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ABSTRACT

• This paper gives admissibility criteria for weak solutions to the

partial differentials equations governing isothermal motion of a van der

Waals fluid. The main issue is that an admissibility criterion based on

viscosity alone is too restrictive - it rules out all slowly propagating

phase boundaries. Instead a criterion based on viscosity and capil-

larity is proposed. The viscosity-capillarity condition is studied and

shown to imply that the state on one side of a phase boundary specifies

both the speed of the phase boundary and the state on the other side of

the phase boundary (a result which is differ nt from classical gas

dynamics). -
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SIGNIFICANCE AND EXPLANATION

Typically real fluids exhibit the property that under different

configurations of pressure, density, temperature they can exist in

different phases. For example water may exhibit vapor, liquid, and ice

phases. Classical thermodynamics usually studies the co-existence of

phases at equilibria so the term "thermodynamics" in this sense is a

misnomer. In this paper the problem of true dynamic phase transitions

is studied. In particular conditions are given for the existence of a

propagating phase boundary separating liquid and vapor phases. The

results are also applicable to phase transitions in solids undergoing

"martensitic" or "shape-memory" phase transitions.
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ADMISSIBILITY CRITERIA FOR PROPAGATING PHASE BOUNDARIES
IN A van der WAALS FLUID

M. Slemrod

0. INTRODUCTION

The purpose of this paper is to present admissibility

criteria for weak solutions to the equations governing isothermal

motion of a van der Waals fluid. The idea of admissibility

criteria is quite well known in the study of hyperbolic conservation

laws (see for example Lax [1], [2]). However for the case of a

van der Waals fluid the balance laws of linear momentum and

conservation of mass lead to a mixed hyperbolic - elliptic initial

value problem. Thus new issues appear which are not present in

classical hyperbolic equations of inviscid compressible fluid

dynamics.

The most obvious difficulty with a mixed hyperbolic -

elliptic initial value problem is the classical Hadamard instability

of solutions lying in the unstable elliptic regime. To circumvent

this difficulty it is natural then to consider only initial value

problems where the data is given in the stable hyperbolic domains.

Thus we should expect to find "weak" or "generalized solutions" to

the equations of motion where such solutions take on values only

in the stable hyperbolic domains. These weak solutions will in

general possess propagating singular surfaces separating states

in one hyperbolic domain from states in another hyperbolic domain.

These singular surfaces are called propagating phase boundaries.

The question then becomes one of knowing in what sense such phase

boundaries are admissible.

This research was sponsored in part by the United States Army under
Contract No. DAAG29-80-C-0041, the National Science Foundation under
Grant No. MCS-79-02773 and the Air Force Office of Scientific Research
under Grant No. AFOSR-81-0172.
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Two admissibility criteria are discussed here. The first

is a standard viscosity criterion. This will be discarded as too
slowly

restrictive: it rules out all/propagating phase boundaries. The

second is a viscosity-capillarity condition . It allows for

propagating phase boundaries to exist but only in very special

cases. Namely for a propagating phase boundary to be admissible

according to the viscosity-capillarity condition the state on

one side of the phase boundary will determine both the propaga-

tion speed and the state on the other side of the boundary.

While this paper is devoted to fluid dynamics, the issues

involved are quite similar to those discussed in a recent paper

of James [3]. In that paper James has studied propagating phase

boundaries in one-dimensional non-linear elasticity where the

choice of constitutive relation leads to a mixed hyperbolic-

elliptic initial value problem similar to the one studied here.

hence it may be that a criterion analagous to the viscosity-

capillarity condition may prove useful in elasticity as well as

fluid dynamics.
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1. One dimensional Lagrangian description of compressible fluid

flow

We follow the presentation of Courant & Friedrichs [4) of

a Lagrangian description based on the law of conservation of mass.

The fluid flow is thought of taking place in a tube of unit cross

section along the x-axis. We attach the value X=O to any definite

"zero" section moving with the fluid. For any other section we

let X be equal in magnitude of the mass of the fluid in the tube

of unit cross section area between that section and the zero

section. Analytically the quantity X satisfies the relation

X(X,t)

X = f p(x,t)dx.

X(ot)

Here p(x,t) denotes the density at position x and time t and x=

X(X,t) denotes the position of the particle which encloses a

mass X of fluid in the tube bounded by X(X,t) and X(O,t). Dif-

ferentiation of (1.1) implies 1 = X x(X,t)p(X X,t),t). Set

P(X Xt),t) = p(X,t), w(X,t) = 0(X,t) (the specific volume), X(x,4A=

u(X,t) = Xt(X,t) (the velocity).

