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ABSTRACT

The deqenerate parabolic system (1.1) in the introduction, serves as a

model for heat conduction in a heteroqeneous medium consistinq of two com-

ponents. The first component is made up of small pieces suspended in the

second component, and the second component underqoes a chance of phase at a

prescribed temperature. This phenomenon occurs in a mixture of qravel and wet

soil (for example meltinq of frozen soil). Existence and uniqueness results

of weak solutions of the degenerate parabolic problem are shown by employing

monotone operator theory. Local reqularity, such as continuity and bound-

edness of the solution is studied. A discussion is provided about the mutual

interplay of the thermodynamic temperature (the temperature in the first

component) and the conductive temperature (the temperature in the second

component).

AMS(MOS) Subject Classification: Primary 35D05, 35K65, 35R35

Secondary 34G20, 35DI0

Key Words: maximal monotone, evolution equation, deqenerate parabolic,
free-boundary problem

Work Unit No. 1 - Applied Analysis

(1) Mathematics Research Center, University of Wisconsin, Madison, WI 53706
(2) flpartment of Mathpmatics RLM 8.100, The [1niv#rsitV of Texas,

Aiistin, Tx 7P712.

Snonsorpd by the United qtates Army nider Contract No. DAAG29-R0-C-0041.

I'
1. /-.



SIGNIFICANCE AND EXPLANATION

Consider the melting of frozen soil (a mixture of gravel and moisture),

confined in a bounded region G. The variables of the problem are the

temperature 6 in the gravel and the temperature SP in the water. At the

interface separatinq the liquid from the solid there is a relationship

resulting from balance of energy (Stefan type condition). The model results

in a degenerate parabolic system for 8 and 'P. The paper supplies the

existence and uniqueness of 8 and 0 in a distribution space. More

interestinq for the applications is the pointwise definition of 8 and

It is shown that in face 0 and 0 are continuous. The interplay between

6 and 0 is also investigated. In particular, it is shown that the liquid

phase [ 3. 01 is contained in the region where the rocks have positive

temperature, and that such a region expands with time.

The responsibility for the wordino and views expre. .ed in this de'icriptive
summary lies wiit fr and not ith the author of thi rtport.
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A FREE-BOUNDARY PROBLEM FOR A DEGENERATE PARABOLIC SYSTEM

Emmanuele DiBenedetto
(1 ) and R. E. Showalter

(2 )

1. Introduction. We shall be concerned with the first initial-boundary-value problem

for non-negative solutions of a system of nonlinear partial differential equations of

the form

a- (9(x, t)) +h(Q(x, t)-4p(x, t)) a f (x~t)
c t

(1.1)
-p(p(xt))-w(x,t) +h(p(xt)-(xt)) f2 (x, t)

and a related free-boundary problem of Stefan type. Here A denotes the Laplacean

in the spatial variable x e Rm , h > 0, and the pair a,, 0 are maximal monotone

graphs in RxR. If the first equation were to contain the term "-kAQ(x,t)" with

k > 0, then the system (1.1) would be parabolic. The situation we consider here

with k- 0 is accordingly a degenerate parabolic system.

Although the system (1.1) with the (possibly multi-valued) nonlinear monotone

graphs a, p is of mathematical interest in its own right, we present in Section 2

an extensive discussion of how such a system arises as a model of heat conduction in

a composite material consisting of two components in which a change of phase occurs

in the second component. This model is described by (1.1) with p obtained in the

special form O(x)- bx+LH(x) where b > 0, L is the latent heat of fusion and

H(-) is the multi-valued Heaviside step function. Certain models of diffusion

through fractured porous media lead to the same system.

Our results on (1.1) are organized as follows. In Section 3 we prove that the

first initial-boundary-value problem for (1.1) is well-posed when the data satisfies

certain integrability conditions and 0 is defined everywhere on R. If the data

is non-negative then the solution is likewise non-negative; this property Is

essential for the model problem discussed in Section 2. We make extensive use of

the theory of maximal monotone operators in Hilbert space to which we refer to

[2,31.
(1) Mathematics Research Center, University of Wisconsin, Madison, WI 53706.
(2) Department of Mathematics RLM 8.100, University of Texas, Austin, TX 78712.
Sponsored by the United States Army under Contract No. DAAG29-80-C-0041.
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2.

Certain properties of the solution are obtained when we restrict attention to

the case where m has a lower linear bound and 0- bI +LH as in the model problem.

In Section 4 we show that If the data is essentially bounded then the solution of

(1.1) is essentially bounded. Additional conditions on the data are shown to imply

that 0 and 4p are continuous. In order to obtain these regularity results we

found It very useful to treat the problem as an equation of evolution rather than

to have formulated it as a variational inequality.

