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_MWe—prove the existence and the uniqueness of classical and strong
solutions for a class of non-homogeneous boundary value problems for first
order linear hyperbolic systems arising from the dynamics of compressible non-

viscous fluids. The method provides the existence of classical solutions

without resorting to strong or weak solutions. A necessary and sufficient
condition for the existence of solutions for the non-homogeneous problem is
proved. It consists of an explicit relationship between the boundary values
of u and those of the data f. Strong solutions are obtained without this
supplementary assumption.ﬁhﬁee Theorems 3.1, 4.1, 4.2, 4.3 and Corollary 4.4;

see also Remarks 2.1 and 2.4.

In this paper we consider equation (3.1) below. In the forthcoming part

I1 we prove similar results for the corresponding evolution problem.
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SIGNIFICANCE AND EXPLANATION

We undertake a mathematical study of the equations (1.1) governing the
motion of a compressible non-viscous fluid in some region of space. The
equations are presented in J. Serrin's article in the Handbuch der Physik, or

in the classical treatises of L. Landau-E, Lifchitz or L. Sedov.

A rigorous mathematical study of these equations is quite difficult but
of physical interest since existence and uniqueness properties are a test of
the validity of the model under discussion. Beyond that gualitative
properties of solutions often underlie the estimates derived in studying
existence problems. Finally, rigorous numerical approximations can frequently

be derived from the mathematical apparatus.

A general approach to studying non-linear equations is to use approxima-
tion by a family of linear ones. In general different linearizations can be
found, It is important to find simple ones not only to simplify the
mathematical study but also for possible use in applications, particularly

linear numerical approximations.

A study of the non-linear equations (1.1) was done in D. G. Ebin's paper
[5) and in the author's papers [2], (4]. However, the linearizations utilized

in these papers are not the simple canonical approximation (1.2) used here.
In fact, the known results in the literature are not applicable to this last
problem. The aim of our paper is the study of the linearized equations
(1.2). Actually, we study a class of boundary value problems for linear
hyperbolic symmetric systems which contains, as a particular case, the equa-
tions under consideration. To propound the central rule of linear hyperbolic

systems in pure and applied mathematics s~»ms superfluous. We only point out

that in the course of our study many .- ring problems arose - for
instance, the compatibility conditions coni. .ting the boundary values of the
unknown vector field u to those of the external forces f (see Section 4). 1

Finally, we note that the proofs given here are quite simple, and use

only basic results in functional analysis and partial differential equations.

The responsibliity for the wording and views expressed in this descriptive
summary lies with MRC, and not with the author of this report.




HOMOGENEOUS AND NON-HOMOGENEOUS BOUNDARY VALUE PROBLEMS FOR FIRST ORDER LINEAR
HYPERBOLIC SYSTEMS ARISING IN FLUID-MECHANICS (Part I)

~ ®
H, Beirao da Veiga

1. Introduction. The motivation for the present work was the equations of motion of

a compressible non-viscous fluid in a domain with boundary. In order to simplify th

exposition we consider the half space lz 2 {x:x, <0l Let T>0 be fixed

%' = (x,,x,)« The governing non-linear equations are then
273

?T: +(vDy +p Wp =g,

3 apy”!
3% + veVp + 9(3;] divvse=0,

s

+veVs =0,
(1.1) < ko
v‘(t,O,x') =0,
v{0,x) = volx)

p(0,x) = pyix) ,

( S(0,x) = So(x) ’
where the wvelocity v = (v1,v2,v3), the pressure p, and the entropy S are unkno

in ]-T,7[ X R3. The functions g(t,x), vo(x), po(x) and So(x) are given. Furthermore

the equation of state of the medium p = p(p,S) 1is a known function of p,S verifying
o >0 and 3p/9p > O.

The motion of compressible non-viscous fluids was studied by Ebin for small initial

data (5) and by us for arbitrary initial data (2], (3], (41(1). However, the

'Depattment of Mathematics, University of Trento (Italy).

{Vipater in a paper independent from ours Agemi extended the approach of Ebin
to arbitrary initial data (see [1]).

Sponsored by the United States Army under Contract No. DAAG29-80-C-0041.
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linearizations used in these papers are not the simple cnes which consists in studying the
first order hyperbolic system (the linearization procedure decouples the variable §S)

]
[ 5{-+(W'V)v+an-q:
p .
3% * wV'p + bdivva=2~g,
(1.2) vilt,0,x') = 0,

v{0,x) = vo(x) ’

| p{O,x) = po(x) .

