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ABSTRACT

Interval arithmetic has been found to be useful in numerical analysis as
an automatic means to bound data, truncation, and roundoff errors in
computations. Now that the speed of microprogrammed interval arithmetic
approaches that of standard floating-point operations, a wider range of
application to engineering and other problems has become feasible. Since, in
many practical situations, data are only known to lie within intervals and
only ranges of values are sought as satisfactory answers, straightforward
interval computation can yield the desired results. Examples of this type of
application are worst-case analysis of the stability of structures and the
performance of electrical circuits. The recently developed theory of
integration of interval functions also bears directly on the problems of
solution of integral equations and the minimization of functionals defined in
terms of integrals. Since certain chaotic phenomena, such as catastrophes and
turbulence, are difficult to describe by single-valued functions, the
introduction of interval functions and the corresponding analysis may lead to
simpler models which will yield results of accuracy satisfactory for practical
purposes.

AMS (MOS) Subject Classifications: 28B20, 45L10, 65G10, 65K10, 65R20, 65V05

Key Words: Interval analysis, Interval integration, Interval iteration,
Ranges of data and results, Error estimation, Analysis of structures and
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SIGNIFICANCE AND EXPLANATION

This is a survey paper, written for applied mathematicians and
engineers. The main idea is to present some of the basic principles and
results of interval analysis in order to suggest applications, from
straightforward engineering calculations to theoretical problems. For
example, it is explained how interval analysis can be used to locate possibly
troublesome parts of structures and electrical power networks, since responses
to a range of loadings will be included in the results of an interval
computation.

interval analysis is presented as the branch of mathematics concerned
with the study of the transformation of intervals into intervals, and thus is
distinct from and complementary to real and complex analysis. Since this
field is relatively new, and the ability to perform interval calculations at
reasonable speed is just nov becoming available on computers, a fertile area
to explore seems to be to applications other than the well-established ones
relating to error estimation in numerical analysis. Intervals and interval
functions appear to be convenient means to describe the results of
observations, which rarely yield exact real numbers and functions. In
addition, many decisions must be made on the basis of a range of possible
values of various parameters, and one is often interested in how a system will
perform under a variety of conditions. Some physical phenomena, furthermore,
are chaotic and difficult to describe by single-valued real or complex
functions, an example being turbulent flow. interval analysis provides a
natural language for some problems of the types mentioned. of course, before
one can say whether or not interval methods are suitable for a given
application, they must be tried. This paper points out possibilities, and
provides a place from which to start in case interval techniques appear to be
promising.
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INTERVAL ANALYSIS: A NEW TOOL FOR APPLIED MATHEMATICS

L. B. Rall

1.* WHAT IS INTERVAL ANALYSIS ? This paper is addressed to the questions:

What is interval analysis, and what can it do for applied mathematics?

Natu.rally, these are big questions, so only a sketch of the answers can be

given here. It is hoped, however, that enough can be conveyed to suggest

possible useful applications of the subject, as well as to satisfy curiosity.

First of all, although interval analysis as a discipline is fairly recent

(a likely beginning point is the Stanford Ph.D. thesis of R. E. Mobore, written

in 1 962 [16]),* it has grown beyond the scope of any single paper.* Another

survey has been given by Nickel [21], and there are at least three books on

the subject (1], [17], (181, and the proceedings of three international

conferences 19], [20], [22] are in print. A bibliography published in 1978

[2] lists 757 titles (this bibliography is reproduced in [18], pp. 125-179).

Research in interval analysis and its applications is carried on most

vigorously at the present time in the Federal Republic of Germany, where an

Interval Library is maintained at the Institute for Applied Mathematics,

University of Freiburg, under the supervision of Prof. Dr. Karl Nickel.

In spite of the extent of the subject, it is possible to characterize

interval analysis by analogy with real analysis. In real analysis, the basic

units are real numbers, and one studies transformrations f or real numbers

x into real numbers y, symbolized by

(1.1) y = f(x).

Properties of these transformations (real functions) are of interest, as well

Sponsored by the United States Army under Contract No. DAAG29-B0-C-0041.



as operations (differentiation, integration, etc.) applied to these

transformations.

Similarly, in interval analysis, the basic units are the nonempty closed

intervals X - [a,b] on the real line R, where

(1.2) X - [a,b] - {x I a I x C b, x 6 R).