In Section 5 we exhibit an explicit lower bound on the first component of the

solution of (1.1). This implies that the set of points where this function is

positive (the positivity set) is non-decreasing with time. Finally we show that the

positivity set of the first component contains that of the second component, and an

example is given to show this containment may be proper.

2. Diffusion in Heterogeneous Media

We begin with a mathematical description of diffusion processes within a medium

consisting of two components. A fundamental assumption is that the first component

occurs in small isolated parts that are suspended in the second component. This

situation . rises in thermal conduction through rocky soil, since the rocks are iso-

lated within the soil. It also occurs in the diffusion of liquid or 4as through a

porous media that has been fractured, since the blocks of the Medium are isolated

from one another by the system of fissures. Next we shall formulate a free-boundary

problem of Stefan type that results from a change of phase in the second component

of the medium. This arises in the model of heat conduction through the moisture in

rocky soil since the soil moisture may freeze or thaw with a corresponding release of

latent heat; there is no moisture in the rocks. If we consider diffusion in a

fractured medium in which the system of fissures is only partially saturated then
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we can think of the fissures as containing holes in which a certain amount (per

volume) of the liquid or gas is trapped and can no longer take part in the diffusion.

Such a diffusion process is formally equivalent to the preceding heat conduction prob-

lem. Finally, we give a weak formulation of this one-phase Stefan problem for a two-

component medium.

Consider the conduction of heat through a heterogeneous medium G C10 con-

sisting of two components. As our first model for such a process we take the system

of equations in the region fl =_ Gx (0,.o)

a -k&Q + h(G-q) f,
(2.1)

b g~-A-p + h(,p-Q) f2

Asere 0 and 4p are the temperatures in the first and second components, respect-

ively. Each is a function of position x e G and time t > 0 and is obtained at

a point x by averaging the temperature of the corresponding component in a neigh-

borhood which contains a sufficiently large number of pieces of both components.

The constants a, b are specific heats of the respective components, k is the

conductivity of the first, the conductivity of the second component is normalized

to unity, and the positive number h is related to the surface area common to the

two components. Thus, h is a measure of the homogeneity of the material. The

system (2.1) is just a pair of classical heat conduction equations together with a

linear coupling to model the simplest exchange between components. Our basic

asumption that the first component occurs in small parts isolated by the second

component Implies that k- 0 in (2.1). That is, the particles of the first com-

ponent may store heat (a > 0) or may exchange with the surrounding second com-
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ponent (h > 0), but they cannot pass heat directly to other first-component par-

ticles (k-0). This is the sense in which the system (2.1) is degenerate parabolic.

Suppose there is a solid-liquid phase change in the second component at the

temperature p= 0. We consider here the (one-phase) situation wherein 4 2_0 every-

where. The region 0 is separated into a conducting region fl+ where y > 0 and

a non-conducting region n0 where 4p- 0; these correspond to completely melted and

partially frozen parts, respectively. We need not assume a0 consists exclusively

of ice but only that it is a mixture of ice and water in thermal equilibrium at the

melting temperature. At each point (x,t) of D we introduce the fraction of water,

e(xt); note that t a H(,) in n where H(-) is the maximal monotone Heaviside

graph given by H(s)-I for s >0, H(O)-(0,11, and H(s)-O for a< 0. The two

regions are separated at time t by an interface S(t). If we let n be the unit

normal on S(t) directed towards a0 and V be the speed of S(t) along n, then

we obtain the condition

(2.2) -LV(1-t) on S(t)

where - .n is the heat flux across S(t) and (1-t) is the fraction of

ice. Moreover, if N. (NN 2 ,..., Nm , N t ) denotes the unit normal on the interface

S-U ((S(t),t)), we find that (2.2) is equivalent to

(2.3) Vx. (P I ,..., ) LN:(1- ) .
x Is m N(l

Kach of (2.2) and (2.3) is called the interface or free-boundary condition.

It is worthwhile to recall the simple experiment in which one applies a uni-

form heat source of intensity F to a unit volume of ice at temperature t. 0.

- . .
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The temperature remains at zero until L units of heat have been added. During

this period there is a fraction t of water coexisting with the ice and t in-

creases at a constant rate F/L. When all the ice has melted, t = I and the

temperature q# begins to rise at the rate F/b. The constants L and b are

the latent heat and specific heat, respectively. We can summarize the above by

stating that the rate of increase of the internal energy or enthalpy v-bp+Lt

Is given by F. Later we shall see that not only is enthalpy the natural variable

to determine the state of the process but that it is mathematically the proper

variable by which to describe the evolution of the process.

