AD=AL110 460

UNCLASSIFIED

[

INTEGRATED SYSTEMS SUPPORT INC FALLS

YA

r

CHmeH mos
INTERACTIVE PROSAANMINGI SUMSARY OF AN EVALUATION AND SOME MANA=—£TC(U)

MAR 78 J M REASER, J € ¢

ARROW
UBACSC=A

DAAKOR=T72=D=0329

\odiig } NL

ADA110460

USACSC-AT-74-03

INTERACTIVE PROGRAMMING:
SUMMARY OF AN EVALUATION
AND |

SOME MANAGEMENT CONSIDERATIONS

Prepared for

UNITED STATES ARMY

COMPUTER SYSTEMS

DISTRIBUTION STATEMENT A

Approved for public release
Distribution Unlimited
PREPARED BY

FEB3 1982

D

INTEGRATED SYSTEMS SUPPORT, INC.
FALLS CHURCH, VIRGINIA 22041
USAMERDC CONTRACT NO. DAAK 02-72-D-9529

DA PROJECT NR. SX8465003MY10-04A

47

g2 »n2 ~
FORT BELVOIR, VIRGINIA

= (56

Fomee

TECHNICAL DOCUMENTARY REPORT
— U.S. ARMY COMPUTER SYSTEMS COMMAND
USACSC-AT-74-03

INTERACTIVE PROGRAMMING: SUMMARY OF AN EVALUATION
AND SOME MANAGEMENT CONSIDERATIONS

Authors: Joel M. Reaser and John C. Carrow

March 1975
Prepared for
U.S. ARMY COMPUTER SYSTEMS COMMAND
b _ FORT BELVOIR, VIRGINIA 22060
Prepared by
INTEGRATED SYSTEMS SUPPORT, IMNC.
Falls Church, Virginia 22041
USAMERDC Contract No. DAAK 02-72-D-0529
i DISTRIBUTION STATEMENT

N Approved for public release. Distribution unlimited.

| DA Project Nr. SX865803MYL0-04A

l - :;:;u;;:& :or | DT‘ C

pricse D ELECTE

| Justariation 0| FEB3 1982
it
| Distribution/ | D

Av:ilabiltgy codog____
Avail and/or
Dist Special

- A

RN

ABSTRACT

This report summarizes the results of an evaluation of interactive
programming versus batch programming within an actual software pro-
duction environment at the U.S. Army Computer Systems Command. The
purpose of the study was to determine productivity and cost effective-
ness differences between the two modes of operation. The results of
the study indicate that, on a line-of-code basis, the interactive

system offers an increase in productivity and a decrease in overall
cost.

Based on the data gathered formally and informally from the pro-
grammers, topics are discugsed which should be copsidered in manage-
ment planning for interactive programming.

pri

.

1
;
d
3

- FOREWORD

This report was prepared in support of the U.S. Army Computer
Systems Command Research and Development Task IVA, Interactive
Programming. The report was prepared by Integrated Systems Support,
Incorporated and the Human Resources Research Organization (HUMRRO)
under subcontract to ISSI under Contract No. DAAKO2-72-D-0529.

This Technical Report has been reviewed and is approved.

. /W e

George Sokol iora Pelled
- Deputy For Engineering Director, Advanced Technology
U.S. Army Computer Systems Command U.S. Army Computer Systems Command

Henry E

Chief, TéChnology Transfer Division
U.S. Army Computer Systems Command

Jghn C. Carrow
ptain, U.S. Army
roject Officer

ME’%

e ___.______*

v - TABLE OF CONTENTS }
i .
Lo CHAPTER PARAGRAPH PAGE
i ‘ - ,
: 1 INTRODUCTION 1-1 ;
; The Problem 1 1-1
o _ Background 2 1-3
‘ 2 PLANNING AND PREPARATION 2-1
Installing the System 1 2-1
- Programmer Preparation 2 2-1
Other Preparations 3 2-2
The Evaluation Plan 4 2-2
- 3 RESULTS OF THE EVALUATION 3-1
Productivity Comparisons 1 3-1
Cost Effectiveness Comparisons 2 3-2
- Other Findings and Lessons Learned 3 3-3
N The Study in Retrospect 4 3-7
—_ 4 - IMPLICATIONS 4-1
Planning Future Terminal Requirements 1 4-1
Resource Management 2 4-2
_ Future System Utilization 3 4-3
- 5 SUMMARY 5-1
- REFERENCES ' R-1
p
- i
E-4
k)
-—— o
’ iid iy
%
- - e
p—— " v N ‘ . :
[-

