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FOREWORD AND ACKNOWLEDGEMENTS

This report serves two purposes. It is the second annual report to the
Office of Naval Research (ONR) for Contract No. N0O0014-80-C-0031. It is
also a final report to the National Science Foundation (NSF), pertaining to
Grant No. ENG-7827007.

In several important ways the interests of these two research programs
have overlapped strongly, to their mutual benefit. The overlap was entirely
complementary, duplication of research efforts being strictly barred. However,
it was deemed preferable by the author to await the outcome of the second year
of the ONR research program prior to submitting a final report to NSF which
should also serve as a second yearly report to ONR. The author wishes to
express his most sincere gratitude to Messieurs Win Aung and Keith E1lingsworth,
of the NSF and ONR respectively, for permitting and encouraging this research
effort collaboration.

Whiie the work presented here has been conducted entirely on the Berkeley
campus of the University of California, it has been carried out in close
collaboration with a 'sister' project under the direction of Professor B.E.
Launder in the Mechanical Engineering Department of the University of
Manchester, Institute of Science and Technology (UMIST). The experimental
investigation in UMIST represents the heat transfer counterpart of the
fluid mechanics activity in Berkeley. The collaborative effort is not only
experimental, it also extends to the improved formulation of a theoretical
model of turbulence applicable to curved duct flows.

During the course of the second year of research the following people
have assisted in advancing experimental and theoretical aspects of the research
project: M. Arnal, S.M. Chang, J. Flores, T. Han, G. Lewis, A. Modavi, J. Sabnis
and P. Turi. The author gratefully acknowledges their very helpful support.




1. THE PROBLEM OF INTEREST: MOTIVATION, SCOPE AND OBJECTIVES

This section is intended to provide a brief reminder of the motivation,
scope and objectives of the present study.

Flow in curved ducts represents a phenomenon of considerable industrial
importance. In particular, it is considered here in connection with bend
components in heat exchange equipment. The study is strongly motivated by
the need to quantify the fluid mechanic and heat transfer characteristics of
such flows in order to reach conclusions leading to the improved performance
and more compact design of heat exchange equipment. That this need is very
real, in both industrial and military environments, was quite clearly
established at the July 1981 Navy Symposium on Heat Transfer Research, held
at the U.S. Naval Academy, Annapolis, Maryland.

The scope of this study is not 1imited by the applied nature of the
motivation. In fact, the study addresses the very fundamental issues of
turbulent flow and heat transfer in complex, three-dimensional (3D) config-
urations. Thus, the scope of the present investigation embraces the need
for improved theoretical formulations and accurate experimental data, useful
for prediction and testing purposes respectively.

However, the role of the experimental data is not 1imited to that of a
test matrix alone. Through careful analysis and evaluation the data also
offers the opportunity for an increased understanding of the physics
governing turbulent fluid mechanics. As discussed in the first yearly report,
curved duct flow configurations are ideal for investigating the transition
between two important types of cross-stream secondary motion. In a curved
duct (bend) component, the imbalance between centrifugal and radial pressure
gradient forces sets up a fairly intense cross-stream flow. As the flow

leaves the bend to enter a downstream straight duct section the force
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imbalance disappears. At this point turbulence diffusion and redistribution
processes force the flow to undergo a ‘relaxation' stage which acts to

erase all memory of the force imbalance acting on the flow in the bend.
However, a very weak cross-stream secondary motion persists in the downstream
straight duct section due to differences in the cross-stream gradients of

the Reynolds stresses. It is clear that the flow configuration composed of

a curved duct followed by a straight duct section is not only one of industrial
relevance, but, due to its complexity, represents a rather severe test

for models used to predict general turbulent flows.

The objectives of this investigation are two:

1) To develop, test and apply a model of turbulence embodied in a
numerical calculation procedure capable of predicting complex
three-dimensional flows with elliptic effects retained in the
pressure field only.

2) To obtain experimental data of value for testing the numerical
model and for advancing the understanding of turbulent flow in
general.

The strategy for achieving the above objectives has already been outlined
in the study proposal and first yearly report to ONR. The next sectfon
summarizes specific accomplishments related to the objectives, attained

during year two 0f research.
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2.  SUMMARY OF RESEARCH ACCOMPLISHMENTS FOR YEAR TWO

Three major accomplishments are claimed under this heading and are
summarized briefly here. More detailed expositions of the accomplishments
are provided in the references given in this report.

