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1. Introduction

Currently, about 25 percent of the energy consumed in the United

States is in the form of electric energy generated by power plants. More

than 80 percent of this electricity production is due to steam power plants

[151. This reveals the important role of steam turbine power plants as a

major contributor to energy production and suggests the efficient design

and operations of these plants as a vitally important objective in this

era of energy shortage.

The efficient design of steam power plants has been a source of

contention since the late 19th century. During the past 80 years, the

efficiency of the steam power plants has been increased from about 4 per-

r cent to about 33 percent. That is, only about one-eight as much fossil

fuel Is now required per unit of electric energy production, compared to*1 that of 1900 (121. This advance has been due to a variety of reasons,
such as mechanical design improvements, advances of thermodynamics, and

metallurgical developments that have made high temperature boilers and

turbines possible.
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There have been numerous studies addressed to the optimal design

nd economic operation of the various components of steam turbine power

plants. A good survey of these studies is given by Wiebking [15]. The

major components consist of the boiler, steam turbine, condenser, pump

and generator. Figure 1 depicts a simplified layout of these components

in a steam turbine power plant.

Generator

Turbine , /-
Boile

//:

_ Condenser

Pump

Figure 1. A simplified layout of a steam
turbine power plant

It is well known that the optimal design of the subsystems and

imdvidual components of a given system do not necessarily lead to an

overaLl optimal design of the given system. In power plants, however,

Wilson and Malouf [17] and Wilson [161 have shown that the overall

optimal sizing of the condensing system and turbine exhaust annulus can

be closely approximated by optimizing these systems independently of

the remaining components. Based on this finding Wiebking [15] has

formulated and solved numerous geometric programming models with

different design configurations, for optimal sizing of the turbine

exhaust and condensing systems of steam turbine power plants.

In che present paper, we analyze one of these GP models, studied

by Ecker and Wiebking [31, [4], for optimal value function sensitivity

and parametric bounds, with respect to many of the model parameters.

The sensitivity analysis methodology used here is based on the work of

Fiacco [61, and the optimal value bound approach was proposed by Fiacco

-2-
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and implemented by Fiacco and Ghaemi [10]. Ghaeui has successfully

demonstrated the applicability of this bound calculation procedure to

several nontrivial problems [111.

It is not the purpose of this study to elaborate on and justify

the choice of constraints or objective function, or their derivation,

involved in the model under consideration. Readers interested in these

aspects may refer to [15]. Here,after presenting the mathematical formula-

tion of the model and identifying the variables and parameters, we report

on the solution of a convex equivalent of the model and analyze it for

sensitivities and optimal value bounds, using the latest version of

our penalty function-sensitivity analysis computer program SENSUMT [10].

The paper is organized as follows. Section 2 briefly reviews

the basic idea of the optimal value bound calculation, its implementa-

tion on the computer, and its application to CP models. Section 3

lists the model parameters and variables and problem formulation. The

usual exponential transformation is applied to convert the GP to a

standard convex nonlinear programming (NLP) problem. Sections 4 and 5

present the solution, sensitivity, and bound analysis results.

2. Parametric Optimal Value Bounds

In this section we briefly outline the procedure for calculating

piecewise linear paranetric upper and lower bounds on the optimal value

function of the convex right-hand side perturbation problem, which is

known to have a convex optimal value function. Making additional use

of some recent developments by Derbo [21, we will demonstrate the

applicability of this technique to geometric prograns.

Varametric Bounds on the Optimal Value Function of
Convex Right-Hand Side Problems CR(C)

Consider tie following parametric programming problem R(E):

Minimize f(x)

subject to gi(x) C ci 9 i=lm R(C)

hj (x) £j , *jnrlp ,
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where the decision variable xEn f gi' and hj : En- EI are C2

and the parameter vector e = ... , p) is in E . If f(x) and

-g (x) , i=l,m , are convex and h (x) , j=m+l,p are affine, then the

problem R(C) is convex and will be designated as CR(c) . It is well

known that f*(c) , the optimal value function of the problem CR(E)

is convex over any convex subset of the parameter space on which a

solution is defined.

The convexity of the optimal value function f*(E) of the problem

CR(c) allows for a simple calculation of parametric linear upper and

lower bounds of this function when any of the problem parameters is per-

turbed. In our application, this will require the solution and correspon-

ding optimal value function sensitivity information for both perturbed and

unperturbed problems. The idea follows immediately from two well known

properties of convex functions:

(i) Any line connecting two points on the graph of a
convex function does not underestimate that
function between the points.

