hazard to including or neglecting the spatial dimension

of fault rupture (point versus line source model) has already been reported

in Sec. 4.2; see for example Fig. 4.7.

Mww|
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5. ERRORS FROM MODELING ASSUMPTIONS

As said earlier in Sec. 1.2, the correct but unknown model MT does

not necessarily belong to the family of models ). The latter comprises only

simple models to which, for convenience of analysis, MT is assumed to belong.

For example, all models in V might assume isotropic attenuation on the geo-

graphical plane, whereas actual attenuation may be azimuth-dependent due to

oriented geological structures or to the directional propagation of fracture.

One should expect that if MT 4 R, bias will result from assuming the contrary.

If bias is small, then the seismic hazard procedure is said to be "robust."

Robustness is a desirable property because MT is unknown and certainly not

of the elementary type hypothesized for analysis. In what follows, a true

model MT is assumed and a few common estimators of seismic hazard, H, are

evaluated against the associated true hazard, HT. Special attention is

given to the conditional bias (HT - E [H]) in which Z is statistical
ZIMT

sampling information. In reality, the analyst is ignorant of MT and HT,

his only statistical information being a historical sample Z, e.g., of ground

accelerations at the site. The advantage of knowing HT is that it will be

possible here to evaluate bias and error variance of various seismic hazard

procedures which the analyst might choose to use. Contrary to findings by

McGuire and Shedlock (1980) for the case when MT belongs to R (see Sec. 4.J),

error bias,not varianceis found to be the primary source of mean square

error of the hazard estimators, especially at high levels of intensity.

Material in this section is for the most part from Schumacher (1977) and

from unpublished work by Veneziano et al. (1977).

5.1 True Model and Hazard Estimators

Suppose that the true hazard at the site, HT, corresponds to the fol-

lowing probabilistic representation of regional seismicity, MT:
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a. There is only one source, in the form of a disc with the center at the

site and radius r. Earthquakes occur as Poisson points in time, with a

mean annual rate of vt = vnr2 while in space; epicenters are uniformly

and independently distributed inside the source.

b. Earthquake magnitudes Ml, M21 ... are independent random variables

with identical, doubly-truncated exponential distribution

FM(m) = Kl[l - e -b (m -mO ) , 0  m 1 mI  (5.1)

in which m0 and mI are lower and upper bounds to M, b is a positive

constant, and K1 = {l - exp[-b(ml-mO]} -I is a normalization constant.

c. Peak acceleration at the site, a, is the only intensity parameter of

interest. It is related to magnitude M and epicentral distance R as

(Esteva, 1970; Cornell, 1971; Der Kiureghian and Ang, 1977)

a = b1 eb2M (R+b4 ) 3  (5.2)

in which the bi are constant parameters and c is a lognormal random

variable with independent realizations for different earthquakes.

d. Hazard is measured in terms of the probability G(a, t) that ground

acceleration at the site will exceed a,at least once in t years.

Under these assumptions, the correct mathematical representation of hazord,

HT = GT(a, t), is given by

-VttG (a)
HT = GT(a, t) = e a (5.3)
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in which G a(a) is the correct complementary CDF of peak ground acceleration

at the site due to an event of random magnitude and epicentral location.

The function G a(a) has not simple analytical form, but it can be calculated

numerically, e.g., by the method of Cornell and Merz (1975).

Given a finite record of peak ground accelerations at the site, the

quantities vt and Ga(a) in Eq. 5.3 cannot be calculated exactly. For values

of a of practical interest, the error in estimating GT(a, t) is contributed

primarily by errors in the estimation of Ga (a). Therefore, it will be assumed

here that vt is known and inference will be limited to G a(a). Moreover, one

may limit consideration to acceleration values above a threshold amin of

engineering interest and estimate the conditional complementary CDF,

Gal a >amin (a) = Ga(a) Ga(amin) (5.4)

for a > amin' This last function is plotted in Fig. 5.1 (dashed lines) for

the following parameter values:

amin =10 (cm/sec )

r = 100 km

m0 = 4, m1 
= 8, b = 2 (5.5)

bI = 463.2, b2 = 0.64, b3 = 1.301, b4 = 25

in -N(O, an) , a = 0, 0.6

The values of bl, b2, b3, and b4 are from Esteva (1976). It is further

noticed that inference of the complementary CDF of a, given that a > amin

is equivalent to inference of the complementary CDF of any of the following

random variables:
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a' = a - amin

Y = kn a (5.6)

W =  n a-na min , W > 0

It is convenient here to characterize estimators of hazard as inference

rules on Gy(y) or on Gw(w).

Estimators of HT = Gw(w) may differ because of sifferences in the

class R of hazard functions to which Gw is assumed to belong or because of

different inference rules, e.g, maximum likeliiood, least squares, Bayes.

Both aspects have important effects on H = Gw(w), especially for large w.

In selecting a specific estimator one looks for simplicity, richness (H

should contain a variety of hazard functions so that at least one is close

to the unknown true function GW), and accuracy. The difference e(w) =

Gw(w) - Gw(w) is a random process with the conditional second moment

function

Be(w) = E[e 2(w)fGw] (5.7)

This function should be as small as possible, at least for a certain class

of true complementary COF's, GW.

Richness and accuracy are related. If H is a narrow family, then GW

might be very different from all the functions in H. As a consequence, GW

is likely to be heavily biased and Be (w) to be large. At the other extreme,

if R is very rich, then bias may be small but the variance of e(w) is large

and B e(w) is again large. A good choice of R is one that achieves a balance

between bias and error variance for a given class of actual hazard functions

and one that, at the same time, is easy to analyze. Bias and error v3riance

have been calculated for the following estimation rules and parametric
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families of distributions:

Maximum-likelihood Estimation with

X = one-parameter gamma family.

= two-parameter truncated-exponential family.

= two-parameter Weibull family.

H = two-parameter lognormal family.

Bayesian Estimation with

= one-parameter exponential or two-parameter truncated-exponential
family.

= two-parameter Weibull family.

= two-parameter lognormal family.

In some other cases, hazard at the site was estimated indirectly by first

fitting a regional (as opposed to site) model (source configuration, seis-

micity parameters, attenuation function) to statistical data. A brief

account of these more complicated analyses is given in Sec. 5.4.

