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ABSTRACT

In a space booster on takeoff, a control system must be

employed to prevent the rocket from falling over as it is

forced upward by the engines. One accurate dynamic model of

the space booster on takeoff is the inverted pendulum.

This paper investigated the inverted pendulum system from

development of equations of motion, through implementation of

an actual inverted pendulum system using state variable feed-

back control. The concept of state variable feedback was

analyzed in determining a solution to the problem of control

of the inverted pendulum.

Most importantly, design and construction of a working,

solid state controlled, inverted pendulum demonstration model

was accomplished.
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I. INTRODUCTION

In the study of Automatic Control Systems, it is not

uncommon to encounter a plant which is inherently unstable.

This paper investigated the inverted pendulum as an example

of an unstable system which could demonstrate many of the basic

aspects of control theory, and at the same time be constructed

for use as a classroom model in Naval Postgraduate School's

Aeronautical Engineering Advanced Control Theory course.

The inverted pendulum is a model of the attitude control

of a space booster on take-off. The objective of the atti- 7
tude control is to keep the space booster in a vertical

position.

The system considered was a four-wheeled cart on which a

bearing mounted inverted pendulum was installed. For this

thesis, a cart was designed and constructed keeping in mind

that overall size and weight should be minimized by using

current solid state technology for the electronic controls and

power supply.

The cart is driven by a small D.C. servomotor which is

geared to one pair of wheels through an axle. The cart can

move in only one horizontal axis in both positive and negative

directions. The voltage applied to the motor comes from sen-

sor signals describing the position and motion of the free

pendulum and the position and motion of the cart.

The sensors used are a permanent magnet tachometer geared

to the penduJl-m to me sure rate of pendulum movement about the
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pivot, potentiometers which measure pendulum angle and cart

position (using the second axle/wheel combination), and a

techometer within the motor housing to measure cart velocity.

The pendulum/cart assembly represents the plant, and the

plant is unstable since the pendulum cannot remain upright

without help of a force from the motor/wheel combination to

keep the cart directly underneath the vertical pendulum. The

objective of the automatic control system for the inverted

pendulum system is to keep the pendulum in as nearly a verti-

cal position as possible while returning the cart itself to

its starting position.

Analysis of the system started with the development of the

equations of motion for the inverted pendulum and cart; ex-

pression of the linearized and simplified equations in state

variable notation; development of a control law for full

state variable feedback; and construction of a working model

of the inverted pendulum.
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II. PROBLEM FORMULATION

A. INVERTED PENDULUM EQUATIONS OF MOTION

Consider an inverted pendulum with the pivot of the

pendulum mounted on a motorized cart which can move in the

horizontal direction. The cart is drive by a small D.C.

Servomotor that exerts a force u(t) on the cart.

System Variable Notation (refer to figure 1)

s(t) - displacement of the pivot point

(t) - angular rotation of the pendulum from vertical.

m - mass of the pendulum

M - mass of the cart

- total length of the pendulum

L - distance from pivot to center of gravity of the
pendulum

L' - effective pendulum length. (L' L

J - moment of inertia of the pendulum with respect to
the c.g.

H(t) - horizontal reaction force in the pivot

V(t) - vertical reaction force in the pivot

u(t) - force exerted on the cart by the motor

F - viscous friction coefficient of the cart (includes
friction, gearing losses, back EMF of the motor, etc.)

g - gravitational acceleration

Pendulum Equations

F d2

Fx m -- s(t) + L sin (t)] = H(t) (1)
dt

11



>1 U,

z

x

C
U,

U
-I

U

0

-4

-4

2.2



2
JPy m d !L Cos V t) -v(t) - mg (2)

7T J d (t) = V(t) Lsin (t) -H(t) Lcos (t) (3)~dt 2

Cart Equations

d2st -

7F = M d 2 ( t )  u(t) - H(t) - F ds(t) (4)x dt 2dt

F = 0 (5)- y

The friction term F is due to the cart motion. The fric-

tions of the pendulum pivot bearings, the pendulum potentiometer,

and the pendulum tachometer have been neglected. [Reference

11

Differentiation of the above equations yields:

*2m s(t) + m L (t) cos ;(t) - m L 2(t) sin :(t)

= H(t) (6)

-m L z(t) sin (t) - m L 2(t) cos (t) = V(t) -mg (7)

J *(t) = V(t) L sin D(t) - H(t) L cos (t) (8)

M s(t) = u(t) - H(t) - F s(t) (9)

Note: For simplification, all independent variables which are

functions of time will have (t) assumed but not displayed.
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Equation Linearization

Assume that the mass of the pendulum (m) is small with

respect to the mass of the cart (M) so that H(t) may be ne-

glected on the cart motion.

