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1. lntroduction

Currently, about 25 percent of the energy consumed in the United
States is in the form of electric energy generated by power plants. More
than 80 percent of this electricity production is due to steam power plants
[15]. This reveals the important role of steam turbine power plants as a
major contributor to energy production and suggests the efficient design
and operations of these plants as a vitally important objective in this

era of energy shortage.

The efficient design of steam power plants has been a source of
contention since the late 19th century. During the past 80 years, the
efficiency of the steam power plants has been increased from about 4 per-
cent to about 33 percent. That is, only about one-eight as much fossil
fuel is now required per unit of electric energy production, compared to
that of 1900 [12]. This advance has been due to a variety of reasons,
such as mechanical design improvements, advances of thermodynamics, and
metallurgical develupments that have made high temperature boilers and

turbines possible.
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There have been numerous studies addressed to the optimal design
and economic operation of the various components of steam turbine power
plants. A good survey of these studies is given by Wiebking {15]. The
major components consist of the boller, steam turbine, condenser, pump

and generator. Figure 1 depicts a simplified layovt of these components

in a steam turbine power plant.

> _vﬂ____i7
1{ Generator

7 Ny RV A
/e 7

Boiler B
;
A

_.«‘.____..@__Q_MW/ Condenser

Pump

Figure 1. A simplified layout of a steam
turbine power plant

It is well known that the optimal design of the subsystems and
individual components of a given system do not necessarily lead to an
overall optimal design of the given system. In power plants, however,
Vilson and Malouf [17] and Wilson [16] have shown that the overall
optimal sizing of the condensing system and turbine exhaust annulus can
be closely approximated by optimizing these systems independently of
the remaining components. Based on this finding Wiebking [15] has
formulated and solved numerous geometric programming models with
different design configurations, for optimal sizing of the turbine

exhaust and condensing systems of steam turbine power plants.

In che present paper, we analyze one of these GP models, studied

by Ecker and Wiebking [3], [4], for optimal value function sensitivity

and parametric bounds, with respect to many of the model parameters.

The sensitivity analysis methodology used here is based on the work of

Fiacco [6], and the optimal value bound approach was proposed by Fiacco

|




T-437

and implemented by Fiacco and Ghaemi [10]. Ghaemi has successfully
demonstrated the applicability of this bound calculation procedure to

several nontrivial problems [11].

It is not the purpose of this study to elaborate on and justify

the choice of constraints or objective function, or their derivation,

4 involved in the model under consideration. Readers interested in these

3 aspects may refer to [15). Here,after presenting the mathematical formula-~
4 tion of the model and identifying the variables and parameters, we report
on the solution of aconvex equivalent of the model and analyze it for
sensitivities and optimal value bounds, using the latest version of i

our penalty function-sensitivity analysis computer program SENSUMT [10].

The paper is organized as follows. Section 2 briefly reviews
the basic idea of the optimal value bound calculation, its implementa-
tion on the computer, and its application to GP models., Sectiomn 3
lists the model parameters and variables and problem formulation. The
usual exponential transformation is applied to convert the GP to a

standard convex nonlinear programming (NLP) problem. Sections 4 and 5

present the solution, sensitivity, and bound analysis results.

2. Parametric Optimal Value Bounds

In this section we briefly outline the procedure for calculating
plecewise linear paranetric upper and lower bounds on the optimal value

function of the convex right-hand side perturbation problem, which is

‘ﬁ'
- known to have a convex optimal value function. Making additional use
of somc receunt developments by Dembo [2], we will demonstrate the
| applicability of this technique to geometric prograns.
|
Parametric Bounds on the Optimal Value Function of
Convex Right-land Side Problems CR(€)
-! Consider tiae following parametric programming problem R(€):
{
j Minimize £(x)
subject to gi(x) > Ei » 1=1,m R(€)
v ' h,(x) = € =rr#l
{ j( ) j » .i ’p 14 L




. 1 2
where the decision variable x€E" , 1y 8y and hj: E+ E are C

and the parameter vector ¢ = (E1 s aees ep) is in EP . If f(x) and

—gi(x) , i=l,m , are convex and h,(x) , j=mtl,p are affine, then the

h|
problem R(c) is convex and will be designated as CR(g) . It is well

known that f*(c) , the optimal value function of the problem CR(e)
is convex over any convex subset of the parameter space on which a

solution is defined.

