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FOREWORD

The design and development of liquid filled acoustic lenses necessitated a
theoretical method which can accurately predict the transmission coefficient of
an ac istic wave propagating through layered media at various angles to the
normai. This report describes such a method for determining the transmission
coefficients and demonstrates its accuracy against available published data.
Funding for this effort was provided by the Naval Sea Systems Command, Task No.
S02660OI/Ul3CA.

The author would like to thank Dr. Bruce Hartmann for his guidance in this
endeavor, Mr. Paul Huber for his assistance in verifying the accuracy of the
method against published data, and Mr. W. Rust, Head, Electrical Design Branch,
for reviewing this report.

IRA BLATSTEIN

By direction

*1
AccssonFor 777

I C - . F- - 1

* 5

ndor

1) 1 t

hL I

1/2 NSPECEDr

2,. ; ' I t o e



NSWC TR 81-197

CONTENTS

Page

INTRODUCTION ............................... 7

TIEORY .................................. 11

EXPERIMENTAL DATA.......................................................... 15

RESULTS..................................................................... 19

* CONCLUSION.................................................................. 21

3/4k



NSWC TR 81-197

ILLUSTRATIONS

Figure Page

1 ACOUSTIC LENS ............................................... 8
2 c*NGLE SOLID LAYER PROBLEM ................................... 12
3 EY/ ERIMENTAL SETUP ........................................... 16
4 DIRECTIVITY, TYPE E27 TRANSDUCER, IN PLANES THAT INCLUDE

THE X AXIS. SCALE: CENTER TO TOP OF GRID EQUALS 50 dB ..... 17
5 TRANSMISSION LOSS AS FUNCTION OF INCIDENT ANGLE AT 100 kHz

FOR ABS MATERIAL ........................................... 22
6 TRANSMISSION LOSS AS FUNCTION OF INCIDENT ANGLE AT 300 kHz

FOR ABS MATERIAL ........................................... 23
7 TRANSMISSION LOSS AS FUNCTION OF INCIDENT ANGLE AT 500 kJz

FOR ABS MATERIAL ........................................... 2h
8 TRANSMISSION LOSS AS FUNCTION OF INCIDENT ANGLE AT I mHz

FOR ABS MATERIAL ............................................ .- ,

9 TRANSMISSION LOSS AS FUNCTION OF INCIDENT ANGLE AT 500 kHz
FOR LOW-DENSITY POLYETHYLENE MATERIAL ...................... 26

10 TRANSMISSION LOSS AS FUNCTION OF INCIDENT ANGLE AT 100 kHz
FOR PLEXIGLAS MATERIAL ...................................

11 TRANSMISSION LOSS AS FUNCTION OF INCIDENT ANGLE AT 200 kHz
FOR PLEXIGLAS MATERIAL .....................................

12 TRANSMISSION LOSS AS FUNCTION OF INCIDENT ANGLE AT 300 kHz
FOR PLEXIGLAS MATERIAL .......................................- ,

13 TRANSMISSION LOSS AS FUNCTION OF INCIDENT ANGLE AT 400 kHz
FOR PLEXIGLAS MATERIAL ..................................... 3C

14 TRANSMISSION LOSS AS FUNCTION OF INCIDENT ANGLE AT
100 KHZ FOR ABS MATERIAL ................................... 31

,' 15 TRANSMISSION LOSS AS FUNCTION OF INCIDENT ANGLE AT
200 KHZ FOR ABS MATERIAL ................................... 32

16 TRANSMISSION LOSS AS FUNCTION OF INCIDENT ANGLE AT
300 KHZ FOR ABS MATERIAL ................................... .33

17 TRANSMISSION LOSS AS FUNCTION OF INCIDENT ANGLE AT

400 KHZ FOR ABS MATERIAL ................................... 34

18 TRANSMISSION LOSS AS FUNCTION OF INCIDENT ANGLE AT
500 KHZ FOR ABS MATERIAL ...................................

19 TRA1iSMISSION LOSS AS FUNCTION OF INCIDENT ANGLE AT

200 C FOR LOW-DENSITY POLYETHYLENE MATERIAL ................ -

20 TRANSMISSION LOSS AS FUNCTION OF INCIDENT ANGLE AT
150C FOR LOW-DENSITY POLYETHYLENE RATERIAL ................. "

21 TRANSMISSION LOSS AS FUNCTION OF INCIDENT ANGLE AT
100C FOR LOW-DENSITY PCLYETHYLE.E MATERIAL ...............

22 2R NSXiSSIO LOSS A6 ibN1iTIOi I' Iil~i1 ANGLE AT
50 C FOR LOW-DENSI7Y POLYETHYLENE ,i-ATERIAL ...................