LIST OF FIGURES
NUMBER TITLE
1 Summary of Sackman's Findings

2 Breakout of Programmers' Time

3 Programmer Time Invested Per Line of
Code Produced

4 Cost Per Line of Code Produced

iv

PAGE

1-2

3-1

3-2

Y

e
S

i LI

X

v

_—

e WEN o Wi ‘

CHAPTER 1
INTRODUCTION

1. The Problem

The advent of time-sharing systems has introduced a controversy into
the ranks of data processing professionals and created a dilemma for
managers. As more and more on-line interactive systems reach the market,
the controversy over the cost effectiveness of on-line programming in-
tensifies, fueled by widely divergent opinions. Portijons of the data
processing industry push their time-sharing products with claims of 200-
400% increases of programming productivity while pragmatic users trying
to verify these claims are faced with the enigma of determining program-
mer productivity. Meanwhile the profit and production oriented business
manager is faced with industry performance claims and the inherent de-
sire of his data processors for the intrinsic attractions of an inter-
active gystem that will call for an immediate increase of cash outlay.
These factors, coupled with natural fiscal conservatism and the skeptics'
warnings, create a dilemma for the manager. Spend the money and take a
chance on highly increased productivity? Try an interactive system for
awhile and measure the results before total commitment? The second course
of action seems to reduce the risk until one examines just how one goes
about measuring programmer productivity.

The United States Army Computer Systems Command, in facing this
dilemma, recognized the obvious difficulties and expense in performing
valid performance measurements. Examining previous findings in this
arena, one encounters the work of Harold sackman!l of System Development
Corporation, who had conducted a number of independent studies and
summarized them. The results of these studies are shown at Figure 1.
All of these studies dealt with very small programs (a few man-days of
effort at most), all of which were academic exercises lacking the “real
world" programming environment..

The comparative results of these studies indicate that overall
there is a tendency to be slightly more productive at a somewhat higher
cost when one uses a time-sharing system. These statistics provide
little confidence to the manager who must make the decision to invest in
an interactive programming capability, especially since the step toward
developing an extensive time-sharing system within a single installation
is such an expensive proposition in terms of machine upgrade, terminal
purchase, leased lines, control units, extra memory, etc.

Further, it was realized that since these studies were laboratory
controlled experiments, the translation of the results in an actual pro-
gramming environment would be a matter of conjecture having little basis
for confidence for management decision making. It was with this infor-
mation, or lack of information, that in August 1973 a pilot interactive

Ao “ﬁ“ v

s o e Tl Sl

ON-LINE VERSUS OFF-LINE PROGRAM PRODUCTION:
COMPOSITE RESULTS OF STUDIES

Computer User
Study Man-hours Time Costs Preference
Air Force Academy Time- Batch | Approx. Approx.
(1968 Pilot Study) Sharinga 1.7:1 same same
1.2:1
Air Force Academy Batch Batch Batch Approx.
(1969 Pilot Study) 1.2:1 1.8:1 same
Air Force Academy Batch Batch Batch Time-
(Main Study, 1969) 1.1:1 1.9:1 Sharing
Adams and Cohen Approx. Batch Batch Batch
(1969) same (1:1) 3.8:1 6.7:1
Erikson (1966) Time- Time- Time~ Time-
Sharing Sharing | Sharing Sharing
1.9:1 3.4:1
Frye and Pack Not Batch Batch Time-
(1969) Reported 3.8:1 3.3:1 Sharing
Gold (1967) Time~- Batch | Approx. Time-
Sharing 5.7:1 same Sharing
1.2:1
Grant and Sackman Time~- Batch | Approx. Time-
(1967) Sharing 1.4:1 same Sharing
1.6:1
Schatzoff, Tsao, and Batch Time- Batch Not
wiig (1967) 2.1:1 Sharing 1.5:1 Reported
1.1:1
Smith (1967) Instantb Batch | Approx. Instant
1.2:1 1.5:1 same
Median for Time- Batch Batch Time~
all studies Sharing 1.8:1 Sharing
1.2:1 Preferred

3The mode showing a reported advantage appears in each box
together with its favorable ratio; e.g., this entry shows fewer
man-hours for time-sharing at a 1.2:1 ratio.

brrngtant” batch is treated in this table as a simulated
version of time-sharing.

Figure 1.

Summary of Sackman's Findings

s SR Rl

programming project was initiated within the U.S. Army Computer Systems
Command. The basic goal of this study was to develop an efficient,
interactive programming capability and to determine the merits and cost
effectiveness of interactive programming within an actual programming
environment. A detailed plan was defined concerning installation of
the hardware and software, training of the programmers, development

of the data collection instruments, and methodology to be used to eval-
uate the value of TSO* for the Command. The purpose of this report is
to document the experience of the Command in installing and using TSO
and to summarize the results of the formal evaluation of the system.

(A complete technical report2 of the findings is also available.)

