

FTD-ID(RS)T-1508-81

UNEDITED MACHINE TRANSLATION

FTD-ID(RS)T-1508-81

20 January 1982

121/

MICROFICHE NR: FTD-82-C-000058

COMBINED PLUS INTEGRAL CONTROL IN THE SERVO SYSTEMS

By: B.V. Novoselov

English pages: 23

Source: Izvestiya Vysshikh Uchebnykh Zavedeniy Elektromekhanika, Nr. 2, 1970, pp. 188-197

Country of origin: USSR This document is a machine translation. Requester: USAMICOM Approved for public release; distribution unlimited.

THIS TRANSLATION IS A RENDITION OF THE ORIGI-NAL FOREIGN TEXT WITHOUT ANY ANALYTICAL OR EDITORIAL COMMENT. STATEMENTS OR THEORIES ADVOCATED OR IMPLIED ARE THOSE OF THE SOURCE AND DO NOT NECESSARILY REFLECT THE POSITION OR OPINION OF THE FOREIGN TECHNOLOGY DI-VISION.

PREPARED BY:

TRANSLATION DIVISION FOREIGN TECHNOLOGY DIVISION WP-AFB, OHIO.

141600

ID(RS)T-1508-81

Date 20 Jan 1982

U.	S. BOAR	D ON G	EOGRAPHIC N	AMES TRAN	SLIT	ERATIO	N SYSTE	1	
Block I	talic	Trans	literation	Block	Ita	lic	Transl:	lteratic	
Aa 🖌	a	A, a		Рρ	P	p	R, r		
Бб Е	5 6	B, b		Сс	С	c	S, s		
ав н	3 4	V, v		Тт	T	m	Τ, τ		
ſr,	Γ ₹	G, g		Уу	У	У	U, u		
"Дд Д	a d	D, d		Φφ	Ø	φ	F, f		
Ee L	÷ •	Үе, у	e; E, e*	Хх	X	x	Kh, kh		
жж Ж	K 240	Zh, z	h	Цц	Ц	4	Ts, ts		
3 a a	3	Z, z		Чч	Ч	۲	Ch, ch		
Ин И	1 2	I, i		Шш	Ш	ш	Sh, sh		
Ий А	ŭ	Ү, У	-	Щщ	Щ	4	Shch,	shch	
Кн Л	(*	K, k		Ъъ	Ъ	2	**		
תוג 🞵	Л	L, 1		Яв	ผ	¥	Ү, У		
ana ka 🛛 🗛	1 M	M, m		ь ь	Ь	•	T		
Нн , <i>Б</i>	1 H	N, n		Ээ	Э	,	E, e		
0 o <i>0</i>	0	0, 0		Юю	Ю	<i>10</i>	Yu, yu		
n <i>t</i>	T n	р, р		Яя	Я	я	Ya, ya	and the second se	
"ye initially, after vowers, and after ъ, ъ; <u>е</u> eisewhere. When written as ё in Russian, transliterate as yё or ё. RUSSIAN AND ENGLISH TRIGONOMETRIC FUNCTIONS									
Russian	Englis	sh	Russian	English	1	Russi	an	English	
sin	sin		sh	sinh		arc s	h	sinh_1	
cos ta	cos	•	ch th	cosh tanh		arc c	h b	cosh	
ctg	cot	•	cth	coth		arco	th	coth 1	
sec	sec		sch	sech		arc s	ch	sech_1	
cosec	csc	I	csch	csch	1	arc o	sch	esch ~	
			Russian rot	Englis curl	h	Abdi. 10 1911: Shaa 1912: Tab Uuannutuopo		i i i i i i i i i i i i i i i i i i i	
			тВ	тоң	a Custifica est		1		
	÷								
AV5,) 3(1) 11						11			
				("		,) ·	A	, , , , , , , , , , , , , , , , , , ,	

12

<u>E da</u>

•¥ 4

. ******

_____. __________ • • •

.

į

1

>

, , ,

Kapataka⊅use kata batutarinine namera yanar utanunanennenna a g

~~ B

E

-

•

e de la comisión de la

ŧ

1 - 1 - 4 | 14¹

を開

F.

٠

•

「日本に学生」の「古木」

*

 \bigcirc

DOC = 81150800 PAGE

1

Page 188.

COMBINED PLUS INTEGRAL CONTROL IN THE SERVO SYSTEMS.

