NONLINEAR PARABOLIC EQUATIONS INVOLVING MEASURES AS INITIAL COND-ITIONS

H. BREZIS, A. FRIEDMAN

UNCLASSIFIED
MRC-TSR-2277

WISCONSIN UNIVERSITY MATHEMATICS RESEARCH CENTER

F/12/1

SEP-81

M. BREZIS, A. FRIEDMAN

DA4629-80-C-0041
NONLINEAR PARABOLIC EQUATIONS INVOLVING MEASURES AS INITIAL CONDITIONS

Haim Brezis and Avner Friedman

Mathematics Research Center
University of Wisconsin—Madison
610 Walnut Street
Madison, Wisconsin 53706

September 1981

(Received September 1, 1981)

Sponsored by
U. S. Army Research Office
P. O. Box 12211
Research Triangle Park
North Carolina 27709

and
National Science Foundation
Washington, DC 20550

Approved for public release
Distribution unlimited
We first consider the Cauchy problem for certain equations
(1) \(u_t - \Delta u + |u|^{p-2} u = 0 \) on \(\Omega \times (0,T) \)
with a boundary condition and the initial condition
(2) \(u(x,0) = \delta(x) \) on \(\Omega \)
where \(\Omega \subset \mathbb{R}^n \) is domain containing \(0 \), \(0 < p < \infty \), \(0 < T < \infty \) and \(\delta(x) \) is
the Dirac mass at \(0 \). We prove that a solution of (1) \(\rightarrow \) (2) exists if and
only if \(0 < p < \frac{n+2}{n} \). When \(0 < p < \frac{n+2}{n} \) we actually prove a more general
existence and uniqueness result in which (2) is replaced by
(3) \(u(x,0) = u_0(x) \) on \(\Omega \)
where \(u_0 \) is a measure.

Next, we discuss the Cauchy problem for
(4) \(u_t - \Delta(|u|^{m-1}u) = 0 \) on \(\Omega \times (0,T) \)
where \(0 < m < \infty \), with a boundary condition and the initial condition (3).
We prove that a solution of (4) \(\rightarrow \) (2) exists if and only if \(m > \frac{n-2}{n} \). When
\(m > \frac{n-2}{n} \) we actually prove existence for the problem (4) \(\rightarrow \) (3).

AMS(MOS) Subject Classifications: 35K15, 35K55
Key Words: Nonlinear parabolic equations; Measures as initial conditions;
Nonexistence; Boundary layer; Removable singularities; Porous
media equation; Regularizing semigroups; Compact semigroups.

Work Unit Number 1 - Applied Analysis

Sponsored by the United States Army under Contract No. DAAG29-80-C-0041. The
second author is partially supported by the National Science Foundation under
Grant No. MCS 7915171.
Nonlinear evolution equations of the form
\[u_t - \Delta u + |u|^{p-1}u = 0 \quad \text{on } \mathbb{R}^n \times (0,T) \]
or
\[u_t - \Delta (|u|^{m-1}u) = 0 \quad \text{on } \mathbb{R}^n \times (0,T) \]
arise in a large variety of problems in physics and mechanics. This paper deals with the question of existence (and uniqueness) when the initial data is a measure, for example a Dirac mass. Physically this corresponds to the important case when the initial temperature (or initial density etc.) is extremely high near one point. The main novelty of this paper is to show that a solution exists only under some severe restrictions on the parameter \(p \) (or \(m \)); namely \(p \) must be less than \(\frac{n+2}{n} \) \(\left(\text{or } m > \frac{n-2}{n} \right) \). For example, one striking conclusion reached is the fact that the equation
\[\begin{cases} u_t - \Delta u + u^3 = 0 & \text{in } \mathbb{R}^n \times (0,T) \\ u(x,0) = \delta(x) & \end{cases} \]
possesses no solution in any dimension \(n > 1 \) and on any time interval \((0,T)\). This result pinpoints the sharp contrast between linear and nonlinear equations from the point of view of existence. It also implies that linearization is meaningful for equations of the type \((1) \) even for small time interval.

The responsibility for the wording and views expressed in this descriptive summary lies with NRC, and not with the authors of this report.
1. Introduction

In this paper we first consider the Cauchy problem for the nonlinear parabolic equation

\[u_t - \Delta u + |u|^{p-1}u = 0 \quad \text{on} \quad \Omega \times (0,T) \]

with a boundary condition and the initial condition

\[u(x,0) = \delta(x) \quad \text{on} \quad \Omega \]

where \(\Omega \subset \mathbb{R}^n \) is a domain containing 0, \(0 < p < \infty \), \(0 < T < \infty \) and \(\delta(x) \) denotes the Dirac mass at 0.

We prove that a solution of (1) - (2) exists if and only if \(0 < p < \frac{n+2}{n} \). In particular the equation

\[u_t - \Delta u + u^3 = 0 \quad \text{on} \quad \Omega \times (0,T) \]

\[u(x,0) = \delta(x) \quad \text{on} \quad \Omega \]

has no solution in any dimension \(n > 1 \). We derive the nonexistence claim from a statement about "removable singularities"; we show that there is a local obstruction to the existence of a solution of (1) - (2) when \(p > \frac{n+2}{n} \) no matter what conditions we impose on the boundary \(\partial \Omega \). When \(0 < p < \frac{n+2}{n} \) we actually prove a more general existence and uniqueness result in which (2) is replaced by

\[u(x,0) = u_0(x) \quad \text{in} \quad \Omega \]

where \(u_0(x) \) is a measure.

Sponsored by the United States Army under Contract No. DAAG20-80-C-0041. The second author is partially supported by the National Science Foundation under Grant No. MCS 7915171.
Next we discuss the Cauchy problem for the equation

\[u_t - \Delta (|u|^{m-1}u) = 0 \text{ on } \Omega \times (0,T) \]

where \(m > 0 \), with a boundary condition and the initial condition (2). We prove that a solution of (4) - (2) exists if and only if \(m > \frac{n-2}{n} \) (any \(m > 0 \) when \(n = 1 \) or 2). We actually prove an existence result for (4) - (3) when \(m > \frac{n-2}{n} \).

The solvability of (4) - (3) when \(u_0 \) is a measure has been considered by various authors. If \(\Omega = \mathbb{R}^n \), \(u_0(x) = \delta(x) \) and \(m > \frac{n-2}{n} \), an explicit solution of (4) - (3) was given by Barenblatt [4] (see also Pattle [21]). If \(\Omega = \mathbb{R}^n \), \(m > 1 \), \(u_0 > 0 \) is a bounded measure, existence and uniqueness was obtained by M. Pierre [23], even for more general nonlinearities \(\phi(u) \) - not just \(|u|^{m-1}u \) [the case \(n = 1 \) had been treated earlier by S. Kamin [18]). The non existence aspect seems however to be new. Non existence results for (1) - (2) (or (4) - (2)) are somewhat surprizing in view of the following facts:

i) solutions of (1) - (3) [or (4) - (3)] are known to exist for any \(u_0 \in L^1(\Omega) \) under no restriction on \(p > 0 \) (or \(m > 0 \))

ii) a priori estimates do not "distinguish" between \(L^1 \) functions and measures.

This apparent contradiction will be explained in Sections 3 and 4.

Existence and non existence results for elliptic equations of the form

\[-\Delta u + |u|^{p-1}u = f \text{ on } \Omega\]

where \(f \) is a measure have been obtained by Bamberger [2], Benilan-Brezis [6] and Brezis-Veron [12]. Our approach borrows some ideas from these papers.

The results concerning equation (1) are presented in Section 2, 3 and 4.

In Section 2 we prove non existence and removable singularities for (1) - (2) when \(p > \frac{n+2}{n} \).
In Section 3 we prove existence and uniqueness of a solution of (1) - (3) when \(p < \frac{n+2}{n} \).

In Section 4 we assume \(p > \frac{n+2}{n} \) and we study the limiting behavior of a sequence \(u_j \) of solutions of (1) corresponding to a sequence of smooth initial data \(u_{0,j} + \delta \). We exhibit a boundary layer phenomenon at \(t = 0 \); in the process of passing to the limit one loses the natural initial condition.

In Section 5 we discuss the properties of equation (4).
2. Non existence and removable singularities for equation (1) when \(p > \frac{n+2}{n} \).

Let \(\Omega \subset \mathbb{R}^n \) be any open set with \(0 \in \Omega \). Assume \(p > \frac{n+2}{n} \).