We denote the stress by T, the specific internal energy

by c, the specific heat absorption by q, the heat flux by h, and

the specific body force by b. Then the equations of balance of

linear momentum, energy, and mass become

p x= x + pbx

p = pq + TX + h
x x

p+ px = 0x

dwhere = dt We now apply the chain rule and rewrite this

system in terms of the independent variables X,t to obtain

-3-
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Xt t  TX + b

Et =q + TXtx + h x ,(Ii

(PXX)t = 0

where we have used the fact that p(x,t) = Pt(X,t). The third

of these equations is automatically satisfied since pXX = 1.

The above set of balance laws must be supplemented by

constitutive relations. We assume the fluid is compressible

and thermo-elastic so that the stress, internal energy, heat

flux satisfy

T = T(w,T)

C= E(w,T)
A

h = h(w,T,Tx)

Furthermore we assume for simplicity that the fluid is imbedded

in a "heat bath" so that the motion is isothermal (T=positive

constant) and there are no body forces. Mathematically this

means (i) that q in (l.l.b) is assumed to be adjusted so (l.l.b)

will always be satisfied identically and (ii) b=0. In this case

(1.1) equivalent to the first order system

(1.2)

wt  u x

A C1 curve r X = y(t) across which u,w experience jumps

is called a singular surtace. If r is a singular surface let

(y(t),t) be a fixed point on the graph of r and U = y(t). Denote

by u+,w+,u.w_ the respective limits from the right and left as

(X,t)-(y(t),t) for u,w. If we put [u] = u+-u, [w] = w+-w_ ,etc.

-4-
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then classically we know the Rankine-Huginot jump conditions must

be satisfied, i.e.

U[u] + [t] = 0
(1.3)

U[wI + [u] = 0

Of course (1.3) implies U2 satisfies the equation

U2  [w] (1.4)- [w]

As we shall always be working on a fixed isotherm let us

set T(w,T) = - p(w). In this case (1.2) becomes

ut = - pM()X

(1.5)
Wt = u •

As is easily seen (1.5) is either hyperbolic or elliptic

depending on the sign of p' (w).

It is well known that conservation laws of the form

(1.5) do not in general admit smooth solution. Typically dis-

continuities (shocks) will form in a finite time even for smooth

initial data. Hence we must be satisfied solving (1.5) in the

sense of distributions. Such solutions are termed weak solutions.

Unfortunately as is also well known weak solutions are not gen-

erally uniquely determined by their initial values. To pick out

the physically relevant ones some additional principle must be

introduced. It is this issue which is pursued in the next sections.

-5-
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2. Admissibility with respect to the viscosity criteron

Let us imbed the inviscid equations (1.6) in a viscous

formulation, i.e. we take

T = - p(w) + P(w)u . (2.1)

Typically (see [11) we like to know that if u(X,t;li), w(x,t;i)

sequence of solutions to (1.2), (2.1) which tend to a limit

u(X,t;O), w(X,t;O) boundedly, almost everywhere as p(w)-*0+

then the limit functions u(X,t;o), w(X,t;O) satisfy (1.5) in

the sense of distributions. In order to be sure that the term

(u(W)Ux) x entering (l.2a) does indeed converge to zero as p-O+

in the distributional sense we require ii(w)=p0 , a positive

constant.

Now let r X = Y(t) be a singular surface for (1.5).

We now ask the question: Are solutions of (1.5) in the neighbor-

hood of the singular surface r limits of solutions (1.2),(2.1)

as PO 0+? While this problem has a history dating back to Rayleigh

[5] it is the more recent discussions of Wendroff [6] and Dafermos

(7] we shall follow.

Let (y(t),t) be a fixed point on the graph r and let

u+,w+,u,w_, U be as in Section 1. We look for a traveling wave

solution of (1.2),(2.1) given by

u(Xt) = u() , w(Xt) = w() , _ U
1.0

It follows that u,w must satisfy

- Uu = (-p + u

- Uw = u

dwhere denotes

- a- a.b-



In order for u,w to approximate the discontinuous profile

of the solution to (1.6) we require

(u(-o), w(--), u(+-), w(+-)) = (u_,w_,u+,w+) . (2.3)

The above considerations motivate the following definition.

Definition 2.1 If there exists u,w so that (2.2),(2.3) are

satisfied for all points (Y(E),T) we will say the singular

surface r satisfies the viscosity admissibility criterion.