Interval analysis is thus concerned with transformations F of intervals X

into intervals Y, that is

(1.3) Y - F(X)

(see Figure 1).

Real Transformations

x f y

Interval Extension

X F

Interval Transformations

Figure 1. Relationship between Real and Interval Analysis

There is an obvious connection between interval analysis on the real

line R and real analysis: One can identify each real number x with the

corresponding degenerate interval [x,x] having both endpoints equal to x,

and write

(1.4) x - [xx].

Real and interval transformations are also related through the concept of

interval extension, which will be treated in more detail in the next section.

-2-
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The relationship between real and interval analysis is thus analogous to

the relationship between real and complex analysis. The real numbers can also

be identified with a subset of the complex numbers, and real transformations

can be considered to be a restricted class of complex transformations.

However, as everyone knows, complex analysis does not supersede real analysis,

but is rather a complementary field of mathematics, with its own theory,

techniques, and applications. Interval analysis also complements real

analysis in a similar way.

Secondly, the question of the usefulness of interval analysis cannot be

answered completely here, since one never knows entirely the capabilities of

any mathematical theory or other tool, no matter how long its history. Here,

a few examples of interval methods which have proved effective in practice

will be given, and some speculation as to other applications will be made in

hopes of stimulating further investigations into the uses of interval analysis

in the solution of practical problems.

Before going on, it should be noted that just as real analysis extends

from numbers R to real vectors in Rn, interval analysis also applies to

interval vectors with n components. This simple generalization will be

taken for granted below where appropriate. It should also be mentioned that

there is a complex version of interval analysis, based on the use of disks or

rectangles in the complex planel attention here, however, will be restricted

to real interval analysis.

From a philosophical point of view, it can be observed that measurements

of physical phenmena do not yield real numbers and functions in general, but

only approximations to these ideal concepts * However, it is usually possible

to determine intervals in which the observed data lie, making interval

analysis a natural language for the description of processes involving

-3-
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inaccurately know data, or as a way to handle the results of variations in

quantities of interest. Some illustrations of these ideas will be given

be low.

Before going on to a more detailed treatment of the subject, mention will

be made of two problems which are solvable by the methods of interval analysis

for which no techniques from real analysis are known:

(i) Global optimization: For f:R n + R, minimize f on FP

(unconstrained optimization), or subject to the constraints

(1.5) Pi(x) 4 0, i - 1,2,...,m,

where f and Pl,.**,p, are at least once differentiable. Algorithms for

the solution of these problems have been given respectively by Hansen (10] and

Hansen and Sengupta [11].

(ii) Integration: In real analysis, theories of integration of real

functions, such as those due to Riemann and Lebesgue [15] define the integral

(1.6) I f(x)dx

for only a subset of the real functions. in the theory of interval

integration [6], all real functions (and all interval functions) are

integrable. More details will be given in 116-7 below.

2. IWTERVAL EXTENSIONS. Figure I indicates another relationship between

real and interval analysis, namely, interval extension of a real

transformation. This concept is made precise in the following definition.

Definition 2.1. An interval transformation r is said to be an

interval extension of a real transformation f if it has the following

properties:

(i) inclusion,

(2.1) f(x) - (f(x) I x e x) c 1(x)j

-4-
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and (ii) restriction,

(2.2) F(x) = f(x),

where the convention (1.4) has been used to write F(x) F([x,x]).

Of course, there are interval transformations F which are not

extensions of real transformations f.

If f is a continuous function of a single variable, then f(X) is an

interval by the theorem of Wierstrass, and thus F defined by F(X) f(X)

is an interval extension of f. However, in two or more dimensions, f(X) is

not in general an interval of the form Y = ([cl,dI),...,[cm dm]) for

X = ([al,b ],...,[a n,b n). For example,

(2.3) f(x,y) = (x , y/--X

maps X0 = ([0,1],[0,1]) onto the region in the first quadrant bounded by the

coordinate axes and a quarter of the unit circle, which is obviously not a

rectangle. An interval extension of f given by (2.3) would have the

property that X0 C F(X0), since X0 is the smallest rectangle X such

that f(X0 ) C X.