Here alt,x) and b(t,x) are given positive functions and the given vector field
wit,x) verifias H'(t,o,x') = 0,

As pointed out in Ebin's paper, the known results for linear hyperholic systems do not
seem suitable for these problems. For this reascn we will study the problem of the
existence of classical (i.e. differentiable) sulutions for a class of boundary value
problems which contains as a particular case the system (1.2) and other systems arising in
fluid-mechanics. This will be done in this paper (stationary case) anrd in a following one
(part 1I, evolution case). The method used here also provides a simpler prootf when the
problem 18 posed in the whole space. In this last case the statements and proofs are
obtained by dropping all the assumptions concerning the boundary.

In this paper we avoid the use of weak solutions, mollifiers, and negative norms by
proving directly the existence of classical solutions which are our main concern, in view
of problem (1.1): The existence of strong solutions then follows as a consequence. Recall
that in the fundamental works of K. O. Friedrichs (7] and P. D. Lax and R. $. Phillips [B])
one starts by proving the existence of weak solutions.

We prove the existence of classical solutions without assuming t_he poundary space N
to be maximal non-positive and the boundary matrix to ve of constant rank on the
boundary. See Theorems 3.1, 4.1, 4.2, 4.3 and Corollary 4.4:; see also Remarks 2.1 and 2.4.

An essential tonl in our method will be the introduction of a space 2 of regular
functions verifying not only the assigned boundary conditions but also some “complementary
boundary conditinns® such that: (1) the boundary integrals in (2.10) vanish for every

u,v & Z2; (il) % 1is dens2 in Y (roughly speaking: the complementary conditions loose

-2-
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sense in Y); (iii) there exists an homeomorphism D from 2 into X for which (2.28)
holds; (iv) Lu & Y, Vu 6 4. These conditions could be weakened, but the above form is
sufficient for our purposes.

In order to simplify the exposition we treat the problem in the half space l'_”.

However, by standard methods one can adapt the results to open regular subsets I of R™.




2. Basic Lemmas. Let K2 = {x 6 2% : x, <o}, @ = {x: «, =0} ana

X' = (xz,...,xm)- The cowponents ot the outward normal to the boundary are ‘then
ng = 6”. J = 1yeee,m.

Let LZ(I':) denote the space of all measurable real-valued (classas of ) functions
which are square integrable on R® and let HS(R®) denote the space of all funcriors
which belong, together with all the derivatives of order less cr egual to k, *ao L’(i"_‘).
Mot eover Hﬁ(l';), k 2 1, denotes the subspace of H"(kﬁ') of all functions v—lmshiug(z) cn
the houndary R® ! in the usual trace sanse and Hg(lﬂ), k » 2, dunotes the subspace cf

functions with vanishing normal derivative on the boundary. 1The space ot all raal bounded

3

and continuous functions togethar wi'l the derivatives c¢f order lass or equal te *  wili

be denoted by Ck(lf). The usual norm in this epace is dencted by | | Corresgpeniing

L
spaces on the boundary I"" wi)l be used, in vartienlar the fraction.a:y Scwolav spaces
(") for s =, %' Other notations will be clear from the context.
Finally we denote by c different conataats depending at iust ou the intogers m
and n. N denotes the get of all positive integcts. .

Let now H and AJ. J = 1,eee,m, ke n Xn ~ patrix values functions <+%jipned in «*, W

We assume that H is diagonal with diagoral elemcnts h(x), k = 1,000,n, veritying

{2.1) mg = inf hk(x) > 0.

L]
xen

1‘k:n
For convenience we define h(x) = (h1(r),....hn(x)). Moreuvar we cuopuss that the
watrices AJ, J = 1,0ee,m, are symmetric:
(2.2) ade(x) =ad (x), ¥ i,k =1,.00n w6 R
Finally, for all index 1i,k,J,

(2.3) n.ad, € c'a) .

—— —— e,

(2)0n1y the function, Nnt necessarily the derivat)ves.