The convexity of the optimal value function f*(€) of the problem
CR(e) allows for a simple calculation of parametric linear upper and
lower bounds of this function when any of the problem parameters is per- :
turbed. In our application, this will require the solution and correspon- :
ding optimal value function sensitivity information for both perturbed and
unperturbed problems. The idea follows immediately from two well known

properties of convex functions:

(i) Any line connecting two points on the graph of a !
convex function does not underestimate that
function between the points.

(ii) Any tangent line to the graph of a convex function
does not overestimate that function.

These two properties lend themselves in a natural way to the calculation
of parametric bounds on the optimal value function of the problem CR(€)
under large perturbations of any of the problem parameters, say €y

The idea of using properties (i) and (ii) for calculating bounds
on the optimal value function of the problem with a convex or concave
optimal value function and for estimating bounds on nonconvex problems

by way of estimating problems with convex or concave optimal value function

is due to Fiacco [7]. Fiacco also notes that techniques for generating




underestimating problems that are jointly convex in the decision

variable and the parameter (hence, that have a convex optimal value
function [13]) are already available for problems that are jointly
separable [5] or jointly factorable [14], thus making it possible to
caléulate lower bounds using known procedures. The first computational
implementation of this approach was developed and reported by Ghaemi (11},
: who also derived the formulas for calculating a jointly convex over-
estimating problem of a factorable pregram, thus making it possible to
numerically implement the proposed scheme for calculating upper bounds
when the problem functions are factorable (as they inevitably are, in

practice).

3 Suppose f*(c€) is differentiable. (Well-known conditions guaran-

eeing this were given by Fiacco [6].)

Basis for Calculation of Bounds on f*(g) of the
Problem CR(g)

For. simplicity, suppose that some € is perturbed from

“il to Ly o while the remaining parameters are fixed at their

base values.

Step 1. Solve the unperturbed problem and obtain f*(ei)

and df*(ei)/dei at €, = €

i 21 ° Under general

conditions (e.g., see Armacost and Fiacco [1}),

df*(ei ) ui(ei) , 1i=l,...,m

de =

- i=m+l,p .
i wi(ei) , di=mt+l,p




where u and w are optimal Lagrange multipliers associated with

inequality and equality constraints of CR(€) , respectively.

Step 2. Resolve the problem and obtain f*(ei) and

% . =-
df (Cl)/dtj at Li Liz .

Step 3. Derive the equation of the line passing through the
- - \ - -
* *
points (Cil , £ (eil)) and (512 , f (512)). This
line provides a parametric upper bound ?*(ci) for

R - -
f (Ei) as a function of £, 7 [Cil . 512]

Step 4. Derive the equation of the tangent lines to f*(si)

at the above two points with the slopes

df*(c.) df*(e )
i i
—_— and —_—
dey £.=€ dey €. =€
i i1 i i2

calculated in Steps 1 and 2, respectively. The
maximum of these two lines provides a piecewise-

linear parametric lower bound {*(Li) for f*(ci)

as a function of Ei in ltil . ﬁizl .

The lines obtained in Steps 3 and 4 provide the desired bounds,

forming a triangle which encloses the optimal value function f*(ei)

over the given range of €, - Further, a smooth estimate of f*(ei)

over the given interval can also be made by fitting any differentiable
convex function that passes through the points given in Step 3, having

the corresponding slopes at these points obtained in Steps 1| and 2,
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In our implementations, we calculate the highest quadratic function pass-
ing through the given end points and having the required slope at one of
, the end points. It can be shown that this function is entirely contained

in the indicated triangle and is convex.

-

It is clear that the fundamental property exploited in calculating
the above bounds is the convexity of the optimal value function. Thus,

F the use of this procedufe is not limited to problems of the form CR(g),

but can be applied to any parametric problem that has a convex optimal
f value. In fact, it is obvious that this technique is also applicahle
to parametric programs with concave optimal value functions. The only
minor alteration is that Step 3 of the algorithm will provide the lower

bound, while Step 4 will yield the upper bound.