(ii) Any tangent line to the graph of a convex function
does not overestimate that function.

'llese two properties lend themselves in a natural way to the calculation

of parametric bounds on the optimal value function of the problem CR(c)

under large perturbations of any of the problem parameters, say E

The idea of using properties (i) and (ii) for calculating bounds

on the optimal value function of the problem with a convex or concave

optimal value function and for estimating bounds on nonconvex problems

by way of estimating problems with convex or concave optimal value function

is due to Fiacco [7]. Fiacco also notes that techniques for generating

-4
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underestimating problems that are jointly convex in the decision

variable and the parameter (hence, that have a convex optimal value

function 1131) are already available for problems that are jointly

separable [5] or jointly factorable [14), thus making it possible to

calculate lower bounds using known procedures. The first computational

implementation of this approach was developed and reported by Ghaemi [11],

who also derived the formulas for calculating a jointly convex over-

estimating problem of a factorable program, thus making it possible to

numerically implement the proposed scheme for calculating upper bounds

when the problem functions are factorable (as they inevitably are, in

practice).

Suppose f*(E) is differentiable. (Well-known conditions guaran-

eeing this were given by Fiacco [6]. )

Basis for Calculation of Bounds on f*(0) of the

Problem CR()

For- simplicity, suppose that some c. is perturbed from

I A to k-. v Iwhile the remaining parameters are fixed at their

base values.

Step I. Solve the unperturbed problem and obtain f*(Ei)

and df*(e )/de at F_= E Under general
i i

conditions (e.g., see Armacost and Fiacco [11),

df*(i) u(c i) , i,.,

de i I-w i(E d ifm+l,p.

-5
..

-a..
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where u and w are optimal Lagrange multipliers associated with

inequality and equality constraints of CR(E) , respectively.

Step 2. Resolve the problem and obtain f*(Ei) and

df*(c )/dt- at i I = L12

Step 3. Derive the equation of the line passing through the

points C f*(E) and ( C f12 ' 2ME . This

line provides a parametric upper bound f*(ci) for

f*( i) as a function of ci r [-il I2l

Step 4. Derive the equation of the tangent lines to f*(E.)
1

at the above two points with the slopes

df( i  and df*( i )
dF. de.-

E £i=l 
1 1i= 12

calculated in Steps 1 and 2, respectively. The

maximum of these two lines provides a piecewise-

linear parametric lower bound f*(.i) for f*(c.)
- 1

as a function of c. in [ i i
1 il ' i2

The lines obtained in Steps 3 and 4 provide the desired bounds,

[orming a triangle which encloses the optimal value function f*(ci)

over the given range of E. . Further, a smooth estimate of f*(E.)

over the given interval can also be made by fitting any differentiable

convex function that passes through the points given in Step 3, having

the corresponding slopes at these points obtained in Steps 1 and 2.

J .....- 6-
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In our implementations, we calculate the highest quadratic function pass-

ing through the given end points and having the required slope at one of

tie end points. It can be shown that this function is entirely contained

In the indicated triangle and is convex.

It is clear that the fundamental property exploited in calculating

the above bounds is the convexity of the optimal value function. Thus,

the use of this procedure is not limited to problems of the form CR(e),

but can be applied to any parametric problem that has a convex optimal

value. In fact, it is obvious that this technique is also applicable

to parametric programs with concave optimal value functions. The only

minor alteration is that Step 3 of the algorithm will provide the lower

bound, while Step 4 will yield the upper bound.

The relevance of the application of the above technique to the

problem under consideration in the present study is that the posynomial

programs, under the usual exponential transformation, becomes a convex

problem. Since the transformation does not affect the value of the

problem functions, the above technique may obviously be applied to

-alvul;ate p.arametric bounds on the optimal value function of CP problems

with respect to right-hand side perturbations. The convexity of the

optimal value of the posynomial GP as a function of the right-hand side

perturbations follows immediately from the exponential transformation

and a well-known result. Furthermore, it follows that the optimal

value function of the primal GP (posynomial) problem (formulated as a

minimization problem) is a monotone nondecreasing concave function of

the coefficients appearing in the GP primal objective function. This

follows from the linearity of the objective function as a function of

these coefficients and the fact that f*(E) = minR f(x,c) is concave

if f(x,c) is concave in E and R does not depend on E . Concavity

with respect to each i was noted by Dembo 12], who did not make use

of the general result indicated but calculated the second derivatives of

the optimal value function. In Section 4, using these results, we are

-7-
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able to apply the given technique to derive piecewise linezir para ietrtc

bounds on the optimal value function of the model under consideration as

a function of the model parameters.