For all site models, sample information was assumed in the form of

an independent sample of size N, Z = {W1, ...' WN} from the true distribu-

tion of W,and estimation error statistics were obtained through repeated

Monte Carlo simulation of Z. Specifically, three sets of independent samples

were used: Set 1 = 20 samples each of length N = 20 from the distribution

of W that corresponds to anc = 0; Set 2 = same as set I but with atne =

0.6; Set 3 = 17 samples each of length N = 50 from the distribution of W

that corresponds to G~ e = 0.6. Some approximate analytical results are

also given.
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5.2 Performance of Simple Maximum-Likelihood Estimators

Given H as a set of complementary CDF's and given a sample Z from GW,

the maximum-likelihood estimator GW is the function in H for which the

probability (density) of Z is maximum. Detailed analysis follows for the

parametric families H given previously in Sec. 5.1.

a. H = one-parameter family of gamma distributions

Let H = {GA(K, X), K = shape parameter, known} be a parametric family

of gamma complementary CDF's with X as the only parameter. Consider first

the case when K = 1, i.e., when GA(K, A) is the exponential function

Gw(w) = e Xw  , wV 0 (5.8)

Then, as a function of Z = {WI, ..., WN}, the maximLn-likelihood estimator

of A is

= 1/1 , in which 1= i  (5.9)i=l

An accurate and convenient approximation to the distribution of W is the

gamma distribution with (exact) mean mg = mW and (exact) variance 2g= 2W/N.

In fact, this would be the correct distribution of W if W itself had gamma

distribution, as opposed to one of the dashed distributions in Fig. 5.2.

Under this approximation, -nGw(w) = Xw has so-called inverted gamma-l

distribution (Raiffa and Schlaifer, 1961) and after a few substitutions

one finds
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[-nG(w)] w N-V W

^ w W 2
Var[-nGw(w) = W NV 2  , N > 2V

w w

in which VW is the coefficient of variation of W. The mean square error of

the maximum-likelihood estimator of inGw(w) is

Be(W) = b2(w) + Var[-zn GWMw)] (5.11)

2 2 N 2V2

= [in Gw~w m NjV7] + N (NV ) 2(N2V) N> 2

in which be denotes bias. Plots of the expected value and of the ±1

standard deviation interval of in GW(w) are shown in Fig. 5.1 for N = 20,50

and akn E = 0, 0.6. (These analytical approximations are in excellent agree-

ment with simulation results.) For large w, divergence of the expected

estimator from the actual hazard indicates that the mean square error in

Eq. 5.11 is due mostly to bias; hence, poor performance of the present

estimator must be ascribed to the inappropriate choice of R, which contains

no model close to the actual distribution, especially in the upper tail.

For the same reason, increasing the sample size above N = 20 produces no

appreciable improvement.

The previous analysis is readily extended to the case of nonexponential

gamma families (K # 1). The maximum-likelihood estimator of X is now

= K/W (5.12)

LJ
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with a distribution that is again closely approximated by an inverted gamma-l

function. Given the first two moments of W or the parameters KW and XW that

produce the best gamma approximation to Gw (for the ca.se with alne = 0 these

parameters are KW = 4.0 and AW = 4.28), given the shape parameter K of the

R family and the sample size N, one can use tables of the gamma distribution

to calculate fractiles of A and Gw(w). For example, the fractiles of Gw(W)

in Fig. 5.2 correspond to on e = 0, K = 3, and N = 20. Comparison with

Fig. 5.1 shows considerable reduction of bias. Increasing the sample size

is more effective than for the exponential family because a larger fraction

of the mean square error is contributed by the variance term.

b. H = two-parameter family of truncated-exponential distributions

The likelihood is now maximized among complementary CDF models of the

type

(1 - K(l1-e- ), w < w1
Gw(w) = (5.13)

O0, W > 1

in which 8 and w, are unknown positive parameters and K, (=-e- w ) . The

maximum-likelihood estimator of w1 is w1 = max Wi, but no simple analytical

expression is available for 8. This last parameter can be found by numeri-

cally solving the extreme problem

.max f e- N7 ( }^(5.14)8 > 0 l~e-BWl
>

Due to the form of w, the maximum-likelihood estimator of LnGw(w) is biased,

with E[-1n Gw(w)] = for all w and all finite N. It is therefore more mean-

ingful toconsider sample estimates of ECGw(w)] since this quantity is finite
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nonzero for all w. Results are shown as curves GTE in Figs. 5.3, 5.4, and

5.5. Sample estimates of the standard deviation of Gw(w) and sample ranges

are also indicated.

In maximum-likelihood estimation, the one-parameter exponential and the

two-parameter truncated exponential families have opposite behavior with

regard to tail probabilities. The exponential family (as all unbounded, one-

parameter families) extrapolates the upper tail from the body of the distri-

bution where the data lie, whereas the truncated exponential family (as all

families with upper-truncation parameter) makes no extrapolation beyond the

largest sample value. In both cases, small-risk estimates are strongly

biased.

c. i two-parameter Weibull family

The Weibull distribution with parameters a and c has a complementary

cumulative function

GW(W) = e- Lwc  , w > 0, a > 0, c > 0 (5.15)

Given the independent sample W1. ... , WN, the maximum-likelihood estimator

of c can be calculated numerically from the condition

N

N N i (w)C n Wi
+ n Wi  N 0 (5.16)

(W i)c

and then a can be found from

N N (5.17)

(Wi)c
II
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Results in the form of sample mean values (curves GWE), sample standard

deviations, and ranges of Gw(w) are shown in Figs. 5.3, 5.4, and 5.5. The

Weibull family includes distributions that are close to the time distribu-

tion of W. Hence, the bias is smaller and the percentage reduction of mean

square error from increasing the sample size is larger than for distribution

families considered before.

d. J( = two-parameter lognormal family

If in W is assumed to have normal distribution with unknown mean m nW

anW2 then the maximum-likelihood estimators of these parameters

are

Nm n Wi

mnw N i=l j

(5.18)
N; 2 1 [ i - 2

ZW(inW 2
nW = N i=l i nW

and the maximum-likelihood complementary CDF of W is

nw-mn
W

Gw(w) = I n( ) (5.19)
Gin W

in which 0 = standard normal CDF. Sample results are shown in Figs. 5.3,

5.4, and 5.5 as GLN curves. The lognormal estimator performs better than

the exponential but not as well as the Weibull estimator, mainly because

the tail of the fitted lognormal distributions falls off too slowly.
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5.3 Performance of Simple Bayesian Estimators

Under the assumption that GW belongs to a parametric family H of

complementary CDF's, uncertainty on the parameters can be included in

seismic hazard calculations through Bayesian analysis. If e is the

vector of uncertain parameters, then knowing H means knowing the condi-

tional complementary CDF, Gwi0 (w, 8). The prior distribution of 8, F;(),

is assumed here to be noninformative of either of the following types: for

components 8i with unrestricted values,
t1

dFi (e) -dO (5.20)

whereas for components that are bounded on one side, as ei  0 ,

dodF;(e) - --0_0 , e > e0  (5.21)

A priori independence is assumed, so that dFe) = I dF i(ei). By using the
1 1

distributions in Eqs. 5.20 and 5.21, one eliminates dependence of estimated

hazard on nonstatistical information.

