
-AD-A11O 593 RENSSELAER POLTIECHNIC INST TROY NY DEPT OF CIVIL EN-ETC F/0 9/2THE IPLICATIONS OF VLSI Rom CHIPS ON4 NMERICAL ANALYSIS.IU)
UNCASIFEDJAN 82 L .J FEESER, N f ROONEY- M S SNEPHARO NOOOI-S-C"712

U N MENNSEN C

Iii IIIIIII

K~A. Lino1. *

H11=
1111L *m22

MIRCP RESLUIO TETCHR

NAINLBRA f- TNAD 93A

LEVEL

8 2 o12'9 003

1M~ POT~~

I G. LEVEL'
I
I

I The Implications of

VLSI ROM Chips

on Numerical AnalysisI
I
I January 8, 1982

I

Principal Investigators: L. Feeser

I M. Rooney

M. Shephard

Agency: Office of Naval Research

I Contract No.: N00014-80-C-0712

R. P. 1. Project No.: 5-24350

I DTICSl ELECTE ft
I FEB 8 1982 ~

I B

[-UMIBUTION STATEMEN

Approved for public release|
Distxibution Unlimited

TABLE OF CONTENTS

In r d c i nI
Ontroduction...1

Review of ROM Hardware................................. 5

Data Storage on ROM................................... 14

Hardware Look-Up.................................. 14

Programming Interface............................. 21

1Speed Increases................................... 23
Down-Line Loading................................. 28

Needed Technology................................. 30

Software Storage on ROM............................... 30

Advantages and Myths of Firmware32

Uses of ROM Software.............................. 34

Programming Interface............................. 37

Creation of Firmware.............................. 39

IFirmware Examples................................. 41
Conclusions.................................. 44

Ic n w e e e t4
Rcefee es 47

INE Reeene...47

$04

co- .4-rl lb
M ~ 4-

.........

The Implications of VLSI ROM Chips on Numerical Analysis

Introduction

I Very large scale integrated circuits (VLSI) are an

I established technique for implementing computing systems and

subsystems. This technology has resulted in both increased

processing capability and reduced hardware cost to a scale

that custom processing elements are practical for small to

I medium application areas. In particular, the goal of this

I research effort is to focus upon applications in numerical

analysis and structural engineering computations.

IIn an earlier technical report 1ll, the hardware

aspects of VLSI technology were explored. A series of

Ireports each focusing upon the application and

I implementation of one VLSI hardware feature-now follow.

This first report concentrates upon read-only memory (ROM)

I circuits and their derivatives. The report is divided into

four sections: overview of VLSI advances, a brief review of

I ROM circuits, storage of data on RON chips, and storage of

software on RON chips (or firmware).

This report will show the potential speed increases

I made available by storing pre-computed data on RON rather

than computing upon request. The report will also

demonstrate the availability of customized processors,

--- ------ K

2

particularly micro-computers, made possible through

firmware. The implementation of these ROM applications will

be discussed with emphasis on potential changes to current

programming practice, a prime concern of the numerical

analyst.

Overview

While this section is not crucial to the comprehension

of this report, it is important to maintain a perspective on

the advances in micro-electronics with the intent of

isolating trends and predicting future cost/performance

ratios. This section, therefore, presents a brief overview

of those advances.

There are two ways to view the advances resulting from

large scale integration of transistor circuits on silicon

wafers [2]. First, for a constant cost, VLSI has resulted

in increased performance. Second, for a constant

performance level, processing costs have decreased. In

reality, these are simply restatements of the same concept,

shown graphically in Fig. 1. The diagonal lines represent

points of equi-potential performance. These have

historically remained straight, and it is predicted that

these trends will continue.

As a result of performance/cost increases, the levels

of integration have also progressed, following the trend

illustrated in Fig. 2. Currently, the IBM 370/168 has been

I
I
I
I
I

LINES OF CONSTANT PERFORMANCEI
I
I C,

~O4,

K
I

TIME
I

I
I

Pig. 1 - Trends in Integration

I
I
r
I.

......
-- - -

I- RACK AND STACK0
0
01z

0w

SINGLE BOARD

CHIP
Fig. 2 - Trend of integration

I 5

converted to an experimental chip; 16 and 32 bit

micro-processors, some with virtual memory, are beginning to

I appear. And, research is underway to implement a DEC-VAX

system onto a single wafer. Memory circuits are following

the same pattern of increased integration.

VLSI technology can only be applied to transistor

circuits, not electro-mechanical devices. As a result, the

I primary influences are felt in: CPU's, memory circuits,

peripheral electronics (e.g., 1/O drivers), and improved

Ireliability. Secondary influences affect power supply

circuits, packaging size reductions, and software. Little

or no influence exists for electro-mechanical devices such

* as printers and tape/disk transports.

With these trends of improved performance/cost ratios

I in mind, the remainder of this report is devoted the

examining the impact of readily available read-only memory

(ROM) circuits.

I Review of ROM Hardware

While the first technical report [11 examined the

Ihardware aspects of VLSI technology, including read-only

memory; a brief review of the basic operation of ROM chips

is included for completeness and some historical perspective

jis added. More importantly, the definitions of "ROM",

"PROM", and "EPROM" used throughout this report are

Ipresented in this section. Finally, it is shown that

6

current size limitations of ROM chips can be easily overcome

by using several chips.

Read-only memory is defined as any type of storage

system whose contents can be read, but not changed by the

comput-:. One simple form of secondary read-only memory is

the punch card, which actually preceded the first computer.

However, it is the intent of this report to focus only upon

primary ROM storage; that is, circuits which are part of the

CPU hardware and can be randomly accessed.

Ironically, primary ROM circuitry was the original

method for programming electronic computers. The

"programmer" was required to construct a circuit by plugging

jumper wires into a pegboard as shown in Fig. 3. The entire

board was then plugged into the computer and the wires

(hopefully) made the proper connections. N~eedless to say,

the programming process was tedious. but once constructed,

it made the CPU a custom processor. John Von Neumann

changed the procedure by storing and handling programs like

all other data, and ROM circuitry all but vanished except

for bootstrap mechanisms.

