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1. INTRODUCTION

\

~ The study of many equilibrium phenomena leads to non-linear equations
which involve a number of intrinsic parameters. Interest then centers rarely
on the determination of a few specific solutions of the equations for fixed
parameter values but rather on an assessment of the behavior of these solutions
under general variations of the parameters. For example, in structural analysis
the parameters may characterize load points and load directions, material pro-
perties, geometrical data, etc. The set of all solutions and associated para-
meter values has been called the equilibrium surface of the structure (see

eg. [31]). This equilibrium surface provides considerable insight into the
behavior of the structure.and the stability properties (see ea. [23], [32]

for further discussions and various examples). From a numerical viewpoint the
question then is to analyze computationally the shape and characterize par-
ticular features of this equilibrium surface. .

In nonlinear mechanics the principal tools for such a computational analysis
are the so-called incremental methods. These procedures were c:veloped more or
less independently in the engineering literature. But they are now also re-
cognized to be closely related to the continuation methods used for some time
in mathematics in general and in numerical analysis in particular. The liter-
ature in this area is extensive: we refer only to [21] for a discussion about
the connection between increm. . approaches for structural problems and con-
tinuation methods, to [ 8] for a nistorical overview of uses of continuation
techniques in mathematics and to [2 ], [35] for some literature survey of
numerical aspects of continuation methods.

Not surprisingly there are differences between the methods used in

structural engineering and numerical analysis and neither is directly suited

to the analysis of an equilibrium surface. In the numerical analysis liter-




ature continuation methods are usually considered only as tools for de-

termining a specific solution y*

Gy = 0.

of a given nonlinear operator equation

For this the equation is imbedded into a one-parameter family
H(y,t) = 0 which has a solution y = y(t) for each fixed t in some
interval, say, 0< t< 1. (See eg. [15] for a survey of such imbeddings.)

O and y(1) = y*,

If y(t) depends continuously on t and satisfies y(0) =y
where y° is a known point, then the numerical process constructs a sequence
of points in the proximity of the path y(t), 0 < t < 1, starting at y°

and ending at the desired point y*. On the other hand, in structural me-
chanics incremental methods usually are designed to follow numerically a
specific load curve parametrized by a load intensity. Hence, while in the
imbedding approach the parameter is essentially artificial, in the incremental
procedures it has an intrinsic meaning for the application, and, even more
importantly, there is no longer a fixed endpoint which is the aim of the
computation, but the load curve itself is of interest.

For a numerical analysis of a given equilibrium surface we need to con-

sider continuation-methods in a broader sense as a collection of numerical

procedures for completing at least the following three basic tasks:

(i) Follow numerically any curve on the surface specified by a
particular combination of parameter values with one degree
of freedom.

(1.1) (i1) On any such curve determine the exact location of target
points where a given state variable has a specified value.

(iii) On such a curve identify and compute exactly the critical
points where stability may be lost.

Beyond this various more special tasks may arise as, for example, the following

ones:




(iv) From any one of the critical points determined under (iii)
follow a path in the critical boundary.

(1.2) (v) On any one of the curves (i) determine the location of

bifurcation points and the paths intersecting at that point.

Methods which are either directly applicable or can be readily adapted to com-
pleting these various tasks have been proposed by various authors. In particular,
for (i) the literature is very large and we refer here only to the mentioned
surveys [ 2], [35]. Methods relating to (iii) were described, for instance, in
[1], [20], [22], [33], [34], and for (iv) and (v) we refer to [28] and [10],
[25], respectively, where also further references are given.

So far only a few library programs for performing these various tasks have
been published. Without claim for completeness we mention here [14], [38].

Each one of these programs has the objective of computing a specified solution
curve of a nonlinear equation by a continuation approach along the lines sketched
above. In this paper, we present a new library package specifically written with
the objective of completing the three basic tasks (1.1) (i), (ii), (iii). The
package can be expanded to incorporate facilities for (1.2) (iv), (v), but this
will not be addressed here. The package is based on the continuation approaches
introduced in [26], [27] and incorporates some of the concepts of steplength
determination discussed in [7]. At the same time, new techniques of parameter
adaptation are utilized here based on a prediction of changes in the curvature
of the continuation path.

As with all programming packages further improvements are possible. For
example, it is planned to introduce an automatic first step selection and a
function-scaling option. Special versions incorporating facilities for the tasks
(1.2) are also being designed. But since all these changes are built on the pre-
sent package the presentation of a documentation of PITCON in its basic form

appeared desirable and justified.
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Generally, after suitable discretizations, the equilibrium problems
mentioned in the introduction lead to a finite-dimensional, non-linear

equation of the form

(2.1) : G(y,p) =0

where y € R™ is a vector of state variables, p e R" a vector of parameters,
and G: R" x R" > R" a given function. Then we are interested in the features

of the set

(2.2) E(G) = {(y,p) ¢ R" x R"; G(y,p) =

of all solutions of (2.1). Under well-known conditions E(G) represents an

r-dimensional manifold in R™ x R".

In most applications, interest centers on tracing paths on E(G) which
are characterized by r-1 relations between thé parameters. In other words,
we are given a suitable mapping K: R" > Rr'] and wish to compute the subset

of E(G) defined by the augmented equations

G(y,p) = 0,

(2.3)

Kp = 0.

In this formulation we should include the parameters in the list of variables,
in which case,(2.3) represents a system with one more variable then equations.
Then, for ease of notation, it is reasonable to combine the vectors y and
p into one vector x of dimension n = mtr., Moreover, from the viewpoint

of our package of library programs it is natural to assume that both mappings

P ——




G and K of (2.3) are provided for by the user. In other words, we may

write (2.3) as one equation

0

H

(2.4) Fx

with a user-specified mapping F: R" - R"'1. Note, however, that in this
underdetermined equation (2.4) no one variable is explicitly identified as
continuation variable as is typical in the incremental and continuation

methods mentioned in the introduction.

We assume here that the given mapping F has the following properties:

(i) F is continuously differentiable on R",
(2.5)  (ii) The derivative DF(x) of F is locally lipschitzian on R".
(iii) The regularity set R(F) = {x ¢ R"; rank DF(x) = n-1} s

non-empty and therefore an open subset of R".

From (2.5) it follows (see [26]) that the tangent map specified by

DF(x)
(2.6) T: R(F) » Rn, DF(x)Tx = 0, HTXHZ =1, det((T :T) >0
X

is uniquely determined and locally lipschitzian on R(F). Furthermore, (2.5)
implies that the regular solution set E(F)N R(F) of F is either empty

or a one-dimensional C]-manifold in the open set R{F). Our objective is to

determine numerically a non-empty connected component E* of E(F) N R(F).
It is well-known (see eg. [17]) that such a component E* is diffeomorphic

either to the circle or to some interval (that is, some connected subset) of

R1. Hence, E* 1is uniquely determined by any one of its points x® ¢ E(F) N R(F)




and we denote this by writing E*(F,x°)., Note that for any x] e E*(F,x°)
we have E*(F,x1) = E*(F,xo).
%)

A parametrization by arclength of E*(F,x is a solution of the

initial value problem

(2.7) X = Tx, x{0) = x°.

Note that, since T 1is locally Lipschitzian, (2.7) has a unique solution

which cannot terminate inside R(F). Evidently standard ODE-solvers may

be applied to solve (2.7) numerically. This has been pursued for some

time in the Iiterature (see eg. [31, [61, [131, [371). Independent of
this, the choice of the arclength for the parametrization of E*(F,x°) has
been proposed by many authdrs. Notably H. B. Keller and his co-workers (see
. eg. [101, [111) have advocated this choice for some time. It is also

the basis of incremental procedures given in [ 57, [29] and has been more or

less implicit in various papers in the field.

Our programs here are based more generally on the structure of E*(F,xo)

as a one-dimensional manifold and use a local parametrization at each point

computed along E*(F,xo). A natural class of such local parameters are the

4
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n components of the vector x. We call a process based on this choice of

parametrization a locally-parametrized continuation method.
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3. OUTLINE OF THE PROCESS AND BASIC STEPS '

As noted before, our objective is to determine numerically a non-empty
component E*(F,x°) of the regular solution set E(F)N R(F). For the
discussion it is useful to consider a parametrization by arclength of
E*(F,xo), that is, a function x: J » E*(F,xo) which maps some interval

! diffeomorphically onto some open subset of E*(F,xo) such that

J& R
Hi(s)l[2 =1 for seJ. We may assume also that x(0) = x°, 0 e J.
The process described here belongs to the class of predictor-corrector

continuation methods. Starting from x°

it produces a sequence of approxi-
mations xk = x(sk), k =0,1,..., corresponding to some sequence
0= Sg <57 <Sp< ... of arclength values. Note, however, that in general
the values $1s59s... are only approximately computable and are of limited
interest in most applications.

In our program the principal steps performed during one continuation

step are as follows:
1. Initialization.
2. Check for and computation of target point, if desired.

3. Calculation of tangent vector and determination of new local
continuation parameter.

(3.1) 4, Check for and computation of 1imit point, if desired.
5. Steplength computation.
6. Computation of predicted point and corrector jteration.
7. Storage of data and return.

The sequencing of these steps is dictated by the data-flow. For the de-

scription of the details it will be advantageous not to adhere to this
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sequence. Instead, in the remainder of this section, we discuss the basic
steps 3. and 6. Then the next section introduces the new steplength compu-

tation used in step 5. and section 5 covers steps 2. and 4. The data-

[t T A S

handling steps 1. and 7. should be self-explanatory from the drcumentation

3 of the program itself.
f 1 n

let e',...,e be the natural basis vectors of R". Then it is readily

Hv verified that (see eg. [261])

DF(x)

DF(x) iT
(3.2) det = [(e') Tx] det 1) ¥xe R(F), 1=1,...,n,

(e")T (Tx)

where the matrix occurring on the right is non-singular. Hence, for any in-
dex i, 1< i< n, such that (e’)TTx £ 0, the solution v e R" of the

linear system

$ 1.3) DF(x) n
: ( . (e.i)T v=e

is uniquely defined. Evidently, then

i (3.4) Tx =0 Tj}ﬂ17; ,

and, in line with (2.6), we should set

. DF(x)
(3.5) o = sign(vTe1) sign det (( i:{) .
e

As long as the solution path remains completely in R(F) this is satisfactory.
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But frequently in applications we may encounter a bifurcation point x* ¢ R(F)

where several solution paths terminate. For example, using arclength repre-

1

sentations we may find solutions xj: Jj CR +R(F), j=1,...,4, for

which xJ(s) tends to x* when s tends to one of the endpoints of Jj.
Moreover, it often happens that there are pairs of these solutions, say, x]
2(s)

at x*, (see Fig. 1). In other words, if

and x2 for which 1lim il(s) = -lim X

we disregard the direction of the solutions,
they appear to form one smooth curve through
x*. In such a case, when the process moves
along x] toward x* it usvally “jumps"
over x* onto x2. Then, unless we reverse
the sign of o 1in (3.4) the tangent will
again point toward x* and the process reverses direction.

In order to avoid this problem suppose that the point x in (3.4) is the

k-th approximation computed along the curve. Then o is determined as follows

dir, if k=20

T

(3.6) o= { +1, if signv k-1)Tel

e = sign(Tx

-1 , otherwise

where dir is a user specified direction at the starting point. By comparing
this value of o with that of (3.5) we can detect if the process did jump
over a bifurcation point of odd multiplicity. Obviously, bifurcation points
of even multiplicity cannot be found this way.

Once the tangent Txk has been obtained we determine the indices j]

and j2 of the largest and second largest component of Txk in modulus,

RPN




10
respectively. The relation (3.2) certainly suggests that the index ik'
1< ik.i n, of the new local continuation variable be set equal to jl'
However, if we are approaching a 1imit point in the j1-th variable then
this choice may be disadvantageous. Accordingly, if the following three
conditions are simultaneously satisfied
. J i k-
(1) 1Tk < (e HTnd Ty,
J J -
3.7 1) e ATk s )Tk,
R J
(i11) 1 DT > ul(e HT k],
with a fixed u, 0 < u < 1, then we set ik = j,. Of course, if we don't
have a previous tangent vector this check has to be bypassed. The new con-
k+1

tinuation index ik will be used for the computation of the next point x

k+]. For the tangent computation at x® a continuation

and its tangent Tx
index is assumed to be given by the user.

With the tangent Txk and the steplength hk > 0 determined by the
steplength algorithm of section 4 we compute now the predicted point
&k = xk + hkak. Then any appropriate iterative method for the solution of

the augmented equation

Fx
(3.8) Fx = ; =0
(e K)T(x-5%)

k

starting from X may be used as a corrector process. In the program we

use either the regular Newton method or its modified form in which the

Jacobian at the starting point is held fixed.
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| Let y° = ik, y', yz,... be the iterates produced in this way. The

process has to incorporate provisions for monitoring the convergence and
for aborting the iteration as soon as divergence is suspected. In the
program non-convergence is declared if any one of the following three

conditions is true

(i) |1FyI|] > of |y for some §> 1,
(3.9) (i1) Hyj-yj']ll:ellyj'1-yj'zll for some j > 2,

(iid) J> Jmax

For the constant ©& we use 9 = 1.05 except in the first check of (3.9) (i)

where 8 = 2 is chosen. The maximal iteration count j depends on the

max
method. For the regular Newton process we set jmax = 10 and double this
for the modified method. In the case of non-convergence the predictor step
is reduced by a given factor, for example 1/3, unless the resulting step is

"; below a given minimal steplength.

Convergence is declared if either one of the two conditions holds for

' an iterate:

(i) llﬁyjll.i 8 €pach for some j > 0,

(3.10)
_ . A . .
(1) (R < ) and (JIy-yd™' ] < e o + €gql1yII]) for some > 1.

e e st et e A e

The tolerances €abs® Epe] 2Fe user specified and is the smallest

€mach
In both tests (3.9) and

floating point number such that 1. =1, +

€mach’

(3.10) the maximum norm is used.

AR MY PR

A — " PR
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4. THE STEPLENGTH ALGORITHM

For the points xk, k =0,1,..., approximating the continuation curve
x: J » E*(F,x°) the achievable error lek-x(sk)|| is solely determined by
the termination criterion (3.10) of the corrector process. In contrast to
this the standard ODE-solvers involve a corrector equation obtained by extra-
polation for which the solutions are not, in general, on the exact curve. As
a consequence the available error for the 0DE-solvers depends on the history
of the process up to that point, and this in turn has a strong influence on
the step-selection. On the other hand, for our continuation process any step
hk > 0 along the Euler line is acceptable in principle if only the corrector
converges from the predicted point %k. Moreover, in [26] it was shown that
any compact segment of the continuation curve in R(F) has an e-neighborhood
for some e > 0 1in which Newton's method will converge to the curve.

This suggests that we estimate the radius of convergence of the corrector
process at the computed points and extrapolate these radii to the next point
about to be determined. In practice the estimate of a convergence radius at
some continuation point would have to be based on the corrector iterates which
led to that point. Unfortunately, as was proved in [7 ], this represents in-
sufficient information for obtaining such an estimate. On the other hand, an
approach was presented in [7] whjch allows for an assessment of the con-
vergence quality of the particular sequence of corrector iterates.

For details of this approach we refer to the cited article. In brief,
let {yi} be a given sequence with 1imit y* generated by an iterative
process and denote the errors by e, = IIyi-y*ll, i=0,l,... . The
definition of any convergence measure is based on a hypothetical model of
the behavior of the errors. For example, if {yi} converges linearly it is

reasonable to assume that

|
i
E



(4.1) O0<e;q 2 re;, 1=0,1,...

with some constant », 0 < X < 1, depending on {yi}. Suppose now that

%
the process was terminated with the iterate y1 . Then

. - . i* %]
(4.2) A =§:V(1 '”, w = 1Ly ;{ 5 L , %> 2,
[y -yl

represents a computable estimate of 2.
In the setting of our continuation process suppose now that the y‘,
i=0,1,..., are the corrector iterates leading from the current predicted

~ 1 %*
point xk = y° to the new continuation point xk+] = y1 . Then

“k k j %
(4.3) 8 = XX T = 11y

is the correction-distance. For the modified Newton method the convergence

is indeed linear, and a reasonable aim in the construction of the steps along
the curve is to ensure that the number of corrector iterates remains about
constant. In other words, we aim at taking always, say, m* corrector steps.
Hence, under the heuristic assumption that the error model (4.1) remains

valid for some interval of starting errors e_ around Gk’ we should have

()
begun with an "ideal starting error" 6; = 6 ° 8 such that

(4.4) A 6; =2

and therefore
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(4.5) 0y gix-m* o L (i*-m*)/(i*-1)

In our program we use m* = 10 for the modified Newton method and enforce
always that 0.125 < 6 < 8.

This technique is also readily applicable for Newton's method. In [7]
two different hypothetical error models for the Newton process were discussed.
Here we use only one of these models, namely the one arising in the attraction
theorem formulated in [24]. In essence, under certain conditions
about the equation and the desired limit y* of the Newton process there
exists a radius r* > 0 such that for any starting point y° in the ball

B(y*,r*) the relative errors €; = e;/r*, 1=0,1,..., satisfy

2
(4.6) 0c<egqeole), 1200, 6t) =g, 0<tel.

The radius r* depends on global information about the equation and is not

accessible. If 0 < €y < 1 and the {Ei} satisfy (4.6) then we have

» 1=0,1,..., n_=¢

(4.7) €; < N: = ¢i(n ) =

where o is the unique positive solution of

(4.8) W(a) =ng,  Wla) = TTZ%osT—a :

Moreover, for any w, 0 <w< 1, and i* > 2 the equation




(4.9) 1 ¢i*'](¢(a)) = 1 + 2 cosh o = w

v(a) 1

e
1+ 2cosh 2" g
has a unigue solution o > O.

Now suppose that {y1} denotes the sequence of Newton iterates and

3 *
that the process was terminated at y1 . As in the linear case we use the

approximation

i*x  j. . . )
(4-]0) ZD = Il.y1 _‘_Y1 1LL s e]*-] = e]*_'l < n1*_~|

* -
0l ®o o n

o

and compute with this o the solution o of (4.9) which gives the estimate

ﬁo = y(a) of A Now we proceed as before and obtain the factor

St

x |x%*
&'l

07| Or
[}

(4.11) ot =

-~

for the ideal starting error by determining the unique solution ﬁé, O<n! <1,

of
(4.12) o (Ry) = o' (7).

Since the iterates ¢i are explicitly known the various equations are
not difficult to solve numerically. However, for the computation it is more
advantageous to introduce a least squares fit of B, as a function of w
for all relevant values of i*. In the program we use m* = 4 and the

approximations for By given in Table 1. Note that as before we restrict ek

to the interval 0.125 < 8, < 8.
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, we [a,b]
j* ek
a b
0.8735115 1 1
0.1531947 | 0.8735115 0.9043128 - 0.7075675 In w
2
0.03191815 0.1531947 -4.667383 - 3.677482 1n w
0 0.03191815 8
0.4677788 1 1
0.6970123(-3) 0.4677788 0.8516099 - 0.1953119 Tn w
3
0.1980863(-5) 0.6970123(-3) -4.830636 - 0.9770528 1n w
0 0.1980863(-5) 8
4 0 1 1
; 0.3339946(-10) 1 1.040061 + 0.03793395 1n w
0 0.3339946(-10) 0.125
0.1122789(-8) 1 1.042177 + 0.04450706 1n w
6
0 0.1122789(-8) 0.125
> 7 0 1 0.125

h, > 0 along the Euler Tline n(t) = x

order to estimate the distance between m(t)

Table 1

k

+ t Tx

k

We turn now to the algorithm for the determination of the stepliength

used for the prediction. In

and the exact curve x = x(s)

we introduce the quadratic Hermite-Birkhoff interpolation polynomial
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_ ok k. 1.2 k k_ 1 kK ;. k-1 ok k=1 ]
(4.13)  q(t) =x +tTx +5t W, W -z\s—k(Tx-Tx ), bs, =[x -x P
for which
(4.14) q(0) = x*, q'(0) = T, q'(-as) = XN,
Since
) k. (! . .
(4.15) w = J x“(sk-cAsk)do = x"(sk-cAsk), D<oc<l,
0
the quantity
(4.16) WK1, = 2= Isin 3 o l» o, = arccos (1) TkT)

| represents an approximation of the curvature of the exact point at some point

between x(sk_1) and x(sk).
:3 It is tempting to derive from q a prediction of the curvature to be

expected during the next continuation step. However, a closer computation

shows that the value of the curvature of g assumes its maximum Hwkllzlcos2 % @

at t = - % As) and that for increasing t this value decreases rapidly. For
example, at t = 0 the curvature of q equals only ||wk||2 | cos % akl and
for positive t no reasonable predictive information can be gained this way.

The relation (4.15) suggests the use of the simple linear extrapolation

AS
(4.172) e I e P TR TP T

AS, ¥ 85,
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for a prediction of the curvature during the next continuation step. However,
this value may become negative and accordingly we use instead

(4.17b) Yy = max (vm,-n,vlfe"t)

with a given small ¥ 0.

. >
min
Most of the data discussed so far are sketched in Figure 2. In order

to derive a formuia for the desired predictor step hk we note that

(4.18) Ha(t) - n()[1, = & 411w 1,

represents an estimate of the distance between the Euler line and the exact
curve. In fact, for smooth curves the error of this estimate is asymptotically
or order three in max(lti,Ask) as this quantity tends to zero. Hence, if we
want this distance to be at most equal to a tolerance e > 0 then we should

choose the next step as

(4.19) t = /WLH .
2

It is natural to replace the curvature llwkll2 by the predicted value vy
of (4.17) and to relate the tolerance ¢ to the "ideal starting error" Gi
obtained earlier. As Figure 2 indicates it is unreasonable to expect €> AS) -

Hence, we use instead

€min AS) if 6§_§ €min asy
(4.20) € = { bsy if & > a5
‘6; otherwise ﬂ
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with a small €min > 0, e.g., ¢

min - 0.01. Then a tentative predicted step

is given by

() . /zsk
(4.21) R L

k

From the form (3.8) of the augmented equation we see that the corrector
iterates remain in a hyperplane perpendicular to the basis vector e1k through
the predicted point. Then Figure 2 suggests that we adjust the predicted
steplength hk so as to ensure that hk will be approximately equal to Sy 41-
There is no need to enforce this too rigidly. It suffices to define a new

tentative step by the requirement

(e n(n{?)) = (e')7 q(n{1)

whence,
(1) .
(2) - . (eq L e)T Txk-T
(4.22) hk = hk [1 + —ZA—S—': (] - (ei)T T )].

This formula may involve subtractice cancellation and has to be evaluated in
double precision.

