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\ ABSTRACT Vaub- 0

A general class of estimators of the variance of the ratio

estimator is considered, which includes two st::jfdatd estimators vo and
A s )

) V\, and approximates another estimator vg, suggested by Royall and
K_Z/' R L

Eberhardt (1975) o Asymptotic expansions foi the variances and biases of

the proposed estimators are obtained. Based on this w—% optimal
Py ,f)iml -
variance estimator in the class, and compareg,\the relative merits of three

waal-d,) A ,|\-£M1 V'/aa-b-{’l

estimators V_, V. and V_, without any model assumption. Under a o
0 1 2, ek 2 AR Leds L Aea sV

-

simple regression model a more definite comparison of Vo, \)1 and V2

is made in terms of variance and bias.
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SIGNIFICANCE AND EXPLANATION

In estimating the population mean of a character y, we often make
use of an auxiliary covariate x whose information is more readily
available and is positively correlated with y. One commonly used
estimator in survey sampling is the ratio estimator (y-sample mean) {x-
population mean)/(x~sample mean). To assess the variability of the
estimator, we need an estimator of its variance. Several variance
estimators have been compared under the assumption that the finite
population itself is a random sample from an infinite superpopulation
that is described by a linear model. Such an assumption may not be
realistic in practice and usually is hard to verify. We propose a class
of variance estimators, which includes or approximates several existing
variance estimators in the literature. We then find the asymptotic
variance and bias of these estimators and determine the optimal
estimators for minimizing variance or bias. No superpopulation model is
assumed. If we d assume a regression model over the finite population,
strong optimality results are obtained and more definite comparisons of

estimators are made.

The responsibility for the wording and views expressed in this
descriptive summary lies with MRC, and not with the author of this
report.
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ESTIMATION OF VARIANCE OF THE RATIO ESTIMATOR

Chien-Fu wu'

1. Introduction
Suppose a population consists of N distinct units with values
(yg3,%x4), %4 > 0, i=1,...,N. Denote the population means of y; and x;
by Y and X. To estimate ?, it is customary to take a simple random

A
sample of size n and use the ratio estimator YR = y X/x, where y

and x are respectively the sample means of Yy and X4 The mean
A

square error and variance of YR are each approximated by (Cochran,

1977, p. 155)
Y

(Yi -z xi) ’ (1)
X

where f = n/N is the sampling fraction. Two commonly used estimators

of V are

1-f 1 2
Vo = S 2 (yi - rxi) (2)
i=1
and
1-f X2 1 ¢ 2
== SN AR U )
x i=1

where r =;/;. The asymptotic consistency of Vo and \’2 and the

a
asymptotic normality of YR were rigorously established in Scott and wu

(1981) « Although the original motivation for Vi =V /x2 as a variance

2
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estimator of the ratio R = §7§ is the unavailability of f, it is not

clear whether Vz is worse than Vo (Cochran, 1977, p. 155). Rao and

Rao (1971) studied the small-sample properties of Vo and Vz by

assuming that the sample is a random sample directly from an infinite
superpopulation that can be described by a simple linear regression
model of y on x and that x has a gamma distribution. The nature
of random sampling from a finite population is not taken into full
account in their formulation as distinguished from the usual
superpopulation approach. Royall and Eberhardt (1975) noted the bias of
Vo when the finite population is a random sample from a

superpopulation in which

Y, = Bx:l + ei ’ (4)

where Si are independent with mean zero and variance ozx:

suggested the simple modification

. They

x X ¢,
VH = Vo i;— 1 - ;—) . (5)

where Cy is the x-sample coefficient of variation and ;c is the mean

of the N-n units not in the sample. They also noted that Vv = v

H 2
for large n and N >> n, thus justifying the use of Vz from a
superpopulation viewpoint. The estimator Vz was previously
recommended by Hijek (1958). The estimator v, 1is E-unbiased under

model (4) with t = 1, and remains approximately &f-unbiased when the
variance of ei in model (4) is not proportional to x;. An empirical
study of VH was reported in Royall and Cumberland (1978). All these
authors assume that the actual population satisfies a hypothetical

infinite population model. It is desirable to have a model-free

-~ Bk s 5 ek i M,“.._.‘
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comparison of these egtimators. As Royall and Cumberland (1978, p. 334)
pointed out, the conventional theory in sample surveys does not provide
any comparison on the relative merits of \’o and vz. One of the
purposes of this paper is to provide such a model-free comparison of

v .

