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DUCTION

The data needed to calculate the sensitivity to data perturbations

of the solution and optimal value of a mathematical program are available

as by-products of many solution algorithms. Fiacco L5demnstrated

this is developing a penalty function technique for approximating the

parameter derivatives of a solution for quite general perturbed non-

linear programs. Armacost and Mylander I ed this to advantage in

making available the routine calculation of sensitivity information as

part of a computer code for the Sequential Unconstrained Minimization

Technique (SUMT)$ Thus, based on the differentiable stability

theory developed hy F a co [8] and implemented by Armacost [1] and

Armacost and Mylander [3], a number of stability measures, namely the

parameter gradients of the optimal value function and the Karush-Kuhn-

Tucker triple, can be represented and approximated using, for instance,

only data needed for the SUMT solution technique itself.

Tight upper and lower bounds on the directional derivative limit

quotients of the optimal value function for different forms of nonlinear

programs with data perturbations have appeared in Gauvin and Dubeau [13],

Fiacco and Hutzler [101, Fiacco 17], and Hutzler [17]. One form of these

bounds is given by a pair of linear programs, each of whose feasible

region Is the set of Karush-Kuhn-Tucker multiplier vectors associated

with a particular solution of the nonlinear program.

In this paper, we first consider equality constrained programs

and determine conditions under which the optimal value directional

derivative can be calculated using only first-order information about

the problem functions. We also give conditions under which this

directional derivative can be estimated using the iterates of any

sequential solution technique.

Next we consider the more general pertur -gram containing

inequality as well as equality constraints. bsa mixed interior-

exterior penalty function, we show that, when the parameter directional

derivative of the optimal value function exists, it can be approximated

or bounded above, depending on the nature of the solution generated by

the penalty function algorithm. Moreover, we establish the existence

of the parameter directional derivative of the mixed interior-exterior

penalty function and obtain a representation of it.
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NOTATION AND DEFINITIONS

In this paper we shall be contcerned with mathematical programs of

the general form:

rain xf (x, e) P(E)

s.t. gi(xC) _ 0 (i = 1,...,m)

hj(xc) = 0 (j =

where xcEn is an n-dimensional vector of decision variables, e is a
k

parameter vector in E , and the functions f, g,, and h., unless specifiedj
otherwise, are once continuously differentiable in x and c. The m-vector

whose components are gi(x,c), i = l,...,m, and the p-vector whose compo-

nents are h (xe), j - l,...,p, will be denoted by g(x,c) and h(x,C),

respectively.

Following usual conventions, all vectors in standard form, except

gradient vectors, will be understood to be column vectors. The gradient,

with respect to x, of a once differentiable real-valued function

f:En Ek will be denoted V f(x,c) and is taken to be the rowx
vector [3f(x,E)/axl,...,af(x,c)/Dxn]. The transpose of a row or column

vector y will be denoted y'. If g(x,e) is a vector-valued function,nEkm

g:E n x E k- E, whose components gi(x,e) are differentiable in x, then

V g(x,c) will denote the m x n Jacobian matrix of g whose ith row is
x

given by Vxg1 (x,e), i = 1,...,m. The transpose of the Jacobian

V xg(x,e) will be denoted Vx'g(x,e). Differentiation with respect to the

vector c is denoted in a completely analogous fashion.
n

The feasible region of problem P() is the set of points xEE

which satisfy the constraints and will be denoted R(). Thus

R(e) - {x: g(x,E) >_O, h(x,e) = 01.

The set of solutions of P(c) will be denoted S(e) and is given by

S(c) = {xcR(c): f(x,c) - f*(c)},
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where f* (), the optimal value function for P(e), is expressed as

f (e) = miin {f(x,): xcR(c).

The Lagrangian for P() will be written

m p

L~xp~wc)- f(x~c) - P igi(x,e) + E w h (x,c),i-l 
j-i

and the set of Karush-Kuhn-Tucker vectors [19,20] corresponding to the

decision vector x will be given by

K(x,c) - {(p,w)eE m x EP: VxL(x,p,,w,c) 0,

Pi 0, Pigi(x,E) - 0, i = 1, ..M}.