Given the independent sample Z = {W ... , WN}, the posterior CDF of 8

is, from Bayes' theorem,

dF- (g) - dF;(e) LeIZ(2) (5.22)

in which the likelihood function LOIZ satisfies

N

LeIz(e) TI [dGwie(W, _Q)/dWI ] (5.23)

W=Wi
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Finally, the posterior complementary CDF of W is calculated by using the

Total Probability Theorem, which gives

Go (w) = _ GWI6 (w, e)dF" (e) (5.24)W a4 0 e - 6 -

This last function is the Bayesian estimator of Gw(W). More explicit results

are given next for a few parametric families H.

a. R = one-parameter exponential or two-parameter truncated exponential ft
family

Let e = X and denote by GWIe the function in Eq. 5.6. Then LXiZ(X)

SNexp(-VNW) with W = sample mean, and for a prior distribution of X in

the form of Eq. 5.21, the posterior distribution of W' has complementary

CDF (use Eqs. 5.22 and 5.24),
1

-N
G'W (w) = (1 + w w k 0 (5.25)

NW

It can be shown (Schumacher, 1977) that this is also the posterior comple-

mentary CDF of W if R is the family of truncated-exponential distributions in

Eq. 5.13 and X and wI have jointly noninformative prior density, f',W l)

. (AWl)l, for A 0, wI > 0.

b. H = two-parameter Weibull family

For e = [a, c] and GW1j in Eq. 5.15, the likelihood function of B given

Z is

NN N N
CI (ci c) c exp a (W ) T1 (W~)- (5.26)

ci I 1c =1, ~
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If both a and c have prior distribution in the form of Eq. 5.21, then

Eq. 5.24 yields

IJ F N-1 N iC r(N dcG"(w) c 11 (Wi  N c (5.27)
i~l [1lWi). + w

in which K = G (0) is a normalization constant. The integral of Eq. 5.27

must be evaluated numerically.

c. R = two-parameter lognormal family

Let m9.nW and 2 have prior joint density function9. ZnW

2 1 2

f 2 (m, o2 ) cc- 2  a 0 (5.28)
mZnW' OnW a

Then Bayesian analysis (Raiffa and Schlaifer, 1961) shows that the random

variable

^ 1/2 N 2/2
S(W) = (kn W - mnw) [ I/2[ Z (knW i - mnw)) (5.29)

has posterior Student-t cumulative distribution Ft Nl, with N-l degrees of

freedom. From the fact that S is a monotonically decreasing function of W

one concludes,

W = PS(W) > S(w)] = 1 - Ft (S(w)) (5.30)

Simulation results for the Bayesian estimators in Eqs. 5.25, 5.27, and

5.30 are shown in Figs. 5.6, 5.7, and 5.8. Previous considerations about
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maximum-likelihood estimators still apply. However, Bayesian estimators

with noninformative prior distribution of the parameters tend to be more

conservative in the range of high ground motion intensities. The most

evident case is that of the truncated-exponential family, but differences

in mean estimated hazard are noticeable also in the Weibull case (compare

Figs. 5.5 and 5.8). One reason for conservatism is that Bayesian estimation

accounts for uncertainty on parameters in which the complementary CDF is

very nonlinear. Bayesian and maximum-likelihood estimators coincide in the

limit, as N - -.

5.4 More Complicated Estimators

The previous results indicate that hazard estimators are very sensitive

to the choice of the distribution family, J. One may attempt to reduce sen-

sitivity by using richer families of distributions, e.g., families with

three or four parameters, or composite distribution sets R = I ..., Hq

in which Ri is itself a distribution family, e.g., one of those considered

in Secs. 4.2 and 4.3. The inference rule may still be of the maximum-

likelihood or Bayesian type, the latter in the form of a weighted average

of all the distributions in R. A Bayesian approach with composite R has

been developed by Wood et al. (1974). An approximate, simpler "pseudo-

Bayesian" rule has been suggested by Grigoriu (1976), of the type

G (w) Pi 'Li G~w(w) (5.31)

in which Pi' = prior probability that GW ERi -

Li = likelihood of the maximum-likelihood model in Ri -

G = posterior Bayesian complementary CDF of W, given that

G W  C H i •

I .. 11I .. .. .... . ...' . . ... .... . , .. . - . .. .. . ... •....
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When using maximum-likelihood or pseudo-Bayesian inference, the estimated

hazard function critically depends on the likelihood ratios L2/Ll, L3/Ll ,

.... Lq/L I . For H = {I{JI J 21 with Hl the two-parameter lognormal family

and 2 the two-parameter Weibull family, and for 10 independent samples of

size 20 and 50, ratios L2/L are given in Table 5.1. All samples have been

pseudo-randomly simulated from the time distribution of W that corresponds

to a ne = 0.6. Although in the case of these samples a Weibull distribution

always exists with likelihood higher than that of any lognormal distribution, 4

the large sample variability of L2/L1 implies, at least for N = 20, large

statistical variability of the pseudo-Bayesian estimator. This fact in turn

indicates that recourse to a richer family of distributions produces better

results in the range of high intensities, only if the sample size is suf-

ficiently large (e.g., N > 50).

All model estimators M (= GW) and model families m (-.. ) considered up

to here in Sec. 5 are of the site type, i.e., they directly describe seismic

hazard at the site of interest. If historical data are also available on

earthquake source parameters (e.g., ep;central coordinates and magnitude),

then R can be replaced with a family X of regional models, e.g., of the same

type as the true model MT in Sec. 5.1. As an example, let X collect

all regional models of the same type as MT with given parameters m0 = 4,

b4 = 25, a nc = 0 and uncertain parameters mi, b, r, b,, b2, and b3 . The

analyst must estimate these parameters from data on magnitude, distance,

and peak site acceleration. Statistical sampling is from the true mechanism

with parameters in Eq. 5.5 and one = 0.6. The difference between assumed

and true variance of the attenuation residual term c is therefore the only

source of modeling error. Samples have the form, Z = {(M, R, a)1, ... ,

(M, R, a)N} in which (M, R, a)i stands for magnitude, epicentral distance,
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N = 20 N = 50

Sample L /L1  L2A 1  Sample Lz/L 1  L /L1

L 2 L # L2 L1  # 2

1 11.4 6 7.6 1 446 6 3354

2 4.1 7 13.7 2 4836 7 25

3 14.7 8 20.3 3 522 8 1615

4 1.3 9 403.2 4 2489 9 44

5 354.1 10 9.8 5 22420 10 2161

TABLE 5.1 Likelihood ratio L for maximum-likelihood Weibull and
lognormal distribuiions. Independent samples of size
N are simulated from the true distribution of W for
a n =0.6.
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and peak site acceleration for the ith earthquake. For samples of this type

and noninformative prior distribution

f 1 ,b,r,tnbl,b 2,b3 (ml,b,r,6,b2,b3) m br(5.32)

Schumacher (1977) found an expression for the posterior complementary CDF,

G"(w). The average of this function over 20 independent samples, each of

size N = 20, is shown in Fig. 5.9 as curve G. One-standard deviation in- i
tervals are also indicated. The large bias is due primarily to uncertainty

on the upper-bound parameter ml of the magnitude distribution.