The final value hk of the steplength is now obtained from h&z) by
enforcing three different bounding requirements. First of all, if the pre-

k-1 ¢o xK was obtained only after a failure

vious continuation step from x
of the correction process and a corresponding reduction of the predicted step,
then we should not ailow hk to exceed as, . Secondly, as in the ODE solvers

we need to control both the relative growth and the absolute size of the pre-
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dictor step. Thus, we require that
1
(4.23) < A5y < hk: KAS) » hm‘in < hk < hmax
where « is some factor, say, « = 3, and hmin’ hmax depend on the machine

as well as the requirements of the problem. It should be obvious how the

final step hk is obtained from hﬁz) on the basis of these restrictions.
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5. THE COMPUTATION OF TARGET AND LIMIT POINTS

By generating a sequence of solution points on a given curve, the con-
tinuation process reveals the shape of the curve, but there are often other
items of interest that need to be studied as well. Our program is designed
to pause during the continuation steps in order to seek out special points
that the user has requested, namely, target and limit points.

A target point x € E*(F,xo) is a point on the solution curve for
which the component X; = (ei)Tx with agiven index i = IT has a prescribed
value ii = XIT., Limit or turning points with respect to a given index
i = LIM are points x ¢ E*(F,xo) where the i-th component (ei)TTx is zero.
More specifically, since it is computationally unreasonable to attempt to
compute zeroes of even order, we are concerned only with 1imit points on the
continuation curve where (ei)TTx(s) changes sign.

It might be mentioned that bifurcation points represent another inter-
esting, special class of points. But in that case we are not only interested
in the spécific location of the point but also in the solution curves that
branch off from it. This is exactly the task (1.2) (v) listed earlier. The
corresponding procedures (loc. cit.) would add considerably to the complexity
of our program, and, since their utility tends to be of a more specializad
nature, it was decided not to cover task (1.2) (v) (nor (1.2) (iv)) in the
present program.

As indicated before, the determination of a target or 1imit point re-
presents an interruption in the normal flow of the continuation program.

After at least one step has been taken, the program has available an old

k-1 k-1

point x ', a new point xk and the tangent vector Tx~ ', Normally, then

we turn to the computation of Txk, of the new steplength, and finally of the
k+1

next point x But if the index IT or LIM 1is non-zero then these




computations are postponed for the search of a target or limit point,

1 respectively. We discuss these cases separately:

F Target points: Suppose that a non-zero value of i = IT and associated
i, T k-1

value ii = XIT have been given. If ii lies between (e ') x and
E (e‘)Txk, then it is assumed that a solution point x ¢ E*(F,xo) with
} (e’)Tx = ii is nearby. In this case a point
’ k-1 k
(5.1) y(t) = (1-t)x +tx, 0<tc<1,
g on the secant between xk"] and xk is determined such that (e1)Ty(t) = ii.

Now with the augmenting equation (e1 Tx = ii the corrector process is applied,

and, if it terminates successfully the resulting point is taken as the desired

target. Otherwise, a failure is indicated for the target routine. In either
case, the routine returns and on the next call the continuation loop will pick
up from where it was interrupted. Note that in effect the target routine uses
the IT-th variable for the local parametrization of the curve between xk']
and xk. This may be an inferior choice of parameter for the corrector but

it allows us to enforce that the resuiting target point x e E*(F,x°) indeed
satisfies (ei)Tx = ii' Clearly, for very large continuation steps we have

no guarantee that all target points will be detected or that a target compu-

the maximal allowed stepsize that has been chosen.

|
j tation will succeed. Thus, the utility of the target routine will depend on
i
|
{
]

Limit points: If the limit point index i = LIM 1is non-zero, then a limit
point determination is carried out after a target point search has been

successfully or unsuccessfully compieted, provided it was called for at all.




!
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Recall that we still have as current information the vectors xk'1, xk,

k-1

and Tx Now the new tangent Txk is evaluated and if

)T k

sign(e1)TTxk'] # sign(e1 Tx" for i = LIM (# 0) then a limit point

search is begun. For this the index i of the largest component in

k-1

modulus of the secant direction xk - is chosen as a local para-

k-1

metrization of the curve between x ' and xk. More specifically, suppose

that «x: [sk_1,sk] > E*(F,x°) represents the segment of the curve between

xk'] and xk. Then i is assumed to be the index of a local coordinate

for which there exists a Eijective parameter transformation ¢: [0,1] ~ [sk_1,sk]
such that (ei)Ty(t) = (ei)Tx(¢(t)), 0 <t<1, where y(t) is defined by
(5.1).

Hence, we may consider the function

(5.2) g: 0,11+ R, g(t) = (e Tx(e(t)), O<t<T,

and our problem is to determine a zero of g. Since by assumption

sign g(0) # sign g(1), a rootfinder of the Dekker-Brent type can be appTied.

For the evaluation of g(t) we use the augmenting equation (ei)Tx = (ei)Ty(t)
and apply the corrector process with y(t) as starting point. If it terminates
successfully with some x then Tx can be evaluated and we set a(t) = (ei)TTx.
Hence, g is certainly costly to compute and we require an efficient root-
finder to speed the convergence of the 1imit point routine. A specially
modified version of the routine given in [4 ] is used in our program. Clearly,
as in the case of target points, we may fail to detect a limit point if the
continuation steps are too large and in such a situation the rootfinder may

also fail to converge. In addition, the evaluation of g may run into

difficulties when the desired 1limit point is near a bifurcation point.
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6. SOME NUMERICAL EXAMPLES

The programs described here have been used extensively with excellent
success on problems from many different areas. We include here only a few

numerical examples to illustrate the operation of the programs.

Example 1. In order to present some details of the performance of the pro-
grams we consider first a very small problem which was originally formulated
in [9 ] and subsequently used as a test case by many authors. The mapping F

has here the form

3 2
(6.1) Fx = ,» ¥xeR.

3 2
X4 + X5 + Xy = 14x2 + 10x3 - 39

For the starting point x2 = (15,-2,0)T the ssinfion ¢, -« passes through
x* = (5,4,1)T' and this point is chosen as target.

Tables 2 and 3 show runs with the full Newton method and modified Newton
method, respectively as corrector process. A starting step hO = 0.3 and
maximum step hmax = 25.0 were used. The performance for the two correctors
is practically the same although the step-prediction exhibits certain differences
due to our assessment of the corrector distance. Clearly, the use of the
modified Newton process is much less expensive and hence preferable as Table
4 shows which summarizes the total number of function and Jacobian calls in-
cluding those for the target calculation. Comparative performance data given
in [ 71 for this problem involved 22 continuation steps, 15 step reductions

and 128 Jacobian evaluations. The procedure discussed in [19) required 25

continuation steps but no further details were provided in the paper.




|
.‘1
26 i
Continuation point Total ;
i Contin. Correct. 1
; Step x.l x2 X4 Variable Steps Comments }
0 15.000 -2.00000 0.00000 X3 - |
3 1 14.705 -1.9421 0.065381 Xy 2
f 2 14.285 -1.7291 0.26874 X3 3
3 16.906 -1.2094 0.54684 Xo 2
f 4 24,918 -0.59908 0.55514 Xy 3
)
.5 48.974 0.71803 -0.080758 X 3
F
1 6 57.928 1.2846 -0.40736 X 4 Step red.
7 60.052 1.5709 -0.54035 Xy 4 Step red.
8 61.666 2.0010 -0.66683 Xo 2
9 -5.1039 4.,1510 1.3464 Xo 2 Target passed
TOTAL 25
Computation of target 4

Table 2
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Continuation point Total
’ Contin. Correct
Step X1 Xy X3 Variable Steps Comments
0 15.000 -2.0000 0.00000 X3 -
3 1 14.710 -1.9421 0.065381 X 3
F 2 14.285 -1.729 0.26874 X3 4
i
3 16.906 -1.2094 0.54685 Xo 1
4 24.918 -0.59906 0.55514 X 6
5 48.975 0.71810 -0.080804 X1 5
6 57.289 1.2847 -0.40742 X1 6 Step red.
7 60.053 |  1.5711 -0.54042 %4 5 Step red.
8 61.666 2.0013 -0.66689 Xo 2
9 -4.4239 4.1413 1.3229 Xy 1 Target passed
TOTAL 33
S Computation of target 8

l

. I Table 3
3
!
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Corrector Process
Newton Mod. Newton
Function calls 41 53
Jacobian calls 38 21
Table 4

It may be noted that the solution curve has two 1imit points each with
respect to Xy and X3 The two step reductions are almost unavoidable here
since the curve has a long straight segment followed by a very sharp bend.

The target computation is relatively expensive since the Tast step is extremely

large due to another straight curve segment.

Example 2. Maneuvering airplanes, especially at high angles of attack, some-
times undergo sudden jumps in their response to the pilot's control inputs.

The problem has been discussed extensively in the literature, see, for example,
[18], [30], [39]. Without going into further details we use here a simplified
version of a system of five equilibrium equations involving the roll rate (Xl)’
pitch rate (xz), yaw rate (x3), (incremental) angle of attach (x4), side slip
angle (x5), elevator angle (x6), aileron angle (x7), and rudder angle (x8)'
More specifically, for the particular aircraft discussed in [87] these equations

have the dimensionless form

(6.1) Fx = Ax + ¢(x) =0, VvxeR

where




29

~3.933 0.107 0.126 0 -9.99 0 -45.83 -7.64
0 -0.987 0 -22.95 0 -28.37 0 0
A = 0.002 0 -0.235 0 5.67 0 -0.921 -6.51
1.0 0 0 -1.0 0 -0.168 0 0
0 v -1.0 0 -0.196 0 -0.007M 0
and

-0.727 XoX3 + 8.39 X3Xy = 684 .4 XgXg + 63.5 XXy
0.949 X1%3 + 0.173 X1Xg

o(x) =| -0.716 X1Xo - 1.578 X1%g * 1.132 XqX9
- X%

Figure 3 shuws some solution curves on the three-dimensional equilibrium sur-
face in R8. More specifically, in all cases we fixed a value of Xg (elevator
deflection) and chose the rudder deflection x8 = 0. The paths Xg > W Xg = 0
with Wy ~ ~0.0061771 have two 1imit points, for wy > x6 > Wy x8 = 0, with
Wy = -0.012498 a third 1imit point appears, and for wy > Xgs Xg = 0 only one
1imit point remains. A similar picture arises for negative roll rates.

In all cases the programs easily detected and computed the various limit
points (see TabTe 5). But the example also shows that even with a large number of search
paths it is difficult to provide a full picture of the location of the critical
boundary, that is, of the curves of limit points with respect to Xy for Xy = 0

and varying XgrXge In Figure 3 the corresponding branches of 1imit point

curves are shown as dotted lines. They were obtained with a code for the
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earlier mentioned task (1.3) (iv) (see [281]).

Xy ) X3 X3 Xg X6 X7

1 2.9649 0.82557 0.073661 0.041309 0.26735 -0.05 0.50481

2 2.8174 -0.17629 0.089926 0.026429 -0.071476 -0.008 -0.20497

3 3.7579 -0.65542 0.38658 0.092521 -0.19867 -0.008 0.006208

4 4.1638 0.089131  0.094806 0.022889 0.016232 -0.008 -0.37766

5 1 2.5873 -0.22355 0.054682 0.013676  -0.091687 0.0 -0.18691

6 3.9005 -1.1482 0.58156 0.13352 -0.32859 0.0 0.51016

7 2.2992 -1.4702 -0.061849  -0.079009 -0.58630 0.1 -0.68972

8 4.4565 -4.,4909 1.6164 0.33091 -1.0857 0.1 10.0212

Table 5

Example 3. As an example for the numerical investigation of the equilibrium
surface of a mechanical structure, we consider a clamped, thin, shallow,
circular arch which has been used as a test case by various authors (see eg.
[12], [16], [36]). Cet U and W be the radial and axial displacements, R
the arch radius, A the cross-sectional area, H the thickness, and E
Young's modulus. With the dimensional displacements u = U/H, w = W/H, the
total potential energy -- non-dimensionalized by dividing by EAR(H/R)2 -
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is given by

9 2
62 [0 pR @7 (7 - o puias,

-eo

Here p = p(8) 1is the dimensionless radial load, and o, a, are dimensionless

constants. Each end is assumed to be pinned, that is, we have the boundary

conditions
dzu
{6.3) u(+8)) =0, w(+e)=0, . (+ 6,) = 0.

The finite element approximation introduced in [36] was applied. More
specifically, we used a uniform mesh with eight elements, eo = 15 and the
constants a; = 3.8716 x 107°, o, = 1.65504 x 107" corresponding to the

data in [16]. Moreover, the following load function p = p(u,v) was chosen

u(1 + 7v), “or element 4
(6.4) p(u,v) =

u(1 - v), otherwise

corresponding to a base load 8 = pu(1-v) and an excess load 8uv in element
4 such that the average load is always wu.

Several curves on the equilibrium surface corresponding to constant
values of u or v were computed. Figure 4 shows the projection of these
curves into the (B,5)-plane where & represents the radial displacement of the
center point. For uniform loads, that is, v = 0, we encounter two bifurcation
points on the primary curve which are connected by two "buckling" curves that

have the same projection in the (8,5)-plane.
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7. THE PITCON CODE

THE FUNCTION F DEFINING THE SYSTEM OF EQUATIONS TS SUPPASER TQ PTCNOOSS
RE._CONTINUQUSLY NIFFERENTIABLE., THE REGUILARITY SET R(F) OF F 18 STCNOOG?
THE SET OF ALL POINTS Y IN NUAR-DTMENSIONAL GPACE WHERE THE FTONGOAS
NERJVATIVE DFi(X) HAS MAXTMAL. RANK., THE STARTING FOINT (S5 ASSUMED PTENNOSS
TO RE TN R(F), FOR ANY INREX TP WITH {.LE.TP.LFE.NVAR. LET FICNCOTO

SURROUTINE FUTCON(NVARs! ™y JTsXITsKSTEFyTPCsHy TRET» TMOIIS TPYT, PTCNOOO1
c 1 HMAXsHMINHFACT» ARSERRs+ "' RR+RUORK, ISIZED f;?ﬁ?ggz
*TONGOOS
Extttttttttt*!ttttttttttt*ttt%ttttt*ttttt!tt!t#ttxttttxxxtttXx!xltxtxxX!PT633224
PTC 5
¢ PITCON,FOR FTCNOOOA
C PTCNOOO?
C 29 0CT 1981 VERSION OF PITCONs FTENOOOR
C THE UNIVERSITY OF PITTSBURGH CONTINUATION PACKAGE. FTCNOOQQ
;. THIS VERSION {ISES SINGLE FRECISION AND FULL MATRIX STORAGE., FTONOOLO
c PTUNOOL S
c FTCNOOL2
C THIS PACKAGE WAS FREPARED WITH THE PARTIAL SUPPORT OF FTCNQO1Z
g THE NATIONAL. SCIENCE FOUNDATIONs UNDRER GRANT MCS-78-05299. :;Pﬁgg%:
C RY WERNER €. RHEINROUDT ANR JOHN ¥, RURKARNT PTCNOO16
C INSTITUTE FOR COMPUTATIONAL MATHEMATICS aND AFPlIFATtONQ PTCNOOL?
C DEPARTMENT OF MATHEMATICS AND STATISTICS. FTCNOOL8
C UNIVERSITY OF PITTSRURGHs PITTSBURGH, FA 15268, FTCNOO1?
C PTCNOOZO
C PTCNOO21
g AN EARLIER VERSION OF THE PACKAGE WAS WRITTEN IN COOFERATION WITH PTCNOOEZ
FTONOOR3
C GEORGE N RYRNE.» FTCNOO24
C CONPUTING TFCHNOLOGY AND SERVICES PTCNOO25
C EXXON RESEARCH AND ENGINEERING COMPANY PTONOGZ S
C LINDENs NEW JUERSEY, 07036 FTCNOO27
c FTCNOO2R]
C PTCNOOR9
C  THIS PACKAGE COMPUTES POINTS ALONG A SOLUTION CURVE 0OF AN PTCNOOZO
C UNDERDETERMINED SYSTFM OF NONLINEAR EQUATIONS OF THE FORM FX=0. PTCNOOX1
C THE CURVE IS SPECIFIED TO PAQQ THROUGH A GIVEN STARTING SQLUTION PTCNOOI2
C X OF THE SYSTEM. HERE X DENQTES A REAL VECTOR OF NVAR FTCNOQ33
C COMPONENTS AND FX A REAL VECTOR OF NVAR-1 COMPQONENTS. PTONOO3S
: C NORMALLY EACH CALL TO PITCON PRODUCES A NEW FOINT FURTHER ALONG PTCNOO3S
L C THE SOLUTION CURVE IN A USER-SPECIFIER NIRECTION. FTCNOO3S
c AN OPTION ALLOWS THE SEARCH FOR AND fOHPUTATION OF TARGET POINTS, FTCNOO3?
C THAT ISs SOQLUTION POINTS X FOR WHICH X(IT) = XIT FOR SOME USER ~TCNOO3R
C SPECIFIED VALUES OF IT AND XIT. FTCNQO3?
G A FURTHER OPTION ALLOWS THE SEARCH FOR AND COMPUTATION OF LIMIT FTCNOO4O
C POINTS FOR SPECIFIEDR COORDINATE I.IMs THAT ISs SOLUTION POINTS FOR PFTCNOOAL
€ WHICH THE L.IM-TH COMPONENT OF THE TANGENT VECTOR IS ZERO. STONOOST
C FTOCNNQAS
c FTCNOQSS
C EXPLANATIONS OF THE ALGORITHMS USED IN THIS PACKAGE MAY FTCNOOAS
C RE FOUND IN THE FOLL.OWING REFERENCES: FTCNOO4S !
C FTOCNOQA? ;
C PTCNOOAS
C WERNER RHEINBOI.DT, PTENOO4S :
. SOLUTION FIELD OF NONLINEAR EQUATIONS ANR CONTINUATION METHORS PTCNOOSO :
E SIAM JOURNAL OF NUMERICAL ANALYSIS, 17, 1980, PP 221-237 ;;?Nggg% :
CNOOS2 i
C COR DEN HEIJFR AND WERNER RHEINBROLDT, PTCNOOS3
;. ON STEPLENGTH ALBORITHMS FOR A CLASS 0OF CONTINUATION METHODS, PTCNOOS4A
g SIAM JQURNAL OF NUMERICAL ANALYSIS 1Ry 1981, FP 925-947 ;TCNggg5
TCNOOS6
C  WERNER RHEINBOILDNT» PTCNOOS?7
; C NUMERICAL ANALYSIS OF CONTINUATION METHORS FOR NONLINEAR FTCNOOSS
. C STRUCTURAL PROBLENMS, FTCNOGS?
. C COMPUTERS ANR STRUCTURES, 13, 1981, PP 103-114 FTENOOKO
N ' C PTCNOOA L
. C PTONGOS2
| C OUTLINE OF THE MATHEMATICAL PROCEDURE FTENOOLS
. c PTCNOQAY
[ C PTONOOAS
(o
[
€
c
r
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FA(Xs IP) RE THE FUNCTION DRTAINEDN RY g“GSE:TLrgﬂgkd;TH F0R

AR FUNCTION X(IP)-R FQ M ! .
QNI“UQ?FIHTEEQE 1S AT LEAST ONE INDEX Ig SUCH THAT THE ﬂFFIUéTIVF
NDFACX, IP) OF FA TS NONSINGULAR. WITH SUCH AN IF« AND A DJIRECTTION
DIR (=41 OR -1)s THE TANGENT OF FA,» TANC{)e 1S UNTAURELY NEFINET EY:

TAN:= SOLUTION OF ( DFA(X,IF)RTAN=E(NVAR) )}
TAN:= TAN/(EUCLINEAN NORM OF TAN)

SN:= DIRXSIGN (DETERMINANT (DFA(X»IP) ) )
TAN= SNETAN

HERE E(T) IS THE I-TH RASIS VECTOR IN NVAR-SPACE.
THE PROCESS USES A LOCAL PARQ??EFR§§SE§O?PO§§T?§nggSU§é
MALLY THE CONTINUATION PARAMETER
#azT INDEX FOR WHICH ABS(TAN(X)(IF)) IS MAXIMAL. RUT IN THE
CASE OF CERTAIN CURVATURE CHANGES WHERE IT AFPEARS THAT
A LIMIT_FNINT FOR THIS CHOICE FOR IF IS AFFROACHING,

OTHER CHOICES FOR TP MAY RE USER.

PRENJICTION TAKES PLACE ALONG THE EULER LINE X+HXTAN., THE
STEPLENGTH ALGORITHM TAKES INTO ACCOUNT THE QUALITY OF THE
CORRECTOR ITERATION AT THE 1LAST POINT AND A FREDICTION OF THE
CHANGE TN CURVATURE. THE TANGENTIAL STEPSIZE USER IN PREDICTION 15
CHOSEN SO AS T0O ACHIEVE APPROXTMATELY THE PREDICTED SECANT STEFSITE
AFTER CORRECTION IS DONE.

THE CORRECTOR ITERATION STARTS FROM THE PREDICTED FOINT AND SOILURS
THE AUGMENTED SYSTEM FA(X,IP)=0 WITH THE VALUE 0F THE SCALAR
B EQUAL TO THE IP-TH COMPONENT OF THE PREDICTER POINT. THE USER
CAN SPECIFY AS CORRECTOR ITERATION EXITHER A FULL NEWTON PROCESS.

OR A MODIFIED NEWTON PROCESS WXITH FIXED JACOBIAN NFA EVALUATED AT
THE PREDICTER POINT.

OUTLLINE OF THE COMPUTATIONAL ALGORITHM

DURING THE FOLLOWING DESCRIPTION, WE WILL ASSUME THAT WE
HAVE ENTERED THE CONTINUATION L.OOP WITH AN OLD POINT XL,

A CURRENT POINT XCs THE TANGENT TL. AT XL, AND CERTAIN SCALAR
QUANTTTIES ASSQCTATED WITH THESE VECTORS., WE WILL CHECK
FIRST FOR ANY TARGET OR LINIT POINTS RETWEEN XL AND XCs

THEN PROCEED TO COMPUTE A NEW CONTINUATION FOINT XF,

THESE NAMES ARE NOT_IN PRECISE ACCORDANCE WITH THE STORAGE
ARRANGEMENTS UNTTL. THE END OF A CONTINUATION STEP.