Assume that the perturbation angle of the pendulum will

always be small so that the small angle approximation may be

used to linearize the equations. Therefore, sin ;(t) "(t)

and cos t(t) z 1. Also neglect products of higher order

derivatives of .

By combining the pendulum and cart equations and then

rearranging them, one obtains:

"" -F " 1
s= s + u (10)

• _ML "" mL
--LmL T g (11)

J +mL J +

J m2

Let L' = +mL and consider it to be an "effective pendu-ML
lum length." The equations of motion are now:

S =-F +Iu-= 4 u (12)
M M

s + (13)L = L

The equations of motion have been significantly simplified

through the linearization process. It should be noted how-

ever, that the actual physical inverted pendulum must oper-

ate within a narrow limit of pendulum angle, be constructed

14



with very little real friction, and use a light weight,

slender pendulum rod to actually behave as the mathematical

model predicts.

B. DETERMINATION OF SYSTEM PHYSICAL CONSTANTS

In designing the cart, values needed to be determined for

all the coefficients in equations of motion (12) and (13), for

meaningful computer simulation to take place and for design

of the actual controller. Initial computer work was conducted

using "ballpark" values to get a feel for how the system would

react when stabilized with various control laws applied. The

primary unknown value which must be found is F, the viscous

friction coefficient of the cart.

From measurements of the actual cart and pendulum, the

following data was recorded:

Cart

M = 8.45 lb = 3.83 kg

Pendulum

m = 12.5 oz = 0.354 kg

= 40 in = 1.016 m

_- m 2 L = z/2, L' = +mL2

therefore,

4
L' L = 0.677 m

15



By rearranging equation (12) one obtains:

Ms u u-F (14)

In this form, the equation may be recognized as Newton's

Second Law:

m a = Forces

The terms on the right side of equation (14) represent

the total force exerted on the cart.

f u - F s (15)

The force exerted on the cart by the motor and gear train

through the drive wheels, u, is simply a linear function of

the voltage applied to the motor. Therefore one can define

u f V (16)v

where fv is an applied voltage force (proportionality) con-

stant and V is the voltage applied to the motor. Now,

f = f V - F s (17)v

In order to determine values for f and F, it wasv

necessary to eliminate selectively one of the two terms from

equation (17).

With the cart restrained from moving, a voltage was applied

to the motor until the wheels started to slip. The force

16



exerted by the cart was measured using a Catilian Force Gauge.

With no motion, s = 0 and f = f V or,

fv (18)v V

A series of test _ins was performed which yielded an

average applied voltage force coefficient of

f = 0.2762 lbf/volt = 1.2285 newton/voltv

Rearranging equation (14) and including the new definition

of u results in

f V
F = v M s (19)

Values for average velocity s, and average acceleration

s must now be determined using a specific voltage to drive the

motor so that a value for F can be determined.

The pendulum was replaced with an equivalent mass of steel.

The cart was run on the floor to observe motor tachometer and

wheel potentiometer output on a brush recorder as a function

of time as the cart accelerated from rest. A constant voltage

of 15 volts was applied to the motor.

Using the wheel potentiometer recorded output (voltage vs.

time), the potentiometer's measured characteristics (degrees

vs. voltage) (from Appendix A), and the physical size of gears

and wheel, the average velocity was determined to be

S= = .4128 meters/sec (20)
t

17



Using a similar method, the output from the motor

tachometer versus time was converted to an average accelera-

tion of:

= =av =1252

s _ meters/sec . (21)

Now using equation (19), one may solve for F.

F = 32.922 kg/sec

The equations of motion with physical values included are:

s = -9.589 s + .261 u (22)

= -1.477 s + 14.486 (23)

These values are within a factor of 5 of the values ob-

tained in Reference 2 and within a factor of 8 of the value

used in Reference 1.

In order to more easily manipulate the equations for the

inverted pendulum, it will be convenient to express them in

state variable notation. Straight forward checks for con-

trollability and observability are available using state

variable methods.

C. STATE VARIABLE FORMULATION

Intuitively one recognizes that with no forces applied

except gravity, the inverted pendulum is unstable. When the

pendulum shaft is balanced in a vertical position with the

18



pivot at the bottom of the shaft, the slightest perturbation

will cause the pendulum to tumble.