Finally, writing a solution vector as a function of the parameter e,

the index set for inequality constraints which are binding at a solution

x(c) will be denoted B(c) = {i: gi(x[e],e) = 0}.

The program P(e) specifies the general mathematical program with

data perturbations. There are a number of forms of P(c) which are

often used to represent problems with special structure. Those that

we shall have occasion to address are the equality constrained program

m i n f ( x , E ) P 1 ( c ) s

D TI c

s.t. h(x,c) = 0, n:

T "6and the right-hand-side problem

D I~ t V '' ei

1oN-3
ID-., ICOPY/
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miin f(x) P2(c)

s.t. g(x) > 1 ,

h(x) - e2,

where E - (El,£2) is a vector in im x Ep . The feasible regions and

solution sets associated with PI() and P2() will, as for P(E), be

denoted R(E) and S(e), respectively. The interpretation of this nota-

tion should be clear from the context in which it is applied. Other

variations of P(W) will be explained as they arise in subsequent dis-

cussion.

Constraint qualifications in mathematical programming are regularity

conditions which are generally imposed to ensure that the set of Karush-

Kuhn-Tucker multipliers corresponding to an optimal solution is nonempty.

One constraint qualification which we shall employ throughout this

paper is the well-known Mangasarian-Fromovitz Constraint Qualification

(MFCQ) which holds at a point xcR(e) if:

^. ni) there exists a vector ycE such that

Vgi(x,c) y > 0 for ieB(E), and

V h (xe) - 0 for j = 1,...,p; and

ii) the gradients V h (x,c), j = l,...,p, are linearly independent.
xji

Another constraint qualification we shall have occasion to use is

the linear independence condition, designated LI, which holds at a

point xER(e) if the gradients {V gx (x,), iEB(E); Vx h (x,e), j - 1,..-,p)

are linearly independent. Clearly, for equality constrained programs,

MFCQ and LI are equivalent regularity conditions.
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Robinson [25] has shown the equivalence of MFCQ and a form of

local stability of the solution set of a system of inequalities.

Gauvin [12] has shown that MFCQ is both necessary and sufficient for

the set K(xe) to be nonempty, compact, and convex. In addition, Gauvin

and Tolle (14] established that MFCQ is preserved under right-hand-side

perturbations. That is, if MFCQ holds at a point x *S(e ) of P2 (c), and

if xn - x with X nS(Cn) where c a - , then, for n sufficiently large,

MFCQ holds at xn with (pnwn)cK(Xn) such that (inwn) I (I ,w ) for

some () ,W )cK(x , *).
We shall also have occasion to make use of the following compactness

property for point-to-set maps.

Definition 1. A point-to-set mapping :X - Y is said to be uniformly

compact near Z of X if the closure of the set U4(E), where the union is

over all c in N(Z), is compact for some neighborhood N() of £.

DIFFERENTIAL STABILITY OF THE OPTIMAL VALUE FUNCTION

Results relating to the differential stability of the optimal

value function have generally been directed toward the existence of

its directional derivative or bounds on its directional derivative

limit quotients. Before describing these results and their relation-

ship to results in this paper, we state several relevant definitions.

Throughout the remainder of this work, we shall, without loss of

generality, focus attention on the specific parameter value c = 0 when

considering the program P(c) and its variations.

Definition 2. For z, a unit vector in E , the directional derivative

of f (0) in the direction z is defined to be:

Df (0) lim f (Oz) -f (0)
prvie+ t '

provided that the limit exists.
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If the limit in (1) does not exist, then attention is focused

on the upper and lower directional derivative limit quotients of f (0),

which are respectively defined as follows:

D+f*<0) M li sup f (z) -f (0) (2)z84 0+ 8

- * lim inf f (Oz) -f (0)D f (0) = .0 8(3)z 8 0+

Clearly the limits in (2) and (3) always exist, though they may not

be finite. Furthermore, D f (0) exists if and only if these two limits

are equal, in which case D f (0) = D+f*(0) = D f (0).
z z z

One of the earliest characterizations of the optimal value func-

tion of a mathematical program was provided by Danskin [5,6]. Address-

ing the problem minimize f(x,c) subject to xeR, R some topological

space, c in Ek, Danskin derived conditions under which the directional

derivative of f exists and also determined its representation. In

particular, he showed that if R is nonempty and compact, and if f and

its partial derivatives 3f/3ci, i = l,...,k, are continuous at the

point c = 0, then the directional derivative of f (0) exists and is

given by

D f *(0) = min V f(x,O)z, (4)
z xcS(O) E

where S(O) = {x: x minimizes f(x,O) over R}.

