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1. THE PROBLEM OF INTEREST: MOTIVATION, SCOPE AND OBJECTIVES

This section is intended to provide a brief reminder of the motivation,

scope and objectives of the present study.

Flow in curved ducts represents a phenomenon of considerable industrial

importance. In particular, it is considered here in connection with bend

components in heat exchange equipment. The study is strongly motivated by

the need to quantify the fluid mechanic and heat transfer characteristics of

such flows in order to reach conclusions leading to the improved performance

and more compact design of heat exchange equipment. That this need is very

real, in both industrial and military environments, was quite clearly

established at the July 1981 Navy Symposium on Heat Transfer Research, held

at the U.S. Naval Academy, Annapolis, Maryland.

The scope of this study is not limited by the applied nature of the

motivation. In fact, the study addresses the very fundamental issues of

turbulent flow and heat transfer in complex, three-dimensional (3D) config-

urations. Thus, the scope of the present investigation embraces the need

for improved theoretical formulations and accurate experimental data, useful

for prediction and testing purposes respectively.

However, the role of the experimental data is not limited to that of a

test matrix alone. Through careful analysis and evaluation the data also

offers the opportunity for an increased understanding of the physics

governing turbulent fluid mechanics. As discussed in the first yearly report,

curved duct flow configurations are ideal for investigating the transition

between two important types of cross-stream secondary motion. In a curved

duct (bend) component, the Imbalance between centrifugal and radial pressure

gradient forces sets up a fairly intense cross-stream flow. As the flow

leaves the bend to enter a downstream straight duct section the force
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imbalance disappears. At this point turbulence diffusion and redistribution

processes force the flow to undergo a 'relaxation' stage which acts to

erase all memory of the force imbalance acting on the flow in the bend.

However, a very weak cross-stream secondary motion persists in the downstream

straight duct section due to differences in the cross-stream gradients of

the Reynolds stresses. It is clear that the flow configuration composed of

a curved duct followed by a straight duct section is not only one of industrial

relevance, but, due to its complexity, represents a rather severe test

for models used to predict general turbulent flows.

The objectives of this investigation are two:

1) To develop, test and apply a model of turbulence embodied in a

numerical calculation procedure capable of predicting complex

three-dimensional flows with elliptic effects retained in the

pressure field only.

2) To obtain experimental data of value for testing the numerical

model and for advancing the understanding of turbulent flow in

general.

The strategy for achieving the above objectives has already been outlined

in the study proposal and first yearly report to ONR. The next section

summarizes specific accomplishments related to the objectives, attained

during year two of research.

-- .
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2. SUMMARY OF RESEARCH ACCOMPLISHMENTS FOR YEAR TWO

Three major accomplishments are claimed under this heading and are

summarized briefly here. More detailed expositions of the accomplishments

are provided in the references given in this report.

2.1 Contribution to the Stanford Conference on Complex Turbulent Flows

In response to a "call for predictions" by the AFOSR-HTTM-Stanford

Conference on Complex Turbulent Flows, calculations were made (Appendix 1)

of the curved duct flow configuration measured by Humphrey [1]. This flow

corresponds to Case 512 of the Stanford Conference and was also computed by

various other groups using similar modeling approaches. A two-equation k-c

model of turbulence was used for the predictions plotted in Appendix 1. A

semi-elliptic calculation procedure was the basis for the computational

algorithm. Two finite-difference schemes for convection terms in the momentum

equations were tested. These have been relatively evaluated and discussed by

Han, Humphrey and Launder [2]. Calculations performed on four laminar and

two turbulent flow test-case configurations yielded accurate results, indicat-

ing the validity of the numerical procedure. However, calculations of Case 512

(even when using the more accurate of the two differencing schemes) yielded

poor agreement with the measurements as of a bend angle of 45° . Nevertheless,

the results were better than the (coarser grid) calculations performed by

Humphrey, Whitelaw and Yee [3] using a fully-elliptic calculation procedure,

and, without exception, were consistently better than any of the predictions

offered of Case 512 by other groups at the Stanford Conference.

While it is doubtful that a two-equation k-c model will provide the

accurately needed representation of the turbulence characteristics arising in

three-dimensional curved duct flow, numerical diffusion in the calculations

still obscures a precise judgement of the issue. The numerical and modeling

J1 _5l
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aspects of the problem warrant continued and careful research. Both of

these aspects are being pursued in Berkeley.
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2.2 The Formulation of a More General k-E Model of Turbulence

In the study presented iki reference [4], Pourahmadi and Humphrey address

the problem of including streamline curvature and pressure strain effects

in the C coefficient of vt = C k
2/e. The study shows that improved pre-

dictions of developing curved channel flow mean velocity, turbulent kinetic

energy and friction coefficient, are given with the generalized C formulation.

