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ABSTRACT

.~ In actual practice, iteration methods applied to the solution of finite systems of
equations yield inconclusive results as to the existence or nonexistence of solutions
and the accuracy of any approximate solutions cbtained. On the other hand, construction
of interval extensions of ordinary iteration operators permits one to carry out interval
iteration computationally, with results which can give rigorous guarantees of existence
or nonexistence of solutions, and error bounds for approximate solutions. Examples are
given of the solution of a nonlinear system of equations and the calculation of eigen-
values and eigenvectors of a matrix by interval iteration. Several ways to obtain lower

and upper bounds for eigenvalues are given. ,rﬁ'

AMS (MOS) Subject Classifications: 65Gl0, 65H05, 65H10, 65H15, 65F10, 65F15
Key Words: Interval analysis, Interval iteration, Linear and nonlinear systems of

equations, Upper and lower bounds for solutions, eigenvalues, and eigen-
vectors
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SIGNIFICANCE AND EXPLANATION

order to complete the solution of a problem in applied mathematics and obtain

o> results .n useful form, one must often solve a system of linear or nonlinear equa-

ti ., or ccmpute eigenvalues and eigenvectors of a matrix, which is a special case of

1 "onlinear system of equations. A frequently used method for solution of equations

1teration, which has been investigated extensively from a theoretical standpoint,

..d »ften applied successfully. In order to use iteration, however, one must have an

initial approximation to the solution; furthermore, even if the results obtained look
good, the questions of existence of a solution and accuracy of the numerical solution

are not conclusively answered. By use of interval iteration, however, employing what

are called computable interval extensions of ordinary iteration operators, it is pos-
sible to examine regions for existence or nonexistence of solutions, and carry out

the iteration in such a way that lower and upper bounds for the solutions are given

at each step and in the final result on the basis of the actual computation. Thus,

questions of existence and accuracy can be answered without tedious analysis, and one

can have confidence in the answers obtained by interval computation. Now that it is

possible to perform interval arithmetic, for example, at speeds comparable to ordinary

arithmetic, interval solution of systems of equations becomes
lems in which accuracy is important, such as the design of structur. airframes, and

electrical power ..ctworks.
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SOLUTION OF FINITE SYSTEMS OF EQUATIONS BY INTERVAL ITERATION

L. B. Rall

1. sSystems of equations. Systems of Vv equations in v unknowns are often presented

in the form
{(1.1) f(x) =0
for a zen0 x = x* of the operator £f: D C Rv - RV, or as

(1.2) X = ¢(x)

for a fixed point x = y* of ¢: D C R’ = R’. The latter formulation will be considered
here; there are many ways to transform (1.1) into an equivalent fixed point problem (1.2).
An example of a transformation of this type will be given below.

The form of (1.2) suggests the frequently-used method of (teration: Starting from
a point Xq in the belief that it is a more or less good approximation to x*, the se-

quence {xn} is generated by

(1.3) L o(xn), n=20,1,2,... .

In case (1.1) has been transformed into (1.2), ¢ is often called an {teration operaton
for the solution of (l.1). In the following, it will be assumed that f,¢ and other op-
erators considered are continuous. Under this assumption, it follows that the convergence

of the sequence {xn} implies the existence of a fixed point x* of ¢, that is,

lim

n-+w

(1.4) {xn} - x*

satisfies (1.2). (Of course, if ¢ does not have a fixed point, then {xn) cannot converge;
thus, nonexistence of a fixed point x* of ¢ implies divergence of (xn}.)
This is all very well, but in actual practice, one can neither represent real num-

bers nor perform real transformations exactly; instead of (Xn}, one gets a finite sequence
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{zn}:_o such that z, = Xqr but z ¥ X, otherwise. In order for {zn} to be useful,

one ordinarily has to show that (xn} converges, and then produce comparisons of x_ with
x* and zn with xn, a problem which can be difficult in itself, or at least tedious. A
more straightforward computational approach to the approximate solution of (1.2), based
on the methods of interval analysis, will be given in what follows.

2. Interval analysis. Just as real analysis is concerned with the study of trans-

formations of real numbers and vectors, interval analysis [9 ], [l11] deals with the
same for nonempty finite closed intervals

(2.1 X = [a,b) = {x | a<x <b, x €ER}

of real numbers, and n-tuples of such intervals, called .(nteaval vectoas. Interval
analysis is related to real analysis in two important ways. First, the real numbers
can be identified with a subset of the set of real intervals (2.1), namely, the set of
degenerate intervdls with equal endpoints. For a real number x, this identification is
symbolized by

(2.2) x = [x,x].

Second, real transformations have gxfens{ons to interval transformations, as will
be discussed in more detail below, and thus can be considered to be restrictions of in-
terval transformations. 1In spite of this, interval analysis does not subsume real anal-
ysis, but, like complex analysis, is a distinct branch of mathematics with its own
theory, techniques, and applications.