A fundamental interval extension of real transformations is interval

arithmetic [17], (18], which extends the real arithmetic operations

(considered as functions of two variables, that is, f(x + y) - x + y for

addition, etc.). The rules of interval arithmetic are as follows:

(i) Addition

(2.4) [a,b] = [c,d] = (a + b , c + d].

(ii) Subtraction

(2.5) [a,b] - [c,d] = [a - d, b - c]

(iii) Multiplication

(2.6) [a,b) * [c,d] = [min , max T1],

where n = {ac,ad,bc,bdl.
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(iv) Division

(2.7) ta,b]/[c,d] - [ab] * [d-,c - 1  if cd > 0,

undefined otherwise.

These interval extensions of the ordinary arithmetic operations have the

important property of inclusion monotonicity in the sense of the following

definition.

Definition 2.2. An interval transformation F is said to be inclusion

monotone if

(2.8) X C Z => F(X) C F(Z).

Note that since interval analysis deals with set-valued quantities, then set

relationships and operations, in certain instances, appear in a natural way.

The importance of interval arithmetic as defined by (2.4)-(2.7) is that

it allows the construction of inclusion monotone interval extensions of

rational functions automatically, simply by replacing the real variables by

intervals and the aritmetic operations by their interval counterparts. For

example,

(2.9) F(X) - 2X - 1
20X - 1

is an inclusion monotone interval extension of the real function

(2.10) f(x) - 3x + 1
2x - 1

on its domain of definition, Aii . in the real line with the point x -1/2

deleted.

Two cautions are in order concerning the straightforward use of interval

arithmetic to obtain interval extensions. First of all, intervals do not form

a linear space, as illustrated by the simple result,

(2.11) [0,1] - (0,1] - (-1,1],

obtained from (2.5). Without a linear substructure, one cannot expect

techniques from real analysis which depend on linearity to work in general in
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interval analysis. For this reason, interval arithmetic cannot be appied

indiscriminately to extend certain methods of linear algebra which are

effective in the real case. In fact, the lack of a concept of linearity means

that there is no way to distinguish between linear and nonlinear problems in

interval analysis without going back to their real restrictions.

Secondly, the rules (2.4)-(2.7) of interval arithmetic are not adequate

to produce small interval extensions of even some simple rational functions,

for example, the extension

(2.12) 7(X) - X'X

of

2
(2.13) f(x) =x

gives

(2.14) ( - , ] = [- , ] [ 1 1 - 1 ,

while

(2.15) f(-1,1]) [-1,11 2 [0,1

for the extension f(X). Thus,

(v) Squaring

2a[min{a 2 ,b2}, max a2 ,b2 }] if ab 0
(2[ to, maxa 2 b2)3 if ab < 0,

can be added to the rules for interval arithmetic to obtain improved interval

( extensions in the appropriate cases, and so on.

One way to improve the accuracy of interval extensions (in the sense of

making F(X) as small as possible) is thus to add additional operations to

interval arithmetic. Another method is to use alternative expressions for the

interval extension, and not just simple substitution of interval values anr1

operations. For example, suppose that f is differentiable and f' has dri

interval ext, a4'n F Furthermore, let y m m(X) denote the midpoint uF

-7-
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x; m([a,b]) - (a + b)/2, with a similar exprtssion for vector intervals X.

In this case, the mean value form (4)

(2.17) F(X) - f(y) + F'(X)o(X - y),

defines an inclusion monotone interval extension F of f which is accurate

for small intervals X.

Further problems connected with the computation of interval extensions

will be considered in the next section.

3. INTERVAL COMPUTATION. In actual practice, it is impossible in general to

represent real numbers or evaluate real transformations exactly. This is

because one must work with a finite set G of real numbers, called a grid

[26] or screen [131. A typical example of G is the set of fixed and

floating-point numbers available on a given computer. The error introduced by

having to work with G rather than R presents some thorny problems of

numerical analysis in connection with the computation of real transformations.

In interval analysis, on the other hand, the transition from R to G does

not present any great theoretical difficulty, although one must forego the

restriction property (2.2) of interval extensions in general. The

construction of what will be called computable interval extensions having

properties (2.1) and (2.8) of inclusion and inclusion monotonicity,

respectively, will now be described.