Definition. A solution of (1) is a function \(u(x,t) \in L^p_{\text{loc}}(\Omega \times (0,T)) \) such that (1) holds in the sense of distributions i.e.

\[
-\int \int u_t \phi \, dx \, dt - \int \int u \phi \, dx \, dt + \int \int |u|^{p-1}u \phi \, dx \, dt = 0 \quad \forall \phi \in \mathcal{D}(\Omega \times (0,T))
\]

The main results of Section 2 are the following

Theorem 1. There is no solution of (1) such that

\[
\lim_{t \to 0} \int u(x,t) \phi(x) \, dx = \phi(0) \quad \forall \phi \in C_c(\Omega)^{(1)}
\]

Theorem 1 is an immediate consequence of

Theorem 2. Assume \(u \) is a solution of (1) such that

\[
\lim_{t \to 0} \int u(x,t) \phi(x) \, dx = 0 \quad \forall \phi \in C_c(\Omega \setminus \{0\})^{(2)}
\]

Then \(u \in C^{2,1}(\Omega \times (0,T))^{(2)} \) and \(u(x,0) = 0 \) on \(\Omega \).

Remark 1. Theorem 2 implies in particular the following. Let \(u \) be a classical solution of (1) on \(\Omega \times (0,T) \). Assume that \(u \) is continuous on \(\Omega \times [0,T) \) except possibly at the point \((x,t) = (0,0) \) and that \(u(x,0) = 0 \) on \(\Omega \setminus \{0\} \). Conclusion: \(u \) has no singularity at \((0,0) \).

Note the sharp contrast with the behavior of solutions of linear parabolic equations. For example the fundamental solution \(E(x,t) \) of the heat equation satisfies:

i) \(E_t - \Delta E = 0 \) in \(\mathbb{R}^n \times (0,T) \)

ii) \(E(x,t) \) is smooth on \(\mathbb{R}^n \times [0,T) \) except at the point \((x,t) = (0,0) \)

and \(E(x,0) = 0 \) for \(x \neq 0 \)

(1) \(C_c(\Omega) \) denotes the space of all continuous functions with compact support in \(\Omega \).

(2) \(C^{2,1} \) denotes the space of all continuous functions \(u(x,t) \) having continuous derivatives \(u_x, u_{x_1}, u_{x_1 x_1} \).
iii) \(E \) has a singularity at \((0,0)\).

Remark 2. In Theorem 2 one may replace condition (5) by the weaker condition
\[
(5') \quad \text{ess lim}_{t \to 0} \int u(x,t) \phi(x) \, dx = 0 \quad \forall \phi \in \mathcal{D}(\Omega \setminus \{0\})
\]
provided \(u > 0 \) (because, in that case, \((5) \iff (5')\)). However if \(u \) changes sign we don't know whether the conclusion of Theorem 2 is still valid under the assumption \((5')\).

The proof of Theorem 2 is divided into 6 steps. In what follows \(u \) denotes a solution of \((1)\) satisfying \((5)\).

Step 1. We have \(u \in C^{2,1}(\Omega \times (0,T)) \).

Proof. We shall use a parabolic version of Kato's inequality.

Lemma 1. Let \(Q \subset \mathbb{R}^n \times \mathbb{R} \) be any open set. Let \(u \in L^1_{\text{loc}}(Q) \) be such that
\[
 u_t - \Delta u = f \quad \text{in} \quad \mathcal{D}'(Q)
\]
with \(f \in L^1_{\text{loc}}(Q) \). Then
\[
 |u|_t - \Delta |u| \leq f \quad \text{sign} \quad u \quad \text{in} \quad \mathcal{D}'(Q) \quad (1)
\]
Since the proof is almost identical to the proof in the elliptic case (see Kato [19]) we shall omit it.

From (1) and Lemma 1 we deduce that
\[
 |u|_t - \Delta |u| + |u|^p < 0 \quad \text{in} \quad \mathcal{D}'(\Omega \times (0,T)) \quad (6)
\]
and in particular
\[
 |u|_t - \Delta |u| < 0 \quad \text{in} \quad \mathcal{D}'(\Omega \times (0,T)) \quad (7)
\]
Therefore \(|u| \) is subcaloric in \(\Omega \times (0,T) \) and consequently \(u \in L^\infty_{\text{loc}}(\Omega \times (0,T)) \). Indeed a mollifier \(U_\varepsilon \) of \(|u| \) still satisfies (7).

Representing it in terms of Green's function in a cube \(K_T \) with sides
parallel to the axes we obtain (see Friedman [17; p. 130])

\[U_\varepsilon(x,t) \leq C \int_{\partial_x^p r} U_\varepsilon \]

where \(\partial_x^p r \) is the parabolic boundary of \(X_r \) and \((x,t) \) is the center of its top face. Integrating with respect to \(r \) in some interval \(0 < r_1 < r < r_2 \) and taking \(\varepsilon \to 0 \) we obtain that \(u \in L^\infty_{\text{loc}}(\Omega \times (0,T)) \).

Using (1) and the standard regularity theory for the heat equation we conclude that \(u \in C^{2,1}(\Omega \times (0,T)) \). In fact, \(u \) is as smooth as the function \(u \mapsto |u|^{p-1}u \) permits. In particular if \(p \) is an integer then \(u \in C^\infty(\Omega \times (0,T)) \).

Step 2. Let \(\omega \subset \Omega \setminus \{0\} \). Fix \(T_1 < T \). Then we have

(8) \[u \in L^p(0,T_1; L^1(\omega)) \]

(9) \[u \in L^p(0,T_1; L^p(\omega)) \]

Proof of (8). Suppose by contradiction that for a sequence \(t_n \) in \((0,T_1)\),

\[|u(\cdot,t_n)|_{L^1(\omega)} \to \infty. \]

Since \(u \in L^\infty_{\text{loc}}(\Omega \times (0,T)) \) we have \(t_n \to 0 \). On the other hand, we deduce from (5) and the uniform boundedness principle that \(|u(\cdot,t_n)|_{L^1(\omega)} \) remains bounded as \(t_n \to 0 \).

Proof of (9). Let \(\zeta \in C_0^\infty(\Omega \setminus \{0\}) \) be such that \(0 < \zeta < 1 \), \(\zeta = 1 \) on \(\omega \).

From (5) we deduce that for \(0 < \varepsilon < T_1 \)

\[\int |u(x,T_1)|\zeta(x)dx + \int_0^{T_1} \int |u(x,t)|P\zeta(x)dxdt < \]

\[< \int |u(x,\varepsilon)|\zeta(x)dx + \int_0^{T_1} \int |u(x,t)|\Delta \zeta(x)dx \]

(10)

As usual this notation means that \(\omega \) is an open set such that \(\overline{\omega} \subset \Omega \setminus \{0\} \).
From (8) we know that the right hand side in (10) remains bounded as \(\varepsilon \to 0 \) and thus (9) holds.

Step 3. Let \(\omega \subset \Omega \setminus \{0\} \). Then \(u \in C^{2,1}_c(\omega \times [0,T]) \) with \(u(x,0) = 0 \) on \(\omega \).

Proof. Consider the function \(\tilde{u}(x,t) \) defined on \(\omega \times (-T,+T) \) by\(^{(1)}\)

\[
\tilde{u}(x,t) = \begin{cases}
 u(x,t) & \text{if } 0 < t < T \\
 0 & \text{if } -T < t < 0
\end{cases}
\]

so that by Step 2 \(\tilde{u} \in L^p_{\text{loc}}(\omega \times (-T,+T)) \). We claim that

\[
\tilde{u}_t - \Delta \tilde{u} + |u|^{p-1}u = 0 \quad \text{in } D'(\omega \times (-T,+T)) .
\]

Indeed let \(\phi \in D(\omega \times (-T,+T)) \); we must check that

\[
- \int u\phi_t - \int u\Delta \phi + \int |u|^{p-1}u \phi = 0 .
\]

Let \(\eta(t) \) be any smooth non decreasing function on \(\mathbb{R} \) such that

\[
\eta(t) = \begin{cases}
 1 & \text{for } t > 2 \\
 0 & \text{for } t < 1
\end{cases}
\]

and set \(\eta_k(t) = \eta(kt) \).

Since \(u \) is a solution of (1) we know that

\[
- \int u(\phi_{k,t}) - \int u\Delta (\eta_{k}) + \int |u|^{p-1}u \phi \eta_k = 0 .
\]

In order to deduce (12) it suffices to verify that

\[
\int u\phi(\eta_{k,t}) \to 0 \quad \text{as } k \to \infty .
\]

We have

\[
\int u\phi(\eta_{k,t}) = \int u(x,t)(\phi(x,t) - \phi(x,0))(\eta_{k,t}) + \int u(x,t)\phi(x,0)(\eta_{k,t}) .
\]

By assumption (5) \(\int u(x,t)\phi(x,0)dx \to 0 \) as \(t \to 0 \) and thus

\[
\int u(x,t)\phi(x,0)(\eta_{k,t}) \to 0 \quad \text{as } k \to \infty .
\]

On the other hand, by (8) we see that

\[\text{(1)}\]

We thank M. S. Baouendi for suggesting this device which led to a simplification of our original proof.
Combining (15), (16) and (17) we obtain (14). Therefore (11) is proved. It follows (as in Step 1) that $u \in C^2_1(\omega \times (-T,T);)$ in particular $u \in C^2_1(\omega \times [0,T))$ and $u(x,0) = 0$ on ω.