The relevance of the application of the above technique to the
problem under consideration in the present study is that the posynomial i
programs, under the usual exponential transformation, becomes a convex 5

problem. Since the transformation does not affect the value of the

problem functions, the above technique may obviously be applied to

caleulate parametric bounds on the optimal value function of GP problems

with respect to right-hand side perturbations. The convexity of the %
optimal value of the posynomial GP as a function of the right-hand side

perturbations follows immediately from the exponential transformation

and 2 well-known result. Furthermore, it follows that the optimal

value function of the primal GP (posynomial) problem (formulated as a

minimization problem) is a monotone nondecreasing concave function of

the coefficients appearing in the GP primal objective function. This

follows from the linearity of the objective function as a function of

3 ; these coefficients and the fact that f*(c) = minR f(x,e) is concave
if f(x,e) 1is concave in € and R does not depend on £ . Concavity

with respect to each €, was noted by Dembo [2], who did not make use

i
of the general result indicated but calculated the second derivatives of i

the optimal value function. In Section 4, using these results, we are

—— e s
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able to apply the given technique to derive piecewise linear parametric

bounds on the optimal value function of the model under consideration as

a function of the model parameters.

3. The Model

As mentioned earlier, it is not the purpose of this study to

justify the underlying theory and formulation of the resulting GP problem.

We list the problem variables and parameters, followed by a concise state-

ment of the model objective function and constraints. Readers interested

in details regarding the derivation of the model may refer to (3}, (4]

and [15].

The model under consideration requires the minimization of the

total cost involved in the steam turbine power plantas a function of the

turbine exhaust annulus and the condenser system design, subject to a

multitude of engineering and thermodynamic constraints.

Model variables

The variables involved in the model and their description,

extracted from [3], are as follows:

—
. —

A

an

e

total turbine exhaust annulus area, sq ft
saturation temperature of steam,oF
number of tubes in condenser

outside tube diameter, ft

inside tube diameter, ft

condenser tube length, ft

rate of heat transfer, Btu/hr

condenser flow,lb/hr

moisture correction factor at expansion line
end point
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Ah  : exhaust loss, Btu/lb

Th : hot water temperature, °f

Model parameters

There are numerous parameters involved in the derivations of the
models developed in [15] by Wiebking. Here we will only state those
parameters which are explicitly involved in the formulation of the model

conslidered here:

ai(i=1,6): regression coefficient involved in
derivation of emperical formulas for
the model

8 : pressure drop factor

b.(i=1,5 : regression coefficients involved in

and derivation of emperical formulas for
i=61, the model
62)
an ¢ exponent in annulus area cost relation
Cn : coefficient in annulus area cost relation
g : cost of electricity, $/(kW-hr)
cp : specific heat,Btu/(lb—oF)
¢, : unit cost of condenser surface, $/sq ft
Do ain : minimum allowable outside tube diameter, ft
f : moisture correction factor at rated average
M,R
conditions

g : gravitational constant, ft/sec2
h2 R : expansion line, end point, at rated average

? conditions, Btu/lb
k : thermal conductivity, Btu/ft—hr—oF)
L : tube wall thickness, ft
Pr : Prandtl number
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i Pc : rate of depreciation per year
Qa,R condenser flow al rated average conditions, 1b/hr
Tc : cold water temperature, O |
t : load factor - effective operating time, hours/year i
Ui ninimum tube velocity, ft/sec ?
VL : lower bound on annulus velocity of steam, ft/sec ;
VU ¢ upper bound on annulus velocity of steam, ft/sec %

W : water flow rate, 1lb/hr

N, ¢ sgenerator efficiency
r]P pump efficiency
A ¢ latent heat of evaporation, Btu/lb

W ¢ viscosity, 1b/(ft-hr)

P : density, lb/cu ft

Toax allowable last stage bucket loading, lb/(hr-sq ft) }
AT&QX: maximumoallowable temperature increase of cooiing
) water, ¥ i
£ : outside film, a subscript !
!
v:* . . . - . I
) ; ftic objective function gg ;

The model minimizes 8o » the total annual cost involved in the

} steam turbine power plant as a function of the exhaust anpulus and the |

operating costs. Denoting the fixed and operating costs of the turbine
by CF,T and CO,T and those of the condenser by CF,C and CO,C ’

, condenser system design, and consists of two parts: fixed costs and
{ respectively, the total annual cost to be minimized is

8y = (Cp,p + Co,p) + (Cp o * Gy )

