
AQ7-AII0 573 INTRMETRICS INC. CANRID(16*FI/G 9/2ADA INTEGRATED ENVIRONMENT I CONMPUTER PROGRAM DEVELOPMENT SPECI--TC (U)DEC 81 F30602-O-CT0291
UNCLASSIFIED

RAOC-TR-81-3SO-VOL-2 NL

Iiiim I

i111112 1. il

MICROCOPY RESOLUTION TEST CHART

NATIONAL BURIAU Of STANOARDS1 963-A

_ _ _1

PHOTOGRAPH THIS SHEET

LEVEL jteve*(kc5- Inc

DOCUMENT IDENTIFICATION ISq..tO-
,,6.F F - g o -.

| TBJON STATEMENT A

Approved for public release;

Distribution Unlimited

DISTRIBUTION STATEMENT

ACCESSION FOR

NTIS GRAMI
Uri TAB o DTIC

UNANNOUNCED QL CT
JUSTIFICATION E E T

__S JAN 25 1982 0
BY D
DISTRIBUTION D
AVALABILrrY CODES
DIST AVAIL AND/OR SPECIAL DATE ACCESSIONED

DISTRIBUTION STAMP

82 01 12 018
DATE RECEIVED IN DTIC

PHOTOGRAPH THIS SHEET AND RETURN TO DTIC-DDA-2

FTI FORM DOCUMENT PROCESSING SHEET
L DTIC ocT 70A

4,..

RADC-TR-81-358, Vol II (of seven)
Interim Report
December 1981

ADA INTEGRATED ENVIRONMENT I
€ COMPUTER PROGRAM DEVELOPMENT

SPECIFICATION

" Intermetrics, Inc.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

ROME AIR DEVELOPMENT CENTER
Air Force Systems Command
Griffiss Air Force Base, New York 13441

¢ ' ~

UNCLASS IFIED
SECURITY CLASSIFICATION OF THIS PAGE MhUYI 0... fintwod)

REPOT DM ENTAION AGEREAD IN4STRUCTIONSREPOR DOCMENTAION AGE EFORE COMPLETING FORM
I.REOT'UUE . GOVT ACCESSION NO. 3. RECIPIENTS CATALO8 IrUER -

4. TIT9 (aid Suboils)S. TYPE OF 11EP1ORT & 109R1O0 COVCRRO
Interim Report

ADA INTEGRATED ENVIRONMENT I COMPUTER 15 Sep 80 - 15 Mar 81
PROGRAM DEVELOPMENT SPECIFICATION a. PERFORMINGs O'qG. REPORT NIUMOER

N/A
7. AUTHOR(#) 11- CONTRACT OR GRANT NUIUECRI

F30602-80-C-0291

9. PERFORM0111ING ORGANIZATION NAME ANO ADORESS 10, PROGRAM ELEMENT, PROJE9CT. TASK-
Intermetrics, Inc. AREA & WORK UNIT NMUERICS
733 CnodAvenue 62204F/33126F

Cambridge MA 02138 5810
It. CONTROLLING OFFICE NAME ANO AOORESS 12. REPORT DATE

Rome Air Development Center (COES) IS- NHUNUER OFl PAGES
Griffiss AFB NY 13441 87

14. MONITORING AGENCY HNME & AOORESS(ifdifterwI into Consmillind 0111cC) Is. SIECURITY CLASS. (of thdo niwA)

Same UNCLASSIFIED
rrS. OECLASSO FICAT1nCP/DOWNG0RADINQ

I SI!CM EDULE

IS. OISTRIOUTION STATEMENT rot this Ropoe)

Approved for public release; distribution unlimited.

17. OISTRISUTION STATEMENT (of A.o .&.ttoct uume.,d in S1tock 20. it Efleegut Imp, Rop..f)

Same

Is. SUPPLEMENTARY NOTES

RADC Project Engineer: Donald F. Roberts (COES)

Subcontractor is Massachusetts Computer Assoc.
Is. KEY WORMS (FCains . s'awo sod" It nocesoy OuidnifyiI~ ' block "uieiW)
Ada MAPSE AIE
Compiler kernel Integrated environment
Database Debugger Editor
KAPSE APSE

Set. ASTRACT (CdoorlosiS on .Y.." al f ia.m sMy Md ldvpellS' b lock nib)

The Ada Integrated Environment (AlE) consists of a set of software toolsintended to support design, development and maintenance of embedded
computer software. A significant portion of an AIE includes software
systems and tools residing and executing on a host computer (or set o f
computers). This set is known as an Ada Programming Support Environment
(APSE). This B-5 Specification describes, in detail, the design for aminimal APSE, called a MAPSE. The MARSE is the foundation upon which an

DD 1473 EDI TION op I Noves is onaLeTre UNCLASSIFIED
SECURITY CLASSIICATION OF THIS PAGG 76=i7, 70=16iw60

UNCLASSIFIED

SCURITY CLASFICATION OF THIS PAGaome Dmd Enter")

APSE is built and will provide comprehensive support throughout the
design, development and maintenance of Ada software. The MAPSE tools
described in this specification include an Ada compiler, linker/loader,
debugger, editor, and configuration management tools. The kernel (KAPSE)
will provide the interfaces (user, host, tool), database support, and
fac ities for executing Ada programs (runtime support system).

UNCLASSIFIED

SuCUNTy CLASSIFICATION O 000 PAGtfVl a, g")

- f - . p r -1

II

This document was produced under Contract F30602-80-C-0291 for the
Rome Air Development Center. Mr. Don Roberts is the COTR for the Air Force.
Dr. Fred H. Martin is Project Manager for Intermetrics.

This report has been reviewed by the RADC Public Affairs Office (PA) and
is releasable to the National Technical Information Service (NTIS). At NTIS
it will be releasable to the general public, including foreign nations.

RADC-TR-81-358, Volume II (of seven) has been reviewed and is approved
for publication.

APPROVED:

DONALD F. ROBERTS
Project Engineer

APPROVED:

JOHN J. MARCINIAK, Colonel, USAF

Chief, Command and Control Division

FOR THE COMMANDER:

-JOHN P. HUSS

Acting Chief, Plans Office

If your address has changed or if you wish to be removed from the RADC
mailing list, or if the addressee is no longer employed by your organization,
please notify RADC (COES) Griffiss AFB NY 13441. This will assist us in
maintaining a current mailing list.

Do not return copies of this report unless contractual obligations or notices

on a specific document requires that it be returned.

a

."

Table of Contents

1. SCOPE 1
1.1 Identification 1
1.2 Functional Summary 1

2. APPLICABLE DOCUMENTS 1
2.1 Government Documents 1
2.2 Non-Civernment Documents 2

3. REQUIREMENTS 3
3.1 Program Definition 3
3.2 Detailed Functional Requirements 3

3.2.1 Database Elements 4
3.2.1.1 Objects 4
3.2.1.2 Configurations and Partitions 6
3.2.1.3 Window Objects 6
3.2.1.4 Special Kinds of Composite Objects 7
3.2.1.5 System-defined Attribute Category 8
3.2.1.6 System-defined Attribute Access Control 9
3.2.1.7 System-defined Attribute History 11

3.2.2 Storage Representation of Objects 12

3.2.3 Operations on Content of Database Objects 13
3.2.3.1 Operations on Simple Objects 13
3.2.3.2 Operations on Composite Objects 17
3.2.3.3 Operations on Window Objects 20
3.2.3.4 Copying/Renaming Operations 22

3.2.4 Operations on Attributes 23
3.2.4.1 Operations on User-defined Attribuites 23
3.2.4.2 Category Operations 24

3.2.4.3 Access Control 28
3.2.4.4 History/Archiving Operations 29

3.2.5 Other Database Operations 32
3.2.5.1 Synchronization 32
3.2.5.2 Configurations Reporting and Management 34
3.2.5.3 Backup and Recovery 36

3.2.6 Program Invocation and Control 37
3.2.6.1 Program Context 37
1.2.6.2 Parameter Passing 39
3.2.6.3 Private Object Operations 40
3.2.6.4 Interprogram Communication 42
3.2.6.5 Debugging and Control Interface 43
3.2.6.6 Exception Handling 44

INTERMETRICS INCORPORATED * 733 CONCORD AVENUE S CAMBRIDGE, MASSACHUSETTS 02138 (617) 661-1840

3.2.7 KAPSE User Interface 44
3.2.7.1 Overall User View of the Database 44
3.2.7.2 LOGIN System 45
3.2.7.3 User Accounting 48

3.2.7.4 The Inter-User Mail System 49
3.2.7.5 User Terminal Handling 50

3.2.8 Ada Run Time System and High-Level 1/0 52
3.2.8.1 Ada Tasking Model 52
3.2.8.2 Storage Management 53
3.2.8.3 Package INPUT OUTPUT 53
3.2.8.4 Package TEXT TO, Interactive I/O Extensions 53
3.2.8.5 Package FORMKTTEDIO 55

3.2.9 KAPSE/Host Interface -- VM/370 and OS/32 56
3.2.9.1 Overall Architecture 56
3.2.9.2 Physical Disk 1/0 57
3.2.9.3 Terminal 1/0 59
3.2.9.4 Device Input/Output and Import/Export 61
3.2.9.5 Ada Tasking Support 62
3.2.9.6 Program Loading and Initiation 63
3.2.9.7 Interprogram Communication 64

3.3 Adaptation and Rehosting 65
3.3.1 Installation Parameters 65
3.3.2 Operation Parameters 65
3.3.3 System Capacities 65
3.3.4 Rehosting Requirements 65

4. QUALITY ASSURANCE 66
4.1 Ada Machine Testing 67
4.2 Production Input/Output Tests 67
4.3 KAPSE Version 1 Test Case Generation 67
4.4 K1 Reliability Test 68
4.5 Full Function Testing 68
4.6 KAPSE Version 3 Testing 68
4.7 Acceptance Testing 68

10. APPENDIX 69
10.1 Package INPUT OUTPUT in Ada 69
11.2 Ada Tasking Model in Ada 75

ii

ki INTERMETRICS INCORPORATED * 733 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 * (617) 681-1840

1.0 SCOPE

1.1 Identification

This specification establishes the requirements for performance,
design, test, and qualification of a set of computer program modules
identified as the Kernel Ada Programming Support Environment (KAPSE).

1.2 Functional Summary

The KAPSE provides several facilities to the Ada Programming
Support Environment (APSE), which can be grouped into the following
three areas:

1. Database Operations.

2. Invocation of and communication between Ada programs.

3. Run-time support for the execution of Ada programs,
including high-level input/output packages.

This specification identifies the functional capabilities of the
various KAPSE modules and describes the KAPSE/tool interface as well
as the KAPSE/Host computer interface.

2.0 APPLICABLE DOCUMENTS

Please note that the bracketed number preceding the document
identification is used for reference purposes within the text of this
document.

2.1 Government Documents

(G-1] Reference Manual for the Ada Programming Language, proposed
standaro document, U.S. Department of Defense, July 1980.

[G-2] Requirements for Ada Programming Support Environment,
"STONEMAN," Department of Defense, February 1980.

[G-3] Statement of Work for Ada Integrated Environment, PR No.
B-O-3233, Decem-- -"79.-

INTERMETRICS INCORPORATED 733 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 0213 (617) 661-1940

2.2 Non-Government Documents

[N-l IBM Virtual Machine Facility/370: System Programmer Guide,
International Buisness Machines, Inc.

[N-2] OS/32 Programmer Reference Manual, Perkin-Elmer Computer
Systems Division, Oceanport, NJ, April 1979.

[N-3] The Art of Computer Programming, V. 3, Donald Knuth, Addison
Wesl-ey, 1973.

[I-l] System Specification for Ada Integrated Environment, Type A,
Intermetrics, Inc., IR-676, March 1981.

Computer Program Development Specifications, Type B5, for Ada
Integrated Environment:

[1-2] Ada Compiler Phases, IR-677.

[1-3] MAPSE Command Processor, IR-679.

[1-4] MAPSE Generation and Support, IR-680.

[I-51 Program Integration Facilities, IR-681.

[1-61 MAPSE Debugging Facilities, IR-682.

[1-7] MAPSE Text Editor, IR-683.

[1-8] AIE Technical Report (Interim), IR-684.

2

INTERMETRICS INCORPORATED 733 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 (617) 661-1840

3. REQUIREMENTS

3.1 Program Definition

The KAPSE provides database, program invocation, and run-time
support for all MAPSE tools and user Ada programs. In so far as
possible, the KAPSE isolates the rest of an APSE from host machine
idiosyncracies, making the entire MAPSE toolset and user-developed
programs easily portable from one APSE to another.

The KAPSE database is the repository for all user data and
programs, as well as the primary medium of tool to tool communication
and coordination. The KAPSE database facilities provide for the
construction, organization, and partitioning of large configurations
of inter-related program, data, and documentation elements. It
records the nature and purpose of these elements, and allows for
access control and synchronization. Finally, the KAPSE database
facilities provide historical information recording the derivation and
relations between the objects stored within the database, as well as
sufficient indices to fully reconstruct from disk or archival storage
the content of old or lost source text.

3.2 Detailed Functional Requirements

This section is organized as follows:

Database Concepts
1. Database Elements
2. Storage Representation of Objects

Database Facilities
3. Operations on Content of Database Objects
4. Operations on Attributes
5. Other Database Operations

Using the KAPSE
6. Program Invocation and Control
7. KAPSE User Interface

Ada Language Support
8. Ada Run Time System and High-Level I/O

Hosting the KAPSE
9. KAPSE/Host Interface --VM/370 and OS/32

3

INTERMETRICS INCORPORATED 733 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 1 1617) 661-1840

3.2.1 Database Elements

3.2.1.1 Objects

The database is a collection of objects, all of which have
attributes and content. These objects fall into three broad classes,
simple, composite, and window. The content of a simple object is a
sequence of primitive data elements, and is used to represent the
concept of an Ada external file. The content of a composite object is
a set of named component objects, which may themselves be either
simple, composite, or window. The database as a whole is a single
large composite object, whose direct components are major divisons of
the database. The content of a window object is a reference to some
other part of the database, with an associated access limitation.

The attributes of an object are meta-information describing its
content, purpose, access control, etc. As such they provide the
primary means for building, organizing, and partitioning the database.
The attributes can be grouped into three classes:

1. System-defined attributes (Categork-, Access Control,
and History);

2. user-defined distinguishing (name) attributes;

3. user-defined non-distinguishing attributes.

System-defined attributes are discussed later in this document;
user-defined attributes, which have a simpler form, are discussed
below:

Each user-defined attribute is represented as a pair consisting
of attribute label and attribute value. For clarity, it will be
written in the unabbreviated form: label => value, to be read, label
"is" value. Both the label and the value of an attribute are simple
strings of characters. The label must satisfy the syntax of an Ada
identifier (i.e., start with a letter, and continue with letters,

numbers, or underscores).

A list of attribute label/value pairs must be enclosed by
parentheses, with commas separating, as shown below:

(PROJECT=>SHUTTLE,FUNCTIONALAREA=>NAVIGATION)

This would specify that the attribute labeled "PROJECT" has the value
"SHUTTLE" and that the attribute labeled "FUNCTIONAL AREA" has the
value "NAVIGATION."

4

INTERMETRICS INCORPORATED 733 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 (617) 661-1840
02i(0766-.

- " . -. --v----d....

User-defined distinguishing attributes have a special use: When
a composite object is created, part of its definition specifies a list
of attributes by which its components will be named (i.e.
distinguished from one another). When a component is created within
this composite object, values for these distinguishing attributes must
be supplied. These may be used later to select this component from
the composite object. The new component may not be created if an
existing component has the same list of distinguishing attribute
values.

For example:

CREATE COMPOSITE("PROJECT LIBRARY",
COMPONENTDA=>"PROJECT FUNCTIONALAREA MODULE");

Now components could be created within this new composite object
"named" as follows:

1. (PROJECT=>SHUTTLE,FUNCTIONAL AREA=>NAVIGATION,
MODULE=>INITIALIZATION)

2. (PROJECT=>SHUTTLE,FUNCTIONAL AREA=>CONTROL,
MODULE=>INITIALIZATION)

3. (MODULE=>INITIALIZATION,PROJECT=>VOYAGER,
FUNCTIONAL AREA=>NAVIGATION)

4, (MODULE=>INTERPOLATION,FUNCTIONALAREA=>NAVIGATION,
PROJECT=>VOYAGER)

Two components need differ in only one of the distinguishing attribute
values to be considered distinctly named (eg., (1) and (2) above).

Positional notation may be used instead of labeled notation,

based on the ordering specified when the composite object was created:

1. SHUTTLE.NAVIGATION.INITIALIZATION

2. SHUTTLE.CONTROL. INITIALIZATION

3. VOYAGER.NAVIGATION.INITIALIZATION

4. VOYAGER.NAVIGATION.INTERPOLATION

5

INTERMETRICS INCORPORATED * 733 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 * (617) 61-1840

3.2.1.2 Configurations and Partitions

Composite objects are well-formed configurations of component
objects, and as such can be directly manipulated by Ada programs. New
components can be created, existing components can be modified or
deleted. The composite object as a whole can be copied as a unit.
The structure of a composite object can be mandated by a category
specification, and access control can be applied to the configuration
as a whole, or to its individual parts.

Composite objects may also be partitioned by specifying values
for some of the attributes of their components, as follows:

(PROJECT=>SHUTTLE) would include (1) and (2) from above.

(FUNCTIONAL AREA=>NAVIGATION,MODULE=>INITIALIZATION) would
include (1) and (3).

Positional notation may also be used to specify partitions, but
the special value "' must be supplied as a place holder:

.CONTROL. would include only (2)

VOYAGER.*.* would include (3) and (4)

Both distinguishing and non-distinguishing attributes may be used
to specify partitions of a composite object. Non-distinguishing
attributes are not ordered, and so only the labeled notation may be
used. Here is an example of a single partition specification giving
values for both kinds of attributes:

(FUNCTIONAL AREA=>NAVIGATION,PRIORITY=>HIGH)

This partition would include (1), (3), and (4) from above only if
their current value for a non-distinguishing attribute labeled
"PRIORITY" were "HIGH." If a non-distinguishing attribute has never
been specified for a object, the value is taken to be the null string.

3.2.1.3 Window Objects

A third kind of object in the KAPSE database is called a window
object. The content of this object is simply a cross-reference to all
or part of some other object in the database, along with a
specification of access limitations on that object. Window objects
are the means by which a user may delegate access to and/or
responsibility for parts of the database to other users.

To access an object, the user provides a name relative to the
partition selected by some window. When a window is created, the name
of the object and the partition limitation, if any, are specified. In
addition, the user may specify further limits on the allowed types of
access to the object (see 3.2.3.3 for an extended example).

6

INTERMETRICS INCORPORATED 733 CONCORD AVENUE e CAMBRIDGE, MASSACHUSETTS 02138 e (617) 661-1840

The access limitations are expressed as a capacity (abstract
role) to which all users of the window are limited. The capacity is
identified by an ASCII STRING, like "MANAGER", "READER", or
"PROGRAMMER." Within the partition accessible through the window,
individual objects specify with a simple table (the access control
attribute), what operations may be performed by which capacities.
Multiple windows may exist specifying different capacities relative to
the same partition.

3.2.1.4 Special Kinds of Composite Objects

(a) Program Context Object. Each program running in the MAPSE has
associated with it a single composite object called its program
context object. It is through the program context that Ada programs
get access to the rest of the database. The program context object is
normally deleted after the program finishes execution. Components of
this program context may be simple objects (temporary files),
composite objects (a set of temporary objects), or windows on more
permanent parts of the database. All program context objects are
composite objects using a single distinguishing attribute labeled
LOCALNAME for their components.

When an Ada program creates or opens an object in the database,
it specifies the name of the object as a single ASCII STRING. If the
name begins with a dot, then the rest of the name is interpreted
relative to the program context object.

If the name does not begin with a dot, the KAPSE requires that
there be a window in the program's context with the LOCAL NAME of
CURRENTDATA, and interprets the name relative to that window. In
effect, it is as though ".CURRENTDATA." were inserted at the front
of the name.

The linker produces executable program context objects [I-5].
When such a context is to be invoked from another program context, it
is first copied into the invoker's context, then parameters and

window(s) are supplied, and, finally, it is initiated (see 3.2.6.1).

(b) Private Objects. A user may create a special kind of composite
object, called a private object, which can be used to implement an
encapsulated abstract data object analogous to an Ada object of
private type. A private object is composed of a DATA component, and a
number of operation components. Each operation component is an
executable program context object. The operation context objects are
pre-initalized with appropriate windows on all or part of the DATA
object, which allows them to perform more primitive operations on the
DATA component than are accessible to the normal user. For example,
the KAPSE mail system allows users to send and receive mail using
private objects called mailboxes, without giving users the ability to
corrupt the internal structure of the mailboxes.

7

INTERMETRICS INCORPORATED 733 CONCORD AVENUE * CAMBRIDGE. MASSACHUSETTS 02138 (617) 661-1840

I,

Operation context objects are not copied before they are
initiated (as opposed to normal executable program context objects
built by the linker). Instead, the INVOKE OPERATION procedure is used
to initiate the operation, and only one such invocation may be in
progress at a time. If a second program attempts to initiate the same
operation context object before it completes, the second program is
delayed up to a specified TIME LIMIT (see 3.2.6.3). In this way,
private objects provide both encapsulation and synchronization.

3.2.1.5 System-defined Attribute Category

An object in the database records all information describing its
current state. As explained above, this information includes the
following:

1. Current content;

2. current list of user-defined attribute labels and values;

3. current access control attribute;

4. current category.

In addition, information recording the derivation (how and why) of the
object is maintained (the history attribute).

