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ABSTRACT

7 In actual practice, iteration methods applied to the solution of finite systems of

equations yield inconclusive results as to the existence or nonexistence of solutions

and the accuracy of any approximate solutions obtained. On the other hand, construction

of interval extensions of ordinary iteration operators permits one to carry out interval

iteration computationally, with results which can give rigorous guarantees of existence

or nonexistence of solutions, and error bounds for approximate solutions. Examples are

given of the solution of a nonlinear system of equations and the calculation of eigen-

values and eigenvectors of a matrix by interval iteration. Several ways to obtain lower

and upper bounds for eigenvalues are given. (.
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SIGNIFICANCE AND EXPLANATION

order to complete the solution of a problem in applied mathematics and obtain

iesults _n useful form, one must often solve a system of linear or nonlinear equa-

t! -, or compute eigenvalues and eigenvectors of a matrix, which is a special case of

a onlinear system of equations. A frequently used method for solution of equations

iteration, which has been investigated extensively from a theoretical standpoint,

....d )ften applied successfully. In order to use iteration, however, one must have an

Jnitial approximation to the solution; furthermore, even if the results obtained look

good, the questions of existence of a solution and accuracy of the numerical solution

are not conclusively answered. By use of interval iteration, however, employing what

are called computable interval extensions of ordinary iteration operators, it is pos-

sible to examine regions for existence or nonexistence of solutions, and carry out

the iteration in such a way that lower and upper bounds for the solutions are given

at each step and in the final result on the basis of the actual computation. Thus,

questions of existence and accuracy can be answered without tedious analysis, and one

can have confidence in the answers obtained by interval computation. Now that it is

possible to perform interval arithmetic, for example, at speeds comparable to ordinary

arithmetic, interval solution of systems of equations becomes i.ble method in prob-

lems in which accuracy is important, such as the design of structur, airframes, and

electrical power .etworks.
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SOLUTION OF FINITE SYSTEMS OF EQUATIONS BY INTERVAL ITERATION

L. B. Rall

1. Systems of equations. Systems of v equations in v unknowns are often presented

in the form

(1.1) f(x) = 0

for a zefo x - x* of the operator f: D C RV - R
V
, or as

(1.2) x - O(X)

for a 6ixed point x - 7* of 0. D C Rv. The latter formulation will be considered

here; there are many ways to transform (1.1) into an equivalent 6xed point pk0btem (1.2).

An example of a transformation of this type will be given below.

The form of (1.2) suggests the frequently-used method of iteAation: Starting from

a point x0 , in the belief that it is a more or less good approximation to x*, the se-

quence fx) is generated by

(1.3) Xn+1 - O(xn ) , n0,,2.

In case (1.1) has been transformed into (1.2), 0 is often called an ite 0tion opex&04

for the solution of (1.1). In the following, it will be assumed that f,0 and other op-

erators considered are continuous. Under this assumption, it follows that the convergence

of the sequence {x n } implies the existence of a fixed point x* of 0, that is,

n4
(1.4) li xn --*

satisfies (1.2). (Of course, if 0 does not have a fixed point, then {xn} cannot converge;

thus, nonexistence of a fixed point x* of 0 implies divergence of {xn})

This is all very well, but in actual practice, one can neither represent real num-

bers nor perform real transformations exactly; instead of {xn ), one gets a finite sequence

Sponsored by the United States Army under Contract No. DAAG29-80-C-0041.
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{ZN such that z - x, but z , x otherwise. In order for {z I to be useful
nus0 0 b, n

one ordinarily has to show that fxn } converges, and then produce comparisons of xn with

x* and zn with xn, a problem which can be difficult in itself, or at least tedious. A

more straightforward computational approach to the approximate solution of (1.2), based

on the methods of interval analysis, will be given in what follows.

2. Interval analysis. Just as real analysis is concerned with the study of trans-

formations of real numbers and vectors, interval analysis C9 1, [11] deals with the

same for nonempty finite closed intervals

(2.1) X - [a,b] - {x I a : x 5 b, x E R)

of real numbers, and n-tuples of such intervals, called inteAva vectou. Interval

analysis is related to real analysis in two important ways. First, the real numbers

can be identified with a subset of the set of real intervals (2.1), namely, the set of

degene4ate intervals with equal endpoints. For a real number x, this identification is

symbolized by

(2.2) x - [x,x].

Second, real transformations have exten4ion,6 to interval transformations, as will

be discussed in more detail below, and thus can be considered to be restrictions of in-

terval transformations. In spite of this, interval analysis does not subsume real anal-

ysis, but, like ccmplex analysis, is a distinct branch of mathematics with its own

theory, techniques, and applications.