0
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The formulas derived in [3] and [4] for the above cost components,

as a function of the design variables and paramecters, are as follows:

b

CF,T = ¢ Aan an $/year

CO.T = ¢, (q-qR) + fuel cost $/year

CF,C = cy D LN $/year

Co,c = ¢, L/(014'8 * N"B) $/year
where

1 T Can Pc

€, = ¢yt nG/3412.75

c3 = "CCPC

¢, = (32)(.046) Cypt W' (p/ayz/(gnp 0% nl-8)

and 4 is the rate of heat transfer at the rated average conditions
in Bru/hr.
Notice that the operation cost of the turbine C0 T consists of
’

the replacement energy cost and the fuel cost. Jn the formulation of
the model, it is assumed that the turbine generator rumns at full load,
implying that the cost of fuel is constant. Also, in replacement cost

terms, the quantity is congtant. Thus, the fuel cost and ¢

€2%R 29R

are deleted from consideration in the optimation model.

fThe Constraints

(i) constraint on condenser rejected heat

. qQ QT Q £, Ah'
gl. c5 a + e a's + cy a M < 1
q q q -

-11 -
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where
Cg = hZ,R + nlfﬂ.R + .87 aag - :12
.= : + . -
cg = by gt 87 b3~ b
c.] =1
t = -
Ah Ah a
(ii) #wisture correction factor constraint
T
1 s
g c, — + ¢ < 1
2 8 fM 9 fM
where
cg = .87 a,
g = 87 bl.
(iii) Exhaust loss constraint
TSZbS an
By F €10 2 4 e e, S 1
an T “Ah'
s
where
‘0 = Pa1
c . b62
11 a5 Qa,R
(iv) Heat exchanger mean temperature drop constraint
4/3 gD
1 9 i < 1
g, ¢, — +¢c -+ ¢, - 5 +c Ty
4 12 T, 13 Ts 14 T N7/6D Lé/, 15 TL N.2
s 0 s
- 12 -
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c = T

12 c
¢3 = 1/(2 cp W)
/3
_ 1]
e, = (725 M 473 R
(2) (3600) kf p £f7g A
4 -1 . .8
= . x (LB
s (.023 1 k Pr’ ) (4W )
(v) Condenser flow constraint
1
Bs ° g -6—~ + 9 Ts <1
a
where
Q
c = &R L
16 a
3
c = - b3
17 a3
(vi) Heat exchanger tube diameter constraints
D
8 ° 8 ; + 9 Di < 1 and
o o
1
8¢ ¢ T <1
o
where
¢i8 = 28
c19 = ],
€20 * Do,min

- 13 -
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(2
e
»~N
Q‘I
tA
-

where

C21 = — X

22

a5 Qa,R

(viii) Last stage bucket loading constraint

Q
a
B10 © €3 T3 s 1
an
where
c = ———-‘l______
23 T
max
(1x) Heat exchanger tube water velocity constraint
t ¢ N D 2 < 1
Blr F Sy =
where

3600 Udn T P
24 4w




(x) Thermal pollution constraint

Denot ing the model wvariables Aan , T, N, D , D,

s o i
L, q9 , Qa . fM , (Ah<@*é ~1d Th by X, through TR
respectively, the model ix iaseulated as follows.

The GP problem

_ . ar -4.8 =-1.8
Minimize 8y = ©4 X +c, X + C3 Xq X, Xe + ¢, Xg Xg X4
X
subject to: g, ¥ ¢ X X -1 +c, X, X, X -1 +c, X, X, X, X -1 1
1 578 77 6 8 277 77879 710 "7 -

e
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Blo © %23 % 1

811 © 24 X3 %5
Bp 7 €25 Xy &

4. Model Solution

Ecker and Wiebking [3], using a data base drawn from [15], have

solved tinis model. In [3], they conclude from a preliminary analysis

that constraints gg - with the given data base, are not binding

312 b ]
and thus ignore these constraints in determining a solution to the GP

problem. Henceforward, the problem with Bg ~ deleted will be the

)2

focus of our attention, and will be called the "reduced problem."

The values of coefficfents c, through c in [3] are given

1 20

as follows:

-8 6
- = - = = * =
: o 2541.0 e .23972 €1 6.2139 10 16 2,447 * 10
-3
. = = = = *
¢y .012293 <y 1.0 ' €12 50.0 7 1.0289 10
c, = 2.4190 c, = .62004 C = 4,7394 * 10-9 c = 8.1667 * 10-.3
3 ‘ 8 : 13 ) 18 ‘
c, = 77171.0 ¢, = 1.1072 * 10_3 ¢y, = 7.3124 * 10_1 c = 1,0
4 . 9~ 14 = 19 = 1
c. = 888.76 C,n= 2.1872 * 1018 c = 1,2577 * 10_5 c,, = .083333
5 : 10 : 15 * 20 :

Using the above coefficients, they obtain the solution of the reduced
model by means of a modified concave simplex algorithm that solves the dual

geometric program. The solution, obtained after 300 seconds of CPU time

on an 1BM system 360/50 computer, is listed below.