In general, any system may be checked for stability by

looking at the roots of the characteristic polynomial,

det[SI-A] = 0, where the system equations are in the state

variable form x [Aix + [Blu. For a stable system, all

characteristic roots will lie in the left-half (negative) com-

plex plane. Any roots lying in the right-half complex plane

are considered unstable poles and lead to an unstable system.

Tho inverted pendulum system equations of motion may be

put into state variable form by defining the following states

(Reference 11:

x = s (t) (24)

x 2 = i(t) (25)

x 3 = s(t) + L'5(t) (26)

x = (t) + L';(t) (27)

where,

xI is displacement of the cart,

x2 is velocity of the cart,

x is a linearized approximation of the displace-ment of a point on the pendulum at a distance
L' from the pivot. It can be considered as
the displacement of the pendulum,

x 4 is the linearized approximation of the velocity
of the pendulum at the same point as made up x3.

19



Therefore,

x = x 2  (28)

x2 -F x2+1-M'x + u (29)

3= x4  (30)

- x3 (31)

The matrix represent..: ;i cf these state equations is:

0 1 0 x+ 0 u (32)
0 -L 0 0 1

0 0

o 0 0 1 0

0 0 0

D. DETERMINATION OF STABILITY

The characteristic equation of x = [A]x + [B]u comes from

det[SI-A] = 0,

[SI-A] = S -1 0 0 (33)

F0
0 S+4 0 0

0 0 S -0

3- 0 7- s

M L LM

20



The roots of the characteristic equation give the eigenvalues

of the system:

= , =-FS 0, S 2  M S 3 = - Wjg-i, s = vg/ L

Using the physical values as determined for the actual system,

the eigenvalues become:

S1 = 0, S2 = -8.589, S = -3.806, S4 = 3.806

The eigenvalues S2 and S3 are negative, therefore stable poles.
Eigenvalue S1 is considered neutrally stable, and S4 is an

unstable pole.

One of the objects of this thesis was to stabilize the

unstable system using a suitable control law, so controlla-

bility of the system must be determined.

E. CONTROLLABILITY

To solve control problems, such as the inverted pendulum,

it is important to know if the system has the property that

it may be moved from any given initial state to any other given

state in a finite period of time. Controllability implies

the ability to move the poles of a system from some starting

position to any arbitrary place in the left-half complex

plane.

A theorem on controllability (Reference 1) states that:

The n-dimensional linear time-invariant system

K =[A]x + [B]u

21



is completely controllable if and only if the column vectors

of the controllability matrix

P = [B, AB, A 2B, ... A n-B] (35)

span the n-dimensional space.

A matrix spans the n-dimensional space and is therefore

controllable if

det(P] $ 0

Using the system numerical values, the state matrix

equation is:

x 0 1 0 0 x + 0 u (36)

0 -8.589 0 0 .261

0 0 0 1 0

4.486 0 14.486 0 0

P = 0 0.261 -2.242 19.254 (37)

0.261 -2.242 19.254 -165.374

0 0 0 -3.781

0 0 -3.781 32.474

det(P] = 0.974

Therefore, the inverted pendulum system is controllable.

Although a system may be completely controllable, there

may be times when all states of the system may not be available

22



for measurement. In order to find a control law which

stabilizes a particular system which has unmeasurable state

variables, one is led to the concept of observability.

Knowledge of where the system is must be available before the

system can be controlled.

F. OBSERVABILITY

The concept of observability is based on an ability to

observe the output vector of a system.

y = [C]x + [D]u (38)

A system is said to be completely observable if every

initial state x(O) can be determined from the observation

of y(t) over a finite time interval.

A theorem on Observability (Reference 1) states that the

n-dimensional, linear time-invariant system

x = [A]x + [B]u

(39)

= [C]x

is completely observable if and only if the row vectors of the

observability matrix

Q_ =(40)

CA

CA 2

n- 2

23



span the n-dimensional space. The matrix spans the n-

dimensional space if det[Q] # 0.

With the fourth order system under consideration there

are 15 possible output combinations for the vector [C].

When the output vector is made up of states x1 and x3

for example, y = [110]x and:

Q " 1 0 1 0 (41)

0 1 0 1

-14.486 -8.589 14.486 0

0 59.285 0 14.486

det[Q] = -1297.917

Therefore the inverted pendulum is observable for the output

y= [1 01 0ix.