3. The Model

As mentioned earlier, it is not the purpose of this study to

justify the underlying theory and formulation of the resulting GP problem.

We list the problem variables and parameters, followed by a concise state-

ment of the model objective function and constraints. Readers interested

in details regarding the derivation of the model may refer to [3], [41

and [15].

The model under consideration requires the minimization of the

total cost involved in the steam turbine power plantas a function of the

turbine exhaust annulus and the condenser system design, subject to a

multitude of engineering and thermodynamic constraints.

Model variables

The variables involved in the model and their description,

extracted from [3], are as follows:

A an : total turbine exhaust annulus area, sq ft

T a : saturation temperature of steam,0 F

N : number of tubes in condenser

D : outside tube diameter, ft
0

D : inside tube diameter, ft
I

L : condenser tube length, ft

q : rate of heat transfer, Btu/hr

Qa : condenser flow,lb/hr

f : moisture correction factor at expansion line
end point

-8-
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Ah : exhaust loss, Btu/lb

Th : hot water temperature, OF

Model parameters

There are numerous parameters involved in the derivations of the

models developed in 115] by Wiebking. Here we will only state those

parameters which are explicitly involved in the formulation of the model

considered here:

a i(il,6): regression coefficient involved in
derivation of emperical formulas for
the model

B : pressure drop factor

b.(i=l,5 : regression coefficients involved in
and derivation of emperical formulas for

i61, the model
62)

b : exponent in annulus area cost relation
an

Cn : coefficient in annulus area cost relation

cE : cost of electricity, $/(kW-hr)

c : specific heat,Btu/(lb-0 F)

C : unit cost of condenser surface, $/sq ft

oi : minimum allowable outside tube diameter, ft
0o,min

f : moisture correction factor at rated average
N, R conditions

. 1 2
g : gravitational constant, ft/sec

h2, R  : expansion line, end point, at rated average
, Rconditions, Btu/lb

k : thermal conductivity, Btu/ft-hr-°F)

i : tube wall thickness, ft

Pr : Prandtl number

9-
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P : rate of depreciation per yearC

Qa,R : condenser flow at rated average conditions, lb/hr

T : cold water temperature, OF
c

t : load factor - effective operating time, hours/year

Umi l : minimum tube velocity, ft/sec
ia : lower bound on annulus velocity of steam, ft/sec

V : upper bound on annulus velocity of steam, ft/sec

W : water flow rate, lb/hr

r), : generator efficiency

nP : pump efficiency

A : latent heat of evaporation, Btu/Ib

p : viscosity, lb/(ft-hr)

p : densitLy, ib/cu ft

Smax : allowable last stage bucket loading, lb/(hr-sq ft)

AT maximum allowable temperature increase of cooling
water, F

f : outside film, a subscript

The objective function

The model minimizes go , the total annual cost involved in the

s team turbine power plant as a function of the exhaust arnnuluo and the

condenser system design, and consists of two parts: fixed costs and

operating costs. Denoting the fixed and operating costs of the turbine
by CF,T and CO, T and those of the condenser by CFC and COX

respectively, the total annual cost to be minimized is

go = (C F,T +I CO0,T) + (C F C + Co0 c)

-10-
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The formulas derived in 131 and 141 for the above cost components,

as a function of the design variables and parameters, are as follows:

C 1F,T C A an $/yearFT an

COT = c2  (q-qt) + fuel cost $/year

C F,¢  c 3  DoLN $/year

C OC C c4  L/(D1 4.8 * 1.8  $/year

where

C = C P
I an c

c 2  = CEt. nG/3412.75

c 3  = ctP c
3 t c

(4 = (32)(.046) CEBt W2 . 8 (PAY'2/(grp p2 2 1.8

4 E p

and q is the rate of heat transfer at the rated average conditions

in Btu/hr.