The need for ROM circuitry remained, but its usage was

hindered by high cost and large physical size as well as the

complexity of constructing it. By applying the VLSI

technologies to memory circuits, as done for processor

elements, RON circuits are realizable for the storage of

(p

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Fig. 3 - Pegbaad R~K

I

I
* w* -S W''

8

programs and frequently used data. In fact, the highly

repetitive nature of memory cells has resulted in even

greater cost reductions for ROM than for processors.

A typical configuration for a read-only memory chip is

shown in Fig. 4. A binary coded address enters on the left.

The address is decoded and closes the appropriate internal

switches to allow the contents of the specified memory

location to flow out on the right through the data lines.

The operation of each memory cell is still based upon the

pegboard/jumper system. However, there are three major

commercially available systems with different techniques for

creating the jumpers.

In a conventional ROM (usually denoted by only the

letters ROM), the jumpers are created and not created by the

pattern transferred onto the silicon wafer. That is, they

are manufactured directly. The advatage of this approach is

extremely low cost when produced in quantity. The drawback

is that a large number must be produced to offset the high

fixed manufacturing costs (e.g., making the masks or

patterns).

The programmable read-only memory (denoted as a PROM)

is the next level of sophistication. The chip is

manufactured without any data in it. After physical

manufacture, the virgin chip is placed in a programming

device and the data is programmed into it. The final PROM

I
I
I
I
I
I
I
I ____________ _____________

_________ DATAADDRESS - ROM - LINESLINES _________ __________

I
I
I
I
I
I

Fig. 4 - Typical R(~(Chip Configuration

I
I
I.

d.

-~t -..

10

is then used like a conventional ROM. This programming can

be done only once, however. Fig. 5 illustrates a simple

model of the internal workings of a PROM and is presented to

aid in understanding the limitation (i.e., irreversibility)

of PROM circuits. Each data line in each memory location is

connect to the supply voltage on one end, to the external

data lines and addressing switches on the other end and

contains a segment of reduced diameter "wire". This reduced

segment acts as a fuse element. Under normal working

conditions, the supply voltage is low enough that the

induced current through the fuse section of the data line

does not cause it to burn out. In order to program a new

chip (one where all fuses are intact), the supply voltage is

raised. When any data line is connected to ground,

sufficient current flows through the data lines to burn out

the fuse. If a zero (no voltage) bit is desired, the fuse

is burned-out; and vice versa. It should now be clear that

once a zero bit is "burned in" to a PROM, it cannot be

changed. The advantage of a PROM is the ability to program

it after manufacture making it well suited to small quantity

applications. However, the added step of programming makes

the chip most costly.

At the pinnacle of read-only memory technology is the

erasable programmable read-only memory (denoted as an

'EPROM). Both the ROM and PROM are final in their

SUPPLY
* VOLTAGE

I DATA
LINES

ELEMENTS

I Fig- 5 -Simple Model of a PROM

12

programming; if an error is embedded into the chip, there is

no way to correct it and the chip must be discarded.

EPROM's, are similar to PROM's but use a different fusing

mechanism, one that can be repaired. Repairs are usually

done on a global basis, essentially creating a new chip that

must be completely reprogrammed. A common arrangement uses

ultraviolet light to refuse the junctions. This added

feature often makes the chip more expensive; but more

importantly it makes the chip vulnerable to accidental

erasing. As a re sult, the EPROM is best suited to small

volume ap,)lications where errors are probable to occur, such

as an experimental environment.

While the capacity of read-only memory chips have and

will continue to increase, there are many applications where

the capacity of a single chip is simply not sufficient. As

shown in Fig. 6, it is a simple matter to use two or more

chips together. Some of the address lines are used as

address inputs and are sent to all ROM chips simultaneously.

The remaining address lines are fed into a switching circuit

which connects the output of the appropriate ROM to the

final data output lines. In this manner, the switching

circuit acts as a chip select mechanism and the effect is to

create a much larger ROM chip.

W, w

CHI

SELE} DATA
CIRCUIT OUTPUT

IADDRESS LINE S DT IE

Fig. 6 -Extending ROM Size

14

Data Storage on ROM

The storage of data is the most logical use of ROM

chips. This section examines a technique called "hardware

look-up" and how it can be used in numerical analysis

applications.

It will be shown that the technique can handle

functions of integer values, functions of real values,

functions of multiple values, and even simultaneously

evaluate multiple functions. Two possible programming

implementations will be examined; both requiring little or

no changes to existing programs and current programming

practice. For the numerical analyst, the prime result will

be significant speed increases, and a simulation procedure

is demonstrated for predicting expected increases. The

current technology will handle "hardware look-up", and the

mechanics of placing data on ROM is discussed, including a

multi-computer approach called "down-line loading" which

enables a micro-computer to emulate a main-frame computer's

capabilities.

Hardware Look-Up. The mechanics of the "hardware

look-up" scheme works as follows: The input data value is

written into a specific memory location. This data is then

used as an address by the ROM chip. The output data value

is then transferred by the ROM chip into some special memory

location. The flow of data is shown in Fig. 7. The scheme

REUL

MEMORYI LOCATION f_____ fWx

MEOR INPUT

LOCATIONx

Ii

Fi.7Urar okU

I77

16

can be extended to functions of two variables by using the

combination of two input data as one address for the ROM as

shown in Fig. 8. Further, several ROM chips can be

connected to the same memory locations to allow several

functions to be "looked-up" simultaneously as shown in Fig.

9.

ROM chips are designed for the storage of discrete

data; that is, data which is accessed by whole integer

numbers. Thus, we may think of data stored in ROM as

elements of an array, and the input address to the ROM may

be thought of as the index of the array. This makes ROM

chips well suited to the storage of tables such as

wide-flange beam sizes and properties. In fact, for

multi-column tables (tables consisting of multiple items per

entry line), an arrangement of parallel ROM chips is ideal,

for it allows quick access to all entries and simplified

installation of updates.