Although Danskin's result has been extended to other spaces and a

variety of functional forms, its principal restriction remains that the

feasible region, R, does not vary with the parameter e. However, this

situation does not prevent Danskin's result from being applied to problems

such as P(c) since inequality and equality constraints can be "absorbed"

into the objective function of a program by the use of an appropriate

auxiliary function, e.g., Lagrangian or penalty function. Note also

that it can be applied directly to the dual of a convex program with

right-hand-side perturbations.
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For the special case in which R is defined by inequalities of the

form g(x,E) > 0 and f and -g are convex and continuously differentiable

on XcEn for each fixed e, Hogan [16] has given conditions under which
* kD zf (0) exists and is finite for all zeE . For this problem, the

additional conditions ensure that S(O) is nonempty and bounded and that

g(x,O) > 0 for some xEX. Under these conditions,

D fmn max [V f(xO) - Vi V g(x,O)]z. (5)z xcS(O) pcK(x,O) £ e

For programs without equality constraints, Rockafellar [26] has

shown that, under certain second-order conditions, the optimal value

function of P2(c) satisfies a stability of degree two, i.e., in a

neighborhood of e = 0, there exists a twice differentiable function

: E1 with f (e) > 4(O) and f (0) = *(0). Under this stability

property, bounds on the directional derivative of f can be derived.

For convex programming problems of the form P(c), Gol'stein [15] has

shown that a saddle point condition is satisfied by the directional

derivative of f

Recent investigations of Gauvin and Tolle [14] have focused on

the stability of the optimal value function for programs of the form

P 2(E) whose equality and inequality constraints are subject to right-

hand-side perturbations. Assuming the Mangasarian-Formovitz constraint

qualification and the uniform compactness of R(e), but without requiring

the convexity of the problem functions or second-order conditions, Gauvin

and Tolle showed that

/ m p
inf maxDf (0)~ in PKx)\~ - WI m+.jI (6)z xcS(O) (p,w) cK(x,O) J.1 J

and



8

/3p

D-f (0) 2 inf miin P - W m) (7)z xeS(O) (G,w) K(x,O) i -1

It is interesting to note that in all of the works just mentioned

the functional form that results in portraying the stability of the

optimal value function can be expressed as an optimization of V L(x,iw,O)z.

This observation is pursued in [7,10,13,17] to show that the above results

do indeed generalize to problems of the form P(e), where the parameter

can appear anywhere in the objective function and in the inequality and

equality constraints. The conditions imposed by Gauvin and Tolle [141

are shown to be sufficient to permit the extension of (6) and (7) to

the more general program P(e). The next 1emma states that extension

in a form most suited to the needs of this paper.

Lemma 3. If, for P(e), R(O) is nonempty and MFCQ holds at each
kxeS(O), then for any unit vector zcE

D f*(0) S V L(x,MX0) z. (8)
z -xCS(O) (U,W) EK(xO) '

and if R(E) is uniformly compact for c near e = 0, then

D f (0) > mi V L(x ,wi,O) z (9)z (1i,w) eK(x ,0) C

holds for some x cS(0).

Lempto and Maurer [211 have obtained similar bounds under analogous

assumptions that are required to handle general perturbed infinite dimen-

sional programs of the form minimize f(x,c), subject to xcR1 and

g(x,e)eR2, where R1 and R2 are arbitrary closed convex sets. Auslender

[4] has also obtained these bounds for the right-hand-side perturbation

problem P(e), extending the results of Gauvin and Tolle [14] by using

a weaker form of the Mangasarian-Fromovitz constraint qualification.

This allows him to replace the differentiability assumption on the
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objective and inequality functions with the weaker requirement that they

be locally Lipschitz.