It is helpful, but not necessary, to adjoin the extended real numbers

* to Gi otherwise, as in actual practice, the calculation of numbers

x < - min G or x > g - max G is said to overflow the grid G, and will

generate an error indication rather than a numerical result. With this in

mind, attention will be restricted to the set RG of real numbers x such

that g x 4 ;-

The set of intervals with endpoints in G will be denoted by IG, that
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is,

(3.1) IG = {[a,b] I a,b e G, a < b}.

These are the intervals which are exactly representable using the available

set of numbers. Now, the directed rounding operators A, V from RG to G,

and 0 from IRG (the set of intervals with endpoints in RG) to IG will

be defined.

For x e RG, the upward rounding operator A is defined by

(3.2) Ax = min{y I y ) x, y e GI,

and the downward rounding operator V by

(3.3) Vx = max{z I z 4 x, z-C G).

The directed rounding operator ® applied to [a,b], where a 4 b, a,b e RG

gives

(3.4) ®[a,b] = (Va,Ab],

an element of IG. In particular, if x e RG is a real number, then

(3.5) Ox = O[x,x] = [Vx,Ax],

using the identification (1.4) of real numbers with degenerate intervals.

For example, if G is the set of four digit decimal numbers, then 0

applied to the real number x = 1/3 gives

(3.6) e(1/3) = [.3333, .3334],

which is the unique representation of 1/3 in IG of minimal width (and also

of each real number z satisfying .3333 < z < .3334 ).

It follows that S is an inclusion monotone interval operator which

maps IRG (and hence IG) into IG. If F is an interval extension of F,

then

(3.7) = ®F

will have properties (2.1) (inclusion) and (2.8) (inclusion monotoncity), and

will map IG into IG. Interval operators 4 of this type will be called

-9-
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computable interval extensions of f.

The advantages of working with computable interval extensions * of real

transformations are obvious: If one starts with an exactly representable

interval X (that is, X e IG), then the transformed interval

(3.8) Y - O(X)

will also be exactly representable; furthermore, one can be sure that if

x e x, then y = f(x) e Y. Much of the usefulness of interval computation

stems from this latter fact.

On present computers, directed rounding and hence interval computation

can be implemented by software [28] or microprogramming [19] with a certain

amount of effort. Upward and downward rounding should, of course, be required

to be available as a standard feature of future machines so that ordinary and

interval arithmetic can be performed rapidly and accurately.

4. APPLICATIONS OF INTERVAL COMPUTATION. interval computation, which here

will mean calculation using computable interval extensions of real functions,

has at least two closely related applications. The first, already widely used

in numerical analysis, is to error estimation. It is assumed that there are

exact data x and that one wishes the result y - f(x) of performing an

exact transformation f. However, all that one knows is that x lies in an

interval X and that, due to inexact knowledge of coefficients, round-off and

truncation error, the best one can compute is an interval transformation F

of f. in this case, the interval transformation

(4.1) Y - F(X)

is a precisely defined model of inaccurate computation on inexact data.* Here,

"the interval contains the answer," since y e Y. Knowing this, it is easy to

find an approximate value T1 of y and a corresponding bound C for

absolute, relative, percentage, or other error of nI as an approximation to

-10-



y 123]. Moist of the literature on interval analysis is devoted to

applications of this type [2].

A second application of interval computation, possibly equally important,

is to give a convenient, automatic way to estimate the effect of variation in

input data on output results. For example, most structures, such as

buildings, bridges, airframes, offshore drilling platforms, etc., are subject

to a range of loadings, not Just a single load, and the same is true for

electrical power networks, pipelines, communications links, and so on. in

these cases, the data X are really intervals, and one wants to examine an

interval result Y to determine possible outcomes. In other words, "the

interval is the answer" here. In prediction problems, also, the results of

financial deals or the outcomes of battles may require estimation of interest

rates, costs, military strengths and effectiveness, and so on. Interval

analysis thus also provides a natural language for problems of this type,

since one may view the results of assuming that the quantities of interest lie

in various intervals, and make decisions accordingly.

an offshore drilling platform attacked by waves having a range of amplitudes

A and wavelengths A, that is, by an interval wave. In real analysis,

suppose that the deflection of the i-th joint (node) of the structure is given

by a formula of the form

(4.2) Y, = f (a,X,x ,...,x )
0i 1 in

i m 1,2,...,n, where the x.i represent loads, strengths of members (not

usually known except within intervals), etc. Now, one calculates the interval

values

(4.3) Y, = F.i(A, Ax *Xm

using suitable computable interval extensions. The result is essentially a

4ft



"worst-case" analysis# leading to the following ornclus ions:

(i) if all the Yilie within intervals of deflection considered to be

acceptable, then the structure can be deemed to be safe wnder the given range

of conditions.