Strictly speaking, an inteaval extension ¢ of a real transformation ¢ has the prop-
erties of {nclusion
2.3 o(x) = {o(x) | x € X} € &%)
and restriction
(2.4) $ix) = ¢(x)
in the sense of (2.2). An important property of certain interval transformations is
inclusdion monotonicity: ¢ is said to be inclusion monotone if

(2.5) x Cz=d(x) Co(2).
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Interval extensions can be formed of the operations of real arithmetic, considered
as transformations from Rz into R, that is, of f(x,y) = x + y, etc., with the results
forming the (nterval anithmetic of R. E. Moore [9]), [11]). For example, mulliplication
of intervals is defined by
(2.6) fa,bl*[c,d) = [min M, max 0], N = {ac,ad,bc,bd},
and so on. These extel sions are inclusion monotone, and can be used to form inclusion
monotone interval extensions of rational real functions automatically, simply by re-
placing the variables involved by intervals, and the arithmetic operations by their
interval counterparts [ 9], [11l].

A special class of intervals which will be useful later is the set of yymmetric
intervals, which are intervals S of the form
(2.7) S = [~-s,s] = s8+[-1,1], s 2 O.

More generally, interval vectors and matrices are said to be symmetric if their com-
pornients are intervals of the form (2.7). It follows from the definition of interval
addition [ 9), [11),

(2.8) fa,b] + [c,d] = [a + ¢,b + d]}

that the sum of symmetric intervals is symmetric. Furthermore, let

2.9 |1a,b)| = max{]a|,|b]}.

Then, from (2.6),

(2.10) [a,b)*[-s,s] = s|[a,b]

< {-1,1],
hence, multiplication of an arbitrary interval by a symmetric interval gives a sym-
metric interval.

Furthermore, for X = [a,b], m(X) = m((a,b]) = (a + b)/2, w(X) = w([a,b)) =b - a,
one can write
(2.11) X = m(X) + il-w(x)-[-l,l]
in terms of the midpoint m(X) and wi(dth w(X) of the interval X. The representation
(2.11) of the intcrval X is sometimes called its midpoint-halfuwidth or centered form.
Multiplication of X by a real number a can thus be expressed by

(2.12) oX o= m(X) 4+ %iuiw(x)-(-1,11.




The definitions of |X|, m(X), and w(X) extend to interval vectors and matrices

by componentwise interpretation, for example, m(X) = (m(xl),...,m(xv)), and sc on.

Formula (2.11) then holds without modification. Formula (2.12) extends immediately
to the {nner product (o,X) of a real vector a = (ul,...,av) with an interval vector
X = (xl,...,xv). One has

3 1
(2.13) (a,X) = izlai-xi = (amx) + F(a| wx))e-1,11,
where, of course, |a| = (Iull,...,|uv|).

Interval extensions can also be made of other than rational functions, and such
extensions can be combined with interval arithmetic to extend a wide class of real
functions. A useful technique for obtainiang interval extensions of smooth real func-
tions is based on the mean value form: Suppose that ¢ is (Fréchet) differentiable,
and its derivative ¢' has the inclusion monotone interval extension ¢'. Then, ¢ de-
fined by
(2.14) $(X) = d(y) + ' (X)X =~y), y=m(X),
is an inclusion monotone interval extension of ¢ [ 3], where the indicated matrix-
vector operations are performed in interval arithmetic. Using (2.11), (2.14) can
be written
(2.15) $1R) = oly) + 200 (X ow(X)+ (1,11, ¥ = mx),
so the mean value form ¢(X) can be expressed as the sum of the real vector ¢(y) and
a symmetric interval vector. This elementary observation will be useful later.

3. Interval computation. 1In actual practice, computing is done using a finite

set G of rational numbers, rather than the set of real numbers R. Interval analysis
can be adapted readily to G, which is also an ordered set. Extension of the results
to be described here for one dimension can be made in a componentwise fashion to in-
terval vectors and matrices. The key to interval computation using only elements of

