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1. INTRODUCTION

The study of many equilibrium phenomena leads to non-linear equations

which involve a number of intrinsic parameters. Interest then centers rarely

on the determination of a few specific solutions of the equations for fixed

parameter values but rather on an assessment of the behavior of these solutions

under general variations of the parameters. For example, in structural analysis

the parameters may characterize load points and load directions, material pro-

perties, geometrical data, etc. The set of all solutions and associated para-

meter values has been called the equilibrium surface of the structure (see

eg. [311). This equilibrium surface provides considerable insight into the

behavior of the structure.and the stability properties (see ea. [231, [321

for further discussions and various examples). From a numerical viewpoint the

question then is to analyze computationally the shape and characterize par-

ticular features of this equilibrium surface.,

In nonlinear mechanics the principal tools for such a computational analysis

are the so-called incremental methods. These procedures were eiveloped more or

less independently in the engineering literature. But they are now also re-

cognized to be closely related to the continuation methods used for some time

in mathematics in general and in numerical analysis in particular. The liter-

ature in this area is extensive • we refer only to [21] for a discussion about

the connection between incr{c,. approaches for structural problems and con-

tinuation methods, to [8 ] for a historical overview of uses of continuation

techniques in mathematics ard to [2 1, [351 for some literature survey of

numerical aspects of continuation methods.

Not surprisingly there are differences between the methods used in

structural engineering and numerical analysis and neither is directly suited

to the analysis of an equilibrium surface. In the numerical analysis liter-
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ature continuation methods are usually considered only as tools for de-

termining a specific solution y* of a given nonlinear operator equation

Gy = 0. For this the equation is imbedded into a one-parameter family

H(y,t) = 0 which has a solution y = y(t) for each fixed t in some

interval, say, 0 < t < 1. (See eg. [15] for a survey of such imbeddings.)

If y(t) depends continuously on t and satisfies y(O) = y0  and y'l) = y*,

where yo is a known point, then the numerical process constructs a sequence

of points in the proximity of the path y(t), 0 _< t < 1, starting at yO

and ending at the desired point y*. On the other hand, in structural me-

chanics incremental methods usually are designed to follow numerically a

specific load curve parametrized by a load intensity. Hence, while in the

imbedding approach the parameter is essentially artificial, in the incremental

procedures it has an intrinsic meaning for the application, and, even more

importantly, there is no longer a fixed endpoint which is the aim of the

computation, but the load curve itself is of interest.

For a numerical analysis of a given equilibrium surface we need to con-

sider continuation-methods in a broader sense as a collection of numerical

procedures for completing at least the following three basic tasks:

(i) Follow numerically any curve on the surface specified by a
particular combination of parameter values with one degree
of freedom.

(1.1) (ii) On any such curve determine the exact location of target
points where a given state variable has a specified value.

(lii) On such a curve identify and compute exactly the critical
points where stability may be lost.

Beyond this various more special tasks may arise as, for example, the following

ones:

.----
I • 9 I
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(iv) From any one of the critical points determined under (iii)
follow a path in the critical boundary.

(1.2) (v) On any one of the curves (i) determine the location of

bifurcation points and the paths intersecting at that point.

Methods which are either directly applicable or can be readily adapted to com-

pleting these various tasks have been proposed by various authors. In particular,

for (i) the literature is very large and we refer here only to the mentioned

surveys [2 ], [35]. Methods relating to (iii) were described, for instance, in

[1 ], [20], [22], [33], [341, and for (iv) and (v) we refer to [28] and [10],

[251, respectively, where also further references are given.

So far only a few library programs for performing these various tasks have

been published. Without claim for completeness we mention here [141, [38].

Each one of these programs has the objective of computing a specified solution

curve of a nonlinear equation by a continuation approach along the lines sketched

above. In this paper, we present a new library package specifically written with

the objective of completing the three basic tasks (1.1) (i), (ii), (iii). The

package can be expanded to incorporate facilities for (1.2) (iv), (v), but this

will not be addressed here. The package is based on the continuation approaches

introduced in [26], [27] and incorporates some of the concepts of steplength

determination discussed in [7 ]. At the same time, new techniques of parameter

adaptation are utilized here based on a prediction of changes in the curvature

of the continuation path.

As with all programming packages further improvements are possible. For

example, it is planned to introduce an automatic first step selection and a

function-scaling option. Special versions incorporating facilities for the tasks

(1.2) are also being designed. But since all these changes are built on the pre-

sent package the presentation of a documentation of PITCON in its basic form

appeared desirable and justified.
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2. BASIC FORMULATION . PC. 4

Generally, after suitable discretizations, the equilibrium problems

mentioned in the introduction lead to a finite-dimensional, non-linear

equation of the form

(2.1) G(y,p) = 0

where y c Rm is a vector of state variables, p e Rr a vector of parameters,

and G: Rm x Rr - Rm a given function. Then we are interested in the features

of the set

(2.2) E(G) = {(y,p) E Rm x Rr; G(y,p) = 01

of all solutions of (2.1). Under well-known conditions E(G) represents an

r-dimensional manifold in Rm x Rr.

In most applications, interest centers on tracing paths on E(G) which

are characterized by r-l relations between the parameters. In other words,

we are given a suitable mapping K: Rr + Rr l and wish to compute the subset

of E(G) defined by the augmented equations

G(yp) = 0,
(2.3)

Kp= 0.

In this formulation we should include the parameters in the list of variables,

in which case,(2.3) represents a system with one more variable then equations.

Then, for ease of notation, it is reasonable to combine the vectors y and

p into one vector x of dimension n = m+r. Moreover, from the viewpoint

of our package of library programs it is natural to assume that both mappings
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G and K of (2.3) are provided for by the user. In other words, we may

write (2.3) as one equation

(2.4) Fx 0

with a user-specified mapping F: Rn  Rn 1 . Note, however, that in this

underdetermined equation (2.4) no one variable is explicitly identified as

continuation variable as is typical in the incremental and continuation

methods mentioned in the introduction.

We assume here that the given mapping F has the following properties:

(i) F is continuously differentiable on Rn.

(2.5) (ii) The derivative DF(x) of F is locally lipschitzian on Rn.

(iii) The regularity set R(F) = {x E Rn; rank DF(x) = n-l} is
nnon-empty and therefore an open subset of R

From (2.5) it follows (see [26]) that the tangent map specified by

fDF( x)
(2.6) T: R(F) Rn, DF(x)Tx = 0, IITxIi 2 = 1, det (Tx)T/ 0

is uniquely determined and locally lipschltzian on R(F). Furthermore, (2.5)

implies that the regular solution set E(F)tl R(F) of F is either empty

or a one-dimensional C1-manifold in the open set R(F). Our objective is to

determine numerically a non-empty connected component E* of E(F) (I R(F).

It is well-known (see eg. [17]) that such a component E* is diffeomorphic

either to the circle or to some interval (that is, some connected subset) of

R1. Hence, E* is uniquely determined by any one of its points x° E E(F)(1 R(F)

- -
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and we denote this by writing E*(F,xo)., Note that for any xI  E*(F,x°)

we have E*(F,xl) = E*(F,xo).

A parametrization by arclength of E*(F,xo) is a solution of the

initial value problem

(2.7) x=Tx, xtO) = x° .

Note that, since T is locally Lipschitzian, (2.7) has a unique solution

which cannot terminate inside R(F). Evidently standard ODE-solvers may

be applied to solve (2.7) numerically. This has been pursued for some

time in the literature (see eg. [3], [61, [131, [371). Independent of

this,the choice of the arclength for the parametrization of E*(F,xo) has

been proposed by many authors. Notably H. B. Keller and his co-workers (see

eg. [101, [111) have advocated this choice for some time. It is also

the basis of incremental procedures given in [ 5 1, [29] and has been more or

less implicit in various papers in the field.

Our programs here are based more generally on the structure of E*(F,xo)

as a one-dimensional manifold and use a local parametrization at each point

computed along E*(F,xo). A natural class of such local parameters are the

n components of the vector x. We call a process based on this choice of

parametrization a locally-parametrized continuation method.

I ,
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3. OUTLINE OF THE PROCESS AND BASIC STEPS

As noted before, our objective is to determine numerically a non-empty

component E*(F,x° ) of the regular solution set E(F)A) R(F). For the

discussion it is useful to consider a parametrization by arclength of

E*(F,x°), that is, a function x: J - E*(F,xo) which maps some interval

J C R diffeomorphically onto some open subset of E*(F,x° ) such that

= 1 for s e J. We may assume also that x(O) = x° , 0 E J.

The process described here belongs to the class of predictor-corrector

continuation methods. Starting from x° it produces a sequence of approxi-

mations xk " X(Sk), k = 0,1,..., corresponding to some sequence

0 s< sI < S < ... of arclength values. Note, however, that in general

the values Sl,S2,... are only approximately comutable and are of limited

interest in most applications.

In our program the principal steps performed during one continuation

step are as follows:

1. Initialization.

2. Check for and computation of target point, if desired.

3. Calculation of tangent vector and determination of new local
continuation parameter.

(3.1) 4. Check for and computation of limit point, if desired.

i 5. Steplength computation.

6. Computation of predicted point and corrector iteration.

7. Storage of data and return.

The sequencing of these steps is dictated by the data-flow. For the de-

scription of the details it will be advantageous not to adhere to this

Mk=
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sequence. Instead, in the remainder of this section, we discuss the basic

steps 3. and 6. Then the next section introduces the new steplength compu-

tation used in step 5. and section 5 covers steps 2. and 4. The data-

handling steps 1. and 7. should be self-explanatory from the dr- umentation

of the program itself.

Let e ,...,e n  be the natural basis vectors of R n . Then it is readily

verified that (see eg. [261)

(3.2) det (e e = [ )e Tx] det (x) V x R(F), i = 1,...,n,

et (e l)) = (Tx)

where the matrix occurring on the right is non-singular. Hence, for any in-

dex i, 1 < i < n, such that (ei)TTx f 0, the solution v c Rn of the

linear system

.DF(x)v en

.(ei)T)V

is uniquely defined. Evidently, then

V

(3.4) Tx = T52

and, in line with (2.6), we should set

(3.5) a -sign(vT i) sign det(ei)

As long as the solution path remains completely in R(F) this is satisfactory.
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But frequently in applications we may encounter a bifurcation point x* R R(F)

where several solution paths terminate. For example, usina arclength repre-

sentations we may find solutions xJ: J.C Rl -*R(F), j = 1,...,4, forJ

which xA(s) tends to x* when s tends to one of the endpoints of J j.

Moreover, it often happens that there are pairs of these solutions, say, x

and x2  for which lim (s) = -lim c2(s)

at x*, (see Fig. 1). In other words, if

we disregard the direction of the solutions, x2

they appear to form one smooth curve through

x*. In such a case, when the process moves

along x1  toward x* it usually "jumps"

2over x* onto x . Then, unless we reverse Figure 1

the sign of a in (3.4) the tangent will

again point toward x* and the process reverses direction.

In order to avoid this problem suppose that the point x in (3.4) is the

k-th approximation computed along the curve. Then a is determined as follows

dir, if k = 0

(3.6) a +1 if sign vT e = sign(Tx k-l)T ei

-1 otherwise

where dir is a user specified direction at the starting point. By comparing

this value of a with that of (3.5) we can detect if the process did jump

over a bifurcation point of odd multiplicity. Obviously, bifurcation points

of even multiplicity cannot be found this way.

Once the tangent Tx k has been obtained we determine the indices j,

and j2 of the largest and second largest component of Txk  in modulus,

, Innll I I• .... . .. ., , S"
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respectively. The relation (3.2) certainly suggests that the index ik9

1 < ik < n, of the new local continuation variable be set equal to j1 "

However, if we are approaching a limit point in the jl-th variable then

this choice may be disadvantageous. Accordingly, if the following three

conditions are simultaneously satisfied

(i) I(eJl ) TTx < I(eJ ) TTx k-I

(3.7) (ii) (eJ2)TTxkI > (eJ2)TTxk-l

(iii) I(e j2) TTx k > ,I(eJ ) Tx 

with a fixed p, 0 < u < 1, then we set ik = j2" Of course, if we don't

have a previous tangent vector this check has to be bypassed. The new con-

tinuation index i k will be used for the computation of the next point xk+l

and its tangent Txk+l. For the tangent computation at x° a continuation

index is assumed to be given by the user.

With the tangent Txk and the steplength hk > 0 determined by the

steplength algorithm of section 4 we compute now the predicted point

Sk = xk + kTxk  Then any appropriate iterative method for the solution of

the augmented equation

(3.8) Fx _ e .x
(ek)T(x-

starting from k may be used as a corrector process. In the program we

use either the regular Newton method or its modified form in which the

Jacobian at the starting point is held fixed.



Let y , ... be the iterates produced in this way. The

process has to incorporate provisions for monitoring the convergence and

for aborting the iteration as soon as divergence is suspected. In the

program non-convergence is declared if any one of the following three

conditions is true

(i) lIFyJ3I > e11Fyjlj for some j > 1,

(3.9) (ii) IiyJ-y 'll > e] j-yj-2 1 for some j > 2,

(iii) i> Jmax"

For the constant 6 we use e = 1.05 except in the first check of (3.9) (i)

where 0 = 2 is chosen. The maximal iteration count jmax depends on the

method. For the regular Newton process we set jmax = 10 and double this

for the modified method. In the case of non-convergence the predictor step

is reduced by a given factor, for example 1/3, unless the resulting step is

below a given minimal steplength.

Convergence is declared if either one of the two conditions holds for

an iterate:

(i) I[FyJj I _ 8 £mach for some j > 0,

(3.10)

(ii) (lIFy J. cabs ) and (jlyJyj'l_ .tabs + crei1lyJ11) for some j> .

The tolerances eabs Cre I are user specified and Emach is the smallest

floating point number such that 1. 1 1. + cmach' In both tests (3.9) and

(3.10) the maximum norm is used.

772
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4. THE STEPLENGTH ALGORITHM

For the points x , k = 0,1,..., approximating the continuation curve
x: J - E*(F,xo) the achievable error lxk-x(sk)jj is solely determined by

the termination criterion (3.10) of the corrector process. In contrast to

this the standard ODE-solvers involve a corrector equation obtained by extra-

polation for which the solutions are not, in general, on the exact curve. As

a consequence the available error for the ODE-solvers depends on the history

of the process up to that point, and this in turn has a strong influence on

the step-selection. On the other hand, for our continuation process any step

hk > 0 along the Euler line is acceptable in principle if only the corrector

converges from the predicted point xk. Moreover, in [261.it was shown that

any compact segment of the continuation curve in R(F) has an E-neighborhood

for some E > 0 in which Newton's method will converge to the curve.

This suggests that we estimate the radius of convergence of the corrector

process at the computed points and extrapolate these radii to the next point

about to be determined. In practice the estimate of a convergence radius at

some continuation point would have to be based on the corrector iterates which

led to that point. Unfortunately, as was proved in [7 1, this represents in-

sufficient information for obtaining such an estimate. On the other hand, an

* approach was presented in [7 1 which allows for an assessment of the con-

vergence quality of the particular sequence of corrector iterates.

For details of this approach we refer to the cited article. In brief,

let {y'} be a given sequence with limit y* generated by an iterative

process and denote the errors by ei = lyi i = 0O,_ . The

definition of any convergence measure is based on a hypothetical model of

the behavior of the errors. For example, if {y i converges linearly it is

reasonable to assume that
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(4.1) 0 ei+ 1  Xei , i = 0,1....

i+i

with some constant x, 0 < X < 1, depending on {y 1. Suppose now that

the process was terminated with the iterate y . Then

(4.2) X W (i*) llyi*-ll i*> 2,

represents a computable estimate of x.

iIn the setting of our continuation process suppose now that the y

i = 0,1,..., are the corrector iterates leading from the current predicted

point jk = yo to the new continuation point xk+l = yi*. Then

(4.3) 6k = I k-xk+li = l1y°-yi*il

is the correction-distance. For the modified Newton method the convergence

is indeed linear, and a reasonable aim in the construction of the steps along

the curve is to ensure that the number of corrector iterdtes remains about

constant. In other words, we aim at taking always, say, m* corrector steps.

Hence, under the heuristic assumption that the error model (4.1) remains
valid for some interval of starting errors eo  around 

6k, we should have

begun with an "ideal starting error" 6 = ek.Sk such that

(4.4) m* 6 * k

and therefore
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(4.5) k

In our program we use m* = 10 for the modified Newton method and enforce

always that 0.125 < ek < 8.

This technique is also readily applicable for Newton's method. In [71

two different hypothetical error models for the Newton process were discussed.

Here we use only one of these models, namely the one arising in the attraction

theorem formulated in [24]. In essence, under certain conditions

about the equation and the desired limit y* of the Newton process there

exists a radius r* > 0 such that for any starting point yo in the ball

B(y*,r*) the relative errors e i = ei/r*, i = 0,1,..., satisfy

(4.6) 0 < E i+l < (Ei), i 0,1I,. . ., 9 (t = -- 0 < t < 1.

The radius r* depends on global information about the equation and is not

accessible. If 0 < Eo < 1 and the {Eci} satisfy (4.6) then we have

3
(4.7) i <  ni E - (n ) - I , i = 0,1,..., no = 1

where a is the unique positive solution of

(4.8) 1(=no, ) l + 2 cosh a

Moreover, for any w, 0 < w < 1, and i* > 2 the equation

- Nor
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(4.9) 1 i*] ((a)) 1 + 2 cosh a 1
TFOL) 1 + 2 cosh 2 a

has a unique solution a > 0.

Now suppose that {y } denotes the sequence of Newton iterates and

that the process was terminated at yi. As in the linear case we use the

approximation

(4.10) 1I= -yWii e< -

and compute with this w the solution ; of (4.9) which gives the estimate

no = (&) of E Now we proceed as before and obtain the factor

(4.11) e_ k k no0

for the ideal starting error by determining the unique solution no" 0 <

of

i*

(4 .1 2 ) qm * ( ) : ( o .

Since the iterates 01 are explicitly known the various equations are

'i not difficult to solve numerically. However, for the computation it is more

advantageous to introduce a least squares fit of Ok as a function of

for all relevant values of i*. In the program we use m* = 4 and the

approximations for ek given in Table 1. Note that as before we restrict k

to the interval 0.125 < ek < 8.
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' [a,b]

b k

0.8735115 1 1

0.1531947 0.8735115 0.9043128 - 0.7075675 In w

0.03191815 0.1531947 -4.667383 - 3.677482 In w

0 0.03191815 8

0.4677788 1 1

0.6970123(-3) 0.4677788 0.8516099 - 0.1953119 In w
3

0.1980863(-5) 0.6970123(-3) -4.830636 - 0.9770528 In w

0 0.1980863(-5) 8

4 0 1 1

0.3339946(-10) 1 1.040061 + 0.03793395 In w
5

0 0.3339946(-10) 0.125

0.1122789(-8) 1 1.042177 + 0.04450706 In w

0 0.1122789(-8) 0.125

>7 0 0.125

Table 1

We turn now to the algorithm for the determination of the steplength

hk > 0 along the Euler line Tr(t) = + t Txk used for the prediction. In

order to estimate the distance between ir(t) and the exact curve x = x(s)

we introduce the quadratic Hermite-Birkhoff interpolation polynomial

i I I I iI I - - - L .- -. -__ [I.. . .. _ .I -. : l'- ' ' ' -'';
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(413 qk)= +. t2 k, k I _ - k_ kl
(4.13) q(t) x t Tx 2  (TxkTxkl), Ask = Ix x 112

ASk

for which

(4.14) q(0) = xk q'(O) = Txk q'(-As k) = Txkl

Since

(4.15) wk f x"(skCOAs k)dO " -( k-EA k 0 < < 1f,
0

the quantity

k 2 si 1ro ((Tx k )TTx k-1l(4.16) 11w 112 = k Isn k ck = arccos (Txk)'x k 'l

represents an approximation of the curvature of the exact point at some point

between x(sk-l) and X(Sk).

It is tempting to derive from q a prediction of the curvature to be

expected during the next continuation step. However, a closer computation

shows that the value of the curvature of q assumes its maximum 11w k1 2/cos 1 k

at = - Ask and that for increasing t this value decreases rapidly. For

example, at t = 0 the curvature of q equals only I wk 12 1cos akII i~ cos ~and

for positive t no reasonable predictive information can be gained this way.

The relation (4.15) suggests the use of the simple linear extrapolation

(4.17a) y tent = ''k2 + AS k (I1wk k 12)

"k 11w1 + + As k- 112 11w 112)
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for a prediction of the curvature during the next continuation step. However,

this value may become negative and accordingly we use instead

(4.17b) Yk = max temin t)k )

with a given small ymin >0.

Most of the data discussed so far are sketched in Figure 2. In order

to derive a formula for the desired predictor step hk we note that

(4.18) jjq(t) - 7(t)11 2 
=  t2I wk1 2

represents an estimate of the distance between the Euler line and the exact

curve. In fact, for smooth curves the error of this estimate is asymptotically

or order three in max(ItjAsk) as this quantity tends to zero. Hence, if we

want this distance to be at most equal to a tolerance e > 0 then we should

choose the next step as

(4.19) t = /F.