Observability of the system for all output combinations

of (C] is as follows:

Observable Not Observable

[0 01 01 [0 0 011

[0 0 11](0 10 01

[0 ii 0] [0 10 11

[0 11 11 [100 01

[1 00 11 [l 10 0]

[1 01 0]

11 01 11

(1l 10 11

24



[1 i1 0]

[1 11 l l

With the conditions of controllability and observability

known for the system, the analysis and design of a linear

control law for stabilizing the inverted pendulum may proceed.

25



III. STATE VARIABLE FEEDBACK

A. STATE VARIABLE FEEDBACK CONTROL INTRODUCTION

A control system is a dynamic system which, over a period

of time, behaves in a manner prescribed by the control law

which describes the control system. In the case of an auto-

matic control system, human input is not required and may

not be desired.

The primary sections of a control system are: the plant,

which is the system to be controlled; one or more sensors to

provide information about the system; and a controller which

compares measured values to desired values and changes plant

inputs accordingly to arrive at the proper output.

One of the functions of the controller is to move the pos.es

of the plant to locations in the left-half complex plane

that performance of the system may be improved. When the

plant by itself is unstable, the main function of the con-

troller is to stabilize the system by moving the closed-loop

poles to proper locations in the left-half plane.

A feedback control system is one which attempts to main-

tain a set relationship between the output and some reference

input by comparing them and using the difference signal as a

means of control.

State variable feedback is particularly convenient because

the state x contains all pertinent information about the sys-

tem. The basic restraint placed on the analysis in this section

26



is that the complete state of the plant can be measured

accurately at all times and is available for feedback.

For a linear time-invariant system such as x = [Aix

+ [B]u, a time-invariant control law which applies is:

u = -(Kix + u' (42)

where [(K] is the feedback matrix and u' is some input such

as from a human operator. In the inverted pendulum system

u' is ignored.

The control law

u = -K1x 1 - K2x2 - K3x3 - K4x4  (43)

applies for a fourth order system.

Substitution of this control law into the system state

matrix (32) yields:

= 0 1 0 0 x (44)

-K -K -K3 -K 4

M M M M M

0 0 0 1

40 'T0
L L

or

= A-KB]x = [A aug] x (45)

27



The characteristic polynomial comes from det[SI -A aug = 0

or:

K +F 3 K1
s + M )S + -1-LS 2 + 2--(-K

(46)

+ L,M(KI -K 3 ) = 0

With system numerical values included, the equation becomes:

s 4 + (.261 K2 + 8.589)S
3 + (.261 K1 - 14.486)S 2

(47)

+ 3.782(-K4 -K -32.922)S + 3.782(-KI -K 3 )

= 0

With proper selection of feedback gains one may arbitrarily

assign pole locations to stabilize a system or to simply

improve its performance.

B. FULL STATE VARIABLE FEEDBACK CONTROL

Another method for determining feedback coefficients for

a time-invariant control law involves the use of "engineering

judgment" to place the poles of the closed-loop system in the

left-half complex plane at a position of one's choice. By

choosing the poles far to the left in the complex plane, the

convergence to the zero state can be made arbitrarily fast.

To make the system move fast however, requires large Input

28



amplitudes, and in an actual physical system, there is a

limit as to how large the input can be.

Assume it is desired that the poles be placed at

S = -3, S = -3 and S = -3 t j3.

The desired characteristic equation is then

S4 + 12 S3 + 63 S2 + 162 S + 162 = 0 . (48)

The control law which applies in this case is the same

as for the general state variable feedback case

u = -K1x 1 - K2x 2 - K3x3 - K4x 4

Again for the system to be stable, each coefficient of

the characteristic equation must be positive. Equating

coefficients of the augmented characteristic equation (47)

and the desired characteristic equation (48) yields the proper

feedback coefficients for pole placement

K1 = 296.9

K2 = 13.069

K = -339.73

K = -88.825

Computer simulation using the Interactive Ordinary Differ-

ential Equation Solver (IODE) on the Naval Postgraduate School

IBM 370 shows that pendulum stabilization to a displacement of

29



.007 meters in 2 seconds should take place from an initial

condition of .0667 meters (.1 radians) of pendulum angle.

(See Appendix B for simulation results.)

Figure 2 is a block diagram representing the unstable

plant of the inverted pendulum and the state variable feed-

back controller which stabilizes it.

Full state variable feedback has been shown to work well

for a system with all states accurately measured.