In particular, the inclusion of wall-dampening contributions to the pressure

strain term is shown to be significant. This suggests that calculations of

other flow such as, for example, backward facing steps or sudden expansions,

where streamline curvature and pressure-strain contributions to C are

important, should include the latter contribution to C . It is important

to note that generalization of the C function along the lines of reference [4]

avoids the need of ad hoc modifications (and associated constant optimization)

in the k-e model, in order to include streamline curvature and pressure strain

contributions to turbulent diffusion. It is conceivable, but it would have

to be checked, that the inclusion of a more general 3D formulation of the C

coefficient in the k-c model of-Appendix I would yield improved predictions

of curved duct flow. However, the level of effort involved in executing

this task is comparable to that of deriving a set of algebraic relations for

the Reynolds stresses directly.
Given that the availability of algebraic stress relations would preclude

the need for the concept of an eddy viscosity, and hence C , and given also

that a model approach based on the use of algebraic stresses can address, at

least to first order, the issue of anisotropy in turbulent flow,the algebraic

stress approach is to be preferred. The work in Berkeley has centered on

formulating an algebraic stress approach in collaboration with the group

headed by Professor Launder in UMIST.

W % -.. '~ 'r.I
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2.3 Measurement and Calculation of Three-Dimensional Curved Duct Flow

Reference [5] provides an exposition of the curved duct flow experimental

work and the most recent numerical calculations, using a k-E model of turbu-

lence, conducted in Berkeley during year two of this contract.

The measurements were made using a laser-Doppler velocimeter (LDV) of

DISA manufacture, and consisted of two velocity components and the associated

Reynolds stresses. At each of nine streamwise locations several profiles

were taken of the variables of interest. The data was recorded and processed

on-line by means of a PDP 1134 minicomputer. A description of tI'e apparatus

and instrumentation, plots of profiles with an interpretation of measured and

calculated results, and a discussion of possible error sources affecting the

precision of the measurements are provided in [5].

As a general observation, it can be stated here that the flow in a 1800

bend of square cross-section differs markedly from that in a 900 bend in its

mean and fluctuating characteristics. The efforts put into measuring a curved

duct configuration of square cross-section have been amply rewarded in terms

of the very useful and (relatively) easily obtained experimental results. The

ease with which measurements were made was enhanced by the presence of flat

walls in the test section. Corresponding measurements of comparable precision

would be considerably more difficult to obtain in curved pipes. A major con-

clusion derived from the experimental study is the need for additional data in

the straight duct section downstream from the bend where the turbulent flow

relaxes. Similarly, further information between bend angles of 450 and 1800,

where the flow changes dramatically in its characteristics, would benefit

theoretical and turbulence modeling advancements.

7 I
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Turbulent (and laminar) flow calculations+ were performed for the test

section configuration of the experiment and are discussed in [5]. To

summarize: although the turbulent flow results show good qualitative agreement

with the measurements, they display discrepancies as large as those pre-

sented for the 900 bend flow of Appendix 1; as in the Appendix, the discrep-

ancies are attributed to failings in the ability of the k-E model to represent

faithfully the turbulent features of the flow, and to the presence of

numerical diffusion in the calculations. There is a pressing need to separate

and establish properly the respective contributions of these two effects on

overall numerical inaccuracy.

With respect to the paragraph above, it is rather important to

note that advances of theoretical significance, and therefore of consequence

to turbulence modeling practice, are much more likely to progress quickly

in relation to ducts of square cross-section, where accurate experimentation

is relatively easy to perform, than in ducts of circular cross-section.

Since the theory for predicting turbulent flows in ducts of square

cross-section includes as a subset the class of flows in ducts of

circular cross-section, it seems appropriate to emphasize theoretical and

experimental research in the square duct flow configuration. This is

especially true if, as is the case here and for the UMIST project, measure-

ments and calculations involving heat transfer are a major consideration.

Laminar regime calculations of the 1800 bend experimental configuration

reveal flow patterns very distinct from those arising in turbulent regime.

Unfortunately, the lack of experimental data for the moment precludes quanti-

fying exactly the accuracy of the predictions. Grid refinement tests and

+Corresponding laminar flow measurements have not been made.
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calculations of the 90' bend laminar flow in [1] suggest that predictions

of the streamwise component of velocity are accurate to within about ± 10%.