5



NSWC TR 81-197

ILLUSTRATIONS (Cont.)

Figure Page

23 TRANSMISSION LOSS AS FUNCTION OF INCIDENT ANGLE AT
00C FOR LOW-DENSITY POLYETHYLENE MATERIAL ..................... o

24 TRANSMISSION LOSS AS FUNCTION OF INCIDENT ANGLE AT
200C FOR ABS MATERIAL ............................ .. 41

25 TRANSMISSION LOSS AS FUNCTION OF INCIDENT ANGLE AT
10.50C FOR ABS MATERIAL................................... 42

26 TRANSMISSION LOSS AS FUNCTION OF INCIDENT ANGLE AT
0 0C FOR ABS MATERIAL ......... ......... ............. 43

27 TRANSMISSION LOSS AS FUNCTION OF INCIDENT ANGLE FOR 4
.05 INCH-THICK AES MATERIAL .................................. 4

28 TRANSMISSION LOSS AS FUNCTION OF INCIDENT ANGLE FOR
.1 INCH-THICK ABS MATERIAL ................................... 45

29 TRANSMISSION LOSS AS FUNCTION OF INCIDENT ANGLE FOR
.125 INCH-THICK ABS MATERIAL ................................. 46

30 TRANSMISSION LOSS AS FUNCTION OF INCIDENT ANGLE FOR
.2 INCH-THICK ABS MATERIAL.................................. 47

31 TRANSMISSION LOSS AS FUNCTION OF INCIDENT ANGLE FOR
.25 INCH-THICK ABS MATERIAL .................................. 48

32 TRANSMISSION LOSS AS FUNCTION OF INCIDENT ANGLE FOR
.3 INCH-THICK ABS MATERIAL ................................... 49

33 TRANSMISSION LOSS AS FUNCTION OF INCIDENT ANGLE FOR
.4 INCH-THICK ABS MATERIAL ................................... 50

34 TRANSMISSION LOSS AS FUNCTION OF INCIDENT ANGLE FOR
.5 INCH-THICK ABS MATERIAL ................................... 51

35 TRANSMISSION LOSS AS FUNCTION OF INCIDENT ANGLE FOR
.75 INCH-THICK ABS MATERIAL .................................. 52

36 TRANSMISSION LOSS AS FUNCTION OF INCIDENT ANGLE FOR
1 INCH-THICK ABS MATERIAL .................................... 53

TABLES

Table Pg

1 MATRIAL PARAMETERS USED IN THEORETICAL CALCULATIONS ........... 54

6



NSWC TR 81-197

Many materials are used in underwater acoustic systems for items such as
transducer windows, acoustic concentrators, acoustic lens, acoustic tank
linings, and reflectors. Their application depends strongly on their
characteristic properties in transmission, reflection, and absorption. The
continuous development in sonar domes and acoustic lens necessitated the
investigation of ultra-sonic wave through single and multilayered thin plastic
materials. Until recent years there has been limited experimental data and
theoretical results. Often the transmission and reflection coefficients are
measured instead of calculated. To date, there seems to be several methods
available for theoretically approximating the transmission characteristics of
the acoustic materials. This report presents one of the methods and its
calculated results.

One of the many applications of acoustic materials in underwater acoustics
is in the construction of acoustic lens. In particular, this program has an
interest in a spherical liquid filled lens as diagrammed in Figure 1. A
liquid-filled spherical lens basically consists of a thin plastic shell of the
desired transmittion coefficient and a liquid of the desired index of refraction
(n2)- It has the properties of converging the acoustic rays toward a focal
point along the lens axis as shown in Figure 1. Its focal distance, f, fron
center of the spherical lens is directly related to the index of refraction of

the lens liquid.I TO select the proper acoustic window for an acoustic lens, it is necessary
to select the transmission characteristics of alternative materials. These
characteristics are evaluated on the basis of determining the percentage of
sound transmitted through and reflected from the sample material immersed in a
liquid media. Through the transmission characteristic of a material, one can
predict the approximate aperture of an acoustic lens. For a desired aperture,
material of certain transmission characteristic will be selected. Having
selected a desired aperture one would have defined the desired operational
characteristic such as beam width of the acoustic lens.