STEP 1: FOR KGTFP G67.0» THE CORE GOES TO STEF 2
ON THE FIRST CALL TO PITCON FOR A GIVEN PRORLEM (KSTEP=-1
OR KSTEP=0) PRORLEM-NEPENNENT CONSTANTS ARE SET
AND USER CONTROL FARAMETERS ARE LOADED OR DFFAUITQ USED,
IF (KSTEP.EQ.0)s THE PROGRAM PROCEENS TN STEP
IF (KSTEP.EQ.-1)s THE USER REQUESTS THAT THE INPUT STARTING
POINT XR RE CHECKED FOR THE CONRITION

PTCNGOT
PICNQO?Z
PTONOOT7D
#TLNOOTS
FTCNONTS
FTIING.Te
FTCNOOTT
FTCHCO72
PTCNGGTS
FTCNOGAO
FTONOOS]
FTCNOOS32
PTCNOOSBZ
PTCNOORS
FTCNOGSS
FTCHO086
FTCNOOST

PTCNQORE
PTCNOOB?
FTCNOOYO
FTCNOO91
FTCNOQ?2
FTCNCO9D
PTONGOR S
FTCNQO®S
PTENCORS
PTCNOOS7
FTCNOO7S
FTCNOOO?
FTENCIGLO
FTCNO101
FTCNCICS
FTCNO10OZ
FTCNOL04
PTCNOIOS
PTCNO1Oo
PTCNG107
PTCNO108
PTCNO109
FPTCNOL1O
PTCNO111
FTCNG112
PTONO113
PTCNOL14
PTCNOILS
PTCNO114
FTCNO117?
FTCHO118
FTCNOT19
FTCNO120
PTENO121
PTCNOlZQ

ABS(F(XR)) LLE. (ABSERR/2), IF THIS IS NOT THE CASE, NEWTON’SPTCNOLZ

METHOD IS APPLIED TO THE POINT XR UNTIL THE ERROR_ CONRITION
IS SATISFTED» OR A FAILURE HAS OCCURRED. AN UNIMFROVARLE
POINT RESULTS IN A RETURN OF IRET=-4.
IF THE. STARTING POINT XR WAS TMPROVEDNs THE FROGRAM RETURNS
WITH IRET=0 ANR KSTEP=
IF (KSTEP.EQ.0)) THE fDNTINUATION LOOP REGINS WITH THE
STARTING POINT XR STORED IN XL AND XCs THE STEPSIZE HTANCF
SET TO THE INPUT VALUE OF Hsy AND THE
CONTINUATION PARAMETER SET TO THE INPUT VALUE OF TPC,
FOR KSTEP.GT.0s THESE QUANTITIES ARE COMFUTED AND
UPBATED BY THE PROGRAM ITSELF.

STEP 2 TARGET POINT CHECK, IF (IT.NE.0)» A TARGET POINT IS
DESIRED. THE VALUES OF XL(IT) AND XC(IT) ARE COMFARED 70
XIT, IF THE TARGET POINT IS RETWEEN XI. AND XC. THE PROGRAM
COMPUTES THE TARGET PNINT, SETS IRET=1, AND
RETURNS» TEMPORARILY TNTERRUPTING NORMAL CONTINUATTON.

PTFNOl 4
FTENO1ZS
PTCNOL2S
PTONOLZ?
FTCNO1ZS
PTCNO129
FTCNO130
FTCNO131
PTCNOLZZ
FTCNO133
PTENOTL IS
FTCNO13S
FTCNO136
PTCNO137
PTCNO138
PTCNO13®?
FTCNG1AD

o

-
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FTCNOL 4L

STEP 3: TANGENT AND LOCAL CONTINUATION PARAMETER CALCULATION, TF THEFTCNO142

LOOP WAS SUSPENDED AT THE LAST CALL TO FITCON TO ALLOW THE
RETURN OF A LINIT POINT, THEN THE TANGENT HAS ALREADNY REEN
CALCULATED AND A ILIMIT POINT CHECK 1S SUFERFLUOUS, SO

THE PROGRAM SKIPS TO STEP 5. _
OTHERWISEs A VECTOR IN THE TANGENT PILANE AT XC 1S COMPUTED.
SUPPOSE THAT THE PREVIOUS CONTINUATION PARANETER INDEX

WAS [Pl.s WHERE ON THE FIRST STEP IFL. IS USER-SUPFLIED,

THE NEW TANGENT IS NORMALIZEDN, AND THE TPL-TH CORMFONENT

IS FORCED TO HAVE THE SAME SIGN AS THE I(PI.-TH COMFONENT

OF THE PREVIOUS TANGENT (OR ON FIRST STEP. THE SAME

SIGN AS THE USER INFUT DIRECTUON DIR., THEN THE 1.OCAL

FTONO14S
FTCNOL1 34
r:FNOI4‘
el

PTFNO]J,
PTCHGTLAR
FTONC1A9
FTUNOLS0
FTONGLSL
FTCNQ13S2
FTCNOLER

CONTINUATION PARAMETER IPC IS DNETERMINED, IFC I3 SET TO THEFTCNOL154

LOCATION OF THE ILARGEST COMPONENT OF THE TANGENT VECTOR
LINLESS A LIMIT POINT FOR THIS CHOICE APPEARS TO 3E
APPROACHINGy IN WHICH CASE THE L.OCATION 0OF THE SECOND
LARGEST COMPONENT MAY RE TRIED,

PTCNO1SS
FTCHO1S
FTCNQIST
FTCNO1SE

ONCE TPC IS SETs THE QUANTITIES TCIPC» TCLIMs HSFCLCy ALFHRLCPTONOLSO

AND RIR ARE COMPUTED, WHOSE MEANINGS ARE EXPLAINED RELDW.

STEP 4: LIMIT POINT CHECK. IF LIM.NE.Os THE LIN-TH COMPONENTS
OF THE OLD AND NEW TANGENTS ARE COMPARED. 1F THESE RIFFER

FICNOL150
PTCNO1 61
FTONOLA2
PTCNO14&3

IN SIGNs A LIMIT POINT (IES BETWEEN XL ANR XC. THE PROGRAM FTCNO164

ATTEMPTS TO FIND THIS LIMIT POINT., TF FOUNDy IT STORES

PTCNO16S

THE LIMIT POINT IN XR» THE TANGENT AT XR IN TL. SETS IRET=2,FTCNOléa

AND RETURNS, TEMPORARILY INTERRUPTING THE NORMAL 1.00F. PTCNO1 &7

STEP 5: STEP LENGTH COMPUTATION. THE PROGRAM COMPUTES HTANCF: THE FTCNO149

STEPSIZE TO RE USED ALONG THE TANGENT T0O DRTAIN THE PTCNOL70

PREDICTED POINT XPRED:=XCHHTANCFXTC,» THE STARTING POINT PTCNO171

FOR THE CORRECTOR PROCESS, IN COMPUTING HTANGFs CERTAIN  PTCNOI72

CURVATURE AND STEPSIZE DATA ARE UPRATED. g;g:gizi

STEP 6: PREDICTION AND CORRECTION STEP. NITH THE FREDICTED FOINT  PTCNO37S

XPRED=XC+HTANCFRTC AS A STARTING POINT. THE CORRECTOR FTENO126

PROCESS IS APPLIED TO CORRECT THE POINT UNTII. PTENGL7?

ARS(F (XCOR) ) .LE . ARSERR AND XSTEP, THE LAST CORRECTOR 3TEP. PTCNO1 78

SATISFIES XSTEP.I.E.ARSERR+RELERRXABS(XCOR) . PTENO179

IF THE SIZE OF A CORREGTOR STEF IS TOD LARGE» FTCNOLRO

OR IF A CORRECTION STEP INCREASES THE FUNCTION VALUE: OR  PTCNO181

THE MAXIMUM NUMRER OF STEPS ARE TAKEN WITHOUT CONVERGENCE: PTCNO182

THE STEPSIZE HTANCF IS REDUGED AND THE CORRECTOR STEF IS PTCNO1R3

ATTEMPTED AGAIN, IF THE STEPSIZE SHRINKS RELOW HNINs THE  FTCNO184

PROGRAM SETS AN ERROR FI.AG AND RETURNS. PTCNG18S

FTONQLIZS

STEP 7: STORING INFORMATION REFORE RETURN. AFTER A SUCCESSFUL FTCNOLS?

CONTINUATION STEP, THE PROGRAM REARRANGES 1TS STORAGE SO FTCN0133

THAT THE ENTRIES GORRESPONDING TO XC AND XF HOLD THE FROPER PTCNO1S9

DATAs COMPUTES CORDISs THE SIZE OF THE CORRECTION TO THE  FTONO120

PREDICTED POINTs AND MORIFIES CORDIS TO A VALUE THAT WOULD PTENO191

CORRESPOND TO AN OPTIMAL NUMRER OF CORRECTOR STEFS. FTENO192

PTCNOL23

ON NORMAL RETURNs THE VECTOR XR (THE FIRST NVAR ENTRIES OF RWORK)s  PTCNO19S

CONTAINS A SOLUTION POINT ON THE CURVE F(XR)=0, AND 1S EITHER PTENO194

A CONTINUATION POINTs A TARGET POINT, OR A I.IMIT POINT, WHICH PTENO197

IS INDICATED RY THE VALUE OF IRET. PTENO178

IF IRET IS NEGATIVE, AN ERROR HAS OCCURRED., 1IF A LIMIT POINT IS PTENO199

RETURNED» THE TANGENT VECTOR AT THE LIMIT POINT IS CONTAINER IN THE PTCNO200

LLOCATION TI. IN RWORK. ON FIRST CALLs THE USER NUST SET SOME OF THE PTCNOZOL

SCALAR _PARAMETERSs AND THE STARTING POINT XR. THEREAFTER, ONLY TT  PTCN0202

AND_ XIT SHOULD BF CHANGED RY THE USER DURING A PROBLEM RUN. PTCNO203

NEW PROBLEM 19 T0 BE RUN (WHETHER A nIEFERENT FUNCTIONs OR THEPTCNOZOS

SANE PUNETION BT FL DIFFERENT STARTING POINT OR ERROR RONTR PTENOZOS
THE PROGRAM MAY RE RESET RY USING KSTEP=-1 OR 0, AT WHICH TInF THE  FTCNO

SCALARS AND THE POINT XR MUST RE SET AGAIN. NOTE THAT IN THIS CASF  FTONOROT

THE STATISTICAL DATA IN THE COMMON RLOCKS /COUNTL. AND COUNTS. FTCHO” 2

WILL RE RESET 10 0 AS WELL. ETTNAZLS

TTINOST
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NEFINITIONS ANR NEFAULTS OF PITCON PARAMETERS

NVAR

1IN

IT

XI7
KSTEP

IPC

IRET

THE NUMBFR OF VARIARILES IN THE NONLINEAR SYSTEM., NVAR 135
THE NIMENSION OF THE PIVOT VECTOR IPUT, ANR THE SIZE OF THE
VECTORS XR» XC» XFs TL. AND TC WHICH ARE CONTAINED IN RWORK.
RWORK ALSO CONTAINS STORAGE FOR THE MATRIX FFRYM WHICH

IS OF SIZE NVAR X NVAR.

NVAR HUIST RE GREATER THAN 1. AND MUST NOT RE_CHANGED NURING
THE COURSE OF A PROBLEM RUN. NVAR HAS NO DEFAULT GALUE,
LIMIT POINT FLAG ANR INDEX, IF (LIM.EQ.O0}s LIMIT POINTS
ARE NOT TO RE LOOKED FOR. OTHERWISE, THE USER SHOULD 3T
L.IM 7D THE INREX OQF THE VARIARLE FOR WHICH LIMIT

POINTS ARE TQ BE SOUGHT. LIM NEFAULTS TO ZERO.

LIM MUST SATISFY O.LE.LIM.LE.NVAR.

TARGET PQINT FILAG ANR INDEX, (F (IT.EQ.0)s TARGET FOINTS
ARE _NOT T0 RE LOOKER FOR. OTHERWISE, THE USER SHOULRN 3ET
IT 70 THE INDEX OF THE VARIABLE FOR WHICH TARGET

VALUES XIT ARE DESIRED. IT HAS THE NEFAULT VALUE ZERD.

IT MAY BE RESET BY THE UQGR AT ANY TIME DURING A RUN.

IT MUST SATISFY O.LE.IT.LE

THE VALUE OF THE TARGET UFtTﬂR COMPONENT SOUGHT, TF IT.NE.Q.
TARGET POINTS XR SATISFY XR(IT)=XIT., XIT HAS NO DEFAULT.
THE NUMBER OF CONTINUATION STEPS TAKEN. THIS DOES NOT

INCLUDE FAILURES, TARGET POINTS OR LIMIT POINTS. THE PROGRA&ETCNO236

INCREMENTS KSTEP EACH TIME A NEW POINT XF IS COMPUTED.

ON _THE FIRST CALL TO PITCON FOR A PARTICULAR PRORLEM, THE
USER SHOUILD SET KSTEP TD 0 OR -1. IF KSTEP=-1, THE PROGRAM
WILL CHECK THE ACCURACY OF THE STARTING POINT XRs AND TF
NECESSARY» ATTEMPT TO CORRECT [T USING NEWTON‘S METHOR,

IF KSTEP=0, THE PROGRAM FERFORMS NO CHECK ON THE STARTING
POINT,» AND PROCEEDS TO THE CONTINUATION I.OOF. IF THE USER
WISHES TO RUN A DIFFERENT PRORLEM THEN A CALL TO PITCON
WITH KSTEP=-1 OR O WILL RESET THE CONE,» DESTROYING THE
INFORMATION FROM THE PREVIOUS RUN. KSTEP DEFAULTS TO -1,
THE COMPONENT OF XC TO RE USED AS CONTINUATION PARAMETER.
ON _THE FIRST CALL ONLY, THE USER QUGHT TO _SET IPC OR AlLOW
THE DEFAULT VALUE IPC=NVAR., AFTER THE FIRST CALL, THE

DETERMINATION OF IPC IS NONE RY THE FROGRAM USING INFORNATIONFTCNC1SO

ABOUT THE TANGENT VECTOR AT XC.

SUGGESTED STARTING STEP SIZE ALONG THE TANGENT TD THE CURVE.
IF H=0,0 ON THE INITIAL CALL»s» H DEFAULTS TO (HMAX+HMIN)/2
IF H IS NEGATIVE ON THE FIRST CALL. THE MINUS SIGN

IS ABSORBEN RY DIR AND INDICATES THAT THE DIRFFTTDN OF THE
FIRST STEP SHOULD RE IN THE NEGATIVE IPC DIRECT

AFTER THE FIRST STEP, STEPSIZE 1S CONTROLIED BY THF FROGRAM .
UPON RETURN WITH A CONTINUATION POINT (IRET=0)s H IS
QUFRWRITTFN RY HTANCF» THE STEPSIZE USED IN REACHING THE

NEW POINT,
A RETURN FLAG TO INDICATE ERRORS OR THE TYFE OF FOINT
RETURNER IN XR. NONNEGATIVE VALUES OF IRET REPRESENT

. NORMAL RETURNS. NEGATIVE vAL.UES OF IRET INDICATE THAT

SOME_ERROR _OR DIFFIfUlTY HAS RFFN ENCOUNTERED, VALUES

OF IRET BETWEEN AND -4 ARE STMPLY REPORTS THAT AN

ATTEHPT TO FDHPUTF A LIMIT OR TARGET POINT FAILER. THESE

DO NOT AFFECT FURTHER CONTINUATTON QTFPQ, ANn THE USER NEET

NOT MORIFY ANY UARIARLFQ REFORE_PROCEENT

VALUES OF IRET OF -5 ANR -6 REFER T0O DANCFnOUS SITUATIONS

THAT MAY BE PORRFCTARIF.

VALUES OF IRET FROM -7 T0 -10 ARE SERIOUS, FATAL. FERRORS.

THF UQFR SHOULD HALT THF PROGRAM AND EXAMINE HIS INPUT
AND THE INTERIM RESULTS

IRET SHOULD RE ZERO ON THE FIRST CALL FOR A PRORLEM.

THE SPECIFIC VALUES OF IRET AND THEIR HEANIN?S ARE !

IRET=2:  NORMAL RETURN WITH LIMXT POINT TN XR AND TANGENT
AT XR CONTAINED IN TL.,

TRFT=1:  NORMAL RETURN WITH TARGET POINT IN XR.

FTONQTLE
FICNGT
FTONOYAS
FTCNO214
FTCNOQS
PTCNOQ LS
PTCNOTZYLT
PTCHO218
PTONGT19
PTENG220
STONOR22Y
PTCNO22T
FTCNO2DT
FTCNQZ 4
FTONODDS
FTCNGZ2&
PTICNOTDT
FTONOZ23
FTCNQ229
FTENG220
PTFNO“?I
FICNO™32
PTCNO23Z
PTCNO234
FTONOZIS

TCNO237
FTCHNO238
FTCNO239
FTCNO240
FTCNO24!
FTONOTA2
PTCNO243
FTCNO244
PTCNOZAS
FTONQZ A&
FTCNNTAT
FTCNO48
FTCNQZ49

FTCH0251
PTENO2S2
PTCNO2SZ
PTCHO2SY
PTCNORSS
PTCNO2Ss
PTCNORS?
FTONQZS

pTCN0259
PTCNOZSD
FTCNG241
FTONORS2
PTCNQOZA3
FTONO264
FTCNO24S
FTCNG25S
FTONODA&7
PTONG258
PTENOZGY
FTCHORTO
PTONQO271
PTCNQD?2
PTCNOZT?
STCNOD 7Y
PTCNO27S
PTONOZY S
FTONOR?D
FTCNGT T8
FTONQDTO
STENGDSG
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C FTCNGDRL
g IRET=0: NORMAL. RETURN WITH NEW CONTINUATTON FOINT IN XK. PTCNS?BZ
: PTCNO283
g IRET=-1! AN ERROR OCCURRED NURING COMPUTATION OF (IMIT PﬂINTg;gsgzg:
AV g V)
c IRET==2! CORECT CALLEN FOR TARGET POINT CALCULATION FAILER &TONORRS
C AFTER KNMAX TTERATTONS. FTCNOR?
C PTCNOTQE
C IRET=-3: SOLVE WAS CALLED RY CORECT FOR TARGET POINT FTCNO2RS
c CALCULATIONs AND FATLER. (MATRIX ELIMINATION FOUNDPTCNO270
c ZERO PIVOT). FTCNO29Y
C FTENOD9D
C IRET=-4: UNACCEPTABLE CORRECTOR STEP IN TARGET POINT FTCNO273
C CALCULATION. FTCNQON94
c FTCNO29S
c TRET=-5: PREDICTION STEP HTANCF IS LESS THAN HMINs FERHAFS FTCNO2%s
c BECAUSE OF REPEATED FAILURE OF CORECT» AND PTCNO297
C CONSEQUENT STEPSIZE RENUCTION, USER MIGHT RENUCE FTCNO29R
c HMIN» OR SWITCH FROM 1MOD=t TO IMOD=0, (R INCREASE PTCNOR9S
C ABSERR ANDR RELERR. RUT RE AWARE THAT REPFEATED FICNOZOC
c STEPSIZE RENUCTIONS MAY INNICATE AN TINTRACTARILE PTCNO3O1
C FUNCTION, FTCNOZO2
c FTCNO303
c IRET==6! FUNCTION VALUE FNRMXF OF INPUT XR IS T0Q LLARGE PTCNOZOS
c AND COUILD NQT RE IMPROVED RY CORECT. USER PTCNO30S
c MIGHT RECOVER RY RELAXING ERROR CONTROLSs IMPROVINGFTCNO3O06
E STARTING POINT XRy OR CHANGING VALUE OF TPC. PT;NOJO?
FTCNO3Q8
c IRET=-7¢ SOLVE FAIILLED IN A CALL FROM TANGNT. PTONO309
c FTCNOTLC
Cc IRET=-8! SOLVE FATIED IN A CALL FROM CORECT. PTCNOZ11
C PTCNOJ12
c IRET=-93 THE TANGENT VECTOR TC AT XC 1S ZFERO. PTCNOZ13
c FTCNO314
C IRET=-10: IMPROPER INPUT, NVAR.LE.1, OR PTCNO31S
c ISIZE.LT, (NVAR)X(NVAR+S)» NR FTCNO316
S PROGRAM HAS REEN CALLED AGAIN AFTER FaTal. ERROR. E;Esg%lg

*TENQO3L
C IMOD = METHOR FILLAG FOR CORRECTOR STEPs SPECIFYING TYFE OF PTONO319
g NEWTON METHOD TO RE USER. §¥g28§£?
c IMOD=0¢ UPDATE JACORIAN FOR TANGENT CALCULATIONs FTONO3Z2
g UPDATE JACOBIAN FOR EACH CORRECTOR STEP. P;CN83”?
FTCNO3 A
c IMON=1: UPDATE JACORTAN FOR TANGENT CALCUM.ATION, PTENO32S
E EVALUATE JACORIAN AT FIRST CORRECTOR STEP ONLY. E;gsngg
*TCNO 3D
C IPUT = INTEGER VECTOR USER NECLAREN TO RE OF STZE NVAR. PTCNOIDR
C USED NURING THE MATRIX FACTORIZATION TO STORE FPIVOT FTONOZR9
[ INFORMATION, FTCNO330
C HMAX = THE MAXIMUM STEP SIZE. IF HMAX.LE.0.0 ON INITIAL CALL» PTCNO3Z]
c HMAX DEFAULTS TO SQRT(NVAR). FTCNQI32
C HMIN = THE MINIMUM STEP SIZE. IF HMIN.LE.SQRT(EPMACH) ON INITIAL FTCNO33Z
C CALLs HMIN DEFAULTS TO SQRT(EPMACH), WHERE EPMACH IS THE FTCNO334
c MACHINE PRECISION CONSTANT., FTCNOI3S
C HFACT = LIMIT ON STEPSIZE CHANGE. HSECLC 1S THE SECANT STEPSIZE FTCNO33S
C OF THE LAST STEP, AND HTANCF IS THE STEPSIZE TO RE USER FTCNO32?
Cc IN (RTAINING THE FRERICTER POINT., THE FOLLOWING RELATIONSHIFFTONOIIR
c MUST RE SATISFIEN: (HSECLC/HFACT).ILE.HTANCF,I.E, (HSECLCXHFACTYFTONO3IS
C IF THE CORRECTOR STEP FAXILSs THEN HFACT 1S AL.SO USEN TO FTCNO34Q
c REDUCE THE PREDICTOR STEP HTANCF TO (HTANCF/HFACT) FTCNO3AT
o IF HFACT.LE.1.,0 ON INITIAL CAILL»,» HFACT REFAULTS TQ 3.0. PTCNGI42
< ARSERR= ABSOLUTE ERROR CONTROL.. IF ABSERR=0,0 ON INITIAL CALL PTCNO3AR
C AEQFRR REFAULTS TO SGRT(EPMACH) FTCNQIA4
C RELERR= RELATIVF FERROR CONTROL., IF RELERR=0,0 ON INITIAL CALL FTCNOZAS
c RELERR NEFAULTS TO SORT(EPMACH) PTENQSIAS
C RWORK = USER NECLARED VECTOR OF SIZE TSTZE=NVARX(NVARtS). PTCNOZA®
C RWORK STORES FIVE VECTORS AND AN ARRAY IN THE QORNER FTONQIAR
C (XRsXCsXFoTlLoTCoFPRYM), THEIR REGINNING I.OCATIONS FTCNORAQ
S ARE IXR={s TXC=NVAR+1), IXF=2XNVAR+1, TTL=3ENVAR+L. FTONQISC
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SIZE NVAR X NVAR. THE MEANINGS OF THESE COMFONENTS OF PTCNOZSD
RWORK ARE DESCRIRED RELOW. THE USER SHOULDl SET A YALUE TO XRPTONG3SI
ON FIRST CALL, BMIY NO OTHER PORTIONS OF RWORK SHOULD RE PT:NO754

SET. AFTER THF FIRST CALL FOR A FRORLEMNs NO ENTRTES OF RWORNFTCHOJS

SHOUL.D RE AL.TERED, F’Flo?