2. Background

The r ~owth of the number and variety of on-line, interactive computer
systems has been phenomenal since the early nineteen-sixties and es-
pecially since its availability commercially around 1965. By 1967 some
40 such systems were installed. Today these systems and their appli- '
cations number in the thousands. 1In addition to airline reservation
services, laboratory equipment control, management information systems,
computer-assisted instruction, and other information manipulation
systems, interactive systems also have been used increasingly for pro-
gram development, i.e., the coding, debugging, compilation and testing
of computer programs.

Although designers and salesmen of interactive systems have had a
great deal to say about the improved man-machine functioning of such
systems over batch processing, each case must be examined individually.
Too many factors are involved to make generalizations regarding the cost
and productivity advantages of one mode of operation over the other.
For example, early comparisons played up the trade-off between additional
equipment costs and such factors as increased problem-solving capabil- '
ities and lowered turnaround time. However, recent technological and '
equipment production advances have made supporting hardware far less
expengive when compared to software development costs, to the point
that some data are beginning to show actual dollar savings for inter-
active systems in a broad range of settings and applications. The pur-
pose of the project described below was to determine, in real-world
production environment, what the cost and production benefits of one
interactive system would be.

*1IBM's Time-Sharing Option (TSO) was the real-time software package
selected for pilot implementation.

1-3

CHAPTER 2
PLANNING AND PREPARATION
- 1. 1Installing the System

As with most installations, TSO was not the only systems improvement
being installed by the Command. The significant changes to the system
more or less directly related to the installation of TSO were the
following:

- First the systems software was upgraded to OS/MVT (from OS/MFT) with
HASP. In addition, TCAM (IBM's Telecommunication Access Method) was
installed along with the TSO software and a number of program products.
The products included the COBOL and Assembler Prompters, the COBOL V4
Compiler, the COBOL Interactive Debug Package, and the TSO bata Utilities.
Most of this effort in installing the software prior to hardware modi-
fication worked out well, with most problems being ironed out before de-
livery of the additional hardware.

Hardware improvements related to TSO were also made. A half mega-
- byte of core was added, bringing the system core capacity to 2 megabytes.
In January 1974, the interactive hardware was installed on the system.
This included ten IBM 3270 CRT display terminals, four IBM 3286 remote
printers, and two 3330 disk drives plus associated connecting and inter-
facing equipment. The complete system was up and running by the end of
- the month.

- 2. Programmer Preparation

To make full use of the interactive capability, programmers were
- prepared by way of a formal 3-day training session. This class covered
TSO commands, terminal operations, and general systems familiarization.
Some 70 applications programmers were trained. Not all of these people
participated in the formal evaluation study of TSO but almost all made
at least some use of the system. A users guide was prepared containing
detailed explanations and examples of all system commands and step-by-
step instructions for using the system. Programmers (and their super-
- visors) were familiarized with the data collection forms to be used as
part of the evatuation study.

In addition to the formal training, programmers had four weeks be-
fore and after training for familiarizing themselves with the operation
of the interactive system. As it turned out, the programmers could have
used more time after training to become more proficient with the system,
but as with most projects, everything did not fall in place exactly
according to plan.

3. Other Preparations

In addition to the system enhancements and programmer preparation
mentioned, three other system improvements were made which had signifi-
cant impact on the system and the evaluation. First, the system's
interface between TSO and the source program library was written and
installed. This interface permitted retrieval and replacement of all
OS programs.* Second, additional TSO user commands were obtained from
the Defense Communications Agency and installed on the Computer Systems
Command System. Third, the capability for initiating background jobs
via TSO was installed. This Foreground Initiated Background (FIB) capa-
bility permitted a programmer to enter jobs into the HASP job queue
through a terminal. As it turned out this feature was used very heavily,
and in most cases the standard procedure was to modify a program and
then submit it via FIB rather than to compile the job interactively.

The reasons for this are discussed more extensively later.

4. The Evaluation Plan

To ensure a professional, objective and unbiased evaluation of the
new interactive system, the services of Integrated Systems Support,
Incorporated, and the Human Resources Research Organization were ac-
quired by contract.

A study was designed to measure the cost in personnel time, computer
time, and other indicators of the comparative effectiveness and respon-
siveness of the batch and interactive systems. The primary reason for
the acquisition of TSO was for.use by programmers developing and main-
taining the software systems which are the responsibility of the Command.
It was ultimately on this one application of TSO, production programming,
that the decision to go or not go with an interactive system was to be
made. To provide the best possible true estimates of potential cost
benefits, the strategy of the study was to collect data on a large number
of regqular production jobs** of all sizes, shapes and descriptions.

*The Command also maintains a number of DOS application systems. Some
of the programs for these systems are maintained in OS with the DOS
code imbedded as comments in the 0OS code. Only those DOS programs set
up in this way could be manipulated using TSO.