Strictly speaking, an intenvat extenaion 0 of a real transformation 0 has the prop-

erties of ictu~ion

(2.3) M(x) - (t(xW I xE XI C (X)

and utg.ctinn

(2.4) ¢(x) - W(x

in the sense of (2.2). An important property of certain interval transformations is

incdu6i.n monotonicity: 0 is said to be inctuhion monotone if

(2.5) X C Z 0(X) C O(Z).

-2-



Interval extensions can be formed of the operations of real arithmetic, considered

as transformations from R
2 

into R, that is, of f(x,y) - x * y, etc., with the results

forming the in*tevae oat4hmetic of R. E. Moore C 9 1, (11]. For example, mru.pLca-ton

of intervals is defined by

(2.6) [a,b].[c,d] = (min f, max R], I = {ac,ad,bc,bd},

and so on. These exteisions are inclusion monotone, and can be used to form inclusion

monotone interval extensions of rational real functions automatically, simply by re-

placing the variables involved by intervale, and the arithmetic operations by their

interval counterparts 1 9] , [11].

A special class of intervals which will be useful later is the set of ,yemmtec

intervals, which are intervals S of the form

(2.7) S = [-s,s] - s
°

[-l,], s 0.

More generally, interval vectors and matrices are said to be symmetric if their com-

ponents are intervals of the form (2.7). It follows from the definition of interval

additioni 1 9, 11),

(2.8) [a,b] + [c,d] ( (a + c,b + d)

that the sum of symmetric intervals is symmetric. Furthermore, let

(2.9) j[a,b]I = max(jaI,Ibjl.

Then, from (2.6),

(2.10) [a,b] [-s,s] = s r [a,b] '[-i,1],

hence, multiplication of an arbitrary interval by a symmetric interval gives a sym-

metric interval.

Furthermore, for X = [a,b), m(X) = m((a,b]) - (a + b)/2, w(X) = w[a,b]) - b - a,

one car write
1

(2.11) X = m(X) + iw(X).[-l,l)

in terms of the midpoin*t m(X) and width w(X) of the interval X. The representation

(2.11) of the interval X is sometimes called its midpoint-hawdth or centeAed form.

Multiplication of X by a real number a can thus be expressed by

(2.12) .X = m(X) + Tj~lW(X).[-l'lJ.

-3-
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The definitions of jXI, m(X), and w(X) extend to interval vectors and matrices

by componentwise interpretation, for example, m(X) - (m(X1),...,m(Xv)), and so on.

Formula (2.11) then holds without modification. Formula (2.12) extends immediately

to the inneA ptoduct (a,x) of a real vector a - ((l, ...,c) with an interval vector

X = (X1 ,...,xv) • One has

V1(2.13) (ax) - , i.x i- (a,m(x) ) + 1-00d 'w(x))'-l,
i-l

where, of course, " i .

Interval extensions can also be made of other than rational functions, and such

extensions can be combined with interval arithmetic to extend a wide class of real

functions. A useful technique for obtaining interval extensions of smooth real func-

tions is based on the mean vatue 6otm: Suppose that 0 is (Fr4chet) differentiable,

and its derivative 0' has the inclusion monotone interval extension 4'. Then, 4 de-

fined by

(2.14) O(X) - 4(y) + 0'(X).(X - y), y - MM,

is an inclusion monotone interval extension of 0 [ 3], where the indicated matrix-

vector operations are performed in interval arithmetic. Using (2.11), (2.14) can

be written

(2.15) 0(X) - (y) + Mw'(X).w(X).[-1,I], y - meMX,

so the mean value form O(X) can be expressed as the sum of the real vector 0(y) and

a symmetric interval vector. This elementary observation will be useful later.

3. Interval camputation. In actual practice, computing is done using a finite

set G of rational numbers, rather than the set of real numbers R. Interval analysis

can be adapted readily to G, which is also an ordered set. Extension of the results

to be described here for one dimension can be made in a componentwise fashion to in-

terval vectors and matrices. The key to interval crmputation using only elements of

G is the operation of diected iounding, which will now be explained.

-4-
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Let

(3.1) min{g g E G), g max{g g E G}.

Attention will be confined to the set of real numbers

(3.2) RG = [x 5 < x < g, x E RI,

and attempts to compute a real number z such that z < % or z > g will be said to re-

sult in an error condition called Ove' toW. (Alternatively, the extended real numbers

±- could be adjoined to G, with overflow detected in case the result of a computation

is a semi-infinite or infinite interval.) Now, IG will denote the set of all inter-

vals with endpoints in G, that is,

(3.3) IG = {[a,b] I a 5 b, a,b e G).