(ii) On the other hand, if some of the computed intervals Yi go beyond

acceptable limits, this does not necessarily mean that the structure is

unsafe. However, the nodes in question should be singled out for more exact

investigation and possible reinforcement to insure that the structure will be

stable.

It can be argued that the use of interval analysis is justified if this

would prevent the failure of a single structure or power or communication

network.

An interval analysis of linear electric circuits has been carried out by

Skelboe [27] along the above lines. An application in finance, giving

projected returns for interest rates lying in estimated intervals, has been

worked out by A. S. Moore, and Is given in 118i, Chap. 9.

Many significant applications of the above idea are undoubtedly possible;

the crucial point is to produce interval extensions which are realistic and

accurate in the sense that the intervals obtained do not extend far beyond the

limits which would actually be observed.

Another property of interval computation which 1.3 us.,:Ful in applications

is the intersection property. Suppose that one is trying to compute a point

K ye or, more generally, an interval Y, and one knows that

(4.4) Y C Y

on the basis of an interval computation. Another computation gives, say,

(4.5) Y C Y

It follows, since intervals are sets, that

-12-



(4.6) Y C Y1 n Y2 = Y3V

and Y3 may be considerably smaller than Y, or Y20 but never larger.

Thus, additional interval computations can only improve accuracy. This

principle has been used in numerical integration to reduce error bounds, see

[8E for an example.

Now that interval arithmetic can be microprogrammed to operate at

essentially floating point speeds [19], and is available in the powerful

scientific computing language PASCAL-SC (141, the use of interval computation

in applications is in a position to grow at an explosive rate.

5. INTERVAL ITERATION. This section will deal with an application of interval

computation to the problem of finding fixed points of real transformations, that

is, real numbers, vectors, or functions y which satisfy the equation

(5.1) y = f(y).

Since the formulation here is general enough to include systems of equations in

several variables and integral equations (24], many problems in applied

mathematics can be reduced to !Lnding solutions of (5.1).

In real analysis, a standard way to obtain approximate solutions of equation

(5.1) is by iteration. One starts with a point y0  deemed to be a

good approximation to y, and then generates the sequence {yn) by computing

(5.2) Yn+1 - f(Yn) ' n = 0,1,2,....

If this sequence converges (and f is continuous, which will be assumed

throughout), then
urn

(5.3) y M ni Y

satisfies (5.1). In other words, convergence of {yn} implies the existence

of a fixed point y for continuous f. This is all very well, but {y n can

diverge, even for y0  close to y, and thus not yield any useful information

(If there is no fixed point y of f, then y nI must diverge, hence,

nonexistence of y implies divergence of {yn } .) Furthermore, since real

-13-



transformations cannot be performed exactly in general, one does not compute

(yn), but rather some approximate sequence fzn . The usefulness of {z n  thus

depends on a comparison with (yn) which can be a difficult problem in its own

right (although this does provide employment for numerical analysts).

An shown in [26],F the situation is quite different in interval analysis.

Here, one starts with an interval Y (in IG in actual practice) thought to

contain a fixed point y of f, and computes the sequence of intervals

(Y n defined by

(5.4) Y n Y nF(Y ), n m 0,1,2,...,n+1 n n

where F is a computable interval extension of f. In [261, it is shown that

if y B Y0, then

(5.5) y e Y a n y n o,
n-0

(V denotes the empty set), so existence of the fixed point y in Y0 implies

convergence of the interval iteration to a nonempty limit interval Y which also

contains y. Furthermore, the endpoints of each Yn' as well as Y, furnish

lower and upper bounds for y. On the other hand, if

(5.6) YN a

for some positive integer N, then Y0 contains no fixed points of y of

f. In this case, the interval iteration (5.4) is.said to diverge, which implies

nonexistence of a fixed point in Y0

For computations on a finite grid G, which is the case in actual practice,

it has been shown [261 that

(5.7) y W Y  or Y

for some positive integer N. Thus, interval iteration is a finite process in

actual computation. In case Y 1 1, the usefulness of this limit can then be

determined by direct inspection.