B. V. Novoselov.

I. Formulation of the problem.

In the practice of automatic control wide application obtained the servo systems of the combined control (SSKR) (Fig. 1A), which together with many positive properties possess a number of the essential deficiencies/lacks:

for satisfaction of the conditions of invariance it is necessary to measure and to differentiate the input effect (VV);

the conditions of invariance require the strictly defined relationships/ratios between the levels of the compensating signals (KS) and the parameters of main circuit SSKR;

the limited number of derivatives of VV, ensuring the

compensation for the steady errors into some modes of operation SSKR, can lead to an increase in the errors in other operating modes;

- the presence of derivatives of VV can cause an increase in the error SSKR in the presence of interference at the input and excessively increase the oscillation property of system with the changes in VV.

In this work is examined one of the ways of an improvement in the quality of SSKR in the presence in it of KS on one derivative of alone VV. DOC = 81150800

PAGE

3

Page 189.

0

ş

In diagram in Fig. 1A

$$\varphi(p) = \varphi p; \ K(p) = \frac{K}{p(1+T_1p(1+T_2p))}$$
(1.1)

In this system of the expression of errors θ_{r} , θ_{r} , θ_{r} , for proportional ones with respect to rate Ω_{1} and acceleration ε_{1} VV, they take the form

$$\begin{aligned}
\Theta_{\kappa} &= C_{1}\Omega_{1} = \Omega_{1}\lim_{p \to 0} \frac{1}{p} \mathcal{O}_{m}(p) = \\
&= \Omega_{1}\lim_{p \to 0} \frac{1}{p} \frac{p(1+T_{1}p)(1+T_{2}p) - K_{7}p}{p(1+T_{1}p)(1+T_{2}p) + K} = \Omega_{1} \frac{1-K_{7}}{K}; \quad (1.2) \\
\Theta_{d} &= C_{2}s_{1} = s_{1}\lim_{p \to 0} \frac{1}{p^{2}} \left[\mathcal{O}_{m}(p) - C_{1}p\right] = \\
&:= s_{1} \frac{K(T_{1} + T_{2}) - 1 + K_{7}}{K^{2}} \quad (1.3)
\end{aligned}$$

In the stationary parameters of SSKR:

if
$$\tau = \frac{1}{R}$$
, so $\theta_{\kappa} = 0$, $\theta_{\sigma} = \frac{T_1 + T_2}{L}$; (1.4)

if.
$$\gamma = \frac{1 - K(T_1 + T_2)}{K}$$
, $(0) = (T_1 + T_2)\Omega_1, \ \Theta_o = 0.$ (1.5)

Key: (1) that.

Fig. 2a, b depicts the oscillograms of work of SSKR during two tuning

$$s = \frac{1}{K} \frac{\omega}{r_{2}} = \frac{1 - K(T_{1} + T_{2})}{K}$$

Key: (1) and.

On the basis of (1.4), (1.5) and Fig. 2a, b it follows that by changing tuning of KS in such a way that with VV $\theta_1(t) = \theta_1 t$ would be ensured relationship/ratio $\varphi = \frac{1}{K}$, and with VV $\theta_1(t) = \frac{\epsilon_1 t^2}{2}$ - relationship/ratio $\varphi = \frac{1-K(T_1+T_2)}{K}$, it is possible in the presence of KS only on one derivative of VV to ensure compensation θ_1 , θ_2 .

For guaranteeing the minimum of the sum of the squares of errors θ_{a} and θ_{a}

$$\Theta_{2}^{2} = \Theta_{\kappa}^{3} + \Theta_{\lambda}^{2} = \Omega_{1}^{2} \frac{1 - 2k\varphi + h^{2}\varphi^{3}}{K^{2}} + \frac{1 - 2k\varphi + h^{2}\varphi^{3}}{K^{2}} + \frac{K^{2}(T_{1} + T_{2})^{2} - 2(1 - k\varphi)K(T_{1} + T_{2}) + (1 - K\varphi)^{2}}{K^{4}}$$
(1.6)

٢

2.

 it is necessary, on the basis of the condition

$$\frac{\partial \theta_2}{\partial \gamma} = \Omega_1^2 \frac{2K^2 \gamma - 2K}{K^2} + \epsilon_1^2 \frac{2K^2 (T_1 + T_2) + 2K^2 \gamma - 2K}{K^4} = 0, \quad (1.7)$$

to ensure tuning of KS according to the law

$$\varphi = \frac{\frac{1}{K} - (T_1 + T_2) + K \frac{\Omega_1^2}{v_1^2}}{1 + K^2 \frac{\Omega_1^2}{v_1^2}}.$$
 (1.8)

∉`≞

Fig. 2. Oscillograms of work of SSKR.