G is the operation of dinrected trounding, which will now be explained.
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Let
(3.1) g = min{g | g € G}, g = max{g | g €G}.
Attention will be confined to the set of real numbers
(3.2) RG={x|g<xsg, x€R]},
and attempts to compute a real number z such that z < g or z > ; will be said to re-
sult in an error condition called ovengfow. (Alternatively, the extended real numbers
+» could be adjoined to G, with overflow detected in case the result of a computation
is a semi-infinite or infinite interval.) Now, IG will denote the set of all inter-
vals with endpeoints in G, that is,
(3.3) 16 = {{a,b] | a < b, a,b € G}.
This is the set of intervals which are exactly representable in texrms of the numbers
which are available in the actual computation. For x € RG, the u.pvm/(.d nounding open-
ator & to G is defined by
(3.4) ax = min{g | g 2 x, g € G},
and the dowmward roundi{ng operator ¥V to G by the corresponding expresgion,
(3.5) vx = max{g | g < %, g € G}
[7]1. For the set IRG of intervals with endpojnts in RG, application of the directed
nounding operator 0 to intervals [a,b] € IRG gives
(3.6) Ota,b) = [Va,Ab] € IG,
and thus [} maps IRG into IG. Furthermore, it is glear that [J is an inclusion monotone
interval transformation, and that the interval defiped by (3.6) is the element of IG
of minimum width which contains [a,b}. If x € RG is a real number, then
(3.7) [k = (x,ax)
will be called the representation of x in IG of minimal width. If [Vx,8x] = [c,d) is
nondegenerate, then (c,d] also represents each real number 2 such that ¢ < z < d in
this way.

Thus, if ¢ is an interval transformation which maps IRG into IRG, then the cor-
responding nounded thansgormation

(3.8) F =0
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maps IRG (and hence IG) into IG. Interval transformations F: D C IG - IG are said to
be computabfe on G; furthermore, if F has property (2.3) {(inclusion of the real trans-

formation ¢) and (2.5) (inclusion monotonicity), then F will be called a computable

internval extensdion of ¢. It follows that one can start with an interval transformation

¢: D C IRG = IRG with properties (2.3) and (2.5) (in particular, ¢ can be an inclusion
monotone interval extension of $), and obtain the computable interval extension (3.8)
of ¢ by applying the rounding operator [J. This construction can be carried out auto-
matically if interval arithmetic and a library of computable interval extensions of
the real functions entering into the definition of ¢ are available. One problem which
arises in this connection is that many computers lack the roundings (3.4) and (3.5)
required to support interval arithmetic. This defect can be remedied by software
[25]), [26) or microprogramming [13], if necessary. The scientific computing language
PASCAL-SC [ 8] includes properly rounded interval arithmetic as a standard feature.
Henceforth, all interval transformations considered will be assumed to be computable.

4. Interval iteration. A standard approach to the solution of equation (1.1l) by in-

terval methods is to transform it into a fixed point problem (1.2) in some way, and
then apply {interval {teration {1], [12]. This process takes the following form:
Given an interval transformation ¢ which includes ¢ in the sense of (2.3), and an in-
terval X, thought to contain a fixed point x* of ¢, the sequence of intervals {X } de-
fined by

4.1) Xnel

- X ﬁan), n=20,1,2,...,
is generated, The following results are well known (24]:
(1) If x* € XO' then
©
(4.2) XxX*E€ExXx= N X,
n
n=0
so that existence of a fixed point of ¢ in Xo implies convergence of (4.1) in the sense
that X # @, the empty set.

(ii) 1f, for some positive integer N,

(4.3) W= 2,

EWE vy b
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then the interval xo contains no fixed point x* of ¢. Hence, divergence of (4.1) in
the sense of (4.3) implies nonexistence of a fixed point of ¢ in Xo; this is the con-
trapositive of the assertion in (i).

In finite dimensions, one has further:

(iii) 1If

(4.4) ¢ () c Xy
for some finite integer M, then there exists a fixed point X* of ¢ in xM' and (4.2)
holds as a consequence [10). This is because (4.4) implies that the continuous opera-
tor 9 maps the closed compact region XM into itself, and thus x* € xMC xo by the
Schauder fixed point theorem,

Moreover, if x* € xo is a fixed point of ¢, and xn - [En';;]' X = [5,;}, then

one has the lower and upper becunds,

(4.5) X S X% g ;;, n=0,1,2,..., and x < x* g ;,

where the inequalities are interpreted componentwise in several dimensions. From
(4.5), approximations to x* and guaranteed error bounds can be obtained easily, if

desired.

The above theory requires no modification in case the calculations are performed
on a finite set of points G in cne or more dimensions by taking a computable interval
extension ¢ of ¢, and the initial interval xo € IG. In this case, however, the in-
terval iteration process (4.1) is finite, and will terminate in either the condition

(4.3), establishing nonexistence of X* in Xo, or

(4.6) Rye1 = XN 7@

in which case X = X in (4.2). Condition (4.6) is called the Nickel tearmination cni-
tendion (15). The upper bound

(4.7) N < c«(xo)

has been given for N [24], where G#(xo) denotes the number of points of G contained in
. xo'
Interval iteration is thus an obsearvable process in actual computation, since
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it yields a {{nite sequence {Xn}:so, the usefulness of which can often be determined
by inspection. One gets nonexistence of x* if (4.3) holds, or existence if (4.4) is
true for M < N, and the guaranteed bounds (4.%) if XO contains one or more fixed points
x* of 4. One is in the dark concerning existence, however, if (4.6) holds without

(4.4) occuring along the way. 1In particular, if X C O(Xo) properly, then X, =X =X,

4] 1 0

and the interval iteration is said to have stalled. The difficulty concerning exis-
tence can be resolved by applying some other existence test than (4.4) to X = XN, a
region which will be smaller than Xo unless the iteration stalled, or X can be divided
into subregions for further investigation, using the algorithm of Moore and Jones,

which has also been shown to be finite if G is sufficiently fine [13], [14]).