It should be noted that Y O r does not imply that y e Y0; it is the

-14-
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converse which holds. Thus, it may be necessary to apply some existence test

to Y. However, in finite dimensions, it is sufficient that

(5.8) F(YN) C YN

for some positive integer N to guarantee the existence of a fixed point

y e Yo, and hence t s convergence of the interval iteration as a consequence of

the Schauder fixed point theorem. Interval iteration can thus be used to find

improved bounds for fixed points known to be in Y0 , to obtain regions

Y. possibly smaller than Yo to test for existence of fixed points, or to

establish nonexistence of fixed points in Y in case (5.6) holds ([18], Chapter

6).

6. INTERVAL FUNCTIONS. Interval functions are straightforward

generalizations of real functions. Given real functions ( y (in the sense

that (x) 4 y(x) for each x), the function Y defined for each x e x =

[a,b] by

(6.1) Y(x) - {y Iy(x) ( y 4 (x)}

will be called an interval function on X with endpoint functions Z, yO

Figure 2 illustrates the graph

(6.2) Y(X) - {y I (x) ( y - y(x), a 4 x 4 b)

of a simple interval function.

As a set of functions, the interval function Y can be considered to be

the set of all real functions y satisfying y ( y ( y in the sense cited

above. Thus, in order to extend the concept of integration from real to

interval functions, one must be prepared to integrate all real functions. The

way to do this will be explained in the next section.



y

y
d

VY(X W

c

Ix
0 a b

X

Figure 2. The Graph of an Interval Function.

An important interval function is the vertical extent VY of an interval

function Y. This is defined by

(6.3) Vy(x) - I ex{,(x)), sux{P(x)}),

and is interval-valued. In Figure 2, VY(X) - [c,d] is indicated on the y-

axis. If VY(x) is a finite interval, as in this case, then Y is said to

be a bounded interval function.

Given interval functions Y, Z on X, one writes Y Z if Y(X) Z(X)

as point-sets in the plane. Thus, if Y - [ ,y] and Z = [z,z], then this is

equivalent to z 4 and y 4 z for the endpoint functions Y and Z. Given

an interval function Y, it is possible on this basis to introduce the idea of

directed rounding of Y to a larger interval function Z with endpoints

belonging to a specified class (step-functions, splines, continuous or Riemann
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integrable functions, etc.). This idea is useful in the construction of

computable extensions of integral operators, etc.

Interval versions of discontinuous real functions can also be constructed

to model finite or infinite jumps. For example, consider the real step-

function

f -I, x ( 1,
(6.4) s(x)

1, x >1.

The corresponding interval step-function is

s(x), x # 1,
(6.5) S(x) I

as illustrated in Figure 3. Thus, interval step-functions include the

"risers" as well as the "treads" of real step-functions, considered as

mathematical models of staircases.

y

y = S(x)
1 -

•x

0 1

-l

Figure 3. An Interval Step-Function.

ote that the graphs of Interval versions of discontinuous real functions

-17-



will be connected sets in the plane. Interval functions of this type may be

useful in the description of physical phenomena known as shocks or

catastrophes, where rapid changes take place in certain quantities.

7. INTERVAL INTEGRATION. A construction of the interval integral and some

of its important properties are given in (6). Briefly, the idea is this:

Let y be real function, and suppose S and S are the sets of step-

functions s, s such that a 4 y for 9 e S, and y 4 s for s e S.

Since step-functions are integrabl e. the extended real number system, one

can always form the lower and, .. boux integrals of y (151, denoted

respectively by

(7.1) (.) 4 =sUP(, s(x)d

and

(7.2)

(UD) fb y(x)d = ;nfl b ;(x)dx).

Definition 7.1. The interval

(7*3) b y(x)dx - [(LD) r b y(x) f, (U) ab y(x)dx]

is called the interval integral of the real function y over the interval

X - (a,b].