Key: (1). s.

Page 190.

If $K_{\frac{2}{\epsilon_{1}^{2}}-1}^{\frac{2}{\epsilon_{1}^{2}}}$, then law (1.8) takes the form $\varphi = \frac{\epsilon_{1}^{2}}{\frac{2}{\epsilon_{1}^{2}h^{2}}} \left[\frac{1}{K} - (T_{1} + T_{2}) \right] \div \frac{1}{K}$ (1.9)

6

During the final adjustment of VV of form $\Theta_1(t) = \Theta_1 \sin \omega t$ for guarantee $\Theta_1^2 = \min$ it would be necessary to change o according to laws (1.8) or (1.9), but for this is necessary measurement ε_1 , which is virtually complicated. Moreover, measurement ε_1 would make it possible to carry out the combined control (KU) on two derivatives of VV, which would ensure in the stationary parameters SSKR Θ_1 , $\Theta_n=0$.

In the presence only of one derivative of VV it is expedient,

which will shown below, for guaranteeing the high accuracy in the modes/conditions of the final adjustment of VV of form $\Theta_{i}(t) = \Theta_{i}t, \Theta_{i}(t) = \frac{\varepsilon_{i}t^{2}}{2}, \quad \Theta_{i}(t) = \Theta_{i} \sin \alpha t \quad (\omega < 1)$ supplement of KU by the integral control (IU) (Fig. 1b, c). In the present work are examined the results of experimental final adjustment of SSKR with IU and are indicated the ways of further improvement in the quality of systems of this type. lateratura e hatara historia da faran kitari kitari katara bara da bara da bara da bara da ana da ana da da da

2. Investigation of SSKR with IU.

()

Is possible realization SSKR with IU on the diagrams in Fig. 1b and 1c, where

$$\begin{aligned} h(p) &= \frac{K}{p(1+T_1p)(1+T_2p)}, \quad \varphi(p) &= \varphi p, \\ K_H(p) &= K_a + \frac{K_H}{p}. \end{aligned} \tag{2.1}$$

The transfer function of locked SSRR with IU and expression of error during the final adjustment of VV they take the form: for the diagram in Fig. 1b

$$\Phi^{i}p = \frac{\Theta_{2}(p)}{\Theta_{1}(p)} = \frac{K(p)K_{H}(p)[1+\varphi(p)]}{1+K(p)K_{H}(p)} = \frac{K(K(p+K_{H})(1+\varphi))}{p^{2}(1-T_{1}p)(1+T_{2}p)+KK_{0}p+KK_{H}},$$
(2.2)
$$\Theta(p) = \Theta_{1}(p)\frac{T_{1}T_{2}p^{2}+(T_{1}+T_{2})p^{3}+(1-KK_{0}\varphi)p^{2}-KK_{H}\varphi}{p^{2}(1+T_{1}p)(1+T_{2}p)+KK_{0}p+KK_{H}},$$
(2.3)

for the diagram in Fig. lc

$$\Psi(p) = \frac{\Theta_{2}(p)}{\Theta_{1}(p)} = \frac{K(p)[\varphi(p) + K_{H}(p)]}{1 + K_{P})K_{H}(p)} = \frac{K(K_{e}p + K_{H} + \varphi^{2})}{\frac{K(K_{e}p + K_{H} + \varphi^{2})}{p^{2} \cdot 1 + T_{1}p)(1 + T_{2}p) + KK_{e}p + KK_{H}}},$$

$$\Theta(p) = \Theta_{1}(p) - \frac{T_{1}T_{2}p^{4} + (T_{1} + T_{2})p^{2} + (1 - K\varphi)p^{2}}{p^{2} \cdot 1 + T_{1}p)(1 + T_{2}p) + KK_{0}p + KK_{H}}.$$
(2.5)

The transfer functions of closed system relative to the moment disturbance/perturbation M(t) for the diagrams in Fig. 1b and 1c are identical

$$\Phi_{M}(p) = \frac{\Theta_{2}(p)}{M(p)} = \frac{W_{M}(p)}{1 + K_{H}(p)K(p)} = \frac{K_{M}p(1+T_{1}p).H(p)}{p^{2}(1+T_{1}p)(1+T_{2}p) + KK \circ p + hK_{H}}.$$
(2.6)

According to (2.6) in SSKR with IU during the constant disturbance/perturbation M(t)=M=const moment error $\Theta_M=C_MM=0$.

Page 191.