The actual cart does not respond in the same manner as the

simulations would predict because the cart is receiving a

continuous input from all of the sensors instead of a single

initial disturbance. As might be expected, once the actual

pendulum system motion is started, the pendulum angle oscillates

on either side of zero.
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x x

x3  x 3

Figure 2. FULL STATE VARIABLE FEEDBACK CONTROL SYSTEM
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IV. CONSTRUCTION OF INVERTED PENDULUM MODEL

Building a working model of the inverted pendulum for this

thesis was quite a challenge. Little technical data could be

obtained concerning construction of any previous cart and

pendulum systems, therefore design ideas came from line draw-

ings, photographs of other systems, and basic intuition.

As a starting point, the system was to be portable for

viewing in a classroom environment rather than as a laboratory

setup. Large equipment such as analog computer and heavy

power supply could not be used, therefore a solid state power

supply and controller were built. Target weight for the

cart assembly was arbitrarily set at 6 pounds, and a pendulum

length of 40 inches was chosen.

The motor/generator, pendulum tachometer, pendulum potenti-

ometer, and wheel potentiometer were chosen primarily because

they were already available within the N.P.S. Aeronautical

Engineering Department. The physical dimensions of the cart

came about simply from the physical sizes of the motor and

sensor components to be used. Rubber wheels were chosen to

give good traction and to minimize damage to table oz bench tops

when the cart was demonstrated. A power supply and control

circuit (covered later) were housed in a small carrying case

and an umbilical cord was used to supply power and control

signals to the cart and receive sensor feedback from the cart

and pendulum.
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Photographs of the cart assembly and control box are in

figures 3 through 6.

Testing and measurement of the tachometers and potenti-

ometers was carried out in the Aeronautical Engineering Elec-

tronics Laboratory. Calculations, tables, and plots of the

sensor constants are contained in Appendix A.

A full state variable feedback control law was developed

in Section III which placed the closed-loop poles at

S = -3, S = -3, S = -3 t j3.

The control law was

u =-K1 1- K2 x2 - K 3x3 - K4x 4  (49)

where

K = 296.90

K2  - 13.07

K = -339.73

K = -88.83

Recall that

x = S S = cart position

x = S S = cart velocity

x = S + L' = pendulum position

x4  = S + L- = pendulum velocity

L'= 0.677 m L' = effective pendulum length.
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Substitute state definitions into equation (49) to get

U (-K1 -K 3 )S + (-K 2-K 4)S - K 3L'p - K4L'; (50)

Equation (50) is the control law as referenced to the

measurement variables of the system constructed. With the

gain constants substituted, equation (50) is

u 42.83 S + 75.76 S + 230.0 D + 60.14 0 .(51)

In order to implement the control law, each of the measured

variables must be referenced to a common base, amplified

appropriately, and summed with the other variables to produce

the control.

From Appendix A, each sensor was measured, and a constant

was developed which references each sensor to a base level of

1 volt. In the measurements, the range of operation of each

sensor was taken into account in weighting the constant.

The final values obtained for the sensors used were:

K = .1734 meters/volt --- wheel potentiometer (S)w

Km = .2012 meters/second-volt. --- motor tachometer (S)

K = 1.1073 radians/volt --- pendulum potentiometer ()p

KT = 9.39 radians/second-volt. --- pendulum tachometer(;)

An additional potentiometer was included in each sensor

input circuit which acts as a voltage divider. The voltage
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divider actions provide signals from each sensor which are

of the proper magnitude before being amplified and summed

for the control law.

The sensor calibration constants must be applied to the

control law to realize a properly proportioned electronic

controller.

u = Kw(-KI-K 3 )S + K (-K2-K4 )S - KpK3 L' - KtK4LI (52)

or for the system desired,

u = K w(42.85)S + K m(75.76)S + K p(230.0)

+ K t(60.14)z (53)

and finally, after substitution of actual sensor constants

u = 7.43 S + 15.24 S + 254.68 o + 564.66 (54)

Implementation of the controller using operational ampli-

fiers and power transistors is shown in figure 7.

Each front panel potentiometer has a range scale from 0

to 10 using a calibrated dial.

The gain adjustment potentiometers size the measured

variables as follows:

Potentiometer one S

Potentiometer two

Potentiometer three

Potentiometer four
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The actual controller circuitry provides an additional

amplification to supplement the voltage division of the gain

adjustment potentiometers. An infinite number of pole place-

ment positions are available through variations in the state

variable feedback gain constants K1 through K4, and can be

implemented with the constructed controller. The only limi-

tation is on the maximum coefficient values in equation (54).