**The alternative strategy (i.e., selecting a small number, say 3 or 4,
predefined simulated production tasks) had been used before by other
researchers. Resgults of these studies retain a certain sterility
because of the controlled enviromments in which they were conducted. A
significant goal of the study was to carry out the data gathering in

a real-world situation so that the resulting data and its implications
could be related directly to the concerns of managers and programmers
in the Command.

2-2

SN

ot The study itself spanned the first six months of 1974, during
which detailed plans of the study were finalized and programmers were
trained to use TSO. Data gathering then began for all programming
tasks completed as a normal part of the work effort. By the end of the
project, data had been gathered on 51 programming tasks, 24 of which
were completed using the batch mode and 27 using TSO.

-
—
—
-—
—-—
—_—
2-3
-—
L ca et o oo e s T
I
- ﬁ;‘ A MY -
.

-y

SET R

CHAPTER 3
RESULTS OF THE EVALUATION

The results of the data are best summarized in response to three
questions:

1. which mode allows programmers to be more productive?

2. Which mode costs less?

3. wWhat else was learned from the study?
1. Productivity Comparisons

As would be predicted by the proponents of interactive systems, TSO
was the more productive mode of operation. Several things illustrate
this conclusion. First, total time was broken out into productive and
non-productive time. (The latter category includes time spent walking
to and from the computer center, to and from keypunch facilities, etc.)
Figure 2 illustrates that for the time chargeable to completion of a
specific job, non-productive time in batch was substantial (almost 16%).
For TSO, time in the non-productive category was negligible.

——- Unproductive
Time 15.7%

_ Unproductive
Time .05%

— Terminal
Time 21.6%

BATCH INTERACTIVE

Figure 2. Breakout of Programmers' Time

(Difference in unproductive time significant at
the .99 level of confidence.)

3-1

A second measure taken was hours spent per line of code produced.
As shown in Figure 3, the number of man-hours per line for batch was
twice that for TSO.

1.00 T
Time per .75 o .94
line of
code (in .50 =
hours)
.25 .46

BATCH TSO

Figure 3. Programmer Time Invested Per Line of Code Produced
(Difference significant at the .90 level of confidence).

For all jobs, batch required almost an hour per line of code; TSO re-
quired .46 hours. A time advantage also was found for doing specific
kinds of tasks. For example, JCL procedure libraries were updated and
modified using TSO in only two thirds of the time required using batch.

A summary answer to questions about programmer productivity is that
in using the interactive TSO system:

(1) Non-productive time was reduced,

(2) On a by-line-of-code basis, programmers were twice as
productive as when using batch, and

(3) Particular programming functions are especially assisted
by using the features of TSO, e.g., modification of
JCL procedure libraries.

2. Cost Effectiveness Comparisons

A second question posed above was: Which mode costs less? On a
by-line-of~code basis, TSO was actually cheaper than batch by about a
3 to 5 ratio, i.e., TSO was 63% of the cost of batch. Thus, in spite
of the greater equipment costs (additional hardware and software costs
amounted to $22.03 per hour more than batch) increases in productivity
of applications programmers more than compensated for the additional
equipment investment. The differences in cost are illustrated in
Figure 4.

3-2

T X

p—

\“P" “u.,i"w&& ,ls' s ".&H K o

Batch Cost Per Line
$11.95/1ine

TSO Cost Per Line
$7.52/1ine

((((((G3

Figure 4. Cost Per Line of Code Produced
(Difference significant at the .90 level of confidence)

Suffice it to say that the results of the study demonstrated the cost-
effectiveness and utility of using TSO as a tool for program development
and maintenance by the programming staff of the Computer Systems Command.

3. Other Findings and Lessons Learned

Some of the most valuable information obtained from a project like
this may not be the formally collected data, but the incidental infor-
mation learned from the process of acquiring, installing and using a
tool such as interactive programming.

One lesson learned has to do with the specific kinds of programming
tasks done most easily by TSO as opposed to batch. For example, the
evaluation data showed that modifying procedure libraries is more easily
accomplished using the interactive syatem. This data was collected from
only a few programmers. Other programmers stressed using the terminal
for test data manipulation. Some felt everything should be done inter-
actively. Some used TSO and batch depending on the job, its urgency,
etc. Others simply preferred batch.

3-3

IOERPeY L R

_.'"" REACHNS RO I TR "
J‘.‘}.; ._.-‘#«‘ !v\’v& {'." SRF AEL, oN

To some extent there is an analogy between a comparison of batch
and TSO and a comparison of a calculator and an abacus. There are still
occasional contests between the two and depending upon the skill of the
operator, the operation of the piece of equipment, and the specific task
to be performed, the abacus, an "antiquated" instrument, could out-
perform the calculator.