The category of an object specifies which parts of its current
state are fixed for the lifetime of the object. In this sense, the
category provides a time-and state-independent classification of the
object. The category does not record the entire current state but,
rather, a list of restrictions on the state. For example, the
category could restrict a particular non-distinguishing attribute to
have only certain values, or could require certain minimum access
capacities to be defined to provide certain specific access rights.

The category of an object may itself be changed without
necessarily changing other parts of the state of the object, so long
as the state of the object satisfies the new constraints.

Because categories are represented by a list of constraints
rather than by a specific name, constraints may be added or removed
from specific objects without necessarily preventing existing programs
from processing them in a meaningful way.

8

INTERMETRICS INCORPORATED, 733 CONCORD AVENUE CAMBRIDGE, MASSACHUSETTS 02138 *'(617) 861.1840

3.2.1.6 System-defined Attribute Access Control

Every object has an access control attribute. This attribute is
represented as a simple table giving, for each capacity name, a list
of primitive access rights.

Here is a hypothetical access control table:

Capacity Access Rights

OWNER SYSTEMATTRIB MODIFY
-- May adjust access control
-- attribute, etc.

EDITOR READ, WRITE
TESTER READ, COPY
READER READ

Every window specifies a partition and a capacity. When an
object is specified by an access path going through a window, the user
is limited to the access rights specified for that capacity.

Objects define primitive access rights according to their class:

Object Class Access Rights

All ALL, NONE, COPY,
SYSTEM ATTRIB READ, SYSTEM ATTRIB MODIFY,
USER_ATTRIB_READ, USER_ATTPIBMODIFY

Simple READ, WRITE, APPEND, READDELETE

Composite LIST COMPONENTS,
CREATE COMPONENT, DELETE COMPONENT,
SELECTCOMPONENT Componentcapacity

Window GOTHROUGH

Program-context INITIATE, PROG CTX CONTROL,
plus composite object access rights.

Private INVOKE Operation context name,
plus composite object alcess rights.

The identifier ALL is used to represent all access rights meaningful
for the class of the object.

In the case of the SELECT COMPONENT access right for a composite
object the table entry includes the internal component-relative
capacity to which the user is limited. Additional restrictions on
composite objects and their components are implicit in the partition
specification associated with a window. In particular,
LIST COMPONENTS, SELECT COMPONENTS, CREATE COMPONENTS, and
DELETE COMPONENTS all are limited to referring to components within
the specified partition.

9

INTERMETRICS INCORPORATED 733 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS02138 , 617) 661-1840

USER ATTRIB MODIFY is also limited if the partition associated
with the window specifies values of non-distinguishing attributes: A
program may not change the value of a non-distinguishing attribute of
an object if by so doing it makes the object inaccessible th-ough the
window.

When a program calls a KAPSE primitive procedure or function it
may be implicitly exercising one of the above access rights. The
KAPSE call will fail if the capacity of the window implied in the name
of the object does not include the implied access right. In
particular, as the KAPSE follows the access path supplied as a STRING
parameter, the window effective at each point must allow
SELECT COMPONENT to access a component of a composite object, and must
allow GOTHROUGH to access objects through a window.

At both of these points, the capacity associated with the window
is translated to a new capacity for use in checking access along the
next part of the path. These requirements are universal and are not
repeated when specifying the type of window needed to perform a
particular KAPSE primitive in the rest of this document.

The following capacities are pre-defined:

Capacity Access Rights

SYSTEM ALL; reserved for system maintenance.

OWNER ALL unless explicitly included in access
control table. A window of this capacity
is given to a program on its own program
context object.

INFERIOR ALL unless explicitly included in access
control table. A window named
".CALLER CONTEXT" of this capacity is
given to programs invoked from a
superior program context.

WORLD NONE unless included in access control table.
In general, all users have a WORLD window on
the root of the entire database, as well
as on the TOOLS composite object.

In the default case, where no access control is explicitly specified
(or implicitly specified by the category constraints), the KAPSE
provides full access to all SYSTEM, OWNER, and INFERIOR windows, and
no access to others (see 3.2.3.3 and 3.2.4.3 for examples).

10

INTERMETRICS INCORPORATED 733 CONCORD AVENUE CAMBRIDGE, MASSACHUSET"TS02138 (617) 61-1840

-4

w"•

3.2.1.7 System-defined Attribute History

From the point of view of history, two significantly different
kinds of objects exist in the database: source objects and derived
objects. Source objects are those text objects produced, in general,
by a human using a text editor (see [1-7] for description of the Text
Editor). Derived objects, text or otherwise, are those produced as
the output of other tools or user programs, with little or no direct
input from the user other than parameters.

The history attribute is designed to uniquely identify a
particular state of an object's content. In the case of a source
object, the h-istory atLribute refers to a source archive wherein an
efficient representation of multiple states (revisions or versions) of
the same basic text may be stored. The history attribute consists of
a unique identifier of the source archive, and an index used to select
the lines of text that make up this particular state of the object.

When a source object is created, it may be associated with an
existing source archive, or allocated a new source archive unique
identifier. When associated with an existing source archive, the
source object is assigned the next sequential state index. With a new
archive, the source object is assigned state number one.

When a source object is edited or deleted, the pre-modification
contents and attributes of the object are merged into the source
archive under the assigned state index, and the state is indicated as
being recorded in the source archive. If edited rather than deleted,
the new history attribute is given the next available state index, and
this new index is remembered as being a successor to the old index.

Later, the state of the non-distinguishing attributes and content
may be recreated as a new object, but with the same history attribute.
If this object is edited or deleted, the archive indicates that it is
not necessary to re-save the old content and attributes.

The history attribute of a derived object consists of a unique
identifier of a program invocation script, and an index indicating

which output of the program gave this state of the object. The script
records the parameters specified when the program was invoked, an
array of copies of the history attributes of each object read as
input, and a count of the number of objects created or modified as
output. If the program produces no new output states, the script may
be deleted after the program completes.

The KAPSE maintains reference counts for all history scripts and
archives. If specified, the KAPSE will also maintain a reference list
for particular scripts or archives, thereby allowing easy tracing of
all references to a particular source or derived object. The
reference lists can grow quite long, so the maintenance of the lists
is at the option of the user. Periodically, source archives and
scripts that have not been referenced recently may be dumped to tape
through a KAPSE service. Nevertheless, the KAPSE always maintains an

11

INTERMETRICS INCORPORATED • 733 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

index of the off-line history and may be explicitly requested to
re-activate specific scripts or archives. Even recently referenced
archives or scripts may be written to tape to ensure that the tape
contains an internally self-consistent representation of history.
However, these history elements are left on-line as well.

In addition to the data mentioned above, each history script and
source archive records the date and time, as well as the USER NAME,
when the program execution or source editing occurred (see 3.2.4.4).

3.2.2 Storage Representation of Objects

The content and attributes of all normal objects are stored on
the disk provided by the host machine. A small number of device
objects are created by the system manager to provide direct and
import/export access to physical I/O devices or disk files of the host
system.

Normal data is stored in a fixed-block format on disk,
independent of the user-visible record size. Each block is assigned a
unique BLOCK ID. The BLOCK ID is used to locate the data of the
block, and tie reference count for the block (stored in a separate
table). The KAPSE maintains a central buffer cache so that repeated
references to the same disk blocks do not each require physical I/O.

Every block can be broken into four parts: a time sequence
number, a level number, BLOCK IDs, and other data. The time sequence
number, which is recorded whenever a block is written, is a
never-decreasing number incremented at each system backup, used to
provide incremental backup at the block level.

The level number is zero for data-only blocks (no BLOCK IDs), and
otherwise is one greater than the maximum level number of all blocks
ever referenced by a BLOCK ID. BLOCK IDs only appear in blocks
managed by the KAPSE. The other data are both user data and
KAPSE-managed data.

The connections implied by the BLOCK IDs within disk blocks may
form a tree structure or, in the presence of sharing, an acyclic
graph. The LEVEL number of the block indicates the "distance" to the
furthest leaf block. In the case of a simple object, a B-tree
structure is used [N-31, resulting in a uniform depth for all leaf
blocks.

When the KAPSE copies an object, it simply stores the BLOCK ID of
the root of the object in its new location, and increments the root
block's reference count by one. No additional disk blocks are
allocated to hold the logical copy of the object until one of the
copies is actually modified.

12

INTERMETRICS INCORPORATED * 733 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 (617) 661-1840

7w__ _ _ _ _ _ _ _ _ _ _ _ _ I

The root block of an object includes enough BLOCK IDs and other
data to gain access to all information representing the current state
and history of the object (other than its distinguishing attributes,
which are stored at a higher level). Category, access control,
history reference, user-defined non-distinguishing attributes, and the
data content, if sufficiently short and simple, can all be stored
within the root block. However, as the content and attributes grow
larger or more complicated, additional blocks will be automatically
allocated to hold the overflow, with BLOCK IDs stored in the root
block to point to them. For small simple obSjects, the entire object
can fit in a single block.

When a block is to be changed, the KAPSE checks if the block is
shared, by determining whether its join count is greater than zero.
This count is the number of superior blocks (in the path followed from
the root of the entire database to this block) which have a reference
count greater than one. If the block is shared, a new BLOCK ID is
allocated and the changed contents of the block are written into the
new physical disk block, with an initial reference count of one. This
procedure is applied recursively up until a superior block with join
count of zero is reached. That block is re-written in place, and the
reference count of the block it used to refer to is decremented by
one. The total amount of block copying is never more than if the
object were entirely copied initially.

3.2.3 Operations on Content of Database Objects

3.2.3.1 Operations on Simple Objects

(a) Specification. The primary user-visible interface to simple
objects is the standard Ada package INPUT OUTPUT specified in the LRM
(G-l, 14.1]. Package INPUT OUTPUT is implemented in terms of a more
primitive file-handling package. For more details see Appendix 10.1.

The basic primitives available are as follows:

Package SIMPLE OBJECTS is

type FILE HANDLE(SIZE IN BITS: INTEGER) is record
FH INDEX: INTEGER = -i;

end record;

type FILEMODE is (INMODE, INOUT MODE, OUTMODE);

procedure CREATE(FH: in out FILEHANDLE; NAME: in STRING;
MODE: in FILE MODE);

-- Requires a-window allowing WRITE where
-- the object is created,
-- and CREATE COMPONENT on
-- the enclosTng composite object.

13

INTERMETRICS INCORPORATED, 733 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 (617 661-1840

h .'f ,

procedure CREATE DEVICE OBJ(NAME: in STRING;
HOST DEVICE NAME: in STRING; ROOT WINDOW: in STRING);

-- This procedure is provided for a system
-- manager to set up an association between
-- a special database object and
-- a host file or physical I/O device. The
-- HOSTDEVICE NAME is host-dependent.
-- Requires a window allowing CREATE COMPONENT,
-- as well as a SYSTEM window on the root
-- of the database (ie., system managers
-- only, please!).

procedure DELETE(NAME: in STRING);
-- Requires a window g 4.. DELETE COMPONENT on
-- the enclosing ,om - object.

procedure COPY(OLDNAMF! , TN(-; NEWNAME: in STRING);
-- This procedure c-, ; a logical copy of the
-- specified obje-, q-lth identical content and
-- non-distingo,_;,; attributes. The
-- distinguish~tig at'.ributes of the copy are
-- implied by NEWNAME.
-- COPY involves a.. actual disk data block copying.
-- When either the original or copy is later
-- modified, the KAPSE makes actual physical
-- copies of the affected blocks.

procedure OPEN(FH: in out FILE HANDLE; NAME: in STRING;
MODE: in FILE MODE);
-- Requires a window giving READ and/or WRITE
-- depending on FILEMODE.

procedure CLOSE(FH: in out FILEHANDLE);

type FILE INFO BLOCK is record
SIZE: FILE INDEX; -- See Package INPUT OUTPUT.
FIRST: FILE INDEX;
LAST: FILE _NDEX;
NEXT READ: FILE INDEX;
NEXT-WRITE: FILEINDEX;

end record;

procedure GET FILE INFO(FH: in FILE HANDLE;
INFO: out FILEINFO BLOCK);

procedure SET FILE INFO(FH: in FILE-HANDLE,
INFO: in FILEINFOBLOCK);

procedure READ(FH: in FILE HANDLE, ADDR: in INTEGER,
SIZE: in INTEGER; NUMREC: out INTEGER; MAXREC: in INTEGER);

procedure WRITE(FH: in FILE HANDLE, ADDR: in INTEGER,
SIZE: in INTEGER; NUMREC: in INTEGER);

end SIMPLEOBJECTS;

14

INTERMETRICS INCORPORATED 733 CONCORD AVENUE * CAMBRIDGE. MASSACHUSETTS 02138 (617) 661-1840

7wv,

The generic types IN FILE, OUT FILE, INOUT FILE used in Package
INPUT OUTPUT are converted-to the type FILE HANDLE with the size in
bits determined by ELEMENT TYPE'SIZE. The KAPSE deals directly in
terms of records of the specified number of bits. All FILE INDEX
values are multiplied internally by the KAPSE by the SIZE IN BITS to
get a bit offset into the content of the simple object.

Procedures READ and WRITE work on one or more records at a time,
with SIZE of each record limited to be no greater than the
SIZEINBITS associated with the FILEHANDLE.

(b) Internal Representation and Algorithms. The content of a simple
object is represented using--ixed-size blocks. Simple objects that
occupy more than one physical block are stored in a multi-way B-tree
structure [N-31, allowing random access to any block of the object
with a small number of disk block references. Logically contiguous
blocks of an object are allocated from a free block map with as close
as possible to the optimal physical separation.

Two storage organizations are supported: indexed and direct
access. With the indexed storage organization, data exists only for
records actually written. Any attempt to READ records that do not
exist results in the DATA ERROR exception. Each record written
contains its own index, and the multi-way tree structure is used to
locate blocks that contain individual records. In addition, in the
indexed storage organization, only the number of bits specified in the
WRITE procedure call are actually allocated for the record.

With direct-access storage organization, data is assumed to exist
from the first record written to the last record written. Any records
that exist but have not been written contain all zero bits. For
certain Ada types, attempts to READ an all-zero record may cause a
DATA ERROR or a CONSTRAINT ERROR exception, depending on the compiler
implementation. Because aTl intermediate records exist, the multi-way
tree structure does not record index values along with physical block
numbers. The index value is implicit in the position within the
multi-way tree node.

The Package INPUT OUTPUT procedure TRUNCATE causes all records
after a specified LAST record to become undefined. Using
SET FILE INFO directly (see above) it is also possible to advance the
index of-the FIRST record to be defined. A simple object may be used
for communication between two programs in a stream fashion by one
program WRITE'ing at the end of the file, thereby automatically
advancing LAST, and the other READ'ing at the beginning of the file,
advancing the FIRST record index when desirable. This has the effect
of "throwing away" the already-read records, thus preventing the
content of the object from becoming excessively large as the
communication proceeds. Opening an object in SHARED STREAM mode
provides this stream facility automatically (see 3.2.5.1).

15

INTERMETRICS INCORPORATED 733 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 (617) 661-1840

"poor

The structure of each multi-way tree node depends on the storage
organization. Indexed organization nodes have the following
structure:

type PACKED BIT VEC is array(NATURAL range <>) of BOOLEAN;
pragma PACKTPACKEDBITVEC);

BLOCK SIZE: constant := <implementation-dependent>;
type BLOCK is new PACKED BIT VEC(l..BLOCK SIZE);
type BLOCKID is range O..<implementation-dependent>;

type TIMESEQUENCE is private;

DATA LIM: constant := BLOCK SIZE-INTEGER'SIZE-TIME SEQUENCE'SIZE;

IXNODELIM: constant := (DATA LIM-INTEGER'SIZE-BLOCK ID'SIZE)/
(BLOCK ID'STZE + FILEINDEX'SIZE);-

type INDEXED NODE is record
LAST WRYTE: TIMESEQUENCE;
LEVEL: INTEGER; -- LEVEL 1 is lowest-level node
NUM PTRS: INTEGER range 0..IX NODE LIM;
PTRS: array (0..IX NODE LIM) of BLOCK ID;
IXS: array(l..IX_NODE_LM) of FILEINDEX;

end record;

Indexed organization leaf blocks have the following structure:

type INDEXEDLEAF(NUMELEMENTS: INTEGER, DATA SIZE: INTEGER)
is record
LAST WRITE: TIMESEQUENCE;
LEVEE: INTEGER := 0; -- Leaf block is always LEVEL 0
IXS: array(l..NUM ELEMENTS) of FILE INDEX;
DATAPTRS: array(l..NUMELEMENTS) of INTEGER;

-- Index into DATA
DATA: PACKEDBITVEC(1..DATASIZE);

end record;
-- NUM ELEMENTS and DATA SIZE limited so it fits in a BLOCK.
-- The above is meant to be suggestive. The actual
-- implementation is optimized so that DATA SIZE is not
-- actually stored with the block, but is rather calculated
-- from NUM ELEMENTS. In addition, IXS and DATAPTRS are
-- combined-into a single array.
-- The length of a particular stored element may vary
-- if the ELEMENT TYPE is a variant type, but may
-- be calculated from DATA PTRS(N+l) - DATA PTRS(N),
-- with the last element packed tightly up To the end
-- of DATA (i.e., DATA PTRS(NUMELEMENTS+I)
-- would be DATASIZE+T).

16

INTERMETRICS INCORPORATED 733 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 1 617) 661-1840

7W)'r

Direct-access organization multi-way tree nodes have the
following structure:

DA NODE LIM: constant := DATA LIM / BLOCKID'SIZE;
type DIRECT ACCESS NODE is record

LAST WRITE: TIMESEQUENCE;
LEVEL: INTEGER; -- LEVEL 1 is lowest-level node
PTRS: array(l..DANODE LIM) of BLOCKID;

end record;

Direct-access organization leaf blocks have the following structure:

type DIRECT ACCESS LEAF is record
LAST WRITE: TIMESEQUENCE;
LEVEL: INTEGER := 0; -- Leaf block is always LEVEL 0.
DATA: PACKEDBITVEC(1..DATALIM);

end record;
-- Number of elements per leaf is always
-- DATA LIM/ELEMENT TYPE'SIZE.
-- Individual elements are slices of DATA.

Locating a particular record within an indexed organization file
involves the standard multi-way search algorithm, starting with the
root and selecting the appropriate branch based on the value of the
desired FILE INDEX. The search requires (log N)/(log IX NODE LIM) disk
block references, where N is the total number of blocks in- the file
(for a complete discussion of multi-way searching, see [N-3]).

Locating a particular record in the direct access organization
first requires converting the desired FILE INDEX into a bit offset.
This is then divided by BLOCK SIZE, giving -a block number. This is
adjusted according to the current number of levels in the tree and the
FIRST defined logical record FILE INDEX. The search requires (log
N)/(log DA NODE LIM) disk block references, where N is the total
number of blocks in the file.

3.2.3.2 Operations on Composite Objects

(a) Specification. The following primitives are available for

creating and modi ying composite objects:

Package COMPOSITE OBJECTS is

procedure CREATE COMPOSITE(NAME: in STRING;
COMPONENT DA: in STRING);

-- COMPONENT DA is a space separated list of attribute
-- labels required of all components created in the object.
-- Requires a window giving CREATECOMPONENT on the enclosing
-- composite object.

17

INTERMETRICS INCORPORATED * 733 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 (617) 661-1940

__ *1

procedure DELETE(NAME: in STRING);

-- Requires a window giving DELETE COMPONENT on the enclosing
-- composite object.

type PARTITIONHANDLE is private; -- Similar to FILEHANDLE.

procedure OPEN PARTITION(PH: in out PARTITIONHANDLE;
NAME: in STRING);

-- NAME is a specification of a partition,
-- like "(PROJECT=>SHUTTLE)" or "*.CONTROL.*"

-- Requires a window giving LIST COMPONENT on the composite
-- object implied by the partitlon.

procedure CLOSEPARTITION(PH: in out PARTITIONHANDLE);

procedure GET PARTITION INFO(PH: in PARTITION-HANDLE;

INFO: out PARTITION INFO BLOCK);
-- Returns miscellaneous INFO about the partition,
-- including the number of components currently in
-- the partition, the FIRST, LAST, and NEXT component
-- names (in ASCII lexicographic order), etc.

function GET NEXT COMPONENT(PH: in PARTITION HANDLE) return STRING;

-- This returns the name of the next component of the given
-- partition, as a parenthesized list of distinguishing
-- attribute values in a single STRING. The names
-- are returned in ASCII lexicographic order.

Operations that create and delete components of a composite object
implicitly modify its content. The name of the object specified to
CREATE and CREATE COMPOSITE determines the composite object in which
it is created.

Database names passed as parameters to procedures such as CREATE,
OPEN, and DELETE are used to locate the object within the database.
As explained above (see 3.2.1.4), names that start with a dot are
interpreted relative to the program's context object, and those that
do not are interpreted as though ".CURRENT DATA." were inserted at
the front of the name. If the desired object is a component of a
composite object, first the name of the composite object is given,

followed by a dot, followed by the distinguishing attributes of the
component.