The problem of transmission and reflection of ultrasonic waves through
layered media ha3i been treated by many authors. The theoretical treatment dates
back to W. T. Thansonl in 1950. In nis paper, he treated the transmission and
reflection problem as a boundary value problem. At the boundary, the stress and

lThomson. W., "Transmission of Elastic Waves Through a Stratified Medium,"
J. Appl. Phys. 21, 89-93, 1950.
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particle velocity are assumed to be continuous. Brekhovskikh's2 treatment
paralleled that of Thompson's and yields a similar expression which is valid only

to limited cases* i.e., single-layer problem as indicated by Mr. D. Folds.
3

In 1953, Haskell4 correctly formulated an expression which is applicable to

multilayered cases. Since our interest is a single solid layer immersed in a

liquid media and because Brekhovskikh's solution is a widely used reference by

many researchers, we have employed his expression for this analysis.

2Brekhovskikh, L. M., "Wave in Layered Media," Academic, New York, 1960.

3Folds, D. L. and Lo~gins, C. D. "Transmission and Reflection of Ultrasonic
Waves in Layered Me la," J. Appi. Soc. Am. 62, 1102-1109, 1977.

4Haskell, N., "The Dispersion of Surface Waves in Multilayered Media," Bull.
Seismoi. Soc. Am. 43, 17-34, 1953.

9/10
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THEORY

Paralleling Brekhovskikh's development with Mr. P. Huber's assistance the
same expressions were derived for a single solid layer surrounded by a liquid
media as D. Folds and Barnard, et a15 had indicated in their papers. The
transmission (t) and reflection (r) coefficient expressions for a single solid
layer surrounded by liquid media as diagrammed in Figure 2 are given by:

T= z2NZ
2 2

M (Z1 + Z3) + i(N - M ) Z1 + Z3

M(Z - Z ) + i(N 2 - M2 ) Z -Z
R 1 3 1 3

2 2
M (Z1 + Z3) + i(N - M ) Z1 + Z3

where M, N, and Z's are expressed as:

z z
M _Z2 Cos2 22 Cot P + 2t Sin 2 2 Cot Q

Z Cos2  Z Sin2

N22 + 2t . 272
Z1  Sin P Z1  Sin Q

and

P c
Z~l
1 Cos 01

5Barnard, G., Bardin J. L. and Whitele j.W. "Acoustc Reflection and
Transmission Characteristics for Thin cousic Soo. Am. 57.
577-584, 1975.
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P c

Z 2 cs 22 COS 2

P c

3 Cos 3

p b
Z 22
2t COS '2

where the subscripts 1, 2, and 3 indicate the medium of interest while 2t
represents the shear (transverse) mode of propagation in solid layer, media 2.
Also, p's are the densities and c's and b's are the velocities of the respective
media. P and Q are two "dummy" variables which are related to the propagation
constant for the longitudinal wave, a, shear wave, 0, and thickness, d, of the
sample material

P ad
Q : 1d

Since a represents the z-component of the propagational constant k2 of the
longitudinal wave while 0 is the like quantity K2 of the shear wave, thus a
and )3 can be expressed as

a = -k2 Cos 02

13 = -K2 Cos ^ 2

where 82 and 72 are related to the incident angle 63 by the Snell's Law

k3 sin 63 = k2 sin 02 = kI sin 01 = K2 sin ^ 2

613 82, 81, and 'Y2 are measured with respect to the normal to the plane
o? the solid layer and these quantities may be complex. Thus, the quantities P
an Q can be rewritten as;

P = -k2d Cos 02

Q = -K2d Cos Y2

Note that k2 and K2 are wave numbers in the longitudinal and shear mode
* which are given respectively by

k : W
2 c2

13

..
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2 b2

W 2we 7

where c2 and b2 are respectively the longitudinal and shear sound velocities
in the solid layer of thickness, d, and f is the frequency of interest.

Since absorption is present in most solid materials and it is related to
the sound velocity c and b in the solid by the expression below

C

C 0 o EXP (i tan 1  )
21/2 a

(l + c)

where

c

C W

a and 0 are redefined as the absorption constants expressed in neper/ft. The
absorption can be related to the attenuation by

a a / 8.6858

where a is the attenuation in db/ft. Note that c2 and b2 are now complex
quantities. It is indeed difficult to image physically that the sound velocity
and reflected angles in the solid layer as complex quantities.

14
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EXPERIMENTAL DATA

The experimental test set up at NAVSURFWPNCEN acoustical facility is
basically that of References 3, 5, and 6, except for the collimator lens which
was used as diagrammed in Figure 3. The collimator was used to insure that the
impinging wave at the sample plate would be a plane wave (far-field effect).
The receive hydrophone E-27 is located close to the sample plate to avoid edge
effects; yet far enough to avoid standing waves between the hydrophone and the
sample plate. The test sample plate was a 24-inch square and hydrophone
locations are as shown in Figure 4.