The lesson to be learned, as implied in this analogy, is that the
interactive system and batch system are tools at the disposal of the
programmer. Depending on such factors as skill, work habits of the
programmer, work load, efficiency, and the task to be performed, one or
the other of the systems could be appropriate.

What, then, is the most effective way to get things done in most
cases?

(a) Entering code for a small program or routine is more
effectively and efficiently done by the programmer using
a terminal than punching cards by a time factor of about
2 to 1.

(b) The cutoff point between "large" and "small" programs de-
pends upon the dexterity of the programmer using a
terminal.

(c) Longer programs should be entered by submission to a
centralized keypunch facility or by training a clerical
person to enter programs via the terminal.

(d) The benefits of interactive debugging are quickly offset
if response time is poor or if there is a high programmer
to terminal ratio.

(e) The benefits of interactive programming are dependent on
the features included in the supporting software. For
example, the feature which made procedure library modi-
fication and program conversion easy was the change-all
command .

{(f) Interactive programming necessitates an efficient on-line
source code library system. Without it the system is only
a programmer's toy.

(g) If proper accounting procedures are to be maintained, entry
into the system must be achievable within seconds. This is
one problem that impacted the study. As it was, one pro-
grammer in each group logged onto the system in the morning,
and all other programmers used the terminal regardless of
whether they were working on the same project, different

3-4

I e

L e e g N
e "f‘:l;({aﬁ, TR

;N ¢ v 2 o5 e - 4 -

projects, or going through a terminal orientation. This
situation existed because of the time it takes to get into
the system.

(h) If a programming house trains its own programmers, training
should incorporate use of TSO from the beginning. Once a
programmer establishes his own work patterns, it is hard
to reorient to use a new tool such as TSO efficiently.

(i) Testing of a multi-program applications system presents
a real challenge to the system, particularly if
extensive indirect access devices are used for data
file storage. Usually, system testing is purely a
batch function.

{(J) There is a natural tendency for managers and project teams
to become proprietary. That is, once a terminal is in
place, the rights to use of that terminal become highly
guarded. Although this situation may not exist where there
is a low programmer-to-terminal ratio, some kind of flex-
ible priority system is required.

Programmers usually are adaptable problem-solvers. This was demon-
strated in several ways. It became apparent, for example, during the
early months of using the interactive system, that interactive debugging
in some cases was taking as long as for a FIB job to be in and out of
the system. Programmers did not stick with the interactive system.

They usually used TSO to modify their source data sets and used the FIB
procedure for compilation, because this procedure freed up the terminal
and they had time to work on other things.

Other examples of programmer adaptability include the fact that they
had to get used to the 7-to-1 programmer-to-terminal ratio. Although
there were instances of inter-project contention for time on the termi-
nal, there were more instances of accommodation and cooperative arrang-
ing of schedules to mutual satisfaction. An estimated two to four pro-
grammers could use the terminal for retrieval, modification and back-
ground submission for a program test in the same time it would take a
single programmer to retrieve, modify and interactively compile in
foreground. This is becoming less true as the interactive system con-
tinues to be tuned and the system resources are shifted to support more
interactive work.

Programmers also adapted to relatively slow response time.
Especially during high demand hours, the system would occasionally take
several minutes to execute a command. Nonetheless, the programmers
used the system productively as the formal evaluation data showed.

ol - Tl

.

. vﬁm "

The real lesson learned here was that programmers can deal effective-
ly with interactive systems which may be good but may not always work
optimally.

Another thing learned was that the quality of the structure of the
code was probably improved by using TSO. Programmers evidenced a ten-
dency to insert comments, properly indent hierarchical coding structures,
and perform other clean-up tasks made easy by terminal. They said that
they would not perform such changes with a keypunch. The question is:
Will this result in measurably lower ~9sts for maintenance of those
programs? Presumably, if programs are more readable and contain inter-
nal documentation, they can be more readily modified.

Some programmers pointed out that the real savings, using the
terminal, were realized in tasks ancillary to development of a program.
TSO made it simple to dump files, to create or check test data, or
to modify test data to check a specific program condition. It made it
easier to insert utility programs into the batch job stream, which in
batch mode would have required scratching some JCL on a sheet, finding
a free keypunch, punching the set~up, walking to the computer center
and repeating that trip to get the output back. Finally, the terminal
is the best way to keep track of jobs in the queue or being processed.
It reduces the lost time a programmer spends trying to find out how
soon he can go back to work.

One disappointment was the apparent lack of use of the COBOL
Interactive Debug Facility. Perhaps this was caused by the requirement
to use the V4 COBOL Compiler with the Debug package. In order for the
USACSC Headquarters to maintain compatibility with the field, the V2
Compiler must be used after the V4. Another probable reason was the
high contention among programmers to have time on the terminals. Peer
pressure did not encourage a programmer's tying up a terminal for an
interactive compilation.