It is natural to replace the curvature 11w 112 by the predicted valueYk

of (4.17) and to relate the tolerance c to the "ideal starting error" 6*

obtained earlier. As Figure 2 indicates it is unreasonable to expect E> ASk.
Hence, we use instead

Cmin ASk if 6 <-min ASk

(4.20) Ek ASk if * > As

6* otherwise
k
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with a small cmin > 0, e.g., Cmin = 0.01. Then a tentative predicted step

is given by

(4.21) h I) =/T7

From the form (3.8) of the augmented equation we see that the corrector

iterates remain in a hyperplane perpendicular to the basis vector e k through

the predicted point. Then Figure 2 suggests that we adjust the predicted

steplength hk so as to ensure that hk will be approximately equal to Ask+I .

There is no need to enforce this too rigidly. It suffices to define a new

tentative step by the requirement

(ei)T T(h(2) =(ei)T q(h l))

whence,

(4.22) h(2) = (1)[ +~j (1 0 4 T .Txki)1
k hk [1 k (e1)T Txk

This formula may involve subtractice cancellation and has to be evaluated in

double precision.

The final value hk of the steplength is now obtained from h 2) by

enforcing three different bounding requirements. First of all, if the pre-

vious continuation step from xkl to Xk was obtained only after a failure

of the correction process and a corresponding reduction of the predicted step,

then we should not allow hk to exceed ask ' Secondly, as in the ODE solvers

we need to control both the relative growth and the absolute size of the pre-
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dictor step. Thus, we require that

(4.23) h < hCS, mn
. Ask _ hk < ASk, min  hk< hmax

where K is some factor, say, K = 3, and hmin , hmax depend on the machine

as well as the requirements of the problem. It should be obvious how the

final step hk is obtained from h(2 ) on the basis of these restrictions.

k..
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5. THE COMPUTATION OF TARGET AND LIMIT POINTS

By generating a sequence of solution points on a given curve, the con-

tinuation process reveals the shape of the curve, but there are often other

items of interest that need to be studied as well. Our program is designed

to pause during the continuation steps in order to seek out special points

that the user has requested, namely, target and limit points.

A target point x E E*(F,x0) is a point on the solution curve for

which the component xi = (ei ) T x with given index i = IT has a prescribed

value i. = XIT. Limit or turning points with respect to a given index

i = LIM are points x c E*(F,xO) where the i-th component (ei)TTx is zero.

More specifically, since it is computationally unreasonable to attempt to

compute zeroes of even order, we are concerned only with limit points on the

continuation curve where (e ) T Tx(s) changes sign.

It might be mentioned that bifurcation points represent another inter-

esting, special class of points. But in that case we are not only interested

in the specific location of the point but also in the solution curves tha.

branch off from it. This is exactly the task (1.2) (v) listed earlier. The

corresponding procedures (loc. cit.) would add considerably to the complexity

of our program, and, since their utility tends to be of a more specialized

nature, it was decided not to cover task (1.2) (v) (nor (1.2) (iv)) in the

present program.

As indicated before, the determination of a target or limit point re-

presents an interruption in the normal flow of the continuation program.

After at least one step has been taken, the program has available an old

k-l k -
point x , a new point x and the tancent vector Txkl Normally, then

we turn to the computation of Txk, of the new steplength, and finally of the

next point xk+l. But if the index IT or LIM is non-zero then these

-
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computations are postponed for the search of a target or limit point,

respectively. We discuss these cases separately:

Target points: Suppose that a non-zero value of i = IT and associated

value xi = XIT have been given. If i lies between (ei )T xk-l  and

i Tk 0(ei) x then it is assumed that a solution point x s E*(F,x ) with

(ei) Tx = i is nearby. In this case a point

k-i k
(5.1) y(t) = (l-t)x + tx 0 < t < 1,

on the secant between xk-l  and xk  is determined such that (ei ) Ty(t) =

i TNow with the augmenting equation (e ) x = xi the corrector process is applied,

and, if it terminates successfully the resulting point is taken as the desired

target. Otherwise, a failure is indicated for the target routine. In either

case, the routine returns and on the next call the continuation loop will pick

up from where it was interrupted. Note that in effect the target routine uses
k-i

the IT-th variable for the local parametrization of the curve between x

and xk. This may be an inferior choice of parameter for the corrector but

it allows us to enforce that the resulting target point x E E*(F,x°) indeed

i T -satisfies (e ) x = xi" Clearly, for very large continuation steps we have

no guarantee that all target points will be detected or that a target compu-

tation will succeed. Thus, the utility of the target routine will depend on

the maximal allowed stepsize that has been chosen.

Limit points: If the limit point index i = LIM is non-zero, then a limit

point determination is carried out after a target point search has been

successfully or unsuccessfully completed, provided it was called for at all.
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k-I k
Recall that we still have as current information the vectors x , x k

and Txk -l . Now the new tangent Txk is evaluated and if

sign(ei ) Txk - # sign(ei ) TTxk  for i = LIM (# 0) then a limit point

search is begun. For this the index i of the largest component in

modulus of the secant direction xk - xk -I is chosen as a local para-

metrization of the curve between xk-  and xk. More specifically, suppose

that x: [sk-l 1 
s + E*(F,x° ) represents the segment of the curve between

xk- l  and xk Then i is assumed to be the index of a local coordinate

for which there exists a bijective parameter transformation : [0,1] - [ S

such that (ei ) Ty(t) = (e ) T x(O(t)), 0 < t < 1, where y(t) is defined by

(5.1).

Hence, we may consider the function

1 i T
(5.2) g: [0,1] - R g(t) = (e ) Tx( (t)), 0 < t < 1,

and our problem is to determine a zero of g. Since by assumption

sign g(O) # sign g(l), a rootfinder of the Dekker-Brent type can be applied.

For the evaluation of g(t) we use the augmenting equation (e T x = (ei ) Ty(t)

and apply the corrector process with y(t) as starting point. If it terminates

successfully with some x then Tx can be evaluated and we set g(t) = (ei ) TTx.

Hence, g is certainly costly to compute and we require an efficient root-

finder to speed the convergence of the limit point routine. A specially

modified version of the routine given in [4 ] is used in our program. Clearly,

as in the case of target points, we may fail to detect a limit point if the

continuation steps are too large and in such a situation the rootfinder may

also fail to converge. In addition, the evaluation of g may run into

difficulties when the desired limit point is near a bifurcation point.
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6. SOME NUMERICAL EXAMPLES

The programs described here have been used extensively with excellent

success on problems from many different areas. We include here only a few

numerical examples to illustrate the operation of the programs.

Example 1. In order to present some details of the performance of the pro-

grams we consider first a very small problem which was originally formulated

in [9 1 and subsequently used as a test case by many authors. The mapping F

has here the form

(1  3 2 2x 2  3

(6.1) Fx = , V x e R3.

+ 2 2 x2  2 +1ox3

For the starting point x0 = (15,-2,O)T the s.,';i,)n c-,& passes through

x* = (5 ,4 ,1)T and this point is chosen as target.

Tables 2 and 3 show runs with the full Newton method and modified Newton

method, respectively as corrector process. A starting step ho = 0.3 and

maximum step hm 25.0 were used. The performance for the two correctors

is practically the same although the step-prediction exhibits certain differences

due to our assessment of the corrector distance. Clearly, the use of the

modified Newton process is much less expensive and hence preferable as Table

4 shows which summarizes the total number of function and Jacobian calls in-

cluding those for the target calculation. Comparative performance data given

in [7 1 for this problem involved 22 continuation steps, 15 step reductions

and 128 Jacobian evaluations. The procedure discussed in [191 required 25

continuation steps but no further details were provided in thE paper.

" .. .- , , a . '
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Continuation point Total
Contin. Correct.

Step xI  x2  x3  Variable Steps Comments

1 15.000 -2.00000 0.00000 x3

1 14.705 -1.9421 0.065381 x2

2 14.285 -1.7291 0.26874 x3

3 16.906 -1.2094 0.54684 x2 2

4 24.918 -0.59908 0.55514 xl

5 48.974 0.71803 -0.080758 x1

6 57.928 1.2846 -0.40736 x4 Step red.

7 60.052 1.5709 -0.54035 x4 Step red.

8 61.666 2.0010 -0.66683 x2 2

9 -5.1039 4.1510 1.3464 x2  Target passed

TOTAL 25

Computation of target 4

Table 2
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Continuation point Total
Contin. Correct

Step xI  x2  x3  Variable Steps Comments

0 15.000 -2.0000 0.00000 x3 -

1 14.710 -1.9421 0.065381 x1 3

2 14.285 -1.7291 0.26874 x3  4

3 16.906 -1.2094 0.54685 x2 1

4 24.918 -0.59906 0.55514 x6

5 48.975 0.71810 -0.080804 x5

6 57.289 1.2847 -0.40742 xI  6 Step red.

7 60.053 1.5711 -0.54042 xI 5 Step red.

8 61.666 2.0013 -0.66689 x2 2

9 -4.4239 4.1413 1.3229 X2  Target passed

TOTAL 33

Computation of target 8

Table 3
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Corrector Process

Newton Mod. Newton

Function calls 41 53

Jacobian calls 38 21

Table 4

It may be noted that the solution curve has two limit points each with

respect to xI  and x3. The two step reductions are almost unavoidable here

since the curve has a long straight segment followed by a very sharp bend.

The target computation is relatively expensive since the last step is extremely

large due to another straight curve segment.

Example 2. Maneuvering airplanes, especially at high angles of attack, some-

times undergo sudden jumps in their response to the pilot's control inputs.

The problem has been discussed extensively in the literature, see, for example,

[181, [30], [39]. Without going into further details we use here a simplified

version of a system of five equilibrium equations involving the roll rate (xl),

pitch rate (x2), yaw rate (x3 ), (incremental) angle of attach (x4 ), side slip

angle (x5 ) elevator angle (x6), aileron angle (x7 ), and rudder angle (x8 )
(x5 , elvao anl

More specifically, for the particular aircraft discussed in [181 these equations

have the dimensionless form

(6.1) Fx Ax + o(x) = 0, V x E R8

where
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-3.933 0.107 0.126 0 -9.99 0 -45.83 -7.64

0 -0.987 0 -22.95 0 -28.37 0 0

A = 0.002 0 -0.235 0 5.67 0 -0.921 -6.51

1.0 0 0 -1.0 0 -0.168 0 0

0 C -1.0 0 -0.196 0 -0.0071 0

and

-0.727 x2x3 + 8.39 x3x4 - 684.4 x4x5 + 63.5 4X7

0.949 xX 3 + 0.173 XlX 5

o(x) = -0.716 xix 2 - 1.578 xlX 4 + 1.132 x4x7

x x1 4

Figure 3 shuws some solution curves on the three-dimensional equilibrium sur-

face in R8 . More specifically, in all cases we fixed a value of x6  (elevator

deflection) and chose the rudder deflection x, = 0. The paths x6 >
6 w1 ,x8  0

with w, a-0.0061771 have two limit points, for l > x 6 > W29 x8 
= 0, with

w2 -- 0.012498 a third limit point appears, and for w2 > x6' x8 = 0 only one

limit point remains. A similar picture arises for negative roll rates.

In all cases the programs easily detected and computed the various limit

points (see Table 5). But the example also shows that even with a large number of searcf

paths it is difficult to provide a full picture of the location of the critical

boundary, that is, of the curves of limit points with respect to xI  for = 0

and varying x6 ,x 7 . In Figure 3 the corresponding branches of limit point

curves are shown as dotted lines. They were obtained with a code for the

9
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earlier mentioned task (1.3) (iv) (see [281).

xI  x2 x3  N x5  x6  x 7

1 2.9649 0.82557 0.073661 0.041309 0.26735 -0.05 0.50481

2 2.8174 -0.17629 0.089926 0.026429 -0.071476 -0.008 -0.20497

3 3.7579 -0.65542 0.38658 0.092521 -0.19867 -0.008 0.006208

4 4.1638 0.089131 0.094806 0.022889 0.016232 -0.008 -0.37766

5 2.5873 -0.22355 0.054682 0.013676 -0.091687 0.0 -0.18691

6 3.9005 -1.1482 0.58156 0.13352 -0.32859 0.0 0.51016

7 2.2992 -1 .4102 -0.061849 -0.079009 -0.58630 0.1 -0.68972

8 4.4565 -4.4909 1.6164 0.33091 -1.0857 0.1 10.0212

Table 5

Example 3. As an example for the numerical investigation of the equilibrium

surface of a mechanical structure, we consider a clamped, thin, shallow,

circular arch which has been used as a test case by various authors (see eg.

(12], [161. [361). let U and W be the radial and axial displacements, R

the arch radius, A the cross-sectional area, H the thickness, and E

Young's modulus. With the dimensional displacements u = U/H, w - W/H, the

total potential energy -- non-dimensionalized by dividing by EAR(H/R)2 --
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is given by

(u) 2]2 d2u)2

(6.2) ~o 2 R )+ duo1 + a, d7 a2 p ulde.
0

Here p = p(o) is the dimensionless radial load, and ai, a2 are dimensionless

constants. Each end is assumed to be pinned, that is, we have the boundary

conditions

(6.3) u(+e) =0, w(+ ) =0, d u.

The finite element approximation introduced in [361 was applied. More

specifically, we used a uniform mesh with eight elements, 0o = 15 and the

constants a1  3.8716 x 10-6 , a 2 = 1.65504 x l0-  corresponding to the

data in [16]. Moreover, the following load function p = p(p,v) was chosen

PO{( 1 + 7v), for element 4

(6.4) p(P,v) =

u(l o v), otherwise

corresponding to a base load a = p(l-v) and an excess load 8uv in element

4 such that the average load is always u.

Several curves on the equilibrium surface corresponding to constant

values of u or v were computed. Figure 4 shows the projection of these

curves into the (8,6)-plane where 6 represents the radial displacement of the

center point. For uniform loads, that is, v = 0, we encounter two bifurcation

points on the primary curve which are connected by two "buckling" curves that

have the same projection in the (8,6)-plane.
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7. THE PITCON CODE

SUBROUTINE FPTCON(NVARI IPITXIT,KSTEPIPC,H,IRET,TMODTPVT, PTCNO001
I HMAXHMIN,HFACT,ABSERR. ' :RRRWORKISIZEFI PTNOO(2

C PTCN060

C P TCNO')09
C PITCONoFOR PTrN06o16
C F'TCNO007
C 29 OCT 1991 VERSION OF PITCON, PTrNA008
C THE UNIVERSITY OF PITTSBURGH CONTINUATION PACKAGE. PTCNO009
C THIS VERSION USES SINGLE PRECISION AND FULL MATRIX STORAGE. PTI^NOOtO
C PTCNOO I
C PTC4NOI 2
C THIS PACKAGE WAS PREPARED WITH THE PARTIAL SUPPORT OF PTCNOO13
C THE NATIONAL SCIENCE FOUNDATION, UNDER GRANT MCS-78-05299? PTCNOO14
C PTCN015
C BY WERNER C. RHEINBOLDT AND JOHN V. BURKARDT PTCNO016
C INSTITUTE FOR COMPUTATIONAL MATHEMATICS AND APPL.ICATIONS PTCNO017
C DEPARTMENT OF MATHEMATICS AND STATISTICS, PTCNO018
C UNIVERSITY OF PITTSBURGH, PITTSBURGH, PA 15261. PTCNO019
C PTCNO020
C PTCNO021
C AN EARLIER VERSION OF THE PACKAGE WAS WRITTEN IN COOPERATION WITH PTCNO022
C PTCNO023
C GEORGE D BYRNE, PTCNO024
C COMPUTING TECHNOLOGY AND SERVICES PTCNO025
C EXXON RESEARCH AND ENGINEERING COMPANY PTCNO026
C LINDEN, NEW JERSEY, 07036 PTCNO027
C PTCNOO0R
C PTCNO029
C THIS PACKAGE COMPUTES POINTS ALONG A SOLUTION CURVE OF AN PTCNO030
C IJNDERDETERMINED SYSTFM OF NONLINEAR EQUATIONS OF THE FORM FX=O. PTCNO031
C THE CURVE 1S SPECIFIED TO PASS THROUGH A GIVEN STARTING SOLUTION PTCNO032
C X OF THE SYSTEM. HERE X DENOTES A REAL VECTOR OF NVAR PTCNOO33
C COMPONENTS AND FY A REAL. VECTOR OF NVAR-1 COMPONENTS. PTCH0034
C NORMALLY EACH CALL TO PITCON PRODUCES A NEW POINT FURTHER ALONG PTCNO035
C THE SOLUTION CURVE IN A USER-SPECIFIED DIRECTION. PTCNO036
C AN OPTION ALLOWS THE SEARCH FOR AND COMPUTATION OF TARGET POINTS, PTCNOO37
C THAT ISP SOLUTION POINTS X FOR WHICH X(IT) = XIT FOR SOME USER 'TCNO038
C SPECIFIED VALUES OF IT AND XIT. PTCNO039
C A FURTHER OPTION ALLOWS THE SEARCH FOR AND COMPUTATION OF LIMIT PTCNO040
C POINTS FOR SPECIFIED COORDINATE I.IMP THAT IS, SOLUTION POINTS FOR PTCNOO41
C WHICH THE LIM-TH COMPONENT OF THE TANGENT VECTOR IS ZERO. ;TCNO04Z
C PTCNA043
C PTCNf044
C EXPLANATIONS OF THE ALGORITHMS USED IN THIS PACKAGE MAY FTCNO045
C BE FOUND IN THE FOLL.OWING REFERENCES: PTCNO046
C PTCNO047
C PTCNA048
C WERNER RHEINBOLPT, PTCNO049
C SOLUTION FIELD OF NONLINEAR EQUATIONS AND CONTINUATION METHODS PTCNO050
C SIAM JOURNAL OF NUMERICAL ANALYSIS, 179 1980, PP 221-237 PTCNO051
C PTCNO052
C COR DEN HEIJFR AND WERNER RHEINDOLDT, PTCHOO53
C ON STEPLENGTH ALGORITHMS FOR A CLASS OF CONTINUATION METHODS, PTCNO054
C SIAM JOURNAL OF NUMERICAL ANALYSIS 18, 1991, PP 925-947 PTCNO055
C PTCNO56
C WERNER RHEINBOLDT, PTCNO057
C NUMERICAL ANAL.YSIS OF CONTINUATION METHODS FOR NONLINEAR PTCNO058
C STRUCTURAL PROBLEMS, PTCNOO59
C COMPITERS AND STRUCTURES, 13, 1981, PP 103-114 PTC,40060
C PTCNO06A
C PTCNAO02
C OUTL.INE OF THE MATHEMATICAL PROCEDIURE PTCNO03
C PTCt0064
C PTCNO06n
r THE FUNCTION F DEFTNINS THE SYSTEM OF EnUATIONS IS SIUPPOS E TO PTCNO066
C OE CONTINUOUSLY DIFFERENTIABI.E. THE REGULARITY SET R(F) OF F IS OTrNOo67
r THE SET OF ALL. POINTS X IN NUAR-flIMENSTONAL. SPACE WHERE THE PTCNOO.48
C nERIVATIVE DF'X) HAS MAXIMAL RANK. THE STARTTNG POINT TS ASSIMED PTrNnA69
C TO OE IN R(F), FOR ANY tNrEX TP WITH I.L.E.TP.L.F,NVAR, I.T PTrN"O-C)

SNOW
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C FA(XTP) BE THE FUNCTION OBTAINED BY AIIGMENTING F WTH PTCNOOi7
C AN NVAR-TH SCALAR FUNCTION X(IP)-B FOR SOME NUMBER A. FOR ANY PTCNO072
C X IN R(F) THERE IS AT I-EAST ONE INDEX IP SUCH THAT THE DERIVATIVE PTCNO07

C DFA(X,IP) OF FA IS NONSINGULAR. WITH SUCH AN TP. AND A !IRFrTTON -TCNO074

C DIR (=+1 OR -1), THE TANGENT OF FA, TAN(X), IS ONTOIJELY DEF!NE7 BY: t'TCNO-17

C 
PTNO0j

C TAN:= SOlIUTION OF ( DFA(X,IP)*TAN=E(NVAR) PTC'NO077

C TAN:= TAN/(EIJCLIDEAN NORM OF TAN) FTC NC 07?
C SN:= DIR*SIGN (DETERMINANT (DFA(XTP)) ) PTCNO079
C TAN:= SNSTAN FTCN0680
C PTCNOORJ