The most important consideration from the error analyses of this section 1
is that, when hazard estimates are based solely on statistical information,

large biases may result. Biases are sometimes due to the estimation pro-

cedure (recall earlier comparison between maximum-likelihood and Bayesian

inference of distributions with upper truncation) but they are more likely

due to possible errors in modeling assumptions (see the variation of mean

hazard with R).

One way to reduce the variability of hazard estimates is to utilize non-

statistical information, e.g., by replacing the posterior distribution of the

parameters in Bayesian analysis with subjectively assessed distributions.

The latter distributions are usually narrower because they are based not

only on historical data, but also on nonstatistical considerations about

local geology, earthquake mechanisms, and similarity with other seismic

regions. The technique relies on "expert opinion" and is becoming in-

creasingly popular, especially for the assessment of hazard in regions with

poor historical records. It is itself not free of difficulties, however, as

will be said in the next section.
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6. THE USE OF EXPERT OPINION

The basic problem when turning to experts for the quantification of

parameter uncertainty is that subjective estimates are not totally reliable.

For this reason one typically asks for the opinion of several experts and

from each of them obtains a separate hazard estimate, Hi. How should one

interpret the difference between Hi and H.? What is the procedure to com-

bine the Hi and produce a single (sometimes called consensus) hazard esti-

mate P? How does accuracy of H depend on the number n of experts? On

their degree of expertise?

The first step toward answering these questions is to make a concep-

tual model of professional judgement. Conceptual models should then be

given mathematical form and analyzed. The present section follows this

ideal path by first introducing two alternative interpretations of the

cause for diversity in expert opinion. Each interpretation contains ele-

ments of truth. The mathematical model that follows in Sec. 6.2 incor-

porates features of both interpretations. It is flexible and simple.

There is obviously no contention of completeness in dealing with a topic

which has been under study for decades, primarily by nonengineers; see

for example Winkler (1968), de Groot (1974), Morris (1974), Dalkey (1975).

6.1 Conceptual Models

There are two seemingly conflicting interpretations of the diversity

of expert opinion. One interpretation views each estimate Hi as a noisy

observation of the true hazard HT; the other considers each estimate as a

sample from a random process that expresses objective professional

uncertainty about HT.
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Observation model. Through mathematical and cognitive procedures,

each expert operates on statistical and physical information to produce an

estimate Hi of HT. The difference between Hi and HT is attributed to

statistical estimation or observation errors, as if experts were "ob-

serving" the true hazard by means of imperfect instruments. Different

experts may use different sets of data and different theories and pro-

cedures, thus producing different estimates.

Sampling model. It is recognized at the outset that statistical infor-

mation and physical knowledge are limited so that no matter how many experts

are questioned, there will always be uncertainty about the actual hazard.

Estimates Hi are considered as random samples that reflect this irreducible,

professional uncertainty. Therefore, one should not reduce the Hi to a

single "consensus" estimate, H. Rather, the full diversity of opinions

should be retained and used to quantify professional uncertainty on HT.

Both models are valuable. For example, it is logical to think of an

objective irreducible uncertainty on HT as predicated by the sampling model.

However, viewing expert estimates as I.I.D. variables from a hypothetical

"professional distribution" is not correct. Not only does each expert oper-

ate on a different fraction of the total information available, but he also

makes errors depending on professional experience, degree of familiarity

with hazard models, etc. One might think, therefore, of some additional

type of error in the Hi, of the type emphasized by the observational model.

This will be called personal error. Whereas professional uncertainty

is the same for all experts, personal uncertainty varies. This varia-

tion is one of the reasons why one may want to give different weights

to different estimates. In the next section, mathematical models will

be developed to represent all these components of uncertainty. First a

IJ
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quantitative model of the observational point of view will be developed

and then it will be generalized to incorporate the idea of professional

uncertainty. It is always assumed that the objective is to estimate

(uncertainty on) the mean rate A at which a given ground acceleration

level a is exceeded at the site. The estimate of A based on information

from the ith expert is denoted by A.

6.2 Mathematical Models

According to the observation model, the ith log hazard estimate, MiA,

is considered to be a noisy observation of in A with random error i =

in Ai - in A, so that

in Ai = in A + Ei (6.1)

The fact that experts use basically the same historical data, geological

information, seismicity theories, and hazard procedures makes the error

terms in Eq. 6.1 probabilistically dependent. Suppose for convenience

that the vector e = [clI ""' cn]T has multivariate normal distribution

with zero mean and covariance matrix E_ . If, before obtaining any expert

estimate, the hazard in A is independent of e and has noninformative flat

prior distribution, then a posteriori inA has normal distribution with mean

milnA = ( -T 1 in A)/(1T 1 1) (6.2)

and variance

21 1/(1T 
1  D) (6.3)

ZnA -
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where 1 denotes the column vector with n unit components and in A is the

vector of estimates, kn A [kn A1, .... Yn A In the case of only one

expert, this posterior distribution becomes simply N(kn A, o02).

Due to linearity of the observation model in Eq. 6.1 and normality of

e, the posterior mean value in Eq. 6.2 is a linear combination of the ex-

pert estimates, with coefficients that depend on the covariance matrix of

the errors. The posterior variance, Eq. 6.3, is a nonincreasing function

of the number of experts and for given n, increases with the variances and

the correlation coefficients of the errors.

If the errors were independent and identically distributed so that

E a2 I, then one would find that a posteriori

n , 2kn A - N 2n Z:  n i , (6.4)

The posterior variance of Zn A is larger than a2/n if errors are positively

correlated. A case with correlation which leads to explicit results is that

in which experts are treated as equally credible and correlation between

estimation errors is the same, irrespective of the identity of the experts.

Covariance matrices E that express these conditions have the equicorrelated

form,

Z 02  (6.5)

This last model may not be accurate in practice if the identity of the

experts is known, but is realistic in the case of randomization, i.e.,
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when pairing between experts and estimates is not known or is ignored.

The technique of randomization produces suboptimal estimates because it

neglects available information, but has the benefit of reducing the com-
2

plexity of analysis and the number of parameters (to only n, a2, and p). For

z. in Eq. 6.5, the posterior distribution of kn A is

n
n A- Ni ^  2 1 + (n-l)P) (6.6)n i= I n

n

The quantity 1 + (n-l)p ' which can be interpreted as the equivalent number

of independent experts, is plotted in Fig. 6.1 as a function of n for selected

values of the correlation coefficient p. Notice that, as n - , the posterior

variance tends asymptotically to

2 = 2" 2 (6.7)
= lim ionA p E

which is a quantity larger than zero, unless p = 0. This means that an

infinite number of expert estimates with common correlation coefficient

p has the same information content as a single estimate with error vari-

ance po2 .

A possible interpretation of the asymptotic posterior distribution

N(m , a ) is that this distribution represents irreducible professional

uncertainty about the true seismic hazard. This is the uncertainty after

considering the opinion of all living experts; it cannot be reduced because

it is due to objective limitation of information and knowledge.