Let us summarize: so far, we have shown - without any restriction on p - that any solution of (1) satisfying (5) is smooth on $\Omega \times [0,T)$, except possibly at the point $(x,t) = (0,0)$, and that $u(x,0) = 0$ for $x \neq 0$. It remains to prove that u is smooth near $(0,0)$; the restriction $p > \frac{n+2}{n}$ is now essential.

Step 4. There are constants C, $\rho > 0$ and $0 < T_1 < T$ such that

\begin{equation}
|u(x,t)| < \frac{C}{(|x|^2 + t)^{n/2}} \text{ for } |x| < \rho \text{ and } 0 < t < T_1.
\end{equation}

Proof. Let $\rho > 0$ be such that $B_{2\rho}(0) \subset \Omega$; fix $x^0 \in \mathbb{R}^n$ with $0 < |x^0| < \rho$ and fix $R < |x^0|$. Set

$G = \{(x,t); |x - x^0|^2 < R^2 + t \text{ with } 0 < t < T_1\}$.

By choosing $T_1 > 0$ small enough we may assume that $G \subset \Omega \times (0,T)$. In the region G we define

$U(x,t) = \frac{C(R^2 + t)^{8/2}}{(R^2 - r^2 + t)^{2^{\theta-1}}}$

with $\theta = \frac{2}{p-1}$, $r = |x - x^0|$ and C a positive constant. We compute

$U_t - \Delta U + u^p = \frac{\theta}{2} \frac{C(R^2 + t)^{2}}{(R^2 - r^2 + t)^{\theta}} - \frac{4C^9(\theta+1)r^2(R^2 + t)^{\theta/2}}{(R^2 - r^2 + t)^{\theta+2}}$

$\quad - \frac{C(2n+1)\theta(R^2 + t)^{8/2}}{(R^2 - r^2 + t)^{\theta+1}} + \frac{Cp(R^2 + t)^{2}}{(R^2 - r^2 + t)^{\theta}p}$.

Note that $\theta p = \theta + 2$ and therefore

\begin{equation}
U_t - \Delta U + u^p > 0 \text{ holds in } G
\end{equation}
provided

\[C^{p-1}(R^2+t) > 4\theta(\theta+1)r^2 + (2n+1)\theta(R^2-r^2+t) \]

i.e.

\[\begin{cases}
C^{p-1} > (2n+1)\theta \\
C^{p-1} > 4\theta(\theta+1)
\end{cases} \]

(it suffices to check (20) at the end points \(r = 0 \) and \(r = \sqrt{R^2+t} \)).

We choose \(C \) large enough (depending on \(p \) and \(n \)) so that (21) and consequently (19) - holds. Clearly

\[u(x,t) < U(x,t) \text{ if } (x,t) \in \partial G \text{ and } 0 < t < T_1 \]

(recall that \(U(x,t) = +\infty \) if \((x,t) \in \partial G \) and \(0 < t < T_1 \), while \(u(x,0) = 0 < U(x,0) \)). By a standard comparison argument we obtain

\[u < U \text{ on } G. \]

In particular

\[u(x',t) < U(x',t) = \frac{C}{(R^2+t)^{\theta/2}}. \]

Since \(R \) is any number less than \(|x^0| \) we have

\[u(x',t) < \frac{C}{(|x^0|^2+t)^{\theta/2}} \text{ for } |x^0| < \rho \text{ and } 0 < t < T_1. \]

Finally since \(\theta < n \) (i.e. \(p > \frac{n+2}{n} \)) we get

\[u(x',t) < \frac{C_1}{(|x^0|^2+t)^{n/2}} \]

with \(C_1 = C(\rho^2+T_1)^{\frac{n-\theta}{2}} \). We conclude the proof of Step 4 by changing \(u \) into \(-u \).

Step 5. We have

\[\int_{|x|<\rho} \int_0^{T_1} |u(x,t)|^p dxdt = 0. \]
Proof. An easy computation based on (18) shows that

\[\int_{|x|<\rho} \int_{0}^{T_1} |u(x,t)| \, dx \, dt < \infty. \]

Fix a function \(\zeta \in \mathcal{D}(\Omega \times (-T,+T)) \) with \(0 < \zeta < 1, \zeta = 1 \) on \(\mathcal{B}_{\rho}(0) \times (0,T_1) \) and set

\[\hat{\phi}_k(x,t) = \eta_k(|x|^2 + t)\zeta(x,t) \]

(the same function \(\eta_k \) as in Step 3). Since \(\hat{\phi}_k \) vanishes on a neighborhood of \((0,0)\) we deduce from Steps 1 - 3 that

\[\int \int |u| |\phi_k|_t - \int \int |u| A_k + \int \int |u|^p \phi_k < 0 \]

i.e.

\[\int \int |u|^p \phi_k < \int \int |u| |\phi_k|_t + \int \int |u| A_k \]

Set \(D_k = \{(x,t); \frac{1}{k} < x^2 + t < \frac{2}{k}\} \). We have

\[|(\phi_k)_t| = \eta_k^\prime \zeta + \eta_k \zeta_t \]

\[\Delta \phi_k = (A \eta_k)\zeta + 2 \nabla \eta_k \nabla \zeta + \eta_k \Delta \zeta \]

and so

\[|(\phi_k)_t| < C \text{ outside } D_k, \]

\[|(\phi_k)_t| < C(k+1) \text{ on } D_k, \]

\[|A_k| < C \text{ outside } D_k, \]

\[|A_k| < C(k+1) \text{ on } D_k. \]

Combining (25), (23), (26), (27), (28), (29) we obtain

\[\int \int |u|^p \phi_k < C_k \int \int_{D_k} |u| + C. \]

On the other hand, by Step 4

\[\int \int_{D_k} |u| < C \int \int_{D_k} \frac{dx \, dt}{(|x|^2 + t)^{n/2}} < C_k^{n/2} \text{ meas } D_k = \frac{C_k^{n/2}}{k} \text{ meas } D_1. \]

Therefore \(\int \int |u|^p \phi_k \) remains bounded as \(k \to \infty \) and (22) follows.

Step 6. \(u \) is smooth on \(\Omega \times [0,T) \) and \(u(x,0) = 0 \) on \(\Omega \).

Proof. Consider the function \(\tilde{u} \) defined on \(\Omega \times (-T,+T) \) by
\[\tilde{u}(x,t) = \begin{cases} u(x,t) & \text{if } t > 0 \\ 0 & \text{if } t < 0 \end{cases} . \]

In view of Step 5 we know that \(\tilde{u} \in L^p_{2\infty} (\Omega \times (-T,T)) \). We claim that

\[\tilde{u}_t - \Delta \tilde{u} + |\tilde{u}|^{p-1} \tilde{u} = 0 \text{ in } D'((\omega \times (-T,T)) \]

from which we derive as in Step 1 - that \(\tilde{u} \in C^2,1(\Omega \times (-T,T)) \) and so \(u \in C^2,1(\Omega \times [0,T)) \) with \(u(x,0) = 0 \) on \(\Omega \).

Let \(\zeta \in D((\Omega \times (-T,T)) \); we must check that

\[\int u \zeta_t - \int u \Delta \zeta + \int |u|^{p-1} u \zeta = 0 . \]

We already know that

\[\int u(\phi'_k) = \int u \phi'_k + \int |u|^{p-1} u \phi_k = 0 \]

where \(\phi_k(x,t) = \eta_k(x^2 + t)\zeta(x,t) \).

It is therefore sufficient to verify that as \(k \to \infty \)

\[\int u(\eta_k) \zeta + 0 \]
\[\int u \Delta \eta_k \zeta + 0 \]
\[\int u \nabla \eta_k \nabla \zeta + 0 . \]

We have

\[\int |u(\eta_k)| \zeta | < C_k \int_D |u| \]
\[\int |u \Delta \eta_k| \zeta | < C_k \int_D |u| \]
\[\int |u \nabla \eta_k \nabla \zeta | < C_k \int_D |u| . \]

Finally, by Hölder we get

\[\int_D |u| < \left(\int_D |u|^p \right)^{1/p} \left(\text{meas } D_k \right)^{1/p} . \]

Recall that \(|\text{meas } D_k| = \frac{c}{n^2 + 1} \) and that \(\frac{1}{p} \left(\frac{n}{2} + 1 \right) > 1 \) (i.e. \(p > \frac{n^2}{n} \)),

therefore

\[k \int_D |u| < C \left(\int_D |u|^p \right)^{1/p} + 0 \text{ (by Step 5)}. \]
3. Existence and uniqueness for equations (1) - (3) when $0 < p < \frac{n+2}{n}$.