This is the set of intervals which are exacty up entabt e in terms of the numbers

which are available in the actual computation. For x E RG, the upmkd tounding opeA-

oato t A to G is defined by

(3.4) Ax - min{g I g a x, g C G},

and the dommwwd Aound g opeoatoA V to G by the corresponding expression,

(3.5) Vx - max{g 1 g ! X, g E G1

[ 7]. For the set IRG of intervals with endpoipts in RG, application of the d~icted

4ounding opmaAtot 0 to intervals [a,b] E IRG gives

(3.6) Ei(a,b] - [Va,Ab] C IG,

and thus 0 maps IRG into IG. Furthermore, it is clear that [ is an inclusion monotone

interval transformation, and that the interval defined by (3.6) is the element of IG

of minimum width which contains [a,b). If x E RG is a real number, then

(3.7) Ox = [Vx,AxJ

will be called the 4epuuntee on of x in IG of minimal width. If [Vx,Ax] - [c,d) is

nondeggnerate, then (c,d] also represents each real number z such that c < z < d in

this way.

Thus, if 0 is an interval transformation which maps IRG into IRG, then the cor-

responding kounded tAvoJUoawtZon

(3.8) F -

.5



maps IRG (and hence IG) into IG. Interval transformations F: D C IG - IG are said to

be computabte on G; furthermore, if F has property (2.3) (inclusion of the real trans-

formation ) and (2.5) (inclusion monotonicity), then F will be called a compu&tbt

inteAvat exttlnzon of 0. It follows that one can start with an interval transformation

0: D C IRG - IRG with properties (2.3) and (2.5) (in particular, 0 can be an inclusion

monotone interval extension of $), and obtain the computable interval extension (3.8)

of o by applying the rounding operator D. This construction can be carried out auto-

matically if interval arithmetic and a library of computable interval extensions of

the real functions entering into the definition of 0 are available. One problem which

arises in this connection is that many computers lack the roundings (3.4) and (3.5)

required to support interval arithmetic. This defect can be remedied by software

[25], [26] or microprogramsming [13], if necessary. The scientific computing language

PASCAL-SC [ 8] includes properly rounded interval arithmetic as a standard feature.

Henceforth, all interval transformations considered will be assumed to be computable.

4. Interval iteration. A standard approach to the solution of equation (1.1) by in-

terval methods is to transform it into a fixed point problem (1.2) in some way, and

then apply inteAvat Uejation [1 ], [12]. This process takes the following form:

Given an interval transformation 0 which includes 0 in the sense of (2.3), and an in-

terval x0 thought to contain a fixed point x* of 0, the sequence of intervals {Xn ) de-

fined by

(4.1) Xn+ 1 . Xn " (Xn), n - 0,1,2,...,

is generated. The following results are well known [24]:

(i) If x* E XO, then

(4.2) x* E X Xn,
n.0

so that existence of a fixed point of 0 in X0 implies convergence of (4.1) in the sense

that X # 0, the empty set.

(ii) If, for some positive integer N,

(4.3) X1 - 0,

-6-



then the interval X0 contains no fixed point x* of 0. Hence, divergence of (4.1) in

the sense of (4.3) implies nonexistence of a fixed point of 0 in X0 ; this is the con-

trapositive of the assertion in (i).

In finite dimensions, one has further:

(iii) If

(4.4) (X M) CX M

for some finite integer M, then there exists a fixed point X* of 0 in XM, and (4.2)

holds as a consequence [10]. This is because (4.4) implies that the continuous opera-

tor 0 maps the closed compact region XM into itself, and thus x* E X MC X0 by the

Schauder fixed point theorem.

Moreover, if x* E X is a fixed point of 0, and X - [x X then
0 n n n~X [~]te

one has the lower and upper bc'inds,
(4.5) x n x! S Xn' n - 0,1,2,..., and x q x* ! x,

where the inequalities are interpreted componentwise in several dimensions. From

(4.5), approximations to x* and guaranteed error bounds can be obtained easily, if

desired.

The above theory requires no modification in case the calculations are performed

on a finite set of points G in one or more dimensions by taking a computable interval

extension 0 of 0, and the initial interval X0 E IG. In this case, however, the in-

terval iteration process (4.1) is 6inite, and will tde'nunate in either the condition

(4.3), establishing nonexistence of x* in X0, or

(4.6) XN 1 = XN  0

in which case X = XN in (4.2). Condition (4.6) is called the Nicket te6mina~ton cAi-

te.ion [15]. The upper bound

(4.7) N ! G#(X 0 )

0

00X 0 *

Interval iteration is thus an ob.£6£e'bte process in actual computation, since

- 7-
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it yields a jAte sequence [Xn )N.0, the usefulness of which can often be determined

by inspection. One gets nonexistence of x* if (4.3) holds, or existence if (4.4) is

true for M !< N, and the guaranteed bounds (4.5) if X0 contains one or more fixed points

x* of 4. One is in the dark concerning existence, however, if (4.6) holds without

(4.4) occuring along the way. In particular, if X0 C O(X0) properly, then X, . X0 = 1,

and the interval iteration is said to have ztaled. The difficulty concerning exis-

tence can be resolved by applying some other existence test than (4.4) to X = XN, a

region which will be smaller than X0 unless the iteration stalled, or x can be divided

into subregions for further investigation, using the algorithm of Moore and Jones,

which has also been shown to be finite if G is sufficiently fine [13], [14].

