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ABSTRACT

- A new and more direct approach to the connection of wave amplitudes

across turning points and singular points of physical Schroedinger equations

is summarized. It interprets the connection formulae as an asymptotic

expression of the branch structure of the singular point. It also extends

turning-point theory to almost the whole class of singular points of physical

wave- or oscillator-equations by a new approach to irregular singular points

of ordinary differential equations. This reveals an unexpected and striking

two-variable structure of the solutions even close to a singular point.

AMS (MOS) Subject Classifications: 34E20, 41A60, 30E15.
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SIGNIFICANCE AND EXPLANATION

This work concerns the modulation of waves or oscillating systems, which

pervade all the science and engineering disciplines. Modulation occurs when

waves travel through an inhomogeneous material in which the local propagation

velocity differs from place to place, as it normally does, both in nature and

in technical devices. The resulting change to the waves is mostly gradual,

but occasionally drastic, as at a shadow-boundary, where oscillation turns

into decay and quiescence over just a few wavelengths. When this phenomenon

can be analyzed via an ordinary differential equation, such a boundary is

called a turning point.

At first, only the simplest turning points representing the most typical

shadow boundaries were studied. But then some phenomena, such as wave

reflection and scattering cross-sections, especially for the Schroedinger

equation of Quantum Mechanics, came to be traced to hidden turning and

singular points that become visible only when real distance (or time) is

embedded in its complex plane. When the material properties vary ina general

manner, (which can often be observed only incompletely) such hidden transition

points can have arbitrarily complex structure. The following work extends the

basic mathematical formulae for connecting wave amplitudes across a transition

point to a larger class of variations in the material prope--4* than had been

accessible up to now, and it achieves it by a simpler and ni'= -ect

procedure. It is hoped, of course, that this will contribute to technical

improvements in wave modulation and scattering calculations and will make

problems accessible that had been intractable before.

The responsibility for the wording and views expressed in this descriptive
summary lies with NRC, and not with the authors of this report.
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ON THE SCHROEDINGER CONNECTION

R. E. Meyer and J. F. Painter

A more direct approach to the oxnnection of wave-amplitudes across

general turning points and singular points of wave- and oscillator equations

has been found. It emphasizes and extends the view [1, p. 481] that the

connection formulae are an asymptotic expresssion of the branch structure of

the singular point. It also extends present turning-point theory via new

results on very irregular points of differential equations

(1) S2d2w/dz2 + p(Z)w(z) 0

with constant C that are physical Schroedinger equations in the sense that

the concept of wavelength (or period) can be defined.

A natural (Liouville-Green) variable x measured in units of local

wavelength is then also definable. Limit points of singular points of p(z)

will be excluded, as will singular points artificially introduced to represent

radiation conditions. Any turning- or singular point of p(z) must then

correspond to a definite x, and with both chosen as origin,

i fz 1/2
(2) x fz I 0p(t)] dt

£0

must exist, at least as a multivalued function, on a neighborhood of zero.

For a clear theory, this hypothesis should be rephrased in terms of the

natural variable: an analytic branch r(x) of p/4 is defined on a Riemann

surface element D about x = 0 which includes -w < arg x < 2w (i.e.,
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threeStokes sectors, in turning-point terminology) so that idz/dx = e/r2  is

integrable at x = 0.

In the natural variable, with w(z) = y(x), (1) takes the form

(3) y" + 2r -ry' = y, rl/r = (E/2ip)d(p'2)/dz

and wave modulation is therefore controlled by r'/r; since p - p(z), also

ex depends only on z, by (2), and xr'/r depends only on ex, by (3).

Turning points and singular points of (I) are all singular points of (3), and

when they do not lie on the real axes of z or x, physics places no

further, general restriction on their nastiness. For the results here

reported, the following, secondary hypothesis has been found sufficient: a

limit of xr'/r can be identified,

xr/r + Y e C as ex 0 ,

uniformly in the Riemann surface element A of Ex in which xr'/r has been

defined. Equivalently,

!/4 'Vp = r(x) = x p(Cx)

with a function P(E) analytic on A and "mild" in the sense

(4) (E/P)dP/dE = +(M) + 0 as E + 0, uniformly in A

As a consequence, P varies less than any nonzero real power,

vv > 0, K P + 0 as E + 0

and ' represents the "nearest power" of x in r(x) = pA The primary

integrability hypothesis implies Re Y 4 1/2.

The class of singular points thus defined includes all turning points of

second-order equations in the literature (2], it extends even the class of

(3]. Note the arbitrary multivaluedness of r(x) and p(z). The definition

of (1) is purely local, described by

Z1 (p(t)/p(z) 12dt + I - 2Y e C as z * 0
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For C = 0, also *(Cx) = 0 in (4), and the singular point is regular; the

irregularity function * therefore discloses a diffeomorphism between

irregular and regular points. The superfluous constant C in (1) reveals

itself as an homotopy parameter indicating an avenue of approach to large

classes of irregular points.