Theorem 2.2 The viscosity admissibility criterion is satisfied

if and only if

- U2 + (- p(w) + P(w-)) > 0 (< 0) if U > 0 (< 0) (2.4)
w-w

for every value w between w_ and w+. In other words for

(w+ - w_) U > 0 (or (w + - w-) U < 0) the chord which joins

(w_,p(w_)) to (w+,p(w +)) lies above (below) the graph of the

function p(w) for w between w_ and w+.

Proof While proofs are presented in [6] and [7] we shall pro-

vide one for completeness.

Integrate (2.2) from -- to . It follows that

- U(uU)-u) = - + p(w_) + u W

A (2.5)
- U(( )-w_) = u(&)-u_

which it turn yields the first order equation

U (w(O)-w) + p(w(')) - p(w ) = - U w (E) . (2.6)

If w_ < w+ then we must have w (U) > 0 and hence, (2.4) follows.

A similar argument is used if w+ < w.

-7-
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3. The van der Waals equation of state

On a fixed isotherm the van der Waals equation of state

reads
RT a

p(w) RT5 - - 0 < b < w < , (3.1)
w

where a,b,R,T are all positive constants ([81,[9]). Pictorially
if T is sufficiently small.

(w) is represented in Fig. 1N As we shall not need anything

so specific as (3.1) in our analysis let us suppose in what

follows that p(w) has basically the same type of graph as in

Fig. 1, namely,
I

(i) p (w) < 0 0 < b < w < w , w w

I I

(ii) p (w ) = p (we) = 0 ; (3.2)

(iii) p (w) > 0 if w < w < w

The domains (b,w ) and (w ,0) will be called the a-phase and

a-phase respectively. The a-phase corresponds to the fluid

being liquid, the a-phase corresponds to the fluid being vapor.

Definition 3.1 A singular surface F will be called a phase

boundary (shock) if for every point on F w+,w_ lie in dif-

ferent (the same) phase.

Theorem 3.2 For p satisfying (3.2) no phase boundary is admis-

sible according to the viscosity criterion (Defn. 2.1) if
jUI is sufficiently small.

Proof The chord joining (w_,p(w_)) to (w+,p(w+)) must cut the

graph of p(w) and hence the viscosity criterion cannot be

satisfied.

Since no slow phase boundaries are admissible according to

the viscosity criterion it seems worthwhile to consider a less

severe admissibility criterion. Indeed it may be that other

-8-



higher order effects other than viscosity should be considered.

One such effect that is particularly pronounced in the liquid-

vapor interface will be capillarity. A theory of interfacial

capillarity was proposed in [10] by Korteweg and a discussion

of his theory may be found in the monograph of Truesdell and

Noll [11]. Korteweg's theory has most recently been reconsidered

by Serrin [12] who has applied it to study condition for equili-

brium between liquid and vapor phases in a van der Waals fluid.

(A related theory based on statistical mechanics has been pre-

sented in [13]).

According to Korteweg's theory the stress T inour one-

dimensional Lagrangian formulation will be given by

2_
T = - p(w) + D(W)wx - C(W)Wxx + P(w)u x  . (3.3)

As in the discussion of constitutive relation (2.1) we would

like to know that solutions of (1.2),(3.3) which tend to a limit

boundedly, almost everywhere, as p(w)+0+, D(w)-0, C(w)-0, will

converge to solutions of (1.5). So in order to be sure that

extra terms in (1.2),(3.3) due to the consideration of viscosity

and capillarity tend to zero in the sense of distributions as

p(w) 0+, D(w) 0, C(w)-0, we set

C(w) = 2 A,

D(w) = 0 , (3.4)

(w) = P0

Thus in this special case (1.2),(3.3) becomes
2

u t = (-p(w) - A w + 0 Ux) x  , (0 XX 0 X(3.5)
wt = u x

Now let r be a phase boundary and y(t), u+,w+,u,w_ U be

as in Section l. Again we look for a traveling wave solution

u(Xt) = u(M) , w(X,t) = w() , -Ut
P-



From (3.5) it then follows that u,w must satisfy

-Uu= (-p(w) -Aw + u

^, ^, (3.6)
-UW u

So that u,w will approximate the discontinuous profile of

the solution to (1.5) we require

(u(--), w(--), u(+-), w(+-)) =(u_,w_, u+,w +). (3.7)

These considerations motivate the following definition.