A final comment from the programmers broached the subject of super-
vision/management. Their comments centered on the fact that when a
terminal wasn't available, it wasn't always easy to shift into batch
mode or to find some other way of being productive. Some inferences
can be drawn from this commentary. For example, be sure that enough
terminals are available and consider modifying management techniques
to ensure efficient use of the terminal as a resource.

There is another set of lessons learned which deal more with the
evaluation study rather than with interactive programming per se.

As much time should be taken in preparing all levels of the
organization for the study as is used in actually collecting data.
Programmers must be trained in the use of the system but it is just
as important to train them to use data collection forms. Supervisors

) = fe;

P

i

must understand their responsibilities in assigning tasks and ensuring
-— proper documentation of the effort for each task. Upper management
must be cognizant of the impact of the data collection effort on com-
pletion of the normal work load and make appropriate allowances, es-
- pecially in the area of overall man-hours. The systems support staff
must be ready to provide for capture of needed machine utilization
statistics and the comptyroller must be involved in defining costing

algorithms for establishing comparable batch and interactive programming
costs.

As part of the internal public relations effort which must occur as
- a part of the overall effort, the thrust of the study must be the
evaluation of the method of operation, not the people involved. This
must be emphasized repeatedly. The study and use of the data by
management should not be used for personnel or project performance
assessment.

4. The Study in Retrospect

Determining programmer productivity is not an easy task. It is
possible, however, to come up with good information even in a production
- environment. Planning for the data collection must be meticulous and
involve the participating programming groups. The plan must be flexible,
and at the same time strictly enforced, to produce valid results. The
actual data collection period for this project was 3 months. This time
period was adequate; however, a longer period would have allowed collec-

- tion of more data and more detailed analyses would have been possible.
The trade-off is that as time increases, controls change and additional
- factors influence the variability of the results. We opted for less

time and more uniform results.

- The coordination of the data collection effort is facilitated by a
highly conversational mode of operation between project staff and the
programmers and their supervisors. Weekly meetings to discuss problems
proved to be an absolute necessity in the Command's study.

More valuable information is obtained from experienced programmers
than from programmer trainees. Although the pressures and changing
- gituation of the real-world work situation make data collection a more
difficult task, it is only the experienced programmer working at his
regqular job who can provide a thorough assessment of the systems with
which he must work.

One of the highlights of this project was the smooth installation
and growth of the Interactive System. It is a credit to the project
office, the system programming staff and the IBM contractor brought in
to assist in the project. Great assistance in solving problems and

locating software enhancing packages was provided by participation in
- SHARE, INC.

PP LR Y L S

This project presented a paradox to personnel training and terminal
usage. Over 70 personnel received training. Twenty of the 70 were
participants in the evaluation. The other 50 provided normal terminal
contention and presented no real problem. When the 40 interns were
trained, however, terminal contention peaked to a point that when in-
tern programmers were using the terminals, productivity of those using
the terminals was significantly impaired.

In a project of this nature there is great anticipation by upper
management and, as a result, project management, to show results within
a short time frame. In an attempt to stay on schedule, some familiar-
ization time was sacrificed to expedite the beginning of data collection.
The result was some wasted effort due to participants®' lack of under-
standing of both the proper way to fill out data collection forms, and
of the use of the interactive system,

And finally, it was reassuring to see some management personnel
change from a state of apprehension toward IAP replaced by total
acceptance of IAP and some apprehension concerning any possibility
that it might be removed.

3-8

'y 1

- L

PR

CHAPTER 4
IMPLICATIONS

At this point we address the question of how TSO will affect manage-
ment decisions and operations in the Command.

1. Planning Future Terminal Requirements

One of the first tasks is the orderly planning for additional aquip-
ment. Requirements must be defined for additional terminals, physical
placement of the terminals, and additional disk space for work areas
and temporary files. The information from the s*v?y provides the
following guidance in such planning:

In planning for number of terminals newwi), * <7 unate the number of
terminals on about a five programmer-per-+ier«ii'--: ¥atio. This is only
a guideline and depends on the programmers, %%:- tisks, the response time
and many other variables. In some cases, tuw: pisgrammers per terminal
may be too many; in others, one terminal say be sufficient for ten
people. To be more specific: First, if a programmr is using a terminal
for JCL procedure changes, he can use it efficiently for as long as he
has work to do; theoretically, each prograkirer could have his own ter-
minal. Since fatigue becomes a factor after several hours, a 2:1 ratio
(programmers to terminals) may be sufficient. The same rule can apply
to program conversions and to any other task when the programmer must
plow through lengthy data sets, making numerous changes before handing
the data set back to the computer. Second, if programmers use the ter-
minals for following batch jobs through the queue or for simply modify-
ing programs and initiating background processing of their programs, a
ratio of 5:1 is sufficient.