The values which may be used are:

0 to 100 S

0 to 100

0 to 1000

0 to 1000

To set up the controller for the control law of equation

(54) dial in the following gain adjustment potentiometer

settings on the control box.

pot #1 .74 (7.43 S)

pot #2 1.52 (15.24 S)

pot 43 2.55 (254.68 )

pot #4 5.65 (564.66 )

Potentiometer number 5 adjusts the overall magnitude of

the output voltage to the cart drive motor. It was found that

a value of 5.0 on that potentiometer worked well. Potenti-

ometer number 6 is not used at this time but was installed

for future expansion.
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By experiment the cart works best with the following

settings:

pot #1 5.5

pot #2 0 (or a small value)

pot #3 10

pot #4 10

pot #5 5.0

The inverted pendulum system as constructed does not work

as well as hoped. Ability to closely control the cart's

position has thus far been unsuccessful. The cart's region

of motion spans approximately 8 to 12 inches of horizontal

cart travel. Cart position oscillates on either side of a

zero location with an increasing divergence and an increase

in the signal from the wheel potentiometer only causes the

system to go unstable more rapidly. When values above zero

are input from the motor tachometer, the cart motion becomes

more sluggish. Best cart performance and longest stability

is achieved with the motor tachometer output grounded (potenti-

ometer set to zero). The controller noticeably attempts to

correct the cart position after it has travelled 4 to 6 inches

from center, however, the motor inputs are somewhat large,

and after the cart moves 8 to 10 inches from center, the motor

response appears to be too large and the pendulum swings out

of the stable range and topples. At this time there is not a

full understanding of the problem with cart velocity.
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The range of operable pendulum angle is small. In order

to have the system work, one must help the pendulum achieve

a small stable oscillation before letting the system to on

its own. The system operates for 10 to 15 seconds then goes

unstable with larger and larger movements in both cart and

pendulum. This observation can only lead to the conclusion

that the system is only neutrally or marginally stable at best.

Because the motion of the cart seems to be driving the pendu-

lum unstable, it is possible that the pendulum poles are ade-

quately positioned on the left-half complex plane and the cart

poles are on the axis or even in the right-half plane.

There is a sizeable amount of real friction in the pendulum

mount from bearings, potentiometer and tachometer drag which

have been ignored in the development of the controller, but

which possibly contribute to the instability of the system.

Some recommendations for areas of possible improvement

are covered in the final section of this paper.
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V. CONCLUSIONS AND RECOMMENDATIONS

A. CONCLUSIONS

The purpose of this paper was to design an inverted pendu-

lum which could be used to compare theory with experimental

results. In that sense, the purpose was not met.

Equations of motion were developed for the inverted pendu-

lum and converted into state variable form. State variable

feedback was selected as a basis for control of the actual

system constructed. In order to reduce the complexity of the

system for control analysis, the equations of motion were

linearized. Friction in the pendulum pivot was ignored, but

in the actual system, friction was definitely present.

Friction possibly added damping to the system so that the

pendulum fell more slowly, however, it would have also forced

the cart to make larger and longer duration corrections to

return the pendulum to a vertical position.

The size of the cart drive motor along with the traction

of the drive wheels could possibly be the cause of the system's

inability to become stable.

It was assumed that the dynamic response of the motor

and its electronic circuit was sufficiently fast to be con-

sidered instantaneous; that switching from forward to reverse

rotation was done without delay.

It is speculated that the actual motor and gear drive

reached their acceleration limits when trying to catch a
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pendulum angle much above t5 degrees. The motor simply could

not accelerate the cart fast enough to catch the pendulum.

B. RECOMMENDATIONS

The following list includes several possible ways to

improve the physical system.

1. Reduce friction in the pendulum pivot by: using a

small, low friction, high precision potentiometer or magnetic

pickup device to sense pendulum angle; replacing the permanent

magnet pendulum tachometer with a magnetic drag-cup tachometer

or with a micro-lightweight accelerometer attached to the

pendulum at its center-of-gravity or tip.

2. Purchase a high quality motor/tachometer assembly for

driving the cart. Choose a motor with a torque output in the

50 to 100 ounce-inch range and be certain that all constants

are available for the new motor and tachometer so that a full

analysis may be made using the appropriate constants.

3. Install tires which are at least twice as wide and

perhaps twice as tall as those now used to provide more con-

tact area for improved traction.