From analysis (2.2)-(2.5) it follows that in the stability the diagrams in Fig. 1b and 1c identical, but are different in the accuracy and the oscillation property during the final adjustment of VV.

For the diagram in Fig. 1b

هدر المتحاك

$$\Theta_{g} = -\Omega_{1} \varphi, \ \Theta_{\partial} = \frac{\varepsilon_{1}}{K h_{H}};$$

for the diagram in Fig. lc

$$\Theta_{\kappa} = 0, \ \Theta_{\theta} = \varepsilon_1 \frac{1 - K \varphi}{K K_H}, \tag{2.7}$$

48.IT.¹⁰

(

 \mathbb{G}

In the diagram in Fig. 1b in any modes/conditions $\Psi_{a,\sigma}$ 0, $\hat{\Psi}_{b,\sigma} \neq 0$. In the diagram in Fig. 1b $\Psi_{a}=0$ in all modes/conditions, $\Psi_{a,\sigma}=0$ when $i=\frac{1}{K}$. On the graphs/curves of Fig. 3a-3e are represented the results of the experimental investigation of SSKR with IU, carried out on the diagram in Fig. 1c.

Fig. 3. Experimental schedules of operation of SSKR with IU. Key: (1). [angl. min]. (2). Tuning of KU with ... s. (3). s.

Page 192.

Fig. 3a presents the dependences of the maximum value of error H_m in function $\frac{W_1}{W_{10}} \left(\frac{W_1}{W_{10}} - \text{characterizes the position of the wiper of potentiometer, with the help of which is regulated the factor of$

amplification of integrator) during the final adjustment of VV $\Omega_1(t=30\sin\frac{2\pi}{22})$ for the tuning of KS in dependences (1.4) and (1.5). From the analysis of graphs/curves it follows that during the tuning of KS on (1.5) the introduction/input of IU is more effective than during the tuning on (1.4). This is connected with the fact that the integrator of error is capable to ensure compensation only Θ_{κ} .

Fig. 3b depicts dependences $\Theta_m = f(7)$ for different structures of SSKR and different tuning of KS. Best on the accuracy is SSKR with IU during the tuning of KS on dependence (1.5). With an increase in frequency $= -\frac{1}{T}$ of change in VV error Θ_m in SSKR increases, since with an increase ω increases weight Θ_m . Smallest change Θ_m with change T is observed in SSKR without IU with the tuning of KS on (1.5).

Fig. 3c presents the dependences of transit time $t_2 = f\left(\frac{W_1}{W_{10}}\right)$ during the final adjustment of VV (different signs) of the form

 $\Theta_{i}(t) = \frac{\varepsilon_{1m}t^{2}}{2} \quad \text{ipin} \quad 0 < t < \frac{\Omega_{1m}}{\varepsilon_{1m}}, \\ \Omega_{1m}t \quad \text{ipin} \quad t > \frac{\Omega_{1m}}{\varepsilon_{1m}}.$ (2.8)

Key: (1). with

IU during the tuning of KS

Fig. 3d and 3e depicts respectively transit time $t_{\Theta} = f\left(\frac{W_1}{W_{10}}\right), t_{\Theta} = f\left(\frac{W_1}{W_{10}}\right)$ during the final adjustment artificially created $\Theta_{\star} = 21$ minutes of angle and $\Theta_{cm} = 21$ minutes of angle. In the modes/conditions indicated the mean-quadradic error of SSKR with

()

according to the law (1.5) decreases 5-20 times in comparison with SSKR without IU.

From the analy, i of the dependences Fig. 3a-3e it follows that the optimum tuning of integrator for SSKR being investigated is $\frac{W_1}{W_1} = 0.4 \div 0.5$

All given above results are obtained in the stationary parameters of SSKR.

However, the transiency of the parameters and the nonlinearity of the characteristics of elements/cells of SSKR with IU cause the disturbance of the conditions for compensation Θ_d , which can lead to increase Θ_d to the inadmissible value.

With the disturbance of condition $\tau = \frac{1}{K}$ (change in the factor of amplification of K of SSKR or change in KS φ) $\Theta_{J} \neq 0$ accepts the value

$$B_{\sigma} = \epsilon_{1} \frac{1 - (K \pm \Delta K)\varphi}{K_{H}(K \pm \Delta K)} = \mp \frac{\epsilon_{1} \frac{\Delta K}{K}}{KK_{H} \left(1 \pm \frac{\Delta K}{K}\right)} =$$

$$= \mp \Theta_{cv} \frac{\frac{\Delta K}{K}}{1 \pm \frac{\Delta K}{K}}, \qquad (2.9)$$

$$\Theta_{\sigma} = \epsilon_{1} \frac{1 - K(\varphi \pm \Delta \varphi)}{KK_{H}} = \mp \epsilon_{1} \frac{\Delta \varphi K}{KK_{H}} = \mp \Theta_{\sigma\sigma} \Delta \varphi K. \qquad (2.10)$$

DOC = 81150800

PAGE 13

Page 193.