We can now formulate our problem. With the notation above we seek a triple

of non-negative real-valued functions 0, T, on fl which satisfy the following:

(2.4) a T0 + h(-) f,

(2.5) and ge (q), in a

(2.6) b -AV + h(9-O) =f2 in a+

(2.7) L = f 2 
+ h in A0

(2.8) -+ LV(- - 0 on S

(2.9) 4 - 0 on )G x (0,co)

(2.10). (x, 0) = O (x) , N. 0) - p(x)

and t(x,O)-9 0 (X) on C

The data consists of the strictly positive numbers a,b,h,L and the non-negative

functions f1, f 2 on 12 and 90' "0'0 on G for which we assume ko(X) eH(f0(x))

- w
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for all x a 0. As before, we have set 0+= ((x,t) eD : p(xt) > 0) and

n 0 . ((xt) e 1: v(x,t)= 0). The unknown interface S between Q + and il0 is

the primary difficulty in the problem.

It is appropriate to obtain a weak formulation of the problem (2.4)-(2.10).

This is necessary even with smooth data because the free boundary S may vary in

a discontinuous manner and it is also convenient because it casts the problem in-

to the form of an evolution equation in Hlbert space. Thus we first compute

V-W in .the sense of distributions on G. For each test function * a C 0 )

we obtain

-, = "Sf(v p(A*6t

S+(-(bq + L) - &) + S+ T' -p T*)" (NI, -.. , -N )(; +L)N )t

+ )0

We have assumed the Interface S and the restrictions of p and t to 0+ and

to 0 are sufficiently smooth to apply Gauss' theorem. This calculation shows

that

y-p 69+ h(tp-G) = f2

in 6') if and only if (2.6),(2.7) and (2.8) hold. From these remarks we obtain

the following weak or generalized formulation of the two-component Stefan problem:

given T > 0 and the non-negative functions f,, f2 on n and Oo o to on G

with 0 e H((p0), find a non-negative triple of functions which satisfy

r1
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(2.11) e H (0,T;L 2(G)), p L 2(O,T;HI(G)), v e HI(O,T;H'I(G))

(2.12) a + h(Q-p) f n in 22 ( , T ;L 2 ( G) )
dt

(2.13) dv-p+h((-Q) = f 2  in L2 (O,T;H 4 (C))

(2.14) p = (bI +LH) 1(v) in L 2(O,T;HI(c))
2

(2.15). 0(0) = 00 and v(0) = b 0 +L0 in L2 (G)

Certainly a smooth solution of (2.1l)-(2.15) for which the level set S is a

smooth manifold necessarily satisfies (2.4)-(2.10).

Remarks. The condition b > 0 arises later in the discussion of properties of

solutions so we briefly indicate the significance of this assumption. The constant

b is a measure of the storage capacity of the second component and it depends on

the type of material and also the percentage present in the second component.

Similarly the constant L is determined by the type and percentage of this material

in the second component of the medium. The essential interest here is in the change

of phase phenomenon so we are concerned with the case of a sufficient percentage of

the second component material being present to permit L > 0. The corresponding

physically significant case is that of b > 0; otherwise we would be considering

the unlikely case of a material with positive latent heat of fusion but with null

heat capacity. Nevertheless, most of our results to follow are obtained from the

weaker assumptions that L > 0 and b > 0.

The type of the problem we have called degenerate parabolic. In the system

of partial differential equations (2.1) with k=0 it is of interest to consider

the case of b-0 [1,7]; one can then reduce it to the single partial differential

equation

F--(atp-(/h = + + (a/h) f

fl + 2 + 6
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which is of pseudo-parabolic type [6,221. This is distinctly not the case for the

free-boundary problem considered here. An elimination of 0 from (2.12), (2.13)

leads to the evolution equation

d2 v df2(2.16) (a/h) - + -&v+a-(a/h)W) - p = 1 + f 2 + (a/h) dtdt 
2  

d

The pair of equations (2.14), (2.16) gives an equation for P which is of second

order in time-derivatves, definitely not pseudo-parabolic unless both b= 0 and

L- O. Thus, even in the case of b -0 where the local description of the problem

contains a pseudo-parabolic equation (cf. (2.4) and (2.6) in fl+), the free-boundary

problem with L > 0 is not of this type. Problems where the phase is determined

by the first component can be pseudo-parabolic; see (10,181.

3. Existence and Uniqueness of the Weak Solution

We shall prove that the weak formulation of the Stefan problem (2.1l)-(2.15)

is well-posed. This will be achieved by showing that the problem corresponds to

an evolution equation whose solutions are determined by a nonlinear semigroup of

contractions and that the generator of this semigroup is a subgradient operacor.