5. An _interval iteration operator. A simple way to convert the equation (l.1)

to be solved into a fixed point problem (1.2) is by introduction of the .feration op-
eratorn ¢ defined by

(5.1) $(x) = x - ¥Yf(x),

where Y is a nonsingular real matrix, in which case the two problecms are equivalent.

Supposing that f has the (Fréchet) derivative f£', represented by the Jacobian matrnix

f'(x) = (Bfi (x)/3x,) [20), then ¢ will also be differentiable, with

3
(5.2) ¢' =1 - YE£',
where I denotes the identity matrix. The derivative (5.2) can be used to construct
the mean value form (2.7) of ¢, provided that £' has an inclusion monotone interval
extension F', so that K defined by
(5.3) K(X) =y - YE(y) + {I - YF' (X} (X - y), vy =mn(X),
will be an inclusion monotone interval extension of the iteration operator ¢ in (5.1).
K is often called the Krawczyk aoperator [51].

An alternative form of the Krawczyk operator (5.3) can be ~btained by the use of
(5.1) and (2.15). One has
(5.4) K(X) = ¢(m(x)) + {I - YF'(XH'w(X)'[—-—léA,
which expresses K(X) as the sum of the .(feratfion point ¢(y) of y = m(X) and a symmetric

interval vector. Some specific choices of the real matrix Y will now be examined.
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(i) An ideal choice of Y is Y = [f'(x‘)]-l, the inverse of the Jacobian matrix
of £ at a solution x = x* of equation (1.1). For this fixed matrix, the ordinary itera-
tion process (1.3) with ¢ given by (5.1) will converge gquadratically for X, in some
neighborhood N(x*) of x* [19]. This gives the possiblity of quadratic convergence of
the endpoints of xn to x*, at least for x0 C N(x*). Of course, since x* is unknown, it
is usually not possible to find f£'(x*). However, if f' satisfies an equation of the
form f'(x) = h(f£(x)), then one has f'(x*) = h(0), and Y can be found without knowing
x*, thus giving a rapidly convergent iteration method of simple form (19]. A numerical
example of this type, in which the interval iteration converges quadratically, will be
given below.

(ii) By analogy with Newton's method [5 ], one can choose, if it exists,

1 1

(£ m(x))) .

(5.5) Y= (£ ()]
In this case, the iteration point ¢{m(X)) will be the same as obtained by applying

one step of the Newton iteration process to {1.1), starting from x =y = m({X). The

4]
corresponding interval iteration operator K defined by
(5.6) K(X) = ¢(m(x)) + {I - [f'(m(X))l-lF'(x))-w(X)'ugy—

will be called the Newton foam of the Krawczyk iteration operator defiped by (5.4).
It should be ncted that the discussion of interval iteration in §4 alsc applies to
the case in which Y depends on X as long as ¢(X) contains ¢(X) for an operator ¢ with
fixed point x*, in particular, for ¢ as given by (5.1).

(iii) Another possible choice of Y is
(5.7) Y= (' ()7L,
again provided that the indicated inverse exists. Writing
(5.8) F'(X) = m(F' (X)) + %w(r'(xn'[-l,ll
by (2.11), substitution into (5.4) yields, with the aid of (2.12),

(5.9) KX = om0y + | meE x0)) " wie owen LAl

where [Y[ = ('yijl) for the real matrix Y = (yij)' The interval operator K defined

-9 -




by (5.9) will be called the Moore-Jones foam of the Krawézyk iteration operator (14].
Compared to (5.6), (5.9) has the computational advantage that the elements of m(F' (X))
can be obtained by simple arithmetic once F'(X) has been formed, while constxqction of
£'(m(X)) requires the computation of the vz elements of the vxy Jacobian matrix f'(y).
(A case in which the two operators coineide will be considered later.)