C HERE E() IS THE I-TH BASIS VECTOR IN NVAR-SPACE. PTCNOO82
C THE PROCESS USES A LOCAL PARAMETERIZATION OF THE CURVE. PTCNOO3
C NORMALLY THE CONTINIIATION PARAMETER INDEX IP IS CHOSEN AS PTCNO04
C THAT INDEX FOR WHICH ABS(TAN(X)(IP)) IS MAXIMAL. BUT IN THE PTCNOO85
C CASE OF CERTAIN CURVATURE CHANGES WHERE IT APPEARS THAT PTCN0086
C A I. IMIT POINT FOR THIS CHOICE FOR IP IS APPROACHING, PTCNO087
C OTHER CHOICES FOR IP MAY RE USED. PTCNO0 8
C PREDICTION TAKES PLACE ALONG THE EIUI.ER L.INE X+H*TAN. THE PTCNOO89
C STEPL.ENGTH ALGORITHM TAKES INTO ACCOUNT THE QUALITY OF THE PTCNO090
C CORRECTOR ITERATION AT THE LAST POINT AND A PREDICTION OF THE FTCNO091
C CHANGE IN CURVATURE. THE TANGENTIAL STEPSIZE USED IN PREDICTION IS PTCNOo92
C CHOSEN SO AS TO ACHIEVE APPROXIMATEI.Y THE PREDICTED SECANT STEFSI7E PTCNO093
C AFTER CORRECTION IS DONE. PrNO004
C THE CORRECTOR ITERATION STARTS FROM THE PREDICTED POINT AND SOLVES PTCNO09-
C THE AUGMENTED SYSTEM FA(XIP)=O WITH THE VALUE OF THE SCALAR PTCN0O96
C B EQ)AL TO THE IP-TH COMPONENT OF THE PREDICTED POINT. THE USER PTCNOO97
C CAN SPECIFY AS CORRECTOR ITERATION EITHER A FULL NEWTON PROCES.; PTCNO098
C OR A MODIFIED NEWTON PROCESS WITH FIXED JACOBIAN DFA EVALUATED AT PTCOO9
C THE PREDICTED POINT. PIPCNOIIO
C PTCN0101
C FTCr70l0^
C OUTLINE OF THE COMPUTATIONAL ALGORITHM PTCN010i3
C PTCNO104
C PTCNOI05
C DURING THE FOLLOWING DESCRIPTION, WE WILL ASSUME THAT WE PTCNOIOo
C HAVE ENTERED THE CONTINUATION LOOP WITH AN OLD POINT XL, PTCNO107
C A CURRENT POINT XC, THE TANGENT TL. AT XL., AND CERTAIN SCALAR PTCN0108
C MJANTTTIES ASSOCIATED WITH THESE VECTORS. WE WILL. CHECK PTCNO109
C FIRST FOR ANY TARGET OR LIMIT POINTS BETWEEN XL. AND XC, PTCN0110
C THEN PROCEED TO COMPUTE A NEW CONTINUATION POINT XF. PTCNO1I1
C THESE NAMES ARE NOT IN PRECISE ACCORDANCE WITH THE STORAGE PTCN0112
C ARRANGEMENTS UNTIL THE END OF A CONTINJATION STEP. PTCN0113
C PTCNO 14
C PTCNO115
C STEP 1: FOR KSTEP.GT.O, THE CODE GOES TO STEP 2. PTCNO1X6
C ON THE FIRST CALL. TO PITCON FOR A GIVEN PROBLEM (KSTFP=-i PTCNO17
C OR KSTEP=O) PROBLEM-DIEPNDENT CONSTANTS ARE SET PTC00I1
C AND USER CONTROL PARAMETERS ARE LOADED OR DEFAULTS USED. PTCNO119
C IF (KSTEP.EO.O)p THE PROGRAM PROCEEDS TO STEP 2. PTCN0120
C IF (KSTEP.EO.-1), THEIJSER REOLIESTS THAT THE INPUT STARTING PTCN0121
C POINT XR BE CHECKED FOR THE CONDITION PTCNOt22
C ABS(F(XR)).LE.(ABSERR/2). IF THIS IS NOT THE CASE, NEWTON'SPTCN0123
C METHOD IS APPLIED TO THE POINT XR UNTIL THE ERROR CONDITION PTCNOt 4
C IS SATISFIED, OR A FAILURE HAS OCCURRED. AN IINIMPROVABIF FTCNOI2S
C POINT RESULTS IN A RETURN OF IRET=-6. PTCNO126
C IF THE STARTING POINT XR WAS IMPROVED, THE PROGRAM RETURNS PTCN0127
C WITH IRET=O AND KSTEP=O. PTCNO12S
C IF (KSTEP.EQO), THE CONTINUATION LOOP BEGINS WITH THE PTCN0129
C STARTING POINT XR STORED IN X. AND XC, THE STEPSIZE HTANCF PTCNO130
C SET TO THE INPIT VALUE OF Hp AND THE PTCNOI31
C CONTINUATION PARAMETER SET TO THE INPUT VALUE OF IPC. PTCN01.:2
C FOR KSTEP.GT.O,0 THESE lIANTITIES ARE COMPUTED AND PTCNOI3
C IDATED BY THE PROGRAM ITSELF. PTCINM 34
C PTCNO135
C STEP 2: TARGET POINT CHECK. IF (IT.NE.O), A TARGET POINT IS FTrNol36
C DESIRED. THE VALUES OF XL(IT) AND XC(IT) ARE COMPARED TO PTCN0137
C XIT. IF THE TARGET POINT IS BETWEEN XI. AND XC. THE PROGRAM PTrNO1ls
C COMPIUTES THE TARGET POINT, SETS IRET=1, AND PTCNO1.
C RFTIJRNS. TEMPORARILY INTERRUPTING NORMAL CONTINIIATTnN. PTrNOIJ,.)
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C FTCNO 141
C STEP 3: TANGENT AND LOCAL CONTINUATION PARAMETER CALCULATION. IF THEPTCN0142
C LOOP WAS SUSPENDED AT THE LAST CALl. TO PITCON TO ALLOW THE F'TCNOI43
C RETURN OF A LIMIT POINT, THEN THE TANGENT HAS ALREADY PEEN FTCNnl44
C CALCULATED AND A LIMIT POINT CHECK IS SIJF'ERFIJOIJS, SO FTCN014
C THE PROGRAM SKIPS TO STEP 5.
C OTHERWISE, A VECTOR IN THE TANGENT PLANE AT XC IS COMPUTED. PTrNOi47
C SUPPOSE THAT THE PREVIOUS CONTINUATION PARAMETER INDE PTCNOI43
C WAS IPt.P WHERE ON THE FIRST STEP IPL IS (ISER-S LPF lED. PTCNO49
C THE NEW TANGENT IS NORMALIZED, AND THE IPL.-TH COMPONENT PTCNOI!O
C IS FORCED TO HAVE THE SAME SIGN AS THE TPL-TH COMPONENT PTCNCt51
C OF THE PREVIOUS TANGENT (OR ON FIRST STEP# THE SAME :'TCNO152
C SIGN AS THE USER INPUT DIRECTION DIR.) THEN THE LOCAL. PTCNOt57
C CONTINUATION PARAMETER IPC IS DETERMINED. IPC IS SET TO THEF'TCt4O5OI
C LOCATION OF THE LARGEST COMPONENT OF THE TANGENT VECTOR PTCNO155
C UNLESS A LIMIT POINT FOR THIS CHOICE APPEARS TO 3E FTCN( !o
C APPROACHING, IN WHICH CASE THE i.OCATION OF THE SECOND PTCNO]17
C .ARGEST COMPONENT MAY BE TRIED. PTCNO15S
C ONCE IPC IS SET, THE QUANTITIES TCIPC, TCLIM, HSFCILC, AlFHLCPTCN0159
C AND DIR ARE COMPUTED, WHOSE MEANINGS ARE EXPLAINED AELOW. PTCNOIO
C PTCNO11
C STEP 4: LIMIT POINT CHECK. IF LIMNE.O. THE LIM-TH COMPONENTS PTCNlo2
C OF THE OLD AND NEW TANGENTS ARE COMPARED. IF THESE DIFFER PTCN0163
C IN SIGN A LIMIT POINT LIES BETWEEN XL. AND XC, THE PROGRAM PTCNOJ64
C ATTEMPTS TO FIND THIS LIMIT POINT. IF FOUND, IT STORES PTCN0165
C THE LIMIT POINT IN XR, THE TANGENT AT XR IN TL., SETS IRET=2,PTCNO16o
C AND RETURNS9 TEMPORARILY INTERRUPTING THE NORMAL I.OOP. PTCNOJ67
C PTCNOIA8
C STEP 5: STEP LENGTH COMPUTATION. THE PROGRAM COMPUTES HTANCF, THE PTCN0169
C STEPSIZE TO BE USED ALONG THE TANGENT TO OBTAIN THE PTCNO17O
C PREDICTED POINT XPRED:=XC+HTANCF*TCP THE STARTING POINT PTCNOi71
C FOR THE CORRECTOR PROCESS. IN COMPUTING HTANCF, CERTAIN PTCNO172
C CURVATURE AND STEPSIZE DATA ARE UPDATED. PTCNO17
C PTCNO 174
C STEP 6: PREDICTION AND CORRECTION STEP. WITH THE PREDICTED POINT PTCNO175
C XPRED=XCHTANCF*TC AS A STARTING POINT, THE CORRECTOR PTCNOt76
C PROCESS IS APPLIED TO CORRECT THE POINT UNTIL PTrN0177
C ABS(F(XCOR)).LE.ABSERR AND XSTEP, THE LAST CORRECTOR STEP. PTCNO78
C SATISFIES XSTEPI.E.ABSERR+RE.ERR*ABS(XCOR), PTCN0179
C IF THE SIZE OF A CORRECTOR STEP IS TOO L.ARGE, PTCNOISO
C OR IF A CORRECTION STEP INCREASES THE FUNCTION VALUE. OR PTCNO18I
C THE MAXIMUM NUMBER OF STEPS ARE TAKEN WITHOUT CONVERGENCE, PTCN0182
C THE STEPSI7E HTANCF IS REDUCED AND THE CORRECTOR STEP IS PTCNO1S3
C ATTEMPTED AGAIN, IF THE STEPSIZE SHRINKS BELOW HMIN, THE PTCNO184
C PROGRAM SETS AN ERROR FLAG AND RETURNS. PTCNO185
C FTf.N0l1
C STEP 7: STORING INFORMATION BEFORE RETURN. AFTER A SUCCESSFUL. PTCNOtS7
C CONTINUATION STEP, THE PROGRAM REARRANGES ITS STORAGE SO PTCNO138
C THAT THE ENTRIES CORRESPONDING TO XC AND XF HOLD THE PROPER PTCNOS9
C DATA, COMPUTES CORDIS, THE SIZE OF THE CORRECTION TO THE PTCNO'0O
C PREDICTED POINT, AND MODIFIES CORDIS TO A VALUE THAT WOULD PTCNO191
C CORRESPOND TO AN OPTIMAL. NUMBER OF CORRECTOR STEPS. PTCNO192
C PTCNO191
C PTCN6114
C ON NORMAL RETURN, THE VECTOR XR (THE FIRST NVAR ENTRIES OF RWORK), PTCNO195
C CONTAINS A SOLUTION POINT ON THE CURVE F(XR)=O, AND IS EITHER PTCNO'96
C A CONTINUATION POINT, A TARGET POINT, OR A LIMIT POINT, WHICH PTCNO197
C IS INDICATED BY THE VALUE OF IRET. PTCNOI?8
C IF IRET IS NEGATIVE, AN ERROR HAS OCCURRED. IF A LIMIT POINT IS PTCN0199
C RETURNED, THE TANGENT VECTOR AT THE LIMIT POINT IS CONTAINED IN THE PTCNO,00
C LOCATION TI. IN RWORK. ON FIRST CALL, THE USER MUST SET SOME OF THE PTCN0201
C SCAL.AR PARAMETERSP AND THE STARTING POINT XR. THEREAFTER, ON.Y IT PTCNO2)2
C AND XIT SHOULD BE CHANGED BY THE USER DURING A PROBI.FM RIJN. PTCNO203
C IF A NEW PROBLEM IS TO BE RuIN (WHETHER A DIFFERENT FUNCTION, OR THFPTCNO'OJ
C SANE FUNCTION WITH DIFFERENT STARTING POINT OR ERROR CONTROLS) PTCN02Os
C THE PROGRAM MAY BE RESET BY USING KSTEP=-l OR O, AT WHICH TImE THE PTCNJOY,
C SCALARS AND THE POINT XR MUST BE SET AGAIN, NOTE THAT IN THIS CASE F'TNO, O7
r THE STATISTICAL. DATA IN THE COMMON PtOCKS ,COIJNTi AND !COIINT2. F'T.O',
C WIL.L BE RESET TO 0 AS WELL., ,
C - NO
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C rrJ, :
C DEFINITIONS AND nEFAULTS OF PITCON PARAMETFRS Tr;4,, -
C PTCNO13
C P TCNO?2 4
C NVAR THE NUMBER OF VARIABLES IN THE NONLINEAR SYSTEM. NVAR IS PTCN0215
C THE DIMENSION OF THE PIVOT VECTOR IPVT, AND THE SIZE OF THE PTCNO216
C VECTORS XR, XC, XF, T. AND TC WHICH ARE CONTAINED IN RWORK. PTCNO.1.7
C RWORK ALSO CONTAINS STORAGE FOR THE MATRIX FPRYN WHICH PTCNI0218
C IS OF SIZE NVAR X NVAR. PTCN02J o

C NVAR MUST BE GREATER THAN 1, AND MUST NOT BE CHANGED DURING PTCN()220
C THE COURSE OF A PROBLEM RUN. NVAR HAS NO DEFAIlI T VALUE. PTC.N021I
C LIM LIMIT POINT FLAG AND INDEX, IF (L.IM.FQ.O), LIMIT POINTS PTCNO22 .

C ARE NOT TO BE LOOKED FOR. OTHERWISF, THE USER SHOULD SET PTCNO0223'
C tIM TO THE INDEX OF THE VARIABLE FOR WHICH LIMIT PTCNO22A
C POINTS ARE TO BE SOUGHT, LIM DEFAULTS TO ZERO. F CNO22.
C LN MUST SATISFY O.L.E.L.IN.LE.NVAR. PTCNO2:.
C IT = TARGET POINT FLAG AND INDEX. IF (IT.EO.O), TARGET POINTS PTCNO.27
C ARE NOT TO BE LOOKED FOR. OTHERWISE, THE USER SHOULD SET PTCNO229
C IT TO THE INDEX OF THE VARIABLE FOR WHICH TARGET PTCNO_9
C VAL.UES XIT ARE DESIRED. IT HAS THE DEFAULT VAL.UE ZERO. PTCN6;2ZO
C IT NAY BE RESET BY THE USER AT ANY TIME DURING A RUN. PTCN02.J
C IT MUST SATISFY O.LE.IT.LE.NVAR. F TCNO32
C XIT = THE VALUE OF THE TARGET VECTOR COMPONENT SOUGHT, IF IT.NE.O. PTCN02 3
C TARGET POINTS XR SATISFY XR(IT)=XIT. XIT HAS NO DEFAULT. PTCN0234
C KSTEP x THE NUMBER OF CONTINUATION STEPS TAKEN. THIS DOES NOT PTCNO.35
C INCLUDE FAILURES, TARGET POINTS OR LIMIT POINTS. THE PROGRAMPTCHIO236
C INCREMENTS KSTEP EACH TIME A NEW POINT XF IS COMPUTED. PTCN0237
C ON THE FIRST CALL. TO PITCON FOR A PARTICULAR PROBLEM, THE PTC0238
C USER SHOULD SET KSTEP TO 0 OR -1. IF KSTEP=-I, THE PROGRAM PTCN0239
C WILL CHECK THE ACCURACY OF THE STARTING POINT XR, AND IF PTCN0240
C NECESSARY, ATTEMPT TO CORRECT IT USING NEWTON'S METHOD. PTCN0241
C IF KSTEP=Op THE PROGRAM PERFORMS NO CHECK ON THE START'NG PT-,NO,242
C POINT, AND PROCEEDS TO THE CONTINUATION LOOP. IF THE USER PTCN0243
C WISHES TO RUN A DIFFERENT PROBL.EN THEN A CALL. TO PITCDN PTCN0244
C WITH KSTEP=-I OR 0 WILL RESET THE CODE, DESTROYING THE PTCNO,.4,
C INFORMATION FROM THE PREVIOUS RUN. KSTEP DEFAULTS TO -1. PTCNO016
C IPC THE COMPONENT OF XC TO BE USED AS CONTINUATION PARAMETER. FTCNA 247
C ON THE FIRST CAL.L ONLY, THE USER OUGHT TO SET IPC OR ALLOW PTCN0o.48
C THE DEFAULT VALUE IPC=NVAR. AFTER THE FIRST CALL., THE FTCNO'49
C DETERMINATION OF IPC IS DONE BY THE PROGRAM USING INFORMATIONFTrN'25o
C ABOUT THE TANGENT VECTOR AT XC. FTCJ02i5
C H SUGGESTED STARTING STEP SIZE ALONG THE TANGENT TO THE CURVE. PTCNO2 c
C IF H=O.0 ON THE INITIAL CALLS H DEFAULTS TO (HMAX+HMIN)i2 PTCNO2,3
C IF H IS NEGATIVE ON THE FIRST CA.L., THE MINUS SIGN PTCNO2k 4
C IS ABSORBED BY DIR AND INDICATES THAT THE DIRECTION OF THE PTCNO255
C FIRST STEP SHOULD BE IN THE NEGATIVE IPC DIRECTION. PTCNO25o
C AFTER THE FIRST STEP, STEPSIZE IS CONTROI.LED BY THE PROGRAM. PTCNO257
C UPON RETURN WITH A CONTINUATION POINT (IRET=O), H IS PTCN0258
C OVFRWRITTFN BY HTANCF, THE STEPSIZE USED IN REACHING THE PTCN02'9
C NEW POINT, PTCIJOOO
C IRET A RETURN FLAG TO INDICATE ERRORS OR THE TYPE OF POINT 'TCN,2,61
C RETURNED IN XR. NONNEGATIVE VALUES OF IRET REPRESENT PTCN06.
C NORMAL RETURNS. -EfzA]TIVF_._AJ.iE OF IRET INDICATE THAT PTCN02A3
C SOME ERROR OR DIFFICULTY HAS BEEN ENCOUNTERED. VALUES PTCN0264
C OF IRET BETWEEN -1 AND -4 ARE SIMPLY REPORTS THAT AN PTCN0265
C ATTEMPT TO COMPUTE A LIMIT OR TARGET POINT FAIL.ED. THESE PTCN0266
C DO NOT AFFECT FURTHER CONTINUATION STEPS, AND THE USER NEED PTCNO267
C NOT MODIFY ANY VARIABLES BEFORE PROCEEDING. P"CNQ268
C VALUES OF IRET OF -5 AND -6 REFER TO DANGEROUS SITUATIONS PTCNO269
C THAT MAY BE CORRECTABLE. PTCO7O
C VALUES OF IRET FROM -7 TO -10 ARE SERIOUS, FATAL ERRORS. PTCN0271
C THE USER SHOULD HALT THE PROGRAM AND EXAMINE HIS INPUT PTCNO327
C AND THE INTERIM RESULTS. PTCNO','{
C IRET SHOULD BE ZERO ON THE FIRST CALL. FOR A PROBLEM. PTCNO'74
C THE SPECIFIC VALUES OF IRET AND THEIR MEANINGS ARE: PTCNO27,
C PTCNA276
C IRET=2: NORMAL RETURN WITH LIMIT POINT IN XR AND TANGENT PTCNO"
C AT XR CONTAINED IN TL. PTCNOC78
C FTCN0279
r TRFT=I: NORMAL. RETURN WITH TARGET POINT IN XR. ;'CNO.S
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PTCNO'Rt
C IRET=A: NORMAL. RETURN WITH NEW CONTINUATION POINT IN XR. PTCNt1232
C PTCNO2.R3
C IRET=-I: AN ERROR OCCURRED DURING COMPUTATION OF LIMIT POTNTPTCN02A4
C PTCNO2R5
C IRET=-2: CORECT CALLED FOR TARGET POINT CAL.CULt.ATION FAILED PTrNo'86
C AFTER KNMAX ITERATIONS. PTCNO"87
C PTCNOt88
C rRET=-3: SOLVE WAS CALLED BY CORECT FOR TARGET POINT FTCNO2S9
C CALCULATION, AND FAILED. (MATRIX ELIMINATION FOUNDPTCN0290
C ZERO PIVOT). PTCN0291
C PTCNA292
C IRET=-4: UNACCEPTABLE CORRECTOR STEP IN TARGET POINT PTCN0293
C CALCULATION. PTCNO94
C PTCN0295
C IRET=-5: PREDICTION STEP HTANCF IS LESS THAN HMIN, PERHAPS PTCNo2%9
C BECAUSE OF REPEATED FAILURE OF CORECT, AND PTCN0297
C CONSEQUENT STEPSIZE REDUCTION. USER MIGHT REDUCE PTCNO298
C HMIN, OR SWITCH FROM IMOD=t TO JMOD=, OR INCREASE PTCNO29
C ABSERR AND REL.ERR. BUT BE AWARE THAT REPEATED PTCNOOAC
C STEPSIZE REDUCTIONS MAY INDICATE AN INTRACTAPI.E PTCN0301
C FUNCTION. P TCNO02
C PTCN0303
C IRET=-6: FUNCTION VALUE FNRMXF OF INPUT XR IS TOO LARGE PTCNO3A4
C AND COULD NOT BE IMPROVED BY CORECT. USER PTCN0305
C NIGHT RECOVER BY RELAXING ERROR CONTROLS, IMPROVINGPTCN03O6
C STARTING POINT XR, OR CHANGING VALUE OF IPC. PTCN0307
C PrCNO308
C IRET=-7: SOLVE FAILED IN A CALL FROM TANGNT. PTCN0309
C PTCN010
C IRET=-R: SOLVE FAILED IN A CALL. FROM CORECT. PTCN0311
C PTCN0312
C IRET=-9: THE TANGENT VECTOR TC AT XC IS ZERO. PTCN0313
C PTCN0314
C IRET=-IO: IMPROPER INPUT, NVAR.IE.A, OR PTCN0315
C iSIZE.LT.(NVAR)*(NVAR+5), OR PTCNO316
C PROGRAM HAS BEEN CALLED AGAIN AFTER FATAL ERROR. PTCN0317
C PTCN0318
C INOD = METHOD FLAG FOR CORRECTOR STEP, SPECIFYING TYPE OF PTCN0319
C NEWTON METHOD TO BE USED. PTCN0320
C PTCNOt
C IMOD=O: UPDATE JACOBIAN FOR TANGENT CALCULATION, PTCN0322
C UPDATE JACOBIAN FOR EACH CORRECTOR STEP. PTCN0323