The existence and uniqueness of a generalized solution of the Stefan problem

is contained in the following.

Theorem 1. Let a and 0 be maximal monotone graphs on R x R and let j and

k be proper convex lower-semi-continuous functions whose subgradients are given

by j -1 and. Assue

0 e L2 (c), J(u O ) e L (G), v0 e LI (G)lH 1(G ), k(v0) L (C)

f e L2 (0,T;L2 (G)), f2 e L2(0,T;H'I (G))

-w&;
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and that the domain of 0 is equal to I. Then there exists a unique quadruple of

functions which satisfy

u H I(OT;L 2(G)), v Fe HI(O,T;H' (G))
(3.1) L(,; 2 L

9 a La2 (O(T;L()), p i L2 (OT;H0 (G))

(3.2) - + h f In L2 (0,T;L2 (G))
dt

(3.3) ft - + h(9-0) - f in L2 (0,T;1I(G))

(3.4) u a X (), v e I(,) a.e. in Ql

(3.5) u(0) - uO , v(O) - v 0  a.e. in G

21
(a) If in addition there is a pair 0 e L (C), w0 e H;(G) for which u0 e a(O )

and v0 e R(&P0) a.e. in G, and if f, e HI(OT;L 2(G)), f2 e HI(O,T;IN' (G)), then

du 2 d-l2 1
L e(0,T;.L (G)), &j L C(0,T;H "(G)), 0 e L(O,T;L (G)), (p e l7(O,T;Hj(G))

(b) If in addition a(0) a 0, 0(0) a 0 and each of the functions fl 1 f2 ' u 0  and

v0  is non-negative, then each of u,v,9 and 4p is non-negative.

2 1Proof: Let V be the product space L (G) XHo(G) which has the dual

V -L 2(G) xH" (G). Define 3 a t(V,V*) by

Bu(v) SG h(uu 2)(vL-v 2 ) +Vu2 "Vv2), u - u u2 ], v- [v , v2] C V

Renorm V with the equivalent norm (Bu(u)) 1 / 2 so that B: V * V is the corres-

ponding Rtesz isomorphism of the Hlbert space V onto its dual. Note that B is

given in D'(G) in the form

II • II -, , .---, -, .- .. .. ........
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B(u I . u 2 ]) [- h(ul-u2) h(u 2-u ) -Au 2] , [u 1 I u2 ] C V

Next we consider the function J: V + R Uf + } defined by

((2 1 11-

S (J(u1)+k(u2)) if u Vc L , J(u 1 ) c L u 2 c L nH 1 "  k(u 2) e L

J (U) .+W otherwise, u ( [u1 , u2] V

From [3, pp. 115,123) we find that J is a proper, convex and lower-semi-continuous

function on V . Furthermore the subgradient of J is determined as follows:

g e cJ(u) with g = [g 1 ' g2
] and u = [u1 , u2 ] in V

if and only if for some v= [v1, v 2 ] eV we have

g- B(v) and v 1 C J(u1 ), v2 e k(u 2 ) a.e. in G

These computations are immediate from the corresponding results of [3] on the com-

ponents of V

It is useful to characterize J explicitly as a composition of operators in

'(G). Thus we define A: V V by h=1ja 43: that is,

ueA(v) with u= [u 1 , u2  c V and v= [v 1 , v 2 ] e V

if and only if u 1 C a(v1) and u2 C O(v2 ) a.e. in G. (Note that A-1  is the

subgradient of J computed from the Banach space V to Its dual V =V and A

is the corresponding subgradient of the conjugate of J [111.) From the computations

above we have the representation 3J = B o A 1  as desired.

!I.

- iL~i
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Given the subgradient operator 6J on the Hilbert space V , it is well-known

[2,31 that the initial-value problem

dw(t) + 6J(w(t)) 9 f(t) a.e. t e [0,T]
dt

(3.6)
w(O) = w0

has a unique solution w e H I(0,T;V* ) whenever w0 e dom(J) and f e L 2(O,T;V* )

are given. Furthermore, if w0 c dom(6J) and f e HI (O.T;V* ) then this solution

satisfies !Lj F L (O,T;V*). These remarks, with the identifications

w(t) f[u(t),v(t)] V , wo= [U0 , v 0 J, f(t) [fl(t),f 2 (t)] and

[Q(t),p(t)] = B 1 (f(t)-w'(t)) e A- 1 (w(t)) ,

show that (3.6) is equivalent to (3.1)-(3.5) and thereby establish all but (b) of

Theorem 1. For the proof of (b) we first change the data as follows: (i) Set

J(s)= J(O) for s < 0 and leave the values as originally given for s > 0; thus

domr(a) c [0, +-). (ii) Add to p(s) the quantity s for those s < 0 and leave

the values as originally given for s > 0; thus 0 is strictly monotone on (,--,01.