Definition 3.3 If there exsists u,w so that (3.6),(3.7) are

satisfied for all points (y(E),E) we will say the singular

surface F satisfies the viscosity-capillarity admissibility

condition.

For w_,u (w+,U) given in the a-phase (a-phase) let w+(U)

(w_(U)) denote the solution (if it exists) of

U2 - p] (3.8)
U =7

lying in the 6-phase (a-phase). Also set

f_(C;U) = U2 (-w_) + p( p(w_)

f+(; U) = U2 ( -w+) + p(c) - p(w+)

Integration of (3.6) for -- to and the obvious substi-

tution shows a solution w of (3.6),(3.7) must satisfy the

second order equation

Aw + Uw + f (w.U) = 0 (3.9)

with boundary conditions

w(-) = w_, w(+-) = w+ (3.10)

Lemma 3.4 Assume A > 0

(i) Let w be given and assume

-10-
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w+ (0)

(I) f f_(C;0)d < 0
w

Then there exists a unique U*, 0 < U* < U, so that (3.9)

possesses a solution with w(--) = w_,w(+) = w+(U*). Here U
w+(U)

is such that f f_(C;O)d 0.

w

(ii) Let w+ be given and assume

w+(II) f f+( ;0)dC > 0

w_(0)

Then there exists a unique U*, U< U* < 0, so that (3.9) possesses

a solution with w(--) = w_(U*), w(+-) = w+. Here U is such that
w

f U f+(C;U)dC = 0
w_ (U)

Remark 3.5 The hypotheses of the lemma have a simple inter-

pretation. For example in (i), (I) says that the signed area

between the chord joining(w_,p(w)) and (w+ (0 ),p(w+(0)) and the

graph of p(w) between w_ and w+(0) is negative. U is that

positive value of U so that the signed area between the chord

joining (w_,p(w_)) and (w (U)p (w+ (U)) and the graph of p(w)

between w and w+(U) is zero (see Fig. 1). Analagous interpre-

tations hold for (ii).
^' Then (3.9) may beProof of Lemma (i) Let y(w(F)) = w ( T ( m

rewritten as

A d 2T Awy (w) + U y(w) + f_(w;U) = 0.

Integration from w to w yields

-11
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Figure 1 van der Waals isotherm; w and w (U) so that area
+

A = area B.

-12-
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w w
y 2(w Uf YW ,,ff ( ;U)d (3.11)

Let us now consider the case U = 0. Let w*(0) denote that

value of w for which the chord connecting (w_,p(w_)) and (w+(0),

p(w+(0)) intersects the graph of p(w), w. < W*(0) < w Since

f_(,0) > 0 for w*(0) < C < w+(0) it follows that

A 2 
W(0)

y (w) > - f f_(0)dc > 0
w

by (I). Hence if (I) holds and U = 0 the solution of (3.9) with

w(--) = w always stays above the line y = 0.

Now let U increase from zero to U. The solutions of (3.9)

form a nested sequence in w-y plane; see Figure 2. By continuity
with respect to the parameter U all that is needed to establish

the existence of a unique U* so that w(+m) = w+ (U*) is to show

that the solution for U = U crosses the line y 0. But from

(3.11) we see
w (U)

0 < A,2 (w (U)) = - U f y( )d4
w

So y() must go from positive to negative values for c between

w_ and w+(U).

(ii) The proof is similar to (i).

Theorem 3.6 Assume A > 0

(u_,w_) ((u+,w+)) is to be a state to the left (right)of

a point (y(t),t) on a phase boundary r and the hypothesis

I (II) of Lemma 3.4 holds. Then F is an admissible phase

boundary according to the viscosity-capillarity condition if

-13-
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and only if

W+ = w + (U*), u+ = u_ - U*(w+(U*) - w_),

Y(t) = U*>O (w_ = w_(U*) , u_ = u+ + U*(w+- w_(U*)),

Y(t) = U*<O) where U* and w+ (U*) (U* and w_(U*)) are given

by Lemma 3.4 (i) ((ii)).

Proof The result follows immediately from Lemma 3.4 and the

Rankine-Huginot jump conditions (1.3).

Corollary 3.7 Let r be a singular surface (either shock or

phase boundary) which is admissible according to the viscosity-

capillarity condition for some A > 0. Let u+,w+,u,w, U be

as in Section 2. Then the "entropy" inequality
w+

U f p()d - (w+ - w) (P(w+)+P(w)) < 0 (3.12)

w - 2

is satisfied. That is to say: U times the signed area be-

tween the graph of p(r) between w_ and w+ and chord joining

(w,p(w_)) to (w+,p(w+)) is negative.