The distinguishing attributes may be specified using positional
notation, with dots separating, or with label=>value notation, inside
parentheses and with commas separating. If the object is a component

of a component, and the first and second set of distinguishing
attribute labels are distinct, then the label=>value notations for the
two sets may be merged into one. For example, the following could all
be equivalent:

(PROJECT=>SHUTTLE,AREA=>NAVIGATION).(UNIT=>A,SUBUNIT=>B)

(PROJECT=>SHUTTLE,AREA=>NAVIGATION,UNIT=>A,SUBUNIT=>B)
(UNIT=>A,AREA=>NAVIGATION,SUBUNIT=>B,PROJECT=>SHUTTLE)
(AREA=>NAVIGATION,PROJECT=>SHUTTLE).A.B
SHUTTLE.NAVIGATION.(SUBUNIT=>B,UNIT=>A)
SHUTTLE.NAVIGATION.A.B

18

INTERMETRICS INCORPORATED a 733 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 (617) 661-1840

After specifying the access path to the object, the STRING passed
to OPEN or CREATE may be used to convey extra information. The
additional information is in the form of a parenthesized label=>value
list separated from the access path by a space character. With this
syntax, it is possible to specify the following extra information:

Call Extra labeled information

CREATE RESERVE MODE, ACCESS-CONTROL, CATEGORY-SPEC
OPEN RESERVE-MODE

For example:

OPEN (FILEl, "STREAM OBJECT 1 (RESERVEMODE=>SHAREDSTREAM)");
CREATE (FILE2, "PUBLIC INFO-FILE" &

" (ACCESSCONTROL=>(WORLD=>(READ,APPEND)))");

(b) Internal Representation and Algorithms. The content of a
composite object is represented as a multi-attribute tree of component
objects. The distinguishing attributes are handled in the order
specified when the composite object was created. Each attribute
introduces an additional level into the tree, where each level itself
has a B-tree indexed organization, with variable length keys
corresponding to the distinguishing attribute values.

Because each level in the multi-attribute tree has an indexed
organization, the KAPSE provides fast (log N) access to components of
even large composite objects.

(c) Examples.

CREATE COMPOSITE("COMP", "MODULE RELEASE NUM");

CREATE(FH, "COMP.1(MODULE=>DISPLAY, RELEASENUM=>l)", OUTMODE);
CLOSE(F, ;

OPEN(FH, "COMP.DISPLAY.i", IN MODE); -- Using positional notation.
CLOSE(FH);

OPENPARTITION(PH, "COMP.*.lI"); -- Scan through partition.
STR := GET NEXT COMPONENT(PH);
PUT LINE("First component of COMP is: " & STR);
-- 5n the user's terminal should appear:
-- "First component of COMP is (MODULE=>DISPLAY,RELEASE NUM=>l)"
CLOSE PARTITION(PH);

19

INTERMETRICS INCORPORATED • 733 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 (617)661-1840

K

3.2.3.3 Operations on Window Objects

(a) Specification. A window object is created by specifying its name,
the target object to be referenced, a common ancestor node label, an
optional partition specification relative to the target object, and an
optional capacity name which indicates an additional access
limitation.

procedure CREATE WINDOW(NAME: in STRING; TARGET: in STRING;
COMMON ANCESTOR: in STRING ""; PARTITION: in STRING

CAPACITY: in STRING := "");

procedure DELETE(NAME: in STRING);

procedure COPY(OLDNAME: in STRING; NEWNAME: in STRING);

procedure REVOKE(SUPER WINDOW: in STRING; SUB WINDOW: in STRING);
-- This incapacitates the specified SUB WINDOW if
-- it is was derived from the specified SUPERWINDOW.

(b) Internal Representation and Algorithms. A window is a
cross-reference to another objectto be "seen" through the window.
This cross-reference is recorded as an access path from the window to
the target object, going through a common ancestor composite object
(node) in the database composite object hierarchy tree.

After a composite object is created, it may be given a hierarchy
node label. The access path from a window specifies the hierarchy
no-e Ta-el of the appropriate common ancestor node, and then the p.:th
back down the hierarchy to the target object. This is analogou:,. %-
the use of block and package identifiers in Ada to specify the pa-r -o
a selected component [G-l, 4.1.3 (c) and (e)]. The hierarchy niode
label is a non-distinguishing attribute of the composite object,
called NODELABEL.

Copies of a window may only be stored at points in _he hierarchy
where the hierarchy node label refers to the same ancestor composite
object as the original window. In any case they may only be stored at
points below the named common ancestor node. By selecting a
particular common ancestor node, the creator of a window effectively
limits the dispersion of copies of the window. If the common ancestor
chosen is the root of the entire hierarchy tree, copies may be stored
anywhere in the database.

To allow easy tracing of windows, a window cross-reference table
is maintained at every node which is used as a common ancestor.
Whenever a window is copied, a new entry is added to the window
cross-reference table giving the location of the new window and the
object seen. To trace all windows giving some kind of access to an
object, the KAPSE scans only through the window cross-reference tables
of the ancestor nodes of the object (as opposed to a complete search
of the database hierarchy tree).

20

INTERMETRICS INCORPORATED 733 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 (617) 661-1840

____ ___ ____ __ ___ ____ ___ _ __ ___ ___ ____ ___ __r

When a new window is created (not simply a copy), the access
rights of the new window are necessarily a subset of the access rights
of some pre-existing parent window implicit in the path to the target
object specified in the CREATE WINDOW call. The new window is added
to the designated common ancestor node's window cross-reference table
and is indicated as a sub-window of the implicitly identified parent
window. The newly designated common ancestor must be the same as, or
a descendant of, the ancestor designated by the parent window. If the
COMMON ANCESTOR parameter to CREATE WINDOW is the null string, the
parent window's common ancestor is assumed. At a later time, a
program may REVOKE the access granted by the creator of the sub-window
by using the parent window (or a copy of it). If all copies of a
parent window are deleted, its parent window inherits the revocation
right over the sub-windows.

If a composite object has any components that are windows, it
lists the hierarchy node labels of all higher-level nodes used as
common ancestors by those windows. When such a composite object is
copied, its copy must remain a descendant of all of the listed
ancestor nodes. A composite object may not be given a NODELABEL
attribute value which would change the interpretation of any
descendant window's reference path.

If a window, its target, and their designated common ancestor are
all components of the composite object, no special processing is done
on COPY, and the new copy of the window component refers to the new
copy of the target object.

If the common ancestor is not a component of the copied composite
object then the new copy of the window component continues to refer to
the old target object. In this case, the window cross-reference table
at the common ancestor node is updated to indicate the presence of an
additional window.

Windows do not store any kind of internal identifier of their
target objects or common ancestor nodes, but rather the ASCII string
access path. This implementation ensures that copying windows and
composite objects containing windows does not require changing
internal identifiers. Furthermore, it allows logical copies of any
object to share the same disk data blocks. Only when a part of a
logical copy is changed are new disk blocks allocated to hold the
changed data.

To ensure that a sub-window does not exceed the rights of its
parent, the content of a window records not only its current capacity,
but also the set of capacities of its progenitors. When a window is
used, it is limited to access rights legal for its own capacity and
all of its progenitors. The KAPSE calculates this intersection of
rights by performing a simple bit-wise AND of the appropriate capacity
access-right bit maps.

21

INTERMETRICS INCORPORATED * 733 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

_ . ",,~-y 7:qD~-

(c) Examples.

CREATE WINDOW(".WORKSPACE", "SHUTTLE.NAVIGATION. INIT");
-- This creates a convenient shorthand window
-- named .WORKSPACE.

OPEN(FILE, ".WORKSPACE.SPEC");
-- This is equivalent to:
-- OPEN(FILE, "SHUTTLE.NAVIGATION.INIT.SPEC");

CREATE WINDOW(".RESTRICTEDWORKSPACE", ".WORKSPACE.",
CAPACITY=>"WORLD") ;

-- Create sub-window limited to access rights

-- given to the WORLD.

OPEN(FILE2, ".RESTRICTED WORKSPACE.SPEC");
-- This may fail if SHUTTLE.NAVIGATION.INIT.SPEC
-- doesn't give READ or WRITE access to the WORLD.

CREATE WINDOW(" .SMALLER VIEW", ".WORKSPACE.",
PARTITION=>"(TEST LEVEL=>2)");

-- The window .SMALLERVIEW only lets its user
-- see objects with attribute TEST LEVEL having
-- a value of 2.

3.2.3.4 Copying/Renaming Operations

(a) Specification. The following operations are defined for copying
and renaming objects:

procedure COPY(OLDNAME: in STRING; NEWNAME: in STRING);
-- This procedure is used to make a copy of an existing
-- object (simple, composite, or window). If the object
-- is a window, or contains a window with an external
-- common ancestor, the new copy may only be created
-- where it is still a descendant of the common ancestor(s).
-- The new copy shares disk blocks with the original object
-- until one of them is changed.
-- Requires a window giving COPY on OLDNAME, and
-- CREATE COMPONENT at NEWNAME.
-- It will also fail if NEWNAME already exists,
-- or if OLDNAME contains any running program
-- contexts.

procedure DELETE(NAME: in STRING);
-- This procedure is used to delete any object
-- (simple, composite, window).
-- Requires a window giving DELETECOMPONENT on
-- the enclosing composite object.
-- Running program contexts are also aborted
-- and deleted by this primitive.

22

INTERMETRICS INCORPORATED * 733 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

?U

procedure RENAME(OLDNAME: in STRING; NEWNAME: in STRING);
-- A call on this procedure is exactly identical to

-- COPY(OLDNAME, NEWNAME); DELETE(OLDNAME);

-- with the same restrictions.

(b) Internal Representation and Algorithms. The design of the KAPSE
database facilitates copying by providing block reference counting at
a low level (see 3.2.2). Copying an object first involves checking
that it is legal, and then simply incrementing the reference count of
the root block of the object and adding its new name and BLOCK ID to
the implied composite object. Additional blocks are allocated only
when the original or copy is later modified, and then only enough
blocks to maintain logical distinctness of the two.

This facility allows complicated template objects to be created,
and then repeatedly copied without incurring a large storage overhead.
An entire Ada library can be copied when a new project begins, and the
old and new libraries will continue to share data blocks as long as
the associated projects use without modification the common packages
and subprograms.

3.2.4 Operations on Attributes

3.2.4.1 Operations on User-defined Attributes

(a) Specification. All database objects have a list of user-defined

attributes, whose values are ASCII strings. The following primitives
are used to set and retrieve these attributes:

procedure SET ATTRIBUTE(NAME: in STRING; ATT LABEL: in STRING;

ATT VALUE: in STRING);
--- By setting an attribute value to the null STRING,
-- the attribute is effectively deleted.
-- Requires window giving USER ATTRIB WRITE (or WRITE).
-- Will also fail if attributi is protected (see below).

function GET ATTRIBUTE(NAME: in STRING; ATT LABEL: in STRING)
return STRING;

-- Attribute value returned as null STRING if not

-- previously SET.
-- Requires window giving USERATTRIBREAD (or READ).

procedure PROTECT ATTRIBUTE(NAME: in STRING; ATT LABEL: in STRING;
PROTECT: in BOOLEAN := TRUE);

-- This procedure protects the specified user attribute
-- from modification until called with parameter
-- PROTECT => FALSE.
-- Requires window giving SYSTEM ATTRIB MODIFY,
-- as do other access control operations.

23

INTERMETRICS INCORPORATED 733 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 (617) 661-1840

procedure SET ALL ATTRIBUTES(NAME: in STRING;
ATT VALUES: in STRING);

-- All non-distinguishing attributes are
-- set according to ATTVALUES, which must be a
-- parenthesized, comma-separated list of attribute
-- label=>value pairs.
-- Fails if any mentioned attribute is protected,
-- or if window is insufficient.
-- All attributes not explicitly mentioned, and not
-- protected, are set to null.

function GET ALL ATTRIBUTES(NAME: in STRING) return STRING;
-- Returns value of all non-null non-distinguishing
-- user-defined attributes.
-- STRING returned is in parenthesized labeled notation
-- e.g. "(PURPOSE=>FUN,CHECKLEVEL=>2)"

(b) Internal Representation and Algorithms. User-defined
non-distinguishing attributes are stored as a simple ASCII string in
the parenthesized labeled notation, with protected attributes flagged
with an asterisk. Such a string is associated with each object that
has any non-null attribute values. Additional blocks may be allocated
for objects with large numbers of attributes.

SET ATTRIBUTE and GET ATTRIBUTE involve simple string
manipulaTion of the label/value-list. The time required to update the
attribute list is linear in the number of attributes maintained for
the object.

(c) Examples.

SET ATTRIBUTE("TEST FILE", "PURPOSE", "FUN");
SET ATTRIBUTE("TEST FILE", "CHECK LEVEL", "1");
SET--ATTRIBUTE("XYZ", "PURPOSE", "FUN");
decTare

S: constant STRING := GET ATTRIBUTE("XYZ", "CHECKLEVEL");
-- S is now the null STRING.

AA: constant STRING := GETALLATTRIBUTES("TESTFILE");
begin

PUT LINE(AA);

-- Output will be: "(PURPOSE=>FUN,CHECKLEVEL=>l)"
I end ;

3.2.4.2 Category Operations

(a) Specification. The category attribute is filled in automatically
by CREATE, CREATECOMPOSITE, CREATE PCTX, and CREATE WINDOW. More
complex categories are specified using an Ada-like aggregate notation.
The procedure SET CATEGORY ELEMENT or the program SET CATEGORY is used
to change the category provided by default at the time of creation.

24

INTERMETRICS INCORPORATED, 733 CONCORD AVENUE CAMBRIDGE, MASSACHUSETTS 02138 (617) 661-1840

N* mk

The following primitives are available for inspecting or
modifying the category specification of an object:

procedure SET CATEGORY ELEMENT(NAME: in STRING;
CATEGORY ELEMENT: Tn STRING; ELEMENT VALUE: in STRING);

-- This allows a user to change a sTngle element
-- of the category specification.
-- Requires window giving SYSTEMATTRIBMODIFY.

function GET CATEGORY ELEMENT(NAME: in STRING;
CATEGORY ELEMENT: in STRING) return STRING;

-- This returns the value associated with a single
-- element of the category specification.
-- Requires window giving SYSTEMATTRIB READ.

procedure SET CATEGORY(NAME: in STRING;
TEXT FILE:- in STRING);

-- This program reads the specifed text file
-- for lines of input, and uses SET CATEGORY ELEMENT
-- to fill in the category attribute associated
-- with the named object.

procedure GET CATEGORY(NAME: in STRING; TEXT FILE: in STRING);
-- This program creates a text representation of the
-- category of the named object on the given TEXT-FILE,
-- using the primitive GET CATEGORY ELEMENT.

The category specification consists of a number of labeled
category elements, each with a string value. The general form for the
category specification for a simple object, as expected by
SETCATEGORY, is as follows:

(CATEGORY CLASS => SIMPLE,
CATEGORY NAME => arbitrary string, -- Optional
STORAGE ORGANIZATION => < INDEXED I DIRECT >, -- Default is DIRECT
BITS PER RECORD => < 1 I 2 j ... >, -- ELEMENTTYPE'SIZE
NON DA =;

(labell [=> < valuel I (valll,vall2,vall3,...) I
(low numeric vall .. high numeric vall) >],

label2 [=> < value2 T (val2l,va12f,va123,...) I
(lownumericval2 .. highnumericval2) >],

), Optional, specifies required attribute labels and values
ACCESS CONTROL =>

(capacityl => (acc rtll,acc rtl2,accrtl3,...),
capacity2 => (acc-rt2l,acc-rt22,acc rt23,...),

) Optional, specifies required access rights for
-- specified capacities.

The strings CATEGORY CLASS, CATEGORYNAME, etc., are all names of
category elements. In the above syntax, <choicel I choice2 ...>
indicates the possible choices, ...] indicates an optional part.

25

INTERMETRICS INCORPORATED 733 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 (617) 661-1840

.~'-

When specifying the non-distinguishing attribute constraints
(NON DA element), each attribute may be limited to a single value (eg.,
valuel or value2 above), to a list of values (eg., valll, vall2, va122
above), or to a numeric sequence of values (eg., "low numeric vall ..
high numeric vall" above). Either the low numeric val Zr the
high-numeric-val may be "*" indicating negative and positive infinity,
respectively. A constraint like "NON DA => (NUMERIC ID=>(*..*)) "

would specify that the non-distinguishing attribute NUMERICID should
be numeric, but with no other limits on its value.

The general form for a category specification for a composite
object is as follows:

(CATEGORY CLASS => COMPOSITE,
CATEGORY NAME => arbitrary_string, -- Optional
NON DA => ... , -- As above for simple object NON DA
COMPONENT DA => -- Required definition of component dist. attribs.

(labeT [=> < (valll,vall2,...) I
(low num vall .. highnum vall) >],

label2 [=> <-(vaf2l,va122,...)I -
(lownumval2 .. highnumval2) >1,

COMPONENT-CAPACITIES => (capacityl,capacity2,...),
-- Optional, defines
-- new capacities to be used by components
-- of this object.

COMPONENT CATEGORIES => -- Optional constraints by partition
(part-tionl => category_specl,
partition2 => categoryspec2,

ACCESS CONTROL =>
--- Optional, specifies required composite object access
-- rights and component capacities associated with designated
-- external capacities.
(capacityl =>

(acc rtll [component capacityll],
accrtT2 [component_capacityl2],

capacity2 =>
(acc rt2l [component capacity2l

accrt22 [componentcapacity22],

-- end of ACCESS CONTROL
-- end of category specification

Each of the separate category elements (eg., CATEGORY NAME,
ACCESS CONTROL) may be individually inspected or modified using
GET CATEGORYELEMENT or SETCATEGORYELEMENT.

26

INTERMETRICS INCORPORATED * 733 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

/F4

(b) Internal Representation and Algorithms. The category attribute is
stored Condisk in a form designed to facilitate automatic constraint
checking by the KAPSE. Category specifications are provided
automatically for simple objects created with CREATE, and composite
objects created with CREATE COMPOSITE. These categories may later be
adjusted element by element with SET CATEGORYELEMENT, or may be
completely replaced by SET CATEGORY, whTich takes a text representation
of the full category specification in the form given above, and fills
in the category attribute accordingly.

No category element may be set in contradiction to the existing
state of the attributes or content of the object. Similarly, the
content and attributes may not be set in contradiction to the existing
category specification. Some changes to the category may require that
a category element be removed (set to null), the content or other
attributes be modified, and then the category element be replaced with
the desired new value.

Normally, a template object will be created using CREATE or
CREATE COMPOSITE followed by SET CATEGORY, and then repeatedly COPY'ed
to create new objects of the same category. As part of the delivered
KAPSE, template objects are provided for such common composite objects
as an Ada library, a user mailbox, and a typical user top-level
directory.

(c) Examples. An example for a category specification for a simple
object:

(CATEGORY CLASS => SIMPLE, CATEGORYNAME => ADASOURCE,
STORAGE ORGANIZATION => DIRECT,
BITS PER RECORD => 8,
NONDA =7 (LANGUAGE=>ADA, CHECKING=>(NONE,SYNTAX,SEMANTICS))

An example for a category specification for a composite object:

(CATEGORY CLASS => COMPOSITE, CATEGORY NAME => ADA LIBRARY,
COMPONENT DA =>

(PER => (UNIT,COMPILATION,LINK)),
COMPONENT CATEGORIES =>

((PER=>JNIT) =>
(CATEGORY CLASS=>COMPOSITE,
COMPONENTDA=>(UNITNAME,SUBUNIT,UNITID=>(O..4095))

(PER=>COMPILATION) =>
(CATEGORY CLASS=>COMPOSITE,
COMPONENTDA=>(SEQUENCENUM=>(l..*))

(PER=>LINK) =>
(CATEGORY CLASS=>COMPOSITE,
COMPONENTDA=>(LINKEDPROGCTXNAME)

27

INTERMETRICS INCORPORATED 733 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 (617) 661-1840

3.2.4.3 Access Control

(a) Specification. The following primitives are available for
manipulating the access control attribute:

procedure SET CAPACITY ACCESS(OBJNAME: in STRING;
CAPACITY: in STRING; ACCESS RTS: in STRING);

-- Set list of access righTs associated with given
-- capacity. Format for ACCESS RTS is paren-
-- thesized comma-separated list of access right
-- names and optional component capacity.
-- Requires window giving SYSTEMATTRIB MODIFY on
-- the specified object.

function GET CAPACITY ACCESS(OBJNAME: in STRING;
CAPACITYT in STRING) return STRING;

-- Return list of access rights associated with
-- specified capacity for the designated object.
-- Returned STRING is parenthesized comma-separated
-- list of access right names and optional
-- component capacity.
-- Requires window giving SYSTEMATTRIB READ (or READ)
-- on the specified object.

function GET CAPACITIES(OBJNAME: in STRING) return STRING;
-- Return list of capacities with any access rights
-- explicitly defined for this object.
-- SYSTEM, OWNER, and INFERIOR not included unless
-- explicitly limited to less than ALL.
-- Requires SYSTEMATTRIBREAD or READ.

(b) Internal Representation and Algorithms. The access control
attribute is represented by a sTimle table of capacity names and their
associated access-right bit maps. Each bit map includes a bit for
every access right meaningful for the object's category class. In the
single case of the SELECT COMPONENT access right, the internal
component capacity name is also stored for each external capacity
having this right.

Access to individual operation context objects associated with a
private object is controlled by the access control attribute of the
individual context objects. The private object as a whole limits
access by restricting SELECT COMPONENT at different internal
capacities to specific external capacities. The operations then
define the access for each of the internal capacities. A different
internal capacity is defined for each meaningful combination of
operations, with the name of the capacity suggesting the nature of the
implied abstract role. Further control is also possible by limiting a
window on the private object to a specific partition of the
operations.

28

INTERMETRICS INCORPORATED 733 CONCORD AVENUE *CAMBRIDGE, MASSACHUSETTS 02138 (617) 861-1840

- J -'

..'.

(c) Examples.

SETCAPACITY ACCESS("ALPHA", CAPACITY=>"WORLD",
ACCESS RTS=>"(READ,APPEND)");

-- Give all users with WORLD window over simple
-- object ALPHA access rights READ and APPEND.