Notice that the operation cost of the turbine CO, T  consists of

the replacement energy cost and the fuel cost. In the formulation of

the model, it is assumed that the turbine generator runs at full load,

'V implying that the cost of fuel is constant. Also, in replacement cost

terms, the quantity c2q R  is constant. Thus, the fuel cost and c2q R

are deleted from consideration in the optimation model.

The Constraints

(i) constraint on condenser rejected heat

g: c 5 S- + c6 7aTs + c7 < I
q q q -

- II -
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whe re

c =h +,af + .87 aa -a
2R I H,R 4 6 2

c 6  =biM,R + .87 b4a6 - b2

Ah' =h - a6

(ii) i4oisture correction factor constraint

T
-+ c s < I

g2: c 8  9 f -

where

c8 = .87 a4

c9 = .87 b4

(iii) Exhaust loss constraint

T 2b5 A
s an <: g3 : C1 0  A2 h-

3 10A 2Ah' Il b 5
an T Ah's

where

C10  = 61

b62
- a 5 Qa,R

(iv) Heat exchanger mean temperature drop constraint

4/3 
g D,

g4: c12  s  13 Ts 14 TN/6D L4/J +15 T L N 2

B 0 s

* -12-
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where

c 3 1/(2 c pW)

c(75w-4/3 'ff

C 1 4  (2) (3600)2 kfp f g A

c = (.03 k r4 .-1 U! .8
15 (.2 r4W

(v) Condenser flow constraint

g 5c1  + c1 T <
g5 -6 Q 17 -

a

where

C1 6  a n
a3

b 3

1 -+ c < 1 and
g6 . 18 D 19 D -

o <

g7  C2 0  D -

0

where

j :~18

c 1.

c 20 uD i

-13 -
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(viI) Annulus fluid Veloity constraints

b5T
g8  c2 1  A <

an

A
ang9 : c 2 2  b

Tb5

where

21 V

c 22 =L

a5 ~a R

(vili) Last stage bucket loading constraint

Qa
g1 0  C 2 3  Aaan

an

where

c = 

23 max

(ix) Heat exchanger tube water velocity constraint

c 2 4 iN D 2  <

24 1
I? where

3600 uMitn  )

24 4W

-14-
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(x) Thermal pollution constraint

912 : c2 5  Th < 1

25 T + AT

Denoting the model variables A an 0 N D o .

L, q , Q' ' (h 4 .-id Th  by x1  through xll,

respectively, the model L_ i.-klated as follows.

The GP problem
o -4.8 -1.8

Minimize go - c, x1 ar+ c2 x + c x x x + c x x5 x1

Miiie2 7 3 3 4 6 4 6 5 3

subject to: g 5 c5 x8 x7  + c6 x8 x2 x7  + c 7 x8 x9 x1 0 x7  < 1

-I -I

92 c 8 x 9  + C9 x2 x9 < 1

c 2b 5 x -2 x -1 +C 1 1 xI x2  <10cl x2 1 10 Cl l -

g4 -1+ x7 x 2 -1 + x74/3 x2 - 1 x3-7/6
g 4 - c122 + 1372 147 2

.8 -l - o -.2 -

4 -1 -4/3 + c15 x7 x5.8 x2-1 x6-1 
x3 2 < I

.,x 4  x 6  1 7

-1
85 c 16  x8  + c1 7 x2  1

-1 -186--c 1 8 x4  + c19 x

g 7 ... c 2 0 x 4  <_

b5  -t<
8 8 

:  21 x2 1l -

-b5

zc x x -b 5 I
g 9  22 1 2 -

- 15 -
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] .' Ig10 23 x 8  1 -

91 
-52

g12 = 25 Xll <

4. Model Solution

Ecker and Wiebking [31, using a data base drawn from [15], have

solved thLis model. In [31, they conclude from a preliminary analysis

that constraints g8 - g1 2 - with the given data base, are nor binding

and thus ignore these constraints in determining a solution to the CP

problem. Henceforward, the problem with g8 - g1 2 deleted will be the

focus of our attention, and will be called the "reduced problem."

The values of coefficients c 1  through c 2 0  in (31 are given

as follows:

= 2541.0 c6  .23972 c f
11  6.2139 *10 - 8  c1 6 = 2.447 *106

c2  .012293 c7  1.0 c1 2  50.0 c1 7 = 1.0289 *

: c3 = 2.4190 c8 = .62004 c13 = * I0-  c18 = 8.1667 * 10-

S4 = 77171.0 c9 = 1.1072 * 10
- 3  c14 = 7.3124 * 10- 1  c1 9 = 1.0

S•0
I 1277* 10 -5=.033

C5 = 888.76 c10
= 2.1872 * 10 c5 1.2577 * 10 c2 0 = .083333

Using the above coefficients, they obtain the solution of the reduced

model by means of a modified concave simplex algorithm that solves the dual

geometric program. The solution, obtained after 300 seconds of CPU time

on an IBM system 360/50 computer, is listed below.