0 and v').

We consider a more general class of variance estimators

vV = é)gv

o ’
x
which includes vo, vz and a new estimator
1-£X 1+ % 2 ,”
T ettt RN 3
x i=1
1/ :
which is equal to (Vo \’2) 2, since the numerator of VH is a linear

combination of Vv and Vv

1 2 it can be adequately approximated by some

\’g. In §2 we obtain the leading terms of the mean square error and

variance of Vg, which happens t0 be a quadratic function in g. The

optimal variance estimator is then obtained by minimizing this quadratic
function. The optimal g denoted 9opt is equal to the population
regression coefficient of zi/E over xi/;, i=1,...,N, where Z50

defined in (12), depends on the "residual” e = y; = Rxy and ei.

0’ V1 and \’2, vo is the best if gopt C 0.5 v

5 € <1, a v
the best if 0.5 90pt 1.5; an 2

Therefore among V 1
? 1.5,
the best if gopt 1.5. By
further assuming the superpopulation model (4) we show the optimality of
0 1

V_  among Vg under t = 0 and the optimality of V
~
under t = 1, Note that the ratio estimator YR is the best linear

among V

9 g
unbiased estimator of Y under model (4) with t = 1 (Brewer, 1963;
Royall, 1970). 1If the ratio estimator is adopted with this optimality
property in mind, then according to our result, one ought to use V1 as

the estimate of variance. Under model (4) with t 2 1, it is also

anyeape
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shown in §2 that qopt 2 1 with the implication that v 1 and v, are

better than \’o. Therefore our study justifies the use of V1 and V2

in practice when one believes that model (4) with t > 1 adequately
describes the population. Under further distributional assumptions on
Xs Yopt is determined as a function of t. In §3 we obtain the leading
0’ v1 and vz in terms of
their biases under model (4) with general variance pattern t. By

terms of the bias of \’g. We then compare V

further assuming that x has a gamma distribution, we show that, among

v v
Vor ¥y and V. Y

the least biased for 0.6 € t € 6/7 and Vv

is the least biased for t ? 1.5 or t ¢ 0.6, v1

2 the least biased for

6/7 € t € 1.5,

2. Variance of vg

2.1. Asymptotic expansions

We need the following results for asymptotic expansions

rr=240d) =2-2 60ty (6)
X X X n
&9 = 1980 + od) = 1-g60 + LI (52 4oLy ™
X ' n

r+s

(;-;)r(;-?)'=0(n 2) if r+s 1is even ,
(8)

= O(n ) Af r+s is odd ,

(x-%(F -D(E -2 =on"%) , (9
where O8x = (;-f)/i, z ls the sample mean of character z from the
same simple random sample as x and ;, Z is the corresponding

1

prpulation mean, 0(11'1) is of stochastic order n~ ', e =

n"'(e1 +o00t °n) and e, =y - in is the residual of Yi to the

-4-
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line connecting (i,?) and the origin. Note ey +eoot ey = 0.
Formulas (6) and (7) follow easily from (8), and formulas (8), (9) can
be rigorously justified as in David and Sukhatme (1974). Using (6), (8)

and (9), we expand

n L. x e - n N
1=-f 1 2 17174 e ,1 1
orat i 2R —e-22qlxne -glxe
1 T x X 1 1
171
- N -2 N
+ 2 850 tlxe, +S 1153 +oldy (10)
X 1 X 1 n
1-f — 1
= 2 +O(—:‘;) ¢ (11)
n
h
- - 1§ 2 z?xiei
z=n Zzi ,zisei-zn—ei . (12)
1 21x_

Note that Z = n"(ef teeot e:) and EV_ =V +0(n"2). From (7), (8)

0
and (11),

s 1f ~ _ s 1
v "o (z - q(S%)7} +o(n2) (13)

and the mean square error and varjiance of Vg are

-— —2
1-£.3, 2 2 2 2 2 1
v = — - - — e
var(v ) ( a ) {Sz 2g = Szx + g x2 Sx} + O(n4) ¢ (14)

where S: and S, are the population variance of z and the
population covariance of z and x, respectively. The bias square of

vg is of lower order than the variance and will be studied in §3.

