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PREFACE

In this paper we review generalizability (G) theory, a theory of

the multifaceted errors of a behavioral measurement. The review was

undertaken at the request of Philip Levy, then editor of the Journal.

His idea was that the review would commemorate the first article on G

theory, which the Journal published in 1963 (Cronbach, Rajaratnam, &

Gleser, 1963). For these and personal reasons, we undertook the re-

view. The review does not cover the period 1963-1972 because that has

already been done by Cronbach, Gleser, Nanda, and Rajaratnam (1972).

In Section 1 we sketch out generalizability theory for those who

are not familiar with it. In doing so, we summarize the notation used

in the review. Section 2 reviews theoretical contributions. While it

primarily reflects what has been published, we take up some new topics

and identify others in need of treatment. Section 3 presents an appli-

cation of the theory in some detail. This application illustrates

basic concepts in the theory (Section 1) as well as recent theoretical

contributions (Section 2).
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~ABSTRACT

This paper reviews the developments in generalizability theory

from 1973 to 1980. The first section presents a sketch of generali-

zability theory. The second section reviews theoretical contributions

about (1) problems associated with estimating variance components,

including sampling variability and negative estimates, (2) fixed facets,

(3) criterion-referenced measurement, (4) symmetry, (5) multivariate

generalizability, and (6) sampling in observational measurement. The

final section presents an illustrative application of generalizability

theory, including univariate and multivariate generalizability analyses

of balanced and unbalanced designs, and Bayesian estimation of variance

components.!



1. SKETCH OF GENERALIZABILITY THEORY

Generalizability theory evolved out of the recognition that the

concept of undifferentiated error in classical test theory provided too

gross a characterization of the multiple sources of error in a measure-

ment. The multidimensional nature of measurement error can be seen in

how a test score is obtained. For example, one of many possible test

forms might be administered in one of many possible occasions by one of

many possible testers. Each of these choices--test form, occasion, and

tester--is a potential source of error. G theory assesses each source

of error in order to characterize the measurement and improve its design.

A behavioral measurement, then, is a sample from a universe of

admissible observations, characterized by one or more facets (e.g.,

test forms, occasions, testers). This universe is usually defined by

the Cartesian product of the levels (called conditions in G theory) of

the facets. From this perspective, Cronbach et al. (1972, p. 15) say:

The score on which the decision is to be based is only one

of many scores that might serve the same purpose. The
decision maker is almost never interested in the response
given to the particular stimulus objects or questions, to

the particular tester, at the particular moment of testing.
Some, at least, of these conditions of measurement could be
altered without making the score any less acceptable to the
decision maker. That is to say, there is a universe of ob-
servations, any of which would have yielded a usable basis

for the decision. The ideal datum on which to base the
decision would be something like the person's mean score
over all acceptable observations, which we shall call his
"universe score." The investigator uses the observed score

or some function of it as if it were the universe score.

That is, he generalizes from sample to universe. The ques-
tion of "reliability" thus resolves into a question of accu-
racy of generalization, or generalizability.

Since different measurements may represent different universes,

G theory speaks of universe scores rather than true scores, acknowl-

edging that there are different universes to which decisionmakers may

generalize. Likewise, the theory speaks of generalizability coeffi-

cients rather than the reliability coefficient, realizing that the

value of the coefficient may change as definitions of universes change.
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In G theory, a person's score is decomposed into a component for

the universe score (wp ) and one or more error components. To illus-

trate this decomposition, we consider the simDlest case for pedagogical

purposes--a one facet, p x .1 (person by, say, test form) design. (The

object of measurement, here persons, is not a source of error and,

therefore, is not a facet.) The presentation readily generalizes to

more complex designs. In the p x i design with generalization over

all admissible test forms taken from an indefinitely large universe,

the score for a particular person (p) on a particular form (i) is:

[] Xpi (grand mean)

+ Jp - U (person effect)

+ Pi - (form effect)

+ Xpi - p - Ui + 1. (residual)

Except for the grand mean, each score component has a distribution.

Considering all persons in the population, there is a distribution of

- u with mean zero and variance M - 2)2 = Op, which is called
p p p
the universe-score variance and is analogous to the true-score variance

of classical theory. Similarly, the component for test form has mean

zero and variance &(Vj - V)2 = a2 which indicates the variance of con-
1 i

stant errors associated with test forms, while the residual component

has mean zero and variance a2  which indicates the person x form
pi,e'

interaction confounded with residual error, since there is one obser-

vation per cell. The collection of observed scores, X i, has a vari-

ance a2 = (Xpi - V)2 which equals the sum of the variance components:
Xpi p

22 o2 + 2+ a2
2 p p i pi,e

.. n ... .. . . ... ... . . .. . ... .. .. I ... .I . . .. ..... .. ... . . . .. .. . l a ... .. .. ... II ... . ..p i. .



G theory focuses on these variance components. The relative

magnitudes of the components provide information about particular

sources of error influencing a measurement. It is convenient to esti-

mate variance components from an ANOVA of sample data. Numerical esti-

mates of the variance components are obtained by setting the expected

mean squares equal to the observed mean squares and solving the set of

simultaneous equations as shown in Table I.

Table 1

ESTIMATES OF VARIANCE COMPONENTS FOR A
ONE FACET, p x i, DESIGN

Source of Mean Expected , Estimated
Variation Square Mean Square Variance Component

Person (p) MS G2  + n aY 2  = (MS - MS )/np pi,e i p p p res i

Form (i) MS. 02  + npa2 a 2= (MS - MS
1 pi,e p i i i res)/n

pxie MS 02  a2  =Ms
res pi,e pi,e res

ni = number of forms; np = number of persons.

Variance components are estimated by means of a generalizability

(G) study. "The instrument developer, carrying out a G study to guide

users of his instrument will, in the design of that study, treat sys-

tematically the facets that are likely to enter into generalizations

of various users" (Cronbach et al., 1972, p. 21). Ordinarily, the I
universe of admissible observations is defined as broadly as possible

within practical and theoretical constraints. In most cases. Cronbach

et al. recommended using a crossed design so that all of the variance

components can be estimated. Cronbach et al. (1972) noted, however,

that a nested G study is sometimes useful because it provides more

degrees of freedom for some estimates of variance components.



4

G theory distinguishes a decision (D) study from a G study. This

distinction recognizes that certain studies are associated with the

development of a measurement procedure (G studies) while other studies

then apply the procedure (D studies). In planning the D study, the

decisionmaker (a) defines the universe of generalization and (b) spec-

ifies his proposed interpretation of a measurement. These plans deter-

mine (c) the questions to be asked of the G study data in order to

optimize the measurement design. Each of these points is considered

in turn.

(a) G theory recognizes that the universe of admissible obser-

vations encompassed by a G study may be broader than the universe to

which a decisionmaker wishes to generalize. That is, the decision

maker proposes to generalize to a universe comprised of some subset

of facets in the G study. This universe is called the universe of

generalization. It may be defined by reducing the universe of admis-

sible observations, i.e., by reducing the levels of a facet (creating

a fixed facet; cf. fixed factor in ANOVA), by selecting and thereby

controlling one level of a facet, or by ignoring a facet. All three

alternatives have consequences for the estimation of the components

of error variance that enter into the observed score variance.

(b) G theory recognizes that decision makers use the same test

score in different ways. For example, some interpretations may focus

on individual differences (i.e., relative or comparative decisions),

some may use the observed score as an estimate of a person's universe

score (absolute decisions; cf. criterion-referenced interpretations),

while still others may use the observed score in a regression estimate

of the universe score (cf. Kelley's, 1947, regression estimate of true

scores). There is a different error associated with each of these

proposed interpretations. For relative decisions, the error in a

p x i design is defined as:

[3] 6p = (Xipd -a v I) - ( t o

where I indicates that an average has been taken over the levels of



5

facet i under which p was observed. The variance of the errors for

relative decisions are:

[4] 02 = Y2 =2 In'
6 p pi,e/i

where ni indicates the number of conditions of facet i to be sampled

in a D study. Notice that (a) 02 /ni' is the standard error of the
pie

mean of a person's scores averaged over the levels of i (test forms in

our example). And (b) the magnitude of the error is under the control
2

of the decisionmaker in the D study. In order to reduce a6 , n' may

be increased. This is analogous to the Spearman-Brown prophecy for-

mula in classical theory and the standard error of the mean in sampling

theory.

For absolute decisions, the error is defined as:

[5] Apl =X - p •

The variance of these errors in a p x i design is:

02 o 2 + j21 = 2 /ni + a2 /n
A I p i pi,e i

In contrast to a2 , o2 includes the variance of constant errors asso-

ciated with facet i (a2). This arises because, in absolute decisions,

the difficulty of the particular test forms that a person receives will

influence his observed score and, hence, the decisionmaker's estimate

of his universe score. For relative decisions, however, the effect

of test form is constant for all persons and so does not influence

the rank ordering of them (see Erlich & Shavelson, 1976b).

Finally, for decisions based on the regression estimate of a per-

sonts universe score, error (of estimate) is defined as:

[71 
p p - p

where U is the regression estimate of a person's universe score, p •PP



6

The estimation procedure for the variance of error. of estimate may be

found in Cronbach et al. (1972, p. 97ff).

(c) D studies encompass a wide variety of designs including

crossed, partially nested, and completely nested designs. All facets

in the D design may be random (cf. random model) or only some may be

random (cf. mixed model). Often, in D studies, nested designs are

used for convenience, for increasing sample size, or both. Forms may

be nested within persons (we write i:p to denote nesting). So, the

effect of the constant errors associated with facet i is confounded

with the effect associated with the person by i-facet interaction

(pi,e). Hence.