We assume now for simplicity that $\Omega \subset \mathbb{R}^n$ is a bounded domain with a boundary $\partial \Omega$ of class $C^{2+\alpha}(\alpha > 0)$. Let $0 < p < \frac{n+2}{n}$.

Consider the initial value problem

(37) $u_t - \Delta u + |u|^{p-1}u = 0$ on $\Omega \times (0,\infty)$

(38) $u(x,t) = 0$ on $\partial \Omega \times (0,\infty)$

(39) $u(x,0) = u_0(x)$ on Ω

The initial data $u_0(x)$ is a bounded measure on Ω, i.e.

(40) $u_0 \in M(\Omega) = C_0(\bar{\Omega})^*$

where $C_0(\bar{\Omega})$ denotes the space of continuous functions on $\bar{\Omega}$ which vanish on $\partial \Omega$.

Theorem 3. There is a unique function $u \in C^{2,1}(\bar{\Omega} \times (0,\infty))$ solving (37), (38) and such that

(41) $\lim_{t \to 0} \int u(x,t)\phi(x)dx = \langle u_0, \phi \rangle \quad \forall \phi \in C_0(\bar{\Omega})$.

In addition $\int_0^\infty \int_\Omega |u|^p dx dt < \infty$.

Remark 3. The conclusion of Theorem 3 is also valid for some unbounded domains Ω, for example $\Omega = \mathbb{R}^n$.

Remark 4. It is presumably possible to solve (37) - (38) - (39) for some values of $p > \frac{n+2}{n}$ and some measures u_0 less singular than δ (for example a spherical distribution of charges) under some appropriate relation between p and the singular part of u_0.

Let $S(t) = e^{t\Delta}$ denote the contraction semigroup generated in $L^1(\Omega)$ by Δ with zero Dirichlet boundary condition.

Let $0 < T < \infty$ and set $Q = \Omega \times (0,T)$. We shall need the following

Lemma 2. Consider the mapping K defined by

$$ (u_0,f) \mapsto u = S(t)u_0 + \int_0^t S(t-s)f(s)ds $$
i.e. u is the solution of the linear equation

$$
\begin{cases}
 u_t - \Delta u = f & \text{on } \Omega \times (0,T) \\
 u(x,t) = 0 & \text{on } \partial \Omega \times (0,T) \\
 u(x,0) = u_0(x)
\end{cases}
$$

Then K is a compact operator from $L^1(\Omega) \times L^1(Q)$ into $L^q(Q)$ for every $q < \frac{n+2}{n}$.

Proof of Lemma 2. We already know (see Baras [3]) that K is a compact operator from $L^1(\Omega) \times L^1(Q)$ into $L^1(Q)$. Therefore it suffices to check that K is a bounded operator from $L^1(\Omega) \times L^1(Q)$ into $L^q(Q)$ for every $q < \frac{n+2}{n}$.

Recall that for every $1 \leq q \leq \infty$ we have

$$
|S(t)u_0|_{L^q(\Omega)} \leq C \frac{n}{t^2 (1 - \frac{1}{q})} |u|_{L^1(\Omega)}^{1 - \frac{1}{q}} \quad \text{(42)}
$$

Inequality (42) follows by Hölder's inequality from the extreme cases $q = 1$, $q = \infty$ (and the case $q = \infty$ is obtained, via the maximum principle from the explicit representation of $e^{t\Delta}$ in \mathbb{R}^n).

We deduce from (42) (and Young's inequality) that

$$
|u|_{L^q(Q)} \leq C (|u|_{L^1(\Omega)} + |f|_{L^1(Q)})
$$

provided $q < \frac{n+2}{n}$ (in order for the function $t^{\frac{n}{2} (\frac{1}{q} - 1)}$ to lie in $L^q(0,T)$).

Proof of Theorem 3

Existence. Let $u_{0j} \in \mathcal{D}(\Omega)$ be a sequence such that

$$
|u_{0j}|_{L^1(\Omega)} < C
$$

(43)

$$
\lim_{j \to \infty} u_{0j} = u_0 \quad \text{in the } \ast \text{-topology of } M(\Omega).
$$

(44)
Let u_j be the solution of (37) - (38) corresponding to the initial data u_{0j}. One has the following estimates

$$\| u_j \|_{L^1(0,T; L^1)} < \| u_{0j} \|_{L^1(\Omega)} < C$$

(45)

$$\int_0^T \int_\Omega |u_j|^p \, dx \, dt < \| u_{0j} \|_{L^1(\Omega)} < C$$

(46)

Indeed, multiply (37) by $\theta_m(u_j)$ where θ_m is a sequence of smooth nondecreasing functions converging to sign. It follows from Lemma 2 that u_j is compact in $L^q(\Omega)$ for every $q < \frac{n+2}{n}$. We choose a subsequence still denoted by u_j such that $u_j \rightharpoonup u$ in $L^q(\Omega)$ for every $q < \frac{n+2}{n}$, and thus

$$|u_j|^p - u_j - \lambda \rightarrow u^p - u$$

(47)

in $L^1(\Omega)$. On the other hand, an easy comparison argument shows that

$$|u_j(t)| < S(t) |u_{0j}|$$

and therefore

$$\| u_j \|_{L^1(\Omega)} < \frac{C}{t^{n/2}} \| u_{0j} \|_{L^1(\Omega)} < \frac{C}{t^{n/2}}$$

Consequently $u \in L^\infty(0,\infty; L^1(\Omega))$ for every $\delta > 0$, and u satisfies

$$u(t) = S(t)u_0 - \int_0^t S(t-s) |u(s)|^{p-1} u(s) \, ds$$

We conclude - via a standard bootstrap - that $u \in C^{2,1}_w(\Omega \times (0,T))$ (and in fact u is as smooth as the function $u \rightarrow |u|^{p-1} u$ permits). Here $S(t)u_0$ is defined on $M(\Omega)$ as the adjoint of the continuous contraction semigroup e^{tA} on $C_0(\Omega)$, as such $S(t)$ is not a continuous semi-group on $M(\Omega)$ but $S(t)u_0 \rightharpoonup u_0$ in the w^* topology of $M(\Omega)$ as $t \rightarrow 0$.

Remark 5. Assume u_0 is an L^1 function instead of a measure. Then, problem (37) - (38) - (39) has a solution for every $0 < p < \infty$. This is a consequence of the Crandall-Liggett Theorem (see [15]) applied in $L^1(\Omega)$ to the m-accretive operator $Au = -\Delta u + |u|^{p-1} u$ (see Brezis-Strauss [11]). The same conclusion can also be obtained directly as follows: let $u_{0j} \in \alpha(\Omega)$ be
a sequence such that $u_{0j} + u_0$ strongly in $L^1(\Omega)$. Multiplying (37) by $\delta_m(u_j - u_k)$ we obtain

$$\int |u_j(x,T) - u_k(x,T)| \, dx + \int_0^T \int_\Omega |u_j|^p - |u_k|^p \, dx \, dt \leq 0$$

As $j,k \to \infty$. Therefore $|u_j|^p u_j$ is a Cauchy sequence in $L^1(\Omega)$ and converges strongly in $L^1(\Omega)$. Thus we have proved (47) without any restriction on p (note that the assumption $p < -\frac{n+2}{n}$ enters in the proof of Theorem 3 only in order to obtain (47)).

Uniqueness. Here we need no restriction on p, so let $0 < p < \infty$ be arbitrary. First, observe that if $u \in C^{2,1}([\Omega \times (0,T)])$ satisfies (37), (38) and (41), then

$$u \in L^1(\Omega) \quad \text{and} \quad \int_0^T \int_\Omega |u|^p \, dx \, dt < \infty$$

and

$$\int_0^T \int_\Omega u \xi_t - \int_0^T \int_\Omega u \xi + \int_0^T \int_\Omega |u|^p \xi \, dx \, dt = \langle u_0, \zeta(\cdot,0) \rangle \quad \forall \xi \in W$$

where

$$W = \{ \xi \in C^{2,1}([\Omega \times (0,T)]; \xi(\cdot,T) = 0 \text{ on } \Omega, \xi(\cdot,t) = 0 \text{ on } \partial \Omega \times [0,T] \}. $$

Indeed from (41) and the uniform boundedness principle we see that

$$u \in L^\infty(0,T; L^1(\Omega)).$$

Next, we have for $\epsilon > 0$

$$\int_\Omega |u(x,T)| \, dx + \int_0^T \int_\Omega |u|^p \, dx \, dt < \int_\Omega |u(x,\epsilon)| \, dx$$