SETCAPACITY ACCESS("BETA", CAPACITY=>"PROJECT",
ACCESS RTS=>"(COPY,SELECT COMPONENT TESTER)");

-- Give all users with PROJECT window over composite
-- object BETA, right to COPY object, and access
-- to its components in capacity TESTER.

PUT(GET CAPACITY ACCESS("ALPHA", CAPACITY=>"OWNER"));
-- Will prinE "(ALL)" if never previously
-- set otherwise.

PUT(GET CAPACITIES("BETA"));
-- Will print "(PROJECT)" if above SET CAPACITYACCESS
-- is the only one in effect for BETA:

3.2.4.4 History/Archiving Operations

(a) Specification.

with CALENDAR; -- Defines type TIME.
Package HISTORY is

type HISTORY CLASS is (SOURCE, DERIVED);
type HISTORY REF(CLASS: HISTORYCLASS := DERIVED) is limited private;
type HISTORYREFARRAY is array(NATURAL range <>) of HISTORYREF;

function GET HISTORY REF(NAME: in STRING) return HISTORYREF;

-- get current wSTATE" of object.

procedure RECREATE(STATE: in HISTORYREF(CLASS=>SOURCE);
NAME: in STRING);

-- Given the "STATE" of a source object, recreate
-- its content and user attributes in a new database
-- object with the given NAME.

procedure NEW SOURCE ARCHIVE(SOURCE OBJ: in STRING);
-- This creates-a new source archive with
-- SOURCE OBJ as its state number one.

procedure OLD SOURCE ARCHIVE(SOURCE OBJ: in STRING;
STATE: in HISTORY REF(CLASS=>SOURCE));

-- This specifieg that SOURCE OBJ is a
-- revision of STATE, and should be
-- assigned to the same source archive.

function NUM REFS(STATE: in HISTORY REF) return INTEGER;
-- Given a STATE, return count-of number of other
-- states directly derived from this state.

29

INTERMETRICS INCORPORATED 733 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 (617) 661-1840

_ __"_ I

function GET DERIVATIVES(STATE: in HISTORYREF)

return HISTORY REF ARRAY;
-- Given a STATE,-return list of other states

-- directly derived from this state.
- If object is source object, list includes
-- direct derivative source states in same archive.
-- Other derivatives may not be known if reference
-- listing turned off by user.

procedure SET REFERENCE LISTING(STATE: in HISTORYREF;

LISTING ON: in BOOL-EAN);
-- This procedure sets reference listing on or off
-- for the given STATE. Reference counting is
-- always performed.

function CHECK REFERENCELISTING(STATE: in HISTORYREF)
return BOOLEAN;

-- This function reports whether reference listing
-- is currently on or off for the given STATE.

function GET DIRECT CONSTITUENTS(STATE: in HISTORYREF)
return HISTORY REF ARRAY;

-- Given STATE, return list of states from which
-- this state was directly derived. If object is
-- a source object, no more than one state is
-- returned -- that of the direct predecessor
-- to this state.

function GET SOURCE CONSTITUENTS(STATE: in HISTORYREF)
return HISTORY REF ARRAY;

-- Given STATE, return list of source states from
-- which this state was derived, directly or
-- indirectly. Derived object states are included
-- in list only if their history was off-line
-- and thus could not be traced immediately.

function GET HISTORYPARAMETERS(STATE: in HISTORYREF)
return STRING;

-- For derived object state, return STRING
-- with parameters provided at
-- invocation of program producing STATE.
-- For source object state, return list
-- of the user atLributes of the object
-- at time of merge into archive.
-- STRING is returned in (label=>value,...) format.

procedure HISTORY ACTIVATE(STATE: in HISTORYREF;

TIME LIMIT: in DURATION);
-- This procedure requests that a particular history
-- script or archive be activated (brought on-line).
-- Depending on bulk-storage hardware, this may occur
-- immediately or await operator attention, up to the
-- specified TIME LIMIT.

30

INTERMETRICS INCORPORATED 733 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 (617) 61-1840

• -' -' ,m'

function HISTORY ON LINE(STATE: in HISTORY REF) return BOOLEAN;

-- This function returns TRUE if the referenced history

-- script or archive is now active (on-line).

function HISTORY TIME(STATE: in HISTORYREF)
return CALENDAR.TIME;

function HISTORY MAKER(STATE: in HISTORYREF)

return STRING;
-- The above two functions return the time/date and
-- USER NAME associated with the specified script
-- or source archive STATE.

(b) Internal Representation and Algorithms. The history attribute of
a database object consists of a HISTORY REF; this uniquely identifies
the state of the object. It refers to a source archive for a source
object, or a program invocation script for a derived object (see
3.2.1.'). It includes an index to select one state from all those
associated with the same source archive or script:

private
type HUID is range l..HUID LIMIT;

-- History unique identifier.
-- These identifiers are assigned
-- sequentially for each program

-- execution resulting in database output,

-- and for each source archive created.

type HISTORY REF(CLASS: HISTORY CLASS := DERIVED)

is record
ARCHIVE SCRIPT: HUID;
STATE INDEX: INTEGER;

end record;

end HISTORY;

History unique identifiers are indexed by a central table within
the KAPSE database. This table indicates whether the history source
archive or script is on-line, or has been dumped to tape (bulk

storage). If the referenced history is off-line, many of the above
primitives will fail. The primitives HISTORY ACTIVATE and
HISTORY ON LINE may be used to affect or check the on-iTne status of a
particular source archive or script.

All objects when initially created are treated as derived
objects. The primitives NEW SOURCE ARCHIVE and OLD SOURCE ARCHIVE may
be used to replace the history ittribute reference to a program

invocation script by a reference to a source archive. Source archives
are used for maintaining multiple states of the same '-asic text, where
the content itself is more important than the recor- of the program
invocation script used to create the content. The date, time, and
USER NAME from the program invocation script are transferred to the
source archive for each of its component states.

The source archive is stored in a form allowing the
reconstruction of any of the component states in a single pass through
it.

31

INTERMETRICS INCORPORATED * 733 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

-f -

3.2.5 Other Database Operations

3.2.5.1 Synchronization

(a) Specification. The following primitives are used to effect
synchronization among multiple Ada programs attempting to access
overlapping parts of the database:

type RESERVE MODE is (EXCLUSIVE WRITE, READ ONLY,
SNAPSHOT--READ, SHARED STREAM, SHARED RANDOM);

-- EXCLUSIVE WRITE prevents all access except
-- SNAPSHOT-READ.
-- READ ONLY-prevents all write access.
-- SNAPSHOT READ never interferes, but may also be
-- reading soon-to-be-obsolete data.
-- SHARED STREAM causes EXCLUSIVE WRITE reservation
-- only at the time of actual READ or WRITE.
-- Stream READ always reads the first defined element of
-- the object, and then advances FIRST to the next element.
-- WRITE always appends a new element at the end of
-- the object and advances LAST.
-- SHARED RANDOM causes a reserve (EXCLUSIVE WRITE
-- or READONLY) only at the time of actual-READ or WRITE.

procedure RESERVE(WINDOW NAME: in STRING;
MODE: in RESERVE MODE; TIME LIMIT: in DURATION);

-- The target o5ject of the named window is reserved
-- according to the given RESERVE MODE.
-- If the RESERVE is not immediately possible
-- due to a conflicting RESERVE, the caller is delayed
-- up to the specified TIME LIMIT, when a TIMEOUT
-- exception will occur.

procedure RELEASE(WINDOW NAME: in STRING);
-- RELEASE after RESERVE for EXCLUSIVE WRITE causes
-- modifications made since the RESERVE to become
-- permanent.
-- RELEASE after READ ONLY allows waiting writers to
-- proceed to RESERVE.
-- RELEASE after SNAPSHOT READ throws away the logical
-- COPY made for the purpose of uninterrupted reading.

procedure ABORT RESERVE(WINDOW NAME: in STRING);
-- ABORT RESERVE is equivalent to RELEASE for
-- reserve modes READ ONLY and SNAPSHOT READ.
-- After EXCLUSIVE WRITE, an ABORT RESERVE returns
-- the reserved o~ject or partition to its original
-- pre-RESERVE state.

In addition, CREATE of a simple object, OPEN of a simple object, and
OPEN PARTITION result in implicit reserves. By default, OPEN for
input only and OPEN PARTTTION do a SNAPSHOT READ reserve. CREATE and
OPEN for output do-an EXCLUSIVEWRITE reserve. 'ne default reserve

32

INTERMETRICS INCORPORATED 733 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 (617) 661-1840

. -- ..m- -

may be overridden by additional information in the STRING passed to
OPEN, providing for READ ONLY reserve instead of SNAPSHOT, or
selecting SHARED STREAM or SHARED RANDOM, in which case, an automatic
RESERVE/RELEASE Takes place around each READ and WRITE operation to
the object (see 3.2.3.2).

(b) Internal Representation and Algorithms. After an Ada program
performs a RESERVE, it may perform a sequence of operations using the
reserved window without interference from other programs. When the
sequence is complete, the program may RELEASE or ABORTRESERVE. Each
RESERVE starts by making a logical COPY of the reserved object.
Modifications and accesses performed between RESERVE and RELEASE use
this logical copy, preserving the integrity of the original object.

The KAPSE maintains an internal record of the full access path
associated with each reserved or opened object. This internal record
includes a dynamic join count (see 3.2.2 above), and is updated as
appropriate due to concurrent operations on objects sharing all or
part of the reserved object's access path.

The KAPSE implements RESERVE/RELEASE at a low level to allow
efficient detection of conflicting reservations. When EXCLUSIVE WRITE
or READ ONLY reservation of all or part of an object is requested, the
KAPSE locates the smallest sub-tree of blocks fully enclosing the part
to be reserved. If this sub-tree already contains a conflicting
reserve, the new reserve is delayed up to the TIME LIMIT. If not, the
KAPSE marks the BLOCK ID of the root of that sub-tree as reserved for
either EXCLUSIVE WRITE or READ ONLY. In the case of write, it
increments the reference count to-produce a logical copy, and on first
actual modification of the copy, splits the root and maintains a
record of both BLOCKIDs, one for the exclusive writer, and the other
for SNAPSHOT readers.

33

INTERMETRICS INCORPORATED ,733 CONCORD AVENUE CAMBRIDGE, MASSACHUSETTS 02138 (617) 661-1840

3.2.5.2 Configuration Reporting and Management

(a) Specification. Configuration reporting and management are not
separable from the rest of the KAPSE database facilities, but are,
rather, integral to the reporting and management of attributes and
partitions. The following KAPSE primitives, described in other
sections of this document, are particularly relevant:

KAPSE Primitive Section of this document

SET ATTRIBUTE 3.2.4.1
GET_ALLATTRIBUTES

CREATE WINDOW 3.2.3.3

OPEN PARTITION 3.2.3.2
GETNEXTCOMPONENT

SET CATEGORY 3.2.4.2
GET_CATEGERY

SET CAPACITY ACCESS 3.2.4.3
GET_CAPACITYACCESS
GET-CAPACITIES

GET DIRECT CONSTITUENTS 3.2.4.4
GET_SOURCE-CONSTITUENTS
GET_HISTORY REFS

In addition to the above primitives, a standard program is provided to
produce the configuration and attribute reports:

procedure LISTPARTITION(PARTITION: in STRING := ".CURRENT DATA.";
ATTRIBUTES: in STRING f=l");

-- This program prints on the standard text
-- output the distinguishing attributes
-- (ie., names) of all of the components of the
-- specified partition, as well as the requested
-- non-distinguishing attributes, specified in
-- the parameter ATTRIBUTES as a parenthesized,
-- comma-separated list of attribute labels.
-- If ATTRIBUTES is "*" then all non-null
-- attributes of the components are printed.
-- If ATT"IBUTES is null then no non-distinguishing
-- attributes are printed.
-- Notice that by default, the program lists the
-- distinguishing attributes of all of the components

of the partition implied by the .CURRENT DATA
window.

34

INTERMETRICS INCORPORATED 733 CONCORD AVENUE e CAMBRIDGE, MASSACHUSETTS 02138 (617) 661-1840

This program may be used to list attributes of:

1. The components of a composite object
(ie., a configuration);

2. Some subset of the components, which satisfy a
more complicated partition specification;

3. A single simple object.

(b) Internal Representation and Algorithms. The program
LIST PARTITION is implemented using the KAPSE primitives
OPENPARTITION, GETNEXTCOMPONENT, and GETALLATTRIBUTES.

(c) Examples.

SET ALL ATTRIBUTES("ALPHA", "(PURPOSE=>FUN,CHECK LEVEL=>2)");
SET-ALL ATTRIBUTES("BETA", "(PURPOSE=>WORK,CHECKLEVEL=>2)");
SET_ALL_ATTRIBUTES("GAMMA", "(PURPOSE=>FUN)");

LIST PARTITION("(CHECK LEVEL=>2)", "(PURPOSE)");
-- The following would appear on the standard output:

-- Partition (CHECKLEVEL=>2) Attributes (PURPOSE)
-- ALPHA (PURPOSE=>FUN)
-- BETA (PURPOSE=>WORK)

LISTPARTITION("(PURPOSE=>FUN)", "(CHECKLEVEL)");
-- The following would appear:

-- Partition (PURPOSE=>FUN) Attributes (CHECK LEVEL)
-- ALPHA (CHECK LEVEL=>2)
-- GAMMA No CHECKLEVEL

LIST PARTITION(); -- Use the defaults
-- The following might appear:

-- Partition .CURRENTDATA.
-- ALPHA
-- BETA
-- DELTA
-- GAMMA
-- KAPPA

-- Notice that all partitions are sorted in ASCII
-- lexicographic order.

35

INTERMETRICS INCORPORATED * 733 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 (617) 661-1840

F ___ __ _______ _______-_____" ,______

3.2.5.3 Backup and Recovery

An important design feature of the KAPSE is that backup and
incremental recovery can be performed while the system is up and
running. The tape (or bulk-storage) backup program begins by simply
doing a SNAPSHOT READ reserve of the root of the entire database.
After that operatTion, the backup program may progress at its own pace
through the hierarchy of objects, knowing that the data it reads
reflects an internally consistent snapshot of the entire database.

(a) Specification. The following system programs are available for
full and incremental backup, and incremental recovery:

Package BACKUP RECOVERY is

procedure FULL BACKUP(TIMESTAMP: out TIME SEQ NUMBER);
-- This program copies a snapshot of the entire
-- database to the tapes mounted by the operator.
-- TIMESTAMP is the maximum time sequence number
-- of any of the blocks transferred to tape.

procedure INCREMENTAL BACKUP(BASE LINE: in TIMESEQNUMBER;
TIMESTAMP: out TIRE SEQ NUMBER);

-- This program copies-blocks to tape that have been
-- modified since the BASE LINE time sequence number.
-- It also copies any block superior to a block that
-- has been modified, to ensure that the copy on
-- tape is a connected DAG (directed acyclic graph).

procedure RECOVERY(OLDNAME: in STRING; NEWNAME: in STRING;
TIMESTAMP: in TIME SEQ NUMBER);

-- This program attempts to re-create as NEWNAME
-- the specified object as it was at the specified
-- time sequence number.

end BACKUPRECOVERY;

(b) Internal Representation and Algorithms. The KAPSE maintains an
index of all backup Eapes,-id-cating the range of time sequence
numbers appearing on the tape. Each backup tape includes a header
identifying its range. The rest of the tape is in a standard format
with each block including its BLOCK ID and reference count from when
the block was dumped from disk. The blocks are topologically sorted
before being dumped so that any element of the hierarchy on the tape
may be located in a single sequential scan through the tape.

On recovery, the KAPSE instructs the operator to mount the
appropriate incremental and full backup tapes, in order from latest to
earliest, until the full content of the qpecified object has been
reconstructed as of the requested time.sequence number.

36

INTERMETRICS INCORPORATED 733 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 (617) 661-1840

3.2.6 Program Invocation and Control

3.2.6.1 Program Context

(a) Specification. Each activation of a program has associated with
it exactly one program context object. The following primitives are
available to create new activations of a program by copying an
executable program context template, and to suspend and restart
execution of the program:

Package PROGRAMINVOCATION is

function CALL PROGRAM(PROGRAM PATH: in STRING;
PARAMETERS: in STRING; CONTEXTNAME: in STRING
".SUB PROGRAMCONTEXT")

return STRING;
-- This function invokes an executable program
-- context or command language script as
-- though it were a sub-program of
-- the calling program.
-- PROGRAM PATH is the access path to the program/script.
-- PARAMETERS is a parenthesized, comma-
-- separated list of parameters for the
-- program, using positional or keyword
-- notation (eg., "(A,B,EXTRA=>C)").
-- The optional parameter CONTEXT NAME specifies
-- the LOCAL NAME for the context object
-- created far the called program.
-- The returned STRING is a parenthesized
-- comma-separated list of the out parameter
-- values of the called program.
-- If the called program is actually a function,
-- the result is returned as though it were
-- an out parameter labeled RETURN
-- (eg., "(RETURN=>1423)").
-- The current default text input and output of
-- the calling program become the standard
-- text input and output for the called program.
-- All windows of the caller's context with
-- INHERIT attribute equal to TRUE are copied
-- into the sub-context created.

37

INTERMETRICS INCORPORATED 733 CONCORD AVENUE s CAMBRIDGE, MASSACHUSETTS 02138 (617) 61-1840

function PROGRAM SEARCH(PROG NAME: in STRING) return STRING;
-- This function looks for an executable program
-- context or command language script with
-- name PROG NAME in each of the composite
-- objects specified in the caller's PROGRAM SEARCHLIST.
-- The returned STRING is the full access path to
-- the program context of script, ready to
-- be passed to CALL PROGRAM above.
-- The PROGRAM SEARCH LIST is an attribute of the caller's
-- program context object. It is set using
-- SET ATTRIBUTE and specified as a parenthesized
-- comma-separated list of composite object names.

procedure INITIATE PROGRAM(PROGRAM PATH: in STRING;
PARAMETERS: in STRING; CONTEXT-NAME: in STRING;
STD INPUT: in TEXT IO.IN FILE;
STDOUTPUT: in TEXT IO.OUT FILE);
--- This procedure invokes-a program or
-- script exactly like CALL PROGRAM,
-- except that the caller is not suspended
-- until completion, and standard text
-- input and output are specified
-- explicitly.

function AWAIT PROGRAM(CONTEXT NAME: in STRING;
TIME LIMIT- in DURATION) return STRING;

-- This function waits for the completion
-- of the specified program context object,
-- up to the specified TIME LIMIT.
-- The returned STRING is as in CALLPROGRAM.

procedure SUSPENDPROGRAM(NAME: in STRING);
-- The program executing in the named context is stopped,
-- allowing the state of the execution to be examined,
-- or a debugger to be initiated to control or trace
-- further execution of the program.
-- Normal tasks of the program are made dormant, but
-- the run-time system continues to respond to inter-
-- program communication on channels zero and one.

procedure RESTART PROGRAM(NAME: in STRING);
-- The program associated with the named context is
-- restarted. The program must have been previously
-- initiated and then suspended.

procedure CREATE PROGRAM CONTEXT(CONTEXT NAME: in STRING;
PURE PART: in STRING; IMPURE PART: in STRING);

-- A new program context object is created
-- and initialized with the executable
-- program image. Additional windows or other
-- objects may still be added to the program
-- context before it is copied or initiated.
-- This operation is normally performed only by the
-- linker [1-5].

38

INTERMETRICS INCORPORATED 733 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 (617) 661-1840

..w , :. . .

(b) Internal Representation and Algorithms. A program context is a
composite object using a single component distinguishing attribute
LOCAL NAME and with certain standard windows and objects as
components. In particular, every context includes a window
CURRENT DATA, which provides the main link to the permanent part of
the database. The CURRENT DATA window may be shifted to view other
parts of the database using the CHANGE VIEW (see 3.2.7.2 below). A
running program has an implicit OWNER window on its program context.

The linker creates executable program context objects and by
default deposits them in their associated Ada program library (1-51.
If the program is to be used by many users, it will be copied to a
central repository of executable program context objects (eg., the
TOOLS component of the root). When an executable program context is
called or initiated, the KAPSE creates a private copy of it for this
activation of the program. Unless otherwise specified, the copy is
created as a component of the caller's context object.

When a command language script is called, the KAPSE invokes the
standard command language processor and passes the name of the object
containing the script as an additional parameter.

3.2.6.2 Parameter Passing

(a) Specification. Parameters are passed to a program context by
CALL PROGRAM and INITIATE PROGRAM (see *** above) as a parenthesized
comma-separated list using positional or keyword notation. For
example:

CALLPROGRAM("COMPILE", "(QSORT,MYLIB,OPTIM=>TIME)");

Internally, these parameters are passed as the value of an
attribute of the created program context, labeled PARAMETERS. This
attribute is then retrieved by the called program's preamble [1-5], by
GETATTRIBUTE(".","PARAMETERS").

At the end of execution, values of out parameters are rewritten
by the called program to the PARAMETERS attribute using SET ATTRIBUTE,
and are returned to the caller as the return string of CALL PROGRAM or
AWAIT PROGRAM. If the called program is a function, t~e returned
string is of the form "(RETURN=>return value)." If the program ends
due to an unhandled exception, t~e returned string will be
"(EXCEPTION=>exception id)."

39

INTERMETRICS INCORPORATED. 733 CONCORD AVENUE CAMBRIDGE, MASSACHUSETTS 02138 (617) 661-1840

The following function is defined to facilitatc extracting a
single parameter from the string returned by GET ATTRIBUTE,
CALLPROGRAM, or AWAITPROGRAM:

function PICK PARAM(PARAMETERS: in STRING; PARAM NAME: in STRING;
POSITION:-in INTEGER := 0; DEFAULT: in STRING :=
return STRING;

-- This function extracts the specified parameter from
-- the given parameter string, as might be returned
-- by GET ATTRIBUTE(".", "PARAMETERS").
-- PARAM NAME may be null or POSITION may be zero,
-- but not both. The DEFAULT string is returned if
-- no parameter is present in PARAMETERS at the
-- designated POSITION or labeled by the
-- specified PARAM NAME.