(XR) = (N FIRST CALLs A USER SUFPLIED STARTING POINTs WHICH MAY RE  FTCNOZS
IMPROVEDN RY THE PROGRAM [F KSTEP=-1, ON NORMAL RETURN FROM PTFﬂOBSS
PITCONy» XR WILL HOLDI' THE MOST RECENTLY FOUND POINTs WHETHER FTCNO3S?
A CONTINUATION POINT. TARGEY POINT. OR LIMIT FDINT. FTICHCZ60
Xe) = THE PREVIOUS CONTINUATION POINT. FTONOZAL
(XF) = THE CURRENT CONTINUATION POINT, PTONGS2
(TL) = PREVIOQUS VALUE OF TANGENT VECTOR. NOTE THAT THIS CORRESPONNSPTONG3S3
70 A POINT XL WHICH HAS REEN NISCARDEND. ON A LINIT POINT PTENN364
RETURN» TL WILL CONTAIN INSTEAD THE TANGENT AT THE FTCNQ3&S
LIMIT POINT. ON A TARGET POINT RETURNs TL WILL HAVE PTCHOZSS
BEEN OVERWRITTEN RY THE FUNCTION VALUE AT THE TARGET POINT. FTCNOZ&7
(1) = THE TANGENT VECTOR AT THE PREVIOUS CONTINUATION POINT. ~TCNO3AB
(FPRYM)= MATRIX STORAGE AREA FOR SETTING UP AND SOLVING THE FTONOZA?
LINEAR SYSTENMS INUGLVING NFA(X»IP). PTENO3ZO
ISIZE = USER SET DIMENSION FOR VECTOR RWORKs WHICH MUST RF AT FTCNO3I71
LEAST OF SIZE NVARX(NVAR+S), FTONOIZ2
FTCNO373
FTCNO374
NOMENCILATURE FOR STEP DEPENDNENT VARIABLES FTENOZ?S
FTCNO3Z6
PTCNOZX?7
THE PROGRAM ACCUMULATES INFORMATION THAT IS ASSOCIATER WITH FTCNOZ78
SFVERAL PREVIOUS CONTINUATION POINTS OR THE STEPS MADE RETWEEN PTCNO3Z9
THEM. IN INTERPRETING THE CORE OR ITS QUTPUTs IT IS IMPORTANT PTCNO3IBO
TO KNOW WHERE SUCH QUANTITIES APPLY, THE FOLLOWING DESCRIPTION PTCNO3BL
OF SOME OF THE VARIABLES IS VALIN ONLY UPON A NORMAL RETURN WITH PTCNO3ZB2
A CONTINUATION PQINT. FTCNOIBI
THE POINTS “XLL‘ AND ‘XL’ WILL HAVE REEN NISCARDNEN RY THE FPROGRAMs FIONO3RA
BUT SOME QUANTITIES ASSOCIATED WITH THEM STILL SURVIVE. g;gNg,gq
*NO3RS
AUANTITIES ASSOCTATED WITH STEP FROM ‘XLL’ TO ‘XL’: g;gNggg;
*NO38S
HSECLL = SIZE OF SECANT FROM ‘XLL’ TO XL’y EUCLINEAN NORM(XLL-XL.) ;;;Ng%gg

SN0
AUANTITIES ASSOCIATED WITH THE POINT ‘XL’ E;?Ng%gl
WNO392
IP. = THE LOCATION OF THE FIRST OR SECOND LLARGEST COMFONENT PTCNO393
0F THE TANGENT VECTOR AT 'XL‘. . PTCNO394
TLLIM = VALUE OF 1.IM-TH COMPONENT OF TANGENT VECTOR AT 'X.’. FTCNOZ?S
TL = TANGENT VECTOR AT ‘XL.‘» ALTHOUGH LIMIT OR TARGET POINT FPTCNO396
CALCULATIONS COULR HAVE OVERWRITTEN THIS VECTOR., z¥?N8§gg

N0
AUANTITIES ASSOCIATED WITH INTERVAL FROM ‘XL’ TQ XC: P¥0N8393

FTCNOAQ

ALPHLE = THE ANGILE BETWEEN THE TANGENTS AT 'Xl’ AND XG. FTCNOAOY
CURVLC = ESTIMATED CURVATURE RETWEEN ‘XL ‘ ANR X PTCNOA02
HSECLEC = STZE OF SECANT BETWEEN ‘XL’ AND XC» FUCIINFAN NORM(XL.-XT) ;;?N8403
'N0404
AUANTITIES ASSOCIATED WITH THE POINT XC: ;;?22485
TN0406
NETA = BRINARY MANTISSA OF DETERMINANT OF DFA(XF;IPl)v NIVINED PTCNOAO?7
RY IPl-TH COMPONENT ﬂF TANGENT AT FTCNO40Q8
BIR = SIGN OF DETAy DETERMINES SENSE OF fONTINUATION. PTCNOAQS
IEXP = BINARY EXPONENTY OF DFTFRHINANT OF DFA(XC,IFL)Y. PTCNO410
1PC = LOCATION OF FIRST OR SECOND LARGEST COMPONENT OF TANGENT PTCNO4 LY
VECTOR AT XC PTCNQ412
1 = TANGENT UFFTOR AT XC. PTCNQ413
TCLIM = VALUE OF LIM-TH COMPONENT OF TANGENT AT XC. STONOS 14
TCIPC = VALUE OF TCCIPC) PTCNOAS
FTCNOALA
QUANTITIES ASSOCIATED WITH THE INTERVAL FROM XC TO XF! PTCNO4L?
PTCNO418
CURVCF = ESTIMATED CURVATURE RETWEEN XC AND XF. PTCNOALO

HTANCF = STEPSIZE USER ALONG TANGENT TO GET PREDICTED FOINT

FTCNOSTO
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WHICH WAS CURRECTEN TO SOLUTION POINT XF.
QUANTITIES ASSOCTATED WITH THE POINT XF:
CORDIS = SIZE OF THE TOTAL CORRECTION FROM PREDICTED POINT

X=XC+HTANCFXTC TO CORRECTER POINT XF,
NOTE THAT THIS HAS RFEN MORIFTER 7O AN ‘OFTIMAL’ VALUE.

CURVXF = A PREDICTED VALIIE OF THE CURVATURE AT XF.
FNRMXF = MAXIMUM NORM OF FUNCTTON VALUE AT XF.
FPRYM = NFA(XF.IPC) HAS ACTUALLY REEN LAST EVALUATEN AT THE

PENULTTMATE CORRECTOR ITERATE (IF IMQR.NE.1). 1T WILL BF
EUALUATE? AzEégng SOON AS THE NEXT L.OOF REGINS AND THE
TANGENT IS -NED,

XSTEP = SIZE OF THE LAST CORRECTOR STEP TAKEN IN CONVERGING TO XF.

SUBROUTINES IN THIS PACKAGF
PYTCONCNVARs[.TMs TTs XITsKSTEP» IPC»Hs TRET » IO, TPUT,

HMAX s HMINs HFACT » ABSERR » REL ERR s RWORK » TSIZE )

DRIVING ROUTINE OF CONTINUATION CODE. INITIALIZES INFORMATION,
DETERMINES WHETHER L.IMIT,» TARGET OR CONTINUATION POINT WILL

RE SOUGHT THIS STEP» COMPUTES STEPILENGTHS, CONTROLS CORRECTOR
PROCESSs AND HANDLES ERROR RETURNS.

CORECT(NVAR» Xy THOL D s WORK s TERR » IMORN s FPRYMs TPVUT s ARSERR s RELERR s
XSTEP » NEGNs FNRM)

USFS A FORM OF NEWTON‘S METHOD TO SOLVE THE AUGMENTED NONLINEAR

PTCNGATY

PTCNO4Z2
PTCNO423
PTCNOAR4
FTCNOA25
PTCNO426
PTCN0A27
FTCNO42R
PTCNOAR9S
PTCNO430
PTCNOAZY

FTCNOA32
FTCNGASE
FTCNOAZA
FTCNO4ZS
FTCLNOAZS
FTYCNOA3?
FTCNOAZS
PTCNOAZS

PTCNO440
PTCNO441
PTCNO442
PTCNO443
PTCNO444
PTLNO44S
PTCNO444
PTCNO447
PTCNO448
PTCNO4AS
PTCNO4ASO
PTCNOAST

SYSTEM FA(X)=0 WITH AUGMENTING EQUATION X(IHOLR)=R, THAT IS, X{(IHOLMIPTCNO3S2

IS MELD FIXED DURING THE CORRECTION PROCESS.

TANGNT (NVARs XC o IPCy TCs TRET» ICALL »FPRYMs TPUTs NEQN+ DETA TEXF)
APPLIES ALGORITHM DESCRIBEN ABOVE TO SOLVE RFA(XCs IPL)XTC=E(NVAR)
AND THEN NORMALIZES TANGENT VECTORs CORRECTS SIGN» ANR SETS

IPC AND DIR.

ROOT(AsFAsBsFRs (s FCoKOUNT s IFLAG)

ROOT FINDER USED TO LOCATE LIMIT POINT., THIS ROUTINE IS A MODIFIED
VERSION OF THE FORTRAN FUNCTION ZERQ GIVEN IN THE ROOK:

‘ALGORTTHMS FOR MINTMIZATION MITHQUT DERIVATIVES-

RY RICHARD P RRENT. PRENTICE HALL, 1973,

SOLVE (NVARs X» Y s TP NETA» TEXP» TERR» ICALL » TMONs FPRYMs TFUT)

SETS UP AND SOLVES THE SYSTEM DFA(X» IP)XY(OUTPUT)=Y(INPUT)
WHERE DFA(Xy»IP) IS THE JACOBIAN OF FA AT X»

AND Y IS A RIGHT HAND SINE SUPPLIED RY THE CALLING ROUTINE.
EENOTERR SURROUTINE SOLVE USES FULL MATRIX STORAGE TO SOLVE THE

SYSTEM. THE USER MAY WISH TO REPLACE THIS ROUTINE WITH ONE MORE
SUITEDR TO HIS PRORLEM.

USER SUPPILIED SUBROUTINES

FCTN(NVAR s X»FX)

PTENO4SI
PTCNO4S4
PTCNOASS
PTCNOASS

© PTENOAS?

PTCNOASS
PTCNO4S?
FTCNO4AO
PTCONO4AL
PTCNG4A2
PTCNO443
PTCNO444
PTCNQ4LS
PTCNO4AS
PTCNOAS?7
FTCNO44S
PTCNQAAS
PTCNO4TO
PTCNO4A71
PTCNO&??2
PTCNO473
PTCNOAY4
PTCNOA7S
PTCNO476
PTCNO47?
FTCNO478
PTCNO4A79
PTCNO4BO
PTENOARY

PTCNO4ARZ
FTCNOAR3

EVALUATES THE NVAR-1 COMPONENT FUNCTION FX GIVEN X AN NVAR COMPONENT PTCNO484
VECTOR, THIS FUNCTION DESCRIRES THE NONLINEAR SYSTEM. THE AUGMENTINGPTCNOASS

EQUATION IS HANDLED RY THE CONTINUATION PACKAGE.
FPRIME (NVAR s X+ FPRYM)
EVALUUATES THE NVAR-1 RY NUAR .JACORIAN MATRIX FPRYM (X}

PTCNO4BS
FTCNO4B?
PTENO4RR
FTCNOABS
PTCNOARO

40




OOOOOONOTONONONCOOO0NOOONOOOOOOOOOOONODNOIOOOOOTIOOIICOONOOOO0OO0OONONOO:

AT X AND STORES IT IN THE NVAR RY NUAR ARRAY FFRYM»

SO THAT FPRYM(T,J) CONTAINS (RF(X) (I)/ DX (1)),

THE |LAST ROW OF FPRYM (FOR THE AUGMENTING EQUATION) 1S INSERTED
BY THE ROUTINE SOl VE.

L.INPAK ROUTINES USED

L.INPAK REFERENCE:

LINPACK USER‘S GUIDE,

J J DONGARRAs J R RUNCHy C B MDILER AND G W STEWART,
SOCIETY FOR INDUSTRIAL AND APPLIER MATHEMATICS.
PHILADELPHIAY 1979,

TISAMAX (NsS5X s INCX)
INTEGER FUNCTION RETURNS THE POSITION OF ILARGEST ELEMENT 0OF 3X

SAXPY (Ns»SA» SXs INCX»SY» INCY)
SETS VECTOR SY(I) = SARSX(I)4SY(I)

SCOPY (NySXs INCX»SY s INCY)
SETS SY(I)=8X(I)

SROT(NsSX» INCX»SY s INCY)
SROT = SUM(I=1 TO N) SX(T)XSY(I)

SNRM2(NySXs INCX)
SNRM2 = EUCLIDEAN NORM OF SX(I)

KINOTEXX  SNRM2Z HAS MACHINE DEPENDENT CUTOFF CONSTANTS

SSCAL (NsSAsSX» INCX)
SETS SX(I)=SA%SX(I)

SGEFACALDAN» TPUT, INFD)

FACTORS MATRIX A WHOSE LEADING NIMENSION WAS DECLARED AS LDA
AND WHOSE ACTUAL USED DIMENSION 1S N» SETS UP PIVOT INFORMATION

IN VECTOR IPUT AND WARNS OF ZERO PIVOTS.

SGESL. (AsLDA»Ns IPYT, Ry JOR)

ACCEPTS QUTPUT OF SGEFA» ANR A RIGHT HAND SIDE By AND SOLVES

SYSTEM AXX=R, RETURNING X IN R, FOR MODIFTEDR NEWTON’S METHOR, ONCE
MATRIX IS FACTORED BY SGEFAs ONLY SGESL IS CALLED FOR SUCCESSIVE
RIGHT HAND SIDES

LABELED CONMON RLOCKS

/COUNT1/ COUNTS NUHBEGEOF CALLS FROM ... TO ... AS FOLLOWS:

ICRSL. = CORECT 70 SOL
ITNSL. = TANGNT TO SOLVE
NSTCR = PITCON TO CORECT FOR IMPROVED STARTING POINT
NCNCR = PTTCON TO CORECT FOR CONTINUATION POINT
NTRfR = PITCON TO CORECT FOR TARGET POINTS

MCR = PITCON TO CORECT FOR LIMIT POINT
NLHRT = PITCON TO ROOT FOR LIMIT POINT

NOTE _THAT NSTCRs NCNCRs NTRCR» NLMCR AND NLMRT COUNT THE NUMRER
0OF ITERATIVE STEPS (NEWTON OR ROOTFINDING) AND NOT JUST THE NUMRER
OF SUBRROUTINE CALLS.

/FOUNT?/ KEEPS PERFORMANCE AND WORK STATISTICS
IFEVAL = NUMBFR OF CALLS TO FCTN

IPEVAL = NUMBER OF CALLS T0 FPRIME

ISOLVE = NUMBER OF CALLS TO SOLVE

NRED = NUMRER OF STEPSIZE REDNUCTIONS MADE REFORE FRENICTOR

PTCNOAS
PTCNQ492
PTCNO493
PTCNOA4
FTCNO49S
PTCNO4ARS
PTCNOAR?
PTCNO498G
FTCNO4S9
PTLNOSOO
PTCNOSO1
PTCNOSO2
PTCNOSOZ
PTCNOS04
PTCNOBOS
FTCNOS0A
PTCNOSOG?Z
PTCNOS08
PTCNOSO9
PTENOSLO
PTCNOG11
PTCNOSL2
PTCNOS3
PTCNOS LA
PTENOGAS
PTCNGS16
PTCNOSL?
PTCNOS18
PTCNOS1?
PTCNOS20
PTCNOS21
PTCNOS22
PTCNOS23
PTCNOS24
PTCNOS25
PTCNOS26
PTCNOS27
PTCNOS28
PTCNOS29
PTCNOS30
PTCNOS2]
PTCNOS32
PTCNOS33
PTCNOS34
PTCNOS IS
PTCNOSBb
FTONOS3
PTCNOS 38
PTCNOS3S
FTCNOS40
PTCNOSAL
PTCNOS42
PTCNO%S43
PTCNOS44
PTCNOSAS
PTENOSAS
PTCNOS47
PTCNOS48
PTCNOT4AS
PTCNOST0
PTCNOSS1
FTCNOSS2
PTCNOSS3
PTCNOS%4
PTCNOTRS
PTCNOSSS
PTCNOSS?
PTCNOSS
PTCNOSSS
PTCNOSAO
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POINT CONVERGED T0O THE NEW CONTINUATTUN FOINT.

NRRSUM = TOTAL NUMBER OF STEPSIZE RENUCTIONS

KN = NUMBER OF CORRECTOR ITERATION STEPS TAKEN IN m0ST RECENT
CALL TQ CORECT.

KNSUM = TOTAL NUMRER OF CORRECTOR ITERATION STEFS.

/0UTPUT/

TWRITE = UGFR ACCESSIRLE QUTPUT INDICATOR,
RITE=0» NO OUTPUT PRINTED RY PITCON,
IHRITF=1: ERROR MESSAGES PRINTER RY PITCON,
IMRITE=2y CERTAIN OUTPUT WILL BE FRINTED BY FITCON.

6§¥£NT/ CONTAINS DATA ABOUT THE SOLUTICON CURVE

PTENOSAL
FTCNOSS2
PTCNOSS3
PTCNOS64
PTCNOSAS
FTENOSAS
FTCNGSA7
FTCNOSES
PTONOGAS
PTCNOS?

PTCNOS?71
PTCNOST2
PTCNOS?3

BINARY MANTISSA OF THE DETERMINANT OF THE AUGMENTEDR JACORIANPTCNOS74

1EXP = RINARY FXPONENT OF THE DETERMINANT OF THE AUGMENTED JACORTANPTCNOS?7S
CURVCF = ESTIMATEDR CURVATURE RETWEEN XC AND PTCNOS?6
CORDIS = NORM OF THE CORRECTOR STEF FROM PRFDIPTFD POINT TO CORRECTEDPTCNGS??
POINT, USING MAXIMUM ARSOLUTE VALUE AS THE NORM. PTECNOS?78

THIS QUANTITY 1€ MORIFIED TO AN ‘OPTIMAL ¢ VALUE. FTCNOS?79

ALPHLEC = ANGLE RETWEEN OLD AND NEW TANGENTS TI. ANR TC FTCNOS30
HSECLC = EUCLINEAN NORM OF SECANT RETWEEN XL aND XC. PTCNOS81
FNRMXF = MAXIMUM NORM OF FUNCTION VALUE AT NEW CONTINUATIODN POINT, :;gzgggg
. by e %]

/T0L/ PTCNOS84
EPMACH= SMALLEST NUMBER SUCH THAT 1.0+EPMACH.GT.EPMACH PTCNOSHS
»SERETARR(1-TAU) FOR ROUNDER, TAU-DIGIT ARITHMETIC PTCNOSES

BASE BETA. TNICE THIS VALUE FOR TRUNCATED ARITHMETIC. PTENOSST

THIS IS THE RELATIVE MACHINE PRECISION. PTENOSSS
EPMACH=2%Xx(-27) FOR DEC-10. PTCNQSE?

EPSATE= 8XEPMACH PTCNOS90
EPSORT= SAUARE RONDT OF EPMACH PTCNOS91
PTENOS92

FTCNOS?Y

PROGRAMMING NOTES PTCNOS?4
FTCNOSOS

PTCNOS96

THE USER KUST - PTCNOSO7

PTCNOS9S

1. WRITE SURROQUTINES PTCNOS99

SUPPLY A CALLING PROGRAM» AND THE TWO ROUTINES FCTN ANR FPRIME PTCNOLOO
AS DESCRIRED ABQVE. PTONOLOT
PTCNGLO2

2. SET STORAGE AREAS PTCNOGO3
DECLARE A REAL VECTOR RUWORK QOF SIZE t€I7E: ISIZE.GE . NUARK(NVARS) PTCNOGO4
AND AN INTEGER VECTOR IPVT OF SIZE NVAR PTCNQ&OS
PTCNOS0OG

3. PASS CERTAIN NON-DEFAULTARLE VaLUES PTENO&O?
PASS NUAR GREATER THAN ZERQs ISIZE.GE.NVAREZ(NUAR$S) PTCN0LOS
AMD SET IRET=0» KSTEP=-1 QR KSTEP=0 ON FTRST (ALl PTCNOSO9
FOR A NEW PRORLENM, PTCNOG10
FTCNOGLY

THE USER SHOWL.D - PTCNOALD
PTONOSLT

1. STORE A STARTING POINT XR IN THE FIRST NVAR L.OCATIONS OF RWORK  FTCNOA14
BEFORE CALLING PITCON, PTCNOALS
IF SUCH A VALLIE TS NOT GIVEN, THE CODE MAY RE UNARLE TO PRODUCE ONE. FTONO&1&
PTONOAL?

2, CAREFULLY MONITOR THE VALUE OF IRET SC 7'A7 ANY SERINUS ERROR PTONNGLS
IS CAUGHT BEFORE ANOTHER CALL IS MADE TD '~ N, PTCNOGI?
FTCNOSDO

3. CHOOSE A VALUE OF IMDR FOR THE TYPE (F CORRECTOR PROCESS TO PTCNOA21
BE USED. PTCNO&Z2
PTCNOG 24

THE USER MAY - PTCNOSDS
PTCNOARA

1. MONITOR THE PASSING OF RIFURCATION POINTS RY SAVING THE OLD PTCNOSR7
UM.UF OF DETA AND COMPARING 1T TD THE CURRENT VALUE. 1F THERE PTLNO&RR
1S A CHANGE IN SIGNs THEN A RIFURCATION POINT HAS REFN PASSED. PTCNOARY

PTCNOAZO
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2. ACCESS THE COMMON BLLOCKS /COUNT1/ AND /COUNTZ/ TO KEEP TRACK
OF THE AMOUNT OF WORK DONE.

3. MHONITOR THE COMMON RLOCK /POINT/ FOR TNFORMATTON AROUT THE
SOLUTION CURVE.

4. AT ANY TIMEs, RESET THE CODRE BY PASSING IN KSTEP=-1 OR KSTEP=0,
THIS ALLOWS THE USER TO CHANGE STEPSTZE, DIRECTION OF CONTINUATION,
FRROR CONTROLSs OR OTHER PARAMETERS. IT ALSO ENABLES THE USER

TO RUN UNRELATED PRORLEMS OF DIFFERENT SIZES OR ERROR CONTROLS
MIRING A SINGLE PROGRAM EXECUTTON,

THIS SURROUTINE IS CALLED RY
UUSER MAIN PROGRAM

ANR CALLS
CORECT
ROOT
TANGNT
FORTRAN ARS
FORTRAN ACOS
FORTRAN AL.0G
FORTRAN AMAX1
FORTRAN AMIN1
FORTRAN DRLE
FORTRAN FLOAT
FORTRAN SIGN
FORTRAN SIN
FORTRAN SNGL
FORTRAN SORT
LINPAK TSAMAX
LINPAK SAXPY
LINPAK SCOPY
LINPAK SNRM2
I.INPAK SSCAL.