(multiply (37) by $\delta_m(u)$ and integrate over $\Omega \times (\epsilon,T)$) and thus

$$\int_0^T \int_\Omega |u|^p \, dx \, dt < \infty.$$

Finally in order to prove (50) multiply (37) by ξ, integrate on $\Omega \times (\epsilon,T)$, and pass to the limit as $\epsilon \to 0$ (notice that

$$\int u(x,\epsilon)\xi(x,\epsilon) \, dx + \langle u_0, \zeta(\cdot,0) \rangle.$$ We shall now establish uniqueness within the class of function u satisfying (49) - (50). Let u_1, u_2 be two solutions and set $v = u_1 - u_2$. We have
where \(f = -|u_1|^{p-1}u_1 + |u_2|^{p-1}u_2 \). Uniqueness is a direct consequence of the following

Lemma 3. Assume \(v \in L^1(\Omega) \), \(f \in L^1(\Omega) \) satisfy

\[
- \int_0^T \int_{\Omega} \nabla (\zeta_t + \Delta \zeta) = \int_0^T \int_{\Omega} f \zeta \quad \forall \zeta \in \mathcal{W}
\]

Then

\[
\int_0^T \int_{\Omega} f \text{sign} \nabla v \, dx \, ds < \int_{\Omega} |v(x,t)| \, dx \quad \text{for all } t \in [0,T].
\]

Proof of Lemma 3. Notice that for any given \(f \in L^1(\Omega) \) there is a unique \(v \in L^1(\Omega) \) satisfying (51). Indeed if

\[
- \int_0^T \int_{\Omega} \nabla (\zeta_t + \Delta \zeta) = 0 \quad \forall \zeta \in \mathcal{W}
\]

then take \(\zeta \) such that

\[
\zeta_t + \Delta \zeta = h \quad \text{on } \Omega \times (0,T),
\]

\[
\zeta(x,t) = 0 \quad \text{on } \partial \Omega \times (0,T),
\]

\[
\zeta(x,T) = 0 \quad \text{on } \Omega
\]

(where \(h(x,t) \) is arbitrary and smooth) to deduce that \(\int_0^T \int_{\Omega} v \, h = 0 \).

From the preceding remark on uniqueness it follows that if we solve

\[
\begin{cases}
\frac{\partial v_i}{\partial t} - \Delta v_j = f_i & \text{on } \Omega \times (0,T) \\
v_i(x,t) = 0 & \text{on } \partial \Omega \times (0,T) \\
v_i(x,0) = 0 & \text{on } \Omega
\end{cases}
\]

with \(f_i + f \) in \(L^1(\Omega) \), then \(v_j + v \in C([0,T]; L^1(\Omega)) \). Multiplying (53) by \(\theta_m (v_j) \) we obtain

\[
\int \chi_m (v_j(x,t)) \, dx < \int_0^T \int_{\Omega} f_i \theta_m (v_j) \, dx \, ds
\]

where \(\chi'_m = \theta_m \). Taking first \(j \to \infty \) and then \(\theta_m \to \text{sign} \) we get (52).
4. The limiting behavior of u_j as $u_{0,j} \to \delta$ in case $p > \frac{n+2}{n}$.

We return now to the case $p > \frac{n+2}{n}$. Let $\Omega \subset \mathbb{R}^n$ be a bounded domain with smooth boundary with $0 \in \Omega$.

Consider a sequence u_j of solutions of (37) - (38) corresponding to a sequence of smooth initial data $u_{0,j}$ which converges to δ. Since we know that the limiting initial value problem has no solution (with $u_0 = \delta$), it is interesting to study what happens to the sequence u_j as $j \to \infty$.

Theorem 4. Assume $u_{0,j}$ is a sequence in $L^1(\Omega)$ such that

\[|u_{0,j}|_{L^1(\Omega)} < C \]

\[u_{0,j} \to 0 \text{ strongly in } L^1(\Omega \setminus B_r(0)) \text{ for every } r > 0. \]

Let u_j be the solution of (37) - (38) corresponding to the initial data $u_{0,j}$.

Then $u_j \to 0$ uniformly on $\bar{\Omega} \times [\epsilon, T]$ for every $\epsilon > 0$.

Proof. As in the proof of Theorem 3 (existence part) we know that

\[|u_j|_{L^1(0,T;L^1)} < C \]

\[|u_j|_{L^p(0,T;L^p)} < C \]

\[|u_j(x,t)|_{L^1(\Omega)} < \frac{C}{t^{n/2}} \text{ for } t > 0. \]

From standard linear parabolic estimates we see that

\[|u_j|_{C^1(\bar{\Omega} \times [\epsilon, T])} < C \epsilon \text{ for } \epsilon > 0. \]

In particular

\[u_j \to u \text{ uniformly on } \bar{\Omega} \times [\epsilon, T] \text{ for } \epsilon > 0 \]

with $u \in L^1(0,T;L^1) \cap L^p(0,T;L^p)$.
Also we know that \(u_j \to u \) in \(L^q(Q) \) for every \(q < \frac{n+2}{n} \) and in particular

\[
(60) \quad u_j \to u \text{ in } L^1(Q) .
\]

Next we show that

\[
(61) \quad |u_j|^{p-1}u_j + |u|^{p-1}u \text{ in } L^1(0,T;L^1(\mathbb{R}^n)) \text{ for } r > 0
\]

Indeed fix \(\zeta \in C^2(\overline{\Omega}) \) such that

\[
0 < \zeta < 1, \\
\zeta = 1 \text{ on } \partial \Omega, \\
\zeta = 0 \text{ on } \partial \Omega .
\]

Multiplying the equation

\[
\frac{\partial}{\partial t} (u_j - u_k) - \Delta (u_j - u_k) + |u_j|^{p-1}u_j - |u_k|^{p-1}u_k = 0
\]

through by \(\zeta^\theta (u_j - u_k) \) and letting \(\theta \to + \) sign we find

\[
\int_0^T \int_\Omega |u_j|^{p-1}u_j - |u_k|^{p-1}u_k \zeta \leq \int_0^T \int_\Omega |u_j - u_k| \zeta + \int_0^T \int_\Omega |u_j - u_k| \Delta \zeta.
\]

Since the right hand side tends to 0 as \(j,k \to + \) we obtain (61).

As a consequence of (59), (60), (61) we have

\[
(62) \quad \int_0^T \int_\Omega u(\zeta_t + \Delta \zeta) + \int_0^T \int_\Omega |u|^{p-1}u \zeta = 0
\]

for every \(\zeta \in \mathcal{W} \) such that \(\zeta \equiv 0 \) near \((0,0)\). Since \(u \in L^p(Q) \) and \(p > \frac{n+2}{n} \) we deduce as in Step 6 of Section 2 that

\[
(63) \quad -\int_0^T \int_\Omega u(\zeta_t + \Delta \zeta) + \int_0^T \int_\Omega |u|^{p-1}u \zeta = 0 \quad \forall \zeta \in \mathcal{W} .
\]

We conclude by uniqueness (see the proof of Theorem 3) that \(u \equiv 0 \).

Remark 6. Assume in addition to (54) - (55) that \(u_0 \) in the \(\text{w}^* \) topology of \(\mathcal{M}(\Omega) \). Then we have

\[
(64) \quad \int_0^T \int_\Omega |u_j|^{p-1}u_j \zeta + \zeta(0,0) \quad \forall \zeta \in C(\overline{\Omega}) .
\]

Indeed let \(\zeta \in \mathcal{W} \), we have

\[
\int_\Omega |u_j|^{p-1}u_j \zeta = \int_\Omega u_j(\zeta_t + \Delta \zeta) + \int_\Omega u_0(x)\zeta(x,0)dx + \zeta(0,0)
\]
since \(u_j \to 0 \) in \(L^1(\Omega) \) (see (60)). We derive (64) from (59), (61), (57) and a density argument. Notice that (64) is not in contradiction with the fact that \(u_j \to 0 \) in \(L^q(\Omega) \) for \(q < \frac{n+2}{n} \).

Remark 7. The conclusion of Theorem 4 may be viewed as a boundary layer phenomenon at \(t = 0 \). In the process of passing to the limit, equation (37) has been preserved, as well as the boundary condition (38); however the initial condition has been lost. More generally the argument above shows that if \(u_0 \in L^1(\Omega) \) and if \(u_{0j} \) is a sequence of initial data such that
\[
\| u_{0j} \|_{L^1(\Omega)} < C \quad \text{and} \quad u_{0j} + u_0 \in L^1(\Omega \setminus B_r(0)) \quad \text{for every} \quad r > 0.
\]
Then the corresponding solutions \(u_j \) converge to \(u \) (uniformly on \(\bar{\Omega} \times [\varepsilon, T] \), for each \(\varepsilon > 0 \) where \(u \) is the unique solution of (37) - (38) - (39). Again one may lose the "natural" initial condition (for example when \(u_{0j} \to u_0 + \delta \) in the \(w^* \) topology of \(M(\Omega) \) then \(u \) takes the initial value \(u_0 \).
5. The porous medium equation

Consider the equation

\begin{align}
\tag{65}
& u_t - \Delta(|u|^{m-1}u) = 0 \quad \text{on } \Omega \times (0,T) \\
\tag{66}
& u(x,t) = 0 \quad \text{on } \partial \Omega \times (0,T) \\
\tag{67}
& u(x,0) = u_0(x) \quad \text{on } \Omega
\end{align}

with $0 < m < \infty$.