Proof If there is a solution w(F) to (3.91,(3.10) then multi-

Aplication of (3.9) by w ()yields

w(Q)
2 w f f f_(C;U)dr - U w 2 (3.13)

w.wIntegration of (3.13) from -- to implies
W+ Cof 2d 2

j (C;U)d; U - M 2~ d,

or

U ff.(c;U)dC < 0. (3.14)

w

The integral indicated in (3.14) is precisely the bracketed

expression in (3.12).

-15- i
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While we have argued that the choice p(w) = pop D(w) - 0,
=2

C(w) = p A is a natural assumption from the computational view-

point one might still question whether the results of Theorem

3.6 carry over to a more general case. The answer is yes and

is provided by the following result.

Assume p(w) = o.0(w), C(w) 0 2 C0(w), D(w) = c2D 0 (w) where

c>0 and w 0 (w) > w0 > 0, C0 (w) > C0 > 0; Po, C0 constants. In

this case (1.2),(3.3) becomes

ut = (-p(w) + £2 D0 (w)w - £ 2C 0 (w)w2 + E 0 (w)) x

(3.15)
wt = ux

X- Ut ^ ^Set F = ( and u = u( ), w w(C). It follows that

u( ),w(i) satisfy
' A ^'2 A -" ^ *2 I

- Uu = (-p(w) + D0 (w) w - C0 (w) w + 0 (w)u )(^, ^1 (3.16)
- Uw = u

where we again impose boundary conditions (3.7). Integration of

(3.16) from - to implies

^ "* * ^' A ^.2  A 2
C0 (w)w + Upi0 (w)w - D0 (w)w + p(w) - p(w_) - U (w-w_)=0 (3.17)

we have boundary conditions (3.10). We now state the following
generalization of Lemma 3.4.

Lemma 3.8
(i) Let w be given and assume

w +(0) w (0)
(I') f exp(2 f D0 ()C 0

( ) -MdC) C0 (n)-If_(n;0)dn < 0
w- ri

and that there exists U > 0 so that

w+ (U) w+ (0)
exp(2 D D(T4C (r) dr-) C0 (n)l f(i;U)di 0

f I 0c 0 °
w -

-16-
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Then there exists a unique U*, 0 < U* < U, so that (3.17)

possesses a solution with w(--x) = w_ , w(+-o) = w + (jJ*).

(ii) Let w + be given and assume

(II*) f exp (2 f DO(;)C,)0 )d ) C0 (ri) 1f+(r);)di > 0
w-(O) n

and that there exists U < 0so that

w +w W(0)

f exp(2 f D(O)C 0 ( M 1d ) CO(rj) f(nUd=

w-(U)n

Then there exists a unique Ut-. 0 < 0, so that (3.17)

possesses a solution with wi-- -_1U*), w(+W) = w +

The proof is simila.,rto -~ I>ze proof of Lemma 3.4 and is

omitted.

-17-
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4. Relation to the Lax shock criterion

In this section we compare the viscosity-capillarity

admissibility condition to the well known Lax shock criterion

([l],[2]) in the case p' < 0, i.e. (1.6) is strictly hyperbolic.

Definition 4.1 For system (1.6) with p' < 0 we shall say a

shock r : X = y(t) joining states (u+,w+),(u_,w_) at (t,y(t))

satisfies the Lax shock condition if either

(-p'(w+)) < U < (-p'(w_))

or

-(-p'(w+)) < U < (p'(w))

where U = Y(t).

Theorem 4.1 If p' < 0 and p" + 0 a shock r which is admissible

according to the viscosity-capillarity condition for any

A > 0 is admissible according to the Lax shock condition.

Proof In this case (3.9) possesses two equilibrium points

(w_,0) and (w+,0). If we know there is a connecting orbit

for U > 0 then either (w_,0) and(w+,0) are both saddles or

(w_,O) is a saddle and (w+,O) is stable node. The condition

p" =f 0 and linearization about (w_,O) shows the two saddle

case is impossible. Finally it follows easily that saddle-

node case implies the Lax shock condition. The case U < 0

is proved in the same way.

Theorem 4.2 If p' < 0 and p" > 0 a shock wave r which is

admissible according to the Lax shock criterion is admissible

according to the viscosity-capillarity condition for any A > 0.