Since u0  is non-negative the hypotheses of Theorem I still hold so there is exactly

one solution of (3.1)-(3.5) with the modified data; we denote it by u,v,@,c as be-

fore. Since the domain of a contains only non-negative nuabers, it follows that

o > 0. Our plan is to show the remaining three functions are non-negative.

Next ve consider the equation (3.3) written with right side he+f 2 and initial

condition v0 being non-negative. This equation is of independent interest.

Lmnma 1. Let A Sb -h be the indicated Riesz map of the Hilbert space H I(G) onto

its dual, H I(G), and let H I(G) have the scalar-product corresponding to A.

'A'
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Let y be a maximal monotone graph on R x R which contains the origin and whose

range is all of 1.

(a) The operator A ey is maximal monotone on H1 (G) with the domain

(v e H 1 nLI: there is a V c HI(G) with ip(x) e y(v(x)) a.e. x e G).

(b) If C--f c H' (x): f >0), then [I+AA *o]'(C) cC for every ? > 0.

Proof: Part (a) follows from Theorem 17 of [3] where it is shown that A Oy is a

subgradient on H1 (G). To verify (b), let (I +M A y)(v)= f in H1 (G) with

f > 0. By truncation and regularization we obtain a sequence fn e L1 (G)flCn(G)n C

with f + f in HI(G). Since A oy is maximal monotone, the correspondingn

sequence v n[I+Aoy]lf converges to v in H1 (G). From Proposition 5 of [5]

it follows that each v e C, so we have v c C.

Let F be a maximal monotone operator on a Hilbert space H; let v0 e dom(F)

and f e LI(0,T;H). Then there exists a unique weak solution of the initial-value

problem [2, p. 641

(3.7) dv + F(v) a f on [0,T] , v(0) - v

By a weak solution we mean a uniform limit of strong solutions vn corresponding
n n 1

to data vO and f with v o V and f + f in H and LI (0,T;H), respectively.0 n 0 0 n
This existence result is proved by choosing the sequences above with each v0 n dom(F)

and each fn a step-function with values from the range of f, [2, p. 65].

Lmma 2. Let C be a closed cone in H. If v0 e C, f(t) e C for all t c [0,T],

and if [I1 F]' (C) C C for all ) > 0, then the weak solution v of (3.7)

satisfies v(t) £ C for all t e [0,T].
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Proof: by the preceding remarks it suffices to consider the case of v0 e dom(F)

and a step-function f given on a partition 0-a o < a, <...< an -T by f- y C

on [ai.1 1 a ). The solution is given inductively by v(O) -v 0  and

v(t) -SI(t-ea)v(a i ) on [ I  it] I here Si is the semigroup generated by

-(F-yi). By [2, Proposition 4.51 it suffices to show [I+X(F-y)F-l (C) C C, for

then we have v(t) e C for all t a [0,T]. Thus, let x- [I+MF-y 1 )]l y with

y s C and 'A > 0. It follows directly that x- (I+XF) l(ayi+y). Since

Ny 1 +y c C we have x e C and we are done.

To obtain v > 0 in (3.3) we apply Lenma 1 with y- and then apply Lemma 2

with F Ah ey. Since 0 is strictly monotone on (-c,O it follows from (3.4)

that 4p .O. Finally, writing u as the sum of its positive and negative parts,
+ -

u-u -u-, we obtain from (3.2)

(1/2) A (u') 2  
- .u, h(uQ) (uh+f ) 

t T)L2(G) h ,L2(G) L(G)

Since u and 0 have the same sign and hf+f 1  is non-negative, the right side

is non-positive so u'm 0. Thus all four of u,v,0,qi are non-negative. It follows

that this quadruple is a solution of the original problem without the modified data.

By uniqueness this is the solution of the original problem and (b) is established.

Remarks. The essential point in the first part of the proof of Theorem 1 is to re-

duce the problem to the evolution equation (3.6) whose solution is the pair

[u(t),i(t)j of "enthalpy" functions associated with the weak solution. It is

this sense in which enthalpy is the natural variable for the problem.