2.2 Optimal choice of “g and comparison of vo,v1,\)2
The optimal variance estimator is now obtained by minimizing
expression (14) with respect to g, the optimal g denoted gopt

being




- sxz/x z
gopt sz,;z ’

(15)

which is the population regression coefficient of zili over xi/i,
i=1,...,N. Therefore, if n 1is large and computational cost is not a
problem, we propose the optimal estimator Va, where 3 is a sample
analogue of 9bpt’ For estimation of the population mean Srivastava
(1967) suggested a similar estimator ;(;('/;)g. Das and Tripathi (1978)
congidered estimators of a similar type for the finite population
variance of y. In both papers the optimal g for minimizing the
asymptotic mean square errors were found.

In practice we may not want to compute 3 and will choose the

variance estimate among Vv_, V. and V_,. Since the leading terms in

o’ "1 2
var(Vg) are quadratic in g, we conclude that, among the three, Vo

is the best if gbpt 2 0.5, Vv the best if 0.5 € gbpt €1.,5 and Vv

1 2

the best if gbpt ? 1,5. To further relate our estimator Vg to the
usual ratio estimator and the more general estimator proposed by
Srivastava (1967), we approximate yy —orxg by y; - RX; = e; and the
variance estimation problem is now reduced to estimating the population
mean D = N-1(ef +o00t ez) by the sample mean vo = n-1(e?
or by the ratio estimator V1 = vo§7;, or by the unfamiliar

”2 = Vo(if;)z. The usual comparison of the sample mean and the ratio

2
+oeet en),

estimator (Cochran, 1977, §6.6) and the more general comparison in

Srivastava (1967) would suggest that Vo is less efficient than v1

and v if the population regression coefficient of ei/B over x /X

2

is greater than 3& « Because of the error introduced in the

i

approximation yi - rx the exact condition (15) involves the

1%y

less intuitive zy rather than ei. Some readers may prefer the

preceding interpretation in terms of the regression of residual square

-6~




2
e, over xy. Under model (4) &S, = &Sxez, where sxez is the
population covariance of x; and ei, so that z; can indeed be

replaced by e2 Here & denotes expectation with respect to model.

1.
To gain further insight, we now assume the superpopulation model

(4) with variance proportional to xt. For most of the computations

involving model (4), it is important to note that, under (4),

-‘y
- = 2
i in 51 +O(N )

if N-1(x11: P x;)/iz is bounded, The g that minimizes

vaar(vg)} under (4) is, up to a term of order N-1,

-1
R =8 + O(N /2),ei=y

t+1
i

N -2,N t
51(xi - X) (31 xi)

N > oN _t N
(21 x -X 21 xi)(£1 Xi)

9y = . (16)

We have g, = 0 for t =0 and gy =1 for t = 1, which is stated
as a proposition.

Proposition 1, Under model (4) with t =0 (or 1), Vv (or v1) is

0

the optimal estimator of V among Vg.
N
We shall point out that YR is the best linear unbiased estimator

of Y under model (4) with t = 1 (Brewer, 1963; Royall, 1970).

Therefore the ratio-type estimator V1 for variance should be used in

A
situations where the ratio estimator YR is optimal for estimating the

mean. On the other hand, ¢t = 0 implies that e2

i and x; are not

correlated and the optimal variance estimator “0 does not incorporate
information on x. For t > 1 we have [ Xy z X, i '
which implies g, > 1 for t 2 1. Its implication as to the choice of

£+ >z x: I x

estimators is states as follows.

Proposition 2. Under model (4) with t 2 1, the optimal g, > 1 and

v1, V2 are b th better ‘ian vo for estimating V.

7=
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When t ¥ 0 or 1, there seemg to be no clear-cut comparison of |

Vor Vqr V

2° We now assume a distribution on x to facilitate such a ' 1

comparison. The optimal g becomes 1

- cOv(xth)E(x)
E(xt) var (x)

‘ (17)

*®

where expectation is taken with respect to the distribution of x.

when x has a gamma distribution with two parameters, gee, = t
irrespective of the values of the parameters. When x has a beta
distribution on ([0,M], M > 0, with parameters p and g, p,q > 0,
gas = ti{p+tg+1)/(p+g+t). Note that g, €t for t > 1 and g, >t
for t € 1, 1In particular, when x has a uniform distribution, g, =

3t/(t+2). When x has a lognormal distribution with parameters § and

Y, i1.., Y + 8 log x is standard normal, then g, = (w2t-1)/(w2-1). )
where w = exp(1/262). Note that g,, >t for t2? 1 and g, €t
. for t € t in this case. Some selected g, values as function of

t are given in Table 1.