5. An interval iteration operator. A simple way to convert the equation (1.1)

to be solved into a fixed point problem (1.2) is by introduction of the itat on op-

enoo)'t 4 defined by

(5.1) 1(x) = x - Yf(x),

where Y is a nonsingular real matrix, in which case the two problims are equivalent.

Supposing that f has the (Frdchet) derivative f', represented by the Jacobian Wmt'X

f'(x) = (fi(x)/axj) [20], then 0 will also be differentiable, with

(5.2) ' I - Yf*,

where I denotes the identity matrix. The derivative (5.2) can be used to construct

the mean value form (2.7) of 4, provided that f' has an inclusion monotone interval

extension F', so that K defined by

(5.3) K(X) = y - Yf(y) + {I - YF'(X)).(X - y), y = r(X},

will be an inclusion monotone interval extension of the iteration operator 4 in (5.1).

K is often called the K4Luvzyk opeAatoA 1 5 ].

An alternative form of the Krawczyk operator (5.3) can be nbtained by the use of

(5.1) and (2.15). One has

(5.4) K(X) = 4(m(X)) + {I - YF2(X)},w(X). I-
l- - -

which expresses K(X) as the sum of the iteation point 0(y) of y - m(X) and a symmetric

interval vector. Some specific choices of the real matrix Y will now be examined.

TV.. I ,. -7r
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(i) An ideal choice of Y is Y = [f'(x*)] , the inverse of the Jacobian matrix

of f at a solution x = x* of equation (1.1). For this fixed matrix, the ordinary itera-

tion process (1.3) with given by (5.1) will converge quadratically for x0 in some

neighborhood N(x*) of x* [19]. This gives the possiblity of quadratic convergence of

the endpoints of Xn to x*, at least for X0 C N(x*). Of course, since x* is unknown, it

is usually not possible to find f'(x*). However, if V satisfies an equation of the

form f1(x) = h(f(x)), then one has f'(x*) - h(O), and Y can be found without knowing

x*, thus giving a rapidly convergent iteration method of simple form (191. A numerical

example of this type, in which the interval iteration converges quadratically, will be

given below.

(ii) By analogy with Newton's method [5 1, one can choose, if it exists,

(5.5) Y = f,(y)]-. = [f'(m(X))] l.

In this case, the iteration point 4(m(X)) will be the same as obtained by applying

one step of the Newton iteration process to (1.l), starting from x0 - y = m(X). The

corresponding interval iteration operator K defined by

(5.6) K(X) - (m(x)) + (I - f((X)) F'(X)w(X)
-

2

will be called the Newton 604m of the Krawczyk iteration operator defined by (5.4).

It should be noted that the discussion of interval iteration in §4 also applies to

the case in which Y depends on X as long as 2(X) contains 4P(X) for an operator # with

fixed point x*, in particular, for * as given by (5.1).

(iii) Another possible choice of Y is

(5.7) Y - [m(F'(X))1

again provided that the indicated inverse exists. Writing

(5.8) F'(X) - m(F'(X)) + -w(F(X)).[-,1]

by (2.11), substitution into (5.4) yields, with 'he aid of (2.12),

(5.9) K(X) = ¢(m(X)) + 1[m(F (X)) '1
1  
w(F (X))w(X)

•  - i ' I 
,4

where YIj - (yij 1 for the real matrix Y -(y i The interval operator K defined
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by (5.9) will be called the Moote-Jona 060d of the Krawczyk iteration operator [14].

Compared to (5.6), (5.9) has the computational advantage that the elements of m(F'(X))

can be obtained by simple arithmetic once F' (X) has been formed, while construction of

f'(m(X)) requires the computation of the v
2 
elements of the vxv Jacobian matrix f'(y).

(A case in which the two operators coincide will be considered later.)