(b) Internal Representation and Algorithms. The list of parameters is
represented as the attribute PARAMETERS of the program context object.
The function PICK PARAM is provided to parse the parameter list, and
does so by simply scanning through the PARAMETFRS string supplied,
looking for "PARAM NAME =>" if PARAM NAME is not null, or the
unlabeled argument-number POSITION. Tf neither is present, the
supplied DEFAULT string is returned.

3.2.6.3 Private Object Operations

(a) Specification. The following primitives are available for
creating and invoking private object operations:

function INVOKE OPERATION(PRIV OBJ: in STRING;
OPERATION: Tn STRING; PARAMETERS: in STRING;
TIME LIMIT: in DURATION := 30.0) return STRING;

-- This procedure attempts to invoke the specified
-- operation context object (without copying it).
-- If the operation is already active, the caller
-- will be delayed up to the specified TIMELIMIT
-- (default 30 seconds).
-- No windows are inherited from the calling program,
-- but the KAPSE creates an INFERIOR window called
-- .CALLER CONTEXT for the operation to access
-- the conText of the calling program.
-- The returned STRING is the out parameters
-- or the return value of the operation.

procedure CREATE PRIV OBJ(NAME: in STRING);
-- This proedure creates a new private object,
-- by creating a composite object and a single
-- DATA component.
-- More often a user will copy an existing
-- template private object than create a
-- new one.

40

INTERMETRICS INCORPORATED 733 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 (617) 661-1840

procedure ADD OPERATION(PRIV OBJ: in STRING;
OPERATION NAME: in STRING; PROG CONTEXT: in STRING;
OP CAPACITY: in STRING := "OWNER");

-- This procedure adds a new operation to an
-- existing private object, by copying
-- the designated PROG CONTEXT object.
-- The operation context is given a window
-- on the DATA component of the specified
-- OP CAPACITY (by default OWNER).
-- The window on the DATA component is called
-- .CURRENT DATA so that the operation may
-- refer to-it implicitly.
-- The user controls access to the operation
-- using the standard access control primitive
-- SET CAPACITY ACCESS. The only relavent
-- access right-is INVOKE. The operation
-- context object full access path is:
-- PRIVOBJ & "." & OPERATIONNAME

(b) Internal Representation and Algorithms. Private objects are
implemented using normal composite objects, with a single component
called DATA and a number of operation context-object components. Of
the above subprograms, only INVOKE OPERATION is actually a primitive.
CREATE PRIV OBJ and ADD OPERATION-are both implementable directly in
terms of exTsting composite object primitives:

procedure CREATEPRIVOBJ(NAME: in STRING) is
begin

CREATECOMPOSITE(NAME, COMPONENTDA=>"OPERATION");

SETATTRIBUTE(PRIV OBJ, "NODE LABEL",
ATT VALUE => "PRIVATE");
--- Give object a NODE LABEL so
-- that windows created by ADD OPERATION
-- may use it as the common ancestor.

end CREATEPRIVOBJ;

procedure ADD OPERATION(PRIV OBJ: in STRING;
OPERATION NAME: in STRING; PROG CONTEXT: in STRING;
OP CAPACITY: in STRING := "OWNER") is
FULL OP PATH: constant STRING

PRIV_OBJ & "." & OPERATIONNAME;
begin

COPY(PROG CONTEXT, FULL OPPATH);
-- Copy to create operation context object.

CREATE WINDOW(NAME => FULL OP PATH & ".CURRENT DATA",
TARGET => PRIV OBJ & ".DATA",
COMMON ANCESTOR => PRIV OBJ,
PARTITION => "",

CAPACITY => OP CAPACITY);
-- Create .CURRENT DATA window for
-- operation context object.

end ADDOPERATION;

41

INTERMETRICS INCORPORATED 733 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 (617) 661-1840

INVOKE-OPERATION is implemented by attempting to reserve the
designated operation context object for EXCLUSIVE WRITE, and then
starting it running with the given parameters and with a window
.CALLER CONTEXT referring to the caller's context. If the TIME LIMIT
expires while waiting for the reserve, the calling program receives a
TIMEOUT exception.

3.2.6.4 Interprogram Communication

(a) Specification. Interprogram communication is performed by special
operations on the associated program context objects. The form of the
primitives is modeled after the Ada tasking primitives:

function IPC ACCEPT(CHANNEL NUMBER: in INTEGER,
TIMELIMIT: in DURATION) return CALLBLOCK;

procedure IPCENDRENDEZVOUS(RESULT: in CALLBLOCK);

procedure IPC ENTRY CALL(PCTX NAME: in STRING,
CHANNEL NUMBER:-in INTEGER, TIMELIMIT: in DURATION,
PARAMS: in out CALL BLOCK);

-- Requires a window giving PROGRAM CTX CONTROL
-- on the specified program context object.

end PROGRAMINVOCATION;

(b) Internal Re resentation and Algorithms. Programs communicate over
logical channes between them. Channel numbers zero and one are
reserved for the Ada Run Time System and the Debug Support Routines.
The use of other channels depends on the particular Ada program.

These interprogram communication primitives necessarily rely on
the communicating programs agreeing on the format and interpretation
of the CALL BLOCK. From the KAPSE point of view, the CALL BLOCK is
just an array of bits. A TIME LIMIT of zero results in a conditional
ACCEPT or ENTRY call. A TIMELIMIT of DURATION'LAST results in an
effectively un-timed call. If a single program wishes to receive
ENTRY calls on many channels simultaneously, it must execute the
IPC ACCEPT calls from separate Ada tasks.

42

INTERMETRICS INCORPORATED 733 CONCORD AVENUE CAMBRIDGE, MASSACHUSETTS 02138 (617) 661-1840

__ __ __ _ __ _,__ _ __ __ _ __ ___._ ____

3.2.6.5 Debugging and Control Interface

(a) Specification. The following procedures are available to a
debugger for inspecting, controlling, and modifying a suspended
program:

Package DEBUGGERINTERFACE is

procedure SUSPEND PROGRAM(NAME: in STRING); /
procedure RESTARTPROGRAM(NAME: in STRING);

-- These procedures are described in the
-- section on Program Context (see 3.2.6.1).

procedure SET CURRENT DEBUGGED CONTEXT(PROG CTX: in STRING);
-- This procedure is called once to specify
-- which program context is being debugged,

procedure GET PROGRAM STATE(STATE: out PROGRAMSTATE);
-- Retrieve the current state of the
-- debugged program, including the program
-- counter and stack pointer.

procedure CONTINUE(STATE: in out PROGRAM STATE);
-- Allow the debugged program to continue.
-- This procedure returns when the debugged
-- program reaches a breakpoint trap.

procedure SET PROGRAM DATA(ADDRESS: in ADDRTYPE;
DATA: in PACKED BIT VEC);

-- Store the array-of bits at the designated
-- address in the debugged program.

procedure GETPROGRAM DATA(ADDRESS: in ADDRTYPE;
DATA: out PACKED BIT VEC);

-- Retrieve into the array of bits data
-- from the designated address in the
-- debugged program.

procedure SET ECP BREAKPOINT(ADDRESS: in ADDRTYPE;
ON OFF: in BOOLEAN);

-- Activate or deactivate a breakpoint at

-- the designated execution control point,

-- according to ONOFF.

procedure SET EXCEPTION BREAKPOINT(EXCEPTIONID: in INTEGER;
ON OFF: in BOOLEAN);

-- Associate or disassociate a breakpoint
-- with the specified exception.

procedure SET TRAPS(ALL STATEMENTS, ALL CALLS, ALL RETURNS,
ALL EXCEPTIONS, UNHANDLED EXCEPTIONS: in BOOLEAN);
--- Associate or disassociate a breakpoint with
-- the specified group of execution control
-- points or exceptions.

end DEBUGGER INTERFACE;

43

INTERMETRICS INCORPORATED 733 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 (617) 661-1840

(b) Internal Representation and Algorithms. The above procedures are
implemented using inter-program communication primitives. When a
program is suspended, all of its normal tasks are made dormant, but a
Debugger Support task of the standard Ada Run Time System remains
responsive to inter-program communication on channel one. The
Debugger Support task performs the requested operations on the
debugger's behalf. See the Debugger B5 Specification [1-6] for a more
complete discussion of the debugging interface.

3.2.6.6 Exception Handling

When an exception is raised explicitly within an Ada program, or
implicitly due to a hardware-detected arithmetic or addressing
violation, the run-time routine RAISE is invoked. If this routine
determines that there is no active handler for the exception, and this
is the main task of the program, the program is suspended at its
current state (without "unwinding" the stack) and the upper-level
program awaiting its completion (usually the command processor) is
notified. At this point, the upper-level program may initiate a
debugger to investigate the cause of the unhandled exception.

3.2.7 KAPSE User Interface

3.2.7.1 Overall User View of the Database

The overall structure of the database hierarchy is as follows:

ROOT
I I T

SYSTEM USERS TOOLS PROJECTS

The root composite object contains four components: SYSTEM, USERS,
TOOLS, and PROJECTS. All of these components are themselves composite
objects. The SYSTEM composite object contains objects of interest
primarily to the system manager and certain maintenance tools (eg.,
backup, history indices, etc.).

The USERS composite object contains the top-level composite
object (directory) for each user of the MAPSE. A particular component
is selected by the user's USER NAME (see LOGIN below).

The TOOLS composite object contains as components all of the

standard MAPSE tools (and others added by a system manager). Each
component is an executable program context object, or a command
language script, selected by the distinguishing attribute TOOLNAME.

The PROJECTS composite object has the component distinguishing
attribute of PROJECT, and has initial components (PROJECT=>KAPSE) and
(PROJECT=>MAPSETOOLS) for use by MAPSE developers.

44

INTERMETRICS INCORPORATED 733 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02136 (617) 661-1840

3.2.7.2 LOGIN System

(a) Specification.

procedure LOGIN(USER NAME: in STRING;
USER PASSWORD: in STRING);

-- This is meant to be suggestive. The user never
-- explicitly calls this procedure.

procedure LOGOUT;

function CURRENT USER NAME return STRING;
-- This function returns the current USER NAME
-- as specified to LOGIN.

procedure CHANGE VIEW(PARTITION: in STRING);
-- This procedure redefines the .CURRENT DATA
-- window to refer to the newly selected
-- PARTITION.
-- It is implemented using standard window
-- operations (ie., CREATE WINDOW)

procedure CHANGE PASSWORD(PASSWORD: in STRING);
-- This is meant to be suggestive. Change password
-- actually turns off echoing and requests the new
-- password directly from the user's terminal.
-- After confirmation, the new password is
-- stored as the value of the USER PASSWORD
-- attribute of ".TOP LEVEL DATA." (see below).

(b) Internal Representation and Algorithms. When a user logs into the

KAPSE, the LOGIN system requests a USER NAME and a USER PASSWORD (not
echoed). The USER NAME is used to select a component from the USERS
composite object (see 3.2.7.1 above). The password is encrypted using
a non-invertible function and compared with the USER PASSWORD
attribute of this component. If the value matches, the component is
taken to be the user's top-level directory (composite object), within
which, by convention, exists a component named
INITIAL PROGRAM CONTEXT, which is invoked on the user's behalf, with
standard text input and output connected to the user's terminal. The
INITIAL PROGRAM CONTEXT normally contains the executable program image
for a full command language processor, but may contain a more
restrictive program designed to provide a user with a more controlled
environment (eg., text editing only).

From the INITIAL PROGRAM CONTEXT, the user may choose to
CHANGE VIEW to set up a different partition as the default.
Alternatively, the user may choose to initiate a totally new program
context at a different point in the database. For example, it might
be that a project's library were implemented as a private object, with
an operation MANAGE accessible only to users with a MANAGER window on
it. The project manager could invoke this operation, which might be
simply a command processor, but by so doing would prevent other
conflicting access while (s)he performed a series of privileged
operations on the DATA component of the project library private
object.

45

INTERMETRICS INCORPORATED * 733 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 (617) 661-1840

No additional primitives are needed to manipulate the USERS
composite object, or its components. Nevertheless, only users with an
appropriate window on the USERS composite object can add new users to
the system. Individual users may change their own USERPASSWORD
attribute, but not their USERNAME.

When the MAPSE is initially installed, there is a single
component of USERS named SYSTEM MANAGER, with password SYSTEM. The
SYSTEM MANAGER composite object has an INITIAL PROGRAM CONTEXT with a
SYSTEM window on the root of the entire database. The first action
after installation should be to change the SYSTEMMANAGER password.

Although sophisticated users or project managers could create for
themselves an arbitrary INITIAL PROGRAM CONTEXT (limited of course by
their access rights), most users wilt choose to follow the APSE
standard for program contexts, which includes the following standard
attributes and components:

Standard program-context attributes:

Attribute Default initial value

PROGRAM SEARCH LIST => "(.TOOLS.,.CURRENT DATA.)"

PARAMETERS => "()"

-- No parameters to top-level
-- context.

=> "(NAME=>ABC,COUNT=>3)"
-- Example of parameters to
-- lower-level context.

CONTEXT STATE => "INACTIVE"
-- State of program context
-- before activation or
-- after termination.

=> "RUNNING"
-- State of program context
-- actively running.

=> "SUSPENDED"
-- State of program context
-- suspended by user.
-- Context is waiting for
-- debugging commands,
-- restart, or termination.

Standard program-context components:

Component name Category class

.CURRENT DATA Window
-- Window on current partition, accessed by
-- default when acc 'Js path does not begin
-- with a dot.

.TOP LEVEL DATA Window
Window on user's top-level composite object

-- (directory).

46

INTERMETRICS INCORPORATED 733 CONCORD AVENUE s CAMBRIDGE, MASSACHUSriTTS 02138 * (617) 661-1840

.ROOT Window

-- WORLD window on the root kf the entire

-- database.

.TOOLS Window

-- WORLD window on the TOOLS composite object,

-- in which are executable program context

-- objects for the standard MAPSE tools.

.CALLER CONTEXT window

-- fNFERIOR window on the program context of

-- the invoking program.

-- Not present in top-level context.

.PROGRAM INITIAL PURE Simple object
-- Pure part-(code and constant data) of

-- executable program image in format
-- suitable for loading.

.PROGRAM INITIAL IMPURE Simple object
-- Initialization for impure part of

-- image, in format suitable for loading.

The executable program image is stored
-- in the program context object by the
-- linker [1-5].

.PROGRAM SUSPEND IMPURE Fimple object

-- Impure part of program image saved by
-- KAPSE when program suspended or aborted
-- (including register values).

.PROGRAM LINK MAP Simple object

.PROGRAM-LIBRARY Window

-- The LINK MAP plus the PROGRAM LIBRARY

-- window provide sufficient inTormation for
-- a debugger to correctly inspect, control,
-- and modify a suspended program.

.PROGRAM HELP Simple object

-- T-his text file contains instructions and
-- other documentation for the use of this

-- program context.

.TERMINAL INPUT Simple object

.TERMINAL OUTPUT Simple object
-- These two objects are managed by the

-- KAPSE terminal handler. Program

-- I/O are connected to these text
-- objects, with TERMINAL INPUT lengthened,

-- and TERMINAL OUTPUT displayed

-- by Ll terminal handler under

-- keyboard control.

47

INTERMETRICS INCORPORATED • 733 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 ° (617) 661-1840

.OPEN VILE 1 Reserved window

.OPEN-FILE-2 I f " "

.OPENFILE_3 " " is "
etc...

-- Eac' open file (or partition) handle
-- i -presented by a reserved window
-- on Lhe opened object (or partition).
-- OPEN FILE 1 and OPEN FILE 2 are always
-- associated with standard text input
-- and output, respectively.

.SUB PROGRAM CONTEXT Program context object
-- This component is used by default to
-- hold the program context for a program
-- called as a sub-program.
-- The PARAMETERS attribute of the context
-- are the parameters to this sub-progam.

For efficiency, the root block of a running program context object,
and other blocks on an LRU basis, are maintained in main memory. The
program context captures in one object the information the KAPSE needs
to know about a running Ada program.

3.2.7.3 User Accounting

(a) Specification. The following primitive exists to adjust budgets
associated with objects:

procedure TRANSFER BUDGETS(FROM: in STRING; TO: in STRING;
DISK AMOUNT: in INTEGER, PROCESSING AMOUNT: in INTEGER);

-- The designated number of budget units are
-- transferred from one object to another.

As usual, the names provided imply the windows on
-- the object and thereby prevent unauthorized
-- budget adjustments.
-- The root of the entire database is assumed to
-- have an unlimited budget, so that the system manager
-- may dole out initial budgets from that object.

(b) Internal Representation and Algorithms. Associated with every
object is a running total of the number of blocks that make up the
object (including shared blocks), as well as a total of the number of
processing resource units (CPU seconds) that have been used by
components that are program context objects. These totals are updated
on RELEASE of an EXCLUSIVEWRITE reservation, and on program
termination.

Along with the running totals, an object may have a disk block
budget or a processing unit budget. When either running total exceeds
the appropriate budget (if present), no further access or processing
within the object may be initiated (already running programs are
allowed to complete).

48

INTERMETRICS INCORPORATED * 733 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 (617) 661-1840

If an object does not have one of the budgets, it is limited only
by the presence of a budget on some enclosing composite object. The
budgets of the root of the entire database are both unlimited.

3.2.7.4 The Inter-User Mail System

(a) Specification. The following programs are available for sending
and receiving inter-user mail:

procedure SEND MAIL(TO USER: in STRING; SUBJECT: in STRING;
MESSAGE OBJ: in ST-RING; MAIL SEQ NUM: out INTEGER);

-- This program sends mail To the designated user.
-- The program constructs a path as
-- ".ROOT.USERS." & TO USER & ".MAILBOX"
-- and attempts to invoke the operation
-- SEND on this private object.
-- If the caller lacks sufficient access
-- rights through this path, SEND MAIL will fail.
-- In addition, this requires a window allowing
-- COPY of the MESSAGE OBJ.
-- The returned MAIL SEQ NUM may be used to check
-- if the mail has been-read.

function SEND MAIL CHECK(MAILSEQNUM: in INTEGER)
return BOOLEAN;

-- This function indicates whether the message
-- with the specified MAILSEQNUM has been
-- read.
-- This function simply fails if the message
-- was not sent by the caller.

function CHECK MAIL return INTEGER;
-- This function returns a count of the number
-- of message objects in the user's MAILBOX.
-- The path to the mailbox is assumed to be
-- ".TOPLEVELDATA.MAILBOX"

procedure READ MAIL(MESSAGE OBJ: in STRING);
-- The next message in-the user's mailbox is
-- is copied into the specified MESSAGE OBJ.
-- The following non-distinguishing attrTbutes
-- of this MESSAGE OBJ will have appropriate values:
-- FROM => USER NAME of SENDer,
-- SUBJECT => SUBJECT as specified by SENDer,
-- MAILSEQNUM => Mail sequence number of this

message.

49

INTERMETRICS INCORPORATED * 733 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

(b) Internal Representation and Algorithms. Mail is implemented using
private object operations. When a new user is added to the system,
the system manager creates a private object called MAILBOX in the
user's top-level composite object by copying the standard system
mailbox template. Each of the MAIL subprograms given above simply
invoke the appropriate operation of a mailbox private object.

For example, SEND MAIL could be written in Ada as follows:

procedure SENDMAIL(TO USER: in STRING; SUBJECT: in STRING;
MESSAGE OBJ: in STRING; MAILSEQNUM: out INTEGER) is
MAIL PATH: constant STRING

".ROOT.USERS." & TO USER & ".MAILBOX";

MAIL PARAMS: constant STRING :=
"(FROM USER=>" & CURRENT USERNAME() &

",SUBJECT=>" & SUBJECT- &
",MESSAGE_OBJ=>" & MESSAGEOBJ & ")";

begin
MAIL SEQ NUM

INTEGER' VALUE(PICK PARAM(
INVOKE OPERATION(
PRIV OBJ => MAIL PATH,
OPERATION => "SEND",
PARAMETERS => MAILPARAMS

"MAILSEQNUM"

end SENDMAIL;

3.2.7.5 User Terminal Handling

(a) Specification. The KAPSE provides a standard set of terminal

control facilit , directly available to the interactive MAPSE user:

ASCII Key Code Terminal Control Function

Control-S Stop terminal output.
(XOFF) Enter Scroll Control Mode.

(see beo--w

Control-Q Exit Scroll Control Mode.
(XON) Re-start terminal output.

Control-C Interrupt running program,
(ETX) Give control to program catching

or BREAK input interrupts.

Control-H Erase previous entered character.
(Backspace)

Control-X Erase entire line entered.
(Cancel)

50

INTERMETRICS INCORPORATED e 733 CONCORD AVENUE , CAMBRIDGE, MASSACHUSETTS 02138 (617) 661-1840

_o w

Scroll Control Mode is provided for terminal users to review output
which has gone off the screen of a video terminal, or was illegible or
lost from the printout of a hardcopy terminal.

In Scroll Control Mode, the terminal handler recognizes the
following small number of commands:

ASCII Key Code Scroll Control Mode Function

B "Back" -- Scroll the screen backward half
of a screenful, or simply retype the
previous line on a hardcopy terminal.

digit B Go back specified number of half screens
or lines, and redisplay.

F "Forward" -- Scroll the screen forward half
of a screenful, or simply retype the
next line which had been typed on a hardcopy
terminal.

digit F Go forward specified number of half screens
or lines, and redisplay.