Most of the data and/or functions used by the numerical

analyst are continuous or analog in their nature. That is,

they have an infinite number of values. Because RON chips

are discrete (i.e., have a finite number of storage

locations), it is theoretically impossible to store a

continuous function. However, by considering a practical

limitation of computers, numerical round-off, it is not only

possible but actually quite simple to store a continuous

7W*.V

II

ii

I

MEMORY _

I

LOCATION

II MEMORY _____-____

LOCATION __

I i

I

I
I

FLS 8- zcnde Rrdsr LokU

.!

-. J - cr C.

2 7ON i
mot 0 SiC.

00

I-

- -E

1 19

I function.

All numbers, integer or real, are stored in the

computer as a pattern of binary digits [6). The number of

digits used is determined by the word size of the computer

I and the encoding scheme, but is a fixed number for a given

type. However, for a fixed number of binary digits, say n,
only 2**n possible permutations exist. In order to

accommodate real numbers using a fixed number of digits (and

thus a finite number of permutations), the desired range of

I real numbers is divided into subregions and each subregion

corresponds to a permutation. (See Fig. 10.) Any real

number within a given subrange is assigned to the same

3 permutation, and thus are all treated as the same real

number. This process is conventionally called "round-off".

I The important result is that the continuous set of real

numbers have been converted to a discrete set of binary

permutations. By interpretting the binary permutation

II patterns as integers, an address can be obtained for storage

1 and retrieval on the ROM chip. (The net result is much like

I that of printing a real number with an I format in the

j FORTRAN language.)

In summary, real numbers are encoded to a discrete set

J of bit patterns through round-off; the patterns are then

used as input addresses to the ROM chips. No accuracy is

1 lost, no numbers unaccounted for, as all storable real

I _ _ _ _ __7

00 01 10 II 100 101 DIGITAL REPRESENTATION

0 I 2 3 4 5 6 REAL-WORLD SIGNALS

Fig. 10 - Discrete Nature of Digital Signals

-
i I - =

21

numbers are used. Thus, continuous furnctions (such as

sine, logarithms, and polynomials) may be computed once and

g completely stored on ROM by storing the corresponding values

for all of the storable real input values. For a 16 bit

encoding scheme, 64K of ROM is required.

Programming Interface. To the numerical analyst, the

most important issue is how ROM chip capabilities will be

5 used with programming languages; and more specifically, how

current programs will have to be modified to take advantage

Iof the new technology. The discussion presented here is

constructs are available in most other languages, most

notably, BASIC, the language used on most micro-computers.

Two major approaches are available: function calls, and

special COMMON blocks.

The COMMON block approach requires the programmer to

5 include a special labelled COMMON block in the program. The

I linker (or linking loader) in used to bind this block to the

locations in memory where the ROM circuit. reside. Most

I linkers presently provide this capability in their advanced

or extended features. The ROM chips may then be used in the

manner previously described: input data is sent by making an

I arithmetic assignment, and the generated output data is

available by simply using the appropriate variable from the

1 common block. For example:

22

COMMON /TRIG/ X,SIN,TAN

X=Y*3.14/180.

Z=SIN+(2.*TAN)

The first line designates the special COMMON block; the

second line loads a value into the parallel ROM circuits;

and the third line uses two of the output data values.

The function call approach behaves the same as any

system or language supplied function. That is, an ordinary

function call is made (e.g., X=SIN(Y)), and a machine or

assembly language routine is involked to generate and return

the proper value. Further, an array is syntactically called

in the same manner as a function; thus, the function call

approach can also be compared with addressing arrays. The

blending of FORTRAN and assembler routines is done with the

linker (or linking loader) and can be easily handled by all

existing linkers.

Both approaches are quite workable and simple. The

COMMON block approach is better suited when several inputs

are needed, and is required if several output are generated

by a parallel ROM arrangement. This latter condition occurs

because a FORTRAN function can return only one value. The

function call approach is vastly superior for existing

software. Present code can be left intact: the code for the

function is simply replaced with new function code which

accesses the ROM chips. However, the COMMON block approach

1 23

can be converted easily to a function call approach (i.e.,

I the COMMIVON blocks can be hidden away in the function call).

I As a result, the COMMON block technique should be used as
the implementation scheme and the programmer can then use

I both.

The most significant result is that current programming

I practice can continue, and conversion can be done to

existing code without rewriting it.

Speed Increases. The primary benefit from hardware

look-up will be increased speed. This increase will be

derived from pre-computing all potentially needed values

rather than generating them upon request, much like

I mathematical tables are (or were) used in engineering

practice. In order to gain some insight into the magnitude

I of the increase, a simple simulation procedure was carried

out.

The procedure consisted of running a pair of programs

for several different functions. The first of the pair of

programs contained a conventional function call; thus,

computations were performed upon request. The second

program of each pair simulated the ROM chips by: 1) creating

an array, 2) computing all potential values of the function

and storing them in the array, 3) changing all function

calls to array accesses (although this actually requires

I nothing as the syntax is the same for both), and 4) running

24

the program. The comparison was made by monitoring the CPU

time (through system subroutines linked to the operating

system) of the complete first program and the execution

after loading the array for the second program. Each pair

of programs were run four times to minimize system loading

fluctuation and the results are shown in Fig. 11. A typical

program pair is shown in Fig. 12, and the computations were

performed on an IBM 370/3033.

Figure 13 graphically depicts a series run on

polynomials. The gradient change at sixth-order polynomials

is believed due to a change in computational procedure:

specifically, changing from repetitive multiplication to a

logarithm-anti logarithm scheme.

Two important trends can be seen by examining the table

of Fig. 11 and the graph of Fig. 13. First, for standard

mathematical functions (e.g., SIN, LOG), speed increases of

15 to 20 can be realized. These savings can be applied to a

large range of numerical computations (e.g., development of

rotation matrices and fourier transforms). Second, for

custom functions such as polynomials, speed increases are

related to the complexity of the function and result in

speed increases of several orders of magnitude. It should

be noted that no substantial speed increase will result from

converting tabular data stored in arrays to ROM chips, but

other benefits are derived.