-3




Remark 2.1. The results and proofs stated in this paper can be easily adapted it the

assumption “for every x & R", H(x) is diagonhal" is replaced by the more general

-

assumption "for every x 6 ', H(x) is symmetric, moreover for every x 6 -1 it has the

form
Hp(x) 0
(2.4) H(x) =
0 Hn_p(x)
with Hp(x) and Hn_p(x) matrices of type p xp and (n - p) X (n - p) respectively"”

(definition of p in (2.13)). The assumption (2.1) is then replaced by “H is uniformly

positive definite®. In this more general case the scalar products (u,v), and ((u,v)),

m
(definition below) are replaced by (Hu,v) and (Hu,v) + l (H %3-, %!—) respectively.
J=1 b
Moreover the operator D in (2.27) becomes Dv I Hv ~ div(HVv)(3’ where

v = (v1,...,vn). Note that now equation Dv = £ is an elliptic system of n equations
instead of n single (decoupled) elliptic equations, Thanks to the boundary assumption
(2.4) the operator D is again an homeomorphism of 2 onto X, moreover (2.28)

holds'4). The reader easily verifies that our proofs hold again.

Now let [ be the partial differential operator

m
-1_J 3u
(2.5) Ln = ) AT
J=1 X3

where u = (u,,...,un) is a vector function defined in R®, In equations like (2.5) in
which matrices act on vectors these last are always to be considered as column vectors.

Note that equations (1.2) can be written in the form

4

] d -
(2.6) T Lom ,AJ-S:—af
J=1
where u = (v,,vy,Vy,p), £ = (q1.92.93,1) and
v,

3 i

: t)
This means that (pv), = E h .v. = g - { ? h . ==, for k=1,...,n.
k 51 ki i =1 axJ in1 ki axJ

(4) ;
Clearly with ((U.V))h replaced by the scalar product indicated above.

-5=
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-1 1
a W,y (4] 0 a
a™! 0 0 w, 0 o0
(2.7) H = . wlal = ,
a™ o 0 w, o
0 b=t b 0 0 w
w, 0 0 0 wq o 0 0
0 w [} a 0 w. 0 0
- 2 - 3
u-'a? » , n-1a3 = .
0 0 L) V] 0 0 W, a
0 b ) v, 0 0 b vy
Let us return to the general cagse (2.5). Let us define RJ =y 'aY hence
~J -1.J . . J - J
a,. = h; a},. For convenience we will use the notations ¥A") , = maxla 1 ,,
ik i Tik cl ik ik Cz
’
[}.1] L H maxlAJI L and similarly for the other matrices used in this paper. By definition
C J C
tht = maxfh 0 . = BH! ., Let be
C‘ k k Cl C"

x = 2™, v= W@t 2= wio®))?

and define the scalar products in X

n n
tu,v) 2 ) f wvdx,  (u,v)y, ) / uy vy by dx
k=1 m k= m
R_ R_
and also the corresponding norms |*| and I'Ih {which are equivalent) and the scalar
products in Y
((u,v)) 2 (u,v) + (Vu,%), ((u,v))y, 2 (u,v)y + (Vu,Vv)h
and corresponding (equivalent) norms 01°*1 and I'Ih. By definition
m
du v .
Yu,"v = N i .
(Yu, v)h JE1 (3;-, 3;; . To point out that X is endowed with the norm | Ih we
sometimes write Xy ingstead of X. A similar remark holds for VY.

For the reader's convenience we state the following two lemmas (which proofs are

classical):




*“.2,.“ N

For any pair u,v € ¥ the following identity holds:

Lemma 2.2.

(Lu,v), = =(w,Lv)y, + alu,v) + / vea'u axt

ll-‘l

(2.8)

where a 1is the continuous and symmetric bilinear form on X defined by

(2.9) au,v) = ~ )_ Il Z )u v dx .
Koi=t oo (J-1 5 1k

Lemma 2.3. For any pair u,v € Z the following identity holds:

(2.10)  ((Lu,v)), = =((u,1v)), + Blu,v) + Z ;oE.N -g-—dx' s+ valuax',
=1 n.-l 2 Xy R--1

where B8(u,v) is the bilinear continuous and aymmetric form on VY

(2.11) B(u,v) = B(u,v) + Blv,u) + ). 0-5-}—. -g-:—-) + afu,v)
i %
and
» ~F
d A" du v
(2.12) fta,v) 2 ) ) .
T g 5ey Ry ) B