The Krawczyk operator is useful in two ways in connection with ordinary iteration:

(i) K may be used to tet an interval x for the existence or nonexistence of a

solution x* E X or (1.1), according as K(X) C X or K(X) rX - 0 [14]. In case this

test shows that x* C X, this establishes the suitability of x0 - y - mCX) as a start-

ing point for the ordinary iteration (1.3) under fairly mild conditions [14). On the

other hand, given y - x0 , one may take X = XP to be the cube with diameter 2p (in the

|.1 norm for R") centered on y,

(5.10) X . y + pe*(-l,l),

for which (5.6) and (5.9) become

(5.11) K(X ) - *(y) + p{I- If'(y)] F(X )}e.[-l,l],0 P

where e = (1,1. 1), and

(5.12) K(X) 0 q(y) +I [m(F (X0 ))]jllw(F (X0 ))e [-1,1],

respectively. These are very simple to compute, since the formation of the product

Ae for a real or interval matrix A does not require any multiplications; Ae is simply

the vector consisting of the sums of the rows of A.

If one wishes to examine K(X ) for several values of 0, then the Newton form
P

(5.11) has the computational advantage that (f'(y)]-I remains fixed, while m(F1(X )]-

must be recalculated in the Moore-Jones form (5.12) for each p.

(ii) K may be used to determine the aCcWtcac of the elements of an ordinary

iteration sequence {xn}. In this case, for y - Xn, 0(y) = xn+1 . A choice of p which

is supported by the Kantorovich theory for the convergence of Newton's method [21] is

= 2 , where
n

(5.13) ,n Ixn - t(xn)l ® - Exn - Xn+ll_, n - 0,1,2,...

- 10 -



If K(X ) C X for this (or other) choice of p, then the existence of x* is verified,

and one has the error bounds

(5.14) Ix* - xny < P, 1x* - x 
. 

5 sw(K(X )),
n+l~ 2

since x* E K(X) C X . From (5.12),

(5.15) Ix* - xni (1 2 '(x ))l iw(Fx0c )),

and (5.11), (5.12), or, more generally, (5.6), also give componentwise bounds for

X* - x
n. 1

Thus, the interval iteration operator K can be pueappUed to scout for a likely

region in which ordinary iteration will converge to a fixed point, or postappAied to

verify the existence of x* and obtain error bounds for a result obtained by ordinary

iteration, perhaps computed only approximately. In this respect, the Krawczyk operator

(5.3) requires a slight modification for computation on a finite set G. Suppose that

F is a computable interval extension of f, and F' is a computable interval extension

of f'. Then, one can use K defined by

(5.16) K(X) y - YF(y) + {I - YF'(X)).(X - y),

where all arithmetic operations indicated are performed in correctly rounded interval

arithmetic. One can write a ( b - (Ra + b) for interval addition followed by directed

rounding, etc. The directed rounding operator 0 will be suppressed, however, for clar-

ity of notation, and its use will be understood in connection with actual computation.

The corijtahle transformation (5.16) will include the interval transformation (5.3),

whi4:h ii all that is required for the purpose of interval iteration. It is also pos-

sible to construct a computable interval extension of K which is inclusion monotone

on subsets of X0. Suppose that for each y E X0, one can find z(y) E G such that

(5.17) 4(y) E z(y) + ce.(-l,l]

for some fixed * 0. Then, from (5.4),

1(5.18) K(X) z(y) + (I - YF'(X)}o1w(X) + Ee)- ,l]

is a computable interval extension of the Krawczyk operator which has the property

- 11 -
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X C Z C X0 K (X) C K(Z), which will be called jncu'6jon monotonicity On 4ubtetz o

XO . Since interval iteration stays entirely within the initial interval X 0 , this is

satisfactory for practical purposes.

For the Moore-Jones transformation (5.12), this enlargement of the Krawczyk trans-

formation takes the simple form

(5.19) K(x ) = z(y) + {tI + 2-.Yjw(FI(X ))}e.[-1,11

where [m(F'(X ))I-
I 
E Y. Thus, once F'(X P) and Y have been obtained, the only inter-

val operation to be performed in the evaluation of (5.19) is the trivial multiplica-

tion by (-1,11; the rest can be done with properly rounded real arithmetic. In par-

ticular, calculation of the components of the vector feI + PIYIw(F (X ))}e requires

only operations with non-negative numbers and upward rounding (3.4). Recall that jY1

is defined componentwise by (2.9).

6. Interval iteration with fixed Y. What will be considered here is interval

iteration with the simple case (i) of the Krawczyk transformation defined in §5, in

which the matrix Y remains fixed. One would like, of course, to have Y - lf'(x*)]
-I ,

or an approximation to the inverse of the Jacobian matrix of f at x - x*, a solution

of equation (1.1). This is possible in the special case that (1.1) is a Un sys-

tem of equations, that is, f is an a(ine operator given by

(6.1) f(x) - Ax - c,

where A is a nonsingular matrix and c is a given vector. Here,

(6.2) f'(x) - A,

a constant operator [20), and thus If'(x*)]- A- . With this choice of Y, it follows

from (5.3) that K(X0) - x*, and thus the interval iteration will converge to the solu-

00tion x - x* of Ax v c in one step for arbitrary X 0 such that x* E X 0. In practice,

Y will only be an approximation to A
-
1. Because of (6.2), one can take F'(X) - A for

arbitrary X, and thus (5.4) becomes

(6.3) K(x) - m(X) - Y(Am(X) - c) + II - YA)w(X)* -1,

or, in case X is taken to be a cube X = y 4 peil), one has
1
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(6.4) KCX = y - Y(Ay - c) + pjI - YAle[-l,l],

which is a very simple interval transformation to calculate. The Ae.idue r f(y) =

Ay - c enters into (6.4) in a natural way.