Time for function Time for array ,
evaluation (cpu eec) evaluation (cpu eec) Speed Increase

Multiplication 0.777 0.095 8.18

Addition 0.727 0.095 7.65

Division 0.835 0.105 7.95

Logarithm 1.649 0.099 16.66

Sine 1.694 0.099 17.11

' Cosine 1.675 0.094 17.82

Exponentiation 1.658 0.094 17.63

Polynomials

0th order 0.585 0.101 5.79

1 at order 0.707 0.101 7.00

g 2nd order 0.766 0.101 7.58

3rd order 0.893 0.101 8.84

thI 4 order 0.988 0.101 9.78

5th order 1.105 0.101 10.94

6th order 1.243 0.101 12.30

3 7th order 1.944 0.101 19.25

8th order 2.649 0.100 26.49

I 9th order 3.378 0.101 33.45

1 0th order 4.108 0.101 "0.67

I *

Speed Increase - Function Time/Array Time

f Fig. 11 - Potential Speed Increases with ROMI Circuits

I
[

-r

Function Call Array

F(K)-K**2 DIMENSION F(50)
CALL TIM DO 5 1-1,50
DO 20 1-1,1000 F(I)-I**2
DO 10 J-1,50 5 CONTINUE
Z-F(J) CALL TIME

10 CONTINUE DO 20 1-1,1000
20 CONTINUE DO 10 J-1,50

CALL TIME Z-F(J)
STOP 10 CONTINUE
END 20 CONTINUE

CALL TIME
STOP
END

Fig. 12 - Typical Program Pair

I1

I
I
I

| 45t

| 40

35

G30-

I 250
0:

o25

I 0 06

IC
U 0 -

5

0 2 4 6 810
Order of Polynomial

F[" F:ig. 13 - Speed Increases for Polynomifal RON Chifps

28

Down-Line Loadin. The programming of FROM and EPROM

chips is, of course, done by a computer. This manufacturing

process leads to an interesting extension, particularly if

EPROM chips are used. Fig. 14 outlines the major steps.

Down-line loading is a procedure where one computer

programs another, regardless of the storage medium. It is

suggested here that the programming be a transfer of data

and that the storage medium be a PROM circuit (or

preferably, an EPROM chip).

The first step is to install a virgin PROM or to erase

an existing EPROM. Often the PROM must be connected to a

special device during programming, one that can supply the

necessary electrical signals; the completed PROM is later

moved to a permanent, but ordinary, chip socket. Second,

communication is established between: the two CPU's, the

user and one of the CPU's, and the virgin PROM and the

non-programming CPU. Third, the programming CPU transfers

the data through the non-programming CPU to the PROM where

the data is embedded into silicon. Communications between

the CPU's is no longer needed and is usually severed.

Fourth, the non-programming CPU runs alone and uses the data

from the PROM as if it were initially manufactured into the

CPU.

The prime advantge of down-line loading is that the

power of a large computer can be used to quickly generate

7,9. ~
7W ?Room

IEPROMI

Step I - PROM is Erased
I ""

' I

I Step 2- Communication Established

I c

I
Step 3- Data Sent from CPUI to PROM

Step 4- PROM Drives Stand -Alone CPU2

Fig. 14 - Dom-Line Loading

30

complex data to be stored on the PROM. Once programmed, the

PROM can be used by a smaller machine, and thus, imitates

the power of a much larger CPU. Further, because the

programming is done once, the larger CPU can "train" many

smaller machines. EPROM chips allows the process to be

repeated as updates are needed. The communication between

two CPU's is usually very fast and the smaller machine often

buffers the data for the slower process of programming the

PROM chip. This arrangement is best suited for a main-frame

to micro-computer connection.

Needed Technology. All of the plans for placing data

into ROM is presently available. But, present technology

would require multiple chips in an extended ROM

configuration. This would result in a somewhat expensive

implementation as compared to the "dollars and cents" cost

of computing upon request. The speed increases could easily

tip the scales in a critical situation, however.

VLSI and ULSI (ultra-large scale integration) will soon

provide a single chip capacity large enough for 16 and 32

bit single value input ROM circuits. At that point, the RON

circuit cost will be less than computing upon request.

Software Storage on RON

Because a program is treated as data in the modern

computer, ROM chips can be used to store programs and data.

Further, no changes are required in the construction of the

* 31

ROM chip, and thus, the mechanics of transferring the

program to the chip is the same, though the generation of

the information is different. As a result, normal ROM's,

PROM's, and EPROM's may all be used to store programs. The

I final product, software stored on ROM, is called firmware.

This section examines the impact of firmware on

computing. The section is divided into five subsections,

with the first three comprising the heart of the discussion.

As a result of this discussion, it will become evident that

I the key importance of firmware is its ability to transform a

general processor into a custom or semi-custom processor.

For the numerical analyst, two practical applications

I presently exist: The first use is to extend the hardware

features of the machine through firmware subroutines; these

Iextensions, like subroutine libraries, will reduce

* programming cost by eliminating the rewriting of standard

computational procedures. The customization will be as

simple as plugging in appropriate ROM modules. The second

use takes the first use an additional step and consists of

I putting an entire program onto RON. This will create a

Icomplete custom processor. Current examples of these

applications are shown in the last subsection, and the

Ifourth subsection describes the creation of firmware

including "down-line loading". The other applications

(microcode programming and operating systems on RON) should

32

not be ignored, however. They are destined to be

practically available to the numerical analyst as improved

sofware tools are developed.

Advantages and Myths of Firmware. The primary advantage

of firmware is its ability to create a custom processor.