The Krawczyk operator is useful in two ways in connection with ordinary iteration:

(i) K may be used to test an interval X for the existence or nonexistence of a
solution x* € X or (1.1), according as X(X) C X or K(X) NX = @ [14]. In case this
test shows that x* € X, this establishes the suitability of x, =y = m(X) as a start-
ing point for the ordinary iteration (1.3) under fairly mild conditions [14). On the
other hand, given y = X, one may take X = xp to be the cube with diameter 2p (in the
1.1 nomm for R’) centered on y,

(5.10) X, =y + pes{-1,1],
for which (5.6) and (5.9) become
(5.11) R(X) = 0(y) + ol1- [f'(y)]_lF'(Xo)}e'[-l.lll
where e = (1,1,...,1), and

- & P -1 [ o=
(5.12) K(X) = ¢(y) + Sl mer(x )] lwet (x ))es (-1,11,

respectively. These are very simple to compute, Since the formation of the product
Ae for a real or interval matrix A does not require any multiplications; Ae is simply
the vector consisting of the sums of the rows of A.

1f one wishes to examine K(xp) for several values of p, then the Newton form
(5.11) has the computational advantage that [f'(y)l-1 remains fixed, while m(F'(Xp))l-l
must be recalculated in the Moore-Jones form (5.12) for each p.

(ii) K may be used to determine the accuracy of the elements of an ordinary
iteration sequence {xn}. In this case, for y = X o(y) = X1t A choice of p which
is supported by the Kantorovich theory for the convergence of Newton's method {2]] is

v = 2nn, where

(5.13) np o= Ve, = olxp = bxp - x 0, n=o0,1,2,... .

- 10 -
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1f K(x ) C x1 for this (or other) choice of p, then the existence of x* is verified,

and one has the error bounds

1
(5.14) fxr = M cos Mxr -x B s Swik(x))),
since x* € K(X ) C xo' From (5.12),
o -1
(5.15 et - x gt s HlmeE a1 e el

and (5.11), (5.12), or, morc generally, (5.6), also give componentwise bounds for
x* - xn+1'

Thus, the interval iteration operator K can be preapplied to scout for a likely
region in which ordinary iteration will converge to a fixed point, or postapplied to
verify the existence of x* and obtain error bounds for a result obtained by ordinary
1teration, perhaps computed only approximately. In this respect, the Krawczyk operator
(5.3) requires a slight modification for computation on a finite set G. Suppose that
F is a computable interval extension of f, and F' is a computable interval extension
of £'. Then, one can use K defined by
(5.16) K(X) = y - YF(y) + {I - YF' (X))} (X - y),
where all arithmetic operations indicated are performed in correctly rounded interval
arithmetic, One can write a b = (JQ(a + b) for interval addition followed by directed
rounding, etc. The directed rounding operator [J will be suppressed, however, for clar-
ity of notation, and its use will be understood in connection with actual computation.
The comp:table transformation (5.16) will include the interval transformation (5.3),
which is all that is required for the purpose of interval iteration. 1It is also pos-
sible to construct a computable interval extension of K which is inclusion monotone

on subsets of xo. Suppose that for each y € X _, one can find z(y) € G such that

0
(5.17) ${y) € z(y) + ce-[-1,1)
for some fixed - > 0. Then, from (5.4),

(5.18) K(X) = z(y) + ({1 - YF'(X)}'%W(X) + ce)e[-1,1)

is a computable interval extension of the Krawczyk operator which has the property

-11 -




XxCzCx = K(X) € K(2), which will be called (nclusion monotonicity on subsets of
XO. Since interval iteration stays entirely within the initial interval xO' this is
satisfactory for practical purposes.

For the Moore-Jones transformation (5.12), this enlargement of the Krawczyk trans-~

formation takes the simple form

(5.19) K(x)) = 2(y) + {el + %|Y|w(l:"'(xo))}e' {-1,1}

where [m(F'(xD))]-l € Y. Thus, once F'(xp) and Y have been obtained, the only inter-

val operation to be performed in the evaluation of (5.19) is the trivial multiplica-
tion by (-1,1]; the rest can be done with properly rounded real arithmetic. 1In par-
ticular, calculation of the components of the vector {eI + %IY|W(F'(XD))}e requires

only operations with non-negative numbers and upward rounding (3.4). Recall that |Y|

is defined componentwise by (2.9).

6. Interval iteration with fixed Y. What will be considered here is interval

iteration with the simple case (i) of the Krawczyk transformation defined in §5, in
which the matrix Y remains fixed. One would like, of course, to have ¥ = [f‘(x')]—l,
or an approximation to the inverse of the Jacobian matrix of £ at x = x*, a solution
of equation {1.1). This is possible in the special case that (1.1) is a Linear sys~
tem of equations, that is, £ is an aff4ine operator given by

(6.1) fix) = Ax - ¢,

where A is a nonsingular matrix and c is a given vector. Here,

(6.2) f'(x) = A,

a constant operator [20), and thus [f'(x')]-1 - A-l. With this choice of Y, it follows
from (5.3) that K(xo) = x*, and thus the interval iteration will converge to the solu-
tion x = x* of Ax = ¢ in one step for arbitrary x0 such that x* € xo. In practice,

Y will only be an approximation to A-l. Because of (6.2), one can take F'(X) = A for
arbitrary X, and thus (5.4) becomes

(6.3) K(X) = m{X) - Y(AM(X) - ¢) + {I - vA)w(x)--‘;liliL,

or, in case X is taken to be a cube xo = y 4 pe+{~1,1), one has
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(6.4) K(X) =y =Yy - + ol1 - Yale-(~1,1},
which is a very simple interval transformation to calculate. The nesddue r = f(y) =
Ay - ¢ enters into (6.4) in a natural way.