Dual objective function: 32.3728 • 106

-16-



Primal objective tunction: S,2.nis5b 1 t0

Primal variables:

q = 2.5503 - 109  T = 85.455

A an = 409.16 N = 13,662

fm 0.71520 D. = 0.082461

q 2.7010 - 106 D = 0.091950

Ali' =46.882 L = 70.606

To solve the reduced GP problem in this study, the convex equiva-

lent of the (reduced) model was formulated via the usual exponential
-t.

transformation, x.i = e ,i=1L , 10 , and the same coefficients c.

used by Ecker and Wiebking and reported in 131 were utilized. To prevent

over-and under-flow in the process of obtaining the numerical. solution,

thc following constraints (which proved to be nonbinding at the optimal

solution) were added to the model:

-170 < t 6-4.8 t 5- 1.8 t 3< 170

-30 < t < 30 i=1,10

The resulting problem was solved by SENSLJMT, on The George Washington

University IBM 3031. The solution, obtained in 57 seconds of CPU timre, is

listed below.

Dualobjetiv funtion32.7324* 16

Prial objectie function 32.37324 * 106

X,=A = 408.88 x = L =58.46230
an 6

x2= Ts = 85.452 = q =2.52929 * 1

x 3 = N = 18979.5 x8 = Qa= 2.682%8 * 106

x4  = 1)0 = .07902 X fm = .714',

X5= Di = .07085 X 0=h 46.88288

- 17 -
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The significantly greater accuracy of this solution, based on the

gap between the values of the dual and primal objective functions, compared

to that obtained in 13], is apparent from the given data. The two solution

vectors, although considerably different in some components, are of the

same order of magnitude. As noted, the CPU time required by SENSUNT to

obtain a relatively very accurate solution of the given model was about

1/5 of the CPU time spent by the algorithm in [ 3) to obtain a rather crude

estimate of a solution. of course, since the IBM 3031, is faster than the

1BM 360/50 and since we do not know the± initial point used in [31 to solve

the problem, it is not possible to make a definitive comparison of the

relative efficiency of the subject codes.

In the next section, we analyze the reduced model for sensitivity

information and optimal value parametric bounds.

5. Optimal Value Function Sensitivities and Bounds

5.1 Optimal value function sensitivities

To conduct sensitivity and bound calculations with respect to

the various parameters involved in the model, the coefficient c i (1-1, 20)

must be expressed as a function of the model parameters, rather than being

considered independent and assigned fixed values (as was done in defining

the data of the problem solved in Section 4). To accomplish this, the

formulas taken from [41 and given in Section 3 for c 1 (i-1, 20) were

coded. Using the values for the various problem parameters, given in

131 and [15] and shown in Table 1, the following values were calculated for

the components of the parameter - dependent coefficient vector c=(c11 ... I

C, 120.5 c 6= -239342c 11 6.213914 * 108 c 16 2.477010 * 106

c 2 = .01229334 c 7  = 1.0 c 12 = 50.0 c 1 7 m1.028863 * 103

C 3=2.419023 c 8= .6200489 c13 ' .336*1 18a8.663*1

= 77169.87 c 9  = 1.107162 * 103 c 1 4 = 7.312399 * 106 c 1 9 , 1.0

c5=888.7634 c 0= 2.18723 * 10 18c 15 n 1.2577 * 10- c 20 .-08333296
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Table I