It is a major conclusion of this report that detailed laminar flow measure-

ments are required for conducting a careful examination of the extent to which

false diffusion can affect.the accuracy of numerical calculations in 3D

laminar flows with elliptic effects. Such knowledge would assist in

establishing more clearly the role of false diffusion in the turbulent

flow regime.

* pt~-~iY'-



9.

3. CONCLUSIONS AND RESEARCH PLANS FOR YEAR THREE

The following are the major conclusions derived from the activities

conducted in relation to the second year of this research.

1. The July 1981 Navy Symposium on Heat Transfer Research clearly

established the need for an improved theoretical formulation of

three-dimensional turbulent flows with elliptic effects, due to

the strong financial incentives of dealing with such flows directly

through numerical computation.

2. To assist in turbulence model development, and to contribute to

the pool of information required in order to advance the current

level of understanding of turbulent fluid mechanics, fundamental

experimental measurements have been made in a curved duct configura-

tion of both industrial and academic significance.

3. Numerical calculations using a two equation k-E model of turbulence

of: a) Case 512 of the Stanford Conference on Complex Turbulent

Flows; and, b) the present experimental configuration, reveal the

need to separate inaccuracies arising from numerical diffusion from

those arising due to turbulence model defficiences. Presently,

numerical efforts in Berkeley are being directed towards the more

effective use of higher order finite difference schemes for con-

vection terms in the transport equations. In parallel, turbulence

modeling efforts are being focussed on an algebraic stress formula-

tion; obviating the need for an eddy viscosity concept, and dealing

with flow anisotropy directly. This formulation retains

streamline curvature and pressure-strain effects, including wall-

induced redistribution of the energy among the normal stress components.
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4. The measurements obtained to date have been made in a duct (curved

section and downstream tangent) of square cross-section. The flat

walls composing the square shape allow easy optical access to the

velocimeter laser beams, and yield Doppler bursts of high signal to

noise ratio. Similar quality data, and as extensive, is not readily

measured in ducts of circular cross-section. Because the turbulence

modeling concepts required for predicting curved duct flows of

square cross-section encompass those necessary for predicting

similar flows in ducts of circular cross-section, the experimental

limitations affecting the latter configuration are not particularly

worrisome.

It should be clear that a turbulence model validated primarily

with respect to measurements obtained in a duct of square cross-

section, and which predicts this flow accurately, must, by necessity,

model the simpler flow in a curved pipe. The use of the term

"simpler" in connection with curved pipe flow implies the absence of

corner effects inthe duct cross-section.

5. Although an algebraic stress model, similar to that of Sindir [6],

has already been formulated in Berkeley in collaboration with UMIST,

it has not yet been applied successfully to the curved duct flow

configuration of interest to this study. Presently it is being

tested with respect to developing flow in a straight duct of square

cross-section. When this case is satisfactorily predicted the

algebraic stress model will be applied to the curved duct configura-

tions of this study and of Humphrey, Whitelaw and Yee [3].

IT
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Listed below are the tasks to be accomplished during year three of

research, together with an estimate of the time required for completion.

1. A review of the data collected to date indicates a need for additional

measurements in the curved duct and downstream tangent of square cross-

section in order to complete the matrix of experimental results neces-

sary for a rigorous model development and testing. This "second

experimental pass" is intended to provide more detailed information of

the flow characteristics entering the bend, near the curved and side

walls in the bend and downstream tangents, and at several additional

planes in the bend and downstream tangent. The collection and

processing of this new data will take between 4-6 months+ .

2. Upon completion of task 1 the test section of square cross-section

will be replaced by one of circular cross-section. In the circular

configur-ation, measurements of the flow mean velocity and turbulence

characteristics will be confined to optically accessible regions of

the flow with high signal to noise ratio. Due to the extensive and

high quality data presently being obtained in the more complex

square duct configuration, the above limitation is not serious. In

combination, the body of experimental results from this study should

suffice for extending the numerical model to curved pipe flows.

Collection and processing of this data will taken between 6-8 months + .

3. The algebraic stress turbulence model developed for this work will

be applied to the prediction of curved duct flow upon completion of its

preliminary testing. Predictions will be made of the square duct

+The estimates for completion of tasks 1 and 2 include time periods during
which the laser-Doppler velocimeter and minicomputer are shared with two
other research groups.

-- k
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flow configuration of [3] and of this study using the semi-elliptic

procedure and higher order convective differencing scheme

described in reference [5]. It is estimated that the accomplishment

of this task will take between 6-9 months.