Dual objective function: 32.3728 . ]06

- 16 -
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Primal objective tunction:

Primal variables:
9

q = 2.5503 - 10 TS = 85.455

A = 409.16 N = 13,662
an

f = 0.71520 D, = 0.082461
M i

Q = 2.7010 - 106 D = 0.091950
a 0

Ah' = 46.882 L. = 70.606

To solve the reduced GP problem in this study, the convex equiva-

lent of the (reduced) model was formulated via the usual exponential
_t_

transformation, x; = e 1 , 1=1 , 10 , and the same coefficients <,
used by Ecker and Wiebking and reported in [3] were utilized. To prevent
over-and under-flow in the process of obtaining the numerical solution,
the following constraints (which proved to be nonbinding at the optimal
solution) were added to the model:

- 170 < t6—4.8 t5 - 1.8 t3 < 170

- 30 < t1 < 30 i=1,10
The resulting problem was solved by SENSUMT, on The George Washington
University I1BM 3031. The solution, obtained in 57 seconds of CPU time, is

listed below.

Dual objective function 32.37324 * 106
Primal objective function 32.37325 * 106
X, = Aan = 408.88 Xe = L = 58.46230
x, = T, =85.452 x; = q = 2.52929 10°
x, = N =18079.5  xg= Q= 2.68795 * 10°
X, = b = .07902 Xg = fy = AL
%g = D, = .07085 %o ™ Ah' = 46.88288

- 17 -




T-437

The significantly greater accuracy of this solution, based on the
gap between the values of the dual and primal objective functions, compared
to that obtained in [3), is apparent from the given data. The two solution
vectors, although considerably different in some components, are of the
same order of magnitude. As noted, the CPU time required by SENSUMT to
obtain a relatively very accurate solution of the given model was about
1/5 of the CPU time spent by the algorithm in [3] to obtain a rather crude
estimate of a solution. Of course, since the IBM 3031, is faster than the
1BM 360/50 and since we do not know the initial point used in [3] to solve
the problem, it is not possible to make a definitive comparison of the

relative efficiency of the subject codes.

In the next section, we analyze the reduced model for sensitivity

information and optimal value parametric bounds.

5. Optimal Value Function Sensitivities and Bounds

5.1 Optimal value function sensitivities

To conduct sensitivity and bound calculations with respect to

the various parameters involved in the model, the coefficient ¢y (1=1, 20)

must be expressed as a function of the model parameters, rather than being
considered independent and assigned fixed values (as was done in defining
the data of the problem solved in Section 4). To accomplish this, the
formulas taken from [4] and given in Section 3 for ey (i=1, 20) were

coded. Using the values for the various problem parameters, given in

{3] and [L5] and shown in Table 1, the following values were calculated for

the components of the parameter - dependent coefficient vector c=(c1,...,c20) .

1270.5 .2397342 c.. = 6.213914 * 1078 ¢ 2.477010 * 10

11 16

6

= = * .
.01229334 1.0 €2 50.0 617 1.028863 * 10

= 2.419023 .6200489 c.. = 4.739336 * 10”0 ¢

13 18

-6
*
7.312399 * 10 €9 1.0

77169.87 1.107162 * 10> el

18 -5
888.7634 2.18723 * 10 s 1.2577 * 10 %50

= .08333296

8.166663 * 10

3

3
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Table 1
Problem Data

Level Symbol Level
-159.9 Kf .3630
-32.08 2 .06408
1.1087 Pr 8.277
0.7127 PC .154
6
*
92340. Qa,R 2,713 10
a =27.444 T 50.0
6 c
B 1.2 t 6337.86
bl 1.7599 U in 5.0
b2 1.0 VL 250
-3
- *
b3 1.1407 10 VU 1400
b, 1.2726 * 1073 W 1.055 * 10°
bS =-3.0122 ng .988
-5
*
b6l 3.4851 10 nP .8
4
*
b62 1.5567 10 A 1037.2
b 1.
an
“an 8250. u 2.808
cp .00067 Me 1.6402
c 1.0 r 61.63
P
<, 5.0 Pe 61.38
o,min .083333 T 15000

. 7217
32.174

989.1

.3393




T~437

excepl oor ¢y o the components of <« arce in close agreement with those

used in [3] and given in Sectiou 4. (We note that in {15], the value of

) conforms exactly to the above value, which {s 1/2 of the value reported

F in {3]. This suggests that the value of €y derived here is correct.) The

k results reported in the remainder of the paper are consequently based on

tnesc components of ¢ .