Problem Data

Symbol Level Symbol Level

-159.9 K f .3630

a 2  -32.08 2. .06408

a 3  1.1087 Pr 8.277

a4  0.7127 P ~ .154

a5  92340. Qa 2.713 * 10 6

a 6  -27.444 T 50.0

B1.2 t 6337.86

b11.7599 umin 5.0

b1.0 '4 250

b3-1.1407 * 10- VU 1400

b 4  1.2726 * 10 -3w 1.055 * 0 i8

b5-3.0122 IG.988

bL 3.4851 * 10 n.8
6L 4

b 21.5567 * 10 4A 1037.2

h 1
an

c n8250. 2.808

c.00067 'f1.6402

c 1.0 r61.63

ICt 5.0 Pf 61.38

Dmi .083333 T15000

f MR.7217 ATma 30.0

g 32.174

h 2R989.1

k .3393

-19-
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I:xt.,pt ior c I , the components of c are In close agreement with those

used in [iJ and given in Section 4. (We note that In 1151, the value of

c I conforms exactly to the above value, which is 1/2 of the value reported

in i3]. This suggests that the value of c1 derived here is correct.) The

results reported in the remainder of the paper are consequently based on

tnesc components of c .

Table 2 depicts the sensitivity of the optimal total cost with

respect to numerous parameters of the model. As shown in this table,

we do not conduct sensitivity analysis with respect to all of the model

data (parameters) listed in Table 1. This is because some data cannot be

meaningfully altered. For example, the gravitational constant g is

a.ssumed known and fixed. The specific heat c , the viscosity p , etc.,P

are internal properties of the fluid and cannot freely be altered.

As elaborated in our earlier papers, [8], [9], the sensitivity

measure 3f*(.)/ )ci corresponds to the rate of change of the optimal

value function f*(L) with respect to i. , at a given value of E

11it would seem that the larger the absolute value of f*()/Ri

the greater the sensitivity of f*(tc) with respect to Li . owever,

it would be erroneous to conclude this and misleading to use the -nforma-

tion without further analysis, as a guideline for making and implementing

appropriate decisions. This is, in part, because this rate of change is

local and does not necessarily reflect the change that can result from

finite data changes. Nor does this measure reflect the likelihood of a

given linite change. For such reasons, it ia imperative to calculate

some measures of stability in the large, to estimate or at least contain

the etfects of finite data changes on the optimal solution. Moreover,

sensitivities are often interpreted as the "change in f*(t:) per unit

change in i  . Such interpretations may also provu to be misleading

because they tacitly suggest that a unit change is meaningful and that it

might be realized in a given parameter L. . however, a one unit change

for one parameter may be too large to be practically feasible, while for

-20-
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Table 2

Optimal Value Function Sensitivity ResulLs

(1) (2) (3) (4) (5) (6)
Parameter Scaled

Parameter No. Parameter Value Sensitivity Sensitivity Rank

ii 1 1 I "O1E/tf*(E)/l1 )

1 a1  -159.9 22.577.27 36,101.05 8

2 a2  - 32.08 -31,283.56 -10,035.77 15

3 t 1.1087 -.3294094 * 10 -365,216.2 3

4 a4 .7127 341,840.9 2,436.30 24

5 a5  92340 8.288348 7,653.46 17

6 a6 -27.444 22,112.94 6,068.67 19

7 B 1.2 33,954.16 407.45 26

8 b 1.7599 1,770.420 31,157.62 9

9 b2  1.0 -2,453,125. -24,531.25 1:

I.0 b3  -1.1407 * 10 -.2583156 * 1010 -29,466.06 1i

11 b4  1.2716 * 10- 3  .2680632 * 108  341.14 27

12 b5  -3.0122 3,316,445. 99,897.95 6

13 b 3.4851 * 10 .1728371 * 10 6,023.55 20b~~~616,2.50

14 b62 1.5567 * 10 28.58427 4,449.71 22

15 b 1. 4,710,256. 47,102.56 7
an

16 t C a 8250. 80.40698 7,376.07 18

CE17 .00067 .4588196 * 1010 30,740.91 10

18 tc 5.0 55,620.45 2,781.02 23

S 19 x .06408 3,797,937. 154.96 28

- 21 - continued
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Table 2 (continued)

Optimal Value Function Sensitivity Results

(1) (2) (3) (4) (5) (6)
Parameter Scaled

Parameter No. Parameter Value Sensitivity Sensitivity Rank

i ~ f Ei af *(-) / a. I.Olc 11(af*(C-)/aC d

20 p .154 6,609,746. 10,179.01 14C

21 T 50.0 17,350.95 8,675.47 16C

22 t t 6337.86 4,850.329 307,407.06 4

23 W 1.055 * 108  -.0175986 18,566.52 13

24 t iG .988 .3107304 * 108 307,001.64 5

25 1.25(- .8 32,596.29 407.453 25

26 2.713 * 106 12.97611 352,041.86 126 Qa,R

27 hi2, R  989.1 31,283.35 309,423.61 2

28 fR .7217 -684,874.7 - 4,942.74 21

t Candidate for parametric bound calculation on f*(c)

2

- 22 -
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another it may be too small to be numerical.y significant. Parameters

n; . the turbine efficiency, and W , the water Ilow rate, in rable 2

provide good examples ot both InsL nces.