Proof. Clearly

((Lu,w))y, = (Lu,v)y, + z)' ( L %;-;—‘5- T") . z (L g__, 3" .
=l
On the other hand (2.8) yields
du dv u v v 1 du
(z 30—, + , = a(z—, ) + J = A dx* .
"y rl (3_ "z)n ( 2 "1) m-1 7L =,

By adding the first equation with that obtained by switching u and v, and by using

the last equation above, one easily gets (2.10). a

T
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Now let p be an integer, 0 € p € n and let us define

N-{uGR":u1-°"-up-0}, Nl-(UGi‘:up“l:"'aunaO)c

1 . .
PNu - (“p+l""'“n)' PNu - (“1""’up)' We assume that the boundary conditions are given

by P:u = 0 on the boundary or more explicitly

(2.13) u (0,x*) = 0, k= 1,...,p, for x'6 ol

m
We also assume that the boundary matrix Al - l nJAJ verifies for each x' é R®~! the
J=1
following assumptions (the reader is also referred to the papers (7] and [8]; see in

particular the sections S and 8 of ([7)):

TR

{2.14) A‘(Nl) .

Moreover we assume that for each x @ ")

(2.15) AN CN,  T=2.00.m.

With the boundary conditions in canonical form (2.13) assumptions (2.14) and (2.15)
are respectively equivalent to the following ones: The matrices A7 take on the boundary
the form

o M rY 0
(2.16) Al - Al - v I =2,0.0,m,
T 0 0 s
where M(x'}, RY(x*) and SJ(x') are p x (n -p), pXp and (n - p) x (n - p)
wmatrices respectively. Mt denotes the transpose of M. By preceding assumptions rY
and 57 are symmetric. The ranka of these matrices are free.

Note that if p = 0 or if p = n the conditions (2,15) disappear and condition
(2.14) becomes Al 2 0 on the boundary; in case p = 0 it suffices that A' was negative
semi~definite; see Remark 2.4. Note also that in the particular case (1.,2) one has
P =1 and the matrices (2.7) verify the assumptions (2.16).

Finally, we degscribe the assumptions on the lower order term Bu in equation (3.1).

We assume that B is an n X n matrix valued function defined 1n R" and verifying

(2.17) by, § v (RT), 1,k = 1,..0,n,

-8B
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Moreover we assume that for each x on the boundary one has

(2.18) B(N) C N .

This last condition means that on the boundary

B 0
(2.19) B =

B, By

where 8,(x'), Bz(x') and B3(x') are matrices of types p x p, (n ~ p) x p and
(n - p) X (n - p) respectively. Clearly b e L(Y;Y]; see definitions (2.22).
we now define

1 1
|(Bu,u)h + 5 a(u)] [C((Bu,u)) + 5 Blu,v)|

+

(2.20) A= max[sup , Sup .
0 2 2
uex [u{h uey tud,

From our assumptions on the coefficients it follows the existence of a constant ¢

such that

I - 1
(2.21) Ao € Xy Zef— AL L+ S UL n¥ o4 MBY )

Moreover we define the following spaces:

Y:{(u6€V:ue N on the boundary} = [H)(R"))P x (u (R ""P ,

and
= du 1 2 P 2 n-p
22{ue€?:ueN and € N~ on the boundary} = [HS(R™)IP x [HE(R™)) .
5x1 0 - N -
Note that % is dense in Y and Y 1is dense in X.
Betore going on we discuss in the following remark some features ot the boundary
assumptions.
Remark 2.4. Assume that, instead of (2.16)’, the boundary matrix has the more general
torm
0 M
A, =
1
uT 0

where ¢ 18 a sywmetric and negative seml-detinite matrix; this 1s equlvalent to replace

condition (2.14)1 Dy condltion

-9-




(2.22) ualuco, wen w'ert,

Under this weaker assumption the existence results proved in our paper (including those of
Section 4) holds again provided that one assume that 2 > o\o instead of || > Ao. The
proofs remain unchanged in the essential features,

(ii) Energy estimates are obtained under weaker assumptions than those needed to get
existence. The a priori hound |uf, € (]A{ - Xo)-ilku + Lu + Buj,, W €Y, holds without
assumptions (2. ”)2' {2.15) and (2.19); moreover assumption (2.1«0)1 can be replaced by
(2.22) if we take in account only the values A for which A > AO' Analogously the a
priori bound lulh < (|x] - z\o)_‘l/\u + Lu + Bulh, Vu € 2, holds without the agsumptions
(2.15) and (2.19); moreover if we take in account only values A > Xo, the assumptions
(2.14)‘ and (2.\4)2 can be replaced respectively by (2.22) and by u-Aju €0, vue Nl,

' e ll"". The remaining assumptions (2.14)2, (2.15) and (2.19) are utilized only to
get L(Z)C Y and B(Y) C ¥; it seems clear that these assumptions could be weakened if
one only wants to prove existence for strong solutions.