For the special case of f2  L 2(O,T;L 2(G)) we can give an alternate proof

of part (b) of Theorem I as follows. Approximate p by a smooth n for which the

it
k ......... .... .. .... ... .4o

, C;: r;--- ; ; ' *r _:. 
-

.. - 3 I,
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7

corresponding solutions [un , v can be shown to be non-negative by direct L--esti-

mates on (3.2) and (3.3). Then using methods of [91 we can let n + w to obtain the

non-negativity of [u,v]. However the proof given above permits the more general

data of the existence result, and we also obtain the corresponding well-known non-

negativity result for the abstract porous media equation

dv
it-+ (h-A)v (v) 3 f M)

in R-1 (C), where h > 0 and y is maximal monotone. We could not find this re-

sult in the literature.

The evolution equation (3.6) is of the form

dB 1 w(t) + A- (w(t)) 3 ?(t)

where B'l  is positive self-adjoint and A-1 is maximal monotone from a Hilbert

space to its dual. Various generalizatlons and related equations have been discussed

in [4,6,9,10,15,16,20,21).

4. Boundedness and Continuity of the Weak Solution

We shall prove that the "temperatures" 0 and f# in the weak solution are

bounded when the data in the problem is bounded. We also give sufficient conditions

for 9 and p to be continuous. These results are obtained in the following

special case of Theorem I which contains the weak formulation of the one-phase two-

component Stefan problem.

Theorem 2. In addition to the conditions of Theorem l(b) we assume the following:

(I) there is a number a > 0 such that r > as for all r a a(s); (ii) the maxi-

mal monotone 3 is of the form p-b+LH where I is the identity, H is the
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leaviside graph and both b and L are non-negative; (iii) the initial data and

forcing terms are essentially bounded: uO , v0 e L"(G) and f, , f2 e Le(fZ). Then

the functions u,v,Q,q are bounded on n.

(a) If in addition we have IrI-r 2 1 > aIsl-s 2 1 for all r1 c a(s1 ) and

S6 (s2), and if the functions u0  and STfl(.,t)dt are uniformly (H]Aier)

continuous on G, then 9 is uniformly (respectiveiy, HI8der) continuous on Q.

(b) If b > 0 and (p0  is uniformly continuous on G, then 4p is uniformly con-

tinuous on 11.

Proof: Let u,v,Q,p be the solution of (3.1)-(3.5); by assumption (ii) we may

write v=bW+Lk, t e H(p), in Q. For each r > 0 we consider the Steklov

averages

t t
(t) . 4 (s)ds 0 (t)- QSt e(s)ds

where 4p and 0 are extended as p(0), G(0), respectively, on (-t,0). It is

known that limcp -4p (e.t.e.) in L 2(0, T;HI(G)), 114, p. 851. By integrating(3)

over (t-c,t] we obtain

bp'(t)+ (L/c)Q(t)-E(t-e)) +hq€ (t) - &C(t) = h@ (t) + (l/e)St- f2 (s)ds

We shall apply this to (p(r)-k) , integrate over (0,t)x G where the superscript-

plus denotes the positive part of the indicated function in HI(G) and the number

k is chosen by

L (G) a L (G) + h () + 2 1 L- (1)
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and take the limit as c 4 0. To this end we obtain the following:

1 in St ,r S ()k)' - (')Ij((t)k)I2 11S( p I 1 ,p-k)I 2
,0 0 L (G) L (G)

and the last term vanishes since k > IIP0II 2 ();

Q( (t)-t (t-c)) (4(t)-k)+ > Q (t)-1) (o(t)-k) + - 0

since k> 0 and t(t)e R(4(t)); and

C+0 0G

Thus me obtain

, b. + ,. 2 ,. (9,-k),++h So S, ,,k+ 2 +,o +2T(4I((t)-k) 11 2 (G + hk SO SGp-)

so tGI SO t

This leads Inuediately to the estimate

(,2t , + ut)SoI W = hS O £Ik4 #k +Next we estimate the first term on the right side of (4.1). Integrate (3.2)

over (O,t) and use (i) and 0 > 0 to obtain

t t
(4,2) &0B(t) u (t) + h Qh S w+ f1 + u0

0 00

, t. -
-. - . .I
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From (4.2) easily follows

ct) S_ h (9-"k) + + t (hk+ fflI ) + If,,olu0

Nov apply this to (9-k)+  and integrate to obtain

a soS ~-) oC ()-)+So (,#-k) 'Idxd,

+ (t(hk+f,1 )+ U011 SotS ,-k) + .
L7() L (G) 0 G

Note that

SOo,,.,,SG,., , ; ()-k 9-))d < q ) (SO11 ¢k+lL 2(G) ) o L-2(G)

so we have from above

tt

(4., So ,.,, ,, ,
+<- ~ + 1f (1k)+'1l 2  J)

aL () a 0 17(G) 0G

If we use (4.3) in (4.1) we obtain

0 L (G) L L 0 S

Thus, if 0 < t < a/2h then by our choice of k the right side is non-positive

and the left side is necessarily zero.