That is, once the ROM chips are installed, the programmer

(or user) may view the new software as an intrinsic part of

the hardware. As we shall see shortly, these customizations

may range from extended hardware features to specialize

operating systems dedicated to the performance of a single

task.

one peculiar advantage of firmware is that it is

difficult to reproduce a ROM chip unless you are original

manufacturer. Further, it is almost impossible to produce

the same software for another machine if the software

resides in a ROM. That is, it is a prohibitively costly

procedure except for the developer of the firmware who alone

has access to the source code and original manufacturing

chip masks. Thus, firmware aids in the battle against

software piracy. In the past, software piracy has not posed

a major difficulty for the numerical analyst; but, with the

proliferation of micro-computers and corresponding users,

the protection of innovative programming (for the recovery

of developmental costs) will become increasingly important.

I 33

Having seen the two primary advantages of firmware, we

Ishall now expose some of the myths. It is important to

gfirmly establish that software in ROM will NOT yield any

significant speed increases. Most programs are loaded into

I memory prior to the start of execution by the loader or

linking loader. While some speed increase certainly occurs

I in accessing ROM circuitry over disk, the total load time is

ggenerally negligible when compared to execution time. Some

micro-computer systems appear to exhibit improved

performance when operating from ROM; this, however, is an

illusion. The speed increase results from executing

I compiled code (previously translated to machine language)

instead of interpretted code (translate and executed

simultaneously). This speed improvement can be obtained by

I simply installing a compiler program.

Firmware usage will result in some space (or memory)

savings. However, as memory sizes are and will be expanding

Jwith reduced costs, the space savings will not be

significant for large machines. For micro-computers the

Ispace savings are significant, but, again, an illusion. In

order to facilitate firmware, a certain number of memory

locations must be connected to the ROM chips; memory

f locations which must be robbed from normal memory. Thus, it

is important to actually limit the amount of memory devoted

to firmware.

34

Firmware has the potential to reduce the cost of

software, but only when large quantities of a single item

are to be produced. The potential savings result from the

ability to produce an entire chip in a few operations

regardless of its complexity. There are several snags in

this approach, however.. First, this maufacturing procedure

only applies to normal ROM chips, not PROM or EPROM chips

where each datum must be transferred to each chip. Second,

the development cost is quite expensive, and thus, must be

distributed over a large production run to make duplication

a significant cost. Third, the machine targetted for by the

software must be physically able to accept ROM chips and the

signal interface standards must match. Because hardware

varies so greatly, ROM chips are usually compatible with

only one machine; thus, many of one type of machine must

exist. Hence, production cost savings do not apply for

main-frame computers. In fact, these cost savings are only

appreciable for popular micro-computers.

Uses of ROM Software. Technically, any program or set

of instructions can be placed on a ROM chip. There are,

however, certain loose categories of programs that emerge.

The discussion here is not meant to be complete, but rather,

to indicate the scope of firmware.

The first usage is to extend or define the instruction

set of a processor chip. Obviously, this requires a special

no

I 35

s processor chip called a micro-programmable micro-processor.
This processor is designed and fabricated without a fixed

set of instructions. After fabrication a PROM circuit,

usually part of the processor chip, is encoded to provide

I the processor's instruction set. The procedure is called

micro-programming and uses a primative but complicated

machine languiage called micro-code. Until such time as the

$ micro-programing task is simplified, this process will

remain impractical for numerical analysts.

The second level of usage is to permanently install

program segments or subroutines into primary memory. Fig.
15 shows a typical memory map for such an arrangement. The

I low memory addresses store interrupt vectors and other

hardware dependent data. The next low memory block holds

the operating system and related data. At the high end of

I memory are the input/output ports to which the peripherals

and peripheral control equipment are wired. The next high

J block of memory is reserved for ROMd chips (data and

software), and the ROM chips are physically wired to these

locations. The remaining space is conventional primary

random access memory, and can, thus, be used for prc -am and

data storage. The exact distribution and order of these

blocks will vary with each machine and operating system.

The subroutines are encoded into ROM chips, which are then

"permanently" installed into memory. (We shall explain how

65,535

1/O PORTS

64,000

ROM SPACE

48,000
MICRO-CODE
MEMORYj

PROGRAM/DATA
STORAGE

5000
RESERVED FOR

OPERATING SYSTEK.
1000

INTERRUPT
VECTORS

0

Fig. 15 -Typical Memory Configuration

1 37

they are used shortly.)

At the third level of usage, the ROM space shown in

g Fig. 15 is expanded and complete programs are installed.

Some conventional random access memory must be retained to

g store the data being processed, the output data, and

intermediate results. The classic Von Neumann trade-off of

U program storage versus data storage limits the system. As

with subroutines, several programs can be resident in this

configuration and selection made though the operating

I system.

At the fourth level of usage, the operating system can

be implemented as ROM. Again, any associated data must be

kept in conventional random access memory. In this fashion,

the computer system becomes a dedicated processor (e.g., a

Iword-processing machine or a finite element pocket

calculator). This level of usage requires the writing of an

operating system, and thuis, is impractical for the numerical

j analyst. As software design aide become available, this

technique may prove practical.

I Programming Interface. A quick examination of Fig. 15

will reveal that firmware is not any different than normal

software except where in memory it is stored. As a result,

j firmware can readily be handled with existing techniques and

tools, most notably the linker, loader, or linking loader.

38

For the case of the complete program, no linking is

required, the code is always resident, and the only

operation necessary is for the loader to pass control to the

appropriate starting address. The last statement in these

ROM programs is to pass control back to the operating

system. This procedure also applies to ROM based operating

systems except the last step (returning control) is omitted

as all operating systems are designed as infinite loops.

While micro-code programming is beyond the scope of

this report, the use of micro-code requires the development

of new compilers each time the instruction set is redefined

or extended. Further, to make efficient use of the newly

defined instruction set, the compilers must be optimizing

compilers. Hence, it is evident that the micro-programmable

processor is currently beyond the practical limits of the

numerical analyst.

The only real programming interface for the numerical

analyst is the use of program segments or subroutines.