[8) 02 =( 2 + 02 = 2 + 02
X pI p I,pI,e p A

Note that, for a completely nested design, o 
= 02

While stressing the importance of variance components and errors

such as a2, G theory also provides a coefficient analogous to the

reliability coefficient in classical theory. The generalizability

coefficient, Cp2 , is defined as the ratio of the universe-score vari-

ance to the expected observed-score variance, i.e., an intraclass

correlation:

02 02

[9] 02  = p

&o2 (X) 02 + 1

The expected observed-score variance is used in G theory because the

theory assumes only random sampling of the levels of facets and so

the observed-score variance may change from one application of the

design to another. Sample estimates of the parameters in [9] are

used to estimate the G coefficient:

[9a]

LI+p I

p
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^p
2 is a biased but consistent estimator of Ep 2 .

For absolute decisions a generalizability coefficient can be de-

fined in an analogous manner:

OZ

[10] EP2 = P and
a2 + a2
p A

a2

[lOa] 2 = P

o+ 5

Finally, note that, for completely nested designs regardless of whether

relative or absolute decisions are to be made, error variance is de-

fined as a2 and so [10] provides the generalizability coefficient for
A

such designs.

Generalizability theory has been applied widely in the behavioral

sciences. It has been applied, for example, in studying the depend-

ability of measures of the behavior of schizophrenic patients (e.g.,

Mariotto & Farrell, 1979), assertion in the elderly (Edinberg, Karoly,

& Gleser, 1977), free-recall in children (Peng & Farr, 1976), depth

and duration of sleep (Coates, Rosekind, Strossen, Thoresen, & Kirmil-

Gray, 1979), behavior of teachers (e.g., Erlich & Shavelson, 1978),

dentists' sensitivity toward patients (Gershen, 1976), educational

attainment (Cardinet, Tourneur, & Allal, 1976a), job satisfaction using

Spanish and English forms (Katerberg, Smith, & Hoy, 1977), student

ratings of instruction (e.g., Gillmore, Kane, & Naccarato, 1978), and

heterosexual social anxiety (Farrell, Marco, Conger, Curran, & Wallander,

1979).

A study of the dependability of measures of psychological improve-

ment of disaster survivors (Gleser, Green, & Winget, 1978) illustrates

the theory's treatment of multifaceted measurement error. Twenty adult

survivors (S) were interviewed independently by two interviewers (I)

in order to obtain data on the extent of psychiatric impairment result-

ing from the disaster. Two raters (R) "quantified" the interview data

by rating each survivor on a number of subscales, such as anxiety, of

the Psychiatric Evaluation Form. In differentiating survivors with
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respect to the extent of impairment, errors in the measurement

may arise from inconsistencies associated with interviewers, raters,

and other unidentified sources. G theory incorporates these potential

sources of error into a measurement model and estimates the components

of variarance associated with each source of variation in the 20 x 2

x 2 (S x I x R) design. Table 2 enumerates the sources of variation

and presents the estimated variance components for the anxiety subscale.

Three estimated variance components are large relative to other com-

ponents. The first, for survivors, is analogous to true score variance

in classical test theory and is expected to be large. The second, the

survivor by interviewer interaction, represents one source of measure-

ment error and is due to inconsistencies of the two interviewers in

obtaining information for different survivors. The third is the resi-

dual term representing unidentified sources of measurement error. The

estimated generalizability coefficient, 2, is 0.56 using two inter-

viewers and two raters.

Lz
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Table 2

GENERALIZABILITY OF MEASURES OF PSYCHIATRIC
IMPAIRMENT OF DISASTER SURVIVORS

Source of Estimated Variance
Variation Component

Survivors (S) 1.84

Raters (R) .21

Interviewers (I) .49

SR .27

SI 1.82

RI .03

Residual (SRI,e) 1.58

Generalizability Coefficient (pt)
for one rater and one interviewer 0.33

Generalizability Coefficient (p 2 )
for two raters and two interviewers 0.56
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2. THEORETICAL CONTRIBUTIONS

2.1. Estimated Variance Components: The Achilles Heel

Two major contributions of generalizability theory are its emphasis

on the multiple sources of measurement error and its de-emphasis of

the role played by summary reliability or generalizability coefficients.

Estimated variance components are the basis for indexing the relative

contribution of each source of error and the undependability of a mea-

surement. Yet Cronbach et al. (1972) warned that the estimates of these

variance components are unstable with usual sample sizes (cf. Lindquist,

1953; Smith, 1978; van der Kamp, 1976).

While we consider the problems associated with estimating variance

components to be the Achilles heel of G theory, these problems afflict

all sampling theories. One virtue of G theory is that it brings esti-

mation problems to the fore and puts them up for examination. Esti-

mation problems, then, are the Achilles heel of all theories that in-

volve sampling.

With the importance and fallibility of estimated variance components

so clea-ly recognized, we find it astonishing that so little attention

has been given to this topic in the literature on G theory. Here we

review the few studies that have been done and also point out research

in the statistical literature which we hope will stimulate further work.

2.1.1. Sampling variability of estimated variance components

Usually the estimate of a variance component (&2) is found using

some linear combination of mean squares divided by a constant. The

sampling variance of an estimated variance component (62) is:

[11] VAR(&2 ) '  VAR(MS)
q q

2 mLs 2

q qf



where c is the constant associated with the estimated variance component,

EMS is the expected value of the mean square, MSq, and df is the de-
q q

grees of freedom associated with MS . (See Smith, 1978, for a lucid,q
terse development of this general formula.) For example, in Table 1,

the variance component for persons is estimated by (MS - MS res)/n i .ni  rfes o p res i

With respect to [11], c refers to nit MSq refers to MS and MSq res
The problem of fallible estimates can be illustrated by expressing

a mean square as a sum of population variances. In a two-facet, crossed

(p x i x j), random model design, the variance of the estimated variance

component for persons--of the estimated universe score variance--is

(Smith, 1978, Fig. 1):

o2. O'2.. azC 2  2

[121 VAR(a2 ) 2 oz +_._.+ 21 + _ +_ res
p nin j (nj-l) n nin

+1 P+ 2 ( res
(ni-l) ni ninj) + (ni-l) (nj-l) n i P

With all of the components entering the variance of the estimated uni-

verse score variance, &2 , the fallibility of such an estimate is quite
p

apparent (if ni and n. are modest). In contrast, the variance of the

estimated residual variance ( 2 res ) has only one variance component.

[131 VAR( 2  ) = 24
res (n p-l)(n i-l)(nj-l) res.

In a crossed design, then, the number of components and hence the vari-

ance of the estimator increases from the highest order interaction com-

ponent to the main effect components. Consequently, sample estimates

of the universe-score variance--estimates of crucial importance to the

dependability of a measurement--may reasonably be expected to be less

stable than estimates of components of error variance.

The sampling variability of estimated variance components leads

to a bandwidth-fidelity dilemma. Perhaps the greatest contribution of

G theory is its applicability to complex, realistic, multifaceted
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measurement designs. Hence, G theory provides great bandwidth in

examining the dependability of behavioral measurements. However, for

complex multifaceted measurements the variability of the estimated

variance components is, in general, expected to increase. Hence,

fidelity in estimation is lower for multifaceted universes than for

single faceted universes. The bandwidth-fidelity dilemma is a dilemma

associated with all applied statistics, not just with G theory.

2.1.2. Negative estimates of variance components

Negative estimates of variance components can arise because of

sampling errors or because of model misspecification (Hill, 1970).

With respect to sampling error, the one-way ANOVA illustrates how

negative estimates can arise. The expected mean squares are:

wMS = o2 and
W 1

[14]

&MS = + n02 = 2

B 1 2 12,

where MSW is the expected value of the mean square within groups and

MS is the expected value of the mean square between groups. Esti-
B

mation of the variance components is accomplished by equating the ob-

served mean squares with their expected values and solving the linear

equations (see Brennan, 1978a, for algorithms). If MSW is larger than

MSB the estimate of a2 will be negative.
B 2

Realizing this problem in G theory, Cronbach et al. (1972, p. 57)

suggested that "a plausible solution is to substitute zero for the nega-

tive estimate, and carry this zero forward as the estimate of the com-

ponent when it enters any equation higher in the table of mean squares."

[See Davis (1974, pp. 15-17) for a summary of approaches to treating

negative estimates.] Notice that by setting negative estimates of

variance components to zero, the researcher is stating that a reduced

model provides an adequate representation of the data, thereby admitting

that the original model was misspecified. Scheffe (1959), among others,

has pointed out that while this is a reasonable solution to the problem,

the sampling distribution of the (once negative) variance component as



13

well as those variance components whose calculation includes this com-

ponent is more complicated and the modified estimates are biased. The

problem of handling negative variance components is exacerbated in G

studies with many crossed facets as [12] suggests.

A Bayesian approach to estimating variance components appears to

be an attractive alternative to that of traditional sampling theory

because it: (a) provides a solution to the problem of negative point

and interval estimates of variance components; and (b) provides inter-

val estimates of variance components interpretable with respect to the

sample data, not to repeated sampling. While the Bayesian methods

have rarely been applied to generalizability theory, the work of Box

and Tiao (see also Davis, 1974; Fyans, 1977; Novick & Jackson, 1974;

Novick, Jackson & Thayer, 1971) provides an important starting point.

Hill (1965, 1967, 1970; see also Novick et al., 1971) pointed out

that sampling theory's usual unbiased estimate of a2 ignores relevant

information contained in o2 = o + no2 . For Bayesians, a negative
12 1 2~ aeinangtv

estimate of the between persons component indicates that MSW and MSB

are providing conflicting information. A Bayesian approach, then,

incorporates information about a2 that is constrained in both MS and
1 W

MS . The approach also includes the constraint that MSB > MSW (Box &

Tiao, 1973, see p. 254).