In connection with the solution of linear equations, it should be noted that in-

tervals do not form a linear space. From the rule for &ubtrtion [9), fil],

(6.5) [a,b] - [c,d] = [a - d, b - c],

it follows, for example, that

(6.6) [0,1] - [0,i] - [-1,1].

Thus, techniques from algebra which depend on linearity cannot be expected to extend

to interval analysis, since a linear substructure is not present. Some failures in

attempted solution of linear systems by interval versions of methods from linear alge-

bra are due to a lack of understanding of this fact, not to a defect of interval anal-

ysis.

For an example of a simple system of nonlinear equations to which the method of

this section applies, consider the equations

exp(-u + v} - 0.1 - 0,

(6.7)
exp{-u - v) - 0.1 - 0,

2
due to Cuyt and Van der Cruyssen [ 4 1 for x = (u,v) E R . (Perhaps this system is

too simple; an equivalent linear system can be obtained by taking logarithms.) The

Jacobian matrix corresponding to (6.7) is

(6.8) 'j(u'v) expf-u + v) exp{-u + v)

exp{-u - v) - ep[-u - v)

with inverse

(6.9) J(uv)- expfu - v) expfu + v)

Thus, if x* = (u*,v*) satisfies (6.7), then

(6.10) Y J(,u*,v*) 1-(5 -:)

- 13-
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is obtained without knowing x*. Using (6.10), the iteration process (1.3) for € given

by (5.1) with f defined by (6.7) is

(6n11) u n + 5exp-u n}(exp(v n } + exp{-Vn}) - 1,

Vn+ 1 = vn - 5exp(-u n)(exp(vn - expf-v n),

which will converge quadratically if x0 - (u0,v0) is close enough to x* - (u*,v*) (19).

The choice x0 - (4.3 ,2.0) E 4 1 leads to the results shown in Table 6.1. The calcula-

tions were done with an HP-33E pocket calculator, with rounding to four decimal places.

n un vn nn = IXn+l -xn

0 4.3000 2.0000 0.4921

1 3.8105 1.5079 0.4755

2 3.3350 1.0324 0.4366

3 2.8984 0.5958 0.3481

4 2.5503 0.2477 0.1954

5 2.3549 0.0524 0.0498

6 2.3052 0.0026 0.0026

7 2.3026 6.9985 (-06)

8 2.3026 -4.6502 (-10)

9 2.3026 2.8499 (-10)

10 2.3026 2.8499 (-10)

Table 6.1. Numerical Results for the Iteration (6.11).

The plements of the iteration sequence (Xn} can be used to form cubes

(6.12) x - (UV) - xn + 2nne.[-1,11 = (un ± 2nn ,v n ± 2nn) ,

which have the Krawczyk transformations

(6.13) K(X) = xn+1 + nn{I - YJ(U,V)e.(-1,1],

usinj (5.4). Interval iteration starting with (6.12) as X and using (6.13) will stall
0

- 14 -



for n = 0,1,2,3,4. For n = 5, however, one gets

t6.14) X0 D K(X0) = Y, D K(X) X2 D K(X2 X 3'

with n = (Un'Vn) given in Table 6.2.

U0 = 2.3549 ± 0.0996 V 0 = 0.0524 ± 0.0996

U, = 2.3052 ± 0.0380 V = 0.0026 ± 0.0380

U2 = 2.3026 t 0.0046 V 2 = 0.0000 ± 0.0046

U3 
= 
2.3026 t U.00002 V3 = 0.0000 t 0.00002

Table 6.2. Results of Interval Iteration.

The results given here verify the existence of x* E Xn, n = 0,1,2,3, and the

approximate solution x - (2.3026 ,0.0000) is guaranteed to be accurate to four deci-

mal places, since x - m(X3) , 1x 3 ) 0.00002. The calculations here were also done

using an HP-33E, with the subroutines [23] augmented by simple programs for exp{Xi and

exp{-X}, and, of cou-se, directed rounding of the results to the number of places in-

uicated in the table.

7. The eigenvalue-eigenvector problem. Interval iteration can also be applied

to the eeva uu-eqigenvectov p'obtem for a real matrix A, which is to find real num-

bers - and corresponding nonzero vectors x such that

(7.1) Ax - 0.