Another factor determining the number of terminals is the cyclical
nature of the work load. Some of the software systems supported by the
Command undergo quarterly modifications and maintenance cycles. Because
of this, there are times when everyone in a programming group is using
the terminals for completing their tasks, correcting program "bugs,"
or modifying a routine, etc. There are other periods when few in the
group need time on the terminal, e.g., during system test or slack
periods prior to receipt of a change package. The point is, the number
of terminals required should be estimated by requirements at the peak
period--not the slack period, and not "on the average."

Another factor might be called the "fire fight factox" (f3). That
is, if tasks which are to be performed demand very quick turnaround,
terminals should be available to facilitate the process. The fact still
remains that, other factors being equals TSO is the fastest way to per-
form any task. A project with a high f° situation may need a 1l:1 ratio.

4-1

e e ———

AR P oy WS - Ty - A

——TTTT AT T

Placement of terminals is a planning consideration, especially from
the man/machine system point-of-view. Although physical limitations of
the equipment obviously must be satisfied (e.g., in some cases terminals
be no more than 2,000 feet--or some other relatively short distance--
from the interfacing hardware). Terminals should be in a relatively
secluded work area to minimize interruptions; the work area should pro-
vide table space for reference and other materials; in no case should
the terminal be placed in the middle of an open area which has a lot of
traffic; for typewriter terminals (e.g., 2741s), the terminal should be
in a separate small room, if possible, because of their noise level.

Because work loads fluctuate, some consideration should be given to
providing a minimum number of terminals to a programming group at the
higher (8:1) ratio so that additional terminals might be installed tem-
porarily when the work load requires (with any overall ratio of, say,
3:1). :

A final consideration in planning and placement of terminals is
establishing the types of terminals required. Most of what has been
said so far assumes that the principal device will be the 3277 CRT.
There are also 2741 typewriter terminals and a variety of remote print-
ers. The trade-offs between CRTs and hardcopy terminals are well es-
tablished and need no review here. The Command study made use of CRTs
exclusively, and for most of the work, the speed of the CRT far outweighs
the advantage of a hardcopy record of the typewriter terminals. There
probably is reason for having a few hardcopy terminals but the CRT
should constitute the bulk of the terminal hardware.

2. Resource Management
In addition to aspects of future hardware planning, there are a

number of other points under the general rubric of resource management
which will need management attention.

First, a decision might be made on how best to perform programming
steps given the TSO enviromment. As an outcome of the evaluation study,
the generalized steps of programming were reviewed and recommendations
were stated as to how to best perform each step. However, the question
to be raised here is not how to perform each step best but whether
management should require that each step be performed in a recommended
way. The answer depends on the management of a particular installation.
On the one hand, only the programmers know whether a terminal is avail-
able, what the priority is of the task, how long it will take him/her
(not how long it should take Mr/Ms Average Programmer) to do what's
needed. The programmer needs the prerogative to perform the steps best,
given the tools he has at hand. The enviromment changes too quickly
for detailed rules (on whether to punch a card or key in a statement to
perform a particular step for a particular program) to be of value.

X3

Second, managers' time should not be taken up enforcing counterpro-
ductive rules. On the other hand, programmers should be given guidance
based on what has been learned on how to most efficiently use the system.

A second point under this general topic is the possible need for
definition of new jobs. The specific job of concern here is the job of
terminal operator (TO). A TO is needed in the cases where a great deal
of code or other data needs to be keyed into the terminal. The common
example would be in keying in a newly written program. The most
efficient and cost effective means for doing this is to have a specially
trained clerical person take the coding sheet and input the program into
the system. This frees the programmer (who probably isn't much of a
typist anyway) to perform some other task to which his salary is more
suited. Once the source data set is created, the programmer can quickly
check and visually verify the code and submit it for compilation.

The general point to be made is that some redefinition of jobs
may be called for with the installation of TSO and a formal job analysis

may help in defining how best to structure the jobs.

The third point was alluded to earlier and has to do with management
of the peripheral hardware. It would not be cost effective to have the
maximum number of terminals required in each programming group at all
times. It would be more appropriate to have a minimum number, but have
in addition, the capability for temporarily installing additional ter-
minals as the workload required. The trade-off is that lines will have
to be installed for the temporary hookups and someone will have to
manage and control the pool of -temporary terminals. The evaluation
study did not perform a cost analysis comparing the savings of a tem-
porary terminal pool approach, but the potential savings would have to
be compared with the personnel and logistics problems innate to such an
approach. No solutions are offered here, only the presentation of the
problem.