INTEGER TPVT(NVAR)
REAL. RWORK(ISIZE)
REAI. WRGE(B) sACOF(12)
DOUBLE PRFFISIO DTLIPCsDTCIPC DARJUS » COSALF
COMMON / T1/ ICRSLsTTNSL s NSTCRyNCNCRINTRCRy NLMCR » NLMRT
COMMON /POUNT"/ TFEVAL » IPEVAL » TSOLYE s NRED» NRISUM» KN s KNSUM
COMMON /0UTPUT/ ITWRITE
POHHON /POINT/  DNETAs IEXPyCURVCF »CORDIS» ALPHLCyHSECLC o FNRMXF
COMMON /TOL / EPMACHyEPSATE » EPSORT
NATA IDONE /0/
DATA TENM1 /0.1/
DATA TENNZ2 /0.01/
DATA TENMI /0.001/
RATA WRGE  /
1 ,8735115E400y . 153I1947E400, J191RITE-01, ,IITPP44E-100
2 ,4677788E400, ,4970123E-03, .1980843E-05, .1122789E-08/
DATA ACOF  /
1 +9043128E4005~,707%5475E4005-,466738JE 4015 ~,35677482E401
2 ,8516099E4009~,1953119E400y -, 4830636F +01 » =, 977052RE+00,
3 +1040041E401, 37933I95E-01, ,1042177E4+01, .4450704E-01/

PTCNO631
FTCN0S32
PTENOAZR
PTCNOS34
PTCNO63S
PTENO634
PTCNOAZZ
PTONOA3S
PTCNOGI9
FTCNOG4G
PTCNOG4Y
PTCNOA42
FTCNOA43
PTCNOS44
PTECNOG4AS
PTCNOA4S
PTCNGAA7
PTCNOA4AB
PTCNO649?
PTCNOSTO
PTCNO6%51
PTCNOAYS2
PTCNOGS3
PTCNOGS4
PTCNOGTSS
PTENO6SS
PTCNOSS7
PTCNOASR
PTCNOASY
PTCNO&AO
PTENOSGG L
PTENOAAL2
PTCNO663
PTCNOGS4
PTCNOG6S
PTCNO666

EXLAALEAIXAXRALEX LXK EXXXXRAXXX XXX XXX KA RRRRAAEXK KA KX REXXRAEXASARKXARARPTONOGS 7

PTCNOASS
PTCNO669
PTCNOST0
PTLNOA7
PTCNOA72
PTCNOG73
PTCNOA? 4
PTCNOS7S
FTCNOSTS
PTCNOKT?
PTCNOA?S
PTCNOST79
PTCNO680
PTCNO48Y
PTCNOAR2
PTCNQ6BI
PTCNO684
PTCNO48%
FTCNOABS
PTCNO6B?
PTCNOA8S
PTCNOGBS

c
Mttretettrebiteeiridbtistetatdeitotiseetedidtssetsdotsbotistdositedssd gy (il ade

(glplgigixigliglglw el

1. PREPARATIONS.

ON FIRST CALL FOR THIS PROM.EM» INITIALIZE COUNTERS ANR VARIABLES,
CMECK USER INFORMATION AND SET DEFAULTS, AND IF (KSTEP.EQ.-1)s
CMECK NORM OF F(XR) AND CORRECT XR IF NECESSARY.

ON EACH CALL, IF INPUT IRET HAS NONFATAL VALUE, RESET IRET

SO THAT CONTINUATION L.OOP PICKS UP WHERE 1T WAS HAIL.TED.

PTENOG691
FTCNO&R2
PTCNOG93
FPTCNOGY4
PTENQSTS
PTCNOA?S
PTCNOAS?
PTCN0498

EXXRXEXREEEXRXX KX ERA TR RARXLCKAARALR L XXX KLXAXXXEXRLR KA KRR KX XA XXXXXEXXXXKLP TONOS PO

FTCNQ70Q
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TERR=0

Ir (IRFT EQ,-1) TRET=?

IF (IRET.EQ.-2.0R.JRET.EQ.-3.0R.IRET.ER.-4) IRET=}
IF ([RET.EQ.-5.0R.IRET.EQ.-4) [(RETV=0

TF COUE WAS CALLER AGATN AFTER FATAL UALUE OF TRET,
THEN RETURN WITH ERROR VALUE IRET=-10.

TF (IRET.LT.0) GO TO 440
PERFORM QNE-TIME ONLY TNITIALIZATIONS
IF (ITNONE.NE.O) GO TO 10

SET _THE WACHINE DEPENDENT VARIABLE EPMACH» THE SMALLEST NUMBER
SD THAT (1,04EPMACH.GT.1.,0)

FOR DEC PRP-10 TN STNGLE PRECTSTON:
EPMACH=7,4505804E-9

FOR TBM 360 DR 370 TN SHORT (SINGLE) PRECTSION:
EPMACH=9,53474E-7

FOR COC 46600 OR 7400 IN SINGLE PRECISION:
EPMACH=7.105427404E~15

SET EPSATE=3%EPMACHs, EPSORT=SORT(EPMACH)

EPSATE =8, 0REPMACH

EPSGRT=SART(EPMACH)
ALFMIN=2,0%4C0S(1.0-EPMACH)
TF(KSTEP,I.T,~1.0R.KSTEP,6T.0)KSTEP=~1
KSTEPO=-2

TOONE=1

PERFORM INITTALTZATIONS AND CHECKS FOR NEW PROBLEM ONLY

10 IF (KSTEP,GT,0) GO TO 3
IF(KSTEPO.EQ.~-1,AND, K%TFP EQ.0)60 TO 30
IF (NUAR.LE.1) GO TO 440
};R(}SIZE.LT.(NVQR)!(NUAR+5)) GO TO 440

ANSZ

JXR=0
IXC=TXR+NYVAR
JXC=JXR+NVAR
IXF=IXL+HYAR
JXF=JXC+NVAR
TTL=TXF+NVAR
JTL3JXF +NVAR
TC=TTL+NVAR
JTC=ITL +NVAR
TFP=TTC+NVAR
JFP=2JTC#NVAR
NETA=0.0
TCIPG=0,.0
COROIS=0 . O
CURVCF=0.0
HSECLL=0.0
HSECLC=0,0
X110=0,0
17T0=0
NEQN=NYAR-1
NRED=0
KNSUi¥=0
NRDSIIM=0
ICRSI. =0
ITNSL =0
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PTCNO701
PTCNO702
PTCNO703
PTCNO704
PTCNO70%
PTENO704
PTCN0707
PTCNO708
PTCNO?09
PTCNOZ10
PTCNO711
PTCNO7 1D
PTICNO713
PTCNO714
PTENQO71S
PTCNO?16
PTCNO?17
PTCNO718
PTCNO719
PTLNO720
PTCNO721
PTCNO722
PTCNO723
PTCNO724
PTCNO72%
PTCNO724
PTCNO?727
PTCNO72R
PTCNO729
PTENO730
PTCNO731
PTCNO732
PTCNO733
PTCNO734
PTCNO735
PTENO?346
PTICNO737
PTCNO728
PTCNO739
PTENO740
PTLNO741
PTCNO742
PTENG743
PTCNO744
PTCNO74S
PTCNO746
PTCNO747
PTCNO?48
PTCNO749
PTCNO?750
PTCNOZS1
PTCNO?7%2
PTCNO7SR
PTCNO754
PTCNO7 SN
PTCNO754
PTICNO7R?
PTCNO758
PTLCNO7%59
PTCNO760
PTCNO761
PTCNO762
PTCNO74R
PTCNO764
PTCNO76S
PTCNO744
PTCNO747
PTCNO768
PTCNO749
PTCNO770
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NSTCR=0 PTCNO?771
NCNCR=0 PTCNO772
NTRCR=0 PTCNO?773
NLNECR=0 PTCNO774
NLLMRT=0 PTCNO77%
IFEVAL =0 PTCNO774
IS0l VE=0 PTCNO?777
IPEYAL =0 FTCNO778
IF (HMAX.LE.0.0) HMAX=SART(FLOAT(NVAR)) PTCNO779
IF (HMIN.LE.EPSURT) HMIN=EPSURT PTCNO780
HDEF = . SX(HMAX+HMIN) PTCNO781
IF (HFACT.LE.1,0) HFALT=3.0 PTECNQ782
HRED=1.0/HFACT PTCNO?783
1 If (ABRSERR.LE.0.0) ARSERR=EPSORT PTENO7R4
3 IF (RELERR.LE.0.0) RELERR=EPSQRT PTCNO78S
IF (TPC.LE,Q.0R, [PC.GT . AYAR) TPC=NVAR PTCNO786
IF (LIM.LT.O.OR.LIM.GT.NVAR) L.IN=0 PTCNO7E7
IF (H.EQ.0.0) H=HDEF PTCNO7RR
DIR=STIGN(1.0sH) PTCNO789
H=ABS(H) PTCNO?790
c PTCNO791
C JF (KSTEP.LT.0) CHECK NORM QOF F(XR) AT STARTING POINT, PTCNO792 :
€ TF ACCEPTABLEs RETURN [MMEOIATELY MUTH KSTEP=0, PTCNO793 i
C OQTHERWISE APPLY NEWNTON‘S METHOD, HOLDING VALUE OF PTCNO794 %
£ TIPC-TH COMPOMENT FIXED. PTCNO795 i
c PTCNO796 ]
TF (KSTEP.BE.0) 60 TO 20 PTCNO797
CALL CORECT(NVARsRWORK(IXR) s IPCsRNORK(ITL )+ IERRs» TMOD,»RUWORK(IFP)» PTCNO798
1 TPUTSARSERRyRELERR s XSTEP » HIZUN» FNRMXF ) PTCNO799
NSTCR=NSTCR+KN PTCNOBOO
c PTCNOBO1
C IF NG ACCEPTABLE POINT FOUNDs ERROR RETURN PTCNOBO2
c PTCNO80O3
IF _(IERR.NE.Q) GO TO 400 PTCNOBOA ih
KSTEPD=-1 PTCNO80S
KSTEP=0 PTCNOBOS
HTANCF =§ PTCNO8O?
G0 T0 340 PTCNOBOS
20 TF (KSTEP.EQ.Q) CALL SCOPY(NVAR,RWORK(TXR)s1,RUORK(IXLC) 1) PTCNOBOY
. c IF (KSTEP.EQ.0) CALL SCOPY(NVAR,RWORK(IXR)+1+RWORK(IXF)+]) :}gsgg}g
;- E!t!!tt!t!tt!tttt!ttttttt!!tttt!ttttttlttttttll!ttttttt!ttt!!t!tttt!ttt!:;ENOgl§
NOB1
C 2. TARGET POINT CHECK. IF (JT.NE.O) TARGET POINTS ﬁRE SOUGHT . PTCNOR1 4
C CHECK TO SEE _TF TARGEY COMPONENT IT HAS VYALUE XIT LYIN PTCNOBLS
- C BETWEEN XC(IT) AND XF(IT). IF SO+ GET LINEARLY INTFRPOLA1ED PTCNOBL6
[~ E STARTING POINT. ANQ USE NEWTON’'S METHOO TO GETY TARGET POINT :;F:ggi;
"'\ E t!!ltt!t!ttttttttttttttttttttt!tttl!tttttt!ttttttttttttttttltttttttttt;;Ezgglg
30 TFCTT,LY,0.0R, IT.6T,NVAR) 1T=0 PTENOR21
IF (IT.ER.0) GO TO 40 PTCNOB22
IF (TRET.EQ,1.AND,XTIT,.EQ.XTTN,ANQ.IT,.EQ.TY0) 60O TO 40 SICNOS23
i XCIT=RWORK(JXCHIT) PTCNOB24
XFTIT=RWORK(JXF+IT) PTCNO825
, IF ((XIT.LT.XCIT).AND(XIT.LT.XFIT)) GO 10 40 PTCNOB26
. IF C(CXTT.GT.XCTT).ANDL(XIT.GY.XFIT)) GO TO 40 PTCNOB27
‘ DEL=XFIT-XCIT PTCNOB28
} RAT=0.0 PTCNOR29
{ IF (ARS(DEL).GT.EPSART) RAT=(XIT-XCIT)/NEL PTCNO8B30
i CALL SCUOPY(NYARsRWORK(IXF)s 1, RHORK(IXR) »1) PTCNO831
; CALL SAXPY(NVAR»=1.09RWORK(IXC)s1sRWORK(IXR) 1) PTECNOB32
! CALIL. SSCAL (NYAR,RAT »RUORK(TXR) .1} PTCNOB33
) CALL SAXPY(NVARs1 +0sRWORK(IXC)»1sRWORK(IXR)s1) PTCNOBIA
i RUNRK ( JXREITI=XIT PTCNO835
CALL CORECT(NVARYRWORK(IXR)»JT+RNORK(TTL) ¢ JERRs IMODyRWORK(TFF)y PTCNORIS
1t [FYT>ARSERR «RELERR » XSTEP « NEON+FNRM) PTCNOB3?
NTRCR=NTRCRHKN PTCNOB3S
1r10=17 FTCNOQ3®

- ' X1TQ=%1T PTCNORAO




Q.0) 60 7O PTCNORA1

IF (TERR.E

IF (TERR.EQ.- l) 5O T 370 PTCNOBA?
IF (TERR.ER.-2) GO TOQ 340 PTCNQBAZ
IF (IERR.EQ.-3) 64 1D 380 PTCNOBA A

PTCNORAS

c
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€ PTCNORATY
C 3. TANGENT AND LOCAL CONVINUATION PARAMETER CALCULATION. UNLESS THEPTCNOS84S
C TANGENT AND LIMIT POINT CALCULATIONS WERE ALREADY PERFORMED (BECAUSE PTCN0OBA9
C THE LOOP WAS INTERRUPTER FOR A LIMIY POINT), SET UP AND SOLVE PTLNOBSO
C THE EQUATION FOR THE TANGENT VECTOR. FORCE THFE TANGENT VECTOR VG RE PTCNORSH
C OF UNTIT LENGTHs ANQ FORCE THE TPL-COMPUONENT TO HAVE THE SAME SIGN AS PTCNOBS2
C THE IPL-TH COMPONENT QOF THE PREVIQUS TANGENT VECYOR,» OR (ON FIRST PTCNOBS3I
C STEP) THE SAME SIGN AS THE USER THPUT BIRECTION 0TR. SET THE LOCAL PTCNO8S4
C PARAMETER IPC TO THE LOCATION OF THE |ARGEST COMPONENT PTENOBSS
€ 0F THE TANGENT UYECTOR> UNLESS A L TMIT POINT TN THAT DIRECTION PTENOBSS
E AFPEARS TQ RE AFPROACHING ANR ANQTHER CHOJCE TS AVAILARLE. g;gzggg;
Y4
gtxttt*tttttlt!tttttttttttttttltttt#tt!ttttt!tttttttt!!ttttttt!!11122tttPTCN0859
PTCNO840O
40 IF (IRFT NE.2) 60 TOQ SO PTCNOBAL
TRETY PTCNO8A2
RQ TO 160 PTCNOBAZ
C PTCNOBA4
C STORE OLD TANGENT IN TiL, COMPUTE NEW TANGENT FOR XC PTCNORAS
c PTCNOB66
S0 TPL=IPC PTCNORA7
IF(KSTEP .6T,.0)CALL SCOPY(NVARRUWORK([TC); 1,RUORK(ITL) , 1) PTIZNORAR
ICALL=1 PTCNOBSY
CALL TANGNT(NUARs RNORK ([XF)» TPC,RWAORK(ITL) > TRET» TCALL sRWORK(IFP)s PTLNOB70
1 JPUTHNEGNs>DETAs IEXP) PTCNOR?1
¥ (TRET.£0,-2) 60 70 430 PTCNOBZ2
IF (IRET.ER.~1) GQ TO 410 PTCNOS873
c PTCNOG74
C SUBROUTINE TANGNT RETURNED IPC» THE LOCATION OF THE LLARGEST COMPONENTPTCNO8?S
C 0F THE TANGENT YECTOR., THIS WILL RE USER FOR THE LOUAL PTCNOB74S
C PARAMETERIZATION OF THE CURVE UNLESS A LIMIT POINT IN JPC SEEMS PTCNOB7?
C T BE COMING., T CHECK THIS, WE COMPARE TCIPCI=TC(IPC) AND THF PTLNOBYS
C SECOND LARGEST COMPONENT TCJPCI=TC(JPC). IF TCJPC IS NO LESS PTCNOB79
C THAN .1 OF TCIPC, ANR TC(JPC)Y [S LARGER THAN TL(JPC), PTCNOBRO
C WHEREAS TC(IPC) IS LESS THAN TL(IPC)s WE WILL RESET THE PTCNOB8B1
£ LOCAL PARANETER IPC3=JPC. PTCNOBS2
c PTCNOBR3
. TLIPL=TCIPC PTCNO884
TCIPC= RUORK(ITP+IPP) PTCNOBSS
APC=1P PTCNOBRS
IF(ABQ(TCIPC) GE.ABS(RWORK(JTL+IPC)))IGO TQ 40 PTCNOBR?
lF(TLIPL,EO-O-O)GﬂTO 60 PTCNOSSS
RUORK(JTC+IPC)=0.0 PTCNOBRS
SPC=TSAMAL(NUAR YRUDRK( [TC) 5 1) PTCNOR9O
TC.IPC=RWORK(JTC+.PC) PTCNOB?1
RUORK (JTCH+IPC)I=TCIPC PTCNOBS?2
IF (ABS(TCJPC).LT.TENM1RARS(TCIPC)) GO TQ &0 PTCNOB93
IF (ABS(TCJPCY,LT,ABS(RNDRK (JTL+IPL)IIGOTN 40 PTLCNOB94
IPC=JPC PTCNOBYS
IF (INRITE.GE,2)4RITE(45410) PTCNORYS
60 TCIPL=RWORK(JTC+IPL) PTCNOR??
DTLIPC=0BLE (REORK (JTLFTPE)) PTCNOB98
DETA=DETA/TCIPL PTCNORY?
c PTCNO900
C ADJUST SIGN OF TANGENT PTCNO901
C COMPARE THE SIGBN OF TC(IPL) WITH STIGN OF TL(TPL) PTCNO902
C (BRUT ON FIRST STEPs COMPARE SIGN OF TC(IPL) WITH USER INPUT RIR). PTCNO903
C [F THESE SIGNS DIFFERp CHANGE THE SIGM OF TC TO FORCE AGREEMENT. PTCNO904
C AND THE SIGN OF DE PTCNOYOS
£ THEN RECORD O(R:= SIGN OF DETERMTNANT = SIGN(DETA). PTCNO90A
e PTLNOR0O?7
STLIPL=0IR PTCNO?08
IF (TLIPL.NE.Q,0) STLIPL=SIGN(1,0»TLIPL) PTCNOS09
IF (3TGN(1,0sTCIPL)EQ.STLIPL) BO TN 70 PTCNO91Q




T g

47
CALL SSCAL(NVAR«+-1.0yRWARK(ITC) 1) PTCNORI L
DEYA=-DETA . PTCNQ®12
TCIPL=-TCIPL PTCNO913
70 TIIPlvRHORK(JTP [PL) PICNOR14
TC.IPC=RWORK (ITC+JPC) PTCNO91IS
QTCTPC=RRLECTLIAC) PTCHO91A
GIR=STIGN(1.0/NETA) PTCNO937?7
IF (LIM.£0,0) 53 7O 80 PTCNO91R
TLLIN=TCLIH PTCNO919
TCLIM=RUORK (JTCHL TH) PTENO9?0
c PTCNO??!

C COMPUTE ALPHLEs THE ANGLE GETWEEN TANGENT AT XL AND TANGENT AT X PTCNO®22
g AND MSECLC, THE EUCLIDEAN NGRM OF SECANT FROM XL TO XC. :;ggs;;3
24
30 IF(KSTEP.LE.O0) GO TO 140 PTCNO923
COSALF=0.000 PTCNGR24
DO 90 T=1sNVAR PYCNQ927
CUSALF=COSALF+OBLE (RUDRX (JTLH 1) )ROBLE (RVORKCITLFT)) PTENG928
0 RWORK ( JXR+1)=RNORK(IXF+))-RUORK (JIXC+I) PTCNO929
HSECLL =HSECLE PTCNO930
HSECLC=SNRM2 (NVAR sy RWORK(IXR)»1) PTCNO931
ALPHLLC=SNGI. (COSALF) PTCNO932
IFCALPHLC.GT.3,0)ALPHLC=T.0 PTCNO?33
TELALPRLE LT .-1,0)ALPHLC:~1,0 PTCNO?34
AL PHLC=ACOS(ALPHLC) PTCNOFIS
TFCTHRTTE .GE, 2)URTTE(A5 550 ALPHLE P;g:ggg;

£ P

gt!ttttttttt!tt!t!tl!ttttttttlt!ttt!tttttttttttttttttttttttttt!!ttt8!33!;;%583%3
4. LIMIT PNOINT CHECK. IF (LIM.NE.0) CHECK TO SEE IF PTLNOS 4O
C OLD AND NEW TANGENTS DIFFER IN SIGN OF LIM-TH COMPONENT. PTCNO®41
C 1IF S0s ATTENPT TN COMPHTE A POINT XR BETHWEEN XC ANO XF PTCNO942
g FOR WHICH TANGENT COMPONENT VANISHES :}g:g;:}
gttttttlttttttt!tttttt!ttttt!tttttttttttttttttttttt!ttll!tt!!t!tttttt!!t?;CNgg:g
IF (LIM,LE.O.OR.KSTEP.LE.O) GO TO 140 PTENO947
c PTCNO948
€ CHECK FOR LIMIT INTERVAL PTCNO949
c PTCNO9%0
TF (SIGN(1.0sTCLIM) .EQ.STGN(1.0+TLLIN)) GO TQ 160 PTCNO9S51
C ) PTCNO9?%?2
C TEST FOR ACCEPTABLE ENDPOINTS : PTCNO9S3
c PTCNO?%4
ATLLN=ABS(TLLIN) PTCNO9SS
IF (ATLLM.GT,0,3520RSERR) 6B T 110 PTCNO9%S4
c PTCNO9S7
E TF XC U3 .IMTT POINT» TI. ALREABY CONTATNG TANGENT AT XC :;%zgggg
100 CALL SCHPY(NVAR»REORK( IXE) o 1, RNORK([AR) 1) PICNO960O
60 10 310 PTCNO961
110 ATCL IN=ARS(TCLIN) PTENODA2
IF (ATCLIM.GT.0.524BSERR) GO 1O 130 PTENOPA&Z
120 CAL). SCOPY(MYARSRUORK(TXF) s 1,RUORK(IAR) 1) PTCNO944
CALL SCOPY(NVARIRUWORK(ITC)s1,RUORKC(TTL) 1) PTCNO94S
60 T8 310 PTLNO96A
c PTICNO%&7
C TEST FOR SMALL. TINTERVYAL PTCNOT48
c PTCNO949
130 XCL (M=RUORK., (XCH. (M) PTCNO970
XFLIN=RUORK (UXF+LINM) PTCNO973
BEL =ABS (XFIL. IM-XECL TH) PTCNO972
XABS=AMAX] (ABS(XCLIN) yARS(XFLIN)) PTCNO972
TF (DEL.GT, (ABSERRIRELERREXARS)) GO 1) 140 PTCNG974
IF (ATLLM.GT ATCLIN) GO TO 120 . PTCNO9 7S
683 T3 100 PTCNO974
c PTCNO®77
C BEGIN RODY-FINOING [TERATION WITH TNYERUAL (0.1) ANR PTCNQI7R
E FUNCTION VALUES TL(LIM)y TC(LIM). ;;?:83;3
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140 KOUINT=0
A=0,0
FA=TLLIN
TSNeTCLIM
C=1.0
FE=TCLIN

SET IPLIM TO THE INREX OF MAXTMUMN ENYRY OF SECANT
(EXCEPT _THAT TPLIM MUST NOT EQUAL L.IN)

AND _SAVE THE STIGN OF THE MAXTMUM COMPONENT TN DIRLIM
R0 THAT NEW TANGENTS MAY RE PROPERLY STGNED.