(3

Fig. 1d depicts block diagram of SSKR with IU (I1), in which the part of KS, developed by differentiator (Difl) and preliminarily rectified by rectifier (D), is multiplied in the block of product (BP1) by output signal $H_{1,1} \oint dt'$ of integrator (I2) of actual error of SSKR. If $\theta_{d}=0$, then signal at output BP1 is equal to zero. If $\theta_{d}=0$, then at output BP1 appears the signal, which compensates for θ_{d} . The presence of D in the circuit of KS ensures sign change at output BP1 with sign change in VV. II affects both the accuracy and stability of SSKR; target I2, BP1, KS affects the accuracy and oscillation property during the final adjustment of VV, but it does not affect stability and quality of the free transient processes when VV is absent. To the investigation of this diagram is dedicated the 3rd section of this article.

3. Investigation of work of SSKR with IU in presence of internal and external disturbances/perturbations.

In view of a continuous change of the parameters of transient SSKR in the process there is no its work, steady-state modes/conditions in the usual concept (with $t\rightarrow\infty$). However, by

0

 $\left|\frac{d\Theta_1}{dt}\right| \int \Theta dt$

analogy with stationary SSKR we will determine θ_k^3 when $\theta_1(t) = \Omega_1 t$, θ_d when $\theta_1 \cdot t = \frac{z_1 t'}{2}$, θ_M with M(t) = M = const and so forth.

- Let the work of SSKR (Fig. 1d) be described by the differential equation of form (with the initial zero conditions and the only the factor of amplification of system)

$$T_{1}T_{2}\frac{d^{2}\Theta}{dt^{2}} + (T_{1} + T_{2})\frac{d^{2}\Theta}{dt^{2}} + \frac{d\Theta}{dt} + K(t)\Theta +$$

$$+ K_{H}K(t)\int_{0}^{t}\Theta dt + W_{1}K_{1}t)\left|\frac{d\Theta_{1}}{dt}\right|\int_{0}^{t}\Theta dt =$$

$$= T_{1}T_{2}\frac{d^{2}\Theta_{1}}{dt^{3}} + (T_{1} + T_{2})\frac{d^{2}\Theta_{1}}{dt^{2}} +$$

$$+ [1 - \varphi K(t)]\frac{d\Theta_{1}}{dt} \neq M(t)K_{M} \neq \frac{dM(t)}{dt}K_{M}T_{1}.$$
(3.1)

Equation (3.1) is nonlinear (contains product

also, with the variable parameter K(t). If we suppose that $\frac{d\Theta_1}{dt}$ - in advance known function of time, and the time of integration IL, I2 identical, then equation (3.1) can be investigated in the first approximation, as linear with the variable coefficients, utilizing L. A. Zade's method [1] - [3].

After dividing left and right side (3.1) for the sum

$$\alpha(t) = K(t) \left[h_{H} + W_{\eta} \frac{d\Theta_{\eta}}{dt} \right], \qquad (3.2)$$

where $\alpha(t) \neq 0$, and then it differentiated both parts of the equation

for independent by the variable/alternating t, we will obtain

 $A_{2}(t)\frac{d^{3}\Theta}{dt^{4}} + A_{1}(t)\frac{d^{3}\Theta}{dt^{2}} = \int A_{2}(t)\frac{d^{2}\Theta}{dt^{2}} + A_{3}(t)\frac{d\Theta}{dt} + A_{4}(t)\Theta =$ $= b_{\mathfrak{g}}(t) \frac{d^{\mathfrak{g}} \mathfrak{g}_{\mathfrak{f}}}{dt} , B_{\mathfrak{f}}(t) \frac{d^{\mathfrak{g}} \mathfrak{g}_{\mathfrak{f}}}{dt} + B_{\mathfrak{f}}(t) \frac{d^{\mathfrak{g}} \mathfrak{g}_{\mathfrak{f}}}{dt^{\mathfrak{f}}} =$ $= C_{i}t \frac{d^2 M(t)}{dt} = C_{i}(t) \frac{dM(t)}{dt} + C_{i}(t)M(t).$ (3.3)

Page 194.