The branch structure of a regular point can be characterized by

1-2YFrobenius' fundamental system (I, p. 149] fs(X), x f m(x) with (usually)

entire fs, f (and fs(0) = fm(0) = I). Irregular points have a similar

f.s. ys(x), ym(x) with distinct branch points [4]:

Theorem 1. If lCxi is not too large, (3) has a solution y,(x) =

z(x)W(x) analytic on D with

1 -2Y A 2n
z(x) = x - (Ex), Y(x) = 1 + 1 a (cx)(x/2)

1

with mild (in the sense of (4)), but generally multivalued C and a ; the
n

a have bounds giving the series infinite convergence radius.
n

I
Theorem 2. For non-integer - Re Y and small enough lExi, (3) has a

solution

Ys(x) = 1 + n(£X)(X/2)
2n

II1

analytic on D with mild and bounded, but generally multivalued, n ; and

the convergence radius is again unbounded.

Observe the two-variable structure in terms of x and Cx and that the

local definition of (1) supports a solution representation of global nature

in x, even if local in Cx, - - a mathematical key to wave modulation and

asymptotic connection. As Lx + 0, ys (X) and y(x) approach evenness, which

A
suggests a characterization [4] of the departure of YS' y from the entirety

of their counterparts fs' fm (which are even for (3)):

-3-
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Theorem 3. For x and xe in D and not too large j xi,

A vWi 2-rnl'y(x)-Y(xe- i)1 m (lexi)r(mllx/212-I (IOxl

a 1
and 6 (Iexj) + 0 as IcxI + 0. For non-integer - Re Y and small enough

ICxl, also

lYs()-ys (Xe-Wi ) <s(lcxl)C(Y)lx/212-sI (Ixl)

and 6 (ICxl) 0 0 as ICxI + 0.
S

Here m = 3/2 - Re Y - lublf(ex) + (Cx/ )dC/d(ex)l > 0,

s + Re Y - lubj$(Cx)I and I denotes the modified Bessel function. As
2A

tCxI + 0, ys and y therefore tend to even functions of x uniformly on

compacts; for fixed lexl, their oddness can grow at most exponentially

with lxi.

1
Integer values of - - Re Y Correspond to the Frobenius exceptions

2

where f. has a logarithmic branch point [1, p. 1501, and y. can then be

characterized by a limit process (4], but loses the symmetry bound of Theorem

3.

Far from a singular point, the solutions of genuine Schroedinger

equations are wave-like. More precisely, r(x)y(x) = W(x) satisfies
-2

W" = (1 + r"/r)W with r"/r = x [Y(Y-i) + *(2Y-1+f+cxf'/f)] e L(P) on

paths P C D bounded from x = 0 so that (1, p.222] a "WKB" solution pair

W+(x) = a(x)ex, W(x) = b(x)e
-x

exists with a, b analytic on D and bounded for large IxI (provided

lexi is slightly restricted so that * and E' are bounded). The decay

of Ir"/rI at large IxI also assures [1, p. 223,224] limits of a, b as

lxi + 0 with (arg x)/w an integer, which are wave-amplitudes of (1).

Any solution must be a linear combination of W+, W_, i.e.,

(5) r(x)y m(x) = ; (x)ex + bm (x)e-x

and similarly with subscript 9, with similarly bounded a.,...,b., some of

-4-
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which must be multivalued like ryeo Connecting wave-amplitudes of (1)

therefore means [1, p. 481] answering questions like

a ( exp 2wi) -a () =?
m m

However, a m'... are normalized via ym, ys, which introduces an

C-dependence, and since IxI is bounded on D for fixed £ # 0, the

connection question can be asked only in the limit C + 0. Scrutiny of the

normalization [5] shows that

a m/(P) = am, b /(PC) = b , a = as, b s/p = bs

rather than am ... are certain to have limits as C + 0 and Ixi +

Directly meaningful connection questions should therefore be phrased like

a (- exp 2wi) - a (1) =m in

Now, if exp(-wi) = j and x and jx are in D, then (5) at x and

jx implies the further identity

A 1Y -fxj y-1 x- xI
[(x) - y(jx)lx e - [a m(x) - j b m(jx)]e

(6)

+ [b m(x) - jy am (jx)e -x - lx l

on D. Remarkably, Theorem 3 permits us to let lxi + 0 while IcxI + 0 so

that the lefthand side of (6) still tends to zerot E.g., Ixi =

Ilog 6m(lex)l serves. The choices arg x = 0, 1, 2w then imply the

connection answers

a ( (b m(j-)

b /j) =jY-1 a

h (-/j2 b )(-/j)
m m m

(7)

b (dewl  b (ee-w  = 21 sn(Y1) a (I)M M

-5-
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For ys' (6) holds with y., s and Y in the respective places of 9, m

1
and 1-Y, and if - Re Y is not an integer, Theorem 3 leads to (7) also

2

with subscript s. Hence, (7) holds for any solution y(x) = w(z) of (1),

with interpretation appropriate to the normalization. (The proof [5] excludes

integer .- Re Y, but see (3].)
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