The crindition x f u is often enforced by a n0olmfization of x,

(a) (x,x) - 1 - 0, or (b) (a,x) - 1 = 0,

the lattt'r for a fixed vector a. The system of equations formed by (7.1) and (7.2)(a)

or (7.2) (b) is a nonlinear system of v + I equations in the v + . unknowns x., x2 ,...,

x , .I n fact, the result is a special case of what are called quadlratic systems of

equations, in which the transformation f(x) has the form

(7.1) f(x) - Bxx + Lx + c,

in which B (bi~k) is a bdine.aA ,pmato't, L is a given matrix, and c is a fixed

- 15 -
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vector (17], (20]. The deAivatuve of the quadkatc ope.atoa f defined by (7.3) is

(7.4) f' (x) - 2Bx + L,

where B - !(b + bikj) is a 6yemetLC bilinear operator [171, [20. It follows that

(7.5) F(X) - 2B.X + L

gives an interval extension of (7.4), furthermore, since B is a linear operator on x

(into the space of matrices), one has

(7.6) m(FI(X)) - 2&(X) + L - F'(m(X)),

which means that the Newton form (5.6) and the Moore-Jones form (5.9) of the Krawczyk

iteration operator will coincide for quadratic systems of equations. Thus, an inter-

val iteration method based on Newton's method will have a simple computational form in

this case. In particular, the formulation of the eigenvalue-eigenvector problem (7.1)

as a system of quadratic equations (2], 118] leads to a simple interval iteration

method, which will be given below.

Returning to (7.1), if x* # 0 is an eigenvector of A, then the corresponding eigen-

value )* is given by the Rayteigh quotient

(7.7) A*- R(x*) - (Ax*,x*)/(x*,x*).

Consequently, if x* E X for some interval vector X such that 0 Q X, then the ijtevatv

Rayteigh quotient

(7.8) R(X) - (AX,X)/(X,X)

can be used to obtain toweA' and u4ppei bound6 for X*: Since X* E R(X) - (c,d] , it fol-

lows that

(7.9) c s A* 5 d.

R(X) can be computed automatically, using interval arithmetic, with the extension

V
(7.1o) (X,x) X x2

of (x,x) , where the SquaAe of an interval is defined to be

(min{a2 ,b 2,max{a2,b2}1 if ab - 0,

(7.11) [a,b] =2 2
[O,maxta ,b2}] if ab < 0.
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Formula (7.11) gives a better extension of f(x) - x
2 

than F(X) - X.X for intervals X

2ahich contain both positive and negative numbers; for example, [-1,11 - [0,1], while

(-l,l].-l-,l] - [-1,13.

The eigenvalue-eigenvector problem for A will be considered in the form of the

quadratic system (7.1)-(7.2)(b). Eigenvectors orthogonal to a will not satisfy this

system, '-ut can be obtained from a system with a different choice of a. It will be

shown that the Krawczyk transformation required to apply interval iteration to this

problem can be expressed as the sum of the point obtained by Newton's method [ 2 ], [18],

and an easily computed symmetric interval vector.

Following [1S], a will be taken to be a unit vector in (7.2)(b), for example,

a - (0,...,0,1). This gives x - 1, and (7.1)-(7.2)(b) becomes the system of v equa-V

tions

(a11 - X)x1 + a12X2 + + al,v-lxv_ 1  + a - 0,

a2 1x + (a2 2 - X)x2 + ... + a2,v-1 XV.l + a2v  =0,

(7.12)
. o... oo.... o.. .a....2 1o +.. ...+(a.. ...... ,... .. .. .... o...

av-l,l X 1 + av-,22 +v2l,v_ - A)xV 1 + a,.,,, = 0,

a,,xl + a2x + .. + a., V1xv 1  + avv - -0,

for the v unknowns x1l, x2 ' .  x 1,v-l, A. The derivative f of the operator f defined

by the left side of (7.12) is

a a12  ... al,v-l -x1

a21 a22 a 2,v-1 -x2

(7.13) f'( ) ..........................................

a a * a - X
v-

1
,
1  

vl,2 v-l,v- -_

aV aV2  ... av-_ -i

where C - (xl,...,X V-11). An interval extension F'(=) of (7.13) is obtained by simply

replacin4 by the interval vector - (X,...,X-.,A). Since most of the components

-17-



of F'(-) are real numbers, the real matrix w(F'(1-)) has the simple form

w(A) 0 ... 0 w(x)

0 w(A) ... 0 w(X2)

(7.14) w(F'(E)) -. ..........................