Let co be a random variable with the asymptotic distribution of in A

2and define variables r'l, ""' with distribution r- N(O, o ). The

r~i
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quantity ni can be regarded as the component of personal estimation error

for the ith expert. With c0 and the ni mutually independent variables,

the model of Eq. 6.1 can be written

nAi = kn A + E0 + ni (6.8)

in which co + ni has been substituted for ci. For example, the covariance
matrix in Eq. 6.5 results from setting a 2 = (1-p2oE for all experts.

It is clear from Eq. 6.8 that the present mathematical model considers

professional uncertainty as systematic error (bias) and associates it with

the random variable E0. On the contrary, the sampling viewpoint predicates

that professional uncertainty is responsible for variation among expert

estimates, not for bias. It is believed that both concepts are true and

that professional uncertainty has in fact both a bias and a random component--

bias due to limitation of information, and random component caused by alter-

native possible interpretations of seismicity and alternative models for

hazard calculation. The model of Eq. 6.8 should then be generalized to

kn Ai = kn A + co + &i + ni (6.9)

in which

C N(O, a ) is random bias from limited information.

Fi N(O, 2 ) is a random component associated with uncertainty
1 on the interpretation of seismicity and on the

model for hazard calculation.

- N(O, an2) is personal error.
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Correlation may exist among some of these variables. Professional uncer-

tainty corresponds to the random variable, y = E + Ei - N(O, a + 2)

The objective of analysis is to estimate the distribution of y, i.e., the

variance terms o and o.

Unfortunately, it is clear that the model postulated by Eq. 6.9 is not

inferable from the assumed data structure, {in A1 ..., n n. Specifically,

the variance of co cannot be estimated and it is ii.possible to separate

from unless correlation is introduced. One can think of other,

realistic data structures that would make estimation feasible, e.g., struc-

tures that are typical of analysis-of-variance problems.

Let us start with separation between Ci and ni . A way to estimate the

variances a and a2 is to first specify a realistic set of alternative

seismicity interpretations and hazard models and form a matrix of estimates

Zn A. = estimate of kn A using information
from expert i and the jth combination
of seismicity interpretation and
hazard model

(6.10)

Standard methods of analysis of variance (e.g., Draper and Smith, 1966) will

then provide estimates of a2 and a 2

The estimation of a2 is somewhat more complicated. One way to obtain in-
0

formation on a is through analyses of the type in Sec. 5, i.e., by pseudo-

randomly generating alternative data sets (possibly also alternative seismic

environments) and by calculating the associated variation of estimated hazard.
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6.3 Actual Variability of Expert Opinion

In a recent study of Seismic Hazard in the Eastern United States

(TERA, 1979), 10 seismologists responded to a comprehensive questionnaire

which included information on source geometry, seismicity rate and magni-

tude distribution for each source, and form and parameters of the attenu-

ation function. Before answering the questionnaire, experts were provided

with available maps of seismicity and with exhaustive catalogues of his-

torical events. In spite of this attempt to equalize the information

available to all experts, opinions ranged widely on a few critical param-

eters, notably, on the appropriate configuration of earthquake sources, on

the slope of the recurrence relationship, and on the upper bound size.

Based on response from each expert, 10 separate estimates of hazard at vari-

ous locations of the eastern and central United States were obtained. Re-

sults at one site, in terms of pseudo-velocity spectra for a 1000-year re-

turn period, are shown in Fig. 6.2. The range of estimates corresponds to

factors on the spectrum of typically 2 or 3, with peak values of about 7

for long-period oscillators. With reference to the model of Eq. 6.9, this

variability should be attributed mainly to the term ni and less to the

term i because of the similarity of hazard analysis procedures (but the

interpretation of seismicity was allowed to vary from expert to expert).

A self-ranking method (experts were asked to quantify their degree

of confidence in answering various parts of the questionnaire) was devised

to finally produce a single hazard estimate H as a weighted average of the

individual curves. However, precision of H was not quantified.

Another example is shown in Fig. 6.3 (from Cornell, 1980). In this

case, three independent consulting teams obtained estimates of seismic

hazard at the site of the Diablo Canyon nuclear power plant, in California.



123

AILL EXPERTS -- CONNECTICUT TAiNKEE JO- 100 ERR RETURN PERIOD

41
UA

00-

t

Lij

C-0

0.1
0.01 01101.

PERIOD-SEC.

FIGURE 6.2 Diversity of expert opinion in the
assessment of seismic hazard at
Connecticut Yankee power station
site (from TERA, 1979)



124

10

A

~Consul tant 2

5 lo-

0!2 I0- 0!5 08

aJ

a)

0.2

peak ground acceleration, a

FIGURE 6.3 Seismic hazard curves for
Diablo Canyon (Cornell, 1980).



125

Although the sample is very small, the range of estimates corresponds to

a factor of about 10 on probability given a and of about 3 on acceleration

given the probability level.

Another useful source of information on the bias and error of sub-

jective quantification and updating of uncertainty is the data collected

by experimental psychologists (Phillips, Mays, and Edwards, 1966; Winkler,

1967; Vlek, 1973; StaLl Von Holstein, 1971; Rapoport and Wallsten, 1972;

to name but a few). Distortions due to conservatism and hedging are rather

well documented; so are techniques for controlling them, such as feedback

and cross-checking.
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7. CONCLUSIONS

It is just natural that first theories and models are developed and

then their limitations are understood. In the case of seismic hazard

analysis, the first step is essentially completed but not the second,

so that quoting from a contemporary survey of the field (Cornell, 1980),

"the probabilistic procedures of applied seismic hazard analysis are at

the moment very stable."

By contrast, understanding of the accuracy of even the standard

methods is at best incomplete. The very definition of accuracy (with

respect to what?) has never been given in clear, unequivocal terms.

Studies of the subject are fragmentary and uncoordinated; they look

at different sources of error and use different methods and language

in a rather unscientific fashion. Besides the conceptual need to give

order to the subject, there is the practical necessity of deciding what

to do about uncertainty on the true hazard. While waiting for an

answer, there is a consensus, de facto, that one should be conservative,

although nobody has come up with a measure of conservatism, even less

with a rationale.

The purpose of this report is to gather available information on

errors in seismic hazard analysis and, more important, to provide a

conceptual framework to the subject. Toward the latter end, it was

found necessary to first define a "true probabilistic hazard" against

which accuracy could be measured. An objective definition of hazard has

been given In Sec. 2, as the relative frequency in time with which earth-

quake events of engineering interest occur at the site. The body of

the report--Secs. 4, 5, and 6--deals with errors in the estimation

of true hazard--statistical errors in Secs. 4 and 5, Judgmental
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errors in Sec. 6. Specifically, Sec. 4 looks at errors from modeled

uncertainty (on parameters or on alternative hazard procedures) whereas

Sec. 5 deals with unmodeled errors from making wrong assumptions about

the relevant laws of nature (form of the true hazard function or charac-

teristics of seismicity). Errors of the latter type are more elusive and

oftenmoresevere than those that are explicitly modeled. Hence, judging

accuracy only from modeled uncertainty (e.g., about parameters such as

the Richter b slope or the upper bound magnitude) may give a false sense

of confidence in a model.