Lemma 2.5. Agsume that (2.14)1 holds. Then

(2.23) (Lu,v)y = -(u,Lv)y, + alu,v), w,veyY.
In particular
2

(2.24) J(Lu + Bu,u) | < xo|u|h, wuwey.

In fact, under the hypothesis of the lemma the last term in equation (2.8) vanishes.

Assume now both hypotheses {2.14) and let u,v € 2. If & # 1 the tangential

3
derivatives %‘L and 51— belong to N and from (2.14), it follows that the
Xe *
corresponding integrals in equation (2.10) vanigh. This also holds for % = 1 as one
. . du v
i . hat th d

shows by using (2.14), and by recalling that the normal derivatives 3—;— an W{ belonyg

to Nl. Hence one gets the following result:

Lemma 2.6. Assume that (2.4) holds. Then

(2. 25) ({Lu,v))y = -({u,Lv)) + B(u,v), Yu,v 62 .

In particular
2 <
(2.26) [((Lu + Bu,w)) | < Ahat, w6z,

“«10e-




LemnaA 2.7. The operator L with domain Y is preclosed in X. Moreover its closure

L verifies (2.23) for each pair u,v & D(L).
The proof follows easily from (2.23).

Lenma 2.8, Assume that (2.14), and (2.15) hold. Then L & L(2;Y], i.e. L is a

bounded linear operator from 2z into Y.

Proof. Clearly L &€ L[Z;Y)« Let u 6 Z Then -g-:— - N‘l on the boundary hence
1

190 LA Jrdu
A(‘;'-]GN. On the other hand for J # 1 one has 5;;‘" hence A[;;;)GN.
Consequently Lu € N on the boundary. o

Define now the operators Dyg = g - div(hkvg) and put
(2. 27) D= . .

Lemma 2.9. The operator D is an homeomorphism from Z onto X. Moreover

(2.28) ((u,v)), = (u,Dv), wéy, wez.,

Proof. The first statement follows from well known results for the Dirichlet and
Neumann boundary value problems for second order linear elliptic equations; the reader is
referred to the classical paper of L. Nirenberg (9). Equation (2.28) follows by

integration by parts. a

-11-
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3. Classical Solutions for f & Y., Strong Solutions. The assumptions in this

section are (2.1), (2.2), (2.3), (2.14), (2.15), (2.17) and (2.18). Recall also the
definitions (2.5) and (2.20). The boundary conditions are given by (2.13). Under these
assumptions we prove the following theorem of existence and unicity for classical and
strong solutions of equation (3.1)(5):

Thereom 3.1. Let the above conditions hold and let X 6 R be such that |A| > A

]
Then (i) for each f € Y the equation

(3.1) Au + Lu + Bu =

has a unique classical solution u € Y, Moreover

1
(3.2) lulh < TXT_:_XG Iflh .

(ii) For each £ € X the eguation
(3.3) Au + ;u +Bu=f

has a unique solution u ¢ D(L). Moreover

(3.4) luly, < TxT-é-x- l£ly » .
o

Proof. We give two different approximations. By Galerkin's method and by elliptic . .
reqularization.

13% pethod. Let (usl. 8 6N, be a base for 2 and put

L
(3.5) u(‘, = 2 c(‘)a R ve e N.
s 8
s=l
Select the real numbers c:!) as the solutions of the linear non-homogeneous system
L | 3
(3.6) (u®a e e e mu™a . g, war,

(S)See also Remark 2.4, (i).




for each 2 ¢ this problem is uniquely solvable. By using (2.26) and (2.20) it

easily tollows that
Iu(,')l !

0

This gives the unicity for the linear homogeneous system hence the existence for the

non-homogeneous system (3.6)., From (3.7) and from the weak compactness of the spheres in
(v)

Hilbert spaces it follows the existence of a subsequence u and an element u € Y such
that u(v) —=>u weakly in Y. Since L 6 L[Y;X] one has Lu(v) -—> Lu weakly in X.
Using now (3.6) and (2.28) one gets (Au(v’ + (L + B)u(v) - f,0a,) =0, r = 1000,%, and
by passing to the limit

(3.8) (Au + (L + Blu - f,Dar) = 0, vr ¢ N.