Fyans (1977) provided a general strategy for obtaining Bayesian

estimates of the modes of the posterior distributions for variance com-

ponents from crossed, partially nested, and completely nested designs.

Following Box and Tiao's (1973) formulation, he assumed a locally uni-

form prior with p(o) = a- and constrained the variance components to

be greater than or equal to zero. Under normality and independence,

the joint mode (V) for the posterior distribution of any source of vari-

ation in a design is given by its sum-of-squares divided by the appro-

priate degrees of freedom plus two (Fyans, 1977). In a p x i design,

for example, the joint modes would be:

= SS /(df + 2) ,
15 p p p

= SS i/(df i + 2) ,
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and

V p i SS pi/(df + 2) .

By equating the Vs--i.e., the adjusted mean squares--to their ex-

pectation, Bayesian modal estimates of the variance components ("2) can

be obtained:

116])2( ~)
p p Pi ni

i pi np

02 ,

Box and Tiao (1973) provided posterior distributions for variance com-

ponents in crossed and completely nested designs. Fyans (1977) provided

a posterior distribution for variance components for a partially nested

design. With estimates in hand, a Bayesian generalizability coefficient

can be obtained in the usual manner.

If the posterior modal values do not satisfy the constraint of non-

negative estimated variance components, the Bayesian approach sets all

joint modes equal to each other and uses a pooled estimate for the common

value (Fyans, 1977, p. 151).

Finally, the interpretation of the Bayesian interval is more straight-

forward than is the interval obtained by sampling theory. In sampling

theory, the probability statement refers to all possible confidence in-

tervals rather than to a particular interval--the one in hand--that was

constructed from sample data. In contrast, the probability statement

associated with the Bayesian interval refers directly to likely values

of the population variance component and not to replications of the

design. In practical applications of any measurement theory, we make

decisions on the basis of the sample data. Hence, the Bayesian inter-

pretation corresponds to how variance components are used in practical

applications of G theory.
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Cronbach et al.'s (1972) evaluation of the potential contribution

of Bayesian G theory has held up over time:

Bayesian statistical inference needs to be exploited
systematically. It appears likely that developments
now available in the statistical literature could, in
some problems, profitably replace the methods of esti-
mating variance components... [and universe scores].
Also, whereas we obtain all estimates from the G study,
one could, by Bayesian methods, take into account the
additional information offered by the D study to reach
final conclusions about the generalizability of the D
data [p. 336, italics ours].

Novick (1976) went even further than Cronbach et al., by pointing out

that if one accepts de Finetti's exchangeability concept (see Section

2.2), "Generalizability Theory...is Bayesian in everything but a formal

sense, though I do not think the authors see it that way" (p. 24). In

our opinion, it is time that the formal sense in which G theory is

Bayesian be systematically explored.

2.1.3. Allocation of observations to reduce the sampling variability

of estimated variance components

Woodward and Joe (1973) and Smith (1978) addressed the problem of

how to allocate measurements (e.g., ni and n.) to maximize the general-
3

izability coefficient (Woodward & Joe) or to produce the most stable

estimates of variance components (Smith). They arrived at similar recom-

mendations. In a p x i x j design, for example, as o'z increases rela-res

tive to 2. and 2., the optimal solution tends toward ni = n Asp1 p3
re decreases relative to ,2 and 2 the optimal solution is to makeres pi 3

n and n proportional to Z / 2
i j pi pj

2.1.4. Monte Carlo studies of variance components

Smith conducted Monte Carlo studies with: (a) three designs--

Design A = p x i x J, Design B = p x (j:i), and Design C = (j:p) x i;

(b) n - 25, 50, 100; (c) ni and nj = 2, 4, 8; (d) oa' 2 = 1:4, 4:1;

and (e) a2 = 20, 76. A random effects, p x i x j ANOVA model (assuming
res
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additivity and independence) was used to generate normally distributed,

integer scores. For each case, 300-500 replications were obtained.

Smith concluded that the estimated variance components from multi-

faceted generalizability studies contain sizable error. More specifi-

cally, he found that: (a) The sampling errors of variance components

are much greater for multifaceted universes than for single faceted

universes. (b) For a2, the sampling errors were large unless the total
p

number of observations (n nin.) was at least 800. (c) Stable estimates

of oi and of required at least eight le -i:, .of each facet. And (d) some
i J

nested designs produced more stablf. e , . than did crossed designs.

Simulations similar to those i o conducted by Calkins, Erlich,

Marston, and Malitz (1978), Leone aq. 'don (1966) and Smith (1980)

have reached similar conclusions, Calkins et al. (1978) and

Leone and Nelson (1966) also found many ne-gative estimates of variance

components, especially when the nui~er of levels of a facet was small

(e.g., five).

Recognizing these problems with estimated variance components, Smith

(1978, 1980) proposed the use of several small G studies with many levels

of one or a few facets instead of one large, crossed G study. One small
2 2

G study might estimate r o2 and ap, while another might estimate a

p' it p i p
02, and al such that the total number of observations would be equal

pj
to that of the one large, crossed G study. We question, however, whether

a universe of admissible observations represented in a series of G stud-

ies with more restricted universes is equivalent to the universe repre-

sented by one, larger universe. We also question whether the construc-

tion of a large G study from a series of smaller G studies would provide

information appropriate for the decisionmaker's universe of generali-

zation in a D study.

2.1.5. Unbalanced Designs

An unbalanced design has unequal numbers of observations in its

subclassifications. Two examples of unbalanced G study designs are

(1) pupils nested in classes where class size is not constant, and (2)

observers nested in occasions where unequal numbers of observers are

present at each occasion.
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In a comprehensive review, Searle (1971, p. 35) pointed out that

the usual ANOVA approach to estimating variance components with balanced

data--setting mean squares equal to their expectation--is not as straight-

forward when applied to unbalanced data. This section shows 'Jw the

usual ANOVA approach to estimating variance components in balanced de-

signs can be applied to unbalanced designs and points to an alternative

approach using the computer (cf. Llabre, 1978, 1980; Brennan, Jarjoura

& Deaton, 1980).

Several aspects of the ANOVA approach differ in unbalanced designs

and are problematic. First, the sums of squares are not additive. The mean

squares, therefore, may be unadjusted or adjusted for one or more effects. And

the choice of adjustment is not always clear (see Searle, 1971). Second,

solutions to the problem of non-additive sums of squares lead to biased

estimation in mixed models. And, third, the simple rules for deriving

expected values of mean squares (Cornfield & Tukey, 1956) do not apply

to unbalanced designs. The coefficients in the expected mean square

equations are algebraically and computationally complex.

Henderson (1953) proposed variations in the analysis of variance

approach to deal with the first problem. The problem of biased esti-

mation in mixed models is not a problem in G theory, since G theory is

essentially a random effects theory. That is, G theory averages over

fixed facets in a mixed model and so estimates only variances of random

effects. Finally, computational complexity is reduced by using Rao's

(1971, 1972) approach called minimum variance quadratic unbiased esti-

mation (MIVQUE; see Llabre, 1978, 1980; Brennan, Jarjoura & Deaton,

1980). Incidentally, MIVQUE also avoids the problem of the order of

the components.

MIVQUE is available in the VARCOMP procedure in the SAS (Statistical

Analysis System, 1979) computer system to small designs. Brennan,

Jarjoura and Deaton (1980) reviewed this and other computer programs

for estimating variance components in unbalanced designs. They men-

tioned the limited storage capacities of many of the programs, which

restrict their use to small designs. The major problem remaining in

the estimating of variance components with unbalanced data, then, is

to develop efficient computer programs that will estimate variance
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componets in large generalizability designs without requiring prohibi-

tively large storage capacities.

2.2. Fixed Facets

In G theory a fixed facet has a fixed set of conditions that appear

in the G and D study. Although this definition parallels that given for

a fixed factor in sampling theory, it also describes facets which are

often considered in practice to be random. Loevinger (1965) goes so far

as to argue that all facets must be considered fixed in any measurement

theory. This issue is taken up below.

Statistically, G theory treats fixed facets by averaging (or sum-

ming) over the conditions of the fixed facet and examining the generali-

zability of these averages over the random facets (Cronbach et al.,

1972, p. 60; see Erlich & Shavelson, 1976b, for a proof). While this

treatment of fixed facets is justifiable on sampling theory grounds,

it does not always lead to a sensible treatment of fixed facets in the

measurement theory. This issue is also considered below.

2.2.1. Fixed versus random facets

Often a test developer has a fixed set of items which he considers

to be a random sample of items from some more or less well defined uni-

verse. Can this set of items legitimately be considered a random sam-

ple or, as Loevinger (1965) insists, should it be considered a fixed

facet?

The objection to all psychometric developments that assume
random sampling of items or tests is in the first instance
that they grossly misrepresent the actual case, which is
almost invariably expert selection rather than random sam-
pling. But there is a subtler and deeper point. The term
population implies that, in principle one can catalog, or
display, or index all possible members, even though the
population and the catalogue [sic] cannot be completed.
Statistical sampling must be tied to such a display and
indexing system, else it cannot be random [Loevinger, 1965,
p. 147).

One possible way to resolve this problem is suggested by de

Finetti's (1964) concept of exchangeability (cf. Kingman, 1978;
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Lindley & Novick, 1979; Novick, 1976; see also Davis, 1974; Fyans,

1977). Put (perhaps, too) simply, this concept states that even though

conditions of a facet have not been sampled randomly, the facet may be

considered to be random if conditions not observed in the G study can

be exchanged with the observed conditions. Formally,

The random variables XI,...,X n are exchangeable if the n!

permutations ( .l'.... ) have the same n-dimensional

probability distribution. The variables of an infinite

sequence X are exchangeable if Xi,...X are exchangeablen n f

for each n (Feller, 1966, p. 2251.