With the increasing use of nonstatistical information in the form of

professional judgment, the study of errors in the subjective estimation

and updating of uncertainty becomes part of the accuracy problem. A

related issue is that of how to combine hazard estimates from different

seismologist experts. Reflections on this problem are offered in Sec. 6.

It is realized that the engineering accuracy and value of a model can-

not be quantified only in terms of errors. Consequences of errors rather

than errors are important, uncertainty on seismic risk rather than on

seismic hazard. Although most of the literature to date deals with the

latter topic, a section (Sec. 3) has been included here on seismic risk

and its dependence on parameter uncertainty.

It is apparent that more research is needed on virtually every aspect

of this complex problem and that it is of utmost importance that it be

carried out with much more coordination than we have seen in the past.



128

REFERENCES

Aitchison, J. (1964), "Bayesian Tolerance Regions," J. Royal Statist. Soc., B,
Vol. 26, pp. 161-210.

Aitchison, J. and Dunsmore, I. R. (1975), Statistical Prediction Analysis,
Cambridge University Press, London.

Aitchison, J. and Schulthorpe, D. (1965), "Some Problems of Statistical
Prediction," Biometrika, Vol. 52, Nos. 3 and 4. p. 469.

Banon, H. and Veneziano, D. (1981), "Seismic Safety of Reinforced Concrete
Members and Structures," Earthquake Engineering And Structural Dynamics,
(to appear).

Benjamin, J.R. (1974), "Probabilistic Decision Analysis Applied to Earthquake
Damage Surveys," Research Report, Earthquake Engineering Research Institute.

Chew, V. (1968), "Simultaneous Prediction Intervals," Technometrics, Vol. 10,
pp. 323-330.

Cornell, C.A. (1968), "Engineering Seismic Risk Analysis," Bull. Seism. Soc. Am.,
58, pp. 1583-1606.

Cornell, C.A. (1971), "Probabilistic Analysis of Damage to Structures under
Seismic Loads," Chapter 27 of Dynamic Waves in Civil Engineering, D.A. Howells,
I.P. Haigh, and C. Taylor, Eds., Wiley Interscience, N.Y.

Cornell, C.A. (1980), "Probabilistic Seismic Hazard Analysis: A 1980 Assess-
ment," Proc., US-Yugoslavia Earthquake Engineering Research Seminar, Skopje,
Yugoslavia, June 30-July 3.

Cornell, C.A. and Vanmarcke, E.H. (1969), "The Major Influences on Seismic
Risk," Proc. Fourth World Conf. on Earthquake Engineering, Santiago, Chile.

Cornell, C.A. and Merz, H.A. (1975), "Seismic Risk Analysis of Boston," J. of
the Structural Division, ASCE, Vol. 101, No. STIO, pp. 2027-2043.

Cornell, C.A., Banon, H., and Shakal, A. (1979), "Seismic Motion and Response
Prediction Alternatives," Earthquake Engineering and Structural Dynamics,
Vol. 7, pp. 295-315.

Dalkey, N.C. (1975), "Group Consensus Distribution," in Turoff, M., et.al.
(eds.), The Delphi Approach, Addison-Wesley.

Dames & Moore (1980), "Seismic Ground Motion Hazard at La Crosse Boiling Water
Reactor, Wisconsin," Draft Report.

de Groot, M. (1974), "Reaching a Consensus," Journal of the American Statis-
tical Association, 69, pp. 118-1121.



129

Der Kiureghian, A. and Ang, A. H.-S. (1975), "A Line Source Model for Seismic
Risk Analysis," Technical Report, Structural Research Series, No. 419, De-
partment of Civil Engineering, University of Illinois, Urbana, Illinois,
October.

Der Kiureghian, A. and Ang, A. H-S. (1977), "A Fault-Rupture Model for Seismic
Risk Analysis," Bull. Seism. Soc. Am., 67, pp. 1173-1194.

Donovan, N.C. and Bornstein, A.E. (1978), "Uncertainties in Seismic Risk Pro-
cedures," J. of the Geotechnical Engineering Division, ASCE, Vol. 104,
No. GT7, pp. 869-887.

Draper, N. and Smith, H. (1966), Applied Regression Analysis, John Wiley & Sons,
New York.

Esteva, L. (1970), "Seismic Risk and Seismic Decision," in Seismic Design for
Nuclear Power Plants, R.J. Hansen, M.I.T. Press, Cambridge, Mass.

Esteva, L. (1976), "Seismicity," Chapter 6 of Seismic Risk and Engineering De-
cision, E. Rosenblueth and C. Lomnitz, Eds., Elsevier Scientific Publishing
Co.,Amsterdam.

Fine, T. L. (1973), Theories of Probability: An Examination of Foundations,
Academic Press, New York.

Grigoriu, M. (1976), "A Decision Theoretic Approach to Model Selection for
Structural Reliability," Ph.D. Thesis, Dept. of Civil Engineering, M.I.T.,
Cambridge, Mass.

Grigoriu, M., Veneziano, D., and Cornell, C.A. (1979), "Probabilistic Modeling
as Decision Making," J. of the Engineering Mechanics Division, ASCE, Vol. 105,
No. EM4, pp. 585-596.

Gupta, I.N. and Nuttli, O.W. (1976), "Spatial Attenuation of Intensities for
Central U.S. Earthquakes," Bulletin of the Seismological Society of America,
66(3), pp. 743-751.

Guttman, I. (1970), Statistical Tolerance Regions: Classical and Bayesian,
Griffin's Statistical Monographs & Courses, No. 26, Stuart Ed., Hafter Publ.
Co., London.

Hasselman, T.K. and Simonian, S.S. (1980), "Structural Uncertainty in Seismic
Risk Analysis," NUREG/CR-1560, UCRL-15218, Lawrence Livermore Laboratory,
Livermore, California.

Hofstetter, E.M. (1964), "Random Processes," Chapter 3 of The Mathematics of
Ph sics and Chemistry, Vol. 2, H. Margenau and G.M. Murphy, Eds., Van Nostrand,
Princeton, New Jersey.

Kameda, H. and Ozaki, Y. (1979), "A Renewal Process Model for Use in Seismic
Risk Analysis," Memoirs of the Faculty of Engineering, Vol. XLI, Part 1,
Kyoto University.



129

Der Kiureghian, A. and Ang, A. H.-S. (1975), "A Line Source Model for Seismic
Risk Analysis," Technical Report, Structural Research Series, No. 419, De-
partment of Civil Engineering, University of Illinois, Urbana, Illinois,
October.

Der Kiureghian, A. and Ang, A. H-S. (1977), "A Fault-Rupture Model for Seismic
Risk Analysis," Bull. Seism. Soc. Am., 67, pp. 1173-1194.