With these points in mind, and assuming that the sensitivities

are acceptable in a small (finite) neighborhood of the problem data,

we prefer to base our judgments on "scaled" sensitivities such as those

given in Column (5) of Table 2, which correspond to the estimated changes

resulting from a one percent change in a given parameter value. Column

6 of this table ranks the above scaled sensitivity measures, in decreasing

order of their absolute values. The importance of providing the kind of

information depicted in Table 2 for real world systems seems obvious and

cannot be overstated. For example, it provides guidelines for setting

priorities on the relative importance of the parameters, and suggests

actions that can be taken to obtain optimum marginal improvements in

the optimum performance.

5.2 Optimal value function bounds

here, we apply the bound calculation technique discussed in

Section 2, to derive piecewise linear parametric upper and lower bounds

on the optimal total cost of the steam turbine power plant under study.

The parameters marked by (t) in Table 2 are retabulated in

'lable 3 and are selected for bound calculation. Notice that paraneter

a. is, in fact, a right-hand side parameter of constraint g5 * Recall

that
-l

g5 ' c1 6 x 8  + c1 7 x2 < 1

where

=Qa,R and c, b3
1 6 3  9 3

Thus g5 can be written as

-l
Qa,R x8 - b3 x2 - a3

Thus, uptir-al value function of the model under study is a convex non-

increasing function of a3

- 23 -
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Table 3

Parameters Selected For Bound Calculation

Parameter Parameter Parameter Prubto
No. Name Value Prubto

3 a 3  1.1087 .2527

16 Ca 8250. -2062.5

18 ct5.0 -1.25

22 t 6337.86 -1584.465

-'24 i,.988 -.247

25 P ( -)1.25 ( i)-.125mi 8

-24-
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Also, parameters c , c , L and 11, taken one at a time, appear in

the objective function coefficients linearly and do not appear Il the

constraints. Thus, the optimal annual cost of the plant under considera-

tion is a concave nondecreasing function of each of these parameters.

This means that our bound calculation procedure can readily be applied to

these parameters. Notice that parameter np (pump efficiency) does not

appear linearly in the objective function coefficients. For this reason,

1

we replace I by P This enables us to calculate optimal value
flP mi*

bounds relative to changes in Pmi and, hence, relative to changes in np

The last column in Table 3 shows the magnitude of the perturbations

allowed in the respective parameter value, each taken in the direction

that decreases the optimal value function, as determined by the sensitivity

information in Table 2. In the following, we list the resulting parametric

bounds on the optimal value over the given range of the parameter, obtained

by our latest version of the computer programming code SENSUNT [10].

Bounds w.r.L. a, , 1.1087 ' a i.3,.14
J - - ) -

Upper bound F - .1792469 * 108 a3 + .5163132 "k it)

Lower bound F = N.ax {- .3294094 * a0 a3 + .6827984 * 108

- .6760806 10 a 3 + .3h43282 A 10}

Figure 2 depict:s the resulting computer output for this and supplemental

bound calculation for a31 sound., ".r.t. c , 6187.5 c < S250
an - an

- 25 -
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Optimal Value Function Bounds When Par( 3) is Perturbed

Point I (Unperturbed Solution)
Par( 3) - 0.1108700D 01 F(Par( 3)) = 0.3175823D 08

Point 2 (Perturbed Solution) 
:

Par( 3)) = 0.1361400D 01 F(Par( 3)) = 0.2722866D 08

Line passing through Points 1 and 2 and overestimiting f*

F = -0.1792469D 08 * Par( 3) + 0.5163132D 08

Line underestimating f* at Point I

F = -0.3294094D 08 * Par( 3) + 0.6827984D 08

Line underestimating f* at Point 2

F = -0.6760806D 07 * Par( 3) + 0.3643282D 08

4uadratic Estimation of f* through Points I and 2

F 0.4417841D 08 * Par( 3)**2 - 0.1270497D 09 * Par( 3) + 0.1183135D 09

1* bound evaluation at ten equidistant points between Points I and 2

Par( 3) Lower Bound Upper Bound Quad Estimate

1.109 0.3175823D 08 0.3175823D 08 0.3175823D 08
1.134 0.3092581D 08 0.3130527D 08 0.3105137D 08
1.159 0.3009339D 08 0.3085231D 08 0.3040093D 08
1.185 0.2926097D 08 0.3039935D 08 0.2980692D 08
1.210 0.2842856D 08 0.2994640D 08 0.2926933D 08
1.235 0.2808288D 08 0.2949344D 08 0.2878816D 08
1.260 0.2791204D 08 0.2904048D 08 0.2836342D 08
1.286 0.2774119D 08 0.2858753D 08 0.2799509D 08
1.311 0.2757035D 08 0.2813457D 08 0.2768319D 08
1.336 0.2739950D 08 0.2768161D 08 0.2742771D 08
1.361 0.2722866D 08 0.2722866D 08 0.2722866D 08

Figure 2. Parametric bounds on f*(a3)

- 26 -
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Upper bound F 1 in {89.40698 c + .3102062 * 108
an

100.5829 ca + .3094000 * 108)

Lower bound F f 94.96585 c + .3097476 * 108- an

Bounds w.r.t. ct s 3.75 < ct  5.0

Upper bound F min {55620.45 ct + .3148012 * 108

60878.7 c + .3145717 * 10 8

Lower bound F = 58209.10 c + .3146718 * 108

Figure 3 depicts the resulting computer output for bound calculation with

respect to c t

. Bounds w.r.t. t, 4753.395 < t < 6337.86

7Upper bound F = min {4850.329 t + .1017524 * 10

4860.131 t + .8543850 * 106]

4 Lower bound F = 4863.883 t + .9316157 * 106

. Bounds w.r.t , .741 < n .988

8 7I Upper bound F f min .3107304 * 10 nG + .1058064 * 10

.3126812 * 108 lG + .8912627 * 10

Lower bound F - .3116310 * 10 nG + .9690873 * 106

- 27 -
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Optimal Value Function Bounds When Par(18) is Perturbed

PoinL I (Unperturbed Solution)
Par(18) - 0.50000001) 01 F(Par(18)) - 0.3175823D 08

Poit 2 (Perturbed Solution)
Par(18)) - 0.3750000D 01 F(Par(18)) = 0.3168546D 08

Line passing through Points I and 2 and underestimating fM

F - 0.5820910D 05 * Par(18) + 0.3146718D 08

Line overestimatiig f* at Point 1

F - 0.5562045D 05 * Par(18) + 0.3148012D 08

Line overesLffatilng w at Point 2

F - 0.6087870D 05 * Par(18) + 0.3145717D 08

QLuadratic estimation of f* through Points 1 and 2

F = -0.2070913D 04 * Par(18)**2 + 0.7632959D 05 * Par(18) + 0.3142835D 08

f* bound evaluation at ten equidistant points between Points I and 2

Par(18) Lower Bound Upper Bound Quad Estimate

5.000 0.3175823D 08 0.3175823D 08 0.3175823D 08
4.875 0.3175095D 08 0.3175127D 08 0.3175124D 08
4.750 0.3174367D 08 0.3174432D 08 0.3174419D 08
4.625 0.3173640D 08 0.3173737D 08 0.3173708D 08
4.500 0.3172912D 08 0.3173042D 08 0.3172990D 08
4.375 0.3172184D 08 0.3172346D 08 0.3172265D 08
4.250 0.3171457D 08 0.3171590D 08 0.3171535D 08
4.125 0.3170729D 08 0.3170829D 08 0.3170797D 08
4.000 0.3170002D 08 0.3170068D 08 0.3170053D 08
3.875 0.3169274D 08 0.3169307D 08 0.3169303D 08

3.750 0.3168546D 08 0.3168546D 08 0.3168546D 08

Figure 3. Parametric bounds on f*(c )

-28-
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1 1

Bounds on P , 1.125 < - < 1.25 (.8 < n < .889)
-T, - - -

5 1 8
Upper bound F min [.3259629 * 10 - + .3171748 * 10

.3536232 * 105 1 + .3171425 * 10 3

Lower bound F .3355953 * 105 1 + .3171628 * I08- n.

Thetse bounds are piecewise linear as a function of Pi , hence they are

nonllnear as a function of np

i2
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