Although not explicitly stated, the concept of exchangeability is

evident in discussions of G theory applications. For example, Elffers

and Tavecchio (1979, p. 5) argued that as long as the conditions of the

facets in the G study are not very different from the larger set, the

facet can be considered random.

Viewed from the exchangeability perspective, the issue of fixed or

random facets is not whether one can catalog (etc.) all possible mem-

bers of a population, but whether the members in hand are exchangeable

with other potential members. In terms of item sampling, if one set

of persons and items to which p2 is generalizable is a set of such

persons and items jointly exchangeable with the present sample, it is

reasonable to consider the item facet to be random.

The concept of exchangeability, at a minimum, provides reasonable

grounds for considering whether a facet is random or fixed. At best,

it suggests that random facets abound.

2.2.2. Statistical treatment of fixed facets

G theory treats a fixed facet in one of several different ways.

Perhaps the most frequent approach is to average scores over the con-

ditions of the fixed facet and examine the generalizability of this

average over the random facets. For example, general aptitude batteries

like the ACT Assessment are designed to predict future academic achieve-

ment. Clearly, the ACT subtests are fixed, so scores would be averaged
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over subtests and the generalizability of this average examined over

the random facets of the design. In this case, averaging scores over

subject matters makes good sense from the standpoint of prediction of

academic success. Notice that by averaging over the conditions of a

fixed test, G theory is essentially a random model theory.

A second approach is to examine the generalizability of scores at

each condition of the fixed facet. For example, the generalizability

of scores on the ACT Assessment would be examined separately for each

subtest. Often, in treating each condition of a fixed facet separately

the decisionmaker is willing to consider the conditions of the facet

as a profile of scores. Hence, the analysis focuses on estimating each

subject's universe score on each condition of the fixed facet (Cronbach

et al., 1972). For example, the ACT subtests might be considered a pro-

file and estimates of students' universe scores would be obtained for

each subtest. (For a discussion of this approach, see Section 2.5.)

The third approach is to choose one of the first two approaches

on the basis of the estimated variance of the conditions of a fixed

facet. In other words, in the absence of strong a priori reasons for

averaging over the conditions of a fixed facet or treating the condi-

tions as a profile, the decisionmaker examines the variability of the

conditions of a fixed facet. If the variability is minimal, the scores

may be averaged over the conditions of the fixed facet. If the vari-

ability is substantial, the decisionmaker may choose to treat each con-

dition separately or consider the conditions as a profile.

The decision about how to treat a fixed facet in a G study is not

necessarily straightforward, as illustrated by a study of measures of

teacher behavior (Erlich & Shavelson, 1978). Teachers were observed

on three occasions by two raters while teaching reading and math.

Subject matter was treated as fixed, and teachers' scores were averaged

over reading and math lessons. Teaching behavior, however, is quite

different during reading and math. Averaging over those two subject

matters may have distorted the phenomena being observed as well as the

estimated universe score variance. A preferable strategy in this study

might have been to examine the generalizability of the reading and math

data separately or as a profile. However, an elementary school principal
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might be interested in a teacher's behavior in general and so be quite

willing to use an average over reading, math, and other subjects. For

the principal's purpose, Erlich and Shavelson's (1978) treatment of the

subject matter facet may have been appropriate.

Since the decisionmaker determines whether a facet is fixed or

random, the most reasonable solution may be to report, in a G study,

the variance components and generalizability coefficients for each con-

dition of a fixed facet separately (usually there are only a few condi-

tions of a fixed facet) and in combination (averaged over the conditions).

By doing so, the decisionmaker can choose which data are most pertinent

to a proposed D study.

2.3. Criterion-referenced Measurement

The term criterion-referenced measurement (CRM) has been defined
2

in a variety of ways. Most of these definitions include a well-

specified content domain (Hambleton & Novick, 1973; Popham, 1975).

Following Cronbach et al. (1972) and Brennan (1980), we speak of

interpretations of test scores as being criterion, or content, or domain

referenced. The observed score is interpreted as being representative

of the universe of content from which it is sampled.

Since criterion-referenced interpretations consider an individual's

status independent of other persons (cf. absolute decisions in Cronbach

et al., 1972, p. 14), "The primary question is: how large is the error

arising from incomplete observation?" (Cronbach et al., 1972, p. 23).

The errors, A and c, and the G coefficient for absolute decisions speak

directly to criterion-referenced interpretations (cf. Brennan, 1980;

Brennan & Kane, 1977a,b; Hambleton, Swaminathan, Algina & Ccurson, 1978;

Kane & Brennan, 1980; Linn, 1979; Shavelson, 1979).

Cronbach et al. (1972) discussed three approaches to estimating uni-

verse scores: regression, interval, and Bayesian estimates. Generaliza-

bility theory greatly complicates regression estimates "when it recognizes

that conditions may not be equivalent and considers any set of conditions

to be a sample from a universe" (Cronbach et al., 1972, p. 140). Moreover,

with interval estimates, the probability statements about nonrandomly

selected individuals are not justifiable. Finally. Cronbach et al. (1972)
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suggested that estimation problems might be solved with a Bayesian

approach (see Section 2.1.2) if this approach could be extended to com-

plex designs.

In reviewing the literature, we were surprised to find that the call

for systematic work on Bayesian estimates of universe scores in G theory

has not been answered. Fyans (1977) provided a good summary of methods

proposed by Novick (1969; Novick & Hall, 1965), Box and Tiao (1968),

and Lindley (1971). The work of Novick (Novick, Jackson, Thayer & Cole,

1972; Novick et al., 1971; Novick, Lewis & Jackson, 1973; Novick, Jack-

son & Thayer, 1971; Lewis, Wang & Novick, 1975; see Molenaar & Lewis,

1979, for a computer program) and others on m-group regression and the

work of Wilcox (1978) with empirical Bayes estimation procedures for

true scores in the compound binomial error model seem to be a logical

starting place for Bayesian estimation of universe scores.

While G theory focuses on estimation, most of the CRM literature

has focused on generalizability coefficients (cf. Brennan, 1980;

Brennan & Kane, 1977a,b; Kane & Brennan, 1980). Brennan and Kane

(1977a) proposed a coefficient which paralleled Livingston's (1972a)

coefficient developed within classical test theory. The reasoning went

as follows. In CRM, we are interested in the difference between a per-

son's universe score in a well-defined behavioral domain and some cri-

terion in that domain. In estimating a person's universe score from

his observed score, the error is

Ap (Xp - A) - (0p - ) = X p

where X is the criterion. From this formulation, their index of depend-

ability for a domain-referenced test--P(X)--is:

_ ( - X)2

[171 1 EA p (Xp - X)

a2 + (1 -

+ - + 2/n + 0 In/.
p ii pi i
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o2 + (p - A)1
P7 P

18+ +
_ A

In the special case where X = p, the index of dependability is

equal to the G coefficient for absolute decisions:

02
[18a] P2 = az + P

p A

Brennan (1980) characterized 0A) as follows: (a) It uses the

error associated with absolute decisions (a2) rather than the error for

relative decisions (a2). (b) It varies from 0 to 1. (c) It varies
with different values of A, i.e., the numerator depends on the universe

score variance and the squared distance of the population mean from the

criterion. (For a critique of this characteristic, see Harris, 1972;

Linn, 1979; Shavelson, Block & Ravitch, 1972; but see also Kane &

Brennan, 1980; Livingston, 1972b.) And (d) 4(X) can be positive with

zero universe-score variance. Brennan (1979b, pp. 27-28; see also

Brennan, 1980; Kane & Brennan, 1980) distinguished the interpretation

of O(N) from that of i as follows: "O(X) provides an estimate of the

dependability of the decisions based on the testing procedure [includ-

ing chance agreement in scores]; 0 provides an estimate of the contri-

bution of the testing procedure to the dependability of such decisions."

In generalizability theory, we are primarily interested in vari-

ance components rather than generalizability coefficients. And esti-

mates of variance components are not changed by introducing a criterion

for the purpose of estimating an index of dependability (Linn, 1979).

If, in CRM, interest attaches to a mastery-nonmastery decision,

as implied by O(X), a coefficient of generalizability seems less impor-

tant than an estimate of the probabilities of false positive (cL) and

false negative (8) decisions. The distinction between a and 8 is im-

portant because the seriousness of each may not be the same, which, in

turn, may affect the decision rule used to determine whether ip is

above or below pot the criterion score.
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Wilcox's (1977, 1979) work provides a starting point for dealing

with this situation. Assume that ni items are randomly sampled from a

skill domain. They are administered to an examinee in order to deter-

mine whether his true score, p , is above or below the known criterion

score A. If V > X, the examinee is a master. However, the decision

about p > X is made if and only if the examinee's observed score, X,

is greater than or equal to X , the "operational criterion" for deciding0

mastery. Note that the choice of X may incorporate the decisionmaker's
0

notion of the losses associated with a and B (cf. Wilcox, 1979, p. 60)

and so X may not equal A. In order to estimate a and B, Wilcox (1977)0

used an empirical Bayes approach assuming either a beta distribution

or a normal distribution (on transformed X's) for true scores and a bi-

nomial probability function of observed scores given true scores.

Noting problems with beta and normal priors, Wilcox (1979) worked out

upper and lower bounds for a and a which make no assumptions about the

form of the true score distribution.