In connection with the solution of linear equations, it should be noted that in-
tervals do not form a linear space. From the rule for subtraction [9}, [11],
(6.5) [a,b] = [c,d] = [a-d, b=~¢],
it follows, for example, that
(6.6) [o,1) - (0,1} = [-1,1]).
Thus, techniques from algebra which depend on linearity cannot be expected to extend
to interval analysis, since a linear substructure is not present. Some failures in
attempted solution of linear systems by interval versions of methods from linear alge-~
bra are due to a lack of understanding of this fact, not to a defect of interval anal-
ysis.

For an example of a simple system of nonlinear equations to which the method of

this section applies, consider the equations

exp{-u + v} - 0.1 = 0,
(6.7)

exp{-u - v} - 0.1 = 0,

due to Cuyt and Van der Cruyssen [4] for x = (u,v) € Rz. (Perhaps this system is

foo simple; an equivalent linear system can be obtained by taking logarithms.) The

Jacobian matrix corresponding to (6.7) is

- exp{-u + v} exp{-u + v}
(6.8) J(u,v) =

- exp{-u ~ v} - expl-u ~ v}

with inverse

-1 - exp{u ~ v} - exp{u + v}
(6.9) Ju,v) " =

[NITS)

exp{u - v} - exp{u + v}

Thus, if x* = (u*,v*) satisfies (6.7), then

1 -5 -5

(6.10) Y = Jut,v) =
5 -5
- 13 -
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is obtained without knowing x*. Using (6.10), the iteration process (1.3) for ¢ given

by (3.1) with f defined by (6.7) is

=u Sexp(-un}(exp(vn} + exp{-vn}) -1,

u
(6.11) n+l
Vol V" Sexp{-un)(exp{vn) - exp(-vn)),

which will converge quadratically if x_ = (uo,vo) is close enough to x* = (u%,v*) [19].

0
The cholce X, = (4.3,2.0) [4) leads to the results shown in Table 6.1, The calcula-

tions were done with an HP-33E pocket calculator, with rounding to four decimal places.

n u vl = lxn+1 -i’_‘
[} 4.3000 2.0000 0.4921
1 3.8105 1.5079 0.4755
2 3.3350 1.0324 0.4366
3 2.8984 0.5958 0,.3481
4 2.5503 0.2477 0.1954
5 2.3549 0.0524 0.0498
6 2.3052 0.0026 0.0026
7 2.3026 6.9985 (-06) -
8 2.3026 -4.6502 (-10) -
9 2.3026 2.8499 (-10) -

10 2.3026 2.8499 (-10) -

Table 6.1. Numerical Results for the Iteration (6.11).
The elements of the iteration seguence {xn} can be used to form cubes
(6.12) X = (UV) = X + 2nne°[-1,1] = (un 3 2r1n A + Znn),
which have the Krawczyk transformations

(6.13) K(X) = x, + nn{I = YJ(Uu,V)te-(-1,1),

+1

using (5.4). Interval iteration starting with (6.12) as xo and using (6.13) will stall

- 14 -




for n = 2,1,2,3,4. For n = 5, however, cne gets

(6.14) X DK(X) = v O K(xl) = X

] =
0 0 1 2 K(xz’ XJ’

with X = (U ,v ) given in Table 6.2.
n n n

Uo = 2.3549 t 0.0996 Vo = 0.0524 + 0.0996
U1 = 2.3052 + 0.0380 V1 = 0.0026 * 0.0380
U2 = 2,3026 + 0.0046 V2 = 0.0000 * 0.0046
U3 = 2.3026 * 0.00002 V3 = 0.0000 ¢t 0.00002

Table 6.2. Results of Interval Iteration.

The results given here verify the existence of x* € xn' n=20,1,2,3, and the
approximate solution x = (2.3026 ,0.0000) is guaranteed to be accurate to four deci-
mal places, since x = m(xa), %w(x3) = 0.00002. The calculations here were also done
using an HP-33E, with the subroutines [23) augmented by simple programs for exp{X} and

exp{-X}, and, of course, directed rounding of the results to the number of places in-

urcated in the table.