(*]

From equation (3.3) it is possible to determine the conditions for the compensation for components Θ with the particular forms of ٧V

$$\begin{aligned} \Theta_{M} = \lambda_{1} M = 0, & \text{(becau upu } t > t_{k} \ C_{2}(t) = 0; & \text{(3.4)} \\ \Theta_{M1} = \lambda_{2} \frac{dM}{dt} = 0, & \text{Oecau upu } t > t_{k} \ C_{1}(t = 0, \ C_{2}(t) = 0; & \text{(3.5)} \\ \Theta_{K} = \lambda_{1} \frac{d\Theta_{1}}{dt} = 0, & \text{Oecau upu } t > t_{K} \ B_{3}(t) = 0; & \text{(3.6)} \\ \Theta_{0} = \lambda_{4} \ \frac{d^{2}\Theta_{1}}{dt^{2}} = 0, & \text{Occau upu } t > t_{K} \ B_{2}(t) \ B_{3}(t) = 0; & \text{(3.7)} \\ \Theta_{0} = \lambda_{6} \ \frac{d^{4}\Theta_{1}}{dt^{5}} = 0, & \text{Occau upu } t > t_{K} \ B_{1}(t) = B_{2}(t) = R_{3}(t) = 0, & \text{(3.8)} \end{aligned}$$

Key: (1), if with.

In (3.4)-(3.8) r_{i} - the duration of pulse transient response of SSKR.

For the change in the time of factor of amplification of SSKR in the dependence

$$\chi(t) = \frac{1}{K_{0} + K_{1}t}$$
 (3.9)

6

 \bigcirc

" ester milit

coefficients $C_1(t)$, $C_2(t)$, $B_2(t)$, $B_2(t)$, necessary for determining the conditions H_{31} , H_{31} , H_{s} , H_{a^*}

$$C_{1}(t) = \frac{K_{M}\gamma_{1}}{\gamma} \leftrightarrow \frac{K_{M}T_{1} \left[K_{1}\gamma - \gamma_{1}W_{1} \cdot \frac{d^{2}\Theta_{1}}{dt^{2}} \right]}{\gamma^{2}};$$

$$C_{2}(t) = \frac{K_{N}K_{1} \left[\gamma - \gamma_{1}W_{1} \cdot \frac{d^{2}\Theta_{1}}{dt^{2}} \right]}{\gamma^{2}},$$

$$B_{2}(t) = \frac{\left[\tau_{1} - \overline{\gamma} + K_{1}(T_{1} + T_{2}) \right] \gamma - \gamma_{1}(T_{1} + T_{2}) W_{1} \frac{d^{2}\Theta_{1}}{dt^{2}}}{\gamma^{2}},$$

$$B_{3}(t) = \frac{\varphi K_{1}\gamma + (\gamma_{1} - \varphi) \left[K_{1}\gamma - W_{1} \cdot \frac{d^{2}\Theta_{1}}{dt^{2}} \right]}{\gamma_{1}\gamma^{2}},$$
where $\gamma_{1} = h_{0} + K_{1}t, \ \gamma = K_{H} + W_{1} \frac{d\Theta_{1}}{dt}.$

DOC = 81150800

PAGE 17

Key: (1). Conditions for error compensation. (2). Type of SSKR (3). Mode of operation of SSKR. (4). Free transient process.

譜

ų.

 \bigcirc

2

9

0

DOC = 81150800 PAGE 18

Page 195.

Table 2.