2.4. Symmetry

The purpose of psychological measurement has typically been to

differentiate individuals. The focus on individuals is reflected in

Cronbach et al.'s mentioning only the case of measuring attributes of

schools or classrooms (teachers) as an alternative to measuring attri-

butes of individuals within them. Unlike the traditional concentration

on individuals, however, Cardinet, Tourneur and Allal (1976a,b, in

press; Cardinet & Tourneur, 1974, 1977; Tourneur, 1978; Tourneur &

Cardinet, 1979) recognized that the focus of measurement may change

depending on a particular decisionmaker's purpose. "One can easily

cite cases, particularly in educational research, where the purpose of

measurement is to compare the rates of success for different test items,

or for different instructional treatments" (Cardinet et al., in press,

p. 6; cf. Wood, 1976a). Individual differences, then, may represent

a source of error--rather than universe score--variation in the measure-

ment.

Cardinet and his colleagues speak of a principle of symmetry: "The

principle of symmetry of the data is simply an affirmation that each of



25

the facets of a factorial design can be selected as an object of study,

and that the operations defined for one facet can be transposed in the

study of another facet" (Cardinet et al., in press, p. 7).

The principle of symmetry led Cardinet et al. (in press) to dis-

tinguish between four stages of a measurement study: (a) the obser-

vation design, (b) the estimation design, (c) the measurement design,

and (d) the optimization design. By distinguishing these four stages,

Cardinet et al. (in press) were able to disentangle measurement con-

siderations (e.g., specification of the object of measurement) from the

computations that yield estimates of variance components. "Until the

two kinds of problems (ANOVA estimates, measurement) were clearly dis-

entangled, no multi-purpose measurement was possible" (Cardinet, per-

sonal communication, May 9, 1980).

The first stage--observation--includes the choice of facets and

conditions and computation of mean squares. The second stage--esti-

mation--involves the decision about whether the facets are finite or

infinite and random or fixed (cf. Wood, 1976a, for an application of

finite, random facets), and the estimation of variance components.

The third stage--measurement--specifies which facet (or combination

of facets, see below) is the focus of measurement and which facets may

limit the generalization of the measurement (i.e., sources of error).

Estimates of error (a2, a) and generalizability (Ep2) are obtained in
6' A

this stage. The fourth stage provides information relevant to alter-

native D-study designs.

As an example of the four stages in a study, consider a G study

of student evaluations of teaching. An observation design might have

classrooms (c), students nested within classrooms (s:c), and items (i)

crossed with both classrooms and students (see Smith, 1979, for a dis-

cussion of designs for student ratings). For simplicity, assume that

the same number of students is observed in each classroom (but see

Section 2.1.5).

In the estimation design, a decision is made about whether the

model is random or fixed (see Section 2.2 fcr a discussion of fixed

facets). The variance components, then, are estimated according to

the appropriate model.
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In the measurement design, the focus of measurement--classrooms--

is identified along with sources of error variation (students and

items) and a2 or a2 and Ep2 are estimated (see Smith, 1979). Kane
6 A

(& Brennan, 1977; Kane et al., 1976; see also Gillmore et al., 1978;

Smith, 1979) pointed out that the magnitude of the generalizability

coefficient depends upon whether items is considered a fixed or random

facet. While the expected observed score variance remains the sai.e--

02 + o2 i/n + I2 /n + ao/n n --the universe score vari-
c ci i (s,s:c) s r is

ance is a2 + 2 I/n Kane and Brennan (1977; Kane et al., 1976) also
c ci i,

discussed the case where the student facet is fixed and the item facet

is random--i.e., the case of a nested universe. Finally, Kane (et al.,

1976; see also Kane & Brennan, 1977) pointed out that the instructor

effect is confounded with course content, differential selection of

students into classes, observation occasion, and so on. This confound-

ing will inflate the variance attributed to instructor to an unknown

extent. Gillmore (1980; et al., 1978) and Smith (1979) presented de-

signs (and data) that reduce this confounding.

Incidentally, Kane and Brennan (1977) related generalizability

theory's approach to estimating the reliability of classroom means to

approaches proposed in classical theory. They showed that classical

theory approaches treated one facet as random while the other facet

was implicitly treated as fixed.

Finally, the fourth stage of the measurement study would consider

alternative sample sizes for students, items or both (depending on

whether the model is random or mixed). It would also take into account

the possibility of nesting items within students (see Cronbach et al.,

1972, on matrix sampling studies, p. 214ff).

The principle of symmetry leads to the possibility of multifaceted

populations. Cardinet & Tourneur (1977; with Allal, 1976 (a,b), in

press) noted that, in surveys of educational achievement, the focus of

measurement is on activities (objectives), years or schools, and not

on students. In their example, the survey might have focused on the

attainment of educational objectives (o) nested in content units (o:c)

and crossed with students (s). The universe score of interest, then,

is that of (say) objectives nested within content units (o:c) while
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the sampling of students gives rise to errors of measurement. [A

variety of such designs is given in Cardinet, Tourneur & Allal (1976;

in press.)]

The notions of symmetry and multifaceted populations lead to

several important consequences. In the (o:c) x s design described

above, for example, an increase in the generalizability coefficient

would be obtained by increasing sample size (e.g., number of students).

This is just what would happen in sampling theory by specifying power,

a, a difference in means to be detected, and then calculating n. In

short, both approaches lead to a decrease in the standard error of the

mean. This is one point where the specialized area of measurement

theory meets the more general area of sampling theory's estimation of

differences between means.

A second consequence of symmetry and multifaceted populations is

that the decisionmaker is able to systematically examine the assumption

that measures are taken on a sample of persons from a homogeneous popu-

lation. For example, if a population consists of subjects nested within

sex and socioeconomic status (SES), variance components can be estimated

for each facet. If the variance components for sex and SES are negli-

gible for the particular attibute being measured, the decisionmaker can

assume a homogeneous population and so reduce the design of the D study.

If the components are sizeable, the decisionmaker may calculate separate

estimates for each subgroup.

One final contribution of the principle of symmetry to be mentioned

here is that it has led Cardinet and his colleagues to consider that

case of a fixed facet comprising the focus of measurement. For example.

evaluation of teachers in a school system might involve observers

periodically observing the teachers. In this case, estimates of dif-

ferences between a fixed set of teachers or, more appropriately, esti-

mates of their universe scores might be the focus of measurement. Like-

wise, in industrial settings where supervisors' ratings of employees

are gathered, one might consider employees as a fixed facet within

some period of time.
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2.5. Multivariate Generalizability

Educational and psychological measurements often involve multiple

scores describing individuals' aptitudes or skills. For example, com-

posites of CTBS subtest scores are used in classifying children for

educational programs; and university instructors in science laborator-

ies look for proficiency in students' manipulative, observational,

interpretative, and planning skills (cf. Wood, 1976). Although multi-

ple scores may be conceived as vectors, and thus should be treated

simultaneously, the majority of generalizability and decision studies

have not done so. Rather, each variable has been treated separately.

One reason is the paucity of theory and procedures for examining multi-

ple outcomes. Another reason is that the multivariate literature is

not always easily comprehended. In an attempt to remedy this situation,

we outline Cronbach et al.'s (1972) contributions more extensively here

than in other parts of the review. We then describe further develop-

ments in multivariate generalizability and point to problems still in

need of attention.

2.5.1. Background

In extending the notion of multifaceted error variance to multi-

variate designs, Cronbach et al. (1972) stressed the separate treat-

ment of the scores rather than the use of a composite of them. This

permits the decisionmaker to examine variances of and covariances

among the variables, and to formulate an optimal D-study design. As

was the case in the development of univariate G theory, Cronbach et

al. focused on methods of obtaining and interpreting variance com-

ponents. Multivariate G theory decomposes both variances and covac-

iances into components, whereas univariate G theory examines only

components of variance. The expected mean product equations are solved

in analagous fashion to their univariate counterparts (for an elemen-

tary exposition, see Travers, 1969). For example, the decomposition

of the variance-covariance matrix in a one-facet, crossed design with

two dependent variables is:
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[191 ]2( 1 XPi G(Xpi,2XP

G(1Xpi,2XP9g) G2(2Xpg P90(1P,2P) 2(2 p)

(observed scores) (persons)

[Y 1 1,2 g)

L( i,2g) 
o2(2g)

(conditions)

a2( 1pi,e) a ie ge

I Pi,e,2pg,e) o2 (2pg,e)

(residual)

where iXpi score of variable I for person p observed under

condition i,

2 Xpg = score on variable 2 for person p observed under

condition g, and

1 = abbreviated for lp: the universe score on vari-

able I for person p.

In [19], the term a(1 P,2p) is the covariance between universe scores

on variables 1 and 2, say, ratings on two aspects of writing: organi-

zation and coherence. The term o(1i,2 g) is the covariance between

scores on the two variables due to the conditions of observation.

Facet i may be the same as facet g, for example, when the same essay

is used to obtain ratings of organization and coherence.

An important aspect of the development is the distinction between

linked and unlinked conditions. When conditions for observing differ-

ent variables are selected independently, the expected values of all
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err ,r components of covariance are zero. With independent sampling,

then, the expected values of the off-d-agonal elements in the last

two matrices of [191 are zero. For example, in the illustration above,

if the essays used to obtain ratings of organization are selected in-

dependently of the essays used to obtain ratings of coherence, then

the expected value of the component of covariance a(1i,2g) is zero.

When conditions for observing multiple outcomes are not selected

independently, but are jointly sampled, the expected values of all

components of covariance are non-zero. Cronbach et al. (1972) pre-

sented the following example of a non-zero component of covariance for

conditions.

Suppose that the design calls for teacher i to rate pupils

p on both ability v1 and motivation v2. Some teachers give

higher ratings on the average than other teachers do; the i

component represents this bias. The constant errors in vI

ratings are likely to covary (over teachers) with the con-

stant errors in v2 ratings. The covariance e (Ii,2 then

would be positive. [Page 277; following Cronbach et al.,

the bullet symbol (e) indicates linkage.]