C F'TCN03Z4
C IMOD=I: UPDATE ,JACOPIAN FOR TANGENT CALCULATION, PTCN0325
C EVALUATE JACOBIAN AT FIRST CORRECTOR STEP ONLY. PTCN0326
C F'TCNO27
C IPVT = INTEGER VECTOR USER DECLARED TO BE OF SIZE NVAR. PTCNO?B
C USFD DURING THE MATRIX FACTORIZATION TO STORE PIVOT PTCNO29
C INFORMATION, PTCNO330
C HMAX = THE MAXIMUM STEP SIZE. IF HMAX.LE.O.O ON INITIAL CALL, PTCN0331
C HMAX DEFAULTS TO SQRT(NVAR). PTCN0332
C HMIN = THE MINIMUM STEP SIZE. IF HMIN.L.E.SORT(EPMACH) ON INITIAL. PTCN0333
C CALL, HNIN DEFAULTS TO SORT(EPMACH), WHERE EPMACH IS THE PTCN0334
C MACHINE PRECISION CONSTANT. PTCN0335
C HFACT = L.IMIT ON STEPSIZE CHANGE. HSECLC IS THE SECANT STEPSIZE PTCN0376
C OF THE LAST STEP, AND HTANCF IS THE STEPSIZE TO BE USED PTCNO37
C IN OBTAINING THE PREDICTED POINT. THE FOLLOWING RELATIONSHIPF'TCN0338
C MUST BE SATISFIED: (HSECLC/HFACT).I.E.HTANCF.I.E.(HSECL.C*HFACT)PTCNO, 9
C IF THE CORRECTOR STEP FAILS, THEN HFACT IS ALSO USED TO PTCN0340
C REDUCE THE PREDICTOR STEP HTANCF TO (HTANCF/HFACT) PTCN0341

IF HFACT.I.Eo1.O ON INITIAL. CAI.L., HFACT DEFAULTS TO 3.0. PTCNOQ42
Z ABSERR= ABSOLUTE ERROR CONTROL.. IF ABSERR=O.O ON INITIAL CAL.L PTCNO3A3
C ABSERR DEFAULTS TO SORT(EPMACH) F TCN10344
C RELERR= RELATIVF ERROR CONTROL., IF RELERR=O.O ON INITIAL CALL PTeNO745
C RELERR DEFAUL.TS TO SQRT(EPMACH) PTCNO%46
C RWORK - USER DECLARED VECTOR OF SIZE ISTZE=NVAR*(NVAR+ ). PTCN0747
C RWORK STORES FIVE VECTORS AND AN ARRAY IN THE ORDER PTrUO348
C (XRXCXFTI.,TCFPRYM). THEIR BEGINNING LOCATTONS PTCN0349
C ARE IXR=t, IXC=NVAR+i, IXF=2tNVAR+l, TTL=3tNVAR+I.. FTCNO35(,
C ITC=A*NVAR+1, IFP=9*NVAR+I. FPRYM IS AN ARRAY nF TrUOSi

. ." ,- . .
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C SIZE NVAR X NVAR. THE MEANTNGS OF THESE COMPONENTS OF PTCN03F2
C RUORK ARE DESCRIBED EL.OW. THE USER SHOUI.I' SET A VALIE TO XRPTrNoN53
C ON FIRST CALL, BUT NO OTHER PORTIONS OF RWORK SHOULD RE PT:NO 54
C SET. AFTER THE FIRST CALL FOR A PROBLEM, NO ENTRTES OF RWORNFTCNO.15
C SHOULD BE ALTERED. P TCN03o
C (XR) = ON FIRST CALL, A USER SUPPLIED STARTING POINT, WHICH MAY RE PTrNo357
C IMPROVED BY THE PROGRAM IF KSTEP=-I. ON NORMAL. RETURN FROm "Tr0358
C PITCON, XR WILL HOLD THE MOST RECENTLY FOUND POINT, WHETHER PTC4035
C A CONTINUATION POINT, TARGET POINT, OR L.IMIT POINT. F'TCIJloO
C (XC) = THE PREVIOUS CONTINUATION POINT. PTCNO761
C (XF) = THE CURRENT CONTINIATION POINT, P CN0362
C (Ti) = PREVIOUS VALUE OF TANGENT VECTOR, NOTE THAT THIS CORRESPON'SPTCNO3A3
C TO A POINT XL. WHICH HAS BEEN DISCARDED. ON A LIMIT POINT PTC00364
C RETURN, TL WILL CONTAIN INSTEAD THE TANGENT AT THE PTCN0365
C LIMIT POINT. ON A TARGET POINT RETURN. T1. WILL HAVE PTr00O~i&
C BEEN OVERWRITTEN BY THE FUNCTION VALUE AT THE TARGET POINT. PTC.40367
C (TC) = THE TANGENT VECTOR AT THE PREVIOUS CONTINUATION POINT. ;TCNO348
C (FPRYM)= MATRIX STORAGE AREA FOR SETTING UP AND SOLVING THE FTCN036o
C LINEAR SYSTEMS INVOLVING DFA(XIP). PTt0370
C ISIZE z USER SET DIMENSION FOR VECTOR RWORK, WHICH MUST BE AT PTCN037t
C LEAST OF SIZE NVAR*(NVAR+5), PTCN0372
C PTCN0373
C PTCN0374
C NOMENCLATURE FOR STEP DEPENDENT VARIABLES PTCN0375
C PTCN0376
C PTCN0377
C THE PROGRAM ACCUMULATES INFORMATION THAT IS ASSOCIATED WITH PTCN0378
C SEVERAL PREVIOUS CONTINUATION POINTS OR THE STEPS MADE BETWEEN PTCN0379
C THEM. IN INTERPRETING THE CODE OR ITS OUTPUT, IT IS IMPORTANT PTCN0380
C TO KNOW WHERE SUCH OUANTITIES APPLY, THE FOI.OWING DESCRIPTION PTCNO381
C OF SOME OF THE VARIABLES IS VALID ONLY UPON A NORMAL. RETURN WITH PTCNA382
C A CONTINUATION POINT. PTCNO383
C THE POINTS 'XLL' AND 'XL.' WILL. HAVE BEEN DISCARDED BY THE PRAGRAM, PTCN0384
C BlT SOME QUANTITIES ASSOCIATED WITH THEM STILL SURVIVE. PTCNO.R"
C PTCN03R6
C PLANTITIES ASSOCIATED WITH STEP FROM 'XLL.' TO 'XL': PTCN0387
C PTCNO388
C HSFClI. = SIZE OF SECANT FROM 'XLI.' TO 'XL', EUCLIDEAN NORM(XLL-XL.) PTCNO3R9
C PTCNO390
C QUANTITIES ASSOCIATED WITH THE POINT 'XL': PTCN0391
C PTCN039'
C IPI = THE LOCATION OF THE FIRST OR SECOND LARGEST COMPONENT PTCN0393
C OF THE TANGENT VECTOR AT 'XL'. PTCNO394
C TI.LIM = VALUE OF I.IM-TH COMPONENT OF TANGENT VECTOR AT 'XI.', PTCN0395
C TL = TANGENT VECTOR AT 'X[.', ALTHOUGH LIMIT OR TARGET POINT PTCN0396
C CALCULATIONS COULD HAVE OVERWRITTEN THIS VECTOR. PTCN0397
C PTrNO399
C nUANTITIFS ASSOCIATED WITH INTERVAL FROM 'XL' TO XC: PTCNO399
C PTCN0400
C AL.PHLC = THE ANGLE BETWEEN THE TANGENTS AT 'Xt' AND XC. PTCN0401
C CIJRVl.C a ESTIMATED rURVATIRE BETWEEN 'XI.' AND Xr. PTCN0402
C HSECI.C = SIZE OF SECANT BETWEEN 'Xl.' AND XC, EICLIDEAN NORM(X.-XC) PTCN0403
C PTrN0404
C OUANTITIES ASSOCIATED WITH THE POINT XC: PTCN0405
C PTCN0406
C DETA = BINARY MANTISSA OF DETERMINANT OF DFA(XCPIPI.), DIVITED PTCN0407
C BY IPL.-TH COMPONENT OF TANGENT AT XC. PTCN0408
C DIR = SIGN OF DETA, DETERMINES SENSF OF CrNTINUATION. PTCN0409
C IEXP = BINARY EXPONENT OF DETERMINANT OF DFA(XCIP.). PTCN0410
C IPC = LOCATION OF FIRST OR SECOND LARGFST COMPONENT OF TANGENT PTCNO41J
C VECTOR AT XC. PTCN0412
C TC x TANGENT VECTOR AT XC. PTCN0417
C TCLIN x VALUE OF LIN-TH COMPONENT OF TANGENT AT XC. P TCN0414
C TCIPC = VALUE OF TC(IPC) PTCNO415
C PTCNO416
C QUANTITIES ASSOCIATED WITH THE INTERVAL FROM XC TO XF: PTCN0417
C PTCN0418
C CURVCF a ESTIMATED CURVATURE BETWEEN XC AND XF. PTCN041 0

C HTANCF z STEPSIZE USED ALONG TANGENT TO GET PREDICTED PiINT PTCN04 'O
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C WHICH WAS ;URRECTEP TO SOLUTION POINT XF. PTCNOA21
C PTCN042
C OUANTITTES ASSOCIATED WITH THE POINT XF: PTCN0423
C PTCNO424
C CORDIS = SIZE OF THE TOTAL CORRECTION FROM PREDICTED POINT PTCNO425

C X=XC4HTAMCF*TC TO CORRECTED POINT XF. PTCN0426
C NOTE THAT THIS HAS BEEN MODIFIED TO AN 'OPTIMAL' VALIIE. PTIN0427

C CURVXF = A PREDICTED VALUE OF THE CURVATURE AT XF. PTCN0428
C FNRMXF = MAXIMUM NORM OF FUNCTION VALUSE AT XF. PTCN0429

C FPRYM = DFA(XFIPC) HAS ACTUALLY BEEN LAST EVALUATED AT THE PTCN0430
C PENIJI.TTMATE CORRECTOR ITERATE (IF IMOD.NE.1). IT WILL BF PTCN043J

C EVALUATED AT XF AS SOON AS THE NEXT LOOP BEGINS AND THE PTCN0432
C TANGENT IS NEEDED. PTCN043
C XSTEP = SIZE OF THE LAST CORRECTOR STEP TAKEN IN CONVERGING TO XF. F'TCN043-
C FTCN0475
C PTCN0436
C SUBROUTINES IN THIS PACKAGF PTCN0437
C PTCN0418
C PTrN0439
C PITCON(NVAR,L.IMiT,XIT,KSTEPIPC,H;IREY,i O,i'PVT, PTCN0440
C HMAXHMINHFACTABSERRRELERRRWORK1517E) PTCN0441
C PTCN0442
C DRIVING ROUTINE OF CONTINUATION CODE. INITIAL.IZES INFORMATION, PTCN0443
C DETERMINES WHETHER L.IMITP TARGET OR CONTINUATION POINT WILL PTCN0444
C BE SOUGHT THIS STEP, COMPUTES STEPLENGTHSP CONTROLS CORRECTOR PTCN0445
C PROICESS, AND HANDLES ERROR RETURNS. PTCN0446
C PTCN0447
C CORECT(NVARPXIHOLDWORKIERRINODoFPRYMIPVTABSERRRELERRP PTCN0448
C XSTEPNEONPFNRM) PTCN0449
C PTCN0450
C USFS A FORM OF NEWTON'S METHOD TO SOLVE THE AUGMENTED NONLINEAR PTCN0451
C SYSTEM FA(X)=O WITH AUGMENTING EQUATION X(IHO.D)=B, THAT IS, X(IHOL.D)PTCN0452
C IS HELD FIXED DURING THE CORRECTION PROCESS. PTCN0453
C PTCNO454
C TAN6NT(NVARPXCIPCTCjiRETICALI.FPRYMIPVTNEONDETAIEXP) PTCN0455
C PTCN0456
C APPLIES ALGORITHM DESCRIBED ABOVE TO SOLVE DFA(XCIPI.)*TC=E(NVAR) PTCN0457
C AND THEN NORMALIZES TANGENT VECTORP CORRECTS SIO, AND SETS PTCN0458
C IPC AND DIR. PTCN0459
C PTrN04AO
C ROOT(APFABFBPC,FCKOUNTIFI.AG) PTCN0461
C PTCN0462
C ROOT FINDER USED TO LOCATE LIMIT POINT. THIS ROUTINE IS A MODIFIED PTCN0463
C VERSION OF THE FORTRAN FUNCTION ZERO GIVEN IN THE B0OK* PTCN0464
C 'ALGORITHMS FOR MINIMIZATION WITHOUT DERIVATIVES PTCN0465
C BY RICHARD P BRENT, PRENTICE HALL, 1973. PTCN0466
C PTCN0467
C SOLVE(NUARPXY,IP,DETApIEXPIERRICA.L.IMOF.FPRYMIPVT) PTCN0468
C PTCN0469
C SETS UP AND SOLVES THE SYSTEM DFA(XPIP)*Y(OUTPUT)=Y(INPUT) PTCN0470
C WHERE DFA(XvIP) IS THE JACOBIAN OF FA AT Xy PTCN0471
C AND Y IS A RIGHT HAND SIDE SUPPLIED BY THE CALLING ROUTINE. PTCNO72
C PTCN0473
C **NOTE** SUBROUTINE SOL.VE USES FULL. MATRIX STORAGE TO SOLVE THE PTCN0474
C SYSTEM. THE USER MAY WISH TO REPLACE THIS ROUTINE WITH ONE MORE PTCN0475
C S IlTED TO HIS PROBLEM. PTCN0476
C PTCN0477
C PTCN0478

4 C USER SIPPI.IED SUBROUTINES PTCN0479
C PTCNO48O
C PTCN0481
C FCTN(NVARPXFX) PTCNO4R
C PTCNO4R3
C EVALUATES THE NVAR-l COMPONENT FUNCTION FX GIVEN X AN NVAR COMPONENT PTCN0484
C VECTOR. THIS FUNCTION DESCRIBES THE NONLINEAR SYSTEM. THE AUGMENTINGPTCN0485
C EQUATION IS HANDLED BY THE CONTINUATION PACKAGE. PTCN0486
C PTCNO4R7
C FPRIME(NVARXPFPRYM) PTCNO4R
C PTCNO4R9
C EVALU.1ATES THE NVAR-1 BY NUAR JACOBIAN MATRIX FPRYM (X) PTCN0490
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AT X AND STORES IT IN THE NVAR BY NVAR ARRAY FPRYM, PTC0O491
SO THAT FPRYM(I,J) CONTAINS (DF(X) (I)/ DX (.J)). PTCN049?
THE LAST ROW OF FPRYM (FOR THE AUGMENTING EDUIATION) IS TNSERTED PTCN0493

C BY THE ROUTINE SOLVE. PTCN0494
C PTrN0495
C PTCNO4Q
C L.INPAK ROUTINES USED PTCNO4Q7
C PTCNi0498
C PTCN0499
C LINPAK REFERENCE: PTCN0500
C L.INPACK USER'S GUIDEr PTCN0501
C J J DONGARRA, .J R BUNCH, C B MOI.ER AND G W STEWART, PTCN0502
C SOCIETY FOR INDUSTRIAL AND APP.IED MATHEMATICS, PTCN0503
C PHILADELPHIAP 1979. PTCN0504
C PTCN0505
C PTCN05OA
C TSAMAX(NSXINCX) PTCNO 07
C INTEGER FUNCTION RETURNS THE POSITION OF LARGEST ELEMENT OF SX PTCN0508
C PTCN0509
C SAXPY(NSAPSXINCXPSYINCY) PTCN0510
C SETS VECTOR SY(I) = SA*SX(I)+SY(I) PTCN0511
C PTCN0512
C SCOPY(NPSXPINCXPSY,INCY) PTCN0513
C SETS SY(I)=SX(I) PTCN0514
C PTCN0515
C SDOT(NpSXINCXSYiINCY) PTCN0516
C SPOT = SLIM(I=1 TO N) SX(I)$SY(I) PTCN0517
C PTCN0518
C SNRM2(NPSXPINCX) PTCN0519
C SNRM2 = EUCLIDEAN NORM OF SX(I) PTCNO520
C PTCN0521
C **NOTE** SNRM2 HAS MACHINE DEPENDENT CUTOFF CONSTANTS PTCN0522
C PTCN0523
C SSCA.(NSASXPINCX) PTCN0524
C SETS SX(I)=SA*SX(I) PTCN0525
C PTCN0526
C SGEFA(ALDA,NJPVT,JNFO) PTCN0527
C FACTORS MATRIX A WHOSE LEADING DIMENSION WAS DECLARED AS L.DA PTrN0328
C AND WHOSE ACTUAL USED'DIMENSION IS N, SETS LIP PIVOT INFORMATION PTCN0529
C IN VECTOR IPVT AND WARNS OF ZERO PIVOTS. PTCN0530
C PTCN0531I
C SGESL.(AvLDApNpIPVTpBv.JOB) PTCN0532
C ACCEPTS OUTPUT OF SGEFA, AND A RIGHT HAND SIDE B, AND SOLVES PTCN0533
C SYSTEM A*XzB, RETURNING X IN 3. FOR MODIFIED NEWTON'S METHOD, ONCE PTCN0534
C MATRIX IS FACTORED BY SGEFA, ONLY SGESL IS CALLED FOR SUCCESSIVE PTCN0535
C RIGHT HAND SIDES PTrNO536
C PTCNO537
C PTCN0538
C PTCNO539
C LABELED COMMON BLOCKS PTCN0540
C PTCN0541
C PTrNO542

* C /COUNTI/ COUNTS NUMBER OF CAL.LS FROM ... TO ... AS FOI.LOWS' PTCN0543
C ICRSI. - CORECT TO SOLVE PTCNH044
C ITNSt. a TANGNT TO SOLVE PTCNO545
C NSTCR a PITCON TO CORECT FOR IMPROVED STARTING POINT PTCN0546
C HCNCR a PITCON TO CORECT FOR CONTINUATION POINT PTCN0547