These subroutines are (or should be) in a machine readable

form and are permanently loaded into the computer. The only

concern, then, is the linking process which may be divided

into two subproblems. The first subproblem is branching to

and returning from the subroutines. The solution is the

same as for complete programs except connections are made to

a calling program rather than the operating system. Any

39

existing linker can accomplish this task. The second

I subproblem is the passing of arguments. The arguments (and

£ other data) must reside in the random access memory, not in

ROM. Thus, firmware subroutines must be compiled so that

all variables reside separately from the code and all

addresses be fixed. The most logical method of assuring

I this requirement is to use a fixed location COMMON block as

Iwas described earlier. It is, of course, possible and

practical for all the firmware subroutines to share the same

fixed COMMON block as firmware to firmware calls are

predictable and shared COMMON blocks will save space. Other

I methods include passing arguments in the registers, on the

system and/or user- stacks, and through indirect addressing.

These alternate methods are cumbersome for the numerical

5 analyst and provide no real benefit over the COMMON block

method.

U Creation of Firmware. Virtually all firmware exists au

I machine language code, yet it is extremely rare for anyone

to write machine code. Obviously, some type of translation

j is made from another language. At the elementary level, an

assembly language is used and is translated by an assembler

program. Because assembly language is very similar to

machine code, assembly language affords the programmer the

opportunity to create the highest speed code while

I simultaneously minimizing software storage requirements.

40

Although assembly language programs are easier to write than

machine code, assembly language is still extremely

cumbersome for composing large or complex programs. To

alleviate the problem, a high level language such as FORTRAN

or BASIC is used to write source code. This source code is

then translated to machine code (or an object module) by a

special program called a compiler. However, in order to

support the flexibility of the high level language, a

certain amount of inefficiency must be built into the

compiler program. High level languages can also be

translated by another type of special program called an

interpretter. But, an interpretter translates one line of

code at a time as the high level language is being executed.

This means that every statement in a loop is translated

everytime the loop is executed and the entire high level

language code must be retranslated (including all the

repetitions of the loops) each time the program is run.

While interpretted code has the advantage that source code

is stored, the extra translation time quickly outweighs the

apparent advantage. As a result, interpretted code is

rarely stored as firmware. One final note about translation

is warranted: it is common practice to compile or assemble a

program on the machine (or same model) where the machine

code will operate; however, it is quite possible to compile

or assemble on another machine with a special translation

* - mmm mm mmmm mmmmi~ mmm mmmm

41

program called a cross-compiler or cross-assembler. This

cross translation procedure is becoming increasingly popular

g for the preparation of firmware.

Once the machine code has been created, it must be

I transferred into a chip. The mechanics for this process is

exactly the same as for data; and conventional ROM, PROM,

and EPROM implementations are possible. However, due to the

low volumes of firmware production runs, PROM and EPROM

chips are almost always used, with EPROM chips handling most

I of the experimental versions and PROM chips being used for

final production runs. As with data storage, down-line

loading is possible and used to a small extent.

Firmware Examples. Most firmware in existence (barring

system bootstrap loaders) is used in micro-computer systems.

I As micro-computer usage grows, firmware will also expand.

In this section, two systems utilizing firmware are briefly

1 examined. These are certainly not only systems available,

I but are typical of what is presently done with firmware.

(No endorsement of these products is implied.) The first

I example illustrates how firmware subroutines can be used to

extend the hardware features of a machine. The second
example illustrates how a complete custom processor can be

I created. This second example could be used to create a

finite element personal- computer, i.e., a machine that

I powers up as a finite element machine. Only the practical

42

limitations of memory size and micro-processor speed hinder

this grand creation.

The first system is the Tektronix 131 4050 series of

micro-computers (models 4051. 4052, and 4054). A typical

configuration (see Fig. 16) possesses the micro-processor,

memory, a vector storage tube display, keyboard, magnetic

tape drive, port for a hardcopy unit, an RS-232-C or GPIB

port, and slots for ROM cartridges. The machines are

programmable only in BASIC and the ROM slots are configured

to provide various extensions to the BASIC language

depending upon the modules inserted. Modules may be

inserted, removed, and swapped by the user as his/her needs

change as the modules are simply slid in and out.

Presently, only Tektronix offers a line of compatible ROM

cartridges and these cartridges are pre-defined (i.e., no

mechanism exists for the user to generate his/her own

cartridge). Typical ROM cartridges provide matrix

operations and an extended line-editor. Because the

firmware is in machine language, considerable speed

improvements are possible over the normal BASIC language.

The second system is the Radio Shack TRS-80 Color

Computer. Models range from 4K memory, standard BASIC

language for $400; to 32K memory, extended BASIC for $7S0,
both without the television monitor. In addition to BASIC,

ILI
Iw

CC,

0

II

a. cc

1 -0.

I CIA0
W (0

44

assembly language, thus allowing direct access to the

features of the Motorola 6809 micro-processor. The typical

system configuration is shown in Fig. 17 and provides the

micro-processor, memory, keyboard, and connections to a

standard television, cassette recorder, RS-232-C port, and

joystick inputs as well as the ROM cartridge slot. In this

system the ROM cartridge is intended to customize the

operation of the machine. Radio Shack and other independent

vendors offer a wide range of cartridges including several

games, interactive graphics editor, financial packages, text

(or word) processor, cassette filing system, and "smart"

terminal package. More importantly, one of the independent

vendors [5] will take any BASIC program, translate it, and

store the result on a ROM cartridge. The cost ranges from

$42 to $84 depending upon program size. Using this service,

any high level programmer can create a custom processor

through firmware.

Conclusions

This report has presented a thorough overview of the

impact of read-only memory (ROM) chips on computing

procedures and the relation of this impact with other VLSI

technologies. It has been demonstrated that ROM chips can

be successfully used to store both data and programs. For

the numerical analyst, the following are important points:

1. ROM technology is presently available to provide

w 0
Ca Ia

00

t

Uz w

CO)

46

numerical analysis requirements on a single board.

2. Single chip ROM implementations will be available

shortly.

3. Data storage on ROM (or hardware look-up) will provide

substantial increases in speed.