Table 2 depicts the sensitivity of the optimai total cost with
respect to numerous parameters of the model. As shown in this table,
we do not conduct sensitivity analysis with respect to all of the model
data (parameters) listed in Table 1. This is becausc some data cannot be

meaningfully altered. Yor example, the gravitational constant g is
assumed known and fixed. The specific heat Cp , the viscosity u , etc.,
are internal properties of the fluid and cannot freely be altered.

As elaborated in our earlier papers, [8], [9], the sensitivity

measure Bf*(L)/Qci corresponds to the rate of change of the optimal

value function ([*(s) with respect to £ s at a given value of ¢ ,
It would seem that the larger the absolute value of Of*(g)/GEi ,

the greater the sensitivity of f*() with respect to €y - Kowever,

it would be erroneous to conclude this and misleading to use the ‘nforma-

tion without further analysis, as a guideline for making and implementing
?“f } appropy iate decisions. This is, in part, because this rate of change is

local and does not necessarily reflect the change that can result from

[inite data changes. HNor does this measure reflect the likelihood of a

some measures of stability in the large, to estimate or at least contain
the etfects of finite data changes on the optimal solution. Moreover,

sensitivities are often interpreted as the "change in f*(x) per unit

change in ¢, " . Such interpretations may also prove to be misleading

’ given tinite change. For such reasons, it is imperative to calculate
!
| ‘
J

because they tacitly suggest that a unit change is meaningful and that it

’ might be realized in a given parameter Ei . however, a ore unit change

for one parameter may be too large to be practically feasibhle, while for




Table 2

Optimal Value Function Sensitivity Results

(1) (2) (3) (4) (5) (6)
. Parameter Scaled
. Parameter No. Parameter Value Sengitivity Sensitivity Rank
§ ‘ £y € BEX(E) /3¢, | .01E | (3£%(E) /3¢ )
E
? 1 a -159.9 22.577.27 36,101.05 8
} 2 a, - 32.08 -31,283.56 -10,035.77 15
3 t a, 1.1087 ~.3294094 * 10° -365,216.2 3
‘ 4 a, .7127 341,840.9 2,436.30 24
4 5 ag 92340 8.288348 7,653.46 17
6 ag -27.444 22,112.94 6,068.67 19
i 7 B 1.2 33,954.16 407.45 26
8 by 1.7599 1,770.420 31,157.62 )
9 b, 1.0 -2,453,125. -24,531.25 1z
‘10 by -1.1407 * 1073 | -.2583156 * 10%° -29,466.06 11
11 b, 1.2716 * 1072 | .2680632 * 10° 341.14 27
_ 12 by -3.0122 3,316,445. 99,897.95 6
if 13 by 3.4851 * 107° | .1728371 * 10%! 6,023.55 20
14 bes 1.5567 * 10 28.58427 4,449.71 22
: 15 b, 1. 4,710,256. 47,102.56 7
} 16 te 8250. 80.40698 7,376.07 18
{ 17 cg .00067 .4588196 * 1010 30,740.91 10
'I 18 te, 5.0 55,620.45 2,781.02 23
; 19 ) .06408 3,797,937. 154.96 28
; continued
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Table 2 (continued)

Optimal Value Function Sensitivity Results

T-437

(1) (2) 3) (4) (5) (6)
Parameter Scaled
Parameter No.| Parameter Value Sensitivity Sensitivity Rank
L fy £y BE*(T) /de |.01c1| (3f*(c)/3e )
20 Pc .154 6,609,746, 10,179.01 14
21 Tc 50.0 17,350.95 8,675.47 16
22 tt 6337.86 4,850.329 307,407.06 4
23 W 1.055 * 108 -.0175986 18,566.52 13
24 + g .988 .3107304 * 108 307,001.64 5
25 Pm1 1.25(= ; ) 32,596.29 407.453 25
p
26 Q, g 2.713 * 10° 12.97611 352,041.86 1
?
27 h2 R 989.1 31,283.35 309,423.61 2
28 fM R .7217 -684,874.7 - 4,942.74 21
’

t Candidate for parametric bound calculation on f*(c) .