There is extensive literature dealing with equation (65); see e.g. the expository paper of Peletier [22] and recent contributions by Caffarelli-Friedman [13], [14], Aronson-Benilan [1], Benilan-Crandall [7], Benilan [5], Veron [24], Brezis-Crandall [10], Pierre [23], Crandall-Pierre [16]. The case $m < 1$ corresponds to a "fast diffusion process"; equations of this type appear in plasma problems, see e.g. Berryman-Holland [8].

When $\Omega = \mathbb{R}^n$, $u_0(x) = \delta(x)$ and $m > \frac{n-2}{n}$ (no restriction on m if $n = 1$ or 2) an explicit solution of (65) was found by Barenblatt [4] (see also Pattle [21]), namely

$$u(x,t) = \frac{1}{c} \frac{G(|x|)}{t^{1/n}},$$

where

$$G(s) = \left(\beta^2 - cs^2 \right)^{\frac{1}{m-1}}$$

$c = \frac{k(m-1)}{2mn}$, $k = \frac{1}{m-1 + \frac{2}{n}}$ and β is a positive constant such that

$$\int_{\mathbb{R}^n} G(|x|)dx = 1.$$

A direct calculation shows that $u(x,t) + \delta(x) \ast 1(t)$ as $m + \left(\frac{n-2}{n}\right)$. This suggests that no solution of (65) exists, in the sense of distributions, when $m = \frac{n-2}{n}$ and $u_0 = \delta$ (since one cannot make sense out of δ^m).

We shall now proceed to prove that indeed when $0 < m < \frac{n-2}{n}$ ($n > 3$) no solution of (65) exists for $u_0 = \delta$. On the other hand when $m > \left(\frac{n-2}{n}\right)$ a solution of (65) exists for any measure ν_0.

-20-
5.1. Non-existence when \(0 < m < \frac{n-2}{n}\).

Assume \(0 < m < \frac{n-2}{n}\) \((n > 3)\); let \(\Omega \subset \mathbb{R}^n\) be any open set with \(0 \in \Omega\).

Definition. A strong solution of (65) is a function \(u \in L_{\text{loc}}^1(\Omega)\) such that \(u_t \in L_{\text{loc}}^1(Q)\) and such that (65) holds in \(\mathcal{D}'(Q)\).

Theorem 5. There exists no strong nonnegative solution of (65) such that (68)

\[
\text{ess lim}_{t \to 0} \int u(x,t)\phi(x)dx = \phi(0) \quad \forall \phi \in C_0(\Omega) .
\]

Remark 8. It is reasonable to believe that there is no weak solution of (65) (i.e. a function \(u \in L_{\text{loc}}^1(Q)\) such that (65) holds in \(\mathcal{D}'(Q)\)) satisfying (68).

Theorem 5 is a direct consequence of

Theorem 6. Let \(u\) be a strong solution of (65) such that (69)

\[
\text{ess lim}_{t \to 0} \|u(\cdot,t)\|_{L^1(\omega)} = 0 \quad \forall \omega \subset \Omega \setminus \{0\} .
\]

Then

\[
\text{ess lim}_{t \to 0} \|u(\cdot,t)\|_{L^1(\mathcal{B}(0))} = 0 \quad \text{for some } r > 0 .
\]

Proof of Theorem 6.

Let \(0 < \rho < 1\) be such that \(B_{2\rho}(0) \subset \Omega\). Let \(x^0 \in \mathbb{R}^n\) with \(0 < |x^0| < \rho\). Let \(0 < R < |x^0|\) and set

\[
V(x) = \frac{CR^{n-2}}{(R^2 - |x-x^0|^2)^{n-2}} \quad \text{for } x \in B_R(x^0) .
\]

\(V\) is a positive smooth function in \(B_R(x^0)\) and \(V = 0\) on \(\partial B_R(x^0)\). The same computation as in Brezis-Veron [12] shows that for some appropriate positive constant \(C\) (depending only on \(n\)) one has

\[
-AV + \nu^p > 0 \quad \text{on } B_R(x^0), \forall \nu > \frac{n}{n-2} .
\]

Set \(p = \frac{1}{m}, \lambda = \frac{1}{1-m}\) and

\[
U(x,t) = t^\lambda V^p(x) \quad \text{on } B_R(x^0) \times (0,\infty) .
\]

It follows from (71) that
(73) \quad U_t - \Delta U^m > 0 \text{ on } B_R(x^0) \times (0,\infty).

Also

(74) \quad U(x,t) = 0 \text{ on } \partial B_R(x^0) \times (0,\infty)

(75) \quad U(x,0) = 0 \text{ on } B_R(x^0).

By comparison of (65) and (73) we shall deduce that

(76) \quad u < U \text{ on } B_R(x^0) \times (0,T).

Indeed, Kato's inequality - which is valid since u and U are strong solutions - asserts that

\[\Delta(|u|^{m-1} u - |U|^{m-1} U) > [\Delta(|u|^{m-1} u - |U|^{m-1} U)]\text{sign}^+ (|u|^{m-1} u - |U|^{m-1} U) \]

and

\[\frac{\partial}{\partial t} (u - U)^+ = \frac{\partial}{\partial t} (u - U) \text{ sign}^+ (u - U). \]

Since \(\text{sign}^+ (|u|^{m-1} u - |U|^{m-1} U) = \text{sign}^+ (u - U) \) we conclude that

(77) \quad \frac{\partial}{\partial t} (u - U)^+ - \Delta(|u|^{m-1} u - |U|^{m-1} U)^+ < 0 \text{ in } D'(B_R(x^0) \times (0,T)).

On the other hand \((|u|^{m-1} u - |U|^{m-1} U)^+ \equiv 0 \) in a neighborhood of \(\partial B_R(x^0) \times (\varepsilon, T-\varepsilon) \).

Thus by integrating (77) we find, for \(\varepsilon < t < T-\varepsilon \),

(78) \quad \int_{B_R(x^0)} (u(x,t) - U(x,t))^+ dx < \int_{B_R(x^0)} (u(x,\varepsilon) - U(x,\varepsilon))^+ dx.

As \(\varepsilon \to 0 \), the right hand side in (78) tends to 0 (by assumption (69)) and (76) is proved. Similarly we obtain \(|u| < U \text{ on } B_R(x^0) \times (0,T) \) and in particular \(|u(x^0,t)| < U(x^0,t) = \frac{Ct^\lambda}{R^{(n-2)p}} \). Since \(R < |x^0| \) is arbitrary we have

\[|u(x^0,t)| < \frac{Ct^\lambda}{|x^0|^{n-2}} \text{ on } B_R(0) \times (0,T). \]

and therefore

(79) \quad |u(x,t)|^m < C \frac{t^{m\lambda}}{|x|^{n-2}} \text{ on } B_R(0) \times (0,T).

Finally we claim that

(80) \quad \int_{B_\rho/2} |u(x,t)| dx < C \rho^\lambda
which proves (70).

Indeed, by Kato's inequality we have

$$(31) \quad \frac{\partial}{\partial t} |u| - \Delta |u|^m < 0 \text{ in } \mathcal{D}'(\Omega).$$

Fix a smooth function $\phi(x)$, $0 < \phi < 1$ with support in $B_{\rho}(0)$ such that $\phi = 1$ on $B_{\rho/2}(0)$.

Let η_k be a sequence of functions as in Step 3 of Section 2.

Multiplying (81) by $\phi(x)\eta_k(|x|)$ we find

$$\int_\Omega |u(x,t)|\phi(x)\eta_k(|x|)dx < \int_0^t \int_\Omega |u|^m \Delta(\phi \eta_k)dxds =$$

$$= \int_0^t \int_\Omega |u|^m (\eta_k \Delta \phi + 2\eta_k \nabla \phi + \Delta \eta_k \phi)dxds$$

$$< C \int_0^t \int_{B_{\rho}(0)} |u|^m dxds + C(k+k^2) \int_0^t \int_{k<|x|<2k} |u|^m dxds.$$

Using (79) we find that

$$\int_\Omega |u(x,t)|\phi(x)\eta_k(|x|)dx < Ct^\lambda.$$

We obtain (80) by letting $k \to \infty$.

5.2. Existence when $m > \frac{n-2}{n}$.

Assume (for simplicity) that $\Omega \subset \mathbb{R}^n$ is a bounded domain with smooth boundary. Let $m > \frac{n-2}{n}$ (any $m > 0$ if $n = 1$ or 2).