* C NTRCR z PITCON TO CORECT FOR TARGET POINTS PTCN0548
C NLMCR a PITCON TO CORECT FOR LIMIT POINT PTCNO49
C NLMRT a PITCON TO ROOT FOR LIMIT POINT PTCN0550
C PTCN0551
C NOTE THAT NSTCRF NCNCR, NTRCRv NL.MCR AND NLMRT COUNT THE NUMBER PTCNO552
C OF ITERATIVE STEPS (NEWTON OR ROOTFINDING) AND NOT JUST THE NUMBER PTCN0553
C OF SUBROUTINE CALLS. PTCN0554
C PTCNO55
C /COIINT2/ KEEPS PERFORMANCE AND WORK STATISTICS PTCNO'56
C IFEVAL 2 NUMBER OF CALLS TO FCTN PTCN0557
C IPEVAL a NUMBER OF CALLS TO FPRIME PTCN 55
C ISOLVE - NUMBER OF CALLS TO SOLVE PTCN0559
C NRED a NUMBER OF STEPSIZE REDIJCTIONS MADE REFnRE PREDICTOR PTCNA56O
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C POINT CONVERGED TO THE NEW CONTTN(IATTUIN POINT. PTCNOF61
C NRDSUM x TOTAL. NUMBER OF STEPSIZE REDUCTIONS PTr.NO.62
C KN = NUMBER OF CORRECTOR ITERATION STEPS TAKEN IN mOST RECENT PTCN0563
C CALL TO CORECT. PTCNO!64
C KNSUM a TOTAL NUMBER OF CORRECTOR ITERATION STEPS. PTCNO565
C PTCN0NO5A6
C /OUTPtIT/ PTCN0567
C ITWRITE = USER ACCESSIBLE OUTPUJT INDICATOR. PTCN!8
C IWRITE=9O NO OUTPUT PRINTED BY PITCON. PTCN0569
C IWRITE=, ERROR MESSAGES PRINTED BY PITCON. PTCNO0O
C IWRTTE=2, CERTAIN OUTPUT WILL BE PRINTED BY PITCON. PTCNO571
C PTCNO!52
C /POINT/ CONTAINS DATA ABOUT THE SOI.JTION CURVE PTCN0573
C BETA = BINARY MANTISSA OF THE DETERMINANT OF THE AUGMENTEP .ACOBIANPTCN0574
C IEXP = BINARY FXPONENT OF THE DETERMINANT OF THE AUGMENTED JACOBIANPTCN0575
C CURVCF = ESTIMATED CURVATURE BETWEEN XC AND XF. PTCN0576
C CORDIS = NORM OF THE CORRECTOR STEP FROM PREDICTED POINT TO CORRECTEPPTCNO577
C POINT, USING MAXIMUM ABSOLUTE VALUE AS THE NORM. PTCNOM78
C THIS AUANTITY IS MODIFIED TO AN 'OPTIMAL' VALUE. PTCN0579
C ALPHIC = ANGLE BETWEEN OLD AND NEW TANGENTS TL AND TC PTCNO5O
C HSECLC = EUCLIDEAN NORM OF SECANT BETWEEN XL AND XC. PTCNO9S1
C FNRMXF = MAXIMUM NORM OF FUNCTION VALUE AT NEW CONTINUATION POINT. PTCN0582
C PTCNOSR,5
C /TO./ PTCN0584
C EPHACH= SMALLEST NUMBER SUCH THAT 1.0+EPMACH.GT.EPMACH PTCNO585
C .5SBETA* (1-TAJ) FOR ROUNDED, TAlU-DInIT ARITHMETIC PTCNO586
C BASE BETA. TWICE THIS VALUE FOR TRUNCATED ARITHMETIC. PTCN0587
C THIS IS THE RELATIVE MACHINE PRECISION. PTCN05S8
C EPMACH=2**(-27) FOR DEC-10. PTCN0589
C EPSATE= R*EPMACH PTCNO590
C EPlSQRT= SOUARE ROOT OF EPIACH PTCN0591
C PTCN0592
C PTCN0593
C PROGRAMMING NOTES PTCN0594
C PTCN0595
C PTCN0596
C THE USER MOST - PTCN0597
C PTCN0598
C 1. WRITE SUBROUTINES PTCNO599
C SUPPLY A CALLING PROGRAM, AND THE TWO ROUTINES FCTN AND FPRIME PTCN0600
C AS DESCRIBED ABOVE. PTCN0601
C PTrNO602
C 2. SET STORAGE AREAS PTCN0603
C DECLARE A REAL VECTOR RPORK OF SIZE IS17E, ISI7E.GE.NAR*(NVARI5) PTC10604
C AND AN INTEGER VECTOR RPIJT OF SIZE NVARE PTCN0605
C PTCH066
C 3. PASS CERTAIN NON-DEFAII.TAI.E VAL.IES PTCN0607
C PASS NVAR GREATER THAN ZERO, ISIZEGrF.NVAR*(NVAR+5) PTCNO608
C AND SET IRET=O, KSTEP.-i OR KSTEP=O 3N FIRST CALL. PTCN0609
C FOR A NEW PROBLEM. PTCNO610
C PTCN061 1
C THE USER SHOU1.D - PTCNOA12
C PTCNO613
C 1. STORE A STARTING POINT XR IN THE FIRST NVAR LOCATIONS OF RWORK PTCNO614
C BEFORE CALLING P!TCON. PTCNOA15
C IF SCH A VALUE IS NOT GIVEN, THE ODE MAY BE INALBI. TO PRODUIE ONE. PTCNn16t
C PTCN0617
C 2. CAREFULLY MONITOR THE VALIE OF IRET SC7- 7 ANY q.RIOMS ERROR PTCN0618
C IS CAUGHT BEFORE ANOTHER CALL IS MADI TO !N. PTCNO1J9
C PTCN0620
C 3. CHOOSE A VALUE OF IMOP FOR THE TYPF OF CORRCTOR PROCESS TO PTCNO"21
C BE. USED. PTCN0622
C PTCNOA23
C PTCN0624
C THE USER MAY - PTCN0*25
C PTCNO26
C 1. MONITOR THE PASSING OF BIFIRCATION POINTS BY SAVING THE OLD PTCN06'7
C VALIUF OF BETA AND COMPARINg IT TO THE CURRENT VALIE. IF THERE PTCo62Ls
C IS A CHANGE IN SIGN, THEN A IIRrATION PINT HAS BEFW PASSED. PTCN06,9

PTrCtlj6x0
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C 2. ACCESS THE COMMON BL.OCKS /COIINTi/ AND /COUJNT"/ TO KEEP TRACK PTCN0631
C OF THE AMOUNT OF WORK DONE.* PTCN0632
C PTCN0631
C 3. MONITOR THE COMMON MOCK /POINT/ FOR INFORMATION ABOUIT THE PTCN0634
C SOLUTION CURVE.* PTCN0635
C PTCN0636
C 4. AT ANY TINEY RESET THE CODE BY PASSING IN KSTEP=-1 OR KSTFP=O. PTCN0677
C THIS AL.LOWS THE USER TO CHANGE STEPSIZE, DIRECTION OF CONTINUIATION, PTCN0638
C ERROR CONTROLS, OR OTHER PARAMETERS. IT ALSO ENABL.ES THE USER PTCN0639
C TO RUN UNRELATED PROBL.EMS OF DIFFERENT SIZES OR ERROR CONTROLS PTCN0640
C DURING A SINGL.E PROGRAM EXECUTION. PTCN0641
C PTCN06'42
C PTCN0643
C THIS SUBROUTINE IS CALLED BY PTCN0644
C USER MAIN PROGRAM PTCN0645
C AND CAL.LS PTCN0646
C CORECT PTCN0647
r ROOT PTCN0648
C TANONT PTC1N0649
C FORTRAN ADS PTCN06f5o
C FORTRAN ACOS PTCN0651
C FORTRAN ALOG PTCN0652
C FORTRAN AMAXI PTCH0653
C FORTRAN AMIN1 PTCNO654
C FORTRAN DR.E PTCNO655
C FORTRAN FLOAT PTCN0656
C FORTRAN SIGN PTCN0657
C FORTRAN SIN PTCN0658
C FORTRAN SNOL PTCN0659
C FORTRAN SORT PTCN0660
C LJNPAK ISAMAX PTCN0661
C LINPA( SAXPY PTCN0662
C LINPAK SCOPY PTCN0663
C LINPAK SNRM2 PTCNO664
C LINPAK SSCA. PTCN0665
C PTCN0666

c PTCN0468
INTEGER IPVT(NVAR) PTCN0669
REAL. RIJORK(ISIZE) PTCN0670
REAL WROE(8),ACOF(12) PTCN0671
DOUBLE PRECISION DTLIPC, DTCIPC, DAD.JUS ,COSALF PTCN0672
COMMON /COUNTI/ ICRSL, ITNSt.NSTCRPNCNCRPNTR'RNL.MCRNLMRT PTCN0673
CO)MMON /COUNT2/ IFEVAL., IPEVAL. ,ISOt.VENREDNRDSUJMKN, KMStM PTCNO674
COMMON /OUTPUIT/ IWRITFE PTCN0675
COMMON /POINT/ DETA, iEXPCUJRVCFCORDISA.PHLCHNSErI.C.FNRMXF PTCN0676
COMMON /TOLI/ EPMACHPEPSATEPEPSART PTCNOA-7
DATA IDONF /0/ PTCN06;7S
DATA TENMI /0.1/ PTCN0679
DATA TEHM2 /0.01/ PTCN06'80
DATA TENM3 /0,001/ PTCN0681
DATA URGE PTCN0682
1 ,8735J15E+0Oi .1531947E+009 .3191815E-Olt .3339946E-109 PTCN0683

* 2 .4677788E+0O, #6970123E-039 .1980863F-059 .1122789E-08/ PTCN0684
DATA ACOF /PTCN0685
I .904312BE+00,-.70756'75E+OOP-.46673B3Ef+i ,-.3677482Ef0I, PTCN0686
2 .8516099E+0O,-. 1953119E+00,-.4830636E+O1 ,-.9770528E+00, PTCN0687
3 .1040061E+Ol, .3793395E-01, * 1042177E+O1' *4450706~E-0i/ PTCN0688

C PTCN0689

C PTCN0691I
C 1. PREPARATION$. PTCN0692
C ON FIRST CALL FOR THIS PRONLEMP INITIALIZE COUNTERS AND VARIABLEFSP PTCN0693
C CHECK USER INFORMATION AND SET DEFAULTSP AND IF (KSTEPEO.-l), PTCN0694
C CHECK NORM OF F(XR) AND CORRECT XR IF NECESSARY. PTrNO695
C ON EACH CALL, IF INPUT IRET HAS NONFATAL VALuE~, RESET IRET PTCN0A6
C SO THAT CONTINUATION L.OOP PICKS UP WHERE IT WAS HAL.TED. PTCN0697
C PTrNO698

C PIrNO700



TER?:OPTC1N07701

IF (RET.0,--) TRT=2PTCH070"

c PTCU07I05

r F COOE WS CALED A6TO 10E AALkAU O R PTCHO7I 3
C E THE R ACINE DIHERRORE VA RABL EPiA, Tl LETNME PTCN0707

IF TA (1ET* MAC60 O 40 PTCN0709
c PTCH071 7

C PEFORM OE-TIM NL SINITIALIZAIONS PTCN0711
c PTCN0712

IF~:~- 45OFE0)800TO 1 PTCH0713
c PTCH0714

CSE THE 360CORI37 DEPNDEHOT VARIBLE) EPRCISTHION: ETUME PTCN0715
C 50HATN=9.536E-7CNG~t P TCM 714
C PTCH0717
C FOR DEC PUP00 OR 40 STN PRGIEPRECSION PTCN0 716
C PTCH0719

C EPHACN!-7. 10580746E-15 PTCN072A
C PTCH0721
C SET IBMS360 OR 370C, ESORT (SOE)PRHACTH) N PTCN0732
C PTCN073

C PSATH=9. ORPA74H PTCH0724
EPATSRT(PAH PTCN0775

C FKCDTEP0 OR. 700 t .. SINGLE.)PRECISION: PTCH0726
KSEP- PTCH0727

c ONEi.10470E1 PTCH0720
C PTCH0729
C SERTR IEtIATZmSPATIPEONS AND C ESFORHEMPOLE N PTCH0730

IF(URLct 0T 4 PTCN0731
.PTX .0EPAC PTCN0732~
JXSRT*PTEPAH PTCN0733
AXCM TXR+NVAO~.-PAH PTCH074
JXCK=JXR+NVAR .STIIs.OKSE~- PTCN0735

JXOOJC4NVA PTCH0737
C T=X+~A PTCN0738
C JEFOML=JXF+NARTATN M HCSFRNWPOLMOL PTCN0739

IT!1TLNA PTCH0740
10TI uKTPG0 60 TOAR PTCH0741
IFP=TPo~oIADK7E.G06 TO TC30 PTCN0747
JFP=TNARFt 0T40 PTCNO756
IF TSIELuO.A)0VA+))6 T 4 PTCOH07
TIPCO.0 PTCH075
C3RO=O PTCN0746
CR VAO. PTCN0747

JXSCL.OX+N PTCN0748I
TX-EC+uO * PTCH0749
JXF=JXO NV0 PTCH0750
TI.TXFG A PTCH0751
NEON-XNVAR PTCW0752
TTRE ri.MVA PTCM0753
JTNIL+NVA PTCH0754

NRDSIJ.0 PTCNO76Sr%
TIC.=0. PTCH0758

ITNS=0 PT CH0 770

MEQ~wMVAR-9 PTH06
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NSTCR='0 PTCN077J
NI:NCR.0 PTCH0777
NTRCR-0 PTCN0773
OI. mcits PTCN0774
WI MRTuO PTCN0775
IFEUAL xll PTCM077A
ISOI. VEO PTCN0777
XPEVAI. =0 PTCN0778
IF (I4MAXLE.0.0) HMAX=SORT(FLC'AT(NVAR)) PTCN0779
IF (HMIN.LE.EPSURT) HMIN=EPSORT PTCH07RO
HDEF2. 5*(HMAX+NMIN) PTCH0781
IF (HFACT.LE-tO) IFACTm3.0 PTCN0787
HREDa1 .0/HFACT PTCN0783
IF (ABSERRLE.0,0) ABERR-YEPSORT PTCH0704
IF (RELEFRR.LE*..) RELERR=fPSART PTCN0785
IF (TPC*LE.0,fJR. rPC.13TNVAR) TIPC=NVAR PTCH0786
IF (LIM.LT#.0R.LIM#GTNlA) t.IN=O PTCN0787
IF (H.EQ.0.0) 14=HDEF PTCN0788
DIRwSIGN(1 .0vH) PTCH0789
H=ABS(H) PTCN0790

C PTCH0791
C IF (KSTEP.LT*0) CHECK NORM OF F(XR) AT STARTING POINT, PTCN0792
C IF ACCEPTABLEP RETURN IMMEDIATELY WITH KSTEP:O,9 PTCN0793
C OTHERWISE APPLY NEWTON'S METHOD, HOLDING VALUE OF PTCN0794
C IPC-TH COMPONENT FIXED. P TCH0795
C PTCN0796

IF (KSTEP-SGEO) 60 TO 20 PTCH0797
CALL CORECT(NVARRWORK(IXR),JPCRWCIRK(ITL),IFRRJMODRWORK(IFP), PTCU0798
I TPTASRFEERXSEY;UY~IMF PTCH0799
NSTCRz$STCR+KN PTCNOSOO

c PTCNOBO 1
C IF NO ACCEPTABLE POINT FOUND, ERROR RETURN PTCM0802
C PTCN08O 3

IF (IIRR6NE.0) 130 TO 400 PTCN08O4
KSTEPO=-t PTCNOBOS
XSTEP=O PTCN0806
HTANCFzN PTCJ40807
130 TO 340 PTCNOBOR

20 IF (KSTEP.EO,O) CALL SCOPY(NV)ARRW*flK(TXR),1jRWORK(IXC)'I) PTCN0909
IF (KSTEP.EQ.O) CALL SCOPY(NVARRUORK(IXR),1,RWORK(IXF)t)) PTCNOBIO

C PTCN0011

C PTCHOR13
C 2. TARGET POINT CHECK, IF (JT.NE.0) TARGET POINTS ARE SOUGHT. PTCN0814
C CHECK TO SEE IF TARGET COMPONENT IT HAS VALUE~ X(T I.YINII PTCN0815
C BETWEEN XC(IT) AND XF(IT). IF 90o GET LINEARLY INTERPOLATED PTCN0816
C STARTING POINT. ANO USE NEWJTON'S mErHoll TiO GET TARGET POINT PTCN0817
C PTCN0818

C .PTCH0820

30 IF(Tr.lT.0.OR.IT.6T.NVAR)ITt) PTCM0921
IF (IT.EFP.0) GO TO 40 PTCN0822
IF (IRET,EO.,ANU,XTT.EO.XTT,ANG.ITT.E.ITO) 60 TO 40 PTCN0823
XCIT=RWORK(JXC*IT) PTCN0824
XFIT=RUOCRK(CJXF+ IT) PTCNOS25
IF ((XIT.LT.XCIT).AND.(XIT.LT.XFIT)) 130 10 40 PTCN0826
IF ((XTT,IT.XCIT).AND.(XIT.GT.XFITTf IS0 TO 40 PTCROB27
DEL =XFIT-XCIT PTCNOB8
RATv0.0 PTCN08:!9
IF (APS(DEL).GT.EPgPRT) RAT=(XIT-XCIT)/1EL PTCN0830
CALL. SCOPY(N)ARRWdORK( [XF),lRWORK( IXR),I) PTCH0831
CALL. SAXPY(NVAR,-1.ORWICRK(IXC)9,1,RWORK(JXR),1) PTCN0832
CALL S8CAI.(NtARRATYRWORK(TXR);1) PTCN0833
CALL SAXPY(NVAR.I.0,RWORK(JXC)P1,RWORK(IXRh1l) PTCN0834
RlORK(.JXRHTT)=XrT PTCH0835
CALL CORECT(NVARRWORK(TXR),JTRWORK(JTL.),IERRJIIODRWORK(IFP), PTCN0036
t rP'TABSERt.IRELERRXST1EPNEIJNFNRM) PTCHOR37
NTRCR=MTRCR+KN PTCN0838
I'f0= t T PTCNOR39

'~ T TO.X 
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IF (TERR.Eg.O) GO TO 720 PTCNOR41
IF (TERREU.-.) 10 TO 370 PTCNO47
IF (JERR.EP.-2) GO TO 36O PTCNO843
zF ( :IF t,--3) IU TIO s80 PTCNO844

C PTCNOR45

C PTCNOS47
C 3, TANGENT AND LOCAL. CONTIIJATION PARAMETER CAI.CIJLATION, UNLESS THEPTCNOB4R
C TANGENT AND .IMIT POINT CALCULATIONS WERE ALREADY PERFORMED (BFCAUSE PTCN0849
C THE LUOP WAS [NTERRUPTEO FOR A I.TMIT POINT)i SET UP AND SOLVE PTCNO5O
C THE EDIJATION FOR THE TANGENT VECTOR. FORCE THF TANGENT VECTOR TO BE PTCNOO51
C OF UIJIT LENGTH, ANO FORCE THE IPI.-COMPONENT TO HAVE THE SAME SIGN AS PTCNO852
C THE IPL-TH COMPONENT OF THE PREVIOUS TANGENT VECTOR, OR (ON FIRST PTCNO853
C STEP)'THE SAME SIOH AS THE USER IHPUT DIRECTION OTR, SEr THE LOCAL PTCNO854
C PARAMETER IPC TO THE LOCATION OF THE I.ARGEST COMPONENT PTCNOR55
C OF THE TAN13ENT VECTOR. UNLESS A I.MTIT POINT IN THAT OIRECTION PTCNOR56
C APPEARS TO BE APPROACHING AND ANOTHER CHOICE IS AVAILABLE. PTCHO857
C PTCNOR58

C PTCHO60
40 IF (IRETNF.?) GO TO 50 PTCNOS61

TRE="O PTCNOR62
SO TO 160 PTCNO863

C PTCNO864
C STORE OLD TANGENT IN T., COMPUTE NEW TANGENT FOR XC PTCN0865
C PTCN0866

50 IPL*IPC PTCNH067
IF(KSTEPGT.O)CALI. SCOPY(HVAR.RWORK( TC)1,RWORK(ITI.),I) PTCNORAR
1CA L=a PTCN0869
CALL TANGNT(NUAR,RWORK(CXF),IPCRMORK(ITC)PIREToICAI.L,RWORK(IFP), PTCN0870
I JPVTPNEPN,DETAIEXP) PTCN0871
IF (TRET,EO.-2) oo To 430 PTCN0872
IF (IRET.EP.-1) GO TO 410 PTCN0873

C PTCNOR74
C SURROUTINE TANGNT RETURNED IPCP THE LOCATION OF THE LARGEST COMPONENTPTCNO875
C OF THE TANGENT VECTOR. THIS WILL. BE USED FOR THE LOCAL PTCNO876
C PARAMETERIZATION OF THE CURVE UNLESS A LIMIT POINT JN JPC SEEMS PTCN0877
C TO BE COMING. TO CHECK THISi WE COMPARE TCiPC:=rc(tPC) AND THF PTCHOR78
C SECOND LARGEST COMPONENT TCJPC:=TC(JPC). IF TCJPC IS NO LESS PTCNOR79
C THAN .1 OF TCIPC, AND Tc(.JPC) IS L.ARGER THAN TI.(JPC)p PTCHORSO
C WHEREAS TC(XPC) IS LESS THAN TL(IPC), OE WILL RESET THE PTCNOSSI
SI.OCAI. PARAMETER IP-:=JPC. PTCNO882

C PTCNO883
TI.tPI.=TCTPC PTCHO884
TCIPC=RWORK(JTC+IPC) PTCNOR85
.IPC=IPC PTCNORRA
IF(ABS(TCIPC),GE.ABS(RWORK(.JTL+IPC)))GO TO 60 PTCNO887
IF(TI.TPLEO.0.O)rATO 60 PTCROS8
RWORK(JTC+IPC)=O.D PTCNO8S9
JPC=TSAMA%(MNAR,RWORK([TC)71) PTCN0890
TCJPC=RWORK ( JTC+JPC PTCN0891
RWORK(JTC PC)=TCIPC PTCN09
IF (ABS(TCJPC).LTTENN1SABS(TCTPC)) GO TO 60 PTCN0893
IF (As(TC.JPC .I.T,ABS(RORK(JTI.+.JPC)))IOT 60 PTCNO894
IPCzJPC PTCNO895
IF (IWRITE.OE.2)WRrTE(6,610) PTCNO96

60 TCIPLnRWORK(JTC+IPL) PTCN0897
DTl.TPC=SLE(RWORK(.JTL.PC)) PTCNO89
DETAmPETA/TCIPL PTCN0899

C PTCH0900C AD.IUST SIGN OF TANGENT PTCN0901

C COMPARE THE SIGN OF TC(IPI.) WITH STUN OF TL(TPL.) PTCN0902
C (RUT ON FIRST STEP, COMPARE SIGN OF TC(IPL) WITH USER INPUT PIR). PTCN0903
C CF THESE SIGNS DIFFER, CHANGE THE SIGN OF TC TO FORCE AGREEMENT, PTCN0904
C AND THE SIGN OF DETA. PTCNOV05
C THEN RECORD DfRtm SCGN OF DETERMINANT v SION(DETA). PTCN090A
r PTCN0907