- 22 -
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another it may be too small to be numerically significant. Parameters

nc , the turbine efficiency, and W , the water flow rate, in Tahle 2

’)

i provide good examples ot both I[nstances.

With these points in mind, and assuming that the sensitivities
are acceptable in a small (finite) neighborhood of the problem data,
we prefer to base our judgments on 'scaled" sensitivities such as those
given in Column (5) of Table 2, which correspond to the estimated changes
3 resulting from a one percent change in a given parameter value. Column
6 of this table ranks the above scaled sensitivity measures, in decreasing
order of their absolute values. The importance of providing the kind of
) information depicted in Table 2 for real world systems seems obvious and
cannot be overstated. For example, it provides guidelines for setting
priorities on the relative importance of the parameters, and suggests
] actions that can be taken to obtain optimum marginal improvements in

the opt imum performance.

5.2 Optimal value function bounds

here, we apply the bound calculation technique discussed in

Section 2, to derive piecewise linear parametric upper and lower bounds

on the optimal total cost of the steam turbine power plant under study.

The parameters marked by (1) in Table 2 are retabulated in
Table 3 and are selected for bound calculation. Notice that paruineter

al is, in fact, a right-hand side parameter of constraint g5 . Recall

that
-1
Bs = C1p%g Ty XSl
where
Q b
c = _B_L and c - = - 3
16 3 17 83

Thus 8 can be written as

Q,r* “P3*X I 2y
Thus, optimal value function of the model under study is a convex non-

increasing function of a .

- 23 -
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Table 3

Parameters Selected For Bound Calculation

r' Parameter Parameter Parameter !
Perturbation
No. Name Value
| — -
3 3 a, 1.1087 .2527
16 c 8250. -2062.5
i an
E 18 c, 5.0 -1.25
b«
{ 22 t 6337.86 ~1584.465
g 24 g .988 -.247
25 P (= L 1.25 (= —) -.125
mi Ny ¢ .8 )

-2 -
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Also, parameters Cin® € Lt and ”C' taken one at a time, appear in

the objectlve function coefficients linearly and do not appear in the
constraints, Thus, the optimal annual cost of the plant under considera-
tion is a concave nondecreasing function of each of these parameters.
This means that our bound calculation procedure can readily be applied to

these parameters. Notice that parameter Np (pump efficiency) does not

appear linearly in the objective function coefficients. For this reason,

we replace ——%T——- by Pmi . This enables us to calculate optimal value
P

bounds relative to changes in Pm and, hence, relative to changes in n

i
The last column in Table 3 shows the magnitude of the perturbations
allowed in the respective parameter value, cach taken in the direction
that decreases the optimal value function, as determined by the sensitivity
information in Table 2. In the following, we list the resulting parametric
bounds on the optimal value over the given range of the parameter, obtained

by our latest version of the computer programming code SENSUMT [10].

Bounds w.r.L. a, , L1987 <« a, - j.3a8l4

'
)

Upper bound F =~ 1792469 * 108 ay + .5L63132 % u°

tax {- .3294094 % JOb a, + ,6827984 * 108,

e
]

Lower bouna 3

- .6760806 * 10] ay + 36437282 & 108}

Figure 2 depicts the resulting computer output for this and supplemental
bound calculation for a3 .

+ Zounds w.r.t. ¢ , 6187.5 « ¢ 5450 .
an - Tan

[

P °
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Optimal Value Function Bounds When Par( 3) is Perturbed

Point 1 (Unperturbed Solution) :

Par( 3) = 0.1108700D 01 F(Par( 3)) =
Point 2 (Perturbed Solution) :
Par( 3)) = 0.1361400D 01 F(Par( 3)) =