Theorem 7. For every $u_0 \in M(\Omega)$ there exists a function $u(x,t)$ satisfying

$$(82) \quad u \in C((0,T); L^1) \cap L^\infty(0,T; L^1) \cap L^\infty(\Omega \times (0,T)) \forall \epsilon > 0,$$

$$(83) \quad |u|^m \in L^1(\Omega),$$

$$(84) \quad -\int\int u\zeta_t - \int\int |u|^{m-1} u\Delta \zeta = <u_0, \zeta(x,0)> \forall \zeta \in W^{1,1}. \quad (1)$$

Recall that

$W = \{\zeta \in C^2, L^1(\bar{\Omega} \times [0,T]); \zeta(x,T) = 0 \text{ on } \Omega; \zeta(x,t) = 0 \text{ on } \partial \Omega \times [0,T] \}$.
In particular we have

\(\lim_{t \to 0} \int_{\Omega} u(x,t) \phi(x) dx = \langle u_0, \phi \rangle \quad \forall \phi \in C_0(\overline{\Omega}) \).

Remark 9. When \(\Omega = \mathbb{R}^n, m > 1 \) and \(u_0 > 0 \) an existence and uniqueness result has been obtained by Pierre [23] for the equation (65) - (66) - (67).

We suspect that under the assumptions of Theorem 7 the solution is also unique.

Remark 10. It is presumably possible to solve problem (65) - (66) - (67) for some values of \(0 < m < \frac{n-2}{n} \) and some measures \(u_0 \) less singular than \(\delta \) (for example a spherical distribution of changes) under some appropriate relation between \(m \) and the singular part of \(u_0 \).

Proof of Theorem 7.

We denote by \(S(t) \) the \(L^1 \) contraction semigroup generated by \(A(|u|^{m-1}u) \) via the Crandall-Liggett Theorem. We recall some properties of \(S(t) \):

i) \(S(t) \) is smoothing from \(L^1 \) into \(L^\infty \). More precisely we have

\[\| S(t)u_0 \|_{L^\infty} \leq \left[\frac{C}{t} \| u_0 \|_{L^1(\Omega)} \right]^k, \quad \forall t > 0, \quad \text{with} \quad k = (m-1 + \frac{2}{n})^{-1}, \]

see Benilan [5] (and also Veron [24]).

ii) \(S(t) \) is compact in \(L^1 \); that is, for each fixed \(t > 0 \), \(S(t) \) maps \(L^1 \)-bounded sets into \(L^1 \)-compact sets, see Baras [3].

iii) The mapping \(u_0 \mapsto \{ S(t)u_0 \}_{0 \leq t \leq T} \) maps \(L^1 \) bounded sets into compact subsets of \(L^1(\Omega) \), see Baras [3].

Given \(u_0 \in \mathcal{M}(\Omega) \) we consider a sequence \(u_{0j} \) of smooth functions such that \(\| u_{0j} \|_{L^1} \leq C \) and \(u_{0j} \to u_0 \) in the \(\ast \) topology of \(\mathcal{M}(\Omega) \). Set \(u_j = S(t)u_{0j} \) so that

\[\| u_j \|_{L^1(\Omega)} \leq C \]
\[I_{u_j}(\cdot,t) \leq \frac{C}{t^{k}} \quad \forall t > 0 \]

(89) \[u_j + u \text{ in } C((0,T]; L^1) \]

(90) \[u_j + u \text{ in } L^1(Q) \]

with \(u \) satisfying (82).

Next, we deduce from Hölder's inequality, (87) and (88) that

\[I_{u_j}(\cdot,t) \left\| \frac{C}{t^{k}} \right\| L^q(\Omega) < \frac{C}{k(1 - \frac{1}{q})} \quad \forall \ 1 < q < \infty \]

and therefore

\[I_{u_j} \left\| \frac{C}{L^q(\Omega)} \right\| < C \text{ provided } q < m + \frac{2}{n} . \]

In particular we derive from (90) and (92) that

\[u_j + u \text{ in } L^a(Q) \text{ for every } q < m + \frac{2}{n} ; \]

thus

\[|u_j|^{m-1}u_j + |u|^{m-1}u \text{ in } L^1(\Omega) . \]

Using (90) and (94) we obtain (84).

Finally we show that (84) implies (85). Indeed in (84) choose

\[\zeta(x,t) = \phi(x)\eta(t) \text{ with } \phi \in C^2(\Omega), \phi = 0 \text{ on } \partial \Omega \text{ and } \eta \in C^1([0,T]) \text{ with } \eta(T) = 0. \]

Setting \(g(t) = \int_{\Omega} u(x,t)\phi(x)dx \) and \(h(t) = \int_{\Omega}|u|^{m-1}u\Delta\phi dx \) we have

\[g \in L^\infty(0,T) \cap C((0,T)), \quad h \in L^1(0,T) \]

and by (84),

\[\int_0^T g(t)n^1(t)dt - \int_0^T h(t)n(t)dt = \langle u_0, \phi \rangle \quad \forall \ n \in C^1([0,T]) . \]

Consequently \(\lim_{t \to 0} g(t) = \langle u_0, \phi \rangle \), that is

\[\lim_{t \to 0} \int u(x,t)\phi(x)dx = \langle u_0, \phi \rangle \quad \forall \phi \in C^2(\Omega) \cap C_0(\Omega) . \]

-25-
We derive (85) using a density argument and the fact that \(u \in L^\infty(0,T, L^1) \).

5.3. The limiting behavior of \(u_j \) as \(u_{0j} \to 0 \) in case \(m < \frac{n-2}{n} \).

We return now to the case \(0 < m < \frac{n-2}{n} \) \((n > 3)\).

Let \(\Omega \subset \mathbb{R}^n \) be either a bounded domain with smooth boundary or \(\Omega = \mathbb{R}^n \).

Theorem 9. Assume \(u_{0j} \) is a sequence in \(L^1(\Omega) \) such that \(u_{0j} \to 0 \) in the \(w^* \) topology of \(M(\Omega) \) and that \(\text{Supp } u_{0j} \subset B_{1/j}(0) \).

Let \(u_j \) be the (semi-group) solution of (65) - (66) corresponding to the initial data \(u_{0j} \).

Then \(u_j(x,t) + \delta(x) \to 1(t) \) in the \(w^* \) topology of \(M(\Omega) \).

Proof

Step 1. Assume \(\Omega = \mathbb{R}^n \), \(u_{0j} > 0 \), \(u_{0j} \in L^1 \) and \(\text{Supp } u_{0j} \subset B_{1/j}(0) \). Then

\[
\int \int |u_j(x,t)| \leq \frac{Ct}{|x|^{n-2}} \quad \text{for } |x| > \frac{\sqrt{2}}{j}, t > 0
\]

(95)

Indeed, by the techniques of Section 5.1 we obtain

\[
|u_j(x,t)| \leq \frac{Ct}{|x|^{n-2}} \quad \text{for } |x| > \frac{\sqrt{2}}{j}, t > 0
\]

(notice that in the present context comparison is not a difficulty since \(u_j \) is the semi group solution; therefore \(u_j \) is obtained by some limiting procedure and the comparison can be made at each step of the approximation).

Thus

\[
|u_j(x,t)| \leq \frac{Ct}{|x|^{n-2}} \quad \text{for } |x| > \frac{\sqrt{2}}{j}, t > 0
\]

(96)

Next we claim that

\[
\int \frac{1}{j} \int_{|x|<4j} |u_j(x,t)| \, dx < Ct \quad \text{for } t > 0
\]

(98)

Indeed we have for every \(\phi \in \mathcal{D}(\mathbb{R}^n) \)

\[
\int \int_{\mathbb{R}^n} u_j(x,t)\phi(x) \, dx = \int \int_{\mathbb{R}^n} u_j(x,0)\phi(x) \, dx + \int_0^t \int \int_{\mathbb{R}^n} u_j(x,s)\Delta\phi(x) \, dx \, ds
\]

(99)
We choose ϕ in such a way that

\[
\begin{aligned}
\phi(x) &= 0 \text{ for } |x| < \frac{2}{j} \text{ and for } |x| > 8j \\
\phi(x) &= 1 \text{ for } \frac{4}{j} < |x| < 4j \\
|\Delta \phi| &< Cj^2 \text{ for } \frac{2}{j} < |x| < \frac{4}{j} \\
|\Delta \phi| &< \frac{C}{j^2} \text{ for } 4j < |x| < 9j
\end{aligned}
\]

Then, we derive (98) from (97) and (99). Next, we extract a subsequence - still denoted by u_j such that $u_j(x,t)$ converges to some limit $u(x,t)$ a.e. on Q.