Although we are focusing attention on programs for which the spaces

involved are finite dimensional, we note that most of the sensitivity

results mentioned above have been extended to infinite dimensional

programs. For example, Maurer [22,23] has recently obtained a character-

ization of the subgradient of the extremal value function for the problem

P(s), and has applied his results to a class of optimal control problems.

CALCULATING STABILITY BOUNDS FOR EQUALITY CONSTRAINED PROGRAMS

Consider the equality constrained program PI(c). In [17] we have

shown that when the feasible region is nonempty and uniformly compact

near c - 0, if the Jacobian matrix Vh(x,O) has rank p for each xcS(O)

then

D f(O) . min V L(x,w[x,O),O) Z, (10)
Dzf*O xS(O)e

k
for any unit vector zcE . Here, because of the linear independence of

the constraint gradients at each xcS(O), w(x,O) is the unique multiplier

vector associated with x.

Now, to calculate Dzf (0) from (10), one must solve a typically

nonlinear program. Two special cases in which this situation can be

avoided are when S(O) is a singleton and when, for each unit vector
k * *

zeE , D f (0) - -D_z f (0). We shall now show that in the latter case,

D f (0) can be calculated explicitly.z
We first note that, from (10)

D f *(0) V CL(x,w[x,O0,) z

for any xcS(0), so, substituting -z for z we obtain

-D f (0) > V£L(x,w[x,0J,O) z.-Z C
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Thus, if, in addition to the hypotheses which guarantee (10), we have* *(

that D f*(0) = -D f (0), then
z -z

D zf (0) = V CL(x,w[x,0],0) z (11)

for any xcS(0). Again, w(x,0) is the unique multiplier vector associated

with x. All that remains to determine D f (0) explicitly is to calculate
z

w(x,0) which, by the first-order necessary condition, must satisfy

-w V h(x,0) = Vxf(x,0). (12)

Under the assumption that V h(x,O) has full row rank for each xcS(0),x
we see that (12) has a unique solution given by

w(x,0) = -V xh(x,0) (V xh[x,0] V xh[x,0)- Vxf(x,0). (13)

Substituting this expression into (11) we see that Dz f (0) is given by

V f(x,0) z - V f(x,0) (V h[x,0] V h[x,0])-i V h(x,0) V h(x,0)z (14)
Ex x x x C

* *

for any xcS(0), under the condition that D f (0) = -D f (0).
z -Z *

If, on the other hand, S(0) is a singleton, i.e., if x is the

unique solution of P1 (0), then, from (10) it follows that (14) is an

exact representation of D f (0) and holds without the added hypothesis

that D zf (0) =-D_z f (0).

Suppose now that we have a sequence of points {xk}, given by some

algorithm for solving Pl(c), which converges to x ES(0). Since our

problem functions are assumed to be once continuously differentiable,

the expression for D f (0) given in (14) is a continuous function of
z

x. Thus for k sufficiently large, (14), when evaluated at Xk, provides

an estimate of D f (0) if x is unique. If x is not unique, then
z(14), when evaluated at xk for k sufficiently large, provides an
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estimate of D f (0) whenever D f (0) -D f*(0), and an upper bound on
, z * z , -z

D f (0) whenever D f*(0) 0 -D f (0).
z z -z

PENALTY FUNCTION DIRECTIONAL DERIVATIVES

Before developing similar results for the more general program,

P(c), we briefly review the fundamental convergence properties of penalty

functions. These properties are Lmployed below to approximate D f (W).z
A detailed discussion of the properties of penalty functions can be

found in Fiacco and McCormick [11].

A general form of the mixed interior-exterior penalty function for

P() can be written

V(x,s,rk,tk) = f(x,E) + s(rk) I(x,) + p(tk) G(x,c), (15)

where I = I(g[xc]) and G = G(h[x,e]), and assuming the following:

i) I is a continuous function on R"(e) = {x: g(x,c) > 01,

ii) if {xk}S R"(E) with xk x and gi(x ,s) = 0 for at least
lim -

one i 1,...,m, then k I(x E) = + =;

iii) G is continuous with G(x,E) = 0 if h(x,e) > 0 and G(x,e) > 0

otherwise;

iv) rm > rn > 0 implies s(rm ) > s(rn) > 0;
v) lira lira

v) k-m rk = 0 implies k- s(rk) = 0;

vi) 0 < tm < tn implies 0 < p(tm) < P(tn); and

vii) if k - + - monotonically, then limp(t) =
k -). k

It is by now well known that the sequential unconstrained minimization

of the penalty function (15) can serve as a means of approximating

local solutions of P(c). The conditions under which this is so are

contained in Lemma 4, which is due to Fiacco and McCormick [111.