4. Both discrete and continuous data may be stored on ROM

chips due to the discrete nature of binary encoding.

5. Programs on ROM (or firmware) will allow simplified

development of custom processors.

6. Subroutines on RON (firmware) will reduce the

programming cost by eliminating the rewriting of

standard computational procedures.

7. Neither micro-code programming nor operating systems on

ROM are within the current practical limitations of the

numerical analyst, but are predicted to become available

as software tools improve.

8. No significant changes are required in programming to

accomodate either hardware look-up or fi-ware.

9. Down-line loading will provide main-frame capabilities

on micro and mini-computers

10. ROM applications, including user defined ROM, is

beginning to emerge for micro-computer.

.No

| 47

Acknowledements

The funding for this research was provided by the

£ Office of Naval Research under contract No.

N00014-80-C-0712. This is the second technical report

I produced under that contract.

I References

1. Feeser, L.J., Rooney, M.F., and Shephard, M.S., VLSI

Technologies and Numerical Analysis, Technical Report to

Office of Naval Research, Contract No.

i N00014-80-C-0712, Department of Civil Engineering,

m Rensselaer Polytechnic Institute, Troy, New York, 12181,

June 1981.

5 2. Marks, M., "Impact of VLSI on System Architecture",

Scientific American Seminar, Rensselaer Polytechnic

m Institute, Troy, New York, November 5, 1981.

1 3. Tektronix Corporation, Beaverton, Oregon.

4. Radio Shack, A division of the Tandy Corportion, Fort

1 Worth, Texas.

5. Eigen Systems, P.O. Box 10234, Austin, Texas.

6. Rooney, Martin F., "Computer Hardware for Civil

I Engineers", Journal of the Technical Council*, American

Society of Civil Engineers, New York, Vol. 107, No.

TC1, April, 1981, pp. 153-168.

[
7

48

INDEX

Acknowl.edements, 47

Address Line, 12

Advance Due to VLSI, 2

Advantage of Down-Line Loading, 28

Advantages and Myths of Firmware, 32

Analog Data, 16, 46

Approaches to ROM Implementation, 21

Approaches, Suitability, 22

Array, 16, 22, 23, 24

Assembler, 22, 39, 41

Assembly Language, 22, 39, 44

BASIC, 21, 40, 42, 44

Binary Coding, 8

Binary Encoding, 46

Bootstrap, 6, 41

Buffer, 30

Burn In, 10

Chip Select Mechanism, 12

COMMON Block Approach, 21, 39

Compiled Code, 33

Compiler, 38

*Compiler, Optimizing, 38

Complexity, 24, 34

7 W*--

491

Computer Graphics, 42

Computing Upon Request, 1, 23

I Computing Upon Request, Cost of, 30
Conclusions, 44

I Continuous Functions, 16

Converting Between Approaches, 23
Cost of Computing Upon Request, 30

I Cost/Performance Ratio, 2
Cost, Programming, 31, 46

I Cost, Software, 34

I Costs, Manufacturing, 8

CPU,- 5, 28

I CPU Time, 24

Creation of Firmware, 39

I Cross-Assembler, 41

Cross-Compiler, 41

3 Current Programs, 2, 14, 23, 46

Custom Functions, 24

Custom Processor, 1, 31, 32, 37, 41, 44, 46

I Data Line, 8, 10

IData Storage on ROM, 14, 46
Dedicated Processor, 37

I Digital Equipment Corporation, 5

Discrete Data, 16, 46

I Down-Line Loading, 14, 28, 31, 41, 46

50

Down-Line Loading, Advantage, 28

Down-Line Loading, Definition, 28

Electro-Mechanical Devices, 5

Encoding Scheme, 19

EPROM, 5, 10

EPROM, Programming of, 28

Erasable Programmable Read-Only Memory, 10

Erasing, 12

Error, 12

Execution Time, 33

Extended Hardware Features, 31, 32, 41

Extended ROM, 12

Finite Element Pocket Calculator, 37

Firmware, 1, 2, 31, 46

Firmware Examples, 41

Firmware, Definition, 31

FORTRAN, 19, 21, 22, 40

Fourier Transform, 24

Function, 16

Function Call Approach, 21, 22

Function of Two Variables, 16

Function, FORTRAN, 22

Functions of Integer Values, 14

Functions of Multiple Values, 14

Functions of Real Values, 14

51

Functions, Custom, 24

Functions, Multiple, 14

Fuse, 10

GPIB, 42

Hardcopy, 42

Hardware, 1, 5, 32

Hardware Look-Up, 14, 46

g Hardware, Ertended, 32

High Level Language, 40, 44

I/O Port, 35, 42

IBM, 2, 24

Implementation Approaches, 21

Index of Array, 16

Indirect Addressing, 39

5 Input Address, 19

Instruction Set, 34

Interfacing, 34

Interpretted Code, 33

Interpretter, 40

Interrupt Vector, 35

Introduction, I

Irreversibility, 10

Joystick, 44

Jumper, 6

Limitation, Size, 6, 42i '