2.1 Contribution to the Stanford Conference on Complex Turbulent Flows

In response to a “call for predictions" by the AFOSR-HTTM-Stanford
Conference on Complex Turbulent Flows, calculations were made (Appendix 1)
of the curved duct flow configuration measured by Humphrey [1]. This flow
corresponds to Case 512 of the Stanford Conference and was also computed by
various other groups using similar modeiing approaches. A two-equation k-¢
model of turbulence was used for the predictions plotted in Appendix 1. A
semi-elliptic calculation procedure was the basis for the computational
algorithm. Two finite-difference schemes for convection terms in the momentum
equations were tested. These have been relatively evaluated and discussed by
Han, Humphrey and Launder [2]. Calculations performed on four laminar and
two turbulent flow test-case configurations yielded accurate results, indicat-
ing the validity of the numerical procedure. However, calculations of Case 512
(even when using the more accurate of the two differencing schemes) yielded
poor agreement with the measurements as of a bend angle of 45°. Nevertheless,
the results were better than the (coarser grid) calculations performed by
Humphrey, Whitelaw and Yee [3] using a fully-elliptic calculation procedure,
and, without exception, were consistently better than any of the predictions
offered of Case 512 by other groups at the Stanford Conference.

While i1t is doubtful that a two-equation k-e model will provide the
accurately needed representation of the turbulence characteristics arising in
three-dimensional curved duct flow, numerical diffusion in the calculations

still obscures a precise judgement of the issue. The numerical and modeling
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aspects of the problem warrant continued and careful research.

these aspects are being pursued in Berkeley.

Both of
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2.2 The Formulation of a More General k-c¢ Model of Turbulence

In the study presented in reference [4], Pourahmadi and Humphrey address
the problem of including streamline curvature and pressure strain effects
in the Cu coefficient of vy = Cu kz/e. The study shows that improved pre-
dictions of developing curved channel flow mean velocity, turbulent kinetic
energy and friction coefficient, are given with the generalized Cu formulation.
In particular, the inclusion of wall-dampening contributions to the pressure
strain term is shown to be significant. This suggests that calculations of
other flow such as, for example, backward facing steps or sudden expansions,
where streamline curvature and pressure-strain contributions to Cu are
important, should include the latter contribution to Cu' It is important
to note that generalization of the C, function along the lines of reference [4]
avoids the need of ad hoc modifications (and associated constant optimization)
in the k-¢ model, in order to include streamline curvature and pressure strain
contributions to turbulent diffusion. It is conceivable, but it would have
to be checked, that the inclusion of a more general 3D formulation of the Cu
coefficient in the k-¢ model of -Appendix 1 would yield improved predictions
of curved duct flow. However, the level of effort invoived in executing
this task is comparable to that of deriving a set of algebraic relations for
the Reynolds stresses directly.

Given that the availability of algebraic stress relations would preclude
the need for the concept of an eddy viscosity, and hence Cu, and given also
that a model approach based on the use of algebraic stresses can address, at
least to first order, the issue of anisotropy in turbulent flow, the algebraic
stress approach is to be preferred. The work in Berkeley has centered on

formulating an algebraic stress approach in collaboration with the group

headed by Professor Launder in UMIST.
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2.3 Measurement and Calculation of Three-Dimensional Curved Duct Flow

Reference [5] provides an exposition of the curved duct flow experimental
work and the most recent numerical calculations, using a k-¢ model of turbu-
lence, conducted in Berkeley during year two of this contract.

The measurements were made using a laser-Doppler velocimeter (LDV) of

DISA manufacture, and consisted of two velocity components and the associated
Reynolds stresses. At each of nine streamwise locations several profiles
were taken of the variables of interest. The data was recorded and processed
on-line by means of a PDP 1134 minicomputer. A description of tre apparatus
and instrumentation, plots of profiles with an interpretation of measured and
calculated results, and a discussion of possible error sources affecting the
precision of the measurements are provided in [5].