	(1) Village similar contacts									
	#1	**=.	-	₽ _¢						
•	- 130 A.C. 6	C., li-Ke T0	-	_						
 -	A 4.e	$C_1(t) = \frac{h_1 w_1}{W_1 w_2} \frac{f_1 h_1 w_1}{w_1 w_2} = 0$ $C_3(t) = \frac{h_1 w_1}{W_1 w_2} = 0$	$B_{\mu}(r) = \frac{rK_{\mu}}{R_{\mu}^{2} + 2} = 0$	-						
·	· · · · · · · · · · · · · · · · · · ·	$\begin{bmatrix} C_{i}(t_{i}) \approx t \cdot \frac{t_{i}}{2} + \frac{t_{i}$	-	$\begin{aligned} B_{\mu}(t) &= \frac{x_{11}^{2} - x_{11}^{2} + x_{11}^{2} + x_{11}^{2} - x_{11}^{2}}{ x_{11} ^{2}} \sim 0 \\ B_{\mu}(t) &= \frac{1 - x_{11}^{2} + x_{11}^{2} + x_{11}^{2}}{ x_{11} ^{2}} = 0 \end{aligned}$						
:	$f_{i} = \frac{KKg}{Ka} = 0$	$C_{ij}(t) = \frac{hu_{ij} + hu_{ij}}{h_{ij}} = 0$ $C_{ij}(t) = \frac{hu_{ij}}{h_{ij}} = 0$	-							
•		$C_1(t_1) = \frac{K_{11}(t_1 + \frac{1}{2})}{\frac{1}{2}} = 0$ $C_3(0) = \frac{K_{11}K_1}{2} = 0$	$\begin{bmatrix} B_1, I \end{bmatrix} = \frac{K_1}{V_2} + 0$	_						
	<u>1.65 2</u>	$ \begin{array}{c} \hline G_{i}(t) = \frac{K_{i} + K_{i} + K_{i} + K_{i} + \frac{1}{2}}{2t} & \frac{1}{2t} = 0 \\ G_{i}(t) = \frac{K_{i} + K_{i}}{2t} - \frac{K_{i} + K_{i} + K_{i} + K_{i} + \frac{1}{2}}{2t} = 0 \\ \hline \end{array} $	-	$\begin{split} B_{A}(t) &= \frac{1 - (\xi - K) \cdot f_{A}}{2t} \frac{f_{A}(t)}{2t} = \frac{\xi_{A}(\xi - K) \cdot f_{A}}{2t} \frac{f_{A}(\xi - K)}{2t} - \frac{\xi_{A}(K) \cdot f_{A}(\xi - K)}{2t} - \frac{\xi_{A}(K) \cdot f_{A}(\xi - K)}{2t} - 0 \end{split}$						

Key: (1). Conditions for error compensation. (2). Type of SSKR. (3). Mode of operation of SSER. (4). Free transient process.

Page 196.

Sec.2

2

Tables 1 and 2 present the conditions for compensation $H_{M_1}, H_{M_2}, H_{\ell_2}, H_{\ell_3}$ for different structures of SSKR with standard VV (for simplification in the tables they are accepted designation $\chi_1 = K_1 + K_1 l; \quad \chi_2 = K_H + W_1 \Omega_1; \quad \chi_3 = K_H + W_1 \varepsilon_1 l$.

From the analysis table 1 and 2 it follows:

1. In structure 1 (usual diagram of SSKR) even in the stationary parameters of SSKR $\Theta_{u} \neq 0$, $\Theta_{u} \neq 0$, $\Theta_{d} \neq 0$, $\Theta_{\kappa} = 0$ with

a) $K_1 = 0$, $K_0 = \varphi$, **b**: $K_0 + K_1 t = \varphi + \varphi_1(t) = \varphi(t)$.

2. In structure II (SSKR, supplemented by IU) $\Theta_{M}=0$, $\Theta_{g}=0$, in the stationary or slowly changing parameters of system (K₁~~0). In all modes/conditions $\Theta_{M_{1}}=0$, $\Theta_{a1}=0$. When $K_{1}=0$ $\Theta_{M_{1}}$ accepts minimum value $\Theta_{M_{1}}=\frac{h_{M_{1}}}{KK_{H}}$. $\Theta_{g}=0$ with K₁=0 and satisfaction of condition K₂= φ .

3. In structure III (SSKR with tuning of KS according to the law $W_1 \int \Theta dt$) with $K_1 \neq 0$ or with $K_1 = 0$, but absence of VV $\Theta_{M1} \neq 0$, $\Theta_{d1} \neq 0$. With VV $\Theta_1(t) = \Theta_1 t$, $\Theta_{d1}(t) = \frac{\varepsilon_1 t^2}{2}$, $\Theta_{M2} = 0$, if $K_1 = 0$. With VV $\Theta_1(t) = \Omega_1 t$, $\Theta_{M1} = 0$, if $K_1 = 0$ and $\Omega_1 \rightarrow \infty$. With VV $\Theta_1(t) = \frac{\varepsilon_1 t^2}{2}$, $\Theta_{M2} = 0$, if $K_1 = 0$ and $\varepsilon_1 t \rightarrow \infty$. $\Theta_n = 0$ with $K_1 = 0$. $\Theta_d = 0$ with $K_1 = 0$ and satisfaction of condition $K_0 = 0$.