The interval integral, thus, always exists in the set of intervals on the

extended real line [6] (15]. The interval integral (7.3) of a real function

y is degenerate (a real number) if and only if y is Riemann (R)

integrable, since

(7.4) (R) y(x)dx - (LD) fb y(x)dx b(UD) y(x)a aa

by definition of Riemann integration [15].

For Lebesgue (T,) Lntegrable functions y,

(7.5) (L) fb y(x)dx e a b y(x)dx

in general [6].
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Definition 7.2. The interval

(7.6) Y(x)dx = [(LD) fb (x)dx, (UD) f Y(x) ]

is called the interval integral of the interval function Y over the

-iterval X = [a,b] .

Of course, (7.6) reduces to (7.3) if Y = [y,yJ is degenerate (a real

function). Interval integrals have many properties similar to those of real

integrals, for example, the mean interval value theorem

(7.7) f b Y(x)dx = w(X) *
a

holds, where w(X) = W([a,b]) - b - a, and f is some interval contained in

VY(x) [6].

Another important property of interval integrals is inclusion

monotonicity, that is,

(7.8) Y C Z s:> fb Y(x)dx C fb Z(x)dx,
a a

as shown in [6]. Thus, interval integration is an inclusion monotone interval

extension of real integration, with the restriction property (2.2) holding on

the set of Riemann integrable functions by (7.4).

One useful application of interval integration is to construct computable

interval extensions of integral transformations, which will be considered in

the. next section.

For bounded interval functions Y and finite intervals X, it has been

shown that for the interval sums

'7.9) ! Y(X) = h " VY([a + (i - 1)h, a + ihl) h - a, na
n i=n

one has

(71)
b 

Y W )bc - n I Y (X) ,

(7.10) a n=1 n

which gives a very simple construction of the interval integral in this case

[251.

At the present time, differentiation does not seem to be an appropriate
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concept for interval functions in general, except by means of interval

extensions. Thus, if y is a smooth real function, then one may work with

interval extensions Y of y, Y' of y', Y" of y" . and so on, to obtain

interval versions of results from real analysis . Indefinite interval

integrals, however, have a "derivative" equal to their integrands at points of

continuity of the latter (that is, points of continuity of both y and j),

just as in the case of real integrals [6].

8. APPLICATIONS OF INTERVAL INTEGRATION. As mentioned in 17, the theory of

interval integration can be used to construct computable interval extensions

of integral transformations of real functions, such as

(8.1) Gy(x) - aLb g(xt,y(x),y(t))dt

In real analysis, one assumes Riemann or Legesque integrability of the

integrand, which is not required in interval analysis. In any case, suppose

that it is known that y e Y, an interval function, and that Y is a

computable interval extension of g obtained by interval arithmetic or

otherwise, in the sense that the endpoint functions Y, 1 of Y have

computable Riemann integrals. (It may be necessary to use directed rounding

to obtain Y, V.) Then, r defined by

(8.2) ry(x) - Lb y(xty(x),Y(t))dt

will be a computable interval extension of the integrAl operator G.

Two applications of this idea will be mentioned: The solution of

integral equations and the minimization of functionals. First, consider the

fixed point problem for G defined by (8.1) with X - [0,11, that is, the

integral equation

(8.3) y(x) - g(x,t,y(x),y(t))dt.

Equation (8.3) is very general. It is of Volterra type if

-20-
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g(x,t,u,v) S 0 for t > x (or more generally, for t > h(x) I), in which case

the upper limit of integration in (8.3) can be replaced by x (or h(x))

otherwise, (8.3) is of Fredhola type. Linear integral equations of first,

second, and third kinds correspond to the following integrands:

1st kind: g(x,t,y(x),y(t)) - y(x) + f(x) + AK(x,t)y(t),

(8.4) 2nd kind: g(x,t,y(x),y(t)) = f(x) + Kx,t)y(t),

3rd kind: g(x,t,y(x),y(t)) = (I - *(x))y(x) + f(x) + XK(x,t)y(t).

Among nonlinear integral equations of the form (8.3) which are of special

interest are the equations of Hammerstein type,

(8.5) g(x,t,y(x),y(t)) = K(x,t)f(t,y(t)),

Urysohn type,

(8.6) g(x,t,y(x),y(t)) = f(x,t,y(t)),

the Chandrasekhar H-equation (7],

(8.7) g(x,t,y(x),y(t)) = 1 + Xy(xT-y(t)

and many others.