4. Upon completion of task 3 the validated numerical procedure will

be used to compute a variety of flows in which the following para-

meters are varied over a range of practical interest: Reynolds

number, duct aspect ratio, mean radius of curvature, downstream

tangent length. This task will take approximately 3 months.

Since there is support in Berkeley for only one graduate student the

above tasks are expected to run into a fourth year of research. This will

certainly be the case in order to accomplish task 5 below.

5. Modifications will be made to the numerical model calculation

procedure to allow for the transport of heat. This will require

an extension of the theoretical formulation, and will

be conducted in collaboration with Professor Launder's research

group in UMIST. The time for completing this task in Berkeley

will be approximately 6 months.

Table 1 presents a tentative research schedule for year three of

research. Also indicated in the table are the activities which are antici-

pated will run into a fourth year of research.
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Prediction of Case 512 for the 1981-1982

AFOSR-HTTM-Stanford Conference on Complex Turbulent Flows

by

S.M. Chang, T. Han and in B.E. Launder

J.A.C. Humphrey collaboration University of Manchester

University of California with Institute of Science and Technology

Berkeley, California 94720 Manchester, England

1. Introduction

The following pages contain a summary of the computational methodology and experi-

ence gained at the University of California, Berkeley, in relation to the prediction of

Case 512 [13 for the 1981-1982 AFOSR-HTTM-Stanford Conference on Complex Turbulent

Flows. The present contribution is part of a more extensive and coordinated effort

aimed at documenting the performance of various (similar or related) turbulence models

embodied in a class of numerical procedures familiar to the various collaborating

groups. The institutions participating in this ccllective effort are listed in the

computational summary presented elsewhere in this conference volume by Launder,

Leschziner and Sindir. The results appear in the conference volume under the code

heading "LHHGM".

The contribution sumarized here is based on the use of a two-equation (k-e) model

of turbulence as presented in, for example, [2]. The numerical algorithm solving

finite difference forms of the transport equations is the Imperial College TEACH-2E

code generalized to three-dimensional (3-D) flows [1,3] and subsequently extended as

described in [4] to encompass turbulent flows. A "semi-elliptic" version of the

numerical procedure, developed-along the lines of the work in [5], was recently com-

pleted [6] and includes the use of the QUICK scheme for convective differentiation pro-

posed in [7] and tested in [8]. The principal results prepared for the conference vol-

ume were calculated using the semi-elliptic version of the 3-D code using the higher

order QUICK scheme for convective differentiation in the cross-stream plane of the flow.

Additional predictions of Case 512 using the HYBRID differencing scheme of the standard

TEACH codes have also been made but these are less accurate.

While qualitative features of the 90 degree curved duct flow of Case 512 are well

represented by the numerical calculations these yield poor quantitative agreement with

the measurements. The discrepancies are attributed principally to the failure of the

two-equation model to account for large-scale anisotropy in the flow.

- . *a '; -4& *c -



2.

2.1 Equations, Turbulence Model and Boundary Conditions

Time-averaged continuity and momentum equations governing steady, developing,

incompressible, isothermal, turbulent flow in cylindrical coordinates are given by

[4]:

Continuity

3U, 8 U6 8U. U, 1
a..+-_1_6+ .L+-. 0.

-0 TO0a z r

Momentum

#1_~ ~ ap I aO'a <' <
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by solving transport equations for k and E in cylindrical coordinates, readily derived

from the general tensor equtions given in (91, i.e.:

1 U, L,+ LeIk+ [, k] 18( at k) 1 8 Oie~k a~ ~ +GetE (6

and

, L+++  + ,,WF

r r8 8,

U ' U+a1x.,,!I c UC I8C , ( 7)5 Z') k " k

with

G ( +._ au+_ 2 au.u oU ou, d " .
+~r 0 r bo 80 8r 8r az) 8 r j

M W G, , +o M , . -" - G-+ - "w -+ ---

The constants in these equations were taken as C= 0.09, C~1 1 .47, C .= 1.92,

= 1.0 and 1.3, in accordance with the recommendations in [10].

In all the above equations capital letters denote mean quantities. Components of

the Reynolds stress tensor in the momentum equations have been modeled according to the
Boussinesq approximation, relating stresses to mean flow gradients through the turbulent

viscosity ar" Terms enclosed in boxes were not included in the sem-elliptic numerical

procedure.

Equations 1-7 were solving using the boundary conditions summarized in Table 1.