0 0 ... w(A) w(x 1 )

o 0 ... 0

Thus, the vector w(Fr(_=))w(-) is given by

(7.15) w(F'(=))w(z) - 2w(A)(w(X .... ,) - 2w(A)w(x)),

where X(V) . (Xl,...,Xl,0). For Y - I°, " - m(), the transformation

(5.9) becomes

C(') v)
(7.16) K(E) - - Yf(n) + "--X,:;",,(x ).[-1,l],

2 1

the sum of the Newton poit - n - Yf(n) and a simply computed symmetric interval

vector. Formula (7.16) simplifies further for w(X1 ) - w(X2 ) - ... - wX 1 ) - ,

one has

(7.17) K(S) - n - Yf(n) + pw(A)IYje (v). -1,1],

where e ( 1,1....1,0).

An alternative method for obtaining lower and upper bounds for eigenvalues of A

is available from (7.12). If x* E X - (Xi,...,XV 1,1) is an eigenvector of A. then

A* E A for the corresponding eigenvalue A*, where

v-l

(7.18) A - av + 1vj Xj
J1

is the interval version of the last equation of (7.12). The use of this expression

and the interval Rayleigh quotient R(X) given by (7.8) to obtain bounds for eigen-

values of matrices will be illustrated in the example below.

consider the simple example

'3 1 -1

(7.19) A -11 5 -1

_ -I 3
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Here, system (7.12), written for = (u,v,A), becomes

3u + v - Au - 1 = 0,

(7.20) u + 5v - Av - 1 = 0,

-u - v - A + 3 0.

For the initial approximations u0  v0 = 1, the third equation of (7.20) gives A = 1.

The results of applying Newton's method to (7.20), starting from 0 - (1,1,1), are

shown in Table 7.1. These are rounded to four places from a double-precision calcu-

lation performed on a UNIVAC 1160, using the program NEWTON [ 6].

0 1.0000 1.0000 1.0000

1 0.8182 0.2727 1.9091

2 0.9755 0.0166 2.0079

3 1.0002 -0.0001 1.9999

4 1.0000 0.0000 2.0000

Table 7.1. Results of Newton's Method.

In order to construct an interval R to which to apply the Krawczyk transformation

(7.17), it is helpful to split the vector C into its vectoA-tke part E(G) . (x 1 ,x 2 ,
... ,x V,0), and its vatue-Zike part v = (0,.0,) - Xe, ev - (0,...,0,1). Then,

for

(7.21) no n+ n

it is reasonable to choose p - 2n0, w(A) - 41An+1 - Anl. This gives

2 Cev) 1
(7.22) = n + G •. -1,1] + 1i(A)e • -l,1]

n 0 2 v-[ll

as the interval to be examined. Splitting the vector

(7.23) t= (vYeG) 1 J[m(F,(zll-ve
(
v) . t

(
v) . t- t v) Tev ,

it follows from (7.17) that the condition K(_) C z will hold if the inequalities

(7.24) n0  1 l/2T, Ai - < 1/BIt 
.

0 'n~l n!
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are satisfied. Observation of the sequence given in Table 7.1 shows that (7.24) holds

for n = 1, thus, for

(7.2) = 0.2727 ± 0.5122 [-.2395,0.7849])

1.9091 0.39521 \(1.5139,2.3043 1

one has

(7.26) lYle ( .97 ), K(E) - [-.1671,0.2003]1

\0.6761/ [1.8710,2.14481

The non-negative numbers entering into the calculation have, of course, been rounded

upward to four decimal places, so that (7.26) proves that the matrix A given by (7.19)

has an eigenvector x* - (x ,x2,l) and a corresponding eigenvalue A* which satisfy

(7.27) 0.7469 s x s 1.2041, -.1671 s x
5  

0.2003, 1.8710 5 A* 5 2.1448,
2

since " E K(=), and the interval iteration using the transformation (7.17) will con-

verge. The interval Rayleigh quotient applied to X - ([0.7469,1.2041],[-.1671,0.2003],

1) obtained from K(E) in (7.26) gives

(7.28) R(X) - [0.8752,3.8826],

while formula (7.18) gives

(7.29) A - [1.5956,2.4202].

The bounds that (7.28) and (7.29) provide for A* are rigorous, but inferior to (7.27)

ix. this case.

The transformation (7.17) can also be used to check the final result 4 of the

numerical computation given in Table 7.1. Take, for example,

(7.30) = . &4 + 0.00le.[-l,1],

so that o - 0.0001, w(A) = 0.0002. Since IYle
(3 ) 

- e for these values, one has

(7.31) K(=) 4 + 0.0000002e.[-l,l] C ,

which proves that the components of E4 are accurate to six decimal places. Of course,

the numerical iteration process stumbled onto the exact solution F* - )4 in this case,

but this fact is not required for the rigorous error analysis (7.31).
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