An obvious approach to the approximate solution of equation (8.3) is the

use of interval iteration,

(8.8) Yn+1 = 1y n r Y , n - 0,1,2,...,+1 n ii

starting with an interval function Y0 which is presumed to contain a

solution y of the integral equation. The theory of interval iteration [241,

(26] applies in this case also: If y e Y0, then (8.8) will converge to an

interval function Y - [,y] such that

(8.9) V(x) 1 y(x) 4 i(x), 0 4 x 4 1,

thus giving pointwise bounds for the solution y of the integral equation

(8.3). On the other hand, if YN M 0 for some positive integer N, in the

sense that Y N_(x) n IY (x) - for some x, so that YN is not defined

as an interval function, then there is no solution of (8.3) such that

(8.10) Yo(X) W y(x) C Wo(x), 0 ( x ( 1,

-21-
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that is, the interval function Y0 [0, y0 ] does not contain a fixed point

y of G [24].

In the case in which the limit of the interval iteration (8.8) is

degenerate, the following regularity theorem holds: If the interval iteration

(8.8) converges and
timry.Y

(8.11) limIn y,
n~m n

a real function, then y satisfies (8.3) in the sense of Riemann (R)

integration [24], that is,

(8.12) y(x) - (R) gfxt'y(x),y(t))dt.

This kind of convergence will occur if the interval operator r is what

is called an interval contraction [3], [5]. Even if G and hence r are not

contractive operators, interval iteration can be used to obtain improved lower

and upper bounds for y [24].

Another application of interval integration is to the minimization of

functionals, to which many problems in applied mathematics reduce. For

example, instead of the functional.

(8.13) f(y) a b  (x,y(x),y'(x))dx,

one can examine the interval functional

(8.14) F(Y) _ 1 b O(x,Y(x),Y'(x))dx,a

where 0, Y, Y' denote computable interval extensions of #, y, y',

respectively. It follows that (8.14) provides imuediate lower and upper

bounds for the values of the functional (8.13) for y e Y, y' 6 Y', that is,

if F(Y) - [c,d], then c C f(y) 4 d for y e Y, Y' e Y'. An algorithm

similar to the one of Hansen and Sengupta [11] could then be applied b locate

and obtain lower and upper bounds for

(8.15) min f(y), y e Y, y, y,.

Since many physical principles, ordinarily formulated as differential

equations, have alternative formulations as minima, maxima, or stationary
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values of functions expressed in integral form, or as integral equations, this

is an area in which interval analysis can be extremely useful, particularly if

the data are inexactly or imcompletely known. This is a topic for future

cesearch; others will be indicated in the next section.

9. DIRECTIONS FOR FUTURE RESEARCH. Research in applied mathematics follows

two closely related lines: Application of known mathematical techniques to

problems of importance in practice, and the development of new methods when

known ones are inadequate or inefficient. The applied mathematician thus

functions both as problem-solver and as "toolmaker to the trade". To a

certain extent, the emphasis on tool making to occurs in academic

environments, and on using tools in laboratories. The U. S. Army Mathematics

Steering Committee and the U. S. Army Research Office have provided a valuable

service for many years by organizing meetings such as the Conferences of Army

Mathematicians, which bring together applied mathematicians with both

theoretical and practical orientations. To these groups, interval analysis is

hereby offered as a new tool. It will work well on some problems, not on

others, and will need improvement to be effective in other cases.

The usefulness of interval computation as described in §4 is well-

establined by now. Given the increased availability of fast interval

arithmetic, interval analysis can and will ht applied to more computational

problems of the type descrie-,1. This also applies to the solution of systems

of equations (§5), integral equations (18), and finding lower and upper bounds

for values of functionals, as described also in 18.

In a more speculative vein, it appears that interval functions might

provide a more realistic description of chaotic phenomena, such as turbulent

flow, than single-valued real or complex functions. Also, since many physical

principles have integral as well as differeriti.L rormulations, interval

integration might be applicable to a whole range of problems now solved

-23-
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approximately by the numerical integration of ordinary or partial differential

equations. While interval analysis may or may not work in some of these

areas, it has enough potential to at least be investigated, which is what

research in applied mathematics is all about.
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