The literature reviewed below, while acknowledging the possibility of

linked conditions, addresses only the unlinked case.

In their discussion and illustrations of multivariate generali-

zability analysis, Cronbach et al. (1972) did not develop a multi-

variate generalizability coefficient, but focused almost entirely on

the interpretation of components of variance and covariance. They

examined components to rule out "distressing" counterhypotheses. In

an analysis of verbal and performance scores from the WISC and WAIS,

for example, test forms were linked because verbal and performance

scores were observed on the same form (WTSC or WAIS) on the same day.

However, the small variance and covariance components reported for

forms indicates that linkage is not problematic here.

Travers (1969) developed a correction for attenuation analogous

to Spearman's classical formula, rTT = r r Travers
TXYT X X4Y
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(1969, p. 344ff. and Cronbach et al., 1972, p. 287) showed that

Spearman's formula can be restated as

[201 
G((p,

2 p) = 2W

, O7(iUp) o(2 p

Whether the expected covariance between observed scores equals the

covariance between universe scores depends upon linkages among condi-

tions of facets in the design. In a two-facet design, for example,

when i and g are independently sampled, the expected covariance of

IXp with 2XP9 is tl(1p,2p). When i and g are linked, however, the

expected covariance is o(1 ,2p) + *o(1pi,e, 2pg,e). When the expected

covariance between observed scores is used as an estimate of the co-

variance between universe scores, then, the corrected correlation

obtained with joint sampling will tend to be higher than that obtained

with independent sampling, although the effect decreases as the number

of levels of the i-facet increases.

Cronbach et al. (1972) also developed a multivariate predictor

of the universe score. In the univariate case, the universe score

is estimated from the regression of the universe score on observed

scores (p. 103):

[211 = (p)X + (1 - W)Xpl

In the multivariate case, the regression equation for a particular

dependent variable includes not only the observed scores on that

variable, but also observed scores for all other variables in the

set. The multiple regression coefficients are estimated using linked

or unlinked covariances, depending upon the anticipated design of the

D study.

The set of multiple regression equations produces a profile of

estimated universe scores for each person. This profile is more

reliable (and usually flatter) than that based on univariate regression
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equations. In an example using data from the Differential Aptitude

Tests (DAT), Cronbach et al. (1972) reported reductions in error vari-

ance as large as 42% when all subtests were used as predictors com-

pared to error variances from single predictors! (They added, however,

that the number of predictors used in each equation should be guided

by the sample size, n . See Darlington, 1978, and Fyans, 1978, for
P

regression procedures that yield reduced sampling errors of regression

estimates when the number of predictors is large relative to the sample

size.) The important finding for counseling and research is that ob-

served profiles and those estimated from univariate regressions may be

much farther from the true profiles than multivariate estimates.

Surprisingly little has been published on multivariate general-

izability theory in recent years. A multivariate generalizability

coefficient has been developed for the limited case where the decision-

maker simply wants to maximize the generalizability of a composite.

The following sections discuss this multivariate G coefficient, the

interpretation of canonical variates in multivariate analyses, and

the choice between univariate and multivariate analyses.

2.5.2. Multivariate generalizability coefficient

Bock (1963, 1966; see also Haggard, 1958) and Conger and Lipshitz

(1973; Conger, 1974) developed multivariate analogues of test reli-

ability for one-facet designs. From a random-effects, multivariate

analysis of variance of standardized scores, the multiple discriminant

functions are determined so as to maximize the ratio of between-person

variation to within-person variation. Since the Bock and Conger and

Lipshitz coefficients do not differentiate between different sources

of error variance, they have limited utility for the design of decision

studies.

The only multivariate reliability coefficient anchored in general-

izability theory was developed by Joe and Woodward (1976). Their

approach distinguished between G and D studies and generalized the work

of Bock and Conger and Lipshitz to a variety of multifaceted designs

with crossed and nested facets.



33

For the two-facet, fully crossed design, the multivariate coeffi-

cient is

a' V a

1221 =
a'V a +aV +a'V + a a'V a-- p- - -

n' n! n
nI j nin

where V = a matrix of variance and covariance components

estimated from mean square matrices,

ni, and n. = the number of conditions of facets i and j in

a D study, and

a = the vector of canonical coefficients that maxi-

mizes the ratio of between-person to between-

person plus within-person variance component

matrices.

For one-facet designs with large samples and one condition of the

facet, Joe and Woodward's coefficient is equivalent to the coefficients

developed by Bock (1966) and Conger and Lipshitz (1973; see also Conger,

1974). The value of Joe and Woodward's approach is that it allows us

to maximize a generalizability coefficient by assessing the magnitude

of different sources of error and so design D studies that reduce the

sources of large error variation.

One limitation of all of the above approaches arises when variance

component matrices are not positive definite or positive semidefinite.

Joe and Woodward (1976) recommended using "extreme caution" and suggested

that negative definite matrices should not be used in the estimation of

variance component matrices and generalizability coefficients. As ex-

pected, the problem with negative estimates of variance components in

univariate generalizability extends to the multivariate case; solutions

need to be worked out in both arenas (see Section 2.1).

2.5.3. Interpretation of canonical variates

There is a set of canonical coefficients (as) for each character-

istic root (A ) in [22]. Each set of canonical coefficients defines a

L.... .. . .. .
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composite of the scores. By definition, the first composite is the

most reliable while the last composite is the least reliable.

Attention should be paid to the interpretation of these composites

(see, for example, Fyans, Salili, Maehr, & Desai, 1980; Harnqvist,

1973; Peng & Farr, 1976). Conger and Lipshitz (1973), for example,

examined the canonical coefficients in an illustrative analysis of

data from the WISC to provide further information about common diagnos-

tic interpretations of differences among subscales. Since all subtests

had positive weights on the first, most reliable composite, they in-

terpreted this finding as providing support for the use of the total

IQ score. The second most reliable composite was not the expected

contrast between verbal and performance IQ. Rather, this composite

was a contrast between the verbal subtests and the subtests of Block

Design, Object Assembly, and Mazes. This contrast was more reliable

than the verbal-performance contrast. The remaining canonical variates

also provided unexpected contrasts among subtests.

In using the multivariate G coefficient, the data, not the investi-

gators, define the composites of maximum generalizability. This

empirically-derived coefficient may not correspond to the way compo-

sites are defined by theory (e.g., theory of human abilities) or

practice (interpretation of subtests for classification of applicants).

Rather, we would prefer to estimate the generalizability of a composite

given a set of constraints. Two issues are involved: determining the

weights and estimating the generalizability of the composite.

The weights can be determined using psychological theory or prac-

tical application. The weights might be a set of orthogonal coeffi-

cients. For example, Harnqvist (1973) examined canonical coefficients

in an analysis of data from the Primary Mental Abilities (PMA) battery.

He could have used orthogonal coefficients to weight the four ability

subtests in his analysis to form a verbal-numerical contrast, hypo-

thesized to be important in factor theories of intelligence.

A second method of obtaining weights conforming to theory or

practice is to establish the weights using confirmatory maximum-like-

lihood factor analysis (Joreskog, 1969). In an illustration of this

method, Joreskog analyzed scores of nine mental ability tests. In
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one example solution, tests were hypothesized to measure three factors

--visualization, verbal intelligence, and speed. The first model speci-

fied three factors with loadings reflecting the hypothesized structure.

The resulting xZ statistic indicated a poor fit to the data. Joreskog

suggested several ways to determine the cause of the poor fit; all of

them involve relaxing one or more restrictions in the model and re-

evaluating the fit.

The problem with repeated testing of the model is exactly the

same problem that led us to seek alternatives to maximizing the ratio

of between-person to between-person plus within-person variation.

Namely, the changes in the model are determined by the data, not by

theory or practice. The investigator should stop modifying the coeffi-

cients before the resulting composites become uninterpretable, even

if the fit to the data is poor.

These approaches to determining the weights of the variables in

composites may involve a tradeoff between interpretability and general-

izability. We emphasize interpretability; a composite that is general-

izable but not interpretable will not be of much use.

With respect to estimating the generalizability of the composite

formed either a priori or by an empirical test of goodness of fit,

the most straightforward approach is a univariate rather than a multi-

variate analysis. The results of a univariate generalizability analysis

would be identical to those of a multivariate generalizability analysis

in which the weights of the composite define the a vector in [221.

2.5.4. Relation between multivariate and univariate G theory

When multiple scores are conceived of as composites, a multi-

variate generalizability analysis is appropriate because it explicitly

takes into account the covariation among the scores. By partitioning

the variance-covariance matrix for observed scores into matrices of

components of variance and covariance for universe scores and error,

the investigator can identify major sources of error variation and

covariation, essential information for designing an optimal D study.

In terms of a generalizability coefficient, if the decisionmaker's

interest is in obtaining a composite with maximum generalizabilitv,
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Joe and Woodward's generalizability coefficient is appropriate. If

the decisionmaker wants to assess the generalizability of a composite

defined by theory or practice, a univariate generalizability study of

the -omposite will produce the same results as the multivariate

analysis substituting the a priori weights into Joe and Woodward's

multivariate formula.

The above discussion does not address the generalizability of a

profile of scores. In a profile, interest lies in the pattern of scores,

not in a composite of them. Cronbach et al. (1972) described in detail

the estimation of universe scores in a profile. In their formulation,

univariate generalizability coefficients of the scores in the profile

serve as one basis for judging the generalizability of individual

scores in the profile. They further suggested that the multivariate

approach of Bock (1966)--and so by implication that of Joe and Wood-

ward--can be used to reduce and reorganize the profile. The multi-

variate generalizability coefficients may show that some combinations

of scores are measured more reliably than is needed, while others are

not measured with sufficient precision for the decisionmaker's needs.