This is justified as follows. Let $\phi \in D_+(\mathbb{R}^n \setminus \{0\})$. Multiplying (formally - but this can be justified) (65) by $u_j^{2-m} \phi$ we obtain

\[
\frac{1}{3-m} \int u_j^{3-m}(x,t)\phi(x)dx + (2-m) \int_0^t \int |\nabla u_j|^2 \phi dx dt \\
= \frac{1}{3-m} \int u_j^{3-m}(x,0)\phi(x)dx + \frac{m}{2} \int_0^t \int u_j^{2}\phi dx dt
\]

If j is large enough - so that $\text{Supp } \phi \cap B_{2/j}(0) = \emptyset$ - we see, using (96), that $\int_0^t \int |\nabla u_j|^2 \phi dx dt < C$. Therefore (u_j) is compact in $L^2(\omega \times (0,T))$ for $\omega \subset \mathbb{R}^n \setminus \{0\}$ (by Aubin's compactness Lemma, see e.g. J. L. Lions [20]).

The limit u satisfies

\[
u(x,t) \leq \frac{Ct^\lambda}{|x|^{(n-2)p}} \text{ a.e. on } \mathbb{R}^n \times (0,T)
\]

\[
\int u(x,t)dx \leq C t^\lambda \text{ for a.e. } t.
\]

Since $u_j + u$ in $L^1(\omega \times (0,T))$ for $\omega \subset \mathbb{R}^n \setminus \{0\}$, the function u also verifies

\[
\frac{\partial u}{\partial t} - \Delta u^m = 0 \text{ in } D'((\mathbb{R}^n \setminus \{0\}) \times (0,T))
\]

The same argument as in Section 5.1 leads from (102) to

\[
\frac{\partial u}{\partial t} - \Delta u^m = 0 \text{ in } D'((\mathbb{R}^n \times (0,T))
\]
Use the sequence \(n_k(|x|) \) and notice that by Hölder,

\[
\frac{k^2}{k^{|x|^{2}} \int_0^1 \leq u^{|x|^{2}} \leq k^2 \int_0^1 \leq u^{|x|^{2}} \leq k\frac{n}{k-1} \leq u \leq k \leq \infty \text{ as } k \to \infty.
\]

Therefore

\[
\frac{\partial}{\partial t} (E*u) + u^m = 0 \text{ in } D'(\mathbb{R}^n \times (0,T))
\]

where \(E*u = (-\Delta)^{-1}u = \frac{C_n}{|x|^{n-2}} * u \).

We conclude from (101) and (104) that \(\frac{\partial}{\partial t} (E*u) \leq 0 \) and consequently \(E*u \equiv 0 \), thus \(u \equiv 0 \).

Step 2. Proof of Theorem 8 concluded in the general case.

From Step 1 we deduce that \(u_j(x,t) \to 0 \) a.e.

Indeed, by comparison we have

\[
|u_j| \leq S(t) |u_{0j}|
\]

where \(S(t) \) denotes the semi group generated in \(L^1(\mathbb{R}^n) \) by \(\Delta |u|^{m-1}u \), by Step 1 we know that \(S(t)|u_{0j}| \to 0 \) a.e. on \(\mathbb{R}^n \times (0,T) \).

We have for every \(\zeta \in D(\Omega \times [0,T]) \)

\[
- \int u_j \frac{\partial \zeta}{\partial t} = \int |u_j|^{m-1}u_j \Delta \zeta = \langle u_{0j}, \zeta(0,0) \rangle.
\]

Since \(|u_j|^{m-1}u_j \to 0 \) in \(L^1(Q) \) we obtain at the limit

\[
- \int u_j \frac{\partial \zeta}{\partial t} = \langle u_j(0,0), \zeta \rangle \forall \zeta \in \mathcal{D}(\Omega \times [0,T])
\]

Given \(\theta \in \mathcal{D}(\Omega \times (0,T)) \) we set

\[
\zeta(x,t) = \int_0^t \theta(x,s)ds
\]

and we find

\[
\int u_j \theta + \int_0^T \theta(0,s)ds = \langle \delta(x) \theta \rangle \forall \theta \in \mathcal{D}(\Omega \times (0,T))
\]

Since \(u_j \) is bounded in \(L^1(Q) \) we conclude by density that \(u_j(x,t) \to \delta(x) \theta(1,t) \) in the \(w^* \) topology of \(M(Q) \).

Remark 11. The two essential ingredients in the proof of existence (Theorem 7), namely the \(L^1 \to L^m \) smoothing and the \(L^1 \) compactness of \(S(t) \) fail when \(0 < m < \frac{n-2}{n} \). This is a clear consequence of Theorem 8. Another view
point is the following. Consider in a bounded domain \(\Omega \) the \(L^1 \) \(m \)-accretive operator \(Au = -\Delta (|u|^{m-1}u) \) with zero Dirichlet boundary condition. Its resolvent \(J_\lambda = (I + \lambda A)^{-1}(\lambda > 0) \) is not compact in \(L^1(\Omega) \); this follows from the fact that the equation \(-\Delta u + |u|^{p-1}u = \delta\) has no solution when \(p > \frac{n}{n-2} \), see Brezis-Veron [12]. On the other hand it is easy to show that \(J_\lambda \) maps bounded sets from any \(L^q(\Omega) \), \(q > 1 \) into compact sets of \(L^1(\Omega) \).

We deduce that:

i) \(S(t) \) is not compact in \(L^1(\Omega) \); indeed when a semi-group \(S(t) \) is compact, then the resolvent \(J_\lambda \) is also compact, see Brezis [9].

ii) \(S(t) \) is not smoothing from \(L^1(\Omega) \) into any \(L^q(\Omega) \), \(q > 1 \). Suppose, by contradiction, that there is a \(q > 1 \) such that

\[
(105) \quad \|S(t)u_0\|_{L^q(\Omega)} < C(t) \quad \forall \ t \in (0,T), \forall u_0 \in L^1 \quad \text{with} \quad \|u_0\|_{L^1} < M.
\]

From the regularizing effect of Benilan-Crandall [7] we know that

\[
\|J_\lambda S(t)u_0 - S(t)u_0\|_{L^1} < \frac{C_1}{t} \quad \text{where} \quad C_1 = \frac{2\|u_0\|_{L^1}}{|m-1|}.
\]

It follows that \(S(t) \) is compact in \(L^1(\Omega) \). Indeed fix \(0 < t < T \) and fix \(\epsilon > 0 \); set \(\lambda = \frac{t\epsilon}{2C} \). By assumption (105) the set \(C = \{S(t)u_0; \|u_0\|_{L^1} < M\} \) is bounded in \(L^q(\Omega) \) and so the set \(D = \{J_\lambda S(t)u_0; \|u_0\|_{L^1} < M\} \) is compact in \(L^1 \). Therefore the set \(D \) (resp. \(C \)) may be covered by a finite collection of balls of radius \(\frac{\epsilon}{2} \) (resp. \(\epsilon \)) in \(L^1(\Omega) \).

The preceding argument shows nevertheless that \(S(t) \) enjoys two compactness properties:

a) \(S(t) \) maps bounded sets from any \(L^q(\Omega) \), \(q > 1 \), into compact sets of \(L^1(\Omega) \).

b) \(S(t) \) maps bounded sets from \(L^1(\Omega) \) into compact sets of \(L^q(\Omega) \) for any \(0 < \gamma < 1 \).
The lack of regularizing effect of $S(t)$ from L^1 into L^q for any $q > 1$ when $m < \frac{n-2}{n}$ had been obtained earlier by Benilan and Crandall in $\Omega = \mathbb{R}^n$ using a simple homogeneity argument.
REFERENCES

[22] L. Peletier, The porous media equation

We first consider the Cauchy problem for
\[u_t - \Delta u + |u|^{p-1} u = 0 \quad \text{on} \quad \Omega \times (0,T) \]
with a boundary condition and the initial condition
\[u(x,0) = \delta(x) \quad \text{on} \quad \Omega \]
where $\Omega \subset \mathbb{R}^n$ is domain containing 0, $0 < p < \infty$, $0 < T < \infty$ and $\delta(x)$ is the Dirac mass at 0. We prove that a solution of (1) - (2) exists if and only if
ABSTRACT (continued)

$0 < p < \frac{n+2}{n}$. When $0 < p < \frac{n+2}{n}$ we actually prove a more general existence and uniqueness result in which (2) is replaced by

(3) $u(x,0) = u_0(x)$ on Ω

where u_0 is a measure.

Next, we discuss the Cauchy problem for

(4) $u_t - \Delta(|u|^{m-1}u) = 0$ on $\Omega \times (0,T)$

where $0 < m < \infty$, with a boundary condition and the initial condition (3). We prove that a solution of (4) - (2) exists if and only if $m > \frac{n-2}{n}$. When $m > \frac{n-2}{n}$ we actually prove existence for the problem (4) - (3).