Line passing through Points 1 and 2 and overestimating f*

F = -0.1792469D 08 * Par( 3) + 0.5163132D 08

Line underestimatiqg f* at Point 1|

F = -0.3294094D 08 * Par( 3) + 0.6827984D 08

Line underestimating f* at Point 2

0.3175823D 08

0.2722866D 08

Quadratic Estimation of

~-0.6760806D 07 * Par( 3) + 0.3643282D 08

f* through Points 1 and 2

F = 0.4417841D 08 * Par( 3)**2 -

0.1270497D 09 * Par( 3) + 0.1183135D 09

f* bound evaluation at ten equidistant points between Points 1 and 2

Par( 3) Lower Bound Upper Bound Quad Estimate
1.109 0.3175823p 08 0.3175823D 08 0.3175823D 08
1.134 0.3092581D 08 0.3130527D 08 0.3105137D 08
1.159 0.3009339D 08 0.3085231D 08 0.3040093D 08
1.185 0.2926097D 08 0.3039935D 08 0.2980692D 08
1.210 0.2842856D 08 0.2994640D 08 0.2926933D 08
1.235 0.2808288D 08 0.2949344D 08 0.2878816D 08
1.260 0.2791204D 08 0.2904048D 08 0.2836342D 08
1.286 0.2774119D 08 0.2858753D 08 0.2799509D 08
1.311 0.2757035D 038 0.2813457D 08 0.2768319D 08
1.336 0.2739950D 08 0.2768161D 08 0.2742771D 08
1.361 0.2722866D 08 0.2722866D 08 0.2722866D 08

Figure 2, Parametric bounds on f*(a3)

- 26 =
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Upper hound F = min {89.40698 €on ¥ .3102062 * 108 .

100.5829 ¢ =+ .3094000 * 108}

Lover bound F = 94.96585 c_ + .3097476 * 10°

. Bounds w.r.t. c,» 3.75 < <, < 5.0

Upper bound F = min {55620.45 c, + .3148012 108 |

60878.7 c, + .3145717 * 108}

Lower bound F = 58209.10 ct + .3146718 * 108

Figure 3 depicts the resulting computer output for bound calculation with

respect to ct .

. Bounds w.r.t. t, 4753.395 < t < 6337.86

min {4850.329 t + .1017524 * 10’ ,

Upper bound F
4860.131 t + .8543850 * 106}

4863.883 t + .9316157 * 10°

Lower bound f

. Bounds w.r.t n 741 < n < .988

G ]

min {.3107304 * 10° ng + 1058064 * 107

Upper bound F

.3126812 * 10° + .8912627 * 10’}

NG

+ .9690873 * 10°

Lower bound F 3116310 * 108 n

G

-27 -




Optimal Value Function Bounds When Par(l8) i{s Perturbed

Point | (Unperturbed Solutlom) :
Par(18) = 0.5000000n 01 F(Par(18)) = 0.13175823D 08

Point 2 (Perturbed Solution) :
Par(18)) = 0.3750000D 01 F(Par(18)) = 0.3168546D 08

Line passing through Points 1 and 2 and underestimating f¥*

F = 0.5820910D 05 * Par(18) + 0.3146718D 08

Line overestimating f* at Point 1

F = 0.5562045D 05 * Par(18) + 0.3148012D 08

Line overestimating f* at Point 2

F = 0.6087870D 05 * Par(18) + 0.3145717D 08

Quadratic estimation of f* through Points 1 and 2

F = ~0.2070913D 04 * Par(18)**2 + 0.7632959D 05 * Par(18) + 0.3142835D 08

f* bound evaluation at ten equidistant points between Points 1 and 2

Par(18) Lower Bound Upper Bound Quad Estimate

5.000 0.3175823D 08 0.3175823Dp 08 0.3175823D 08
4,875 0.3175095D 08 0.3175127p 08 0.3175124D
4,750 0.3174367D 08 0.3174432D 08 0.3174419D
4.625 0.3173640D 08 0.3173737D 08 0.3173708D
4.500 0.3172912p 08 0.3173042D 08 0.3172990D
4.375 0.3172184D 08 0.3172346D 08 0.3172265D
4,250 0.3171457D 08 0.3171590D 08 0.3171535D
4.125 0.3170729D 08 0.3170829D 08 0.3170797D
4,000 0.3170002p 08 0.3170068D 08 0.3170053D
3.875 0.3169274D 08 0.3169307D 08 0.3169303D
3.750 0.3168546D 08 0.3168546D 08 0.3168546D

SEESER8R88

Figure 3. Parametric bounds on f*(ct)
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1 1
. Bounds on Pmi = - s 1,125 < n <1.25 (.8¢< n, < .889)

¥ .
= b 1 8
* Upper bound F = min {.3259629 * 10 ot .3171748 * 10 ,
P
5 1 3
.3536232 * 10 N 4+ .3171425 * 10”7}

P
8

Lower bound F = .3355953 ¥ 10° —h— + .3171628 * 10

These bounds are piecewise linear as a function of Pmi , hence they are

nonlinear as a function of np .

:
L
k

i
!
|
1
!

) . - 29 -
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