7. The eigenvalue-eigenvector problem. Interval iteration can also be applied
to the ed{genvalue-edigenvectonr problem for a real matrix A, which is to find real num-
bers * and corresponding nonzero vectors x such that
(7.1 Ax -~ ix = O.

The condition x # 0 is often enforced by a nomalization of x,

(7.2) (a) (x,x) -1 =0, or (b} (a,x) -1=0,

the latter for a fixed vector a. The system of equations formed by (7.1) and (7.2) (a)
or (7.2)(b) is a nonlinear system of v + 1 equations in the v + 1 unknowns xl, xz,...,
L tn farct, the result is a special case of what are called quadnatic systems of
equations, in which the transformation f(x) has the form

(7.3) f(x) = Bxx + Lx + ¢,

in which B = (bi)k) is a bildinean cperaton, L is a given matrix, and c is a fixed

- 15 -
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vector (17}, {20]. The derivative of the quadratic operator f defined by (7.3) is
(7.4) £'(x) = 2Bx + L,

where B = %(bijk + b j) is a symetric bilinear operator [17], [20]. It follows that
(7.5) F'(X) = 2B+X + L

gives an interval extension of (7.4), furthermore, since B is a linear operator on X

(into the space of matrices), one has
(7.6) m(F' (X)) = 2Bm(X) + L = F* (m{X)),

which means that the Newton form (5.6) and the Moore-Jones form (5.9) of the Krawczyk
iteration operator will coincide for quadratic systems of equations. Thus, an inter-

val iteration method based on Newton's method will have a simple computational form in

this case. In particular, the formulation of the eigenvalue-eigenvector problem (7.1)
as a system of quadratic equations {2}, [18] leads to a simple interval iteration
method, which will be given below.

Returning to (7.1), if x* ¥ 0 is an eigenvector of A, then the corresponding eigen-

value A\* is given by the Rayleigh quotient
(7.7) A* = R(X*%) = (AX*,x*)/(x*,x*).

Consequently, if x* € X for some interval vector X such that 0 & X, then the {interval

Rayleigh quotient
(7.8) R(X) = (AX,X)/(X,X)

can be used to obtain fower and upper bounds for A*: Since A* € R(X) = [c,d], it fol-
lows that
(7.9) c s A s d.
R(X) can be computed automatically, using interval arithmetic, with the extension

v
(7.10) (x,%x) = § xf

i=1
of (x,x), where the square of an interval is defined to be

[min(az,bz},max{az,bz}] if ab 2 0,

(7.11) [a,b] = 2 2
[0,max{a” ,b“}] if ab < 0.

- 16 -
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Formula (7.11) gives a better extension of f(x) = x2 than F(X) = X*X for intervals X
w#hich coatain both positive and negative numbers; for example, (-1,1]2 = [0,1], while
(-1,1]+(-1,1) = [-1,1},

The eigenvalue-eigenvector problem for A will be considered in the form of the
quadratic system (7.1)-(7.2) (b). Eigenvectors orthogonal to a will not satisfy this
systen, “ut can be obtained from a system with a different choice of a. It will be
shown that the Krawczyk transformation required to apply interval iteration to this
problem can be expressed as the sum of the point obtained by Newton's method [2], (18],
and an easily computed symmetric interval vector.

Following [18), a will be taken to be a unit vector in (7.2) (b), for example,

a= (0,...,0,1). This gives x, = 1, and (7.1)=(7.2) (b) becomes the system of v equa-

tions
- + + =
(a); =M%y 812%; cee * 3 vl YAy, 0.
a¥p By NI Ay %t 8, =0,
(7.12)
av_1'1x1 + ‘v-l,zxz LI (‘v-l,v-l - J\)xv_1 + av-l,v =0,
ax ¢ a,2% toeee ¥ .v,v-lxv-l Yo T A =0,

for the v unknowns xl, xz, cees xv-l' A. The derivative f' of the operator f defined

by the left side of (7.12) is

f a5, - A a,, ces al,v-l -x,
a0 %227 e A, -x,
(7.13) £108) ®  feveriiiiiiiiiiiiiiiiriiiieaeeeees |,
A 1,1 %a1,2 vt Myelel T X
2 a, ... a, o1 -1

where £ = (xl,...,xv_l,x). An interval extension F'(Z) of (7.13) is obtained by simply

replacing f, by the interval vector = = (xl,...,xv_l,A). Since most of the components

- 17 -
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of F'(Z) are real numbers, the real matrix w(F'(Z)) has the simple form

N

w(A) 0 vee 0 w(Xl)

o] w(A) ... 0 w(xz)
(7.14) w(F'(Z)) =

@esesvessesestansasarsesnn

0 0 oo WiA) w(X )
v

-1

0 0 cee O

Thus, the vector w(F'(Z))w(Z) is given by

(7.15) w(F'(3))w(Z) = 2w(A) (w(xl;...;._ ”‘J_l) 0} = 2w(A)w(x‘V)).