-18-.
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Proof Consider the case (-p'(w+))h < U < (-p(w_)); the other

case is analagous. Let A > 0 be fixed and let

A 2 ,wAww
V(w,2W L + J f (c;U)d.

w-w-A A

Since p" > 0 we have V-- as I(w,w') I-- and

dV^ w 2-(w,w') =- U w') < 0

along solutions of (3.9). Then all orbits are bounded in the

(w,w') plane and by LaSalle's Invariance Principle [14] tLey

must approach an equilibrium. These facts combined with

Lemma 4.1 of [15] yield the theorem.
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5. An elementary Riemann problem for a van der Waals fluid.

Consider (1.6) where p(w) has graph similar to that of

Fig. 1, i.e. p satisfies (3.2). The Riemann initial value

problem consists of specifying initial conditions

u =u 0  u = 1

, X<O; , X>O, u0 ,ulw 0 ,w1 constants. (5.1)
w =w 0  w =w 1

In this section we consider the special choice of data

u0 ,w0 ,u11 w1 so that w0 is in the a-phase, w is in the S-phase

and u 0 ,w0 1 1ul,wI satisfying Rankine-Huginot jump conditions for some

U. This of course implies p(w0 ) > p(w1 ) if w0 < wl, p(w 0 ) <

p(w I ) if w0 > wI . It is a trivial observation that

u =u 0  u= u

X<Ut; 0 X>Ut (5.2)
w= w 0

is a weak solution of (1.6),(5.1). The sign of U is as of yet

undetermined. The line X=Ut is a phase boundary. From our

previous results we can then conclude the following

Theorem 5.1 The phase boundary X = Ut in the solution (5.2) of

(1.5),(5.1),(3.2) is inadmissible according to the viscosity

criterion (Definition 2.1). If w_=w0 satisfies (1) of Lemma

3.4 there is a unique U* > 0, wI = w+(U*), uI = u 0 - U*(w+(U*)-w_),

so that X = U*t is an admissible phase boundary accordinq to

the viscosity-capillarity condition. If w+=w1 satisfies (II)

of Lemma 3.4 there is a unique U* < 0, w0 = w_(U*), u0 = uI +

U*(w - w_(U*)), so that X = U*t is an admissible phase boundary

according to the viscosity-capillarity condition.
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Thus while (5.1) provides infinitely many possible solu-

tions to a Riemann problem for (u0 ,w0 ) fixed and (ulw 1 )

allowed to vary, the viscosity-capillarity conditions says

that solutions of the form (5.2) will be allowed only for

one choice of (ulw 1 ) if w0 satisfies (I) of Lemma 3.4. Of

course a similar statement holds if w1 satisfies (II) of

Lemma 3.4.

S-21---
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6. A possible experimental method for computing the coeffi-

cient A in Korteweg's theory.

In the preceding section we have seen that under certain

conditions for a given A in the capillarity formulae (3.3),(3.4)

a propagating phase boundary will be admissible with a certain

speed U*. This result then presents an inverse problem. Con-

sider an experiment in which a propagating phase boundary is

observed for a van der Waals type fluid. Can one find an A

so that the theory of Section 3 matches the experiment? If one

can find such an A (possibly using numerical integration of

(3.9)) then an estimate of the coefficient A is obtained.

In constrast to the above dynamic experiment an observation

of a steady state phase boundary (y(t) = 0) will not provide an

identification of A. For if i(t) : 0

have p(w_) = p(w+) and from (3.9) we have

W+
f (p( )- p(w_))d = 0 (6.1)

W_

for all choices of A > 0. Of course (6.1) is just a statement

of Maxwell's equal area rule [8],[91,[121. The point here is

that calculating the non-zero speed of propagation of a phase

boundary can provide an estimate of A; such a determination

will not follow from studying a steady state phase boundary.

Needless to say the above discussion has the implicit

premise that the coefficient D in Korteweg's theory is zero. This

may or may not be the case. If D - 0 (6.1) shows the Maxwell

equal area rule holds. However the converse is not true. Serrin

-22-
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has shown in [12] that the equal area rule may hold even for

non-zero D. Hence experimental knowledge of the equal area

rule's applicability for a given fluid would not in itself

imply D =_ 0. The converse is true, however, i.e. if the equal

area rule does not hold for phase equilibrium then D - 0. This

follows immediately from the remarks preceding (6.1). Of course

in such cases as D 4 0, and for more general choices of p(w),

C(w), Lemma 3.8 may prove of value in parameter identification.
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