Control-C Exit Scroll Control Mode and Interrupt
or BREAK program as above.

Control-Q Exit Scroll Ccntrol Mode, return to display
of current terminal output.

On terminals without normal ASCII keyboards, the user may define
alternate character sequences to replace the ASCII control characters,
using the SET INPUT INFO primitive (see 3.2.8.4 below). On half-duplex
systems, all controT characters (ur sequences) must be preceded by an
attention key, and terminated by the end-of-line character so that
characters are received by the KAPSE.

(b) Internal Representation and Algorithms. Scroll Control Mode is
possible because all terminal output is saved temporarily in the
program context component .TERMINAL OUTPUT. At the end of program
execution, this component may be saved if the output is considered
valuable.

In addition, all terminal input to a program is stored
temporarily in the program context component .TERMINAL INPUT, so that
historical records of program invocation can be complete. At the end
of program execution, a user may copy the .TERMINAL INPUT component
into a more permanent part of the database to avoid having to re-enter
the same input if the program is re-run at a later time. From the
point of view of history, .TERMINAL INPUT is treated as a source
object.

51

INTERMETRICS INCORPORATED 733 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 (617) 661-1640

W,~

2

3.2.8 Ada Run Time System and High-Level I/O

3.2.8.1 Ada Tasking Model

(a) Specification. Part of the KAPSE design is a model for the Ada
tasking run-time system written in Ada. See Appendix 10.2 for
complete details of the model. Listed below are the primitives
accessible to the compiled code to implement the various tasking
constructs:

Package ADARUNTIME is

procedure SETDELAY(AMOUNT: in DURATION);

procedure SIMPLEACCEPT(ENTRYNIM: in INTEGER);

procedure ENTRYCALL(TSK: in TCBPTR; ENTRYNUM: in INTEGER;
TIMELIMIT: in DURATION);

procedure SETOPEN(ENTRYNUM: in INTEGER; SLCTINDEX: in INTEGER);

procedure READY TO TERMINATE;

procedure SELECTCALLER(TIMELIMIT: in DURATION);

procedure ABORTTASK(TSK: in TCBPTR);

procedure TERMINATE;

procedure CREATE TASK(TSK: out TCBPTR; PRIO: in PRIORITY;
NUM ENTRIEST in INTEGER);
-- Create a new TCB and add it to the
-- current scope's initialization queue.

procedure INITIATE TASKS;
-- Initiate aTl tasks on the current
-- scope's initialization queue.

procedure RAISEFAILURE(TSK: in TCBPTR);

(b) Internal Representation and Algorithms. A task control block
(TCB) is allocated for each active task. A globally accessTElT
variable contains a pointer to the current running task TCB. All
other tasks are on either an initialization queue, a runnable task
queue, an entry call queue, or a rendezvous-stack.

52

INTERMETRICS INCORPORATED 733 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 (617) 661-1840

- ,

3.2.8.2 Storage Management

(a) Specification. Two primitives are provided by the KAPSE to
control the tota storage allocated to a single program:

procedure GET STORAGE(AMOUNT: in NATURAL; WHERE: out ADDRTYPE);
-- AMOUNT is given in STORAGEUNITs.

procedure FREESTORAGE(AMOUNT: in NATURAL; WHERE: in ADDRTYPE);

end ADARUNTIME;

(b) Internal Representation and Algorithms. The KAPSE keeps track of
storage allocated to the various running Ada programs, allowing them
to dynamically increase and decrease their allocation as execution
progresses. The host system may limit total allocation, and may
require that actual allocation be fixed for the lifetime of a program,
so that the dynamic allocation only affects storage already committed
to the program.

3.2.8.3 Package INPUT OUTPUT

(a) Specification. Package INPUT OUTPUT is implemented according to
the specification in the Ada LRM [G-l, section 14.1].

(b) Internal Representation and Algorithms. Internally, all
operations are converted to 6perations on bit arrays, allowing
arbitrary types of objects to be handled. The conversion to standard
types is made within the generic body of the package, while the bulk
of the processing is done in a non-generic package to avoid multiple
instantiations.

3.2.8.4 Package TEXT 10, Interactive/Terminal I/O Extensions

(a) Specification. Package TEXT 10 [G-l, 14.3] is
extended to include additional operations to facilitate interactive
text I/O. All operations succeed on normal disk text files, although
they may not have any effect.

Package TEXTIO is

package CHARACTERIO is new INPUTOUTPUT(CHARACTER);

type IN FILE is new CHARACTER IO.IN FILE;
type OUTFILE is new CHARACTERIO.OUTFILE;

-- As in Ada LRM

53

INTERMETRICS INCORPORATED 733 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 (617) 661-1840

.. ,4-"2
"

-1

procedure SET ECHO(INPUT: in IN FILE; OUTPUT: in OUT FILE);
-- Sets cursor and echoing-of INPUT at current
-- line and column of output. Each character GET from
-- INPUT advances the column of both the INPUT and
-- the OUTPUT files (although the column numbers will
-- not necessarily be the same).

procedure NO ECHO(INPUT: in IN FILE);
procedure NO-ECHO(OUTPUT: in OUT FILE);

-- Either of these calls wiTl break any
-- echoing association.

procedure SET LINE LENGTH(FILE: in OUTFILE; N: in INTEGER);
-- As in-Ada LRM 14.3.2.

procedure SET COL(FILE: in OUT FILE; TO: in NATURAL);

-- As in Ada LRM 14.3.2.

procedure SET LINE(FILE: in OUT FILE; TO: in NATURAL);
-- Only allowed if a fixed-LINE LENGTH has been
-- specified for the output fiTe.
-- This procedure is used to provide random access
-- terminal screen output.

procedure GET OUTPUTINFO(FILE: in OUTFILE;
INFO: out OUTPUTINFOBLOCK);

procedure SET OUTPUT INFO(FILE: in OUT-FILE;

INFO: in OUTPUT YNFO BLOCK);
-- The OUTPUT INFO BLOCK retains information such as
-- the terminal's-screen height and width (zero height
-- indicates hard copy, zero width indicates OUT FILE
-- is not associated with a physical terminal).

procedure GET INPUT INFO(FILE: in IN FILE;
INFO: out-INPUT-INFOBLOCK);

procedure SET INPUT INFO(FILE: in INFILE;
INFO: in INPUT INFO BLOCK);

-- The INPUTINFO BLOCK retains information such as
-- the specific keyboard control characters used to
-- control the various terminal handling functions.
-- In addition, the INPUT INFO BLOCK records
-- which characters cause program wakeup when
-- typed (others are buffered up and a control
-- character may be used to delete them
-- before they are received by a program).

end TEXT_10;

54

INTERMETRICS INCORPORATED * 733 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 (617) 661-1840

t"low

(b) Internal Representation and Algorithms. All terminal output is
actually written to a temporary file in the program's context object.
All operations such as SET LINE and SETCOL are in terms of this
temporary file. The terminal handler normally keeps the last line of
this temporary file as the last line on the screen. However, the user
may choose to scroll backward to see previous lines of output, or to
simply hold the screen image at a particular line (see 3.2.7.5). When
echoing is set, the terminal handler makes sure that the current LINE
and COL of the output are on the screen before setting the cursor
there and requesting input on the associated IN FILE.

3.2.8.5 Package FORMATTED 10

(a) Specification. Along with the above extensions to TEXT 10, the
KAPSE defines a FORMATTEDIO package to provide the faciTities of
Fortran-like FORMAT I/O:

Package FORMATTEDIO is

type FORMAT is private;

function CONV FMT(FMT: in STRING) return FORMAT;
-- Given a STRING in Fortran FORMAT syntax, check
-- the correctness of the syntax and compress to
-- facilitate further use.

procedure FWRITE(FILE: in TEXT lO.OUT FILE; FMT: in FORMAT);
-- Start output using the given Tcompressed) FORMAT.

procedure FPUT(ITEM: in STRING);
-- This uses the "Aw" format.

procedure FPUT(ITEM: in FLOAT);
-- This typically uses "Fw.d" formats.

procedure FPUT(ITEM: in INTEGER);
-- This typically uses the "Iw" format.
-- Continue output, using the next format specifier
-- from the format specified in the most recent FWRITE call.
-- The user may choose to further overload FPUT by writing
-- versions that take a sequence of INTEGERS or FLOATS or
-- some useful combination.

procedure FEND;
-- Terminate output, force characters out to file.

procedure FREAD(FILE: in TEXT IO.IN FILE; FMT: in FORMAT);
-- Start input using the-given-(compressed) FORMAT.

55

INTERMETRICS INCORPORATED 733 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 (617) 861-1840

procedure FGET(ITEM: out FLOAT);
-- This typically uses the "Fw.d" format.

procedure FGET(ITEM: out INTEGER);
-- This typically uses the "Iw" format.
-- Continue input, using the next format specifier from
-- the FORMAT specified in the most recent FREAD call.
-- The user may choose to further overload FGET by writing
-- versions that take a sequence of INTEGERS or FLOATS
-- or some other useful combination.

end FORMATTED IO;

(b) Internal Reresentation and Algorithms. The package FORMATTED 10
is implemented in Ada, using-ckage TEXT._I and package INPUT OUTPUT,
ensuring that it is easily transportable to other Ada installations.

(c) Examples.

declare
Fl: constant FORMAT := CONVFMT("213, F8.2");
I,J,K: INTEGER := 5;
Z: FLOAT := 3.22;

begin
FWRITE(FILE, FI);

FPUT(I+J); FPUT(25); FPUT(Z); FEND;

FWRITE(FILE,CONV FMT(" 'The Answer is ',16//"));
FPUT(K*127); FEND;

end;

3.2.9 KAPSE/Host Interface -- VM/370 and OS/32

3.2.9.1 Overall Architecture

The overall architecture of the KAPSE/Host interface is a number
of independently executing Ada programs running concurrently on the
host machine. Each independent Ada program has its own run-time
system, including an Ada task scheduler. The host system provides the
timesharing and swapping of the independent programs.

One of the Ada programs is special -- the Data Base Manager.
This program insulates the rest of the programs from most of the
idiosyncracies of the host system facilities. As far as is possible
on the particular host, the other programs are prevented from
accessing host facilities directly, thus ensuring that the KAPSE
Database is not corrupted.

56

INTERMETRICS INCORPORATED 733 CONCORD AVENUE , CAMBRIDGE, MASSACHUSETTS 02138 (617) 661-1840

• , ; .I
I ----

(a) IBM VM/370. This overall logical architecture is mapped onto the
VM/370 system by providing each independent user with a separate
virtual machine (see IBM VM/370 documentation [N-ITT). After LOGIN, the
virtual machine has a single program running in it: the user's
command language processor. The additional programs initiated by the
command processor share this same virtual machine. The multiple
programs within a single virtual machine are managed by the User VM
Manager running in supervisor mode in the virtual machine.

In addition to the user virtual machines, the KAPSE requires that
its own virtual machine be initialized with the Central Data Base
Manager (CDBM). The CDBM initiates all physical disk I/O and includes
the central buffer cache. The individual User VM Managers handle
terminal I/O, in cooperation with the CDBM. All communication between
virtual machines is performed using the Virtual Machine Communication
Facility (VMCF), a high-band-width memory-to-memory data path provided
by the VM/370 Control Program [N-i].

(b) Perkin-Elmer OS/32. The same overall logical architecture is
mapped differently onto the OS/32 system, by providing each
independent executing Ada program with its own OS/32 task. User
programs execute in a mode whereby the only OS/32 SVC 6 system calls
they can perform are inter-task communication. They ace not permitted
to directly stop, start, or otherwise interfere with other tasks
(NOCON mode -- see OS/32 Programmer's Manual [N-2]).

The Data Base Manager (DBM) runs in its own OS/32 task, with
access to all OS/32 system calls. It initiates all physical I/O,
including terminal and disk, and thereby can optimize physical disk
access and provide the central buffer cache. All OS/32 tasks
communicate using the standard OS/32 inter-task communication
primitives, a memory-to-memory queue-based daua path [N-2].

3.2.9.2 Physical Disk I/O

(a) Specification. The following low-level subprograms are
implemented for each host, to provide physical disk I/O and
allocation:

Package KAPSE HOST INTERFACE is

function ALLOCATE BLOCK(PREDECESSOR: in BLOCKID)
return BLOCK YD;

-- This function allocates one physical block, and
-- initializes its reference count to one.
-- If PREDECESSOR is non-zero, ALLOCATE BLOCK
-- attempts to allocate a block as cloe as
-- possible to the optimal separation from it,
-- so that later sequential access should be able to
-- get successive blocks without missing revolutions.

57

INTERMETRICS INCORPORATED 733 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 (617) 661-1840

___________ ___________

procedure INCREMENT BLOCK REF(BLK: in BLOCK ID);
-- This procedure increments the reference count to

-- the designated block.

procedure DECREMENT BLOCK REF(BLK: in BLOCK ID);

-- This procedUre decrements the reference count to

-- the designated block. If the count reaches zero,

-- the block is made available for future

-- ALLOCATEBLOCK calls.

type BUFFER DATA(MAX NUM BITS: INTEGER) is record

NUMBITS: 0..MAX NUR BITS;
-- Current number of bits of DATA.

DATA: PACKEDBITVEC(1..MAX NUMBITS);

end record;

type BUFFER DATA PTR is access BUFFER DATA;

-- BUFFER DATA is used for holding
-- actuaT data of a block.

task type BUFFER is

entry FILL(DATA: in BUFFER DATA PTR);

entry DRAIN(DTA: out BUFFER__DATAPTR);
end BUFFER;

type BUFFER PTR is access BUFFER;
-- BUFFER is used to synchronize access to

-- a buffer of data.
-- FILL is accepted only when the BUFFER is
-- empty, and leaves it full.
-- DRAIN is accepted only when the BUFFER is

-- full, and leaves it empty.

procedure READ BLOCK(BLK: in BLOCK ID; DATA: in BUFFERPTR);
-- This procedure reads in the block
-- designated by BLK.
-- READ BLOCK returns immediately;
-- the data is filled in asynchronously.

procedure WRITE BLOCK(BLK: in BLOCK ID; DATA: in BUFFERPTR);
-- This procedure writes out t]e block
-- designated by BLK.
-- WRITE BLOCK returns immediately;
-- the data is drained asynchronously.

58

INTERMETRICS INCORPORATED * 733 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

(b) Internal Representation and Algorithms --VM/370. The Central Data
Base Manager virtual machne is assigned a number of virtual
mini-disks within the VM/370 Directory. Each of these mini-disks
consists ot a number of cylinders, with each cylinder holding a number
of the KAPSE fixed-size blocks. The BLOCK ID returned after block
allocation identifies the mini-disk, the Zylinder, and the block
within cylinder.

Blocks are allocated so that sequential blocks are in the same
cylinder, if possible, with a separation from the predecessor block
determined by the physical characteristics of the device type of the
mini-disk. The logically sequential blocks of an object are allocated
non-contiguously to allow for the delays associated with a
time-sharing environment, which prevent a user program from processing
data as fast as the disk could provide it.

The reference counts are maintained in their own disk blocks,
separately from the data blocks. They may be updated without
rewriting the data of the block itself. The reference counts are
scanned to locate a free block in the predecessor's cylinder, with the
appropriate separation. Recently accessed reference count blocks are
cached in main memory to speed this process.

(c) Internal Re resentation and Algorithms --OS/32. The OS/32 Data
Base Manager task obtains disk storage by creatTing contiguous OS/32
files with a consistent naming scheme. The files are then assigned to
the DBM with exclusive read/write, thereby preventing other OS/32
tasks from corrupting the data. After creating such a file, it is
treated much like the VM/370 mini-disk, with reference counts and data
placed in separate areas of the file.

3.2.9.3 Terminal I/O

(a) Specification. The following primitives are available to the
KAPSE for terminal input/output:

procedure READ TERMINAL(TERM: in INTEGER; ECHO: in BOOLEAN;

DATA: in BUFFER PTR; MAX CHARS: in INTEGER);
-- This procedire sets Gp a buffer for characters
-- to be read from the specified terminal,
-- with or without echoing.
-- The buffer will be filled when the MAX CHARS limit
-- is reached, or when any ASCII control
-- character is typed (including DEL).
-- NUM BITS of the associated BUFFER DATA
-- indicates actual number of characters accepted.
-- With MAX CHARS => 1, the buffer is filled as
-- soon as-the next character is typed.
-- ASCII control characters are never echoed
-- by READ-TERMINAL, independent of ECHO.

59

INTERMETRICS INCORPORATED 733 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 (617) 661-1840

- - .- - -

procedure WRITE TERMINAL(TERM: in INTEGER;

DATA: in BUFFER PTR)
-- This procedure writes characters to the
-- specified terminal.
-- DATA must have been filled in previously,
-- and will be drained asynchronously.

procedure SET TERMINAL INFO(TERM: in INTEGER;
INFO: in TERMINALINFOBLOCK);

procedure GET TERMINAL INFO(TERM: in INTEGER;

INFO: out TERMINAL INFO BLOCK);
-- These procedures pass along information
-- between the host terminal device driver
-- and the KAPSE terminal handler.

-- In the case of hard-wired terminals, the host
-- may know the characteristics of the
-- terminal. For dial-up terminals, the user
-- must in general specify the appropriate

-- information explicitly via SET INPUT INFO
-- and SET OUTPUT INFO (see 3.2.87.4 above),

-- which the KAPSE will then digest and send
-- along via SETTERMINALINFO.

(b) Internal Representation and Algorithms -- VM/370. Each User VM
Manager controls input and output for its own associated terminal,
using the virtual interface provided by the VM/370 Control Program
(CP). The Central Data Base Manager informs the User VM Manager which
file handles of the user programs refer to the terminal, allowing the
User VM Manager to intercept reads and writes and handle the requests
directly.

(c) Internal Representation and Algorithms -- OS/32. The Data Base
Manager task on OS/32 handles all terminal-I- for the KAPSE.
Individual user tasks need not be rolled in for echoing to proceed,
and character and line deletion to be processed.

For each user a separate Ada task within the Data Base Manager
handles the terminal. When an input buffer is complete, the waiting
user OS/32 task is activated by sending it a message containing the
characters.

60

INTERMETRICS INCORPORATED 733 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 (617) 661-1840

3.2.9.4 Device Input/Output and Import/Export

(a) Specification. Device objects (see CREATE DEVICE OBJ above) are
used as the access points for device I/O and imporf and export.
Because only a system manager may create device objects, the correct
syntax for HOST DEVICE NAME need not be known to the normal user, and
may be host-dependent.

The following primitives exist to read or write host files or
phsical I/O devices:

type FILE MODE is (IN MODE, INOUTMODE, OUTMODE);
type DEVICEHANDLE is-private;

OPEN DEVICE(DH: in out DEVICE HANDLE;

HOSTDEVICENAME: in STRING; MODE: in FILEMODE);

READDEVICE(DH: in DEVICEHANDLE; DATA: in BUFFERPTR);

WRITEDEVICE(DH: in DEVICEHANDLE; DATA: in BUFFERPTR);

CLOSE DEVICE(DH: in out DEVICE HANDLE);
-- Whenever a user reads or writes a devi.ce
-- object, the KAPSE retrieves the HOST DEVICE NAME
-- stored when the device object was created,
-- and passes the request off to these KAPSE/Host
-- interface procedures.

SET DEVICE INFO(DH: in DEVICE HANDLE;
INFO: Tn DEVICEINFOBLOCk);

GET DEVICE INFO(2 H: in DEVICE HANDLE;
INFO: out DEVICE INFO BLOCK);

-- A certain amount of device control and status
-- information may be set and retrieved using
-- these calls. These are externally accessible
-- as KAPSE calls SETFILEINFO and GETFILEINFO.

(b) Internal Representation and Algorithms --VM/370. On the VM/370
the HOST DEVICE NAME implies the virtual device address and device
type. Using commands to VM/370 CP, a user or operator can connect
what appears to be a virtual punch on one VM to be a virtual card
reader on some other VM. In this way, export/import can be with
actual devices, or files on other operating systems.

(c) Internal Representation and Algorithms --OS/32. On OS/32 the
HOST DEVICE NAME implies the physical device mnemonic, or the volume
and file name of the host file.

61

INTERMETRICS INCORPORATED * 733 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

3.2.9.5 Ada Tasking Support

The KAPSE uses Ada tasking constructs to accomplish the
management of multiple concurrent database and inter-program
communication requests. Each Ada program has run-time routines to
provide multi-tasking, but requires additional support to provide
time-based scheduling. The support of the Ada tasking run time
routines is thus an important part of the KAPSE/Host interface.

(a) Specification.

procedure SET INTERRUPT SERVICE(ADDR: in ADDRTYPE);
-- This routine is called by the
-- Ada run time system to specify
-- the routine which will handle all
-- (pseudo) interrupts from the host.

type INTERRUPT is (CLOCK, MESSAGE);
procedure INTERRUPT SERVICEROUTINS(KIND: in INTERRUPT;

DATA: in ADDR TYPE);
-- This is the spec for a typical interrupt
-- service routine.
-- When the routine is called, the parameters
-- indicate the kind of interrupt and where
-- any associated data reside.
-- The address of this routine is passed
-- to SET INTERRUPT SERVICE.

procedure CET TIME C: fAY TIME: out CALENDAR.TIME);

procedure ST TIMFPR HOW LONG: in DURATION);
-- RequeSt thiat a Limer interrupt be
-- generate& after the specified duration.

(b) Internal Representation and Algorithms --VM/370. On the VM/370,
the Control Program handlTei s -ime-sharing andpaging among separate
virtual machines, while the User VM Managers handle time-slicing among
the multiple Ada programs within a single VM.