CAlL SCOPY(NVAR/RWARK(IXF)»1»RWORK(JXR) 1)

LALL SAXPY(HUARs-1,.0+RUNRK(TXC) » 1 RMAORK(TXRY » 1)
RMORK{JXR+LIN)=0.0

TPL IN=TSAMAX (HUAR +RUORK (TYR) 5 1}
DIRLIM=STGNC1.0sRUORK(IXRETPLIN) )

CALL RONTFINDER FOR APPROXIMATE ROOT SNy SET X=SNEXF+(1-SN)EXC
CALL CORRECTOR TO RETURN TO CURVE OM LINE X(YPLIM)=CONSTANT,
COMPUTE TANGENT THEREs AND SET FUNCTTION VALLUE TO TANGENT(LIM)

150 CALL RODT(AsFA»SNr TSN+ CyFCrKOUNT s IFLAG)
NLMRT=NL NRT 41
IF(IFLAG,LT,-1)63 T 350
IF(IFLAG.ER.-1.0R.JFLAG.ER.O0)GO TQ 10
CALL SCOPY(NVARsRUORK(IXF)s 1, RUORK(TAR) s 1)
CALL SSCAL (NVARsSNsRWORK(1XR)»1)
SCALER=1,0-5N
CALL SAXPY(NVARySCALERsRUWORK(IXC) s 1/ )RUORK(IXR) 1)

P
CALL CORECT(NVARRWORK(TXR) » TPLIN;RWARK(TTL ) » TERRs [NDQsRUWORK(TFP)

1 vIPUT»ABSFRR,RFLERR,XSTPLH;NERN,FNRH)
NI MR =ML BCR +K
IF (IERR.NE. 0) G0 10 350

ICALL=1

IPT=]IPL IH

CALL. _TANGNT(NUARs RUORK(IXR)«TPT:R l K(TTI) [RET» TCALLS
1 RNORK(TFP)» IPVT+NEGN,DETL EX

IFCIRET,LT.0)GD TO 350

ADJUST THE SIGN OF THE TANGENT S0 THAT THE TPLIN-TH COMPONENT

HAS THE SAME SIGN AS THE TPLIM-TH COMPONENT OF THE SECANT

JF (HIRLIM.NE.SIGN(1,.0sRUORK(JTL+IPLIN)))
1 CALL S3SCAL(NYARs-1,0;RHORK(TTL) 1)

SEE [F WE CAN ACCEPT THE NENW POINT BECAUSE TANMGENT(LIM) 13 SMALL
OR MUST 'ACCEPT’ THE POINT RECAUSE THE VALUES ARE NOT NECREASING

RAPTDLY ENOUGH, OR IF NE CAN $0 ON.

TSHOL D= TSN

TSNsRRORK ( JITL +1.IM)

IF (ABS(TSN).LE.O,SRABRSERR) GO TN 310
60 10 130

PTCNO9R1
PTCHO9B?
PTCNO983
PTENOS8B4
PTCNQ9&S
PTENOORA
PTCNO9R?7
PTCNO9IRR
PTCNO9RY
PTCNO990
PTCNO991
PTLNQ992
PTCNO993
PTLNO994
PTCNO?9S
PTENO99A
PTCNO997
PTENO998
PTCNO999
PTCN1000O
PTCN1001
PTCN1002
PTCN1003
PTCN1004
PTCN1OOS
PTEN1006&
PTCN1007
PTCN1008

PTCN1020
PTCN1021
PTCN1022

" PTCN1023

PTCN1024
PTENT02S
PTECN1024
PTCN10227
PTCN1028
PTCN1029
PTCN1030
PTCN1031
PTCN1032
PICN1033
PTCN1034
PTCN103S

c
(93323233322 33223333332833833333333333333333323¢22423332323233323233332333323333333; 41t Bkt

slnivivivivisioleisliviolyiy]

5. STEP LENGTH COMPUTATION. COMPUTE STEPLENGTH HTANCF
THE FORMULAS UNDERI.LYING THE ALGUORITHM ARE

PTCN1037
PTCN1O3R
PTCN1O39
PTICN1040
PTCN1041
PTCN1042
PTCN104X
PTCN1 044
PYCN1045
PTCN1044&
PTCN1047
PTCN104AR

PTCN1049

LET

ALPHLE = MAXIMUM OF ARCCOS(TLsTC) AND ALFMIN = 2%ARCCOS(1-EPMACH)

HSECL.C = MORM(XL-XC)

HSECLL = NORM(XL-XLL)

ARSIN = ARS(SIN(,5XALPHLL))

CURVLC = LAST VALUE QF CURVCF

CURYCTE = 2XARSIN/HSECLC

CORNIS = OPTTMIZED CORRECTOR MISTANCE TO CURRENT CONTINUATION POINT. PTCNIOSO




49
c RUT CORNTS FORCED 10 LIE RETNEEN .JXHSECLC AND HSECLC. PTCN10S1
¢ UNLESS (LORDIS,E0.0,0), BECAUSE THE PREOISTED POTNT WAS PTEN10S2
c IMMEDTATELY BCCEPTED. IN SUCH A CASEs SET HTANCF=HSELLC  PTCNIOSX
¢ INSTEAD OF USING FIRST ESTINATE FOR HTANCF, PTIN10S4
¢ PTEN1OSS
£ IMEN PTENTOSA
¢ PTCN10S?
€ CURYXF = CURUCF + HSECLCR(CURUCE~CURYLEC)/ (HSECLCPHSECLL ) PTCN105R
¢ BUT CURUXF WUST BE GREATER THAN .001r AND A STNPLER FGRMULA IS USED PTCN10%9
€ 1F WE 00 NOT HAUE BATA AT TWO PRENMIDUS POINTS. PTCN1040
c
¢ FIRST ESTIMATE: (UNLESS (CORDTS,EN.0,0) ) PTCN1062
¢ PTCN1063
€ HIANCE = SORT(2ECORDIS/CURYXF) PTCN1044
¢ PTCN104S
F ADJUSTED VALUE: PTCN1044
c PTEN104?
€ WTANCF = WTANCFE(1.0 4 HTANCFECTC(IPC)-TLCIPC))/(2EHSECLEATC(IPC)))  PTENI0RS
PTCN1069
€ READJUSTHENT AND TRUNCATIONS? PTEN1070
C IF STEPSIZE REDUCTION OCCURRED DURING LAST CORRECTOR PROCESS: PTCN1072
€ HTANCF T3 FORCED TO BE LESS THAN (HFACT-1)SHSECLC/2. PTEN1073
€ WTANCF WUST LIE DETUEEN (WSECLC/WFACT) AND (HSECLCEHFACT), PTEN107
€ WIANCE IS ALWAYS FORCED TO LTE BETWEEN HNIN AND WHAX. PTCN1077
N N SR S LSS LSRR A R AR AR A SRR AL EX AL IRTLRRALLLPTENI 07O
£ CHECK [F OEFAULT STEP WUST BE USED: PTCN1081
€ ON FIRST STEPs USE HTANCF=H. PTCN1082
§ UF PREUTOUS STEP WAS OF SIZE ZERD, USE STEPSTZE WOEF=(HNINHHNAX)/2  PTCN1083
160 [F (KSTEP.GT,0.AND.HSECLE,6T,0,0) 50 T0 170 PTLN108S
HTANCF =HDE PTCN1084
RS TEr LR, 0) HTANCE =H PTCN1087
80 T 190 PTCN10RR
170 TF(ALPHLE,L.T,ALEMTIN) ALPHIC=ALFNIN PTCN1089
ARSTN=ABS (STN(, SZALPHLE)) PTENI 090
! c PTCN1091
€ COMPUTE NEW CURVATURE DATA PTCN1 092
c PTCN1093
CURVLC=CURYCF PTCN1094
CURVCF =2, 0BABS TN/HSECLE PTCN109S
s CURVXF =CURVCF PTCN1094
N TF (HSECLL , NE . 0 PTCN1097
1 EURYXE SEURVER I HRECL C8 ( CURVCF - ~CURVLE) / (HSECLCHHSECLL) PTCN109R
N CURYYF=ANAX 1 ( CURVF , TENNS) : PTEN1099
: IFCINRITE . GE. 2)WRTTE (41 540) CURVCF s CURVYF PTEN1100
¢ cN1101
C TF THE CONVERGENCE NTSTANCE IS ZEROs» SET FIRST ESTIMATE TO HSECLC.  PTCN1102
€ OTHERWISE, TRUNCATE CORDS 70 LIE BETNEEN .O1SHSECLE AND NSECLE PTCN1 103
! HTANCE "HSECLC PTCN110S
, IF (CORDIS.ER.0.0) 6O TO 180 PTCN1104
j TENP=TENM2ENSECL F PTEN1107
) CORDIS=AMAX1(CORDIS s TEHP) PTCN1108
CORDIS=AMINT (CORDTS, HSELLE) PTCN1109
I ¢ PTCN1110
y £ SET HTANCF, THEN AQJUST FOR CURVATURE M CONT (NUATION PTENL1 1A
1 ¢ PARAMETER NTRECTION) THEN TRUNCATE PTCN11)2
, c PTCN1113
i HTANCF=SORT (2, 08CORDIS/CURVXF) PTCN1114
1 180 TF (NRED.BT,0)HTANCE *AMTNT (HTANCE s (NFACT~1,0) SHSELLCE,5) PTCN111S
DD JUGe1 Ohoh 1 o0 DT e hTETPe) APALE ( SONTANCE) JDALE(HSECLE)  PTENITIa
' HTANCF =HTANGF 2SNGL. ( DAD.JUS) PTCN1117
TENP=NSECLCANRED PTCNI118
HTANCE =ANAX1 (HTANLS » TENP) PTANIL19
TENP=HSECLCENFACT FTEN1120




HTANCEF=AMI N1 (HTANCF » TENP)
HTANCE =AMALL (HTANCE s HMTND -
HTANCF=ANIN1(HTANCF s HHAX)

50

c
XL LI LR E AN R R R AL X KRR AR AL RRAL XA LRI ALXARTSARLEXXXLRLRLEP TCN]

£
¢ PTCN1124
C &. PREDICTION ANR CORRECTION STEPS. USING XR=XCH+HTANCFRTC PTCN1127
£ AS STARTING PQINY, CORRECLY XR YETH a4 FULL OR MORIFIEQR NEWTON PTCN1128
C TJTERATION. IF CORECT FAJLSs REDUCF STEPSIZE USEDR FOR PREDICTOR PTEN1129
L POTINTs AND TRY AGAIN., CORRECTION WILL OMLY BRE ARANDONED TF STEFSTIE PTCN1130
C FALLS RELOW HMIN. PTCN1131
c PTCN1L32
Ext!tttttttl*tttt!tttttttltttttttttt!tt!ttt!ttit!ttttt!!tt!tt!ttttttttlt?;cz11%3
PTCNL134
190 KSTEPQ=KSTEP PTCN1135
KSTEP=KSTEP+1 PTCN1136
NRED=0 PTCN1137
200 CALL SCOPY(HUAR>RUADRK(IXF) » 1 REDRK{TXR) s 1) PTCN1138
CALL SAXPY(NUARoHTANCF’RHORK(ITC)rlvRUGRK(IXR)ql) PTCN1139
210 TF(TUWRITE .GE,2)MR(TE(65S70YHTANCF PTCN1140
IFCTHRITE.GE. JI)WRITE (6+380) (RHORK(JXR+I) ¢ I=19sNVAR TCNI 141
CALL PORFPT(NUAR:RHORK(IYR)cIPL:RUORK(TTL)rIFRR [HDO:RUORK(IFP’; PTCN1142
1 TPVT,ABRSERR/RELERR s XSTEP + NEGN s FNRMXF) PTCN1143
NCNCR=HCNCRKN PTCN1144
IF (IERR.EQ.0) GO TO 230 PTCN1145
IF (TERR.EQ.-1) GO TO 420 PTENT144
c PTCH1147
T ND CONYERGENCE, TRY A SMALLER STEPSTZE PTCN1148
c PTCN1149
HTANCF =HREDEHTANCF PTCN1150
IF (HTANCF .LT.HMIN) GO TG I90 PTEN1151
NRED=NRED+1 PTCN1152
IF (IERR.EP.-2) GO TO 220 PTCNL153
6560 TH 200 PTCNL154
220 CALL SAXPY(NVARs-1.0sRWORK(IXC)s»1+RWORK(IXR)»1) PTCN13SS
CALL SSCAL (NVUARHRED>RWORK(TAR) » 1) PTCN11356
CALL SAXPY(NVARs1.0sRUORK(IXC)»3 »RUORK(IXR)» 1) PTCN1157
GO TH 210 PTCN1158
C PTCN1159
E!tt!!!ttttttt!ttt!ttt!tt3tttt!ttltttttttttttttttltttt!!!!tlt!t!!ttttt!t;;?g;ié?
é
C 7, SUCCESSFUL STEP, STORE INFORMATION REFORE RETURN. PTCN1142
C UPNATE OLD AND CURRENT CONTINUATION POINTS, PTCH1163
C COMPUTE COROIS, THE STZE OF THE CORRECTOR STEP. COMPUTE PTCN1144
C A FACTOR THETA WHICH RESCALES CORDIS TO A VALUE WHICH WQULD PTCN116%
£ CORRESPOND T A DESTRABLS NUMRER iJf CORRECTOR STEPS PTCN1146
C (4 FOR FULL NEWTON, 10 FOR MODIFIEN NEWTON). PTCNI167
E SEE REFERENCE DEN HELJER AMO RHETINBROLOT, LOC, CIT, s;gzilﬁg
CN116
Ettttxttlttttttttt!tt!tttttttt!!ttitl!lttttttttt!tttt!t!!!ttttt!!tttt!!t:;g:}1;0
171
230 NRUSUM=NRUSUMFNRED PTENT172
c IF (NRED.NE.O.AND.IWRITE.GE.2)WRITE(46+»SP0)NRED ;;Q#%%;}

[

€ COMPUTE CORRECTOR STEP = XCHHTANCF2TC-XF PTCN1175
E SET CORDIS = MAX NORM 0OF CORRECTOR STEP :;g:}};g
CALL. SCOPY (NUARsRUODRK(TXF)» 1, RUNRK([XL) s 21) PTCN1178
CALL SAXPY(NVAR»=1.0yRWORK(IXR)»} sRBORK(TXC) ¢} PICN1179
CALL SAXPY(NUARsHTANCF «RUORK( [TC) « 1 RUORK( IXE) l) PTN1180
IMAX=TSAMAX (NVAR»RWORK (IXC) 1) PTCN1181
CORRTIS=ARS (RWORK (JXCHIMAX)) PTCH1182
IF(KN.EQ.0) CORDIS=0.0 PTCN1183
¢ PTN1184
C MODIFY CORDIS TR A VALUE THAT WOULD CORRESPOND TQ THE PTCN118%
C DESIRED MUMBER If CORRECTOR STEPS PTEN11Bé
c PTCN1187
TF(CORNIS,EN,0,0VG0 T 300 PTINILRA
NAEGA=XSTEP/CORDIS PTCN1189
THETA=0, 0 PTENLLR0




IFCINON.EQ.1) GOTO 240 1191

C PTENT192
C FULL NEWTON METHOD FQR CORRECTOR STEPS PTCN1193
c PTCN1194
IF (KN.LE 1) THETA=8.0 PTCNI 195
TF(KN.EQ. 4)THETA=1.,0 PTCN1194
IF(THETA.NE.0.0)60 TO 290 PTCN1197
TF(KN.GT.4)60 T0 240 PTCN1198
LK=4%KN-7 PTCN1199
THETA=1.,0 PTCN1200
IF’ﬂHEGA GE . WRGE (LK))GOTQ 290 PTCN1201

ST= PTCN1202
xr(oneaa GE .WRGE (LK$1))GOTO 250 PTCN1203
L.ST=.K+2 PTCN1204

IF (OMEGA.GE . NRGF (LK+2))G0TO 250 PTCN120S
THETA=8,0 PTCN1204

GOTO 290 PTCN1207

240 THETA=0.125 PTCN1208
IF(KN.GE.7) GOTO 290 PTCN1209

1K =4%KN-14 PTCN1210

IF (OMEGA.LE . WRGE (LK))GOTO 290 PTCN1211
LST=28KN=1 PTCN1212

250 THETA=ACOF (L.ST)+ACOF (LST+1)XALOG(OMEGA) PTCN1213
6OTH 290 PTCN1214

c PTCN121S
C MODTFIED NEWTON METHOD FOR CORRECTOR STEPS PTCH1216
c PTCN1217
260 TF(KN.LE.1) THETA=8.0 PTCN12(R
IF (KN EQ.J0)THETA=1.0 PTCN1219
TF(THETA.NE,0,0)60 TO 290 PTCN1270
EXPON=FL.OAT (KN-1)/FLOAT(KN=10) PTCN1221

c PTCN1222
C AVOID NDVERFLOM OR UNDERFLOW RY ANTICTPATING PTCN1223
C CUTOFF VALUES DF THETA PTCN1224
c PTCN1225
1¥ (KN.GT.10) 6O TO 270 PTCN1224

IF (8,083EXPON.GT.OMEGA) THETA=8.0 PTCN1227

IF (,12SKEEXPON,LT.OMEGA) THETA=,125 PTCN1228

IF (THETA.NE.0.0) GO TO 290 PTCN1229

30 TN 280 PTCN1230

270 IF (R.OSEXPON.LT.OMEGA) THETA=8.0 PTCN1231
IF (,1258REXPON.6T,0MEGA) THETA=,12% PTCN1232

IF (THETA.NE.0.0) GO TQ 290 PTCN1233

280 EXPON=1,0/EXPON PTCN1234
THE TA=NHEGARXE XPON PTCN123S
THETA=AMAX L ( THETA20.125) PTIN1234
THETA=AMINI (THETA+8.0) PICN1237

c PTCN1238
C SET THE MODIFIED VALUE OF CORNIS PTCN1239
c PTCN1240
290 CORDIS=THETAXCORDIS PTCN1241
IF ((WRTTE ,BE, 2)MRTTE (45 400) DMEGA , T} PTCN1242

300 CALL SCOPY(NVAR)RWORK (IXF)»s s RWORK PTCN1243
CALL SCBPY (NUAR, RNORK ( IXR) « 1, RUORK PTCN1744

G0 TO 340 PTCN124S

c PTCN1244
Extxxtt!!xtttttt!!tt!:tttt!t!t!x!tttttttltttttttttttttttttt!ttt!tttttttt:}%#}%:;
C RETURNS., SET VALUE OF IRET. IF AN ERROR QCCURRED» PRINT PTCN124%
E A MESSAGE AS WELL, PTknggo
1
E!tttttxtttttttttttttt!t!ttttttttttt!ttttttttttt!ttlttt!tttt:tttt!ttttttPTrNl?ﬁ’
PTCN1I253

c PTCN1254
C RETURN LIMIT POINT PTCN125S
c PTCN1254
310 JRET=2 PTCN12S?
RETURN PTCN128R
PTCN1259

c
C RETURN WITH YARGET POTNT

PTEN1240




— w4

320

SO0

330
340

e ixiw]

350

370

380

390

400

410 IR

510

{RET=1
RETURN

RETURN WITH CONTINUATYION POINT

CALL SCOPY(NVARsRWORK(IXF)s»1»RWORK(IXR) 1)
TRET=0

H=HTANCF

RETURN

ERROR RETURNS

TRET==1
IFCINRITE GE. 1)URITE (65450)
RETURN

iRET=-2
TF(IWRTTE,GE . 1)NRITE(55450)
RETURN
IRET=-3
IFCTHRITE .GE.1)WRITE(4+470)
RETURN

IRET=-4

IF((MRITE.GE. 1)NRITE (45 480)

RETURN

{RET==5

IFCINRITE.GE1)WRITE(69490)HTANCF s HMIN

RETURN

JRET==6

TF(IMRITE.GE . 1OHRITE(4,500)

RETURN

ET=~7

IF(INMRITE.GEJ)URITE(4+510)

RETURN

JRET=-8

IF(THRITELGE . VIWRTTE(S$,520)

RETURN

TRET=-9

IFC(IMRITE . GE. 1 UWRITE(4y530)

RETURN

IRET=-10

;;%6:£ITE>GE.1)HRITE(A;S40)NUAR:!3128

FORMAT (26HOLTHIT POTHT FINDER FATLED)

FORMAT (SOROCORE(CTs SEEKING TARGET PQINT, TOOK TOO MANY STEPS
FORMAT(SOHOCNRECT > SEEKING TARGETs CALLER SOLYE WHTICH FAITLED
FORMAT (ASHOCORECT» SEEKING TARGET» FATLED WITH RAD STEP)
FORMAT (1ONOSTEPSTZE »F12,7s15H LESS THAN HMIN,F12.7)
FORMAT (47HONORM QF F(X) IS TOO LARGE ON INITIAL CALL)
FORMAT (IINHOSDILYE FATLED IN CALL FROM TANGNT)
FORMAT(33HOSOLVE FAILED IN CALL FROM CORECT)

FORMAT (2IHOTANGENT UECTOR [S ZERO)

FORMAT (26HOUNACCEPTABLE TNPUT NVAR=+110s7H ISIZE=+110)
FORMAT (36H ANGLE BRETWEEN 0OLD ANQD NEW TANGENTS=»F12.%5)
FORMAT(9H CURVCF =sE14.659H CURVXF =+E14.4)

FORMAT (146H USTNG STEPSTZE=,F12,5)

FORMAT(12H PREDICTED X/1X95F12.5)

FORMAT(1H sT2:14H 3TEP REBUCTIONS)