4. In structure of IV (SSKR, supplemented by KU, with tuning of KS according to the law $W_1 \int \Theta_{dt} \Theta_{M} = 0$ with $K_1 = 0$; $\Theta_M \to 0$ when: a) VV $\Theta_1(t) = \Omega_1 t$, if $\Omega_1 \to \infty$; b) VV $\Theta_1(t) = \frac{\epsilon_1 t^2}{2}$, if $\epsilon_1 t \to \infty$. $\Theta_{M_1} \to 0^{\dagger}$ with: a) $K_1 = 0$ and VV

()

5

 $\Theta_{1}(t) = \Omega_{1}t; \text{ if } \Omega_{1} \to \infty; \text{ b) } K_{1} = 0 \text{ and } VV \qquad \Theta_{1}(t) = \frac{\epsilon_{1}t^{2}}{2}, \text{ if } \epsilon_{1}t \to \infty; \Theta_{g} = 0 \text{ when}$ $K_{1} = \Theta_{1} \cap \Theta_{g} \to \Theta_{1} \text{ with } VV \qquad \Theta_{1}(t) = \Omega_{1}t, \text{ if } \Omega_{1} \to \infty, \Theta_{\delta} = 0 \text{ with } K_{1} = 0 \text{ and satisfaction}$ of condition $K_{c} = \varphi$.

The results of the investigation of effect of Il on the quality of work of SSKR are represented by the graphs/curves of Fig. 3, and effects I2 - by oscillograms Fig. 4 and 5.

DOC = 81150800(1-35 eral 0) 01(1-35 trai Mar Miles +27º Sal () 57,10 52, RY gowers

Fig. 4. Experimental oscillograms of work of SSKR with IU and tuning of KS according to the law 1941.

PAGE 21

Key: (1). s.

Page 197.

Fig. 4a and 4b presents final adjustment of VV $\theta_1(t) = \Omega_1 t$, while to Fig. 4c and 4d - VV $\theta_1(t) = \theta_{1:n} \sin \omega t$ of SSKR with the I and III structures when disturbance/perturbation $\lambda(t) = \lambda \sin \omega t$ in the circuit of KS. Introduction I2 made it possible to reduce θ_{∞} 2-3 times, and root-mean-square error $\theta_{1:n} = n 5 \div 20$ for times.

Fig. 4d-4h presents work of SSKR with the I and III structures

Ê.

with the pulse torque load M(t) with the pulse repetition rates $f_1=2.5$ Hz, $f_2=5$ Hz. Maximum value $+_{\pi}$ with introduction/input I2 descends 1.5-3 times, while H_{cs} 5-20 times.

Fig. 5 depicts the oscillograms of work of SSKR I and the III structures in the case of the slowly changing parameters of system, i.e., in the case when working conditions can be formulated as follows: when $0 < t < t_{\kappa}$ are broken the conditions for compensation $\Theta_{\kappa} \left(\varphi \neq \frac{1}{R} \right)$, I2 it must ensure the elimination of the steady errors.

When $\Theta_1(t) = \Omega_1 t^4$ and $\varphi \neq \frac{1}{K} \Theta_k = 0$ (Fig. 5a). When $\Theta_1(t) = \frac{\varepsilon_1 t^2}{2}$ (Fig. 5b) $\Theta_1(t) = \Omega_1 t + \frac{\varepsilon_1 t^2}{2}$ (Fig. 5c) and $\varphi = \frac{1}{K} \Theta_0 = 0$ (by solid lines are represented processes in SSKR I of structure, and broken - in SSKR III of structure).

From the analysis of the obtained results it follows that introduction/input 11, 12 into SSKR is the effective means of the decrease of the effect of internal and external disturbances/perturbations on the accuracy of SSKR.

In structure IV it is expedient for the decoupling of work Il, 12 integrator Il to switch on in the work only in the absence of VV.

Conclusion/output.

1. Following systems of combined control together with large advantages possess number of essential deficiencies/lacks, first of all: dependence of quality of work of system on change in ambient conditions and practical limitedness of number of derivatives of input effect.

2. It is expedient in number of cases to supplement combined control of integral.

REFERENCES

*

(3)

Заве Л. А., Частотнай анализ цельй с переменными параметраны". Ргос. IRE, vol. 38, № 3, 1970.
 Заде Л. А., "Об операторах Хявисайла, зависащих от времени". J. Math. Phys. vol. 30, № 2, 1959, р. 73.
 Заде Л. А., "Об устойникости анчейных систем с переменными нараметрами"; J. Аррі. Phys. vol. 22, № 4, 1952, р. 402.

Manuscript was submitted initially 3. II 1968, after modification 5. IX. 1968.

end section.