The decisionmaker can use this information to eliminate scores in the

profile or to design ways of obtaining more generalizable measures of

them.

2.6. Sampling in Observational Measurement

The ability to estimate the contribution of multiple sources of

error affecting observational measurements is one of the major con-

tributions of G theory. However, a problem still to be resolved is

how to allocate observations taking into account the linkage arising

from adjacent observations.

The amount of observation time can vary on two dimensions: (a)

facets that affect the number of observations, and (b) facets that

affect the length of observation periods. The problem with developing

procedures for estimating reliability for different numbers and lengths

of observations is that observations may be correlated (called linked

in the previous section; see also Cronbach & Furby, 1970, p. 69;

Cronbach et al., 1972, p. 268ff). That measures obtained on the same
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day may not be independent is intuitively reasonable. Not as obvious,

perhaps, is the linkage among measures obtained on different occasions.

The linkage, as in any time series problem, is a matter of degree.

Measures of teacher behavior obtained at different times during a class

period, for example, may agree more than measures obtained at different

times during a school day, which are, in turn, likely to agree more

than measures obtained on different days.

Different degrees of linkage can occur even within a short span

of time, as is illustrated in Table 3. Webb (1980) observed the pro-

portion of each minute that a student worked alone without communicating

with other students or with the teacher--a variable commonly observed.

Behavior of junior high school students was recorded during five-minute

segments. To determine whether behavior during adjacent one-minute

intervals within a segment was more similar than behavior from intervals

that were further separated, the matrix of intercorrelations among the

scores for one-minute intervals was calculated. The matrix exhibits a

simplex pattern. Thus, different degrees of linkage are clearly evi-

dent, especially within a time period as short as five minutes.

Table 3

CORRELATIONS OF STUDENT BEHAVIOR ("WORKS ALONE")
CALCULATED FOR CONSECUTIVE ONE-MINUTE INTERVALS

(N = 50)

Minute 2 3 4 5

1 .58 .43 .34 -.12

2 .56 .32 .10

3 .52 .06

4 .23

The simplex pattern just described extended to observations made

at different times on one day and to observations made on different

days. As expected, the correlations between observations drawn from
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different five-minute segments of the same class hour were lower than

for adjacent one-minute intervals. Correlations between one-minute

observations on different days were lower still.

The only attempt thus far to estimate the effect on reliability

of varying the length and number of observation periods has been made

by Rowley (1976, 1978). Rowley (1978) described the effects of vary-

ing number and length of observations separately and simultaneously.

Unfortunately, Rowley treated observation periods as if they were un-

linked, and so applied the Spearman-Brown formula inappropriately.

The more general questions that need to be addressed in further

research are (1) how can the correlation between observation periods

occurring closer or further in time be taken into account, and (2)

does the recognition of linked conditions of a facet make a difference

in the theory or in the analysis?

A potential solution is the following. First, consider length

as a vector of scores corresponding to different durations of obser-

vation time or consecutive observation intervals. This is tantamount

to defining the universe of generalization to include multiple scores

as well as multiple sources of measurement error. Thus, in Webb's

(1980) observational study described above, the proportion of each

minute spent working alone in the five-minute observation period may

be entered as a vector of five scores. Next, examine the general-

izability of observational measurements with a one-facet (number of

observations) multivariate analysis of variance (see Section 2.5).

This analysis would enable the decisionmaker to estimate the number

of observations needed in a D study and the optimal length of the

observation period (the first canonical variate in the multivariate

generalizability analysis) while taking into account the correlations

among observation intervals.

Since most observational measurement is linked to some degree,

a full treatment of this topic in G theory is clearly needed. Until

the theory and procedures for handling linked conditions of a facet

are developed, the decisionmaker should, at least, make sure that

the time samples in the D study match in duration those in the G

study. (For detailed recommendations, see Mitchell, 1979.) Where
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observation periods in the G study differ in length or separation in

time from those used in the D study, estimates of variance components

and generalizability coefficients are likely to be overestimated or

underestimated according to some complex function of the magnitude and

direction of the correlations among measures from linked observation

periods.

In this section we have assumed that the phenomenon being studied

remains constant over observations. If this assumption holds, then

the linkage among observations is due to correlated error. The problem

is much more complex, however, when the universe score changes over

time, as is the case in maturation studies (e.g., Bayley, 1968).

This problem is too large to be reviewed here. Among those in-

vestigating time-dependent phenomena are Bryk, Strenio, and Weisberg

(1980). Although they have not investigated reliability explicitly,

they reviewed traditional analysis strategies used in the face of non-

equivalent growth systems and suggested alternative methods of analysis.

Miscellaneous Topics

Here we mention briefly two other topics. The first topic is

signal-to-noise ratios and the second is the relationship between G

theory and validity theory.

Signal/Noise Ratios. A signal/noise ratio is defined as the ratio

of the universe score variance (signal) to the error variance (nCise).

It has been proposed by Kane and Brennan (1980) and Tavecchio (1977;

Elffers & Tavecchio, 1979) as a means for evaluating the adequacy

of a measurement procedure. Brennan and Kane (1977c) discussed this

ratio for absolute decisions while Elffers and Tavecchio (1979) dis-

cussed it for relative decisions. We mention this topic in passing

because we prefer to de-emphasize summary coefficients and emphasize

interpretation of the components of error variance in evaluating a

measurement procedure.

Relationship between G Theory and Validity Theory. While this

topic has been addressed briefly by Cronbach et al. (1972), Cardinet

et al. (in press), Fyans (1977), Guttman and Guttman (1976), McDonald

(1978) and Van der Kamp (1976), a systematic attempt to integrate G
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theory with validity theory has only recently been reported by Kane

(1980). Kane's treatment is provocative and elaborate, but too tenta-

tive to be covered in this review. We believe, however, that his formu-

lation will set the stage for theoretical developments in the 1980s.
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3. ILLUSTRATIVE APPLICATION OF GENERALIZABILITY THEORY

In this section, ratings of the educational requirements of

occupations are used to illustrate an application of generalizability

theory. The study (Webb & Shavelson, 1981; Webb, Shavelson, Shea

& Morello, 1981) was conducted by the authors in conjunction with

the State of California Employment Department. Specifically, the

illustrations include a univariate generalizability analysis, a multi-

variate generalizability analysis, estimation of variance components

with an unbalanced design, and Bayesian estimation of variance com-

ponents.

3.1. The Study of General Educational Development Ratings

The U.S. Department of Labor developed the General Educational

Development (GED) scale to rate the amount of reasoning, mathematics,

and language abilities needed to perform various jobs. GED ratings

are used in several employment and training situations. For example,

they provide the basis for: (a) estimates of time required to learn

job skills, (b) state employment agencies' decisions to refer persons

to specific employers, job training programs, or remedial education

programs, and (c) equating jobs that have similar educational require-

ments.

In this study, job analysts were given written descriptions of

jobs, published in the Dictionary of Occupational Titles, and were

asked to rate the jobs on three components of the GED scale: reason-

ing development, mathematics development, and language development.

Each component was measured on a six-point scale. Each of 71 raters

from 11 geographic field centers across the 'U.S. evaluated the threef components of a sample of jobs on two occasions. Different centers

had different numbers of job analysts, ranging from two to twelve.

Hence, the C study design was a partially nested, unbalanced design

with different numbers of raters nested within centers. In order to

illustrate G theory in its basic form, a random sample of two raters

from each center was taken to form a balanced generalizability design.
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The design of the study, therefore, was raters (r) nested within

geographic centers (c), crossed with jobs (j) and occasions (o). Be-

cause we are concerned with estimating the general educational develop-

ment required to perform each job, the variance component for jobs

( 2) is interpreted as the universe score variance. All other variance
j

components are considered measurement error in this study since absolute

decisions are made regarding the GED requirements of each job. These

include the components for raters nested within center, center, occasion,

and all interactions.

3.2 Univariate Generalizability Analysis

For the univariate generalizability study, a random effeicts analy-

sis of variance was used to estimate the variance components contri-

buting to the observed variation in job ratings. A separate analysis

was performed for each component of the GED scale. As recommended by

Cronbach et al. (1972), all negative estimates of variance components

were replaced with zero in calculating the variance components. For

each analysis, the components of variance, the sum of components con-

stituting error variation, and the coefficient of generalizability were
3

computed.

Since this analysis focuses on absolute decisions, the error

variance, a2, reflects not only disagreements about the ordering of

the jobs, but also reflects differences in mean ratings. It is impor-

tant to know, for example, whether raters use essentially the same

mean level of the rating scale as well as whether they rank-order jobs

similarly.

Data bearing on the generalizability of the ratings of the jobs

over occasions, raters, and centers are reported in Table 5 for each

of the three GED ratings. The estimated variance components for jobs

differ across GED ratings. They suggest that jobs can be distinguished

more on their demands for language than on their demands for mathematics

and reasoning. The patterns of variance components contributing to

error were consistent: raters' ratings accounted for most of the error

variation and occasions and centers accounted for little. The patterns

of variance components suggest that, by taking the average rating of
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four raters, measurement error can be reduced by about 75% (o2 in Table

4) and the generalizability coefficients ( 2) correspondingly increased

to .86 for reasoning, .79 for mathematics, and .85 for language.

The consistent patterns of results for the reasoning, mathematics,

and language ratings were not unexpected since their correlations are:
rreasoning, math = .74; rreasoning, language = .84; rmath, language =

.73. The size of the correlations suggests that all three GED ratings

share a common, underlying factor and that a multivariate generalizability

coefficient would be appropriate.