Let H(s) - (x: h(x,e) - 01.
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Lemma 4. If,

a) f, gi (i = l....,m), and-hi. (j - 1,...,p) are continuous;

b) I(x,c), G(x,c), s(r), and p(t) satisfy (i)-(vii) above;

c) a set, S'(E) of local minima of P(e) is a nonempty isolated

compact set;

d) S(c) n cl(R"[E) r) H[ei° ) 0 0; and

e) rk - 0 and tk - + -, each monotonically with tk > 0,

then

i) there exists a cobipact set S"(E) with S'(c) C S"(E) ° ,

and for k sufficiently large, the unconstrained minima of

V(x,e,rk, tk) in R"n S"() exist and every limit point of

any sequence {xk } of minimizing points is in S'(c);

lim
ii) k4 srlIkJ=0;

ii) k p(t k ) G(xkl) = 0; and

iv) lim V(xk, ,rk,tk) = f*(C)

Now consider the mathematical program P(e), which contains inequal-

ity constraints as well as equality constraints. Recall that for such

a program, the general form of the mixed interior-exterior penalty func-

tion is

V(x,c,rk,tk) = f(x,c) + s(rk) I(xe) + P(tk) G(xc), (16)

and that one method for solving P(e) is to solve the sequence of uncon-

strained minimization problems

minx V(x,c,rk, tk). Pk()

-. - - - - - - - - - - -
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Denoting by V k() the optimal value function of the program Pk(c), we

now establish the existence of the directional derivative D V*(s). In
z k

doing so, we assume, in addition to the hypotheses of Lemma 4, that the

functionsI(x,c) and G(x,c) are once continuously differentiable.

Under our hypotheses, V(x,crk,tk) is continuously differentiable,

V V exists, and V and V CV are continuous in x and c. In addition, byE
Lemma 4, the unconstrained minima of P (0) lie in R"(0) n S"(O) for

k sufficiently large, where S"(0) is compact. Thus, taking X - S"(0)

in Danskin's theorem, it follows that D V (0) exists for all directions
k z k

zeE and all indices k sufficiently large. Furthermore,

Dz Vk(0) XCSk(O) VV(x,O,rk,tk) z, (17)

* *

where Sk( 0
) - {xCS"(O): Vk(O) > V(x,O,rk, tk)}. In particular, if xk

is the unique minimizer of Vk (0), then

D V (0) - V V(x Ort)Zz k C k,0,rk,tk) z.

As another consequence of (17) we note that, if k is sufficiently

large and xk - xk(rk, tk,0) is ka minimizer of Pk(0), i.e., xkCSk(O),

then, for any unit vector zcE

Dz Vk (0) VCV(xk,O,rk,tk) z. (18)

Several observations now follow. First, from (18) we see that

-D -zV k(0) > V CV(x yOrktk)Z'(9-Dz k(0 > VcV(k,O,rk,tk) z, (19)

so that, combining (18) and (19),

D V *(O)SVV(x zkzS D *()z k - k,O,rk,tk) z -Dzv (0).
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Thus, if DzVk(0)  -D_zVk(0) for some unit vector z cE
k
, then

D *Vk(0) = V CV(Xk, O,rktk) z (20)
z

for any minimizer xk of Pk(O) If D zf (0) = -D_z f (0) for all unit

vectors zEE k , then (20) holds for all direction vectors z and this

provides a necessary condition for the existence of VVk(o).