4. Analyze the system using sensor and motor constants

(if available), gear ratios, moments of inertia of all rotating

parts and friction.

5. Study the effects of measurement errors, system dis-

turbances and noise on observers along with optimal methods

for selection of gain matrices for pole placement.
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6. Implement cart controllers using full-order and

reduced-order observers to drive the controller.

7. Study the effects on stability of using slightly

flexible pendulums and pendulums of various lengths.

8. Study the possibility of implementing the control

system digitally using a microprocessor chip.
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APPENDIX A

SENSOR MEASUREMENTS

Measurements for determination of sensor constants was

accomplished using equipment in the Naval Postgraduate School

Aeronautical Engineering Department Electronics shop.

Al. Pendulum potentiometer measurement

A2. Wheel potentiometer measurement

A3. Motor tachometer measurement

A4. Pendulum tachometer measurement
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Al. PENDULUM POTENTIOMETER MEASUREMENT

RAW ADJUSTED VOLTAGE
REFERENCE i REFERENCE OUTPUT
(DEGREES) (DEGREES) (VOLTS)

28 0 0

30 2 .05

50 22 .73

70 42 1.36

90 62 2.0

110 82 2.63

130 102 3.2

150 122 3.82

170 142 4.5

190 162 5.1

210 182 5.75

230 202 6.4

250 222 7.0

270 242 7.65

290 262 8.3

310 282 8.9

330 302 9.45

355 327 10.0

TABLE 1. PENDULUM POTENTIOMETER MEASUREMENT

From the slope of the measurement curve

volts 9V

K = degrees 285.50 = .0315 V/degree =

.9031 Volts/radian

11
1 volt corresponds to = = 1.1073 radians = Kp
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For operation on the actual pendulum, the potentiometer

was operated at the center of its range with +15V applied to

one end and -15V applied to the other end, giving a zero

volt reference in the center at 163.50. Operational range

of the potentiometer is indicated on the measurement curve

figure 8 and reflects a pendulum angle of ±8 degrees.

A2. WHEEL POTENTIOMETER MEASUREMENT

I
ipot reference voltage pot reference voltage
turn angle output turn angle output
nuiber j (degrees) (volts) number (degrees) (volts)

0 0 0 7.51

90 .38 90 7.88
180 .75 6 180 8.25
270 1.12 270 8.62

0 1.50 0 9.00
90 !1.88 90 9.37

2 975180 2:25 180 9.75
270 2.63 270 10.12

0 3.01 0 10.50
90 3.37 90 110.873180 13 76 8180 11.25

I 270 4.13 270 11.62

0 4.51 0 12.00
90 4.89 90 i12.38

I 180 5.26 180 12.76
270 5.63 270 13.13

0 6.01 0 13.50

5 90 6.38 10 90 13.885180 6.75 I0180 14.25

270 17.12 270 14.63
360 1Z.00

TABLE 2. WHEEL POTENTIOMETER MEASUREMENT
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From the slope of the measurement curve, figure 9:

K 10.5 - 6.01 volts .0062V/deg
720 degrees

The cart travels 38.7 cm for each revolution of the 10-

turn wheel potentiometer, therefore:

K 38.7 cm * 1 meter * 1 deg 1734 m/volt
w 360 deg 100 cm .0062 volt

1 volt corresponds to .1734 meter.

A3. MOTOR TACHOMETER MEASUREMENT

POWER TACHOMETER JAGABI I STROBE
SUPPLY OUTPUT INDICATORI LIGHT
OUTPUT VOLTAGE (RPM) (RPM)
(VOLTS) (VOLTS) _

2.5 1.0 410 386

5 3.88 741 815

7.5 6.42 1229 1340

10 8.95 1718 1850

12.5 11.3 2242 2390

15 13.85 2765 2890

17.5 16.4 3226 3420

20 19.0 j 3772 3920

TABLE 3. MOTOR TACHOMETER MEASUREMENTS
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From slope of the measurement curve

18 -2 V 16 V _ .4819 V 023 V-sec
3720 -430 RPM 3320 RPM 100 RPM " .023 ad.

The cart travels 5.9 cm for each revolution of the motor/

tachometer. Therefore

K 5.9 cm 1 M , 100 Rev ,1 min
w Rev 100 cm .4819 V-min 60 Sec

meters
- .2012 volt-sec

1 volt corresponds to .2012 meters/second.