As a general observation, it can be stated here that the flow in a 180°
bend of square cross-section differs markedly from that in a 90° bend in its
mean and fluctuating characteristics. The efforts put into measuring a curved
duct configuration of square cross-section have been amply rewarded in terms
of the very useful and (relatively) easily obtained experimental results. The
ease with which measurements were made was enhanced by the presence of flat
walls in the test section. Corresponding measurements of comparable precision
would be considerably more difficult to obtain in curved pipes. A major con-
clusion derived from the experimental study is the need for additional data in
the straight duct section downstream from the bend where the turbulent flow
relaxes. Similarly, further information between bend angles of 45° and 180°,
where the flow changes dramatically in its characteristics, would benefit

theoretical and turbulence modeling advancements.




Turbulent {and laminar) flow calculations™ were performed for the test
section configuration of the experiment and are discussed in [5]. To
summarize: although the turbulent flow results show good qualitative agreement
with the measurements, they display discrepancies as large as those pre-
sented for the 90° bend flow of Appendix 1; as in the Appendix, the discrep-
ancies are attributed to failings in the ability of the k-c¢ model to represent
faithfully the turbulent features of the flow, and to the presence of
numerical diffusion in the calculations. There is a pressing need to separate
and establish properly the respective contributions of these two effects on

overall numerical inaccuracy.

With respect to the paragraph above, it is rather important to
note that advances of theoretical significance, and therefore of consequence
to turbulence modeling practice, are much more 1ikely to progress quickly
in relation to ducts of square cross-section, where accurate experimentation
is relatively easy to perform, than in ducts of circular cross-section.
Since the theory for predicting turbulent flows in ducts of square
cross-section includes as a subset the class of flows in ducts of
circular cross-section, it seems appropriate to emphasize theoretical and
experimental research in the square duct flow configuration. This is

especially true if, as is the case here and for the UMIST project, measure-

ments and calculations involving heat transfer are a major consideration.
Laminar regime calculations of the 180° bend experimental configuration

reveal flow patterns very distinct from those arising in turbulent regime.

Unfortunately, the lack of experimental data for the moment precludes quanti-

fying exactly the accuracy of the predictions. Grid refinement tests and

+Corresponding laminar flow measurements have not been made.
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calculations of the 90° bend laminar flow in [1] suggest that predictions

of the streamwise component of velocity are accurate to within about + 10%.

It is a major conclusion of this report that detailed laminar flow measure-
ments are required for conducting a careful examination of the extent to which
false diffusion can affect.the accuracy of numerical calculations in 3D
laminar flows with elliptic effects. Such knowledge would assist in
establishing more clearly the role of false diffusion in the turbulent

flow regime.
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3. CONCLUSIONS AND RESEARCH PLANS FOR YEAR THREE

The following are the major conclusions derived from the activities

conducted in relation to the second year of this research.

1. The July 1981 Navy Symposium on Heat Transfer Research clearly
established the need for an improved theoretical formulation of
three-dimensional turbulent flows with elliptic effects, due to
the strong financial incentives of dealing with such flows directly

through numerical computation.

2. To assist in turbulence model development, and to contribute to
the pool of information required in order to advance the current
level of understanding of turbulent fluid mechanics, fundamental
experimental measurements have been made in a curved duct configura-

tion of both industrial and academic significance.

3. Numerical calculations using a two equation k-c model of turbulence
of: a) Case 512 of the Stanford Conference on Complex Turbulent
Flows; and, b) the present experimental configuration, reveal the
need to separate inaccuracies arising from numerical diffusion from
those arising due to turbulence model defficiences. Presently,
numerical efforts in Berkeley are being directed towards the more
effective use of higher order finite difference schemes for con-
vection terms in the transport equations. In parallel, turbulence
modeling efforts are being focussed on an algebraic stress formula-
tion; obviating the need for an eddy viscosity concept, and dealing
with flow anisotropy directly. This formulation retains
streamline curvature and pressure-strain effects, including wall-

induced redistribution of the energy among the normal stress components.
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The measurements obtained to date have been made in a duct (curved
section and downstream tangent) of square cross-section. The flat
walls composing the square shape allow easy optical access to the
velocimeter laser beams, and yield Doppler bursts of high signal to
noise ratio. Similar quality data, and as extensive, is not readily
measured in ducts of circular cross-section. Because the turbulence
modeling concepts required for predicting curved duct flows of
square cross-section encompass those necessary for predicting
similar flows in ducts of circular cross-section, the experimental
Timitations affecting the latter configuration are not particularly
worrisome.