3.3. Multivariate Generalizability Analysis

For the multivariate generalizability study, a random effects multi-

variate analysis of variance was performed using the reasoning, mathe-

matics, and language ratings as a vector of scores. Due to the limited

capacity of computer programs available to perform the multivariate

analysis and because geographic center contributed little to variability

among job ratings, geographic center was excluded from the multivariate

analysis. The design for this analysis was, then, raters crossed with

jobs and occasions.

For each source of variation in the design, variance component

matrices were computed from the mean square matrices. Hence, one matrix,

for example, comprised estimated universe-score variances and covari-

ances. All matrices with negative estimated variance components (diag-

onal values) were set equal to zero in further estimation. For this

analysis, the matrices of variance components, coefficients of general-

izability, and canonical weights corresponding to each coefticient of

generalizability were computed.

The estimated variance and covariance component matrices represent-

ing the seven sources of variation are presented in Table 5. Only the

components for one rater and one occasion are included. To obtain the

results for four raters, the components corresponding to the rater main

effect and interactions need only to be divided by four.

As a consequence of the calculation procedure, the variance com-

ponents in Table 5 are the same as those produced by the univariate

analysis. The components of covariance, however, provide new information.
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Table 5

Estimated Variance and Covariance Components for Multivariate Generalizability

Study of G.E.D. Ratings (nr = l. no ) a

Source of

Variation Reasoning Mathematics Language

Jobs (J) .75

.64 .66

.88 .74 1.09

Occasions (0) .00

.00 .00

.00 .00 .00

Raters (R) .03

.03 .09

.03 .05 .05

JO .00

.00 .00

.00 .00 .00

JR .12

.11 .13

.09 .07 .11

OR .00

.01 .01

.00 .00 .01

JRO,e .21

.07 .29

.11 .ln .7r
aThe design is raters crossed with jobs and occasions.
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The large components for jobs reflect the underlying correlations

among the GED components. Jobs that require high reasoning ability

are seen by the raters to require high mathematics and language ability.

Whereas the nonzero components of variance for raters indicate that some

raters give higher ratings than others, the positive components of co-

variance indicate that the raters who give higher ratings on one GED

component are likely to give higher ratings on the other GED components.

The positive components for the job x rater interaction suggest that

not only do raters disagree about which jobs require more ability, but

their disagreement is consistent across GED components. The nonzero

components for error suggest that the unexplained factors that contrib-

bute to the variation of ratings also contribute to the covariation be-

tween ratings. As expected, the components of covariance due to the

occasion main effect and interactions are neeligtble.

Composites of general educational development that have maximum

generalizability are presented in Table 6. When the generalizability

of GED ratings was estimated for one rater and one occasion, one dimen-

sion with a generalizability coefficient exceeding .50 emerged from

the analysis. This dimension is a verbal composite of reasoning and

language. The analysis using four raters and one occasion produced

two dimensions with generalizability coefficients exceeding .50. The

first composite is defined by reasoning and language. This composite

has a generalizability coefficient of .74 for one rater and .92 for

four raters. As in the univariate case, the estimate of measurement

error is reduced by 75% when four raters are used. The second com-

posite is a contrast between mathematics and language or, using more

common terminology, a verbal-quantitative contrast. The estimate of

generalizability for this contrast is .62 for a D study with four

raters and one occasion.

3.4. Unbalanced Designs

The original design of the study was unbalanced. This section

illustrates the estimation of variance components for an unbalanced

design. The unbalanced design analyzed here is raters nested within

a random sample of five of the eleven geographic centers crossed with
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Table 6

CANONICAL VARIATES FOR MULTIVARIATE GENERALIZABILITY
STUDY OF G.E.D. RATINGSa

Canonical Coefficients

n ,n = 1 n = 4,n nr o r o

G.E.D. Component I I II

Reasoning .34 .38 .05

Mathematics .06 .06 -1.95

Language .51 .57 1.33

Coefficient of
Generalizability ( 2) .74 .92 .62

aThe design is raters crossed with jobs and occasions.

jobs and occasions. (The restriction to five centers will be explained

below.) The results of this analysis will be compared to those of two

balanced designs: (1) two raters randomly sampled from each of the

five centers, and (2) two raters randomly selected from each of the 11

centers.

The estimates of variance components in the unbalanced design were

obtained using a modification of Rao's MIVQUE procedure suggested by

Hartley, Rao, and LaMotte (1978; see section 2.1.5). Because the SAS

procedure VARCOMP would require an excessive amount of region if all

11 geographic centers were to be included in the analysis, only a sub-

set of the centers could be used. Limiting the amount of region re-

quired to perform the analysis to 300K bytes of core, the largest design

that the computer program would run had five centers with a total of 28

raters. For these five centers, the number of raters per center ranged

from two to seven. The results of the three analyses--unbalanced design

with five centers, balanced design with five centers, and balanced de-

sign with 11 centers--are presented in Table 8. The estimates of the

variance components are much the same in the three analyses (see Table

8). The primary source of variability, as was seen in the applications
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discussed previously, was raters' ratings. The estimates of error
variance (a 2 ) and generalizability coefficients (pd) are also similar

across the three designs.

A few minor differences are apparent across the three analyses.

First, the variance component for jobs was smaller in the balanced de-

sign with five centers than in the other two designs. Apparently, the

raters in this design used a smaller range in their ratings of jobs

than did the raters analyzed in the other designs. This discrepancy

did not, however, change the overall results concerning the depend-

ability of raters' judgments. The second difference across analyses

was the negative variance components. The analyses of five centers

produced more negative estimates of variance components than the analysis

of the 11 centers. The patterns of negative estimates, however, were

similar across the analyses. Components involving geographic center

were the most likely candidates for negative estimation.

To determine whether the five centers analyzed in the unbalanced

design might have produced atypical results compared to analyses using

other subsets of centers, five additional analyses were carried out

using other combinations of centers. The analyses were subject to the

limit of 300K bytes of core. All of the additional analyses produced

nearly the same results as those reported in Table 7. The patterns of

variance components and the resulting estimates of error variance and

generalizability coefficients were very similar. Across five additional

analyses, the coefficients of generalizability ranged from .61 to .66.

With the present methodology, two strategies seem to be available

for analyzing reasonably large unbalanced designs: (1) to sample con-

ditions of the nested facet to produce a balanced (crossed) design, or

(2) to reduce the unbalanced design. In the analyses discussed here,

the two approaches yielded similar estimates of the components of vari-

ance. Although the two options may produce similar results, the first

option, sampling to produce a crossed design, affords greater flexibility

in choosing computational ,cicedures.

3.5. Bayesian Estimation

The Bayesian estimates of modal variance components, presented in

Section 2.1.2, assume a non-informative prior which includes the constraint
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thac estimated variance components cannot be zero. Using [16], modal

estimates can readily be calculated from the sums of squares provided

by an ANOVA. In genera-, the adjusted mean square is given by:

k SS
df+2

The Bayesian modal estimates of the variance components (a2) can

be obtained by equating the Vs--the adjusted mean squares--to their ex-

pectations. For example, consider the Job x Occasion x Center x Rater:

Center generalizability study and the GED rating for reasoning (see

Table 4). The sums of squares for the residual (JOR:C) was 63.01 and

df was 286. The adjusted mean square is: V = 63.01/(286 + 2)res res

.219 and so 2 .219, while a2  = .220 (Table 8). The sums of
res res

squares for the next source of variation, JOC, was 48.501 and dfjoC

was 260. The adjusted mean square is: VjO C = 48.501/(260 + 2) = .185.

Setting V equal to its expectation, we obtain do f -.0175.
Joc JOC

Since Bayesian estimates are constrained to be greater than or
^'2 iniaestaLVOI roieequal to zero, the negative value of jOC indicates that provides

a second estimate of error independent of the estimate provided by

a r That is, the expected value of V is 02 + n a . Since%res. JOC res r ,JjC

C Ois constrained to be zero and not negative, VjOc = a res. The

Bayesian approach then pools the two estimates of measurement error as

follows:

SS + SSjo
= res JOC

Vres(pooled) df + df
res JOC

Setting V equal to its expectation, 2 = .203. This
res res(pooled)

pooled estimate is carried through subsequent calculations of variance

components and the generalizability coefficient. It is also used in

interpreting the results of the G study.

In Table 8, the Bayesian estimates of the modal variance components

are compared with the traditional estimates. As expected, the Bayesian

estimates are slightly smaller than the traditional estimates. The
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Table 8

Comparison of Bayesian and Traditional

Estimates of Variance Components: Ratings

of Reascnlnga

Bayesian Estimates Traditional Estimates

Source of Variance Components of Variance Components

Jobs (J) .69 .74

Occasions(0) .00 .00

Centers(C) .00 .00

Raters(Centers)(R:C) .05 .06

JO .00 .00

JC .00 .00

JR:C .13 .13

OC .01 .01

OR:C .00 .00

JOC .00 .00

JOR:C(res) .20 .22

Error Variance (C,2) .39 .42
a

General izabllty (;2) .64 .64

aThe design is raters nested within centers crossed with jobs and occasions.
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Bayesian generalizability coefficient, however, is equal to the tradi-

tional estimate.

While the two procedures for calculating the estimates differ

little, the assumptions underlying the two estimation approaches differ

considerably. Perhaps the major difference, in addition to the non-

informative prior for the Bayesian estimates, is the pooling procedure

associated with the Bayesian estimates. This procedure makes use of

the information available when a negative estimate arises, something

the traditional theory, in practice, ignores (see Box & Tiao, 1973, on

problems of pooling with the traditional approach).

Z-A.' ;
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