STI.TPI.-vDR PTCNO9OR
IF (TLIPt..NE.O.0) qTLIPLmSIGN(l.0,TLIPL) PTCN0909
IF (!SICN(1,OTCCPI.),iO.STI.TP.) 30 TO 70 PTCH0910

'- - --, €
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CALL 5SCAL(NVAR.-1 .0vRUORK(JTC)v1) PTCN09J 1
DETA - DE TA PTCN0912
TCIPL* -TCJPI. PTCH091 3

.70 TCTPC=RWI)RKX .JTI'+ rPC) PTCH09I 4
TCIPCRIIRK (JTC+JPC) PTCNO91S5
OTCTPC1:08LFtTC rPC) PTIrH091A
9tRuSYGN(1 .0vflfETA) PTCN091 7
IF (1.,.) fill TO so PTCN091A
T1. LI Hz=TCL I M PTCH091 9
TCl. IM=RWORK .Ji*CfI.1H) PTCM0920

C PTC0O92 1
C COMIPUTE ALPHI.Cv THE ANGLE BETIEENH TANGENT AT XL AMC TANGENT AT XC PTCH0922
C ANDI HSECLCv THE EUCLIDEAN WORM OF SECANT FROM Xt. TO XC. PTCN0923
C PTCH0924

80 IF(KSTEP.LE.0) G0 TO 360 PTCN0925
cO'3AL-=0 .00 PTCNoq76
00 90 Ini NVAR PTCH0927

COSALF=COSALF+ODLE(RMORX(iJTC+))*SLE(IJORK.JTlI.P)) PTCM09"'R
90 RWORK(JXRII)=RWORK(JXF+1)-RNORK(JIXC+I) PTCH0929

HSFCLL.HSECLC P TCH0930
HSECLCzSNRM2(HVARtRWORK( IXR)vJ ) PTCH0931
AI.PHLC-=SNOI. (COSAIF) PTC110932
lF(ALPHLC.GT. I O)ALPNLCUI 40 PTC00933
IF (At.PHI. C Lr-1 --I0)AL.PHL.C:--t .0 PTCNO934
A.PNL CsACOS (AL.P4L C) PTCH0935
TF( TWRTE oE,2)TTE(6,9550)AAL3HL.C PTCX0q3A

C PTCH0937

C PTCN0939
C 4. LIMIT POINT CHECK. IF (LIM.HE.O) CHECK TO SEE IF PTCH0940
C OLD AND NEW TANGENTS DIFFER IN SIGN OF 1UN1-TN COMPONENT. PTCH0941
C IF SOP ATTEMPT TO COMPUTE A POINT XRt RETIEEN XC AND XF PTCM0942
C FOR WHICH TANGENT COMPONENT VANISHES PTCH0943
C PTCN0944

C PTCH0946
IF (LIN.LE.O.OR.KSTEP.LE.O) 00 TO 160 PTCN0947

C PTCN094R
C CHECK FOR LIMIT INTERVAL PTCN0949
C PTCH0950

IF (SIGN(1.0,TCL-IM).EG.SJGN(1.0,TLLIM)) GO TO 160 PTCNO951
C PTCH0952
C TEST FOR ACCEPTABLE ENDPOINTS PTCNO953
C PTCNO954

ATLI.NmA9S( TLL IN) PTCH0955
IF (ATLLM.,GT.0,54A9SERR) 601 TO 110 PTCH0956

C PTCN0957
C IF XC 13 1.114r Pf)(Nfp ff. ALREADY CONTAIN*. TAmaEmr Ar xr PTCH0958
C PTCN0959

100 CALL SCOPY(HVARRWORK( IXC),tRUORK( (XR),1) PTCH0960
GO TO 310 PTCN0961

110 ATCLTMmA8S(TCI.IM) PTCH0962
IF (ATCt.IMGT,0.52ADSERR) 00 TO 130 PTC1E0963

120 CALL. SCOPY(N'JARRWORK(TXF),tRUORK(IXR),1) PTCRO964
CALL SCOPY(NVARRWORK(ITC),1,RWORK(TTtJ,1l) PTCN0965Io Ta o :sio PTCM0966

C PTCH0967
C TEST FOR SMALL INTERVAL. PTCH0968
C PTCH09E.9

130 XCL thaRNORK, :XC#L 114) PTCHO970
XFLIKaRVORK(JXF+L IN) PTCN0971
DELwA9S(XFI. IM-XC. I) PTCH097?
XASoANAXI (A3S(XCLIN),AIS(XFLJM)) PTCN0973
IF DaE..Gr.aA9SERR+RELERR*XAtS)) ij0 ru 14o PTCH0974
IF 4ATLLM.GT.ATCLIM) 00 TO 120 PTCN0975
40 TOJ tOO PTCN0974

C PT CNO977
C BEGIN ROOT-FrNOTNG (TERATION WITH INTEiRVAL. (0,I) ANR, PTCM097A
C FUNCTION VALUES Tt.(L.IM)t TC(LIM), PTCN0979
C PTCH09RO
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140 K04INTwO PTCN09Q 1
A0n.0 PTCM0987
FAcTLIH PTCN0983
TSH'TCL IN PTCH0984
Cal'0 PTCH0985
FC-vTCI.IM PTt' N099/A

C PTCN0997
c *wr (PL. ( TO THE' INDEX OF l$AX(IHIJM ENTRY OF 3ECANT PTCH09AR
C (EXCEPT THAT IPLIN MUST NOT EQUAL LIM) PTCN0999
C AND SAVE THE SIGN OF THE MAXIMUMD CONPONENt IN DIRLrM PTCH0990
C Sn THAT NEW TANGENTS MAY BE PROPERLY SIGNED. PTCN099J
C PTC092

rALL SCOPY(NVAR.RWORK(IXF),JRWORK(IXR),l) PTCN0993
CALL SAXPY(HUtAR.-l,0,RWIR(TXC,,lRUORK(TI~lIt PTCN094
RWORK(JXR+L IM)=0.O PTCN0995
Il.rM=IsAMAX(HtJARtRWORKCTXR),i) PTCNO099A

OTRIN=SIGH(1 .0.RUORK(JXR4IPL.IN)) PTCN0997
C PTCN0999
C CALL ROOTFINDER FOR APPROXIMATE ROOT SNP SET X=SN*XF+(I-SN)*)X PTCN0999
C CALL CORREcrOR TO RETURN TO) CURVE ON LINE X(Il'.CN)CONSTANT, PTCHIOOO
C COMPUITE TANGENT THERE, AND SET FUNCTION VAl-UE TO TANGENT(LIM) PTCNIOO1
C PTCH1002

150 CALL ROOT(AFASNTSNCFCKOUNTPIFLAG) PTCNI 003
NOLMRT=NL MRT+l PTCN 1004
IF((FLAGLir.-l)GO TO) 350 PTCN1005
IF(IFLAG.EP.-l.OR.JFLAO*EP*0)GO TO 310 PTCN1006
CALL SCOPY(NVARRU'3RK(IXF),tRMORtK(IXR),1) PTCH1007
CALL SSCAL.(NVARtSNRWORKC JXR) '1) PTCN1008
SCALERz1 .o-SH PTCN1009
CALL SAXPY(NVARSCALERRVORK(IXC),IRUIRK(IXR),1) PTCN1OZO
CALL CORECTNUVAR.RWORK(rXR vTI.TN,ftlORK(ITL.), ERR, (HtO.iRWORK(TFP) PTCN1flII
I PIPVT.ABSERRPRELERR.XSTPLNNEQNFNRN) PTCH1012

of. NCR~vNL HCR+KH P TCN 1013
IF (IERR,NE,0) 00 TO 350 PTCN1014
ICAL~zi PTCNtO1S
IPT-IPITM PTCN1016
CALL tANGmr(NVARPRMORKUXR)PTPT,RM)RK(TTL)P rRFTPTCAI.L. PTCHI17
1 RnORK(JFP).IPVT.NEONDETLINIEXLIN) PTCN1O18
IF(IRFT,L.T,0)SI TO 350 PTCM1019

C PTCN1020
C AD.JUST THE 3IGN OF THE TANGE~r SO THAT THE TpLIN-TH COMPONENT PTCN107i
C HAS THE SAME SION AS THE IPLJN-TH COMPONENT OF THE SECANT PTCN1022
C PTCH1023

IF (IIRLIM.ME-.SION(1.09RWORK(JTL.+IPt.IM))) PTCH1024
t CALL 3SCA.(NVAR-t.0,RUIJRK(ITL)ol) PTCNIO2S

C PTCH1026
C SEE IF WE CAN ACCEPT THE NEW POIT BECAUSE TANGENT(l[rMl TS SMAIl. PTCNIO27
C OR MUST 'ACCEPT' THE POINT BECAUSE THE VALUES ARE NOT DECREASING PTCN102R
r RAPTIDL Y ENOUGHP OR IF WE CAN '30 ON,* PTCNI029
C PTCN1030

jTSMOL .TSN PTCNIOT1
TS.HwRWORK (.lTL lI Z) PTCNIO32
IF (AeS(TSN),LE,0.5*ASFRR) 131 TO) 310 PTCN1033
G0 TO) 150 PTCN1034

C PTCN 1035

C PTCNI 37'1C 5. STEP LENGTH COMPUTATION. COMPUTE STEPLFNGTH HTANCF PTCNIO38

crHE FORMULAS LINDERI.YING THE ALGORITHM ARE PTCNI1040
CLFT PTCN1042

C PTCN 1043
C ALPHLC aMAXIMUM OF ARCCOS(TLYTC) AND AI.FMIN jr2SARCCOS(1-EPAC4) PTCN1O44
C HSECI.C m MORM(Xl.-XC) PTCN1 045
C HSECLL, r NORM(XL-XLL) PTCN1046
C ABSIN AvS(3IN(.52A.PHl.C)) PTCM1047
C CU:LIC m LAST VALUIE OF ClURVCF PTCN1048
C ClJR9CF 2*ApslN/HSECtLC PTCN1049
C CORDIS BOPTIM17ED CORRECTOR DISTANCE TO CURRENT CO~NTINUIATION POINT. PTCNJO50
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C 811T CORDIS FORCED 70e tIF OFTIJEFN J1*HSFVI.C AND HSFCL.C. PTCN1051
C UNHLESS CCRT,00OBECAUSE THE I'RNJCICTE'll POINT WAR PTCNlO52
C IMEDIATELY ACtEPTED. 1N SUCH A CASEP SET NTANCF=HSFCL.C PTCN3053
C fHSTTEAD OiF 513TRI; FIRST ES'TMATE FOR HTANI;F. PTCHIO54
C PTCH1055
C fHEN PTCM105A
C PTCH1057
C i:IJR'IXF =CIJR'Ji:F + HSC.C8(CJUVCJ'IC/~HEI HEi .PTCN105OR
C SBlT CURVXF MUST BE GREATER THAN ,00fv AND 4 SIMPLER FORMULA TS US.,ED PTCH1O59
C IF WE 00 O ~T HA'JE DATA AT TWO PREIJTWJS ioiNTS. PTCH1060
C PTCN1061
C FIRST ESTIMATE: (UNLESS CODSF.,)PTCN10/62
C PTCN1063
C HTAMCF Sn SQRT(2%CfJU0IS/CUiR9XF) PTCHIO64
C PTCNIO65
r~ ADJUSTED IUALUE: PTC01O6A
C PTCHI 067
C HTA#4CF a ITANCF*1I.0 + HTANCF(TCdPC-TUI(PC)/2HSECI.C*TCUlPC)) PTCN1068
C PTCH1069
C READJUSTMENT AND TRUINCATIONS.' PTCH1070
C PTCH1071
C IF STEPSIZE REDUCTION OCCURRED DURING LAST CORRECTOR PROCESS, PTCN1072
C HTAKCF IS FORCED TO BE LESS THAN tHFACT-1)&HSFCLC/2. PTCW1073
C PTCH1074
C NTANCF NUST LYE BETWEEN CHSECLC/HFACT) AND CHSECLc*HrACT). PTCH1075
C TNFFRE PTCNI076

C NTNFIS AL.WAYS FOCDTO LIE BETWEEN HMIN AND HIIAX. PTCH1077
C PTCN1078

C PTCNI 080
C CHECK IF DEFAULI.T STEP MUST BE USED: PTCHIO81
C ON FIRST STEP% USE HTANCFmH. PTCN1 082
C IF PREVItOUS srEP WAS OF SIZE ZERO, USE STFPSIZF HDEF-m(HMIN+HMAX)/2 PTCN1083
C PTCN1084

160 tF (KsrEP.GT.0.AH$D.HSECI.C.GT.O,O) GOD TO 170 PTCH1095
HTANCFUNDFF PTCN1086
TF(KSTFP.lE O)HTANCFxH PTCH1OS7
60 TO 190 PTCNI 088

170 IF(ALPHLC.I.T.ALFNTN4)AI-PHI.C=ALFMIN PTCH1B99
APSTNaABS(SIN( .5*ALPHL.C)) PTCNI 090

COPT PTCH1091
C OMUT NEW CURVATURE DATA PTCNI 092
C PTCNtO93

CURV.CCIRCF PTCN1094
CIJRUCFv2 .ORASSIN/H8ECLC PTCNI1095
CIJRVXFzCURVCF PTCH1096
TF(HSFCL. .#E.0.0) PTCH1097
1 CtURVXFmCLIRVCF+HSECLC*(CIRVCF-CURVLC)/ (ISECI.C+HSECII.) PTCN1098

CIJRtXFn:AMA~l (CUR'flF7TIHM3) PTCH1099
IF(IWRITFE,2. )WRJTE(6,560)CUJRVCFCURVXF PTCNI 100

C PYCHI11
C IF THE CONVFRGENCE DISTANCE IS ZERO, SET FIRST ESTIMATE TO HSECLC, PTCN1102

C ST HTANCF THUNAJUE FORI TO REATEEIN ISMSCCNIJND -E PTCN1103
C PRMTRDRCIN HNTUCT PTCHII04

HTANC;F=SRT( O*CRDI/CUVXF
18IF(CNRO.S,.0NTAN 00NIT H 180FCTtO)HEI.t5 PTCH1106
TFAPiUTEM2*H004(.OD-TIC/TTC*DL(.*TAC)TBL(SC PTCMI1107
CTANCFWHTAXICORSNGI.EMPO.U) PTCNI 117
CTF~mAMHS (CRDT~HEl PTCN1IIS

CSTHTANCFAAX THA-JSFOR CUVruEINCP)NAT PTCHN11t I
CPRMTER =B4ECCHTtTHNRUCE PTCN1112

C~ PTC_____1113___



HTAt4C~vAMTt~l(HTAtF vTF.IP) PTCNJII2
HTAHCF-nAMAX I (ITAC.$94M N 1 PTCN1 I??
WTA0CFzAMIN1 (HTANCFvHMAX) PTCN1 123

C PTI'HI174

C PTCH1126
C 6. PREDICTION AND CORRECTION STEPS, USING XRcXC+HTAMCF*TC PTCN1117
r AS STARTING POINT9 COlRRrCT %R g(TH A FULA. 13R MITFIEtk NEWTON PTCN1129
C ITERATION. IF CORECT FAIL.S, RFEDUCE STEPSIZE USFD FOR PREDICTOR PTCN12V'
C POINT. AND TRY AGAIN. CORRECTION WJILLI OJNLY HE ADANDONED IF STEP'SrZE PTCN1130
C FALLS BELOU RMIN. PTCNI131
C PTCNI132

C PTCN1134
190 KSTFPO=KSTEP PTCN1135

KSTE'P=KSTIEP+l PTCH1136
NRED=O PTCM1137

200 CALL SCfPY(NVARRWORKC(EXF).tl tleORKCIXR)..t) PTCM1138
CALL. SAXPY(WVARtl4TANCFRUORK(ITC>,iRNORK(JXR)9I) PTCN1139

210 TF( TWRrrE-GE.2)WR(TE(6957114TANCF PTCNt 140
IF( WIMRTF.GE. 3)WRITF(6.580) (RWORK(JXR+I ) t=1 ,NVAR) PTCNI 141
CALL IORECT(NIARRUOIJKCXR).IPC,RldORK(ITL) , ERR. tf400RUORK( IFPF PTCNtt42
I IPVT.ADSERRPREL.ERRXSTEP.NEONFNRMXF) PTCN1143
MCUCR-:HCNCR*KN PTCN1144
IF (ZERR.EP.0) GO TO 230 PTCNI1145
[F (IERR.Eg.-t) G0 TOJ 420 PTC01146

C PTCH1147
C 0O COMY'ERGENCE, TRY A SMAI.LER STEPSTI PTCH1 148
C PTCN1 149

HTANCF=HRE0*HTAMCF PTCH1150
IF (ITANCF.LT.HMIN) GO TO 390 PTCN1151
NRED=HREDf I PTCH1152
IF (IERR.EI3.-2) GO TO 220 PTCNI1153
00 TO 200 PTCHl 154

220 CALL SAXPY(NVARP-1,RWDRK(IXC),1,RVORK(JXR),l) PTCH15
CALI. SSC. (NVARvHREDpRWORK C XR) , I PTCNI1156
CALL SAXPY(NVAR,1.ORWCRK(IXC),1,IWORK(IXR),1) PTCHII57
on TO 210 PTCM115B

C PTCNI1159

CSTR PTCN1161
C 7.SUCCESSFUJL STEP, SOEINFORMATION BEFORE RETURN. PTCH1162
C UPDATE OLD AND CURRENT CONTINUATION POINTS. PTCU1 163
C comptirC CIJROs, T14F SIZE (IF THE CORRECTOR 1STEP, COMPUTE PTCH1164
C A FACTOR THETA WHICH RESCALES CORDIS TO A VAL.UE WHICH WOULD PTCN1165
C CORRESPOND TO A DE.SIRABLE NUJMBER OF CORRECTOR srEPS PTCN116
C (4 FOR FULL NF.WTON, 10 FOR MODIFIED NEWTON). PTCNI167
C SEC REFERENCE DEM HEIJER AND RHElaOl.DTv L.OC. CIT. PTCN11A
C PTCN1A9

c PTCNI11
230 MRDSlJhv:NRDSUKftNRED PTCNft172

IF(NRED.NE.0.AtD.IWRITEGSE.?)WRITE(69590)NRED PTCNI173
C PTCNI 174
C COMPUITE CORRECTOR STEP a XC+HTANCV*TC-XF PTCH1175
C SET COROIS - MAX HORM OF CORRECTOR STEP PTCH1176
C PTCNI 177

CALL SC0PY(NVARRWORK(TXF),tR WOK( [XC),!) PTCNI 178
CALL SAXPY(NVAR.-1.0,RWORKXXR),1,RWDRX(TXC),l) PTCN1179
CALL SAXPY(NIARHTANCF.RWORK((TCs.1,RWORK(IXC),1) PTCH1180

* IM'AXJAIAX(VARrRWQRK(IXC)v1) PTCN1I1
COR0ISm=ASRM0RK.JXC+IMAX)) PTCNI 182
IF(KN.FO.0) CORDIS&O.O PTCNII83

C PTCHII184
C MODIFY CORDIS TO A VALUE THAT WOULD CORRESPOND TO THE PTCN1185
C DESIRED NUIMBER OF CORRECTOR STEPS PTCH1 186
C PTCHI 187

* rF(CORPIS,E4,0,O)GO TI) 300 PTCH1 18A
flFGAsXSTEP/CORDIS PTCN1 189
THETA1:0. 0 PTCN119o
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IF(INOP.EO.1) SOTO 260 PTCN1191
C P TCt 1192
C FULL NEWTON METHOD FOR CORRECTOR STEPS PTCNI 193
C PTCNI 194

IF(KN.L.J )THETAz8.0 PTCNI1951
IF(KH .EE. 4)TH~rA=I ,0 PTCNI 196
IF(TI4VTA.NE.0.0)GO TO 290 PTCN1 197
rF(KN.UT.4)Gi TO 240 PTCH1l9R
LK=4*KN-7 PTCN1 199
THETA14t.0 PTCN1200
IF(OMEGAGE,WRGE(LK))SOTO 290 PTCNI 201
I. .' T L.K PTCNtI 2
IF(OMEGA.OE.WROFALK+1))SOTO 250 PTCN1203
1.ST=I.X+2 PTCN1 204
IF(OMEGA.GE.WRGF(LK+2))6OTO 250 PTCNI 205
THETA=8.*0 P'TCH1I2O6
GOTO 290 PTCN1207

240 THETA=0.125 PTCN108
IF(KN.SE.7) SOTO 290 PTCNI209
L.K 4sKm-16 PTCN121(0
IF(OIEGA.LE.WRGE(L.K))GOT0 290 PTCN12I11
L~3Tv2SKNJ- PTCHI12