It should be clear that a turbulence model validated primarily
with respect to measurements obtained in a duct of square cross-
section, and which predicts this flow accurately, must, by necessity,
model the simpler flow in a curved pipe. The use of the term
"simpler" in connection with curved pipe flow implies the absence of

corner effects inthe duct cross-section.

Although an algebraic stress model, similar to that of Sindir [6],
has already been formulated in Berkeley in collaboration with UMIST,
it has not yet been applied successfully to the curved duct flow
configuration of interest to this study. Presently it is being
tested with respect to developing flow in a straight duct of square
cross-section. When this case is satisfactorily predicted the
algebraic stress model will be applied to the curved duct configura-

tions of this study and of Humphrey, Whitelaw and Yee [3].

10.
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1.

Listed below are the tasks to be accomplished during year three of

research, together with an estimate of the time required for completion.

1.

A review of the data collected to date indicates a need for additional
measurements in the curved duct and downstream tangent of square cross-
section in order to complete the matrix of experimental results neces-
sary for a rigorous model development and testing. This "second
experimental pass" is intended to provide more detailed information of
the flow characteristics entering the bend, near the curved and side
walls in the bend and downstream tangents, and at several additional
planes in the bend and downstream tangent. The collection and

processing of this new data will take between 4-6 months " .

Upon completion of task 1 the test section of square cross-section
will be replaced by one of circular cross-section. In the circular
configuration, measurements of the flow mean velocity and turbulence
characteristics will be confined to optically accessible regions of
the flow with high signal to noise ratio. Due to the extensive and
high quality data presently being obtained in the more complex
square duct configuration, the above limitation is not serious. In
combination, the body of experimental results from this study should
suffice for extending the numerical model to curved pipe flows.

Collection and processing of this data will taken between 6-8 months*.

The algebraic stress turbulence model developed for this work will
be applied to the prediction of curved duct flow upon completion of its

preliminary testing. Predictions will be made of the square duct

*The estimates for completion of tasks 1 and 2 include time periods during
which the laser-Doppler velocimeter and minicomputer are shared with two
other research groups.
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12.

flow configuration of [3] and of this study using the semi-elliptic
procedure and higher order convective differencing scheme
described in reference [5]. It is estimated that the accomplishment

of this task will take between 6-9 months.

4. Upon completion of task 3 the validated numerical procedure will
be used to compute a variety of flows in which the following para-
meters are varied over a range of practical interest: Reynolds
number, duct aspect ratio, mean radius of curvature, downstream

\ tangent length. This task will take approximately 3 months.

Since there is support in Berkeley for only one graduate student the
above tasks are expected to run into a fourth year of research. This will

certainly be the case in order to accomplish task 5 below.

5. Modifications will be made to the numerical model calculation
procedure to allow for the transport of heat. This will require
an extension of the theoretical formulation, and will
be conducted in collaboration with Professor Launder's research

P group in UMIST. The time for completing this task in Berkeley

will be approximately 6 months.

Table 1 presents a tentative research schedule for year three of
research. Also indicated in the table are the activities which are antici-

pated will run into a fourth year of research.
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Prediction of Case 512 for the 1981-1982
AFOSR-HTTM-Stanford Conference on Complex Turbulent Flows

by
S.M. Chang, T. Han and in B.E. Launder
J.A.C. Humphrey collaboration University of Manchester
University of California with Institute of Science and Technology
Berkeley, California 94T20 Manchester, England

1. Introduction

The following pages contain s summary of the computational methodology and experi-
ence gained at the University of California, Berkeley, in relation to the prediction of
Case 512 [1] for the 1981-1982 AFOSR-HT™-Stanford Conference on Complex Turbulent
Flows. The present contribution is part of a more extensive and coordinated effort
aimed at documenting the performance of various (similar or related) turbulence models
embodied in a class of numerical procedures familiar to the various collaborating
groups. The institutions participating in this ccllective effort are listed in the
computational summary presented elsewhere in this conference volume by Launder,
Leschziner and Sindir. The results appear in the conference volume under the code
heading "LHHGM".