FORMAT(7H OMEGA=+F12.5y7H THETA=yF12.5+9H NEW RAD=+F12. %)
FORMAT (3{H TANGNT ANTICTIPATES L{MTIT POINT)

)
)

PTCNI 24}
PTUN12A2
PTCN1263
PTCN1264
PTCN1245
PTCH1266
PTCN1267
PTCMN1248
PTCN1269
PTCHN1270
PTCN1271
PTCN1272
PTCN1273
PTENL274
PTCN127%
PTCM1274
PTCN1277
PTCN1278
PTCN1279
PTCHN1280
PTCN1281
PTCN1282
PTCN1283
PTCN1284
PTCN12RS
PTCN12R4
PTCN128R7
PTCN1288
PTCN1289
PTCN1290
PTCN1291
PTCN1292
PTCN1293
PTCN1294
PTCN129%
PTCN1294
PTCN1297
PTCN1298
PTCN1299
PTCN1300
PTCN1301
PTCN1302
PTCN1303
PTCN1304
PTCN1305
PTCN1306
PTCN130?
PTiCN1308
PTCN1309
PTCN1310

PTCN1317
PTCN1318
PTCNI3LY
PTCN1320
PTCN1321

C

C!!!*ttttl!llttt!!t!tt1‘!t!tt!ttttttl!ttt!!lttl!ttt!tt!tttttt!t!!ttxlt!t:;gz}gg%
c . k
PTCN1324

END
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SURROUTINE CORECT(NVARs X» THQL.D»WORK« TERR s TMONs FPRYM, TFUT, CRCTO0O1
1 ARSERRsRELERR +XSTEP s NEGNsFNRN) CRET0002
c CRECT0003
g!!tt!tt!l!ttttttt!!!tttt*tt#t*Iltt!ttttttttttttttt*t!tlit!ttt!tt*t!t!ttCRCTOOO4
: CRET0005
C SUBROUTINE CORECT PERFORMS THE CORRECTOR ITERATIONS ON A STARTING  CRCT0004
C POINT. THE CORRECTION METHOR IS EITHER FULL (IHON=0) CRET0007
€ OR MODIFIED (IMOR=1) NEWTON'S METHOD. FOR MORTFIED NEWTON’S CRET0008
C METHOD, THE JACORIAN IS TO BE EVALUATED ONLY AT THE STARTING FOINT. CRET0009
C IF R IS THE VALUE OF X(IHOLD) FOR THE INPUT STARTING POINT, CRET0010
C THEN THE AUGKENTING EQUATTGN IS X(IHOILD)=R, CRETO011
C THAT IS, THE IHOLDN-TH COMPONENT OF X IS TO RE HELM FIXER, CRET0012
‘ ¢ THE AUGMENTED SYSTEM TO BE SOLVED IS THEN DFA(X,IHOLD)XDELTA=FA(X)  CRCT0013
. CRET0013
: C INPUT CRETOO1S
\ £ X = IHE STARTING POINT FOR THE CORRECTOR ITERATION CRETO016
£ THRLR = COMPONENT OF X THAT WILL NOT RE CHANGED DURING TTERATTON CRETO017
C IMOD = FLAG FOR TYPE OF NEWTON’S METHOD 10 RE USEN. CRET0013
c WHEN IMOD=0» JACORIAN 1S TO BE EVALUATED AT FVERY CRCT0019
c CORRELTOR ITERATE, KNHAX IS SET TO 10 CRCT0020
¢ INGD=1, THE JAGOBIAN 1S ONLY EVALUATED AT THE STARTING  CRGT0021
c POINT . AND KNNAX 13 SET T0 20 CRET0022
c CRETO023
C OUTPUT CRET0023
€ X = SOLUTION VECTOR ON A SUCCESSFUL CALL TO CORECT, CRET0025
C WORK = THE RESIDUAL F(X)» AFTER A SUCCESSFUL CALL TO CORECT. CRET0026
C IERR = THE RETURN FLAG WITH THE FOLLOWING YALUES CRCT0027
c -2 MAXIMUM MUNRER OF CORRECTOR ITERATIONS WERE TAKEN. CRET0028
€ -1 ERROR RETURN FROM SOLVE CALLEN RY CORECT. CRCT0029
c 0 SUCCESSFUL CORRECTION. VECTOR X RETURNED SATISIFES CRET0030
c ABS(F (X)) .LE ,ARSERR CRET0031
c t CORRECTOR STEP WAS UNACCEPTARLE, CORRECTION FAILEN, CRET0032
C KN = THE NUHBER OF CORRECTOR ITERATIONS TAKEN ON THIS GALL CRCT0033
C THIS SUBROUTINE IS CALLED BY CRET0035
C PITCON CRCTO036
C AND CALLS CRCTO0X7
C  SOLVE CRET0038
C  FORTRAN ABS CRETO039
€ LINPAK ISAMAX CRET0040
C  LINPAK SAXPY CRET0041
; ¢  USER FCTN : CRET0042
. c CRET0043
gtttttt3:!:ttxttttttttttttt!tttttttttttttttttttttttttttttxtt:ttxttttttttgggToo:;
REAL X(NVAR) » WORK (NVAR) s FPSYM(NVAR s NVAR) CRET0046
, INTEGER TPVT(NVAR) CRETO0A7
| COMMON /COUNT1/ IGRSL, TTNSLsNSTCRsNCNCR s NTRGR s NLMCR s NUMRT CRET0048
'S COMMON /COUNT2/ TFEVAL » IPEVAL » 1S01.VE s NRED» NRDSUM» KN » KNSUN CRET0049
E~ COMMON /OUTPUT/ IMRITE CRET00S0
& - COMMON /TOL/  FPMACH»EPSATEsEPSART CRCTO051
c CRETO052
€ INITIALIZE CRETO053
¢ CRETO0S4
f KN=0 CRETOOSS
KNMAX CRET0054
l T INOD-EQ. § YKNNHAX=20 CRET00S57
: IERR=0 CRCT00S8
! FNP=2.0 CRET00%9
TCALL =1 CRET0040
XSTEP=0,0 CRETO04
> CALL FCTN(NVAR; XsHORK) CRET0042
! IFEVAL=IFEVAL+1 CRET0063
! THAX=1SAMAX (NEGN» WORK » 1) CRET0064 -
i FNRM=ARS (WORK{ THAX) ) CRETO04S
‘ WORK (NVAR) =0, 0 CRET0064
! c CRET0067
: £ STRICTER ABSERR TEST ON STARTING POINT CRETO0AB
¢ CRETO049
, IF (FNRM.LE.0.S8ARSERR) 60 TN 40 CRET0070
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C CRGT0071
C ITERATION LOOP CRCT0072
¢ CRET0073
D0 20 T=1, KNMAX CRCT0074
KN=1 CRCT0075
CALL SOLVE (NUAR,X,WORK s THOLD, DETA, TEXP+ IERR, ICALL » THOD+FPRYM,CRCT0076 |
1 1Py CRET0077 -
1ORSL=ICRSLH1 CRECT0078
IF (TMOD.EQ. 1) ICALL=0 CRCT0079
ISOLVE=TSOLVE+1 CRCT0080
IF (IERR.NE.0) 60 TD 50 CRCT0081
FNRML =FNRM CRETO082
XSTEPL=XSTEP CRCT0083
CALL SAXPY(NVARs-1,0sMORKs1sXs1) CRCTO0084
IMAX=TSAMAX (NVAR s WORK s 1) CRETOORS
XSTEP=ARS(WORK ( INAX)) CRCT0086
INAX=ISAMAX (NVAR» Xs 1) CRCT0087
XNRM=ABS (X (INAX)) CRCT008S
CALL FCTN(NVARX»WORK) CRCT0089
IFEVAL =IFEVAL +1 CRCT0090
IMAX=TSAAX (NEQNs WORK s 1) CRCTQ091
FNRM=ARS (WORK ( THAX ) ) CRET0092
HORK (NVAR) =0 , 0 CRET0093
c CRCT0094
C ACCEPTANCE TEST CRGT0095
¢ CRCT0096
IF (FNRM.I E.EPSATE) GO T0 40 CRCT0097
IF (FNRM.GT.ABSERR) GO TO 10 CRCT0098
IF (XSTEP.LE.(ABSFRR4RELERREXNRM)) GO TO 40 CRCT0099
c CRCT0100
C REJECTION TEST . CRCTO101
c CRCT0102
10 IF (KN.GT.1.AND.XSTEP.GT. (FMPEXSTEPL)) 60 TO 30 CRCT0103
IF_(FNRN.GT.(FMPEFNRML)) GO TO 30 CRCT0104
20 FiP=1,05 CRCT0105
60 TO 40 CRET0106
c CRET0107
C UNSUCCESSFUL STEP CRETO108
¢ CRETO10
30 IERR=-3 ERCTO110
IF (IWRITE.EQ, 2)WRITE (49 120) CRCTO111
60 T0 70 CRCT0112
c CRCTO113
C MAXIMUM NUMBER OF CORRECTOR STEPS REACHED F.£T0114
c LRCTOIS
40 IERR=-2 CRCTO116
IF CTIRTTE .£Q. 2)WRTTF (41110) CRCTO117
60 T0 7 CRCTO118
c CRCTO119
€ ERROR RETURN IN SOLVE CRCT0120
¢ CRET0121
50 IERR=-1 GRCTO122
IF CINRTTE.ERL2)MRITE (6100) CRCTO123
| 60 T0 70 CRCTO174
- c CRETO12S
; C SUCCESSFUL STEP CRCT0126
! c CRCT0137
! 40 TERR=0 CRCT0128
70 KNSLIM=KNSUMIKN CRETO129
| IF (IWRITE.EQ.2)WRITE(4+80) KN»XSTEP CRCT0130
O IF (TWRITE .EQ.2)WRITE(4990) THOLD CRCTO131
! RETURN CRET0132
[ 80 FORMAT(13H CORECT TOOK »12,21H STEPS, LAST ONE WAS +E12,5) CRCTO133
; 90 FORMAT(144 CORECT THOLD=,13) CRET0134
i 100 FORMAT(3IHOSOLVE FAILEDs CALLED RY GOREGT) CRCTO13S
110 FORMAT(2SHOTOO MANY GORRECTOR STEPS) CRCTO136
- ¢ 120 FORNAT(24HOCORRECTOR 'STEP REJECTED) CRETOIS7
, ORI R A RS R AR CRCTOLT9
*RCT0140

END CRCTO1 41
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SURRDUTINE TANGNT (NVARsX s IPs TANs IRET s ICALL s FPRYN» IPUT «NEQONIETA«  TNGNOOG L

1 IEXP) TNGNGOO?2

c TNGNOOOT

C!*!t!t‘t!tt!tlt!!!l‘!t!‘!lt!tl!it!!lt!!!!t‘ttl!ttttl!tl!ttltt!t!t!t!t!!;NgNOOOg

NGNOOO

SURROUTINE TANGNT COMPUTES THE UNIT TANGENT VECTOR TO THE SOLUTION  TNGNOOOS

CURVE OF THE UNDERDETERMINED NONL INEAR SYSTEM FX = 0. THE TNGNO0O?

: TANGENT VECTOR TAN 1S THE SOLUTION OF THE LINEAR SYSTEM ;zgzgggg
»

DFACXs IPL)ETAN = E(NVAR) TNGNOO10O

TNGNOO1 1
WHERE DFA(XsIPL.) I8 THE NVAR RY NVAR MATRIX WHOSE FIRST NUAR-1 ROWSTNGNOOLZ
ARE DFX/RX (X)y THE DERIJVATIVE OF FX EVALUATED AT X, AND WHOSE LLAST TNGNOO13
ROW IS (E(IPL)) TRANSPOSE, THE NVAR COMPONENT EUCLIDEAN COORDINATE  TNGNOO14
VECTOR WITH { IN THE IPL.-TH POSITION AND ZEROS ELSEWHERE. FE(NVAR) ISTNGNOO1LS

c
c
>
c
C
c
c
C
c
¢
C
£ THE NVAR COMPONENT EUCLIDEAN COORDINATE VECTOR WITH ONE IN THE TNGNOO1 &
C LAST COMPONENT. TNGNOQL?
c THE TANGENT VECTOR 1S THEN NORMALIZED ANR ITS SIGN ADJUSTEN, TNGNOO18
c TNGNOO 19
£ INPUT TNGN0020
€ NVAR = THE NUMBER OF VARIABLES TNGNOO21
£ X = THE CURRENT CONTINUATION POINT TNGNOO22
c 1P = CONTINUATION COMPONENT SET ON I.AST STEP TNGNOO23
c TNGNOO24
t ouTPUT TNGNOO2S
C TAN = THE UNIT TANGENT VECTOR IN CONTINUATION DIRECTION AT X TNGNOO26
C DETA = BINARY MANTISSA OF DETERMINANT OF JACOBIAN DFA(X» IPL) TNGNOO2?
C IEXP = RINARY EXPONENT OF THE RETERNINANT OF JACORIAN DFA(X:IPL) TNGNOO2S
c 1P = LOCATION OF LARGEST COMPONENT OF TANGENT VECTOR TAN TNGNOO29
g CANDIRATE FOR NEW CONTINUATION COMPONENT ;zgzggg?
vl o
C THIS SUBROUTINE IS CALLED BY TNGNOO32
e PITCON TNGNOO33
C AND CALLS TNGNOOZ4
c SOt Ve TNGNOO3%
c LINPAK TSAMAX TNGNOO36
c LINPAK SNRM2 TNGNQO3?
c LINPAK SSCAL . A . TNGNOO38
c TNGNOO39
gttxttt:txttttttttttxxzttttttxttxxxtttttttt:tttttttttxxxxxt:xttt:tt:ttt:TNGuoOAO
TNGNOOAL
REAL X(NVAR) s TAN(NVAR) s FPRYM( NVAR s NVAR ) TNGNOOAZ
INTEGER IPVT(NVAR) TNGNOO4A3
COMMON /COUNTL/ TCRSL ) ITNSL sNSTCRyNCNCR s NTRER » NLLMCR s NLMRT TNGNOOA4
COMMON /COUNT2/ IFEVAL » IPEVAL » ISOLVE » NRE T » NRDSLH s KNy KNSUM TNGNOOAS
COMMON /CUTPUT/ IWRITE TNGNOOAS
c TNGNOOA?
3 C CODMPUTE TANGENT VECTOR TNGNOOAS
v c TNGN0O4S
; DO 10 I=1,NEON TNGNOOSO
F~ 10 TAN(1)=0.0 TNGNOOS L
‘ TAN(NVAR)=1,0 TNGNOOS2
1ERR=0 TNGNOOS I
CALL SOLUE(NVARsXsTANs TPy DETAs IEXP IERRs ICAL L+ IMONy FPRYMy TNGNOOS4
1 IPUT) TNGNOOSS
Lo ITNSL=TTNSL +1 TNGNOO%SA
g ISOLVE=TSOLVE+1 TNGNOOS7
; IF (IERR.NE.O) IRET=~1 TNGNOOSS
i IF (IRET.LT.0) RETURN TNGNQO%S
{ c TNGNO0AO
} C OBTAIN EUCLIDEAN NORM OF TANGENT VECTOR TNGNOOA L
c TNGN00A2
" IP=ISAMAX (NVAR» TANs 1) TNGNOOAZ
| TNORM=SNRM?2 (NVAR» TAN» 1) TNGNOOL4 "
! IF (TNORM.EQ.0.0) IRET=-2 TNGNOOAS
! IF (IRET.LT.0) RETURN TNGNOOAS
| c TNGNO0A?
x C NORMALIZE THE VECTOR TNGNOOAS
: c TNGNOO&?
SCALER=1.0/TNNRM TNGNOO?0
CALL SSCAL (NVAR»SCALERs TAN» 1) TNGNOO71
RETURN TNGNOO72
C TNGNOO?3
CRRRER R R AR IR R AR R AR A R AR AR A KRR R LR KKK R AR AR XRER KRR L ERRERZRER L XX LRI TNGNOO 74
c TNGNOO7S
£NN TNGNOOT?&

R o, WP YT P '.“i;;Eﬁliii.illl.lllllll.liil
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. SURROUTINE ROOT (AsFAsRsFRyCoFCrKOUNT s TFLAG) ggg;gggl
Exxtttxtx:xttxxtxxttxxxxxttxt:t:xxxttt:xtttttxxtttxtxtxxxxxtxxxx:xxtxxtxkgg}oogi
C SURROUTINE ROOT SEEKS A ROOT OF THE EQUATION F(X)=0.0, ROOT000S
C GIVEN A STARTING INTERVAL (A»C) ON WHICH F CHANGES SIGN. ROOTOOOé
i C ON FIRST CALL TO ROOT» THE INTERVAL AND FUNCTION VALUES ROOT0007
1 € FA AND FC ARE FED IN AND AN APPROXIMATION R FOR THE ROOT 1S RETURNEL.RO0T0008
C BEFORE FACH SURSEQUENT CALL» THE USER EVALUATES FR=F(B)s AND THE ROOTO009
g PROGRAM TRIES TO RETURN A BETTER APFROXIMATION R. Rog;ggxo
: ROOTO011
C THIS PROGRAM IS BASED ON THE FORTRAN FUNCTION ZERO RODT0012
i C GIVEN IN THE ROOK: RNOTOO13
1 C ‘ALGORITHMS FOR MINIMIZATION WITHOUT DERIVATIVES® ROOTO014
‘ g BY RICHARD P, BRENTs PRENTICE HALLsINC, 1973 583}38{5
L Y-
¢ THE MODIFICATIONS WERE DONE RY .JOWN RURKARDT. ROOT0017
c ROOT0018
] C ON INPUT: ROOTO019
c RO0OT0020
3 C & - IS ONE ENDPOINT OF AN INTERVAL IN WHICH F CHANGES SIGN. ROOTO021
C FA - THE VALUE OF F(A). THE USER MUST EVALUATE F(A) BEFORE FIRSTRO0T0022
C CALL OM.Y. THEREAFTER THE PROGRAM SETS FA. ROOT0023
: C B - ON FIRST CALL» B SHOULD NOGT BE SET BY THE USER. RO0OT0024
3 c ON SURSEQUENT CALLSy B SHOULR NOT RE GHANGED RONT002S
c FROM ITS OUTPUT VALUE, THE CURRENT APPROXIMANT ROOTO024
c 70 THE ROOT, ROOT0027
C FB - ON FIRST GALLs FR SHOULD NOT BE SET RY THE USER. RO0T002
c THEREAFTER» THE USER SHOULD EVALUATE THE FUNCTION ROOT0059
c AT THE OUTPUT VALUE Ry, AND RETURN FR=F(R), ROOT030
C ¢ - IS THE OTHER ENDPOINT OF THF INTERVAL IN WHI RO0OTO031
¢ F CHANGES SIGN., NOTE THAT THE PROGRAM UILL RETURN RO0T0032
c IMMEDIATELY WITH AN ERROR FLAG IF FCRFALGT.0.0. ROOTO033
C FC - THE VALUE OF F(C). THE USER MUST FVAIUATF F(C) REFORE FIRSTROOT0034
c CALL ONLY. THER AFTER THE PROGRAN SETS ROOTO03S
G KOUNT - A COUNTER FOR THE NUMBER OF CALL. 5 R0NT,  KOUNT ROOTO03S
c SHOWL.D BE SET T0 ZERO ON THE FIRST rALL FOR A GIVEN RONT0037
> ROOT PROBLEN. RONT0038
E IFLAG - AN ERROR RETURN FILAG WHOSE INPUT VALUE IS THMMATFRIAL. ggg}ggig
C ON RETURN FROM A CALL TO ROOT RONTO041
c RONT0042
C A - ONE ENDPOINT OF CHANGE OF SIGN INTERVAL. ROOT0043
¢t FA - THE VALUE OF F(A), RONT0044
C B - CURRENT APPROXTMATION T0 THE ROOT. REFORE ANOTHER RONTO04S
. c CALL TO ROOT, EVALUATE F(R), RONT0046
) cC FB - FB YILI. BE OVERWRITTEN BY THE USER BEFORE ANOTHER RO0T0047
R c CALi.. ITS VALUE ON RETURN IS ONE OF FAs FR OR FC. RONTO048
’\ C C - OTHER ENDPOINT OF CHANGE IN SIGN INTERVAL. ROOT0049
r . C FC - JHE_yQLUE_QE_E(C_,_ . RONTO0S0
C KOUNT - CURRENT MUMBER OF CALLS TO ROOT. ROOTO0S1
C TFLAG - PROGRAM RETURN FLAG: ROOTO0S2
c IFLAG=-2 MEANS THAT ON FIRST CALLs FARFC.GT.0.0. RONTO0S3
c THIS IS AN ERROR RETURNs» SINGE A BRACKETING RO0T00S4
c INTERVAL SHOULD BE SUFPI.IED ON FIRST GAL., ROOTOOSS
¢ IFLAG=-\ MEANS THAT THE CURRENT BRACKETING INTFRUhL RODTO0SS
, c WHOSE ENDPOINTS ARE STOREDN IN A AND € ROOTO0S?
, c IS SO SMALL (LESS THAN ASEPMACHXARS(R)+EPMACH) ROOTO0S
j c THAT B SHOULD BE ACCEPTED AS THE ROOT. ROOTO0SS
; , ¢ THE FUNCTION VALUE F(R) IS STORED IN FB. ROOT0040
i c IFLAG= 0 MEANS THAT THE INPUT VALUE FR IS EXACTLY ROOT0061
- g ZEROy AND B SHOULD RE ACCEPTED AS THE ROOT. R00;8362
: ROOT0063
! ¢ IFLAG.BT.0 MEANS THAT THE GURRENT APPROXIMATION TO RN0T0044
‘ ¢ THE ROOT 1S CONTAINER IN B, IF A BETTER RONTO06S
i c APPROXIMATION 1S nssrasn. SET FR-F(R) ROOT0044
c AND CALL ROOT AGAIN. THE VALUE OF IFLAG INRICATES ROOT0047
¢ THE METHOR THAT WAS USER TO PRONMUICE R, RDNT0048
c ROOT0069
¢ IFLAG= 1 RISECTION WAS USEN. ROATA070
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IFLAG= 2 LINEAR INTERPOLATION (SECANT METHOD) . ROOTOO71