2150 THETA=ACOF(L.ST)+ACOF(LST+1 )*ALOG(OMEGA) PTCN1213
GOTO 290 PTCH1214

C PTCN1215
C MOIDIFIED NEW4TON METHOD FOR CORRECTOR STEPS PTCH1216
C PTCN1217

260 TF(KH.LE.t)rHETA:8.0 PTCN121R
IF(KNEQ.20)THETA=I .0 PTCNI219
TF(THETA,HE.0,O)SO TOi 290 PTCNI 270
EXPONF.OAT(KN-I )/FLOAT(KN-1O) PTCN1221

C PTCH1 12
C AVOID OVERFL.OW OR UINPERFLOW BY ANTICIPATING PTCH1223
C CUTOFF VALUES OF THETA PTCH1224
C PTCNI 225

IF (KN.GT.10) 60 TO 270 PTCNI 226
IF (8*O2*EXPQN.GT.0NEGA) THFTA=8.0 PTCN1227
IF (,12iflEXPON,I.T.ONE.GA) THrTAz. 125 PTCN1 22R
IF CTHETA.NF.0.0) GO TO 290 PTCNI 229
G0 TO 290 PTCM1230

270 IF (a.ogSEXPON.LT.QNESA) THFTA=8.0 PTCN1231
IF (,125**E.XPON.GT.OMEGA) rHETA=. 125 PTCN1232
IF (TIETA.NE,0.0) 6O TO 290 PTCNI 233

280 EXPO"=t .0/EXPON PTCH1 234
THETA=OMEGA**EXPON PTCNI1235
THETA=AMAXl ( HETA70.15) PT'411236
THETA=ANINI (THFTAPB.0) PICNI237

SE PTCH1238
CSTTHE MODIFIED VALUE OF CODI PTCN1 239

C PTCN1240
290 CORDISaTHETA*CORDJS PTCNI 241

TF( rWRTTE.5E.2)WRTrE(6,600)OMEGATHETACOROIS PTCHI24?
300 CALL SCOPY(NYARRWQRK(JXF),t.RWORK(IXC).1) PTCNI1243

CALL SCOPY(H'iARIRWJRK(IXR).1,RWORK( (XF),1) PTCH1244
On TO 340 PTCNI 245

C PTCN124A

C PTCNt248
C RETUJRNS. SET VALUE OF IRET. IF AN ERROR OCCURREDt PRINT PTCN1249
C A MESSAGE AS WEL.L. PTCM1254C TH15
C PTCNI 251
C PTCHI 254
C RETURN LIMIT POINT PTCNI 255
C PTCN1254

310 TRET*2 PTCNI 257
RETURN PTCN1 ?SR

C PTCN1 2!59
r RETUJRN WITH TARUCT I'OTNT PTCII12AA
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C PTCNJ 261

RFTUtRN PTCH1I263
C P TCN 1264
C RETURN WITH CONTINUATION POINT PTCN1 265

r ~PTCHt266
330 CALL SCOPY(NVARRWORK(IXF),1,RWORK(IXR),1) PTCNI267
340 TRET=O PTCN12AS

H=HTANCF PTCNI1269
RETURN PTCNI1270

ERO PTCNJ271
C ERRRETURNS PTCN 1272
C PTCN1 273

350 TR~r=-i PTCH1274
IF(TWRITE.GE I )WRITE(69450) PTCNI 275
REFrIJRN PTCH1274

360 !RET=-2 PTCNI 277
TF( (WRTTE,0E,l)WRTTE(6q460) PTCHI 278
RETURN PTCN1279

370 IRErz-3 PTCH1280
IF(IWRlTF.GE.I )WRITC(6v470) PTCNJ281
R1FTURN PTCN 1292

380 IRET=-4 PTCN1283
IF( FWRITEGE~l)WRITE(6v480) PTCN12R4
RETURN PTCNI 205

390 IRET=-5 PTo'NI4284
IF(IWRITEGF. )WRJTE(6.490)HTAN4CFHN!N PTCN1287
RE TURN PTCH1I28R

400 rRET=-6 PTCNI 289
IF( rWRITF.GE~t)WRITEc6v50O) PTCN1 290
RE TURN PTCN1291

410 [RET=-7 PTCHt291
IF(!URJTE.GE I )VRITE(6q510) PTCNI 293
RE TURN PTCNI1294

420 TRET=-8 PTCN1295
TF( IWRITE.GE I )WRTTF(Si520) PTCN1 29A
RETURN PTCNI1297

430 TRET=-9 PTCN1298
IF( IWRITEtGE1 I)WRITE(6v530) PTCN1299
RETIJRN PTCNI300

440 TRET=-1O PTCN1301
r I(TRITE,GE 1 )URITE(6,540)NVARi TSIZE PTCNt3O2
RETURN PTCNI1303

450 FORMAT(26H0I.rMTT POINT FINDER FAII.ED) PTCH1304
460 FORMAT(50HOCORECT9 SEEKING TARGET POINTP TOOK TOO MANY STEPS) PTCN1305
470 FORMAT(SOHOCJRECTY SEEKING TARGETP CALL.ED SI3L'E WHICH FAILED) PTCN1306
480 FORMAT(45MOCORECTP SEEKING TARGETP FAILED WITH BAD STEP) PTCNI307
490 FORNAT(IOHOSTEPSIZE PF12,7Fl5H LEFSS THAN HMTHN,F12,7) PTCN1308
500 FORMAT(42HONORM OF F(X) IS TOO LARGE ON INITIAL. CAL.L) PTCNI309
510 FORMAT 33HSJI.UE FAILED 11N CALL. FRO14 TANr4T) PTCN1310
520 FORMAT(33HOSOLVE FAILED IN CALL FROM CORECT) PTCNA311
5 30 FORMAr(23HOTAHOENT IUECTOR IS ZERO) PT.NI312
540 FORMAT(26HOtINACCEPTABI.E INPUT MVAR=,I1O,7H IS1ZE=9110) PTCNJ'.X23
550 FORMAT(36N ANGLE BETWEEN 01.0 AND NEW TANOENTS- F12.5) PTCN1.314
560 FORMAT(9H CIJR'CF 24E14.609H CURVXF -PE14.6) PTCN1315
570 FORMAT(t6H UISNG STEPSIZF=vFt2,5) PTCN1316
580 FORMAT(12H PREDICTED X/IX95F12.5) PTCNI317
590 IEJRMAT(lH PT2il6H STEP REDUCTIONS) PTCN1318
600 FORMAT(7H (MEGAUPF12.5,7H THETAmPF12,599H NEW RAD=PF12,5) PTCN1319
810 FORMAT(3tH TAHNT ANTICIPATES I.(MIT POINT) PTCH1320

C PTCN1321
t***~322*2UUE*g2*1U**2ZU2*l~g*23222*223*PT N1322

C PTCN1 323
END PTCM1324
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SUBROUTINE CORECT(NVAR,XIOI.D,WORKTERR, IMODFPRYMIPVT, CRCTO00
I ABSERRREL.ERR*XSTEPNEONPFNRM) CRCTO002

C CRCTO003

C CRCTO005
C SUBROUTINE CORECT PERFORMS THE CORRECTOR ITERATIONS ON A STARTYNG CRCTOl66
C POINT. THE CORRECTION METHOD IS EITHER FULL. (IMOD=O) CRCTO007
C OR MODIFIED (IMOD=1) NEWTON'S METHOD. FOR MODIFIED NEWTON'S CRCTOO08
C METHOD, THE JACORIAN IS TO BE EVALUATED ONLY AT THE STARTING POINT. CRCTO009
C IF B IS THE VAL.UE OF X(IHOLD) FOR THE INPUT STARTING POINT, CRCTOOtO
C THEN THE AUGMENTING EQUATION IS X(IHOI.D)=B, CRCTO011
C THAT IS, THE IHOLD-TH COMPONENT OF X IS TO BE HELD. FIXED. CRCTOnI2
C THE AUGMENTED SYSTEM TO BE SOLVED IS THEN DFA(XIHO.D)*DELTA=FA(X) CRCTOO13
C CRCTO014
C INPUT CRCTO0IS
C X = THE STARTING POINT FOR THE CORRECTOR ITERATION. CRCTOOt6
r TiNnin = rnOAIpNLfoF X THAT WILL. NOT BE CHANGED DURING ITERATION CRCTO017
C IMOD : FL.AG FOR TYPE OF NEWTON'S METHOD TO BE USED. CRCTO013
C WHEN IMOfx0v .JACOBIAN IS TO BE EVALUATED AT EVERY CRCTO019
C CORRECTOR ITERATE. KNMAX IS SET TO 10 CRCTOO2O
C IF IMODzl, THE JACOBIAN IS ONLY EVALUATED AT THE STARTING CRCTO02i
C POINTP AND KNMAX IS SET TO 20. CRCTO022
C CRCTO023
C OUTPUT CRCTO24
C X = SOLUTION VECTOR ON A SUCCESSFUL CALL. TO CORECT. CRCTO025
C WORK a THE RESIDUAL F(X), AFTER A SUCCESSFUL CA.L TO CORECT. CRCTO026
C IERR z THE RETURN FLAG WITH THE FOLLOWING VALLIES CRCTO027
C -2 MAXIMUM NUMBER OF CORRECTOR ITERATIONS WERE TAKEN. CRCTO02S
C -1 ERROR RETURN FROM SOL.VE CALLED BY CORECT. CRCTO029
C 0 SUCCESSFUL CORRECTION. VECTOR X RETURNED SATISIFES CRCTO030
C ADS(F(X)).LE.ABSERR CRCTO031
C I CORRECTOR STEP WAS INACCEPTABLEP CORRECTION FAIL.ED,. CRCTO032
C KN = THE NUMBER OF CORRECTOR ITERATIONS TAKEN ON THIS CALL CRCTO033
C CRCTO034
C THIS SUBROUTINE IS CALLED BY CRCTO035
C PITCON CRCTO36
C AND CALLS CRCTO037
C SOLVE CRCTO038
C FORTRAN ABS CRCTOO39
C LINPAK ISAMAX CRCTO040
C LINPAK SAXPY CRCTO041
C USER FCTN CRCTO042
C CRCTO043

C CRCTO045
REAL X(NVAR),WORK(NVAR) FP YM(NVARiNVAR) CRCTO046
INTEGER IP'T(NVAR) CRCTO047
COMMON /COUNTI/ ICRSL, ITNSt.NSTCRNCNCRNTRCRNI.MCRNLMRT CRCTO048
COMMON /COUNT2/ IFEVALIPEVAL.ISOI.VENREDNRDSUMPKNPKNSIJM CRCTO049
COMMON /OIJTPUT/ IWRITE CRCTO050
COMMON /TOL/ EPHACHPEPSATEPEPSORT CRCT005!

C CRCTO052
C INITIALIZE CRCTO053
C CRCTO054

KNO CRCT0055
KNMAX=1O CRCTO056
IF(IMOD.EQ.i)KNMAX=20 CRCTO057
IERRwO CRCTO058
FMPu2.0 CRCTO059
ICALt.I CRCTO060
XSTEPOO.O CRCTO06J
CALL. FCTN(N'JARXiWORK) CRCTO062
IFEVAL=IFEVAL41 CRCTO063
TMAXISAMAX(NEONpWORKvI) CRCT064
FNRMoABS(WORK'IMAX)) CRCTO065
WORK(NVAR)=O.0 CRCTO066

C CRCTO067
C STRICTER ABSERR TEST ON STARTINg POINT CRCTO(68
C CRCT0O09

IF (FNR.LE.O.5*ABSERR) GO TO 60 CRCTO070
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C CRCTOO:'1
C ITERATION L.OOP CRCT007-2
C CRCT0073

DO 20 Tait KNJMAX CRCT0O74
KN= I CRCT0075
CALL. SOL.VE(N'ARXPWORK, IHOLDDFTA.rEXP.ERR, ICALL., TNOD.FPRYMqCRCTM)(76

1 IPVT) CRCT0077
ICR%.Sl= ,RL+1 CRCT0078
IF(JMOD.Egol1)JCALL-0 CRCT0079
ISOIL.VE= TSOLVE41 CRCTOOSO
IF (IERR.NE0O) 60 TO 50 CRCTOOSI
FNRMLnFNRNl CRCT0082
XSTF.PL=XSTE-P CRCT0083
CALL. SAXPY(NVAR-.0vUORK1.Xp1) rRCTOOR4
IMAXIXSANAX(NJARYW)RKI) CRCTOOSS
XSTEP=ABS(M0RK( IIAX)) CRCT0086
IIAX=ISAMAX(NJARX, 1) CRCT0087
XNRM=ARS(X( IHAX)) CRCT008S
CAL.L. FCTN( NVAR, XPWDMRK) CRCT089
IFEVALzIFEVAL.+l CRCT0090
IMAX-TSAMAX(NEO#4,UORK, 1) CRCT0091
FNRM=AfDS(MORK( IMAX)) CRCT0092
W ORK (NVAR)u0.0 CRCT0093

C CRCT0094
C ACCEPTANCE TEST CRCT0095
C CRCT0096

IF (FNRH.IE,EPSATE) 6O TO 60 CRCT0097
IF (FNRN.GT.ABSERR) 60 TO 10 CRCT0098
IF (XSTEP .LE *(ABSERR+RELERR*XNRM)) 60 TO 60 CRCT0099

C CRCTOI 00
C REJECTION TEST *CRCT0i1

C CRCT01 02
10 IF (KN.GT.1.AND.XSTEP.GT.(FPXSTEPt.)) 6O TO 30 CRCT0103

IF (FNRM.GT.(FMP*FNRHL)) 6O TO 30 CRCT0104
20 FMPa1.05 CRCTOI05

GO TO 40 CRCTOI 06
C CRCT01 07
C uNSUCCESSFUL STEP CRCTOI 09
C CRCT01 09

30 IERR-3 CRCT011O
IF( IWRITE.EO.2)WRITE(6pi20) CRCT0111
GO TO 70 CRCTO1 12

C CRCTO113
C MAXIMUM NUMBER OF CORRECTOR STEPS REACHED i'-T0114
C LRCTO1iS

40 TERR=-2 CRCT0116
IF( IRTE.F0.?)WRITF(6, 110) CRCT0117
Ge) TO 70 CRCT0119

C CRCT01 19
C ERROR RETURN IN SOLVE CRCTO 120
C CRCT012I

50 IERR=-l CRCT01 22
IF(IWRITE.Efl.2)WRITE(6t100) CRCT0123
6O TO 70 CRCT01 24

C CRCTOI 25
C SUJCCESSFUL. STEP CRCTOI126
C CRCT01 27

6~0 IERRx0 CRCT0I2S
70 KNSUM=KNSLIH+KN CRCT0129

IF(IrdRITEEQ.2)IdRITE(6v80) KNXSTEP CRCT01 30
IF(IUR!TE.EQ,2)IRITE(A699)IOI.D CRCT0131
RETURN CRCT0132

90 FORMAT(13H CORECT TOOK 912921H STEPS, L.AST ONE WIAS PE12.5) CRCT0133
90 FORMAT(14H CORECT IHOLD=,13) CRCT01 34

100 FORMAT(31HOSOLVE FAIL.EDF CAL.L.ED BY CORECT) CRCT0135
110 FORMAT(75H0TOO MANY CORRECTOR STEPS) CRlT01 36
120 FORMAT(24HOCORRECTOR STEP REJECTED) CRCT01 37

C CRCT0138

C CRCT01 40
END CRCT0141
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SURROUTINE TANI3NT(NUARX, IPTAN, TRET.TCAI.,FPRYMP IP'JT.NFQNrETA. TNriNOOOI
1 IEXP) TNGN0002

C TNGNOO03

C TNON0005
C SLIRROITJNE TANGNT COMPUTES THE UNIT TANGENT VECTOR TO THE SOL.UTION TNCINO006
C CURVE OF THE INDERDETERMINED NONLINEAR SYSTEM FX = 0. THE TNOOO7

C TANGENT VECTOR TAN IS THE SOuLTiON OF THE LINFAR SYSTEM TNGN0008

C ROMIS(XIP.) TANSOE a H NURCOPNETEULARNCORINT TNGNOOI4

C VECTOR WITHI I IN THE IPI.-TH POSITION AND ZEROS ELSEWHERE. E(NVAR) ISTNONOOI5)
c THE N#VAR COMPONENT EUJCLIDEAN COORDINATE VECTOR WITH ONE IN TH4E THN001O6
C LAST COMPONENT. TNGN0017
C THE TANGENT VECTOR IS THEN NORMAI.TZED AND ITS SIGN AD.JUSTED. TNON00I8
C TNONO0t9
C INPUT TNON0020
C NVAR - THEF NUMBER OF VARIABLES TNGN0021
C X z THE CURRENT CONTINUATION POINT TNG1NOO22
C IP a CONTINUATION COM4PONENT SET ON LAST STEP TNGN0O?3
C TNON0024
c OuTPUT TNON0025
C TAN a THE UNIT TANGENT VECTOR IN CONTINUJATION DIRECTION AT X TNGN0026
C DETA a BINARY MANTISSA OF DETERMINANT OF jACOBIAN DFA(XPIPL) TNG1NOO27
C IEXP - BINARY EXPONENT OF THE DETERMINANT OF WAOBIAN DFA(XpIPL.) TNSNOO2'S
C IP a LOCATION OF LARGEST COMPONENT OF TANGENT VECTOR TAN TNGNOO29
C CANDlIDATE FOR NEld CONTIMIATION COMPONENT TNGN0030
C TNGNOO3 I
C THIS SUBROUTINE IS CALLED BY TNON0032
C PITCON TNGNOO33
C AND CALLS TN034
C Smt UI TNGN0035
C LINPAK TSAMAX TNON0036
C L1INPAK SNRM2 TNGNO37
C L INPAK SSCAL- .TtNQ8

C TNGNOO59

C TNGNOOA I
REAL. X(NVAR) ,TAN(NVAR) ,FPRYM(NVARNVAR) TNGN0042
INTEGER IPVT(NVAR) TNGNOO43
COMMON /COIJNTI/ ICrS., ITNSLNS'TCRNCNCRNTRRNI.MCRNL.MRT TNGN0O44
COMMON /COIJNT2/ IFEVA. IPEVA. PISGI. VE ~NREI1,NRDSU#M ,KN, KNSUJM TNGN0045
COMMON /OIJTFtJT/ JURITE TNGN0046

C TNGN0047
C COMPUTE TANGENT VECTOR TNON0048
C TNE3N0049

DO 10 !=1,NEON TNGNOO5OO
t0 TAN(I)w0.0 TNGH0051

TAN(NVAR)=1 .0 TWGOO52
IERR*O TNCNOO3
CALL SRt.V(NVARPXPTANIPPOETAPTEXPolF.RRPICALL91MOPPFPRYMP TNGNOO'54

I IP'JT) TWGNO055
ITN~SLITNSL.+ TNON0056
ISOLVEaISOLUF+l TWON0057
IF (IERR.NE.0) IRET-J TNGNOO58
IF (IRET.LT.0) RETURN TNOW59

C TNNO6O
C OBTAIN EUCLIDEAN MORN OF TANGENT VECTOR TNONOOA1C TNO62IPIAAX(NVARPTANI) TNG0OO63

TNORMOSNRM(NVARTAN, 1) TNGN0064
IF (TNORME.0.0) IRETO-7 TNO65
IF (IRET.LT.fl) RETURN TNONOO66

C TNONOOA7
C NORMALIZE THE VECTOlR TN6NOOAS
C THN0NO69

.RrCALER=.I. .04TORN TWWNO70
CALL 5SCAL. CNYAR. SCA.ER9TAN, 1) TWONOO71
RFTURN TNONO72

C TNGN0O73

C TNG*OO75rmn TNGNO076
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SUBROUTINE ROOT(AFAPB,FFPCFCKOIJNToIFLAG) ROOTO001
C ROOTf002