52

Linker, 21, 22, 37, 39

Linking Loader, 21, 22, 37

Load Time, 33

Logarithm, 21, 24

Machine Language, 22, 33, 35, 39, 44

Machine Readable Form, 38

Magnetic Tape, 42

Main-Frame Computer, 14, 34, 46

Manufacturing Costs, 8

Map, Memory, 35

Mask, 8

Matrix, Rotation, 24

Memory Cell, 8

Memory Circuit, 5

Memory Map, 35

Micro-Code, 35, 38

Micro-Code Programming, 31, 46

Micro-Computer, 2, 14, 21, 30, 32, 33, 34, 41, 42, 46

Micro-Electronics, 2

Micro-Processor, 42, 44

Micro-Programmable, 35

Mini-Computer, 46

Modifying Current Programs, 21, 46

Motorola, 44

Multi-Column Table, 16

I 53

Multiple Functions, 14

I Myths, 33

g Needed Technology, 30

Object Module, 40

I operating System, 35, 37, 38

Operating Systems on ROM, 31, 46

1 Optimizing Compiler, 38

I Overview, 2

Packaging, 5

IParallel ROM, 16, 22

Passing Arguments to ROM, 39

Pegboard, 6

Performance/Cost Increases, 2

Peripherals, 5, 35

I Permutations, 19

Piracy, Software, 32
Polynomial, 21, 24

1 Port, 1/O, 35

Power Supplies, 5

Pro-Computing, 1, 23

Present Code, 22

Primary Influences, VLSI, 5

I Processor, Custom, 32, 37, 44

Processor, Dedicated, 37

I Programmable Read-Only Memory, 8

54

Programmable Read-Only Memory, Erasable, 10

Programmable, Micro, 35

Programming Cost, 31, 46

Programming Interface, 21, 37

Programming Language, 21

Programming PROM and EPROM, 28

Programming, Micro-Code, 38

PROM, 5

PROM, Definition, 8

PROM, Programming of, 28

Punch Card, 6

Radio Shack, 42

Random Access Memory, 35, 37, 39

Read-Only Memory, Definition, 6

Read-Only Memory, Erasable Programmable, 10

Read-Only Memory, Programmable, 8

References, 47

Registers, 39

Reproducing ROM Chips, 32

Review of ROM Hardware, 5

Rewriting Programs, 23

ROM, 1, 5

ROM Cartridge, 42, 44

ROM Implementation Approaches, 21

ROM, Conventional, 8

1 55

ROM, Definition, 6

Rotation Matrix, 24

Round-Off, 16, 19

RS-232-C, 42, 44

Secondary Influences, VLSI, 5

Semi-Custom Processor, 31

Simulation, 23

Sine, 21, 22, 24

Single Board Configuration, 46

I Single Chip Implementation, 46

Size Lim~itation, 6

Software Piracy, 32

Software Storage on ROM, 30

Software Storage Requirements, 39

I Software Tools, 32, 46

g Source Code, 32, 40

Space Saving, 33

ISpeed Increases, 1, 14, 23, 24, 30, 33, 46

Stack, 39

I Starting Address, 38

Storable Real Numbers, 21

Storage of Data, 14

[Subroutine, 31, 38, 41, 46

Subroutine Libraries, 31

I Switching Circuit, 12

56

Tables, 16, 23

Tabular Data, 24

Tektronix, 42

Time, CPU, 24

Time, Execution, 33

Time, Load, 33

Training, Down-Line Loading, 30

Transform, Fourier, 24

Translate, 44

Translation, 39

Trends, 2, 5, 24

ULSI, 30

Ultra-Large Scale Integration, 30

Ultraviolet Light, 12

Updates, 16

User Defined ROM, 46

Uses of ROM Software, 34

VAX Computer, 5

Virtual Memory, 5

VLSI, 1

Von Neumann, John, 6, 37

Wafer, 2, 8

Word Processor, 37

Word Size, 19

UNCLASSIFIED
ECUIRITV CLASSI 1ICATION OF THIS PA6 Mlhow b0e b~m_ _ _ _ _ _ _

REPORT DOCUMENTATION PAGE BZF= comwLZmsO F001
I. RrPORT NUMB&* VT ACEI N P1RECIPIENVs CATALOG NUMERLM

& TITL6 (and S,, S. Tt Or aRPORT a Pasoo covam

The Implications of VLSI ROM Chips on Interim Technical Report
Numerical Analysis S PERFOM . RNU.BER

7. AUTNOR(o I. CONTRACT OR GRANT NI1E4(5

L.J. Feeser
M.F. Rooney NO0014-80-C-0712
M.S. Shephard

S. PERFORMING ORGANIZATION HAM! AND ADDRES ID.ROGAM ROJECT TASK

* Rensselear Polytechnic Institute A w O

Department of Civil Engineering
- Troy, New York 12181 _ _ _"

It. CONTROLLING OFFICE NAME AND ADus 1 CSTDT

Director Structural Mechanics, Material Science -ee c0t, f#A,.* 9
Office of Naval Research, 800 No. Quincy Street, L ,NuuEROFPAU..
Arlington, VA 22217 57

I. MONITOPINO AGONCY NAME & ADDRESS(It EUIevnt &M Ca.n.U4 Ofleis. I1.SEZCURITY *.AMS r.' W e~

UNCLASSIFIED.

IS. DISTRIBUTION STATEMEf.NT (a1t We *ep4e"

-This document has been approved for public release and sale; distribution
*unlimited.

17. DISTRIOUTION STATEMENT (et M. "D ftm M 8806k J%. N Uhe Amp"

14I. SUPPLEMENTARY MOTUS
I . *

Its. May WORM?=~ (U. .mw. e N neea a"UI "we* inoma

Computers. Numerical Analysis, Very Large Scale Integration,

Integrated Circuits, Computer Aided Design, Read Only Memory,

Fi ware, Hardware Look-Up

ac. ABSTRAT fe0aU eeAon ved K Sem'w adM ~4P aI. mb.a"4

S'-This report presents a detailed overview of the -impact o~f read-only m ryI (RON) chips on computing, and more specifically, nume, 4cal analysis. A ftview
of the impact of VLSI technologies is given to indicaue the role of ROM chips.
A review of available ROM technologies is presented including R01, PRON, and

I EPRM chips. A discussion of data storage on ROM is presented covering the
mechanics of ROM usage, potential spapd Increases, programing interfaces, and
preparation of data ROM chips through down-line loading. Software on RO, *

known as fitr.,a,,. Is dtcmeead Imlarlv and twi riwume,',ial *amalo . "d .!

Psj L147.set Pll ko -&s- I G in Is i

UNCLASSIFIED
SUCUStITY LASUPICATION OF THIS PAOC MAM Da0 EabMei

20. ABSTRACT (Continued) I1

firiware are presented. Final .conclusiots highlight the importance of RO(cbip
for the numerical analyst. ,

I

'I

LI

" Li

:1

I

*ii

U~ci~s±FID

* * w -r~~9~]

DliiE

ITI