The contribution summarized here is based on the use of a two-equation (k-€) model
of turbulence as presented in, for example, [2]. The numerical algorithm solving
finite difference forms of the transport equations is the Imperial College TEACH-2E
code generalized to three-dimensional (3-D) flows [1,3] and subsequently extended as
described in [4] to encompass turbulent flows. A "semi-elliptic"” version of the
numerical procedure, developed-along the lines of the work in (5], was recently com-
pleted (6] and includes the use of the QUICK scheme for convective differentiation pro-
posed in [7] and tested in [8]. The principal results prepared for the conference vol-
ume were calculated using the semi-elliptic version of the 3-D code using the higher
order QUICK scheme for convective differentiation in the cross-stream plane of the flow.
Additional predictions of Case 512 using the HYBRID differencing scheme of the standard
TEACH codes have also been made but these are less accurate.

While qualitative features of the 90 degree curved duct flow of Case 512 are well
represented by the numerical calculations these yield poor quantitative agreement with
the measurements. The discrepancies are attributed principally to the failure of the
two-equation model to account for large-scale anisotropy in the flow.
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2.1 Equations, Turbulence Model and Boundary Conditions

Time-averaged continuity and momentum equations governing steady, developing,
incompressible, isothermal, turbulent flow in cylindrical coordinates are given by

(4]:

Continuity
Momentum
s
[U,a,iwaagg +u,a;§v ”',”’]=-f‘;” ‘;’,krw"’a‘i)
1; (":"2’2’) a%(f«« e R e A )
1330 (ﬂeﬂ:ag)rgz(llm%)+s.; ()
where

5,12 r—(U 19 raU) a( aUN U,

reo\M" 5 e *% (/‘°F kT
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S":ra—O(ﬂ’ +7—50_) +a7( ( U)) 8z(r 80\’ (ar r)’

12 %) 10 faU,) a( aU,
5 raﬁ(/" z) e\ )t ”'-3?)

—
®»
A

and Hett = f+fty = [ty

The turbuleit viscosity, ut, is assumed to be determined uniquely by the local
values of density p, turbulent kinetic energy k, and a turbulent length scale . Al

high Reynolds numbers £ is proportional to k3/2/e, where £ is the rate of dissipation
of turbulent kinetic energy and thus [2]:

B = C,plt’/c. (5)

vhere Cu has the constant value given below. The spatial variation of Hy is determined
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3.
by solving transport equations for k and € in cylindrical coordinates, readily derived

from the general tensor equtions given in (91, i.e.:

ok Ugak y ok 10 /l,.u ak 1 0 /le“ak /lenﬂk G-
[Ur;+'r—a—0+ ,‘a—z] rar ‘z—g A 39 ‘71: 5; + b =pe, (6)
and
O (phett O€
U,d¢ d¢ 10 [fhett ae) L_(—r)
P[U'%;*"r!%"w‘ﬁ}'rar(m A
2
?_(L ) Ca G- Cab T (7)
32 a
with
U, 16l 190, aU)
o=ml2[(F) (%) +(F) -2 (%
U, u, 20U, ‘1 aUu, ol aL’aU\) eUaU]
7(7 ;aa) ‘(W?*To =)t e o
U, U, aU, 13U, aU,)=+(a_U,)=+(1_a£_,)=| (8)
*(T)’“( ) ( ) (rw) (az o) *\7) |
The constants in these equations were taken as Cu = 0.09, C€l = 1.47, C = 1.92,

g, = 1.0 and O, = 1.3, in accordance with the recommendstions in [10].

In all the above equations capital letters denote meen quantities. Components of
the Reynolds stress tensor in the momentum equations have been modeled according to the
Boussinesq approximation, relating stresses to mean flow gradients through the turbulent
viscosity Hy- Terms enclosed in boxes were not included in the semi-elliptic numerical

procedure.

Equations 1-7 were solving using the boundary conditions summarized in Table 1.

2.2 Numerical Procedure

Finite difference forms of the transport equations were obtained by volume
integration over cells discretizing the flow domain as explained in [5] to generate
a semi~elliptic calculation scheme. In this scheme the neglect of streamwise dif-
fusion in the momentum equations allows a "parabolic" treatment of velocity,
requiring two-dimensional storage of velocity components at only two streamwise
locations. Elliptic effects are retained in the numerical procedure through three-
dimensional storage of pressure. Of course, the use of this scheme precludes the
calculation of streamwise flow recirculation.