C ROOTA0O4
C SU1BROIJTINE ROOT SEEKS A ROOT OF THE EQUATION F(X)=O.O, ROOTO005
C GIVEN A STARTING INTERVAL. (AvC) ON WHICH F CHANGES SIGN. ROOTOO6
C ON FIRST CALL TO ROOT, THE INTERVAL AND FUNCTION VALUES ROOTO007
C FA AND FC ARE FED IN AND AN APPROXIMATION B FOR THE ROOT IS RETURNED.ROOTOOOS
C BEFORE EACH SUBSEQUENT CALL, THE USER EVALUATES FR=F(B)i AND THE ROOTO009
C PROGRAM TRIES TO RETURN A BETTER APPROXIMATION P. ROOTO0OI
C ROOTO011
C THIS PROGRAM IS BASED ON THE FORTRAN FUNCTION ZERO ROOTOOU'
C GIVEN IN THE BOOK: ROOTOOt3
C 'ALGORITHMS FOR MINIMIZATION WITHOUT DFRIVATIVES' ROOTOO14
C BY RICHARD P. BRENT, PRENTICE HAL.LINCP 1973 ROOT0015
C ROOTOOt6
C THE MODIFICATIONS MERE DONE BY JOHN BURKARDT. ROOT017
C ROOTOOIS
C ON INPUT: ROOTO019
C ROOTO020
C A - IS ONE ENDPOINT OF AN INTERVAL IN WHICH F CHANGES SIGN, ROOTO021
C FA - THE VALUE OF F(A). THE USER MUST EVALUATE F(A) BEFORE FIRSTROOTO022
C CALL. ONLY. THEREAFTER THE PROGRAM SETS FA. RO0T0023
C B - ON FIRST CALL, B SHOLID NOT BE SET BY THE USER. ROOT0024
C ON SUBSEOUENT CALLS, B SHOULD NOT BE CHANGED ROOTO025
C FROM ITS OUTPUT VALUE, THE CURRENT APPROXIMANT ROOTO026
C TO THE ROOT. ROOTO027
C FB - ON FIRST CALL, FB SHOULD NOT BE SET BY THE USER. ROT0028
C THEREAFTER, THE USER SHOULD EVALUVATE THE FUNCTION ROT0029
C AT THE OUTPUT VALUE B, AND RETURN FB=F(B), ROOTO030
C C - IS THE OTHER ENDPOINT OF THE INTERVAL IN WHICH ROOTO0I
C F CHANGES SIGN. NOTE THAT THE PROGRA MILL RETURN ROOT0032
C IMMEDIATELY WITH AN ERROR FLAG IF FC*FA.GT.O.O. ROOT0033
C FC - THE VALUE OF F(C). THE USER MUST EVALUATE F(C) BEFORE FIRSTROOTO034
C CALL ONLY. THERAFTER THE PROGRAM SETS FC. ROOTO035
C KOUNT - A COUNTER FOR THE NUMBER OF CALLS TO ROOT* KOUNT ROOT0036
C SHOULD BE SET TO ZERO ON THE FIRST CALL FOR A GIVEN ROnTO037
C ROOT PROBLEM, ROOTO038
C IFLAG - AN ERROR RETURN FLAG WHOSE INPUT VALUE IS IMMATFRIAL. ROOT0039
C ROOTO040
C ON RETURN FROM A CALL TO ROOT ROTO041
C ROOTO042
C A - ONE ENDPOINT OF CHANCE OF SIGN INTERVAL. ROOT0043
C FA - THE VALUE OF F(A). RnnT0044
C B - CURRENT APPROXIMATION TO THE ROOT. BEFORE ANOTHER ROOT0045
C CALL TO ROOT, EVALUATE F(B), ROOTO046
C FR - FB "11.. BE OVERWRITTEN BY THE USER BEFORE ANOTHER ROOT0047
C CAL... ITS VALUE ON RETURN IS ONE OF FA, FR OR FC. ROOTO048
C C - OTHER ENDPOINT OF CHANGE IN SIGN INTERVAL. ROOT0049
C FC - THE VALUE OF F(C). ROOTO050
C KOUNT - CURRENT NUMBER OF CALLS TO ROOT. ROOT0051
C IFLAG - PROGRAM RETURN FLAG: ROOTO052
C IFL.AG=-2 MEANS THAT ON FIRST CALLo FA*FC.GT.O.O. ROOT0053
C THIS IS AN ERROR RETURN SINCE A BRACKETING ROOTO04
C INTERVAL SHOULD BE SUPPLIED ON FIRST CALl.. ROOT0055
C IFLAGl- MEANS THAT THE CURRENT BRACKETING INTERVAL ROOTO056
C WHOSE ENDPOINTS ARE STORED IN A AND C ROOTO057
C IS SO SMALL (LESS THAN 4*EPMACH*ABS(B)+EPMACH) ROOTO058
C THAT B SHIOULD BE ACCEPTED AS THE ROOT. ROOT0059
C THE FUNCTION VALUE F(R) IS STORED IN FB. ROOTO060
C IFLAGm 0 MEANS THAT THE INPUT VALUE FR IS EXACTLY ROOTO061
C ZERO, AND B SHOUlD OE ACCEPTED AS THE ROOT. ROOT0062
C ROOT0063
C IFLAG.QT.0 MEANS THAT THE CURRENT APPROXIMATION TO ROOTOO64
C THE ROOT IS CONTAINED IN B. IF A BETTER ROnTO065
C APPROXIMATION IS DESIRED, SET FROF(B) ROOTO06
C AND CALL ROOT AGAIN. THE VALUE OF IFLAG INDICATES ROOTO067
C THE METHOD THAT WAS USED TO PRODUCE R. ROOTO068
C ROOT0069
C IFLAG= I BISECTION WAS USED. ROOT0O7
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C IFLAGs 2 LINEAR INTERPOLATION (SECANT METHOD). ROOTO071
C IFLAGar 3 INVERSE QUADRATIC INTERPOLATION. ROOT0072
C ROOT0073
C LOCAL. VARIABLES INrA.UDE: RO0T0074
C ROOTO075
C EPMACH- SMIAL.EST POSITIVE NIMBER SUCH THAT I,0+EPMACH.XT.1.0 RO0T0076
C .5*BETA$*(I-TAU) FOR ROUNDED, TAU-I1JGIT ARITHMETIC RonT0077
C BASE BETA. TWICE THAT VALUE FOR TRUNCATED ARITHMETIC. ROOT0n78
C THIS IS THE RELATIVE ACHINE PRECISION. ROOTO079
C HALFUC- SIGNED HALFWIDTH OF INTERVAL. DURING SEGMENT 3P THE ROOTOORO
C CHANGE OF SIGN INTERVAL IS (BC) OR (CB). THE MIDPOINT ROOTOORI
C OF THAT INTERVAL IS XMID"B4HALFBC, REGARDLESS OF flRIENTATION.ROOTO0R2
C SDELI - SIZE OF CHANGE IN SIGN INTERVAL. ROOTO083
C SDEL2 - PREVIOUS VALUE OF SDELl.* ROOTO084
C SDEL3 - PREVIOUS VALUE OF SDEL2. ROfTO085
C SDEL4 - PREVIOUS VALUE OF SDEL3. ROOTO086
C STEP - THE NEW ROOT IS COMPUTED AS A CORRECTION TO B OF THE ROOTOOR7
C FORM B(NEW)=B(OLD)STEP. ROOTO088
C TOLER - A NUMBER WE ACCEPT AS 'SHMALL' WHEN EXAMININS INTERVAL ROOTOO89
C SIZE OR STEP SIZE. TOLER*2.0EPNACH*ABS(B) + EPMACH IS ROOTO090
C A MINIMUM BELOW WHICH WE WILL NOT ALLOW SUCH VALUES TO FA.L. ROOTOO91
C THIS SUBROUTINE IS CALLED BY ROCT0092
C PITCON ROOT0093
C AND CALLS ROOT0094
C FORTRAN ADS ROOT0095
C FORTRAN SIGN ROOT0096
C ROOT0097

C ROOT0099
REAL A, BCFA.FDFCPSTEPTOt.ER.PiARS ROOTOO0
COMMON /TOL/ EPMACHPPSATEEPSRT ROOT0101

C ROOTO102
C SEGMENT 1: FIRST CALL HANDLED SPECIALLY. DO BOOKKEEPING* R0T0103
C ROOTO 104
C SET CERTAIN VALUES ONLY FOR INITIAL CALL WITH KOIJNT=O ROOTOl05
C ROOTO!06

TF (IKOUiNT.GT.O) GO TO 10 ROOT0107
IF (FA.GT.0.O.AND.FC.GT.k.0) 60 TO 110 ROOTOIO8
IF (FA.LT.O.0.AND.FC.LT.0.O) GO TO 110 ROOTOI09
KOUNT=l ROOTO110
SDEL1-2.OABS(C-A) ROOTO 11
SHEL2=2 0*$SDEL1 ROTO !12
SDEL3u2 * OSSDEL.2 ROOT 0113
BaC ROOT0 14
FlvPFC ROOT0115
GO TO 20 RO(IT0116

C ROCTOI17
C ON EVERY CALL, INCREMENT COUNTER ROOTOI8
C ROOT01i9

10 KOUNT=KOUNT+J ROOT0120
C ROOT0121
C RETURN IF HIT MACHINE ZERO FOR F(B) ROOTO122
C ROOTO 23

IF(F8.EQO..O) 00 TO 90 ROOT0124
C ROOTOI 25
C SEGMENT 2: REARRANGE POINTS AND FUNCTION VALUES IF ROOT0126
C NECESSARY SO THAT F3*FC.LT.0.O, AND SO THAT ROOTOI27
C A9S(FB).LT.ABS(FC) ROOT0128
C ROOTO129

IF((Flt.LE.O.0).AND.(FC.GT.0.0)) 60 TO 30 ROOTO130
IF((F.GT.0.0).AND.(FC.LE.O.O)) G0 TO 30 ROOT0131

C ROOTO132
C FB AND FC ARE OF SAME SIGN. ROCT0133
C (ROOT CHANGED SIGN) ROOT0134
C OVERWRITE C WITH VALUE OF A ROOT0135
C ROTO 136

20 CrA ROOTO 37
FCwFA ROOTO38

! ~ ~ _ _IIII . ..-- :--%i ; L ,J .,,:L - 2 -: . . ..
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C ROOTOt39
C IF NECESSARYP SFT A:=B, B:uC, C:=B ROOT0140
C TO ENSURE THAT ABS(FB).lE,ABS(FC) ROOT0141
C ROOTO142

30 IF(ABS(FC).GEABS(FA)) GO TO 40 ROOT0143
AmB ROOTO144
B=C ROOT0t45
C=A ROOT0146
FA-FB ROOTO147
FB=FC ROOT0148
FC=FA ROOT0149

C ROOTOtSO
C SEGMENT 3: CHECK FOR ACCEPTANCE BECAUSE OF SHALL INTERVAL. ROOT0151
C CURRENT CHANGE IN SIGN INTERVAL IS (CPB) OR (BC). ROOT0152
C ROOT0153

40 TOL.ER=2*O*.PMACHRABS(B)+EPMACH ROTO154
HALFPC=0.5*(C-B) ROOT0155
SDEL4=SDEL3 ROOTO 156
SPEL 3-SDEI. ROOT 0157
SDFL.2=zSDEL1 ROOTO1 58
SDEL. IABS(C-B) ROOT0159
IF(A9S(HALFBC).LE.TOLER) G0 TO 100 ROOTO160

C ROOT0161
C SEQGMENT 4: COMPUTE NEW APPROXIMANT TO ROOT OF THE FORM ROOT0162
C D(NEI)=B(OLD)+STEP. ROOT0163
C METHODS AVAILABLE ARE LINEAR INTERPOLATION ROOT0164
C INVERSE QUADRATIC INT.RPOLATION ROOT0165
C AND BISECTION. ROOTO166
C ROOT0167

IF(ABS(FP)°GE.ABS(FA))GO TO 70 ROOT0168
IF(A.NE.C) GO TO 50 ROCT0169

C ROOTOJ 70
C ATTEMPT LINEAR INTERPOLATION IF ONLY TWO POINTS AVAILABLE ROOT0171
C COPIJTE P AND 0 FOR APPROXIMATION B(NEW)=B(OLD)+P/Q ROOTOJ72
C ROOT0173

TFLAG=2 ROOTO74
S=FR/FA ROOTO175
P*2.0*HALRrD*S ROOT0176
on=.0-S ROOT0177
GO TO 60 ROOTOt78

C ROOT0179
C ATTEMPT INVERSE QUADRATIC INTERPOLATION IF THREE POINTS AVAILABLE ROOTOlSO
C COMPUTE P AND A FOR APPROXIMATION B(NEI)=B(OLD)+P/ ROOTOJ81
C ROOTOtR2

50 IFLAG=3 ROOTO183
S-PBIFA ROOTO14
0=FA/FC ROOTO185
R=F/FC ROOTOIB6
P=S*(2.0*HA.FBCSG*(-R)-(-A)*(R-1.0)) ROOTOl87O, u(O-I.O) (R-1,O)*(S-1.0) -ROOTOIBS

C ROOT0189

C CORRECT THE SIGNS OF P AND ( ROOTO90
C ROCTO191

60 IF(P.GT.0.0)O-O ROOTO192
PWABS(P) ROOTO193

C ROOTO194
C IF P/O IS TOO L.AROE, GO0 BACK TO BISECTION ROOTOi95
C ROnT0196

IF(8, *SDEL1,T*SDEL4) GO TO 70 ROOT0I97
IF (P.BE.J,*ABS(NALFCW*)-ABS(TO.ERO)) G0 TO 70 ROOTO1S
STEPsP/O ROOTO 99
GO TO 80 ROOT0200

C ROOTO201
C PERFORM BISECTION: ROOT0?02
C IF ABS(F).GE.,ABS(FA) R00T0203
C OR INTERPOLATION IS IN IFE (P/ IS I.ARGE) ROCT0204
C OR IF THREE CONSECUTIVE STEPS H(VE NOT PECREASED ROOT020S
C THE SIZE OF THE INTERVAL. AY A FACTOR OF 8,0 ROOT0206
C ROOT007

70 IF.AGr I ROOTO200
STEP*AM.F8C RnOT0769
GO TO 80 ROOTO20
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CSEGNENT 5: VALUE OF STEP HAS RENC)~IF.ROOTO2i
C UJPDATE INFORMATION: A:zB, FA:sFB, 9:.ug+STEP. R00TO213
C CHANGE JN SIGN INTERVAL. IS NOW (APC) OR (CPA). ROOT0214

8O AiD R00TO216
FANFD RnnT021 7
MFADS(STEP) .LETOLER) STEPSIMNTMtERPHALFBC) RnnTO218
DuB+STEP ROOTO21 9
RETURN RnnT4220

C ROOT0221
C SPECIAL RETURNS ROOT0222
C RCOTO223
C INPUT POINT a Is EXACT ROOT R00T0224
C ROnTO225

90 IFI.AG=0 R00T02216
RETURN R00T0227

C R00T228
c CHANG IN SIGN INTERVAL. IS OF SIZE LESS THAN 4*EPMACH$ABS(9)+EPMACHi Rn0T0229
C INTERVAL RETUIRNED AS (SiC) OR (CPR)* R00T0230
C ACCEPT 8 AS ROOT WITH RESIDUAL FMS STOED IN Flo RW0T0231
C R00T0232

100 IFI.AG2-1 ROOT0233
AgD RWCT0234
FAWFD R00T0235
RETURN R00T0236

c R00T0237
C CHANGE OF SIMN CONDITION VIOLATED R00T0238
C ROOT0239

110 IFLAG=-2 ROOT0O240
KOUNT=0 ROOT024 1
RETURN R00T0242

C R00TO243

C R00T0245
END RnnT0246
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SUBROUTINE SOLVE(NVAR,X,Y,IP,DETAIEXPIERRICA.L,IMODFPRYM, SLVEO001
1 IPVI) SLVEO002

C SLAPEnDO3Ci $*2****r,$gg******:gS$g***:E*$*2*g fl*E*2$g$$$l$g***$$EI$tu$$$$gsu~t Se'L VEOO04
C SLVEO005
C THIS SUBROUTINE IS CALLED BY SLVEO006
C CORECT SLVEO007
C TANGNT SLVEO008
C AND CALLS SI.VEO009
C FORTRAN ABS SLVE0410
C LINPAK SOEFA SIVEO0 1
C L,NPAK SGESL SLVEO012
C USER FPRIME SLVEO013
C SLVEOOI4
C THIS SUBROUTINE SOLVES THE LINEAR SYSTEM DFA(XIP)*YOIIT = YIN SLVFOOS5
C WHERE DFA(XIP) IS THE (NVAR)X(NVAR) MATRIX WHOSE FIRST NUAR - I SLVEOOI6
C ROWS ARE THE JACOBIAN COMPUTED BY FPRIME, AND WHOSE LAST SLVFO07
C ROW IS ALL 0 EXCEPT FOR A I IN THE IP-TH COMPONENT. SLVEOO8
C SLVEO019
C YIN IS THE NVAR COMPONENT VECTOR Y ON INPUT, AND THE SOLUTION SLVEO020
C VECTOR YOUT IS RETURNED IN Y ON OUTPUT AFTER A SUCCESSFUL S.VEO02I
C SETUP AND SOLUTION. SLVEO022
C SLVEO023
C $NOTE** SUBROUTINE SOLVE USES FULL MATRIX STORAGE TO SOLVE THE SLVEO024
C LINEAR SYSTEM. THE USER MAY WISH TO REPLACE THIS ROUTINE WITH SLVEO025
C ONE MORE SUITED TO HIS PROBLEM. SLVEO026
C SLVEO027
C DETA BINARY MANTISSA OF THE DETERMINANT OF JACOBIAN DFA(XTP) SLVEO028
C IEXP BINARY EXPONENT OF THE DETERMINANT OF JACOBIAN DFA(XPIP) SLVEO029
C IMOD NEMWTON METHOD FLAG SL.VEO030
C IMOit=O, JACOBIAN IS TO BE EVALUATED FOR EVERY CORRECTOR STEP Sl.VE0031
C AND EVERY TANGENT CA.CULATION S[.VE0032
C IMOD=J, JACOBIAN IS TO BE EVALUATED ON.Y FOR FIRST CORRECTOR SI.VEO033
C STEP, AND EVERY TANGENT CALCULATION SLVEO034
C ICALL SET UP FLAG. SL.VE0035
C IF (ICALL.EO.0.AND.IMOD.NE.0) DON'T RE-EVALUATED JACOPIAN SLVEO036
C INFO OUTPUT FROM SOEFA. IF INFO.NE.0, SOEFA FOLND A 7ERO SLVEO07
C PIVOT WHEN ELIMINATING INFO-TH VARIABL.E. SLVEO038
C IERR RETURN FLAG, 0 MEANS SUCCESSFUL SOLUTION, I MEANS FAILURE SLVEO039
C NVAR THE NUMBER OF VARIABL.ES IN THE NONLINEAR SYSTEM SLVEO040
C X THE POINT AT WHICH TO EVALUATE FPRYM SLVEO041
C Y THE RIGHT HAND SIDE ON INPUT, THE SOLUTION SLVEO042
C ON OUTPUT SLVEO043
C FPRYM ARRAY WHERE DFA(XIP) IS TO BE STORED. SLVE0044
C IPVT INTEGER WORK SPACE FOR PIVOT ROW SWITCHES DEMANDED BY SSEFA SLVEO045
C IP THE VARIABLE USED IN THE AUGMENTING EQUATION THAT IS OF THE SL.VF0046
C FORM X(IP)=B. HENCE THE LAST ROW OF DFA(XIP) IS ALL SLVEO047
C ZERO EXCEPT FOR A 1.0 IN THE IP-TH COLUMN. SLVEO048
C SLVEO049

C SLVEO051
REAL X(NVAR),Y(NVAR),FPRYM(NVARNVAR) SLVEOO52
INTEGER IPVT(NVAR) S.VE0053
COMMON /COIJNT2/ IFEVALIPEVALPISOI.VENRED NRDSUMKKNSUM SLVEOO54

C SLVEO055
C DEPENDING ON VA.LUES OF ICALL AND IMOD, EITHER SET (P SLVEO056
C AIGMENTED JACOBIAN, DECOMPOSE INTO L-0 FACTORS, AND GET DETERMINANT, SLVEO057
C OR USE CURRENT FACTORED JACOBIAN WITH NEW RIGHT 4AND SIDE. SLVEO058
C SLVE0059

IF (ICA.L,EQ. 0.AND.IMODNE.0) 60 TO 50 SL.VEO060
CALL FPRIME(NVARX,FPRYM) SLVEO061
IPEVALIPEVAL+1 SLVEO062
DO 10 Im1,NVAR SL.VEOO63

10 FPRYM(NVARvI)=.0 SLVEO064
FPRYN(NVARIP)z= .0 SL.VE0065

C SLVEOO6
C CARRY OUT IN CORE LU DECOMPOSITION OF NVAR BY NVAR MATRIX S.VEO0A7
C AND USE PIVOT INFORMATION TO COMPUTE DETERMINANT SLVEO068
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C SLVE0069
CALL SGEFA(FPRY9,NfJAR!,NAR, IPVTTNFO) St. VE0 70
DETA.J .0 SLVFEOO71
IEXP:- SLVF0072
TWdu2 .0 SLVE0073
DO 40 lalNVAR SLVE0074

IF (IPVT(Ei.NE.I) DETA=-DETA SL-VE0075
DETA*FPRYMI 1,) *DETA SILVE0076
IF (DETA.F0.0) 60 TO 60 SLVE0077

20 IF (ADS(DFTA).6.J.0) 60 TO 30 SLVF.0078
DFTA:OETA*TWO SL.VE0079
IEXP=IEXP- 1 SLVEOOSO
6O TO 20 SLVEOOA1

30 IF (ABS(DETA)*LT.TUO) GO TO 40 SLVE0082
AETA=DETA/TWO SLVE0083
IEXP=JEXP+1 SLVEOOS4
GO TO 30 SLVEOQSS5

40 CONTINUE SI.VEOO86
IF (JNFO.NE.0) 60 TO 60 SLVE0087

F C SLVE00SS
C USING L-LI FACTORED MATRIX, SOLVyE ISYSTEN USING FORIJARD-BACKUARD SLVE0089
C ELXNTNATIONP AND OVERRITE RIGHT HAND SIDE WITH SOLUTION SLVE0090
C SLVE0091I 50 CALL SGlSI.(FPRY#4,9ARNvAPITtYv0) SLVE0092

IERRUC SLt1E0093
RETURN SLVE0094

60 IERftul SLAIE0095
INFOO0 SLVE0096
RETURN SLVEOO97

C SLVE0098

C SLVEO1 00
END SLVE01O1
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