If we now take V(x,O,rk, tk) to be the logarithmic-quadratic penalty

function

m p

W(x,O,rk)- f(x,O) - rk In g(x,O)+ i h (xO), (21)

then, from (17), for k sufficiently large,

D WO* -0) .- "in V W(x,O,rk) z (22)Dz k sk(0) E k(0

kfor any direction zcE

Now, choosing any sequence of minimizers {xk with xkCSk(0), we

have, by Lmua 4, that xk - x where x is a minimizer of P(O). Thus,

by the continuity of V W, VW(Xk, O,rk) V L(x ,p* ,w ,O) as k

where the multipliers p* and w * are given by

* lirI rk

i k - gi(xkO)' i -

* ira h1 (xk,0)
'j k m rk jl"'p

Clearly, if MFCQ holds at each point of S(O), then (8) and (9)

apply. Thus VCW(XkO,rk) z, which converges to V L(x ,i ,w ,0) z,

L-.
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in general converges to a value between the bounds expressed in (8)

and (9).

In the particular instance in which D f (0) exists and is givenz

by

* inf
D f (0) = iS0 V L(xP[x.O].W[x'O],O) Z,

z xcS(O) C

as for instance when each xcS(0) possesses a unique multiplier vector,

we may conclude that

D f (0)!5 V L(x*,u[x*,O],w[x ,01,0) z (23)

for any x* cS(O). Here, for k sufficiently large, V W(x, O,r) z

approximates D f (0) if equality holds in (23), as when P(O) has az
unique solution, or V6W(xk, O,rk) z is a strict upper bound on Dzf (0)

if equality does not hold in (23).

Example

To demonstrate a number of the concepts just discussed, consider

the problem

min e1 P(C)

s.t. g(xe) - -(x1 - )2 - (x2 + 2)2 + 4 : 0

h(x,c) - -x1 4 x 2 + C - 0

The solution of this program is easily determined to be xI  x2 + E

with

i-
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x 2 =(24) 
.

2 1 <0, and if 0, x2 can beanyvalue

in the interval [0,2].

The optimal value function is

2

f (c) - . (25)

Ic2 + 2c c < 0.

We see that f is a continuous function of the parameter E, but it is

not differentiable at e - 0. This function does, however, have direc-

tional derivatives at e - 0 which are given by

D f (0) - . (26)

*

When c 0 0, the derivative of f (c) is

df . (27)

2c+2 c < 0

The logarithmic-quadratic penalty function for P(E) is

W(x,£,r) - cx - r In[-(x1 -)2 - (x2 + 2)2 + 41 + -1 [-x + x2 + e].

Choosing a sequence {rk) of positIve real numbers with rk -1 0 monotonically,

we have solved the sequence of minimization problems

minx W(x,£,rk) Pk(C)
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using the Sequential Unconstrained Minimization Technique (SUMT) developed

by Fiacco and McCormick [11l and implemented by Mylander, Holmes, and

McCormick [241. The results of the minimization of the sequence of

problems Pk( ) for c = -1 are shown in Table 1.

The sequence of points, xk - xk(rk,c), generated by SUMT can be
,

used to bound the directional derivative D f (c) as in (23), since
z

XkeSk(E) and, as we shall see, almost each xeS(c) possesses a unique

multiplier. To this end, consider the gradient of the Lagrangian for

P(c), i.e.,

VL(x,pwc) - (c + 2U[x1 - w - , 2[x 2 - 2] + w). (28)

A first-order necessary condition that x - (xlX 2) be a local minimum

of P() is that there exist vectors u(x ,E) and w(x ,E) such that* * * * *
VL(x ,1(x ,),'W(x ,),) 0. From (28) we see that Ui v (x ,) and* ,

W (x ,c-) must satisfy the system of equations

2 11 (29)N2 (2  2) 1

Recalling that at a solution of P(C), xl - x2 + c, it is easily shown that

the system in (29) has a unique solution for any value of c # 0. Further-

more, if e- 0, the system has a unique solution provided x2 # 1. In

those instances when the multiplier is unique, it is given by

4(x2 - 1) [2c(x2- 2]

Thus, for the particular situation in which c = -1, we can bound

D zf (-l) as in (23). As indicated in the discussion following (23),

ta



Table 1

THE SOLUTION OF P(-1) USING SUMT

k rk x1 ( 2 ( 1) g(x,-1) hVxk-l)