A4. PENDULUM TACHOMETER MEASUREMENT

Voltage Strobe
IOutput Light
(D.C. volts) (RPM)

4.5 220

19.2 890

35 1600

TABLE 4. PENDULUM TACHCMETER 11EASUREMENT

Only three values were obtained for the pendulum tachometer

as the only method available for turning the tachometer was

using a three speed drill press then measuring RPM with a

strobe light.
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35 - 4.5 V =2.21 V/100 PPM
K = 1600 - 220 RPM

100 Rev 1,Min * 2-T Pad , 360 - radians
K 2.21V-min 60 Sec -180- Rev volt-sec

1 volt corresponds to 9.39 radians/second

Data plate information on this tachometer specifies a

2.1 volt/100 RPM linear response which is very close to the

experimentally derived value of 2.21 V/100 RPM.
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APPENDIX B

PROBLEM SIMULATION

Computer simulation was done using the Interactive

Ordinary Differential Equation Solver Program (IODE) on the

Naval Postgraduate School IBM 370 system.

All simulations use actual physical parameters for the

inverted pendulum system which was constructed. Simulations

include tabular output as well as french curve fit plots

from the Hewlett Packard HP-9830 graphics system.
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TABLE 5. STATE VARIABLE FEEDBACK DATA TABLE

T (sec) x (m) x2 (m/sec) x3 (m) x4 (irVsec) u(N)

0.00 0.0000 0.0000 0.0677 0.0000 30.0000
0.05 0.0065 0.2429 0.0689 0.0477 22.5300
0.10 0.0227 0.3875 0.0724 0.0886 20.6600
0.15 0.0440 0.4562 0.0776 0.1189 17.8900
0.20 0.0673 0.4684 0.0840 0.1371 14.6100
0.25 0.0902 0.4403 0.0911 0.1433 11.1500
0.30 0.1109 0.3853 0.0982 0.1389 7.7320
0.35 0.1284 0.3143 0.1048 0.1256 4.5250
0.40 0.1422 0.2359 0.1106 0.1054 1.6400
0.45 0.1520 0.1564 0.1153 0.0805 -0.8582
0.50 0.1579 0.0805 0.1186 0.0528 -2.9400
0.55 0.1602 0.0114 0.1206 0.0241 -4.6040
0.60 0.1592 -0.0490 0.1211 -0.0041 -5.8670
0.65 0.1554 -0.0995 0.1202 -0.0308 -6.7590
0.70 0.1494 -0.1399 0.1180 -0.0550 -7.3230
0.75 0.1416 -0.1706 0.1147 -0.0761 -7.6010
0.80 0.1325 -0.1921 0.1105 -0.0938 -7.6410
0.85 0.1225 -0.2054 0.1054 -0.1080 -7.4880
0.90 0.1121 -0.2115 0.0997 -0.1187 -7.1850
1.00 0.0910 -0.2068 0.0872 -0.1303 -6.2790
1.10 0.0712 -0.1867 0.0740 -0.1308 -5.1790
1.20 0.0539 -0.1586 0.0613 -0.1232 -4.0670
1.30 0.0396 -0.1281 0.0496 -0.1105 -3.0560
1.40 0.0283 -0.0990 0.0393 -0.0951 -2.2030
1.50 0.0197 -0.0735 0.0306 -0.0791 -1.5260
1.60 0.0134 -0.0525 0.0234 -0.0639 -1.0160
1.70 0.0090 -0.0362 0.0177 -0.0503 -0.6502
1.80 0.0060 -0.0241 0.0133 -0.0387 -0.4016
1.90 0.0041 -0.0155 0.0099 -0.0293 -0.2412
2.00 0.0028 -0.0098 0.0074 -0.0218 -0.1437
2.10 0.0021 -0.0061 0.0055 -0.0160 -0.0884
2.20 0.0016 -0.0038 0.0041 -0.0117 -0.0596
2.30 0.0013 -0.0025 0.0031 -0.0086 -0.0460
2.40 0.0011 -0.0018 0.0024 -0.0063 -0.0402
2.50 0.0009 -0.0014 0.0018 -0.0047 -0.0376
2.60 0.0008 -0.0012 0.0014 -0.0035 -0.0357
2.70 0.0006 -0.0011 0.0011 -0.0027 -0.0333
2.80 0.0005 -0.0010 0.0009 -0.0020 -0.0301
2.90 0.0004 -0.0009 0.0007 -0.0016 -0.0264
3.00 0.0003 -0.0008 0.0005 -0.0013 -0.0224
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