A User VM Manager provides an Ada program with a pseudo interrupt
when its timer goes off, or when a message is received. All timers
are based on real time rather than virtual time, using the Set Clock
Comparator instruction [N-l.

(c) Internal Representation and Al orithms --OS/32. On OS/32, the
task queue facility is used to implement SET INTERRUPT SERVICE, and
the timer management system calls are used To implement SET TIMER
[N-2].

62

INTERMETRICS INCORPORATED * 733 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

t l l l I lI i ! ~

3.2.9.6 Program Loading and Initiation

(a) Specification. The following procedure is provided to interface
to the host program loading and initiation facilities:

procedure LOAD PROGRAM(PURE PART: in STRING;
IMPURE PART: in STRING;-ID: out PROGRAM ID);

-- This procedure loads and initiates The designated
-- program. The returned PROGRAM ID may
-- be used later to communicate w-th the
-- program.
-- The PURE PART and IMPURE PART are simple
-- objects in a form suitaEle for loading
-- by the host system. The history attribute
-- of the PURE PART uniquely identifies the
-- state of its content, and the implementation
-- may attempt to share code for multiple
-- programs using the same PUREPART.

The historical age of the PURE PART is used as an indication of its
MAPSE longevity. Extra effort will be made to share PURE-PART code
which is indicated to be sufficiently "established."

(b) Internal Representation and Algorithms --VM/370. Programs are
loaded by transferring the code and data images via VMCF, and then
relocated to an available location within the user's virtual machine
by the User VM Manager.

A limited number of named discontiguous shared segments are
created and allocated when the KAPSE is installed, for the purpose of
holding images of code used simultaneously by separate VMs. When
sharing is, warranted, the Central Data Base Manager will copy the pure
part into an available shared segment, by first turning off
protection, copying into the segment, and then turning it back on. It
then informs the appropriate User VM Managers the name of the shared
segment [N-l] .

(c) Internal Representation and Algorithms --OS/32. Unshared Ada
programs are initiated by loadig a pre-initialized-OS/32 task image
whose sharable pure segment includes the standard Ada run time system.
The start-up code of the task reads the blocks of code and data into
its impure segments.

A limited number of host files are created and allocated when the
KAPSE is installed, for the purpose of holding OS/32 task images with
sharable segments. When sharing is warranted, the Data Base Manager
task copies the pure and impure parts of the Ada program into the file
in Task Establisher Task (TET) format, and then uses that file for
task loading [N-2]. These files are re-used dynamically on a LRU
basis.

63

INTERMETRICS INCORPORATED * 733 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

,, ,,x

3.2.9.7 Inter-Program Communication

(a) Specification.

procedure IPC SEND(ID: in PROGRAM ID; DATA: in BUFFERPTR);
-- Send The message to the designated program.
-- The program will receive a pseudo interrupt
-- when the message is received, and access
-- to a copy of the data. The data will
-- be drained as soon as the communicaiton
-- is successful.
-- IPC SEND automatically records the PROGRAM ID
-- of the sending program within the data
-- received.

end KAPSEHOSTINTERFACE;

(b) Internal Representation and Algorithms --VM/370. All
communication between virtual machines is accomplished using the
Virtual Machine Communication Facility. This provides an interrupt to
the receiving VM when a message is ready. The data is copied using a
fast memory to memory transfer [N-l].

(c) Internal Representation and Algorithms -- OS/32. Communication
between OS/32 tasks uses the task message facility. Pseudo interrupts
are provided to the receiving task when a message is ready.

For large transfers, OS/32 provides the ability to send and
receive open file handles. If the overhead of messages becomes
unwieldy in a running MAPSE, it will be possible to switch to a method
of data transfer involving writing to a scratch file from one task,
and then reading the data back in the receiving task [N-2].

64

INTERMETRICS INCORPORATED * 733 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

__, $11

3.3 Adaptation and Rehosting

3.3.1 Installation parameters

The following parameters must be supplied as part of installing a
KAPSE on a particular host:

1. The block size;
2. The number of block buffers in the buffer cache;
3. The maximum number of simultaneous users;
4. The maximum number of simultaneous programs.

3.3.2 Operation parameters

The following parameters may be adjusted on a running KAPSE to reflect
a changing operational environment:

1. The maximum memory allocation per program;
2. The limit on number of simultaneous

programs per user;
3. Host-dependent scheduling parameters;
4. The names and numbers of device objects (see 3.2.3.1).
5. Processing and disk budgets (see 3.2.7.3).

3.3.3 System Capacities

KAPSE performance will vary according to user load and host system
speed and capacity. In addition to the above installation and
operation parameters, the following parameters will have a significant
impact on throughput and response time:

1. The current number of simultaneous programs;
2. The amount of database access;
3. The locality of database access;
4. The amount of inter-program communication;
5. The number of simultaneous interactive users.

3.3.4 Rehosting Requirements

Rehosting the KAPSE will require retargeting the Ada compiler and
re-implementing the KAPSE/Host interface. The KAPSE/Host interface
has been kept as simple and low-level as possible to facilitate
rehosting to a new host system or bare machine.

Any host must provide some kind of direct access disk or other
on-line storage device. The host must also provide some kind of
asynchronous pseudo interrupt to implement Ada real-time constructs
and inter-program communication.

65

INTERMETRICS INCORPORATED 733 CONCORD AVENUE CAMBRIDGE, MASSACHUSETTS 02138 (617) 661-1840

4. QUALITY ASSURANCE

Because the KAPSE serves as the guardian of the entire database,
the testing and validation procedure must be very intensive. The
general approach is to use automation and parallel efforts to achieve
a high level of confidence in a short time. These activities are
illustrated below:

KAPSE Sub-Project

fr(c tiootst r,

CCut I FR

Int ,r facls :1ch1n1

Tes 'anf,t S<,t at
• •

K] Reliability

Test

I Plan

tl iabi 1it y

E Full [Product ion

Functiona i y om,i h,r Performanc
• •• Tetl~qInteqraticn Tu ninq

D~iak)l ical
'I-st in.

66

INTERMETRICS INCORPORATED * 733 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

- • "' "f~~~ * -. ,lllr

4.1 Ada Machine Testing

The Ada machine consists of implementations of all routines
called implicitly by Ada programs, and the specifications and bodies
of all subprograms defined by the standard environment. it includes
heap management, tasking, and all other Ada operations defined by the
language as well as the KAPSE/VM370 interface routines (the first
host). The Ada machine test set consists of the ACVS compiler
validation set.

4.2 Production Input/Output Tests

The next test/production phase covers basic database functions
below the user level. These include the following functions:

1. KAPSE/Host interfaces;
2. Disk volume identification/initialization;
3. Disk block allocation and reference-counting;
4. Disk block read, write, copy;
5. Block totals, join-counting, reserve/release;
6. Composite objects and distinguishing attributes -- creation and

deletion of simple object components;
7. Non-distinguishing attributes;
8. A primitive history attribute, logging all KAPSE calls.

When the units listed above have been tested individually, the project
begins to develop the production software on the system developed so
far, rather than the bootstrap environment. Database integrity is the
responsibility of a human software librarian, who does manual backups
daily. "Self-use," or further development of the KAPSE on the KAPSE,
is ti- 2rimary form of integration testing at this point.

4.3 KAPSE Version 1 Test Case Generation

The scripts saved during this phase, especially those which
failed or caused a system crash, will become the primary set of
regression tests. The MAPSE project manager will run the regression
and other tests and commit the entire KAPSE/MAPSE project to the use
of "KAPSE-l" as a development system, after the following additional
features have been developed:

1. Categories;
2. All remaining operations on components of composite objects;
3. Partitions;
4. Access rights and capacities;
5. Windows stored in the database;
6. Automatic backup and recovery;

The combined set of unit, integration, and regression tests
developed by this point are a proposed AIE validation set (PAVS).
They are used as an acceptance test for new releases of the KAPSE to
the rest of the AIE project. A program will be developed to
automatically run this test set once, or repeatedly, and check for
correct execution of all tests.

67

INTERMETRICS INCORPORATED, 733 CONCORD AVENUE CAMBRIDGE, MASSACHUSETTS 02138 (617) 861-1840

4.4 Ki Reliability Test

The PAVS tests will be run cyclicly on the version 1 KAPSE for
two weeks without crashing. It is estimated that four weeks of
calendar time will be needed to debug version 1 to the point of
surviving two weeks. This reliability testing overlaps additional
development work in the areas of:

i. The remainder of the history mechanisms;
2. Complete configuration management primitives;
3. User budgets and accounting;
4. Login/Logout;
5. Management-oriented data maintenance;
6. Full terminal handling software.

4.5 Full Function Testing

Afte incorporating any changes indicated by the outcome of K1
reliability testing, and the list of new developments above, KAPSE
version two and test set K2 are developed. Set K2 includes set KI,
specific unit tests for the new features, scripts saved from all K1
crashes, and any other tests which will be required for government
acceptance. Testing and debugging are continued until all K2 tests
have been passed. Next the KAPSE is recompiled with the production
compiler, and set K2 is repeated. KAPSE version three consists of
version two as recompiled and re-debugged with respect to test set
K2.

4.6 KAPSE Version 3 Testing

Version three testing will proceed as three parallel efforts:
The first will be the capacity and reliability test, consisting of
running the full K2 set continuously for two weeks with a database
constantly growing in number of objects, users, categories, etc. At
the same time, there will be diabolical testing, consisting of giving
skilled programmers specific instruction and motivation to find ways
to defeat access controls, corrupt the database, etc. And finally, as
programmers make corrections and performance improvements, they will
perform development testing.

4.7 Acceptance Testing

The acceptance test consists of the K2 set, the capacity and
reliability test, the scripts generated during successful and
unsuccessful diabolical tests, and throughput tests to measure
performance against the level A requirements.

68

INTERMETRICS INCORPORATED 733 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 (617) 661-1840

?m __ _____,____________

10. APPENDIX

10.1 Package INPUT OUTPUT in Ada

This is a preliminary effort to implement Package INPUT OUTPUT in Ada,
as a model for any machine language implementation:

with KAPSETYPES;
generic

type ELEMENT TYPE is limited private;
package INPUT OUTPUT is

type IN FILE is limited private;
type OUT FILE is limited private;
type INOUTFILE is limited private;

type FILEINDEX is range KAPSETYPES.FILEINDEX'RANGE;

-- general operations for file manipulation

As in Ada LRM

private
-- declarations of the file private types
type IN FILE is new FILE HANDLE(ELEMENT TYPE'SIZE);
type OUT FILE is new FILE__HANDLE(ELEMENT -TYPE'SIZE);
type INOUT_FILE is new FILE_HANDLE(ELEMENTTYPE'SIZE);

end INPUTOUTPUT;

package KAPSE TYPES is
FH CLOSED: constant -1; -- initial value for file handles.
type FILE HANDLE(SIZE IN BITS:INTEGER := 0) is

record
FH INDEX: INTEGER := FHCLOSED;

end record;

type FILE INDEX is range 0..(2**31)-l;
type FILE-NAME(LEN:0..256 := 0) is

record
NAME:STRING(l..LEN);

end record;
subtype ADDRESS TYPE is LONG-INTEGER;
type KAPSE STATUS is

(NO_ERROR, NAMEERROR, USE ERROR, STATUS ERROR,
DATA ERROR, DEVICE ERROR, ENDERRORT;

type FILEMODE-is (IN-MODE, INOUTMODE, CRINOUTMODE,
CR OUT MODE, OUT MODE);

type KAPSE OPERATION is (CREATE-OPEN, GETPUTSTAT, READWRITE,
etc...);

69

INTERMETRICS INCORPORATED * 733 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

- 'Ii1

type KAPSE ARG(OPERATION:KAPSEOPERATION) is
record

STATUS: KAPSE STATUS := NOERROR;
case OPERATION is

when CREATE OPEN =>
OPENFH: FILE HANDLE;
OPEN NAME: FILE_NAME;
OPEN-MODE: FILEMODE;
when CLOSE =>
CLOSE FH: FILE HANDLE;

when GET PUT STAT =>
STAT PUT FLAG: BOOLEAN : FALSE;
STAT-FH:-FILE HANDLE;
STAT -SIZE: FITE INDEX;
STAT-FIRST: FILE INDEX;
STAT-LAST: FILEINDEX;
STAT-NEXT READ: FILE INDEX;
STAT INEXT WRITE: FILEINDEX;
when READ WRITE =>

WRITE FLAG: BOOLEAN := FALSE;
RW FH: FILE HANDLE;
RW-ADDRESS: ADDRESS TYPE;
RW-SIZE: INTEGER;

end case;
end record;

end KAPSETYPES;

with KAPSE TYPES,GENIO; use KAPSE TYPES;
package body INPUTOUTPUT is

procedure RAISE EXCEPTION(STATUS: KAPSESTATUS) is
begin

case STATUS is
when NAME ERROR => raise NAME ERROR;
when USE ERROR => raise USE ERROR;
when STATUS ERROR => raise STATUS ERROR;
when DATA ERROR => raise DATA ERROR;
when DEVICE ERROR => raise DEVICE ERROR;
when END_ERROR => raise ENDERROR;

when others => null;

end case;
end RAISEEXCEPTIONS;

-- Typical implementations for file manipulation procedures.
-- This is only a representative sample.

procedure CREATE(FILE:in out INOUTFILE; NAME:in STRING) is
STATUS: KAPSESTATUS;

beg i n
GENIO.CREATE OPEN(FILE HANDLE(FILE), NAME,

CR INOUT MODE, STATUS);
RAISE EXCEPTION(STATUS);

end CREATE;b

70

INTERMETRICS INCORPORATED * 733 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 (817) 661-1840

procedure OPEN (FILE:in out INOUTFILE; NAME:in STRING) 's
STATUS: KAPSESTATUS;

begin

GENIO.CREATE OPEN(FILE HANDLE(FILE), NAME,
INOUT MODE, STATUST;

RAISE EXCEPTION(STATUS);
end OPEN;

procedure CLOSE (FILE:in out OUTFILE) is
STATUS: KAPSESTATUS;

begin
GENIO.CLOSE(FILE HANDLE(FILE), STATUS);
RAISE EXCEPTION(STATUS);

end CLOSE;

function ISOPEN(FILE:in INOUTFILE)return BOOLEAN is
begin

return GENIO.ISOPEN(FILEHANDLE(FILE));

end ISOPEN;

-- Typical implementations for input and output operations.

-- This is only a representative sample.

procedure READ (FILE:in IN FILE; ITEM:out ELEMENT-TYPE) is
STATUS: KAPSE STATUS;
LOCALITEM: ELEMENT TYPE;

-- Use local in case actual

-- constrained.
begin

GENIO.READ(FILE
HANDLE(FILE),

LOCAL ITEM'ADDRESS, STATUS);
RAISE EXCEPTION(STATUS);
ITEM LOCAL ITEM;

-- Might cause constraint exception

end READ;

function NEXT READ (FILE:in IN FILE) return FILE INDEX is
STATUS: KAPSE STATUS;

RECNUM: FILEINDEX;
begin

GENIO.NEXT READ(FILE HANDLE(FILE), STATUS,
KAPSETYPES.FILE INDEX(RECNUM));

RAISE EXCEPTION(STATUS);
return RECNUM;

end NEXTREAD;

procedure RESET READ (FILE:in INFILE) is

STATUS: KAPSE STATUS;
begin

GENIO.RESET READ(FILE HANDLE(FILE), STATUS);
RAISE EXCEPTION(STATUS);

end RESET_READ;

71

INTERMETRICS INCORPORATED 733 CONCORD AVENUE CAMBRIDGE, MASSACHUSETTS 02138 (617) 861-1840

7w -" -f I- VP

procedure WRITE(FILE:in INOUT FILE; ITEM:in ELEMENTTYPE) is
STATUS: KAPSESTATUS;

begin
-include ITEM'SIZE in WRITE in case
-- variable length records.

GENIO.WRITE(FILE HANDLE(FILE), ITEM'ADDRESS,
ITEM'SIZE, STATUS);

RAISE-EXCEPTION(STATUS);
end WRITE;

end INPUTOUTPUT;

with KAPSE TYPES; use KAPSETYPES;
package body GENIO is

-Possible implementations for the generalized I/O
-- operations.

procedure CREATE OPEN(PH:in out FILE HANDLE;
NAME:in STRING; MODE:in PILEMOD E;
STATUS:out KAPSE STATUS) is

bgnARG: KAPSEARG(CREATEOPEN);

if FH.FHINDEX /= PH CLOSED then
STATUS := STATUS_ ERROR;

else
ARG.OPEN NAME :(NAME'LENGTH,NAME);
ARG.OPENMODE :=MODE;
ARG.OPEN PFH :=PH;
KAPSECALL(ARG);
PH :=ARG.OPEN PH;
STATUS :=ARG.§TATUS;

endif;

end CREATE-OPEN;

procedure CLOSE(FH: in out FILE-HANDLE;

STATUS: out KAPSE STATUS) is
ARG: KAPSEARG(CLOSE);

begin
if FH.FHINDEX = PH CLOSED then

STATUS := STATUS-ERROR;
else

ARG.CLOSE PH := PH;
KAPSECALL(ARG) ;
PH := ARG.CLOSE PH;

STATUS :=ARG.STATUS;
endi f;

end CLOSE;

72

INTERMETRICS INCORPORATED *733 CONCORD AVENUE *CAMBRIDGE, MASSACHUSETTS 02138 *1817) 881-1840

procedure NEXT READ(FH: in FILE HANDLE;

STATUS: out KAPSE STATUS; REC NUM: out FILE-INDEX) is

ARG: KAPSEARG(GETPUTSTAT);

beg in
ARG.STAT FH := FH;
KAPSE CAPLL(ARG);

STATUS := ARG.STATUS;

REC NUM := ARG.STATNEXT READ;

end NEXT-READ;

procedure END OF FILE(FH: in FILE HANDLE;

STATUS: out KAPSE STATUS; AT END: out BOOLEAN) is

ARG: KAPSEARG(GETPUTSTATT;

beg in
ARG.STAT FR := FH;

KAPSE CALL(ARG);

STATUS := ARG.STATUS;

AT END := (ARG.STATNEXTREAD > ARG.STATLAST);

end END-OFFILE;

procedure RESETREAD(FH: in FILEHANDLE;

STATUS: out KAPSE STATUS) is

ARG: KAPSE_ARG(GETPUTSTAT);
beg in

ARG.STAT FH := FH;

KAPSE CALL(ARG);

STATUS := ARG.STATUS;

if STATUS = NO ERROR then

ARG.STAT NEXT READ := ARG.STATFIRST;

ARG.STAT PUT FLAG : TRUE;

KAPSE CATL(ARG);

STATUS : ARG.STATUS;

endi f

end RESETREAD;

function IS OPEN(FH: in FILE HANDLE) return BOOLEAN is

begin
return (FH.FILEINDEX / FHCLOSED);

end ISOPEN;

procedure READ(FH:FILE HANDLE; ADDR:ADDRESSTYPE;

STATUS: out KAPSE STATUS) is

ARG: KAPSE ARG(READ WRITE);

begin
ARG.RW FH : FH;

ARG.RW ADDR ADDR;

ARG.RW-SIZE : FH.SIZEINBITS;
KAPSE _ALL(ARG);
STATUS := ARG.STATUS;

end READ;

73

INTERMETRICS INCORPORATED * 733 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840V _ _ _ _ _ _ _ _ _ _ _ _ _ _

procedure WRITE(FH: FILE -HANDLE; ADDR: ADDRESS TYPE;
SIZE: INTEGER; STATU§: out KAPSE-STATUS) is
ARG: KAPSEARG(READWRITE);-

beg in
ARG.WRITEFLAG :=TRUE;
ARG.RW PH :=FH;
ARG.RW ADDR ADDR;
ARG.RW -SIZE SIZE;
KAPSEC ALL(ARG);
STATUS9 ARG.STATUS;

end WRITE;

end GENIO;

74

INTERMETRICS INCORPORATED *733 CONCORD AVENUE *CAMBRIDGE, MASSACHUSETTS 02138 *(617) 861-1840

-t It- ,-

10.2 Ada Tasking Model in Ada

This is an attempt to model the Ada Task Scheduler in Ada, to aid
in any eventual machine language implementation. This design is not
complete, and is provided here only to indicate the direction of the
implementation.