3. Future System Utilization

Once the hardware/software system is enhanced to support interactive
operations, careful consideration should be given to additional inter-
active applications: management information systems providing flexible
real-time information retrieval and hardcopy formatting; computer assisted
instruction packages providing self-paced, highly motivating training
in programming and any other topic of concern to personnel in the
Command; text processing packages to reduce the clerical work load of
changing documentation reports, and the like, which usually undergo
several iterations before final acceptance. One specific application
which might be considered is a flow process control system for use as
a management tool for controlling change package processing.

cvms,

AL AF A izl Tt e Wl M s B

Rl Nt |

CHAPTER 5
SUMMARY

The purpose of this report was to present the key findings of the
evaluation of interactive programming and to discuss the implications
and lessons learned for management planning. Special emphasis was
given the actual task of the programmer and the impact which TSO will
have on the programmer carrying out his day-to-day activities.

The evaluation showed that increases in productivity more than made
up for the increased expense of the additional hardware and software
needed to support the interactive system. With the increasing manage-
ment interest in the system, the concerns addressed in this report are
being dealt with. The prospects for increasingly effective and efficient
use of interactive programming are excellent.

5-1

L(‘_go

Sy by
A
» T4

WA
PSRRI IS Ay Al
Jo7 e - Sfc N

R

s

o —

REFERENCES

1. Sackman, Harold. Man-Computer Problem Solving. Princeton, N.J.,
Auerbach Publishers, Inc., 1970.

2. Reaser, J., Priesman, I. and Gill, J. A Production Environment
Evaluation of Interactive Programming. Technical Report USACSC-AT-74-03,
December 1974, Integrated Systems Support, Inc., USAMERDC Contract Nonr
DAAKO2-72-D-0529, U.S. Army Computer Systems Command.

R-1

Yy

" REPORT DOCUMENTATION PAGE

READ INSTRUCTIONS

BEFORE COMPLETING FORM

REPORY NUMBER 2. GOVT ACCKSSION NO,

o= 102/l

3. RECIPIENT'S CATALOG NUMBE

0

..

TITL& (and Subtitle)

Interactive Programming: Summary of an
Evaluation and Some Management Considerations

8. TYPE OF REPORT & PERIOD COVERED

Final one-time issue

8. PERFORMING ORG. REPORT NUMBER

7.

AUTHORL{S)

Reaser, Joel M. and Carrow, John C.

DAAKO2~72-D-0529

+ CONTRACT OR GRANT NUMBER!S)

Falls Church, Virginia 22041

PERAFORMING ORG ANIZATION NAME AND ADDRESS

INTEGRATED SYSTEMS SUPPORT, INC.
5827 Columbia Pike

10. PROGRAM ELEMENY PROJECTY
AREA & WORK UNIT NUMBERS

T ASK

CONTROLLING OFFICE NAME AND ADDRE 88
U.S. Army Computer Systems Command

12. REPORT DATE

March 1975

ATTN: CSCS - TSO
Fort Belvoir, Virginia 22060

13, NUMBER OF PAGES

>

+ MONITORING AGENCY N AME & ADORESS(if different from Controlling Office)

-

Unclassified

8. SECURITY CL ASS. (of this report)

Not Applicable

180. DECL ASSIFICATION/DOWNGRADING

SCHEDULE N/A

. DISTRIBUTION STATEMENT (of this Report)

Distribution of this document is unlimited.

Not Applicable

. DISTRIBUTION STATEMENT (of the abstract entered in Rlock 20, if different from Report)

. BUPPLEMENTARY NOTES

None

Interactive vs. batch processing
Evaluation
Programmer productivity

\Time sharing programming

. k&Y worDs {Continue on reverse side if necessary and identify by block number)

This report summarizes the results of an evaluation of interactive pro-
gramming versus batch programming within an actual software production
environment at the U.S. Army Computer Systems Command.
the study was to determine productivity and cost effectiveness differences
between the two modes of operation. The results of the study indicate
that, on a line-of-code basis, the interactive system offers an increase

20.| ABSTRACY (Continue on reverse side if necessary and idemtify by block number)

in productivity and a decrease in overall cost..—g, ..

The purpose of

. V1) ‘FOR" 1473 EDITION OF) NOV 68 IS OBSOLETE

JAN 7

SECURITY CLASKIFICATION OF THIS PAGE (When Date E ntered)

cPPCTTRYEn

SECURITY CLALSIFICATION OF THIS PAGE (When Data Entered)

20. Abstract (Continued)

Based on the data gathered formally and informally from the
programmers, topics are discussed which should be considered
in management planning for interactive programming.

"

e —

SECURITY CLASHIFICATION OF THIS PAGE (RAmm Dnta Ratrred)

I 7 B AT P ST T AR N Y T 1