Since only limited experimental measurements were made at NSWC and the
sound velocities and test material are not known, experimental data used to
verify calculated results were basically from References 3 and 6. Figure 5
to Figure 8 show results from Reference 3 versus NSWC calculated results.
Figure 9 to Figure 16 show the data from Reference 3 versus NSWC calculated
results. The material parameters from References 3 and 7 used in the theoretical
calculations are listed in Table 1.

3See footnote 3 on page 9.

5 See footnote 5 on page 1.1

6Nichols R. H., "Acoustic Properties of Rho-C Rubber and ABS in the Frequency
Range 160 kHz - 2 MHz," J. Acoustic Soc. Am. 54, 1763-1765, 1973.

7Hartmann, B. and Jarznyski, J. "Immersion Apparatus for Ultrasonic
Measurements in Ploymers," 'J. Acoustic Soc. Am. 56, 1479-1477, 2.9711.
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RESULTS

Brekhovskikh's expression was used in the theoretical calculation to
predict the transmission coefficients. To better estimate the coefficients, two
assumptions were made. First, the velocities c and b were allowed to be
complex; thus, the wave numbers in the solid layer k2 and K2 are also
complex. These complex quantities were used throughout the calculations.
Secondly, instead of assuming the attenuations in the longitudinal and shear
modes, a and $ respectively are the same, they are assumed to have the relation
of

Since AZ and X3, the respective wavelength, are defined as

f

_b
Xs -

* ,thus, the above can be rewritten as

a 2

and 0 can be expressed as

Throughout the development of the method of approximation it has been
observed that the correct sound velocity measurements are very important. For
example, in determining the theoretical transmission coefficient for Absonic-A
at 19.1 0C of Reference 5, there was no difficulty arriving at the same data as
the measured data when measured parameters of Reference 5 were used.

These results were shown in Figures 5 through 8. However, if other published

5 See footnote 5 on page Ii.

i9
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values were used for the Absonic-A sound velocities, the calculated results were
very different from the measured data. In the case of Reference 3, using the
values in Table 1, the calculated transmission coefficient was a good
approximation of the published measured data for a single solid layer. This is
shown in Figure 9 for LDPE; Figures 10 through 13 for plexiglas; and Figures 14
and 15 for ABS.

It is evident from this theoretical investigation that the material
transmission coefficient is dependent on frequency, temperature and thickness of
solid layer. For example, Figures 10 through 13 show the effect on the
transmission coefficient of a 0.1 inch thick plexiglas plate as a function of
frequency. A similar effect is shown on Figures 5 through 8 and Figures 10
through 18 for Absonic-A (ABS). This frequency effect is observed both
theoretically and experimentally as shown in these plots. Since sound velocity
changes as a function of temperature, one could expect some change in the
transmission coefficient. In the case of the materials considered, the
temperature effect is amplified greatly because sound velocity increases with
increase of temperature in the liquid (water) while the contrary exists in the
solid layer. The observed results are shown in Figures 19 though 23 for
low-density polyethylene (LDPE). However, material with low thermal
coefficients such as ABS has very little effect due to temperature change as
shown in Figures 24 through 26. Thus careful selection of material could reduce
the temperature effect on the transmission coefficient. Lastly, thickness of
the shell also has some effect on the transmission coefficient as shown in
Figures 27 through 36. From these plots one could observe the changes on
transmission coefficient as a functon of thickness.

Aperture shading is well known and has been used successfully in optics and
underwater acoustics. In general, aperature shading is used to improve the
directivity response of an acoustic system. The transmission coefficient on an
acoustic lens shell has the same effect as that of a shading function. Thus, a
lens of a certain operating characteristic would require a certain desired
transmission coefficient on its shell. Through careful consideration of the
material, thickness, frequency, and operating temperature range, a lens shell
can be selected to exhibit a desired transmission coefficient with aperture.

3See footnote 3 on page 9.,

20
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CONCLUSION

It is evident from this investigation that the acoustic transmission and
reflection coefficient of a thin plate can be accurately predicted by employing
the Brekhovskinkh's expressions in conjunction with an accurately determined sound
velocity in the thin plate material. Thus, this technique can be useful in
assisting the selection of acoustic material for acoustic lens of the operating
characteristic desired for the acoustic system.
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