This is to be read in conjunction with the Ada code for the task
scheduling routines, found later in this appendix. For the various
tasking constructs, the appropriate sets of calls to the task
scheduler are listed below:

1) Simple DELAY statement:

Ada: DELAY simple expression;

Code: D := simple-expression;
SETDELAY(AMT=>D, WAIT NOW=>TRUE);

2) Simple ACCEPT statement:

Ada: ACCEPT entry id [(index within family)] [formal part]
[DO sequence of statements END [entry_id]I;

Code: [I := index withinfamily;]
E := <entrynum base of entryid> [+ I];
SIMPLE ACCEPT(ENTRY NUM=>E);
S := RUNNING TSK.CALLERSTACK;
L sequence of statements]

-- Use S as base for access to actual parameters
END-RENDEZVOUS;

3) Simple ENTRY call:

Ada: task.entryid [(index within family)]
[Tactual-parameter_part)];

Code: T := <pointer to tcb of task>;
[I := index within family; I
E := <entry Fum baseof entry id> [+ I];

<put on slack-actual parameter_part>; I
ENTRY CALL(TSK=>T, ENTRY NUM=>E, WAIT IF NOT AVAIL=>TRUE);CASE RUNNING TSK.CALL STATUS OF
WHEN EXCEPTION RAISED =>

RAISE RUNNING TSK.EXCEPTIONNUMBER;
-- (Not strict Ada)

WHEN NORMALCALL =>
NULL;

WHEN OTHERS =>
RAISE TASKINGERROR;

END CASE;

75

INTERMETRICS INCORPORATED 733 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 1 617) 661-1840

4) Conditional ENTRY call:

Ada: SELECT simple entrycall [sequence of statements I
ELSE sequence of statements
END SELECT;

Code: T,I,E := as above for Simple ENTRY call;
[<put on stack actual parameterpart>; I
ENTRY CALL(TSK=>T, ENTRY NUM=>E, WAITIFNOTAVAIL=>FALSE);
CASE RUNNING TSY.CALL STATUS OF
WHEN EXCEPTION RAISED =>

RAISE RUNNING TSK.EXCEPTION NUMBER;
-- (Not strict Ada)

WHEN NORMALCALL =>

[sequence of statements]
WHEN NOT AVAIL =>

sequence-of statements
WHEN OTHERS =>

RAISE TASKING ERROR;

END CASE;

5) Timed ENTRY call:

Ada: SELECT simple entry_call [sequence of statements I
OR DELAY delay_amount; [sequence of statements
END SELECT;

Code: T,I,E := as above for Simple ENTRY call;

[<put on stack actual _parameter part>;]
D := delay amount;
SET DELAY(DELAY AMT=>D, WAIT NOW=>FALSE);
ENTRY CALL(TSK=7T, ENTRY NUM >E, WAIT IF NOT AVAIL=>TRUE);
CASE RUNNING TSK.CALL STATUS OF
WHEN EXCEPTION RAISED =>

RAISE RUNNING TSK.EXCEPTIONNUMBER;
-- (Not strict Ada)

WHEN NORMAL CALL =>
sequence of statements]

WHEN DELAYTIME UP =>
I sequence of statements I

WHEN OTHERS =>

RAISE TASKING-ERROR;

END CASE;

6) SELECT statement:

Ada: SELECT
[WHEN condition =>] select alternative

OR [WHEN condition =>] select-alternative OR ...
[ELSE sequence of statements]

END SELECT;
select alternative

accept statement [sequence of statements]
delay statement [sequence of statements]
TERM INATE;

76

INTERMETRICS INCORPORATED * 733 CONCORD AVENUE * CAMBRIDGF. MASSACHUSETTS 02138 * (617) 661-1840

Code: DECLARE
NA: CONSTANT := <number of select-alternatives>;
TYPE DELAY INFO IS RECORD

DELAY--AMT: DURATION;
SLCT _NDEX: 0..NA := 0;

END RECORD;
SHORTEST DELAY: DELAYINFO;
WAIT FLAG: BOOLEAN := <FALSE if ELSE part present>;
INDEX: I..NA+l;
S: ADDRESSTYPE; -- Will hold caller's stack ptr.

BEGIN
<generate initial code for each alternative>

-- See below for initial code sequences.
IF SHORTEST DELAY.SLCT INDEX /= 0 THEN

IF SHORTEST DELAY:DELAYAMT <= 0 THEN
WAIT FLAG := FALSE;
ELSE
SETDELAY(DELAY AMT=>

SHORTEST DELAY.DELAY AMT,
WAIT NOW=>FALSE); -

END IF;
END IF;
SELECT CALLER(WAIT IF NONE=>WAIT FLAG);
CASE RUNNING TSK.CALL STATUS OF
WHEN NONE READYINONE OPENIDELAYTIME UP =>

INDEX := NA + 1;] -- refers to ELSE part.
INDEX : SHORTEST DELAY.INDEX;]

-- Choose one of above, first if
-- ELSE part is present, second
-- if not.

WHEN SELECT SUCCESSFUL =>
INDEX :=-RUNNINGTSK.SLCTINDEX;

WHEN OTHERS =>
RAISE SELECT ERROR; -- None open.

END CASE;
S := RUNNING TSK.CALLER STACK;

-- S is-pointer to-caller's stack.
CASE INDEX OF
WHEN 1 =>

alternative 1 rendezvous code
-- Use S to access actual arguments.
END RENDEZVOUS;]
-- Above is not present
-- if Delay alternative.
[alternativelsequence of statements I

WHEN 2 =>
(alternative 2 rendezvous code
END RENDEZVOUS;-] -- Not present if Delay.
[aTternative_2 sequence of statements I

WHEN NA+l =>
I elsepartsequence of statements]

END CASE;
END;

77

INTERMETRICS INCORPORATED * 733 CONCORD AVENUE # CAMBRIDGE, MASSACHUSETTS 02138 (617) 661-1840

Initial code for alternatives:

ACCEPT alternatives:

IF condition THEN] -- Only present if WHEN present.
[I := index within family;]

E : <entrynum base of entry_id> [+ I 1;
IX := index of alternative;
SETOPEN(ENTRYNUM=>E, SLCTINDEX=>IX);

END IF;]

DELAY alternatives:

IF condition THEN] -- Only present if WHEN present.
D := delayamount;
IX := index of alternative;
IF SHORTEST DELAY.SLCT INDEX = 0 OR ELSE

D < SHORTEST DELAY.DELAY AMT THEN
SHORTESTDELAY := (DELAYAMT=>D,SLCTINDEX=>IX);

END IF;
END IF;]

TERMINATE alternatives:

IF condition THEN I -- Only present if WHEN present.
READY TO TERMINATE;

END IF; T -

6) Task Activation:

[Not completed yet]

78

INTERMETRICS INCORPORATED • 733 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 ° (617) 661-1840

o7

This is the actual Ada code for a possible implementation of the
Ada task scheduler. This is very preliminary and as yet incomplete.

Package body TASKSCHEDULER is

type TCB(NUMENTRIES: INTEGER);-- incomplete for now

type TCB PTR is access TCB;

RUNNINGTSK: TCBPTR := null;

type BITVEC is array(NATURAL range <>) of BOOLEAN;

type TASK STATE is (INACTIVE,RUNNABLE,RUNNING,WAIT FOR ACCEPT,
WAITFOR CALLER,CALLER IN RENDEZVOUS,TERMINATED);

-- Delay is encoded separately

type TASK CALL STATUS is (NORMAL CALL,EXCEPTION RAISED,
DELAYTIME-UP, NOTAVAIL,NONE_OPEN,NONEREADY,ABNORMAL);

type LINK is record
NEXT: TCB PTR := null;
PREV: TCB PTR null;

end record;

type QUEUE NAMES is (CURRENT,SIBLING,DELAYQ);
type HEADER(NAME: QUEUE NAMES) is record

COUNT: INTEGER := 0;
FIRST: TCB PTR : null;
LAST: TCB PTR := null;

end record;

type PER ENTRY INFO is record
SLCT INDEX: INTEGER;
QUEUE: HEADER(CURRENT);

end record;

type PROCESS STATE is record
STARTUP--ADDR: ADDRESS TYPE;
STACKPOINTER: ADDRESSTYPE;

end record;

79

INTERMETRICS INCORPORATED 733 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 ((617) 661-1840

-- Task Control Block
type TCB(NUM ENTRIES: INTEGER) is

record
PRIO: PRIORITY;
STATE: TASK STATE := INACTIVE;
SAVED PROCESS STATE: PROCESSSTATE;
DELAY SET: BOOLEAN := FALSE;
DELAY DIFF: INTEGER;

-- Decremented on clock tick.
CALLING: TCB PTR;

-- Null -if not WAIT FOR ACCEPT
CALL ENTRY NUM: INTEGER -
CALL-STATUS: TASK CALL STATUS;
CALLERSTACK: ADDRESS TYPE;

-- Will hold caller's S.P.
EXCEPTION NUMBER: INTEGER;
RENDEZVOUS QUEUE: HEADER(CURRENT);

-- List of callers
-- now in rendezvous.

LINKS: array(QUEUE NAMES) of LINK;
OPEN ENTRIES: BIT VEC(l..NUM ENTRIES)

(l..NUM ENTRIES => FALSET);
-- TRUE-->ACCEPT OPEN

ENTRY QUEUES: array(l..NUMENTRIES) of
PER ENTRYINFO;

end record;

RUNQUEUES: array(PRIORITY) of HEADER(CURRENT);
-- Array of run queues, ordered by priority.

DELAYQUEUE: HEADER(DELAYQ);-- List of tasks with delay set.

procedure APPEND (ELEM: TCB PTR; QUEUE: in out HEADER) is
QX: constant QUEUE NAMES := QUEUE.NAME;
ELEMLINK: LINK renames ELEM.LINKS(QX);

begin -- Append element to end of doubly-linked list.

ELEM LINK.NEXT := null;
if Q1EUE.LAST = null then

QUEUE.FIRST := ELEM;
QUEUE.COUNT : 1;
ELEMLINK.PREV := null;

else

QUEUE.LAST.LINKS(QX).NEXT := ELEM;
QUEUE.COUNT := QUEUE.COUNT + 1;
ELEM LINK.PREV : QUEUE.LAST;

end if;
QUEUE.LAST ELEM;

end APPEND;

80

INTERMETRICS INCORPORATED • 733 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

procedure INSERT (ELEM: TCB PTR; QUEUE: in out HEADER;
BEFORE: TCB PTR) -is

OX: constant QUEUE NAMES := QUEUE.NAME;
ELEMLINK: LINK reniames ELEM.LINKS(QX);

begin -- Insert element in middle of doubly-linked list.

if BEFORE = null then
APPEND(ELEM, QUEUE);

else
ELEM LINK.PREV :=BEFORE.LINKS(QX).PREV;
ELEM LINK.NEXT :=BEFORE;
BEFO'RE.LINKS(QX).PREV :=ELEM;
if ELEM LINK.PREV /= null then

eleEEM_LINK.PREV.LINKS(QX).NEXT := ELEM;

QUEUE.FIRST := ELEM;
end if;
QUEUE.COUNT := QUEUE.COUNT + 1;

end if;
end INSERT;

procedure PREPEND (ELEM: TCBPTR; QUEUE: in out HEADER) is

begin -- Insert element at beginning of queue.

INSERT(ELEM, QUEUE, QUEUE.FIRST);
end PREPEND;

procedure REMOVE (ELEM: TCB PTR; QUEUE: in out HEADER) is
QX: constant QUEUE NAMES := QUEUE.NAME;
ELEMLINK: LINK renames ELEM.LINKS(QX);

begin -- Remove element from doubly-linked list.

if ELEM LINK.PREV =null then

eleQUEUE.FIRST :ELEMLINK.NEXT;

ELEM_-LINK.PREV.LINKS(QX).NEXT :=ELEM LINK.NEXT;

if ELEM LINK.NEXT = null then
QUfEUE.LAST := ELEMLINK.PREV;

else

edELEMLINK.NEXT.LINKS(QX).PREV :ELEM LINK.PREV;

ELEM LINK :=(null,null);
QUEUT.COUNT :=QUEUE.COUNT - 1;

end REMOVE;

81

INTERMETRICS INCORPORATED *733 CONCORD AVENUE *CAMBRIDGE, MASSACHUSETTS 02138 *(617) 661-1840

procedure FIRSTELEM (ELEM: out TCBPTR; QUEUE: in out HEADER) is

begin -- Remove first element of doubly-linked list.

if QUEUE.FIRST = null then
ELEM : null;

else
ELEM : QUEUE.FIRST;
REMOVE(ELEM, QUEUE);

end if;
end NEXTELEM;

function NEXT TO RUN return TCBPTR is
TSK: TCBPTR;

begin -- Return TCBPTR for highest priority runnable task.

for PRIO in reverse PRIORITY loop
if RUN QUEUES(PRIO).COUNT > 0 then

FIRST ELEM(TSK, RUN QUEUES(PRIO));
TSK.STATE := RUNNING;
return TSK;

end if;
end loop;
return null;

end NEXTTORUN;

procedure SET DELAY (DELAYAMOUNT: DURATION; WAITNOW: BOOLEAN) is
TICKS: INTEGER;
TP: TCBPTR;

begin -- Add task to delay queue at appropriate point.

TICKS := DELAY AMOUNT*TICKS PER SECOND + 1;
-- "+I" necessary to guarantee "at least" proper delay.

TP := DELAY QUEUE.FIRST;
while TP /=-null and then TICKS >= TP.DELAYDIFF loop

TICKS := TICKS - TP.DELAY DIFF;
TP := TP.LINKS(DELAYQ).NEXT;

end loop;
RUNNING TSK.DELAY DIFF := TICKS;
if TP /= null then

TP.DELAY DIFF := TP.DELAY DIFF - TICKS;
INSERT(RUNNINGTSK, DELAY-QUEUE, TP);

else
APPEND(RUNNINGTSK, DELAYQUEUE);

end if;
RUNNING TSK.DELAY SET := TRUE;
if WAIT-NOW then -

GIVE UP PROCESSOR;
end if;

end SET DELAY;

82

INTERMETRICS INCORPORATED * 733 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

procedure CLEAR DELAY(TSK: TCBPTR) is

TP: TCBPTR;

begin -- Remove from delay queue, if necessary.

if TSK.DELAY SET then
TP := TSK.LINKS(DELAYQ).NEXT;
if TP /= null then

-- Adjust DIFF of following task on delay queue.

TP.DELAYDIFF := TP.DELAYDIFF + TSK.DELAY DIFF;

end if;

REMOVE(TSK, DELAY QUEUE);
TSK.DELAY SET := FALSE;

end if;

end CLEARDELAY;
procedure TICK is

TP: TCBPTR;

begin -- Advance delay queue entries one tick.

TP := DELAY QUEUE.FIRST;
if TP /= nuTl then

TP.DELAY DIFF := TP.DELAY DIFF-l;
while TP /= null and then TP.DELAY DIFF <= 0 loop

TP.CALL STATUS := DELAYTIMEUP;

SETRUNNABLE(TP);
TP DELAYQUEUE.FIRST;

end loop;

end if;

end TICK;

procedure REMOVEFROMQUEUES(TSK: TCBPTR) is

begin -- Remove from queues as necessary.

CLEAR DELAY(TSK);
if TSK.STATE = WAITFORACCEPT then

REMOVE(TSK,

TSK.CALLING.ENTRY QUEUES(
TSK.CALLENTRY NUM).QUEUE);

else
els TSK.OPENENTRIES (TSK.OPEN ENTRIES'RANGE => FALSE);

end if;
end REMOVE FROMQUEUES;

83

INTERMETRICS INCORPORATED * 733 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 (6171 661-1840

II

procedure SETRUNNABLE(TSK: TCBPTR) is

begin -- Set task runnable, remove from queues as necessary.

if TSK.STATE /= RUNNING then
REMOVEFROMQUEUES(TSK);

end if;
if TSK.STATE /= TERMINATED and

TSK.STATE /= RUNNABLE then
TSK.STATE RUNNABLE;
-- Put on end of appropriate RUN queue.
-- Changing the placement on the RUN queue
-- could be used to adjust the within-priority
-- scheduling algorithm.
APPEND(TSK, RUNQUEUES(TSK.PRIO));

end if;
end SETRUNNABLE;

procedure SETOPEN(ENTRYNUM: INTEGER; SLCTINDEX: INTEGER) is

begin -- Indicate Entry is open, save startup program ctr.

RUNNING TSK.ENTRY QUEUES(ENTRY NUM).SLCTINDEX := SLCTINDEX;
RUNNING-TSK.OPENENTRIES(ENTRYNUM) := TRUE;

end SET OPEN;

procedure ENTRY CALL(TSK: TCB PTR; ENTRYNUM: INTEGER;
WAIT IF NOT-AVAIL: BOOLEAN);

ENT: PER_ENTRYINFO renames TSK.ENTRYQUEUES(ENTRYNUM);

begin -- Call particular entry.

RUNNING TSK.CALL STATUS := NORMAL CALL;
if TSK.STATE = WAIT FOR CALLER and then

TSK.OPEN ENTRIES(ENTRY NUM) then
START RENDEZVOUS(RUNNINGTSK,TSK,ENTRYNUM);
SET RUNNABLE(TSK);
GIVE UP PROCESSOR;

elsif WAIT IF NOT AVAIL then
APPEND(RUNNING TSK, ENT.QUEUE);
RUNNING TSK.STATE := WAITFORACCEPT;
GIVE UP-PROCESSOR;

else
RUNNINGTSK.CALL STATUS NOT-AVAIL;

end if;
end ENTRY-CALL;

84

INTERMETRICS INCORPORATED * 733 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 (617) 661-1840

procedure SELECTCALLER(WAITIFNONE:BOOLEAN) is

begin -- Select caller, suspend if none unless COND true.

if RUNNING TSK.OPEN ENTRIES =
(RUNNING TSK.OPEN ENTRIES'RANGE => FALSE) then
if WAIT YF NONE then

raise-SELECT-ERROR;
else

RUNNINGTSK.CALLSTATUS := NONEOPEN;
return;

end if;
end if;
for I in RUNNINGTSK.OPEN ENTRIES'RANGE loop

declare
ENT: ENTRY INFO renames RUNNING TSK.ENTRYQUEUES(I);

begin
if RUNNING TSK.OPEN ENTRIES(I) and then

ENT.QUEUE.COUNT-> 0 then
TP := ENT.QUEUE.FIRST;
START RENDEZVOUS(TP,RUNNING TSK,I);
RUNNING_TSK.CALLSTATUS := NORMALCALL;
return;

end if;
end;

end loop;
if WAIT IF NONE then

RUNNING TSK.STATE := WAITFORCALLER;
GIVEUPPROCESSOR;

else
RUNNINGTSK.CALLSTATUS := NONEREADY;

end if;
end SELECTCALLER;

procedure SIMPLE ACCEPT(ENTRY NUM:INTEGER) is
ENT: ENTRY INFO renames RUNNINGTSK.ENTRYQUEUES(ENTRYNUM);
TP: TCBPTR;

begin -- Pick up next caller of this entry (FIFO).

SET OPEN(ENTRY NUM);
if ENT.QUEUE.COUNT > 0 then

TP := ENT.QUEUE.FIRST;
STARTRENDEZVOUS(TP, RUNNINGTSK, ENTRYNUM);

else
RUNNING TSK.STATE : WAIT FOR CALLER;
GIVE UPPROCESSOR;

end if;
end SIMPLEACCEPT;

85

INTERMETRICS INCORPORATED 733 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 (617) 661-1840

____ ___ ____ ___ ____ ___ ____ ___ ____ _ I

I7

procedure START RENDEZVOUS(CALLER:TCB PTR; CALLED:TCB PTR;
ENTRY NUM:INTEGER) is

begin -- Start rendezvous between CALLER and CALLED task.

REMOVE FROM QUEUES(CALLER);
REMOVE FROMQUEUES(CALLED);
PREPEND(CALLER, CALLED.RENDEZVOUS QUEUE); -- LIFO queue here.
CALLER.STATE := CALLER IN RENDEZVOUS;
CALLER.SAVED PRIO := CALLED.PRIO;
if CALLER.PRTO > CALLED.PRIO then

-- Adjust CALLED task prio to MAX of the two.
CALLED.PRIO CALLER. PRIO;

end if;
CALLED.SLCT INDEX : CALLED.ENTRY QUEUES(ENTRY NUM).SLCT INDEX;
CALLED.CALLER STACK := CALLER.SAVED PROCESSSTATE.STACK POINTER;

end START_ RENDEZVOUS;

procedure END RENDEZVOUS is
CALLER: TCBPTR;

begin -- Finish up rendezvous, use RENDEZVOUS queue to locate
-- CALLER.

FIRST ELEM(CALLER, RUNNING TSK.RENDEZVOUSQUEUE);
RUNNING TSK.PRIO := CALLER:SAVEDPRIO;
SETRUNNABLE(CALLER);

if CALLER.PRIO > RUNNING TSK.PRIO then
GIVE UP PROCESSOR;

end if;
end ENDRENDEZVOUS;

86

INTERMETRICS INCORPORATED 733 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 (617) 661-1840

";'> ' II R

procedure GIVE UP PROCESSOR is

begin -- Give up processor to allow others to run.
-- Interrupts may force a call on GIVEUPPROCESSOR.

SAVE PROCESS STATE(RUNNING TSK.SAVED PROCESSSTATE);
if RUNNING TSK.STATE = RUNNING then

-- Still indicated as running,

-- put back on RUNNABLE queue (this effects
-- round-robin scheduling, with tiny time-slices).
SETRUNNABLE(RUNNINGTSK);

else
-- Purposefully giving up processor,
-- initialize CALL STATUS.
RUNNINGTSK.CALL_STATUS := NORMALCALL;

end if;
loop

while TICKS > 0 loop -- Incremented on clock interrupt.
TICK; -- May set a DELAYed task RUNNABLE.
TICKS TICKS - 1;

end loop;
RUNNING TSK NEXTTORUN();

exit when RUNNINGTSK _ null;
end loop;
RESTORE PROCESS STATE(RUNNING TSK.SAVEDPROCESSSTATE);

end GIVE UP PROCESSOR;

end TASKSCHEDULER;

87

INTERMETRICS INCORPORATED * 733 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

MISSION
Of

Ramw Air Development Center
RAVC ptans~ and execute/4 keea~'ch, devetopnient, ta~t and
,stcted acquisiti'on pbogiam6 t~n suppotzt o6 Command, Contte

Comimuncatioms and Intefigence (0~7) act itie/s. TechniatC
and engineeAing 5uppo4-t within aiea6 oK technicat competence
ts p'rovided to ES?) Ptogtam O6ices (POd5) and otheji ESV
e~ementz. The pi1ncipat techrucat i-.ion a~a a'te
communicationz, etectomagqei~h gui.dance and contt, 6uA-
veUance oK4 qtound and antospace objeicts, nte~iqence data
cozeection and handtiag, in~olimation sqstem technoeogq,
ionosph,tic pqopaqation, sot~d s~tate scinces&, mic'toav
phyic.6 and eeecttonic AetiabifZity, mai.tinabiL&ity and

* compatibZi,&tq.

DATU

ILMU