(v

where X = (Xl'---rxv_lro) . For Y= [f'i:}’ n = m(%), the transformation

(5.9) becomes
(7.16) k(@) = n - v+ ML,

the sum of the Newlon point { = n - Yf(n) and a simply computed symmetric interval

vector. Formula (7.16) simplifies further for w(xl) - w(xz) - L,,, = w(xv_l) = 2p,

one has
= (v)
(7.17) K(Z) = n = ¥YE(n) + pw(A) [¥|e'Y o(~1,1],
{v)
where e = (1,...,1,0).

An alternative method for obtaining lower and upper bounds for eigenvalues of A

is available from (7.12). If x* € X = (xl""'xv-l’l) is an eigenvector of A, then
A* € A for the corresponding eigenvalue A*, where

v=1
(7.18) A= a_ + ] a ox

vV =1 vi 73

is the interval version of the last equation of (7.12). The use of this expression

and the interval Rayleigh quotient R(X) given by (7.8) to obtain bounds for eigen-
values of matrices will be illustrated in the example below.

consider the simple example

/3 1 -1
(7.19) A= 1 5 -1 .
-1 -1 3
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Here, system (7.12), written for £ = (u,v,)), becomes
3u+v-4iu-1=090,
(7.20) u+ Sy -3iv-1=90,

-u-~v- A +3=0,

For the initial approximations “0 = vo = 1, the third equation of (7.20) gives Ao =1,

The results of applying Newton's method to (7.20), starting from Eo = (1,1,1), are
shown in Table 7.1. These are rounded to four places from a double-precision calcu-

lation performed on a UNIVAC 1160, using the program NEWTON [ 6].

n u v A

n n n
0 1.0000 1.0000 1.0000
1 0.8182 0.2727 1.9091
2 0.9755 0.0166 2.0079
3 1.0002 -0.0001 1.9999
4 1.0000 0.0000 2.0000

Table 7.1. Results of Newton's Method.
In order to construct an interval Z to which to apply the Krawczyk transformation
(7.17), it is helpful to split the vector £ into its vector-Like part 5(“) = (xl.xz,
ceeeX_1,0), and its value-&ike part Cv = (0,...s0,)) = de & = {0,.+.,0,1). Then,

for
(v) (v)

(7.21) no = Ve T8 Vo
it is reasonable to choose o = 2n., w(A) = 4|An+1 - Anl. This gives
(1.22) =g +2ne™era1,0) + Lue o1-1,1)

: - n Q ! 2 v !
as the interval to be examined. Splitting the vector
(7.23) t=]v)e™ = [mE @) e - ™. t = e Te .
it follows from (7.17) that the condition K(%) C T will hold if the inequalities

(7.24) n_ <1727, |*

o v)
o Xn' < 1780t um

n+l
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are satisfied. Observation of the sequence given in Table 7.1 shows that (7.24) holds

for n = 1, thus, for

0.8182 0.5122 [0.3060,1.3304])
(7.25) z={ 0.2727 | ¢ [ o.5022 | = [ (-.2395,0.7849] |,
1.9091 0.3952 [1.5139,2.3043]
one has
1.1289 {0.7469,1.2041)
(7.26) l¥je®® = 0.9075 }, k(=) =[ (-.1671,0.2003] | € =.
0.6761 [1.8710,2.1448]

The non-negative numbers entering into the calculation have, of course, been rounded
upward to four decimal places, so that (7.26) proves that the matrix A given by (7.19)

has an eigenvector x* = (xi,x;,l) and a corresponding eigenvalue A* which satisfy

(7.27) 0.7469 < xi < 1.2041, ~-.1671 < x; < 0.2003, 1.8710 < A* 5 2.1448,
since £* € K(Z), and the interval iteration using the transformation (7.17) will con-
verge. The interval Rayleigh quotient applied to X = ([0.7469,1.2041),[-.1671,0.2003),
1) obtained from K(Z) in (7.26) gives
(7.28) R(X) = [0.8752,3.8826],
while formula (7.18) gives
(7.29) A = [1.5956,2.4202).
The bounds that (7.28) and (7.29) provide for A* are rigorous, but inferior to (7.27)
in this case.

The transformation (7.17) can also be used to check the final result 54 of the
numerical computation given in Table 7.1. Take, for example,
(7.30) S = 54 + 0.0001le-[-1,1],
so that p = 0.0001, w(A) = 0.0002. Since |Y|e‘3) = e for these values, one has
(7.31) K(z) = 4 *+ 0.0000002e-(~1,1) cs=,
which proves that the components of 54 are accurate to six decimal places. Of course,

the numerical iteration process stumbled onto the exact solution £* = 54 in this case,

but this fact is not required for the rigorous error analysis (7.31).
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