Donovan, N.C. and Bornstein, A.E. (1978), "Uncertainties in Seismic Risk Pro-
cedures," J. of the Geotechnical Engineering Division, ASCE, Vol. 104,
No. GT7, pp. 869-887.

Draper, N. and Smith, H. (1966), Applied Regression Analysis, John Wiley & Sons,
New York.

Esteva, L. (1970), "Seismic Risk and Seismic Decision," in Seismic Design for
Nuclear Power Plants, R.J. Hansen, M.I.T. Press, Cambridge, Mass.

Esteva, L. (1976), "Seismicity," Chapter 6 of Seismic Risk and Engineering De-
cision, E. Rosenblueth and C. Lomnitz, Eds., Elsevier Scientific Publishing
Co., Amsterdam.

Fine, T. L. (1973), Theories of Probability: An Examination of Foundations,
Academic Press, New York.

Grigoriu, M. (1976), "A Decision Theoretic Approach to Model Selection for
Structural Reliability," Ph.D. Thesis, Dept. of Civil Engineering, M.I.T.,
Cambridge, Mass.

Grigoriu, M., Veneziano, D., and Cornell, C.A. (1979), "Probabilistic Modeling
as Decision Making," J. of the Engineering Mechanics Division, ASCE, Vol. 105,
No. EM4, pp. 585-596.

Gupta, I.N. and Nuttli, O.W. (1976), "Spatial Attenuation of Intensities for
Central U.S. Earthquakes," Bulletin of the Seismological Society of America,
66(3), pp. 743-751.

Guttman, 1. (1970), Statistical Tolerance Regions: Classical and Bayesian,
Griffin's Statistical Monographs & Courses, No. 26, Stuart Ed., Hafter Publ.
Co., London.

Hasselman, T.K. and Simonian, S.S. (1980), "Structural Uncertainty in Seismic
Risk Analysis," NUREG/CR-1560, UCRL-15218, Lawrence Livermore Laboratory,
Livermore, California.

Hofstetter, E.M. (1964), "Random Processes," Chapter 3 of The Mathematics Lo
Physics and Chemistry, Vol. 2, H. Margenau and G.M. Murphy, Eds., Van Nostrand,
Princeton, New Jersey.

Kameda, H. and Ozaki, Y. (1979), "A Renewal Process Model for Use in Seismic
Risk Analysis," Memoirs of the Faculty of Engineering, Vol. XLI, Part 1,
Kyoto University.



130

Kaplan, S. (1980), "On the Method of Discrete Probability Distributions in Risk
and Reliability Calculations," Pickard, Lowe and Garrick, Inc., Irvine,
California, October.

Kaplan, S. and Garrick, B.J. (1980), "On the Quantitative Definition of Risk,"
Pickard, Lowe and Garrick, Inc., Irvine, California, June.

Kiremidjian, A., Anagnos, T., and Shah, H.C. (1980), "A Time and Space Depen-
dent Model for Earthquake Occurrences," Seism. Soc. Am. Meeting, Seattle,
Washington, April.

Knopoff, L. and Kagan, Y. (1977), "Analysis of the Theory of Extremes as Applied
to Earthquake Problems," J. Geoph. Res., Vol. 82, No. 36, December.

Long, L.T. (1976), "Speculations Concerning Southeastern Earthquakes, Mafic
Intrusions, Gravity Anomalies, and Stress Amplification," Earthquake Notes,
47, pp. 29-35.

Lucas, J.R. (1970) The Concept of Probability, Clarendon Press, Oxford.

Mann, O.C. (1974), "Regional Earthquake Risk Study; Appendix D2," Technical
Report for MATCOG/MDDD, M & H Engineering and Memphis State University.

Matheron, G. (1971), The Theory of Regionalized Variables and Its Applications,
Les Cahiers du Centre de Morphologie Mathematique de Fontainbleau, No. 5.

McGuire, R.K. and Shedlock, K.M. (1980), "Statistical Uncertainties in Seismic
Hazard Evaluation in the United States," Unpublished manuscript.

McKeown, F.A. (1978), "Hypothesis: Many Earthquakes in the Central and South-
eastern United States Are Causally Related to Mafic Intrusions Bodies,"
J. Research U.S. Geol. Survey, Vol. 6, No. 1, January-February.

Merz, H.A. and Cornell, C.A. (1973), "Aftershocks in Engineering Seismic Risk
Analysis," Proc., Fifth World Conf. on Earthquake Engineering, Rome, Italy,
June.

Morris, P.A. (1974), "Decision Analysis Expert Use," Management Science, 20,
pp. 1233-41.

Newmark, N.M. (1974), "Comments on Conservatism in Earthquake Resistance Design,"
presented at the U.S. Atomic Energy Commission, September.

Patwardhan, A.S., Kulkarni, R.B., and Tocher, D. (1978), "A Semi-Markov Model
for Characterizing Recurrence of Great Earthquakes," EHRP Conf. on Methodol-
ogy for Defining Seismic Gaps and Soon-to-Break Gaps, MIT, Cambridge, Mass.,
May 25-27.

Philips, L.D., Hays, W.L., and Edwards, W. (1966), "Conservatism in Complex
Probabilistic Inference," Institute of Electrical and Electronics Engineers,
Transactions, Vol. HFE-7, pp. 7-18.



131

Proceedings of International Conferences on Structural Mechanics in Reactor
Technology, Berlin, 1971, 1973; London, 1975; San Francisco, 1977.

Proshan, F. (1953), Confidence and Tolerance Intervals for the Normal Distri-
bution, J. Am. Statist. Assoc., Vol. 48, pp. 550-564.

Raiffa, H. and Schlaifer, R. (1961), Applied Statistical Decision Theory, Grad-
uate School of Business Administration, Harvard University, Cambridge, Mass.

Rapoport, A., and Wallsten, T.S. (1972), "Individual Decision Behavior,"
Annual Review in Psychology, Vol. 23, pp. 131-176.

Schlien, S. and Toksoz, M. (1970), "A Clustering Model for Earthquake Occur-
rences," Bull. Seism. Soc. of Am., Vol. 60, No. 6, pp. 1765-1787.

Schumaker, J. (1977), "Statistical Methodologies in Seismic Risk Analysis,"
Research Report R 77-18, Dept. of Civil Engineering, MIT, Cambridge, Mass.

Stael Von Holstein, C.S. (1971), "Two Techniques for Assessment of Subjective
Probability Distributions--An Experimental Study," Acta Psychologica, Vol. 35,
pp. 478-494.

TERA Corp. (1979, 1980), "Seismic Hazard Analysis; I: A Methodology for Eastern
United States; II: Solicitation of Expert Opinion; III: Site Specific Spec-
tra Results," Berkeley, California.

TERA Corp. (1980), "Seismic Hazard Analysis: Site-Specific Response Spectra-
Sensitivity Results," Berkeley, California, May.