Since (Dar} is a base for X equation (3.1) holds. Estimate (3.2) follows from
(3.7). Finally let u & Y be an arbitrary solution of equation (3.1), By multiplying

scalarly in X, the equation by u and by using (2.23) one gets {3.4)., Hence the

o)

solution 18 unique (1in particular one gets the convergence of all the sequences and

£
Lu( ) in the proot given above).

We prove now the second part of the theorem., lLet f € X and consider a sequence

t(l) 6 Y, f(l) + f in X. Let u(l) € Y be the solutions of

(M
At (y _

(3.9) + (L + B)u

By taking the scalar product in Xp ot the difference of the £-th and the k-th

equations with u(z) -u'®), one gets Iu(l) - u(k)|h < ({A] - XU)-1|f(l) - f(k)lh. it

o) (L)

follows that * u € X strongly in X. Hence Bu + Bu and from (3.9)

Lu(l) + f - Au - Bu strongly in X. This means that u & D(L) and that (3.3) holds.
Let now u €@ D(L) be an arbitrary solution of (3.3). Then from Lemma 2.7 one easily gets

the estimate (3.4) hence the unicity.

(7)Actually one has (u(l),Lu(l)) €Y xY VEEN,

«l3=




Zth method. Let € > 0 be a parameter and look for ug @ Z such that
(3.10) AMEvn, ¢ e+ BN s e, = )y, wez,

We take +€ if A > Xo and -€& if A< -Ao. The left hand side of the above
equation is a bilinear continuous and coercive form over 2, consequently by a classical

. . €
result ot P, D. Lax and A. N. Miigram there exists a unique solution u of problem

€,2

{3.10). By taking v = u® it follows that (i) - Xo)lusl: +etuly < Iflhluel Hence

h*
1

€,2 R
(3.11) nfel < e ",

2

and from the first estimate above it follows that eluclz

is bounded by a constant
independent of €. Thus there exist a subsequence ue and an element u € Y such that

€
U -—>u weakly in Y ,

(3.12) €

ely Iz +0,
when € * O, In particular (L + B)uE ~—> (L + B)u weakly in Y. By using now (2.28) we
write (3.10) in the form (A + (L + B)u® - £,0v) = ¥ e((u‘,v))z, W ¢ Z. By passing to

the limit when € + 0 it follows that Au + (L + B)u - £ = 0. The remainder of the proof

is as in the 15% method above. (]
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4. The Non-Homogeneous Problem. For convenience define

Hp = (W% (m™1))P

for s -% or % and p 6 N. In this section we consider non-homogeneous boundary

condition P:u = w Or more explicitly
(4.1) w (0,x') = w (x'), Kk =1,...,p, for x' &R,

let £8X and w 6 H;’z « We said that u & X is a strong solution of problem

(t)

(3.1), (4.1) if there exist sequences u - !u’) ¢ X, £t 6 N, such that

Wt 4 ettt g8, gyt

+ Lu = w on the boundary (in the usual trace sense) and

\l(") +u, !(“ + £ strongly in X.

Theorem 4.1. let £6 X and w6 H;/"‘ be given, and let |[A| > A, Then there

exists a unique strong solution u of problem (3.1), (4.1). Moreover

1
e 72

C ~
4.2 < 4 2|A] - A Al 1B} twl .
( ) l“'h Tx-r—_—r(;“ |+c( RY] ot Co+ co)vﬂyz}

Proof. Consider a linear continuous operator w + & from H;/ 2 jnto y such that
P:; = w on the boundary ®*~1 (in the trace sense) and P = 0 in R%. By carrying out
the change of variables u = @ + v and by using Theorem 3.1 the result follows easily. O

For classical solutions a corresponding result fails, We start by giving a necessary

condition, later on we will prove its sufficiency. Define smooth solution as a classical
solution which belongs to Z. Let now £ @y and let u be a smooth solution of equation

(3+.1) with the non-homogeneous boundary condition (4.1). At each point x € ®-! one has