Further discussion regarding the development and application of the semi-
elliptic calculation scheme is available in [5,6].
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2.3 Test Cases
The cases listed in Table 2 were predicted to test the worthiness and accura-
cy of the numerical procedure. In addition to the laminar flow tests two turbulent
flow calculations were conducted to verify the two-equation turbulence model for
conditions where it is known to yield fairly accurate results. The two-dimensional
flow cases were predicted by imposing two (streamwise) symmetry plane conditions
in the 3-D semi-elliptic calculation scheme.

3. Remarks on the Prediction of Case 512

A comparison between measurements and predictions of Case 512 obtained by us shows
that although qualitative agreement has been established, quantitative agreement is
rather poor. The calculations were performed on an equally spaced grid of refinement
(r = 14) x (z =10) x (8 = 36) in the curved duct. The grids in the upstream and down-
stream tangents were (14 x 10 x 37) and (14 x 10 x 17) respectively. Computation costs
prohibited optimizing the grid distribution. A typical converged run time for these
grids was 3.6 x 10-5 CPUs per node visitation and required 135 k8 words of storage.

The criterion for convergence was that the maximum normalized residual summation should
be less than 10-3. A comparison between QUICK-generated and HYBRID-generated+ calcula-
tions for both laminar and turbulent curved duct flow showed clearly the superior
performance of the former scheme for the same number of equivalently distributed grid
nodes.

The use of the QUICK scheme in the cross-stream plane of the flow and the stream-
wise refinement allowed by the semi-elliptic scheme suggest that it is turbulence model
defficiency rather than numerical diffusion which produces the discrepancies cbserved.

The use of a Cu function (as opposed to a constant value of 0.09) along the lines
of [11] did not appear to improve the calculated results.

Initially, calculations were performed using the straight duct developed flow data
provided to the Stanford Conference organizers by A. Melling. Calculations using this
data revealed an extra pair of small counter-rotating vortices at the outer-radius wall
of the curved duct. Calculations using the mass-adjusted data* provided by Melling in
Figure AS5+10 of reference [15] or in which the upstream tangent cross-stream motion was
suppressed did not reveal the second pair of outer-radius wall vortices. Since the
measurements corresponding to Case 512 [1,4] do not show nor suggest the presence of a
gsecond pair of vortices it is believed that the predictions based on the mass adjusted

*The HYBRID schem employs central differencing when the cell Peclet number is
|Pe| < 2 and upwind differencing when it is TPe\ > 2.

»
Mass-adjusting had the effect of removing some of the asymmetry in the cross-stream
velocity profiles.
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data are the more accurate of the two. It is also worth noting that differences
between the sets of calculations with (mass adjusted) and with upstream tangent
cross-stream flow suppressed were not significantly different. This is attributed
to the pressure-dominated nature of the flow in the curved duct. To some extent,
such a condition relieves the need for a very accurate specification of the cross-
stream flow magnitude at the entrance plane.

In our opinion accurate numerical calculations of this case study and similar
curved duct flows [12] could probably be started with the entrance plane located
nearer to the 0° plane of the curved duct and with only a specification of the main
flow component. Measurements at x = -2.5 hydraulic diameters in (1] support this

contention and continued research at Berkeley should help quantify this point.
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UNIVERSITY OF CALIFORNIA, BERKELEY

BERKELEY * DAVIS * IRVINE * LOS ANGELES * RIVERSIDE * SAN DIECO * SAN FRANCISCO '

BPOIIEPTIIR 3 T

COLLEGE OF ENGINEERING

BERKELEY, CALIFORNIA 94720
MECHANICAL ENGINEERING

August 24, 1981

Professor S. Kline

. Department of Mechanical Engineering
Stanford University
Stanford, CA 94305

Dear Steve:

Brian Launder asked me to forward the calculations enclosed for
reporting at the Stanford Conference. They pertain to Case 512 but, unlike
the earlier set you already received from us, the enclosed results were
performed using the standard HYBRID differencing scheme contained in the
Imperial Coilege TEACH Codes. The earlier calculations already submitted
were obtained using the QUICK scheme in the cross-stream plane, and are
more accurate. The summary of the Berkeley predictions (to follow soon)
will clarify the differences between the two approaches and the consequences
of using either.

Sincerely,

gjseph A.C. Humphrey

Assistant Professor

JACH:LCHD
Encl.
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