1 100 -.9791 1.9993 3.9996 1.9784 .9791
2 10 -.7381 1.9343 3.9271 1.6724 .7381
3 1 .3774 1.5895 1.9342 .2121 -.3774
4 .1 .9049 1.9075 .3726 .0026 -.9049
5 .01 .9901 1.9901 .0396 .0000 -.9901
6 .001 .9990 1.9990 .0040 .0000 -.9990
7 .0001 .9999 1.9999 .0004 .0000 -.9999
8 .00001 1.0 2.0 .0000 .0000 -1.0
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we can approximate the bounding term algorithmically by VCW(xk,-l,r k ) z,

tor k sufficiently large. This is demonstrated using the figures

provided in Table 1 and the formula for V CW(xk,-1,rk ) which is

V xk,,r 1 r 2(k + 1) h(x2,_l).
(k) -k Ir -1) +

The results of this sequence of calculations are shown in Table 2. As

we can see, the sequence of values VEW(xk,-l,rk) is approximately zero

for k - 8. Thus we may conclude, from the discussion following (23),

that D f (0) 1 0 for each ze{-l,11. This agrees with the exact calcula-z **

tion of D zf *(0) implied by (27) 4ce f is actually differentiable at

SM-1.

Unfortunately this annot be used to bound the directional

derivative of f when E * vw reason is that not all solutions of

P(O) have a unique mulaii' ,.ctor. We have seen from (29) that when

- 0, the solution x 4 [1,11 s multiple, in fact infinitely many,

multipliers associated vik* it.

RELATED RESULTS

The sensitivity of the optimal value function of a mathematical

program has been the subject of a significant amount of research in

recent years. Conditions ranging from the semi-continuity of problem

functions to the assumption of strong second-order conditions and

strict complementary slackness have resulted in a number of static

measures of the local behavior of the optimal value function. The

reader interested in a comprehensive review of these results, as well

as other results in general mathematical programming sensitivity

analysis, is referred to the survey by Fiacco and Hutzler [9].

Among the most recent of these results are those of Armacost and

Fiacco [2], which show that if, at a local solution of P(c), the

second-order sufficiency condition holds along with the linear

independence of the binding constraint gradients and the strict

complementary slackness condition, then the optimal value function,
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Table 2

THE CALCULATION OF A BOUND ON Dz f (0)

k 1 2 3 4 5 6 7 8

V Wz Z 1 -2.0024 -1.9048 -.8347 -.1201 .4885 -.0026 .005b .0055

z -1 2.0024 1.9048 .8347 .1201 -.4885 .0026 -.0058 -.0055
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f (e), is twice continuously differentiable in E. In addition, they

obtained the form of f and its first and second derivatives in terms

of the P(e) Lagrangian, its gradient, and its Hessian, respectively.

In [18], Jittorntrum showed that the strict complementary slackness,

condition is not essential to the differentiability of f , which results

from the second-order sufficiency and linear independence conditions.

Note that under these weakened conditions, however, that V f need not
C

be continuous and that higher order derivatives do not necessarily

exist.

As we mentioned earlier, the differential stability of f (E) has

been investigated by Gauvin and Tolle [14] for right-hand-side perturba-

tions, and by Fiacco and Hutzler [10], Fiacco (7], Hutzler (171, and

Gauvin and Dubeau [13], for more general programs of the form P(e). Each

of these works produced bounds on the directional derivative limit

quotients of f . Moreover, problems possessing special structure, e.g.,

convexity, are known to have optimal value functions with an at least

theoretically computable directional derivative. Danskin [5,6] provided

the classic result in this area in addressing unconstrained problems.

His result readily applies to constrained problems since inequality and

equality constraints can be "absorbed" into the objective function of

a program by employing an appropriate auxiliary function (Lagrangian,

penalty function, etc.). Gol'stein [15] and Hogan [161, each using

different assumptions, demonstrated the existence of D f for convexz
programs. Hogan used the form of that derivative to develop a convergent

algorithm for solving decomposable convex programs. Aside from Hogan's

application of D zf , it does not appear that these results have been
applied to the development or enhancement of algorithms for solving

mathematical programs.
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