In sunary, we have shown that with k as given above we have

119,(t)I <k

7L (G)
(4.4) Ilu(,t)ll .o < -Lhk + 11ff I )) +, Il.Ofl.C iskI

< (kl/a)e1 111o(t)l L. (G) S-k/~

for ae. t a [0,a/2h]. The first is immediate from our preceding calculations,

the second follow from (4.2), and the third is obtained from (4! jid Gronwall's

inequality. From the dependence of k on the data it Is 4,1a .Whi -he estimates

(4.4) on Gx (O,a/2h) can be extended to give a bound or . ; q on all of

0 in a finite number of steps.

In order to prove (a) we first consider the functii"

t t

Integrate (3.3) to see that 0 is a weak solution of

Pt
b "- + h@ h + so f2 +Ll 0 - L

b*(x,0) = 0, 0(.,t) c %(C) , O<t<T

If > 0 then from [14, Theorem 1.1, p. 4191 we conclude that 0 is uniformly

UOlder continuous on fA. If b-0 then from 113, Theorem 14.1, p. 2011 we con-

clude that 0 is uniformly H61der continuous on G, uniformly in t a [0,T).

Since 9 is bounded, 0 is trivially Lipschitz In t. Thus It follow that

0 is uniformly Holder continuous on fl.

' . .. . ;*I
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Next we integrate (3.2) to get

t t

.u(x,t) + S0h(g(x,s)-V(xs))ds - f O1 (x,s)ds + u (x)

By taking the difference of this identity at x = xI 1 2 e G we obtain

(4.5) Iu(x1 , t)-u(x 2 , t) < h sO(xi , s)-9(x 2 , s) Idst 
t

(x1 , t) +ofI(xl s)ds +ux(1 ) -j 1 (x 2 -sOf1(X2 9)ds -u o(x2)

By our assumptions in (a) the left side of (4.5) bounds the quantity

ajO(x1 , t)-Q(x2 , t) I and the function

t
X,-*0(x,t) + S'fI(x,s)ds + u(X)

has a modulus of continuity a(-) which is independent of t e [0,TJ, so we have

aIo(x1 , t)-G(x 2  t) I < h 0 10(x1, )-(x 2 s) Ids + a(x 1 -x 2)

By Gronwall's inequality it follows that 0 has the same modulus of continuity,

a, in x. From (3.2) follows the uniform Lipschitz continuity in t of u and

then the assumption in (a) shows that 0 is uniformly Lipschitz in t. This

finishes the proof of (a).

The proof of (b) is an immediate corollary of 18, Theorem 5.3, p. 69). The

point is that 4p is an essentially bounded weak solution of

-
I,
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b +L &p - h (0-%) 6 (P)at at2

vith e L2 (n). This last inclusion follows from b > 0; see [9] or [14, p. 501].

Remarks. The boundary 3G of the region G is assumed to satisfy "Condition A"

of 1131 in both (a) and (b) of Theorem 2. That is, there is a pair of positive

numbers a 0  and O such that for any sphere Br with center on aG of radius

r <a 0  and for any component Gr of the intersection Gr B rn G it follows thatr~~ r_"

m(G r ) !E (-0)meS(Br). Without such a restriction on the smoothness of the boundary

of G we obtain local or interior continuity results as above.

It is not known whether Vp is continuous in 11 in the case b = 0. Fortunately

this situatica is of no apparent interest for the applications.

5. Additional Properties of the Weak Solution

Under rather general conditions on the data in the weak formulation of our prob-

lem it follows that the positivity set of the enthalpy u is increasing with time.

This is equal to the positivity set of the temperature 0 and we show that it con-

talns the positivity set of the temperature (p. An example shows this containment

may be proper.

The preceding properties of the weak solution will be obtained in part from the

following comparison result.

Loma. Suppose to < T and for each t e [t0 , T] we are given a pair y 1 (t,),

V2 (t,.) of graphs on R x R such that Y2 (t,.) is monotone and

(5.1) f for each sI 1 Y1 (t,r) there exists a

1 2 4 Y2(tr) for which s2  '1

o , .
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Let the pair of absolutely continuous functions uI , u2 : [t0 T] 4I satisfy

UI(t 0) S u2 (to) and

uij(t) +y1 (t, u(t)) 3 0, u;(t) + Y2(t,u 2 (t)) 3 0

for a.e. t e (t 0 , T ] . Then u (t) < u2 (t) for t 0 < t < T.