c
c IFi.aG= 3 INVERSE QUADNRATIC INTERPOLATION. RONT0072
c ROOT0073
C LOCAL VARTABLES INCLUDE: RONT0074
c ROOTO07%
€ EPMACH- SMALLEST POSITIVE NUMRER SUCH THAT 1.0+4EPMACH.GT.1.0 RONTO0746
; c .SKRETASK(1-TAU) FOR ROUNDERs TAU~RIGIT ARITHMETIC RONTO077
c RASE RETA. TWICE THAT VALUE FOR TRUNCATFD ARITHNETIC. RONT0078
c THIS IS THE RELATIVE MACHINE PREC ROOT0079
€ HALFBC- SIGNED HALFWIDTH OF INTERVAL . nunxns SEGMENT 3» THE £O0T0080
c CHANGE OF SIGN INTERVAL IS (BsC) OR (CsR), THE MIDPOINT ROOTO081
c oF rnnr INTERVAL IS XMID=B+HALFRC, REGARDNLESS OF ORIENTATION.ROOTO008Z
C SDELA - SIZE OF CHANGE IN exGN INTERVAL . ROOTO083
3 C SDEL2 - PREVIOUS VALUE OF SDEL1 RNOT0084
C SDEL3 - PREVIOUS VALUE OF SDEL2. RONTO08S
C SDEL4 - PREVIOUS VALUE OF SDEL3. RONTO086
C STEP - THE NEW RODT IS COMPUTER AS A CORRECTION TO R OF THE RONTO087
c FORN R(NEM)=R(OLD)+STEP, ROOT00A8
C TOLER - A NUMRER WE ACCEPT AS ‘SMALL’ WHEN EXAMINING INTERVAL ROOT0089
{ c 9125 oa STEP SIZE, TOLER=2,0%EPMACHXABS(R) + EPMACH IS RONT0090
c NIMUM BELOM uulru WE WILL NOT ALLOM SUCH VALUES TO FaLL. ROOTO091
€ THIS suaaourxns IS CALLED ROOT0092
c ROOT0093
C AND CALLS ROOTO094
C  FORTRAN ABRS RONTO09S
C  FORTRAN SIGN ROOTO094
c ROOTO097
gtxtttttttttttttttttltttttttt!!tttttttttttttttltttttttttttttxttttttxttttggg;gggg
- REAL AsByCoFAIFRIFCISTEP»TOLERIPIQsR»S ROOTO100
. COMMON /TOL/  EPMACHsEPSATE,EPSQRT ggg;gigg
E SEGMENT 12 FIRST CALL HANDLED SPECIALLY. DO BOOKKEEPING. 283}8%83
g SET CERTAIN VALUES ONLY FOR INITIAL CALL WITH KOUNT=0 288;3{32
IF (ROUNT.GT.0) GO TO 10 ROOTO107
IF (FA.GT.0.0.ANR.FC.6T.0.0) 60 TO 110 ROOTO108
IF (FA.LT.0.0,AND.FC.LT.0.0) 80 TO 110 ROOTO109
KOUNT=1 ROOTO110
SDEL122,08ABS(C-A) ROOTO111
SREL2=2, 03SDEL 1 ROATOL12
SDEL 32, 0$SNEL.2 ROOTO113
B=C ROOTO114
FR=FC RONTO115
60 T0 20 RONTO114
c ROOTO117
C ON EVERY CALLy INCREMENT COUNTER ROOTO118
c RONTO119
10 KOUNT=KOUNT+1 ROOTO120
c ROOTO121
C RETURN IF HIT MACHINE ZERO FOR F(B) ROOTO122
c ROOTO173
IF(FR.EA.0,0) GO TO 90 ROOTO124
c ROOTO12S
C SEGMENT 2% REARRANGE POINTS AND FUNCTION VALUES IF ROOTO126
C NECESSARY SO THAT FRRFC.I.T.0.0s AND SO THAT ROOTO012?
€ ABS(FR).LT.ARS(FC) ROOTO128
c ROOTO0129
IF((FR.LE.0.0) .AND, (FC.87.0.0)) GO TO 30 ROOTO 30
IF((FB.BT.0,0) .AND, (FC.LE.0.0)) GO TO 30 ROOTO131
c ROOTO132
C FB AND FC ARE OF 9Aﬂ€ SIGN, ROOTO133
C (ROOT CHANGED SIGN ROOTO134
€ OVERWRITE ¢ WITH UALUE oF A ROOTO013S
c ROOTO136
20 C=A RONT013?
FC=FA RONTO138
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IF NECESSARY» SET Al=Re RI=Cy [i=R
TO ENSURE THAT ARS(FR).LE.ARS(F(C)

30 £F£AFS(FC).GE.ABS(FB)) 60 TO 40
'

R=C
C=A
FAsFR
FR=FC
FC=FA

SEGMENT 3! CHECK FOR ACCEPTANCE BECAUSE OF SMALL INTERVAL
CURRENT CHANGE IN SIGN INTERVAL IS (CsB) OR (R.().

40 TOLER=2,0%EPMACHRARS (R) +EPMACH
HALFRC=0,5%(C-B)
SNEL 4=SDEL.3
SDEL 3=8DEL.2
SDEL.2=SDEL1
SREL 1=ARS(C-R)
IF (ABS(HALFRC) .LE.TOLER) GO TO 100

SEGMENT 4: COMPUTE NEW APPROXTMANT TO ROOT OF THE FORM
B{NEW)=R(OLD)+STEP,

METHODS AVAILARLE ARE LLINEAR INTERPOLATION

INVERSE _QUADRATIC INTERPOLATION

AND RISECTION.

IF{ARS(FR) .GE.ARS(FA))GD TO 70
IF(A.NE.C) GO TO SO

ATTEMPT LINEAR INTERPOLATION IF ONLY TWOQ POINTS AVAILARLE
COMFUTE P AND @ FOR APPROXTIMATION B(NEW)=R(OLD)+P/Q

IFLAG=2
S=FR/FA
P=2,0KkHALFBCES
@=1.0-%
G0 TO 40

ATTEMPT INVERSE QUABRATIC, INTERPOLATION IF THREE POINTS AVAILARLE
COMPUTE P AND Q FOR APPROXIMATION B(NEW)=B(OLD)+P/Q

S0 IFLAG-3
S=FB/

GﬂFﬁ/FC

R=FR/FC

P=5%(2.0XHALFRC2OX(Q-R) - (B“A)!(R-l 0))
A=(Q-1,0)k(R-1,0)%(S-1.0

CORRECT THE SIGNS OF P AND @

60 IF(P,GT.0.0)Q=-Q
P=ARS(P)

IF P/0 IS TOO LARGEs GO BACK TO RISECTION

IF(8,0%SDEL1.GT.SDEL.4) GO TO 70

IF (P.BE.1.58ARS(HALFBCXQ)-ARS(TOL.ER2Q)) GO TO 70
STEP=P/Q

GO TO 80

PERFORM BISFCTIONS
IF ABS(FR).GE,ARB(F
OR INTERPOLATION I% UNWF (P/Q@ 1S LARGE)
OR IF THREE CONSECUTIVE STEPS H/VE NOT RECREASED
THE SIZE OF THE INTERVAL. RY A FACTOR OF 8.0

70 IFLAG-1
STEP=HAM.FRC
GO TO 80

rROOTO139
ROOTO0140
ROOTO141
ROOTO142
RONT0143
ROOTO144
ROOTO14S
ROOTO146
ROOTO147
ROOTOL48
ROOTO149
ROOTO150
ROOTO151
RONTO1S2
ROOTO153
RODTO154
ROOTO1SS
ROOTOLS6
RODTO157
ROOTO158
ROOTO159
ROQT0140
ROOTO161
ROOTO342
ROOTO143
ROOTO144
ROQGTO145
ROOTO146
ROOTO1467
ROOTO148
ROQTO149
ROOTO170
ROOTOL171
RO0OT0172
ROQTO173
ROOTOA74
ROQTOL7S
ROOTO1746
ROOT0177
ROOTO178
ROOTO179
ROOT0O180
ROOTOI81
ROOTO182
ROOTO1R3
RO0OTO184
ROOTO18S
ROOTO186
ROOTO187
ROOTO188
ROOTO189
ROOTO190
ROOTO191
ROQTO192
ROOTO193
ROOTO194
ROOTOL9S
ROOTO194
ROOTO197?
ROOTO198
ROOTO199
RGOT0200
ROOTO201
ROOT0202
R0070203
ROOT0204
ROOT020S
RONT0204
RONTO0O?
ROOTO20R
ROOTO20®
RODTO210
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c ROOTO211
C SEBMENT 5! VALUE OF STEP HAS REFN COMPUTFD, KOOT0232
C UPDATE INFORMATION: A:=B, FA:=FR, RI=B+STEP, ROOTO213
C CHANGE TN SIGN INTERVAL IS NOM (A() OR (CrA). R0ONT0214
c ROOTO21%
80 A=R ROOTD216
Fa=FB ROATO217
IF(ARS(STEP).LE.TOLER) STEP=SIGN(TOLER,HALFRC) ROOT0218
B=B+STEP ROOT0219
RETURN RO0OT0220
c RONT0221
C SPECIAL RETURNS ROOT0222
c ROOT0223
C INPUT POINT R IS EXACT ROOT ROOT0224
c ROOTO225
90 IFL.AG=0 . _ ROOTO224
RETURN ROOT0227
¢ RONTO0228
C CHANGE IN SIGN INTERVAL IS OF SIZE LESS THAN 4REPMACHXABS(B)4+EPMACH RONT0229
C INTERVAL RETURNED AS (RsC) OR (CsB). ROOT0230
C ACCEPT R AS ROOT WITH RESIMIAL F(B) STORED IN FB. ROOTO231
c RONTO232
100 IFL.AG=-} ROOTO0233
A=B ROOT0234
FA=FB ROOTO23S
RETURN RONT0234
c ROOT0237
C CHANGE OF SIGN CONRITION VIOLATED ROOT0238
c RONT0239
110 IFLAG=-2 ROOT0240 '
KOUNT=0 RONT0241
RETURN RONT0242
c ROOT0243
gtttttttttttntttt“#tttttutltttt!t“ttttttt!lttttlttttttttttttt!t!tttﬂ;gg;gg4;
* 24
END ROOT0244

'
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SUBROUTINE SOLVE(NVAR»X» Y+ IP+»DETA» IEXPs (ERRs ICALL » IMOD» FPRYMo SLVEOOOY

1 IPVY) SLVE0002

€ SLYEN003
bt csdttitittttestdtedsddestditsedtsdsedididiitssitiditassissdeddiiss iU
SLVEQ00Y

THIS SURROUTINE IS CALLER RY SLVES006
CORECT SLVEQ0O?
TANGNT SLVE00O8
AND CALLS SLVE0009
FORTRAN ARS SLVEOQ10
LINPAK SGEFA SLVE0O01]
LINPAK SGESL SLVEQ012
USER FPRIME SLVE0O13
SLVE0014

THIS SURROUTINE SOLVES THE LINEAR SYSTEM DFA(X,IP)XYOUT = YIN SLVEOO1S
WHERE. DFA(XsTP) IS THE (NVAR)X(NVAR) MATRIX WHNSE FIRST NVAR - 1 SLVEO0016
ROWS ARE THE JAGOBIAN COMPUTED RY FPRIME, AND WHOSE LAST SLVEQO17
ROW 1S AL O EXCEPT FOR A 1 IN THE IP-TH COMPONENT. gtgggg{g
YIN IS THE NVAR COMPONENT VECTOR Y ON INPUT» AND THE SOLUTION SLVE0020
VECTOR YOUT IS RETURNED IN Y ON OUTPUT AFTER A SUCCESSFUL SLVE0O21
SETUP AND SOLUTION. SLVEQ022

SLVE0023
EENOTERX SURRQUTINE SOLVE USES FULL MATRIX STORAGE TQ SOLVE THE 2
LINEAR SYSTEM. THE USER MAY WISH TO REPLACE THIS ROUTINE WITH
ONE. MORE SUTTED TO HIS PRORLEM.

DETA  RINARY MANTISSA OF THE DETERMINANT OF JACORIAN DFA(X,IP)
IEXP  BINARY EXPONENT OF THE DETERMINANT OF .JACOBIAN DFA(XsIP)
IMOD  NEWTON METHOD FLAG. Sl
IHOR=0, JACOBJAN IS TO BE EVALUATED FOR EVERY CORRECTOR STEP  SI.VEOO31
ANR EVERY TANGENT CALCULATION SL.VE0032
InOD=1, JACOBIAN IS TO RE EVALUATED ONLY FOR FIRST CORRECTOR SILVE0033
P» ANR EVERY TANGENT CALCW.ATION SLVEQ034
SET uP FlAG SLVE003S
IF (ICALL.EQ.O.AND.INOD.NE.O) DON‘T RE-EVALUATED JACORIAN SLVEQ036
OUTPUT FROM SGEFA. IF INFO.NE.Os SGEFA FOUND A 7ERO SLVE0OX?7
PIVOT WHEN ELIMINATING INFO-TH VARIARLE. SLVE0O38
RETURN FLAGy» 0 MEANS SUCCESSFUL SOLUTIONs 1 MEANS FAJLURE SLVEQO3?
THE MUMBER OF VARIABLES IN THE NONLINEAR SYSTEM SLVE0040
THE POINT AT WHICH TO EVALUATE FPRYM SLVEOO41
THE RIBHT HANR SIDE ON INPUT, THE SOLUTION SLVE0042
ON_OUTPUT SLVEQ043
ARRAY WHERE DBFA(X,>IP) IS TO RE STORED. SLVE0O44
INTEGER WORK SPACE FOR PIVOT ROW SWITCHES DEMANNED RY SGEFA  SLVEQQ4S
I THE VARIABLE USED IN THE AUGMENTING EQUATION THAT 1S OF THE  SLVUE0044
FORM X(IP)=R, HENCE THE LAST ROM OF DFA(X,IP) IS ALL SLVEOQ47
ZERO EXCEPT FOR A 1.0 IN THE IP-TH COLUMN. gtgggg:g
!!tt!!tttttttttttttt!ttt*tttttt!‘t!ttttttttttttttttttttt!tt!ttttttttxttgtggggzg
REAL X(NUAR)vY(NUAR)vFPRYH(NUﬁRoNUAR) SLVEOGS2
INTEGER IPYT( SLVEDOSI
COMMON /COUNTZ/ IFFUAL»IPFUAL;IGOIUF:NRED!NRDSUH;KN,KNQUH gtgggggg
DEPENDING ON VALUES OF ITCALL AND IMODs EITHER SET UP SLVEQO5S4
AUGNENTER JACORIANs DECOMPOSE INTO L-U FACTORSs AND GET NETERMINANT: SLVE0OS?
OR USE CURRENT FACTORED JACORIAN WITH NEW RIGHT HAND SIDE, stgggg:g
IF (ICALL.ER.0.AND,INOD.NE.O) GO TO 50 ' SL.VE0040
CALL FPR!HE(NVAR:XvFPRYH) SLVEQOA 1
IPFUAL’!PE SLVE0062
Do 10 I-l;NUhR SLVE0OA3
0 FPRYM(NVAR, I)=0.,0 SLVEOOA4
FPRYM(NVAR, IP)=1,0 SLVENOAS
SLVE0OAS
CARRY OUT IN CORE LU DECOMPOSITION (OF NVAR RY NVAR MATRIX SLVE0O&7
AND USE PTVOT INFORMATION TO COMPUTE DETERMINANT SLVEOO4R

CGOOOAOOOOONANOOOONOOONOONOOIIOOOOOOIOONOCOHOOIINNONO
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Rade AaRd

(> SLVE0049
CALL SGEFA(FPRYMsNVAR s NVAR TPUT, TNF0) S(.VE0070
DETA=].0 SLVE0071
IEXP=9) SLVE0072
TW0=2,0 3LVENO73
DO 40 I=1,NVAR SLVEQ0?74

IF _(IPYT(I),.NE.1) DETA=-DETA SLVEQO7S
NETA=FPRYM(I»I)EDETA SLVENO7S

IF (DETA.EQ.0.0) 60 TQ 40 SLVE00?77

20 IF _(ABS(DETA).GE.1.0) GO TO 30 SLVE0078
DETASNETAXTHO SLVE0D79
IEXP=1EXP-1 SLVE0080

60 TN 20 SLYE0O8L

30 IF (ABS(DETA).LT,.TWO) GO TQ 40 SLYEQOR2
NETA=NETA/THO St.VE0083
IEXP=TEXP+1 SLVEDOB4

G0 70 20 SLVEOOBS

0 CONTINUE SLVE00RS
IF (INFOJNE.O) GO TO 40 SLVE008?

c SLVEDNOSS

C USING L-U FACTORED MATRIX,» SOLVE SYSTEM USING FORWARDN-BACKWARD SLVEOORY

g ELININATIONs AND OQVERWRITE RIGHT HAND SIDE WITH SOLUTION gtgsgggg

50 CALL SGESL (FPRYMsNVARsNVAR» IPVT,Y+0) SLVE0092
IERR=0 SLYED093
RETURN SLVE0O94

60 IERR=1 SLVE0O9S
INF0=0 SLVEQ094
RETURN SLYE0097

SLVE0098

c
E!t!tllttttttt*!t!tt!83tt!ttti!!ttttttttttl3ttltt!tttllttttttttt!tttt!ttSLUE0099

SLVE0100
END SLVEO101

".

61




e —— e
e ——— e e

g
-

TR ——— T — T - "

—
.

10.

11.

12.

13.

14.

15.

e e

62
REFERENCES

J. P. Abbott, An efficient algorithm for the determination of certain
bifurcation points, J. of Computational and Applied Math. 4, 1978,
19-27.

E. Allgower and K. Georg, Simplicial and continuation methods for
approximating fixed points and solutions to systems of equations,
SIAM Review 22, 1980, 28-85.

P. T. Boggs, The solution of nonlinear systems of equations by A-stable :
integration techniques, SIAM J. Num. Anal. 8, 1971, 767-785. ;

R. P. Brent, Algorithms for minimization without derivatives, Prentice
Hall, Englewood Cliffs, NJ, 1973.

M. A. Crisfield, A fast incremental/iterative solution procedure that
handles snap-through, Computers and Structures 13, 1981, 55-62.

D. F. Davidenko, On a new method of numerical solution of systems of
nonlinear equations, Dokl. Akad. Nauk USSR 88, 1953, 601-602.

C. Den Heijer and W. C. Rheinboldt, On steplength algorithms for a class
of continuation methods, SIAM J. Num. Anal. 18, 1981, 925-947.

F. Ficken, The continuation method for functional equations, Comm. Pure
Appl. Math. 4, 1951, 435-456.

F. Freudenstein and B. Roth, Numerical solution of systems of nonlinear
equations, J. ACM 10, 1963, 550-556.

H. B. Keller, Numerical solution of bifurcation and nonlinear eigenvalue
problems, in "Applications of Bifurcation Theory", ed. by P. Rabinowitz, !
Academic Press, New York, NY, 1977, 359-384. :

H. B. Keller, Global homotopies and Newton methods in "Recent Advances
in Numerical Analysis", ed. by C. deBoor, G. H. Golub, Academic Press,
New York, NY, 1978, 73-94.

A. D. Kerr and M. T. Soifer, The linearization of the prebuckling state
and its effect on the determined instability load, Trans. ASME, J. of
Applied Mech., V. 36, 1969, 775-783.

W. Kizner, A numerical method for finding solutions of nonlinear equations,
SIAM J. Appl. Math. 12, 1964, 424-428.

M. Kubicek, Algorithm 502, Dependence of solution of nonlinear systems
on a parameter, ACM-TOMS 2, 1976, 98-107.

M. Kubicek, M. Holodniok and I. Marek, Numerical solution of nonlinear
equations by one-parameter imbedding methods, Num. Functional Anal. and
Optim. 3, 1981, 223-264.




g

e

e —————— e

16.

17.

18.

19.

20.

21.

22,

23.

24.

25.

26.

27.

28.

29.

30.

31.

63

S. T. Mau and R. H. Gallagher, A finite element procedure for nonlinear
prebuckling and initial postbuckling analysis, NASA Contractor Report,
NASA-CR_1936, January 1972.

J. W. Milnor, Topology from the differential viewpoint, Univ. of
Virginia Press, Charlottesville, VA, 1965.

R. K. Mehra, W. C. Kessel and J. V. Carroll, Global stability and control
analysis of aircraft at high angles of attack, ONR Report-CR-215-248
1,2,3, June 1977,78,79.

R. Menzel and H. Schwetlick, Zur L&sung parameter-abhingiger nichtlinearer
Gleichungen mit singuldren Jacobi-Matrizen, Num. Math. 30, 1978, 65-79.

G. Moore and A. Spence, The calculation of turning points of nonlinear
equations, SIAM J. Num. Anal. 17, 1980, 567-576.

J. T. Oden, Finite elements of nonlinear continua, McGraw Hill, New York,
1972.

G. POnisch and H. Schwetlick, Computing turning points of curves implicitly

defined by nonlinear equations depending on a parameter, Computing 26,
1981, 107-121.

T. Poston and I. Stewart, Catastrophe theory and its applications, Pitman
Publ. Ltd, London, 1978.

W. C. Rheinboldt, An adaptive continuation process for solvina systems of
nonlinear equations, Polish Academy of Science, Banach Ctr. Publ., Vol. 3,
1977, 129-142.

W. C. Rheinboldt, Numerical methods for a class of finite dimensional
bifurcation problems, SIAM J. Num. Anal. 15, 1978, 1-11.

W. C. Rheinboldt, Solution fields of nonlinear equations and continuation
methods, SIAM J. Num. Anal. 17, 1980, 221-237.

W. C. Rheinboldt, Numerical analysis of continuation methods for nonlinear
structural problems, Computers and Structures 13, 1981, 103-114.

W. C. Rheinboldt, Computation of critical boundaries on equilibrium mani-
folds, Univ. of Pittsburgh, Inst. f. Comp. Math. and Appl., Techn. Rept.
ICMA-80-20, 1980; SIAM J. Num. Anal., 1981, in press.

E. Riks, An incremental approach to the solution of snapping and buckling

problems, Int. J. Solids and Structures 15, 1979, 524-551.

A. A. Schy and M. E. Hannah, Prediction of jump phenomena in roll-coupled
maneuvers of airplanes, J. of Aircraft 14, 1977, 375-382.

M. J. Sewell, On the connection between stability and the shape of the
equilibrium surface, J. Mech. Phys. Solids 14, 1966, 203-230.

TS s U GERETC L RS & S S




32.

33.

34.

35.

36.

37.

39.

64

M. J. Sewell, Some global equilibrium surfaces, Int. J. Mech. Engng.
Educ. 6, 1978, 163-174.

R. Seydel, Numerical computation of branch points in nonlinear equations,
Numer. Math. 33, 1979, 339-352.

R. B. Simpson, A method for the numerical determination of bifurcation
states of nonlinear systems of equations, SIAM J. Num. Anal. 12, 1975,
439-451.

H. J. Wacker (editor), Continuation methods, Academic Press, New York,
NY, 1978.

A. C. Walker, A non-linear finite element analysis of shallow circular
arches, Int. f. Solids and Structures 5, 1969, 97-107.

L. T, Watson, A globally convergent algorithm for computing fixed points
of Cz-maps, Appl. Math. and Comp. 5, 1979, 297-311.

L. T. Watson and D. Fenner, Algorithm 555: Chow-Yorke algorithm for
fixed points or zeros of Cé-maps, ACM Trans. Math. Software 6, 1980,
252-260. .

J. W. Young, A. A. Schy and K. G. Johnson, Prediction of jump phenomena
in aircraft maneuvers, including nonlinear aerodynamic effects, J. of
Guidance and Control 1, 1978, 26-31.