Varmarcke, E.H. (1971), "Example of Expected Discounted Future Cost Computation,"
Internal Study Report No. 2, Seismic Design Decision Analysis, Dept. of Civil
Engineering, MIT, Cambridge, Mass.

Veneziano, D. (1974), "Statistical Estimation and Prediction in Probabilistic
Models, with Application to Structural Reliability," Ph.D. Thesis, Dept. of
Civil Engineering, MIT, Cambridge, Mass.

Veneziano, D. (1975), "Probabilistic an( Statistical Models for Seismic Risk
Analysis," Research Report R75-34, Dept. of Civil Engineering, MIT, Cambridge,
Mass.

Veneziano, D., Schumacher, J. and Cornell, C.A. (1977), "Statistical Errors in
Seismic Risk Analysis," ASCE Spring Convention, Pittsburgh, April.

Veneziano, D. and Chung, D.H. (1980), "Interpretation of Seismic Hazard,"
Unpublished manuscript.

Vere-Jones, D., and Davies, R.B. (1966), "A Statistical Survey of Earthquakes
in the Main Seismic Region of New Zealand: Part 2-Time Series Analyses,"
N.Z.J. Geol. Geophys., Vol. 9, pp. 251-284.



132

Vlek, C.A.J. (1973), "Coherence of Human Judgement in a Limited Probabilis-
tic Environment," Organization Behavior and Human Performance, Vol. 9,
pp. 460-481.

Walley, P. (1976), "The Estimation of Earthquake Risk in New Zealand," Techni-
cal Report No. 49, Dept. of Scientific and Industrial Research, Wellington,
New Zealand.

Whitman, R.V. (1973), "Damage Probability Matrices for Prototype Buildings,"
Research Report R73-57, Dept. of Civil Engineering, MIT, Cambridge, Mass.

Whitman, R.V. and Hong, S.-T. (1973), "Data for Analysis of Damage to High Rise
Buildings in Los Angeles," Optimum Seismic Protection for New Building Con-
struction in Eastern Metropolitan Areas; Internal Study Report No. 32, Dept.
of Civil Engineering, MIT, Cambridge.

Winkler, R.L. (1967), "The Assessment of Prior Distributions in Bayesian Analy-
sis," Journal of the American Statistics Association, Vol. 62, pp. 776-800.

Winkler, R.L. (1968), "The Consensus of Subjective Probability Distributions,"
Journal of the American Statistical Association, 62, pp. 776-800.

Wood, E.S., Rodriguez-Iturbe, I., and Schaake, J.C. (1974), "The Methodology of
Bayesian Inference and Decision Making Applied to Extreme Hydrologic Events,"
Technical Report No. R 74-8, Dept. of Civil Engineering, MIT, Cambridge, Mass.



In accordance with letter from DAEN-RDC, DAEN-ASI dated
22 July 1977, Subject: Facsimile Catalog Cards for
Laboratory Technical Publications, a facsimile catalog
card in Library of Congress MARC format is reproduced
below.

Veneziano, Daniele

State-of-the-art for assessing earthquake hazards in
the United States : Report 18 : Errors in probabilistic
seismic hazard analysis / by Daniele Veneziano (Department
of Civil Engineering, Massachusetts Institute of
Technology). -- Vicksburg, Miss. : U.S. Army Engineer
Waterways Experiment Station ; Springfield, Va.
available from NTIS, 1982.

132 p. : ill. ; 27 cm. -- (Miscellaneous paper / U.S.
Army Engineer Waterways Experiment Station ; S-73-1, Report 18)

Cover title.
"January 1982."
"Prepared for Office, Chief of Engineers, U.S. Army

under Contract No. DACW39-80-M-2381."
"Monitored by Geotechnical Laboratory, U.S. Army

Engineer Waterways Experiment Station."
Bibliography: p. 128-132.

1. Earthquakes. 2. Seismology--mathematics.
3. Earthquake intensity. I. Massachusetts Institute of
Technology. Dept. of Civil Engineering. II. United

Veneziano, Daniele
State-of-the-art for assessing earthquake hazards : ... 1982.

(Card 2)

States, Army. Corps of Engineers. Office of the
Chief of Engineers. III. U.S. Army Engineer Waterways
Experiment Station. Geotechnical Laboratory. IV. Title
V. Series: Miscellaneous paper (U.S. Army Engineer
Waterways Experiment Station) ; S-73-1, Report 18.
TA7.W34m no.S-73-1 Report 18



REPOTS is TRIS BE
(MP S-73-1)

ieport 1 0. H. Nuttli Design Earthquakes for the Central United States January 1973

import 2 1. L. Krinitmky Fault Asessment in Earthquake Engineering mey 3.974

Report 3 R. S. Sofann Factors In the Specification of Ground Notions for Design Junea 1974
Earthquakes In California

Report 4 Ellis L. Krialtzsky Earthquake intensity and the Selection of Ground Notion for September 1975
Frank K. Chang Seismic Design

import 5 Jack L. Walper Plate Tectonicsanmd Earthquake Asseesment Harch 1976

import 6 David B. Slomone Faults and Eerthquake Magnitude may 1977

import 7 Ellis L. Krinitzeky Specifying Peak Notions for Deign Earthquakes December 1977
Frank K. Chang

import 8 Frank K. Chang Duration* Spectral Contents end Predominant Period of Strong Notion Decmber 1977
Ellis L. Erinitasky Earthquake Records from Hestern United States

import 9 Frank K. Cheng Catalogue of Strong Notion Earthquake Records, Volume 1. Hestern Aril 1978
United States, 1933-1971

Report 10 Otto H. Nuttli Attenuetion of High-Frequency Seismic Waves In the Central July 1978
John J. Dwyer Mississippi Valley

import 11 Carle E. Glass Imagery In Earthquake Analysia December 1978
David S. Slemna

import 12 Otto H. Nuttli Credible Earthquakes for the Centrel United States Deceber 1976

Robert S. Herrason

import 13 M. K. Tegian Probabilistic Seismic Hazard Analysis July 1979

import 14 Erik H. Vaisrcke Representation of Earthquake Crowid Motion: Scaled Accaeragram August 1979

and Equivalent Response Spectre

import 15 James R. Rouston Tsuniamis, Saiches, and Landelide-Induced Hater Heves Noemer 1979

import 16 Otto H. Nuttil The Relation of Sustained Nezinms Ground Acceleration end Velocity November 1979
to Earthquake Intensity mid Magnitude

Report 17 Bruce A. bolt Interpretation of Strong Ground Notion Records October 1961

import 18 Daniels Venesiano Errors In Probabilis tic Seismic Heaad Analysis Jeanuary 1982

) REPORTS IN PREPARATION

import 19 Ronald S. Heade The Evidence for Reservoir-Induced Mecroearthquakee

import 20 Ellis L. Eriniteky iEentials f or Specifying Earthquake Notions In Egineering Design