Table 1. Optimal g,, ag_function of t in model (4)

values of ¢

distribution of x O 0.5 1.0 1.5 2,0 2,5 3.0

gam 0 0.5 1.0 1.5 2.0 2.5 3.0
2 uni form 0 0.6 1.0 1.29 1.5 1,67 1.8
L/ i p+q=2

beta 0 0.55 1.0 1.38 1.71 2,0 2.25

p+a=5

lognormal 0 0.47 1.0 1.60 2.28 3.06 3.93

8=2

, i lognormal 0 0.38 1.0 2.03 3.72 6.51 11.11
3 6-1




Rao and Rao (1971) compared the stability of vo and Vz under an

infinite population regression model and gamma distribution on x. They

reported that vo is more stable than V2 for t =0 or 1 and Vz

is more stable than Vo for ¢t = 2, Their results are consistent with

ours.

3. Bias of Vv
- g

3.1. Asymptotic expansions

Multiplying (7) to (10) and using (8) and (9) to ocollect terms of

order n~3, we obtain
n - n
JAf 1y 2 e e(sx) 1
Vg mt Gl - § & (2429 == Z x3

=2 N n N
e 1¢ .2 _ 53y 1V o2, 9lgtl) o217 2 3
— % x] g(Sx) = g e, +5 (8x) N g ei} + 0(n3) .

From Theorem 2.3 of Cochran (1977), the bias of vg is

N

2 2 N
Jue0? 1 1 P} 2V 2 2
blas(V ) = ==05 N = { g e g x, + 2(q+1)(2 xe )

N
- Laml(e2) (G2 T 2 (gu) Z x, Z xe2t + o) . (18

1 i1 n3
Since the bias square of vg is of 0(n~%), smaller than var(vg),
one would not choose Vg based on its bias for large samples. But in
practice the variance estimators can be seriously biased in small
samples (Rao, 1968) . The bias can then be reduced by subtracting the

sample analogue of expression (18) from the estimate.




v v
o’ "1’ "2

3.2. Least biased Vg and ocompurison of Vv

Without further assumptions on the population, there is no clear-

cut comparison on the biases of Vo, V1 and \)2. By assuming model

(4), we have

2 2 2 N _N
J0=0° 1 of gfrgrr § e ) 2
tlotastv)} = ey e 5 R I U K
NX 1 1
(g+1)(g=2) =2 ¥ ¢ ¥ OooN e 1
- 3 NX- ) x; = (g+2) ) X ) x '} +otp . (19)
1 1 1 n

Based on (19), the least biased \’g for t =0 or 1 are easily

found.

Proposition 3. Under model (4) with t =10, v v, is the least biased
=2
estimator of V among \Jg and the bias is of order O(n-z) « Under

model (4) with t =1, v and V_ are the least biased estimators

2 1

of V among vg and are the only ones among vg with bias of order
o(n~3).

For t # 0 or 1 expression (19) does not have a very nice
form. To gain further insight we agsume that x has a gamma
distribution with shape parameter a > 0. Then, from (19), the bias of

v, is cl(g®+g+2)/2 - (g+#2)t), where C is a positive constant

independent of g. From this we conclude that, among vV_, v_, V (1)

o' v 2f

Vo is the least biased for t ?» 1.5 or ¢t € 0.6, (ii) V‘ the least

biased for 0.6 € t € 6/7 and (iii) V2 the least biased for

6/7 < t € 1.5,
Rao and Rao (1971) compared the biases of vo and vz under an
infinite population regression model and gamma distribution on x. They

reported that vz is less hiased than Vo for 0 < ¢ € 1,5 and vo

~10-
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is less biased than V2 for t = 2, Their results are again in good
accord with ours.

Of course the definition of “bias" here is in terms of estimating
the approximate variance V of the ratio estimator, not its true mean
square error. From a Monte Carlo study by Rao (1968) on some natural
populations, the percent underestimate in V of the true nean square
error is between 10 and 15 percent for n = 4,6,8,12, For a summary of
results see Cochran (1977, p. 164). Therefore, if V underestimates
the true mean square error, we shall prefer a variance estimator with a
small amount of positive "bias"™. The only impact of this observation on
the previous comparison is for 0 € t € 1.0, where the biases of vo,
V_ can be elther positive or negative., Since bias(v,) b bias(v,) or

1

bias (v.) for 0 <€ ¢t < 1,0, Vv

0 2 may be preferred on this ground.

The research was supported by a grant from the National Science

Foundation. The comments of the referee are appreciated.
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