Proof: Suppose there is a t2 e (t0 , T] such that uI(t 2) > u2 (t2). Define

t alub(t e (to 0 T: uI(t) <_.u2 (t)) and note that uI(tI)=u2 (t) and

u1 (t) >u2 (t) for all t c [tl, t2 ]. For each t e [tl, t2] for which

.uj(t) e y1 (t,ul(t)) there is by (5.1) an s(t) e Y2 (tul(t)) with s(t) S -Yu(t).

For such a t we obtain

(u1 (t)-ui (t)) (u,(t)-2 (t)) S (-s (t) t)) (u (t) -u 2 (t))

and this last quantity is non-positive because Y2(t,.) is monotone. Thus the

function (u 1(t)-u2 (t))2 has a non-positive derivative on It i , t 2 1, it there-

fore vanishes on [t1 , t21 and this contradicts the choice of t2

Suppose we are in the situation of Theorem l(b). For a.e. x • G the function

u 2 (t) mu(x,t) is an absolutely continuous solution of (3.2). In order to apply

Loma 3 to (3.2), (3.4), define

Y1 (t,u) - (h/a)u +-f(xt) , Y2 (t,u) = ha. (u) -hcp(x,f)1-f(x,t)

We will assme a > 0 and that

r for each r > 0 there exists an £ c l(r)
(5.2)

such that as < r

tI
- '-. # -- *'- 3 *.. .
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This implies that (5.1) holds for our choice of .I, Y2' Let uI be the solution of

uj(t) + (h/a)ul (t) - fl(x't) , 0 < t < T

with uI(t 0 ) -u(X,t0 ). From Lemma 3 we obtain the first part of the following.

Theorem 3. In addition to the conditions of Theorem l(b) we assume there is an a > 0

for which (5.2) holds. Then the first component of the solution of (3.1)-(3.5) satisfies

-h t-t O  t - h(t-s)
(5.3) u(xt) I. e u(x~t O) + Ste t f(x,s)ds 0 < t o <. t < T

t 0-0

for almost every x e C. Thus the set S (u) = fx c C: u(x,t) > 0) is increasing
t

with t. Furthermore the set S +(u) a (x.t) c fl: u(x,t) > 0) contains the interior

of S+(fI) and

(5.4) U S+(4)0 0< t < t)c S+ (u), O< tj ! T
t 1

Proof: The inequality (5.3) follows from the preceding remarks and it inediately

Implies the monotonicity of S (u) and the inclusion of the interior of S+(ff)
t

in S+(u). We verify (5.4). Let x 1  S+ (u), that is, u(x 1 , t -)=0, so by

(5.3) we have u(x , t)0 for all 0<.t < t I . Thus au(x I , t)Mt- 0 for

0< t < t I ' From (5.2) we obtain (see below) 0(x1, t) -O for 0< t < t I  so

(3.2) implies V(x 1 , t)=0 for 0 < t < t I . That is, xl j S+(ip) for all

O<t< t 1 •
I +

Corollary. In the situation of Theorem 2(b) we have S () eS +(u).

Proof: Since p is continuous this follows from (5.4).
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Remarks. The condition (5.2) is actually equivalent to the assumption (1) in

Theorem 2: 1 > as for all (s,r) c a. To see this, note that if (so , r0 ) € a.

with r 0 < asO , then we can choose r - (1/2)(r 0 + as 0 ) > 0 and from (5.2)a s

with (s I , rI) e a and as I '_ r i . But then sl < (1/2)(ro/a+so) < so  and

rI > r0 , contradicting the monotonicity of a.. Thus, (5.2) implies that all of

a. lies above the graph of r= as.

As a consequence of the above remark it follows from (3.4) that u(x,t) > aO(x,t),

hence S+ (9) C S+(u). If in addition we have L(0)= - (0), then S+() -S+(u).

In the case of our original problem, (2.1l)-(2.15), we have S+ (9) C S+(9):

Thus 0 > 0 in the region f+ where the water is completely melted. The follow-

ing example shows that we do not necessarily have S+ (P)= S+(@).

Example. Define Q(t)= e t
, 9=0 and v(t)=l-e- t for t > 0. This triple of

non-negative functions is the solution of (2.1l)-(2.15) with L=a=h= I  and

arbitrary b > 0, f = f 2= 0, and 0=1 , 0 =o= 0. This solution is independent

of x e G. In the thermal conduction model of Section 2, this example corresponds

to the situation wherein a small amount of heat uniformly distributed in the first

component is all absorbed as latent heat to convert the second component from solid

ice to water at temperature equal to zero.

i*
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