2.2 Numerical Procedure

Finite difference forms of the transport equations were obtained by volume

integration over cells discretizing the flow domain as explained in [5] to generate

a sem-elliptic calculation scheme. In this scheme the neglect of streismise dif-

fusion in the momentum equations allows a "parabolic" treatment of velocity,

requiring two-dimensional storage of velocity components at only two streamise

locations. Elliptic effects ae retained in the numerical procedure through three-

dimensional storage of pressure. Of course, the use of this scheme precludes the

calculation of streazwise flow recirculation.

Further discussion regarding the development and application of the semi-

elliptic calculation scheme is available in n5,6].

..... .. ..... .. .... .... ... ... . "
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2.3 Test Cases

The cases listed in Table 2 were predicted to test the worthiness and accura-

cy of the numerical procedure. In addition to the laminar flow tests two turbulent

flow calculations were conducted to verify the two-equation turbulence model for

conditions where it is known to yield fairly accurate results. The two-dimensional

flow cases were predicted by imposing two (streamwise) symmetry plane conditions

in the 3-D semi-elliptic calculation scheme.

3. Remarks on the Prediction of Case 512

A comparison between measurements and predictions of Case 512 obtained by us shows

that although qualitative agreement has been established, quantitative agreement is

rather poor. The calculations were performed on an equally spaced grid of refinement

(r = 14) x (z = 10) x (6 = 36) in the curved duct. The grids in the upstream and down-

stream tangents were (14 x 10 x 37) and (14 x 10 x 17) respectively. Computation costs

prohibited optimizing the grid distribution. A typical converged run time for these

grids was 3.6 x 10- 5 CPUs per node visitation and required 135 k8 words of storage.

The criterion for convergence was that the maximum normalized residual summation should
-3 +be less than 10 . A comparison between QUICK-generated and HYBRID-generated calcula-

tions for both laminar and turbulent curved duct flow showed clearly the superior

performance of the former scheme for the same number of equivalently distributed grid

nodes.

The use of the QUICK scheme in the cross-stream plane of the flow and the stream-

wise refinement allowed by the semi-elliptic scheme suggest that it is turbulence model

defficiency rather than numerical diffusion which produces the discrepancies observed.

The use of a C function (as opposed to a constant value of 0.09) along the lines
of [11] did not appear to improve the calculated results.

Initially, calculations were performed using the straight duct developed flow data

provided to the Stanford Conference organizers by A. Melling. Calculations using this

data revealed an extra pair of small counter-rotating vortices at the outer-radius wall

of the curved duct. Calculations using the mass-adjusted data provided by Melling in

Figure A5-10 of reference 15] or in which the upstream tangent cross-stream motion was

suppressed did not reveal the second pair of outer-radius wall vortices. Since the

measurements corresponding to Case 512 [1,4] do not show nor suggest the presence of a

second pair of vortices it is believed that the predictions based on the mass adjusted

+The HYBRID schem employs central differencing when the cell Peclet number is
IPel < 2 and upwind differencing when it is IPeJ > 2.
Mass-adjusting had the effect of removing some of the asymmetry in the cross-stream
velocity profiles.

.... . . .... . , -,,
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data are the more accurate of the two. It is also worth noting that differences

between the sets of calculations with (mass adjusted) and with upstream tangent

cross-stream flow suppressed were not significantly different. This is attributed

to the pressure-dominated nature of the flow in the curved duct. To some extent,

such a condition relieves the need for a very accurate specification of the cross-

stream flow magnitude at the entrance plane.

In our opinion accurate numerical calculations of this case study and similar

curved duct flows [121 could probably be started with the entrance plane located

nearer to the 00 plane of the curved duct and with only a specification of the main

flow component. Measurements at x = -2.5 hydraulic diameters in il] support this

contention and continued research at Berkeley should help quantify this point.
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COLLLGE or ENOGINEERING DERKELEY, CAUFORNIA 94720

MIIchANICAL ENGINEERING

August 24, 1981

Professor S. Kline
Department of Mechanical Engineering
Stanford University
Stanford, CA 94305

Dear Steve:

Brian Launder asked me to forward the calculations enclosed for
reporting at the Stanford Conference. They pertain to Case 512 but, unlike
the earlier set you already received from us, the enclosed results were
performed using the standard HYBRID differencing scheme contained in the
Imperial College TEACH Codes. The earlier calculations already submitted
were obtained using the QUICK scheme in the cross-stream plane, and are
more accurate. The summary of the Berkeley predictions (to follow soon)
will clarify the differences between the two approaches and the consequences
of using either.

Sincerely,

sep~hA.C. Humphrey
Assistant Professor

JACH:LCHD
Encl.
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