L -11 -
P"H A = I'lp
L =t J -1._J1

(4.3) PH A"  =H RP J = 2,000,m ,

N P N’
1 1
P“B = B1 PN )

where the operators act on column vectors of R and H;'

is the p x p diagonal matrix
with diagonal elements h;‘(x), kK = 1,s04,Ps Hence by restricting equation (3.1) to the

boundary and by applying P: to both sides one gets

-1 du 3un
(4.4) l’lp H(E,'E' vesy F;T) = F

-15-




where by definition

= o
(4.5) F 2 Puf - Fx[w]

e

and FA is the operator

m
{4.6) FAIW] w4+ ) H;'RJ%:— + B,w

Ju2 J !
which acts on vector fields w(x') = (w1 (x'),...,wp(x')) defined on the boundary B'". Hence
(4.7) F(x) € range of l-l;’(x)u(x) a.,e, on the boundary ,
is a necessary condition for the existence of a smooth solution. In order to reverse
condition (4.7) we want to state it in terms of the functional spaces used in this paper.
One has the following result:
Theorem 4.2 (necessary condition). Let the data £ &6 YV and w @ HS/Z be given and

define F by equation (4.5). If there exists a smooth solution of problem (3.1), (4.1)

then the equation

-1
(4.8) Ho MGy reeerGy) = (Fyoeee,Fp)

admits at least one solution g & H;{ 2

Proof, Note that F 4] L[Hg/z H1/2] Hence F GH'/Z. let now u 6 I be a solution ‘

of (3.1), (4.1). Clearly P( ) = (TE-' ceey 3_) (~ Np/z on the boundary., Moreover

from equation (4.4) one shows that P (-5-—-) is a solution of equation (4.8). 0

We will now prove in the next theore- that the necessary condition stated in Theorem

4.2 is a sufficient condition in order to get a classical solution u ¢ y.

Theorem 4.3 (sufficient condition). Let f, w and F be as in Theorem 4.2. 1If

equation (4.8) admits a solution g € H:‘fg then problem (3.1), (4.1) is uniquely solvable

in Y (hence in Y {if w = 0). Moreover the following estimate holds

1
cthl 72

C ~
(4.9) tut, < -m-Tro- {[1 + x(2]a] - Ay + uuc‘ + 181 1)]lfl +

C

T DY I R Y I | | E R (A LY AR T RS T-Y TR [ I
0 2! c' ¢! ¢! /2

P
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where K 1s any real number verifying

gl < KIFL .
W1/2 W72

n-p P

(4.10) 1

Proof. For each ¢ Gf{z(lf) denote by Yow and Y1W the values (in the usual trace
sense) ot ¥ and ;g— on the boundary. It 1s well known that there exist right inverses

1
Y;‘ 6 LIHY 2R 1),H2(®™)] and y:‘ 6 L2 ) 2 (™)) of Y, and Y,
: ~ -1 -~
respectively. ULefine uJ = Yo wJ, J= 1,4ee,p, and uJ

carry out the change of variabies u = v + u., Equation

= Y:IQJ- J=p+ 1l,eeeyn. Clearly

Kl < c(t gl .
uly < el "H3/2 + 79 Ht/z)
{3.1) becomes P P
(4.11) AW+ Lv+By=f ZE£-(A+La+ By .

Obviously f, € Y. by using (2.16), (2.19) and (4.8) one easily gets £, € N on the

boundary. Hence f1 € Y. By Theorem 3.1 equation (4,11) has a unique solution v 6 Y,

moreover

1
< .
(4.12) lvlh TXT—:—X; |f1.h

This means that equation (3.1) admits a solution u € Y verifying (4.1) and verifying

the estimate

1/2/ - 1 -~ ~ -
L] - .
tut, < mc" (tar + T M+ Ly + Bu - £1)

Recalling the above estimates and recalling also that

' < T TYEY]
FX[']|H1/2 c(|r + Alc‘ + IB C‘) le3/2
P p
and that IPNtl 172 € clfd, the estimate (4.9) tollows with straightforward
. Hy
calculations. The uniqueness is obvious. 0

Consider now the matrix M(x)s. We say that rank M(x) = p uniformly for x & ol

if the sum of the squares of the determinants of order p contained in M(x) is bounded

below by a positive constant independent of x, i.e, if

(4.13) I w2>a250, wer',
agl

- . . . _,».,;,s,z‘,,_"’-c_mf'. e
———— i




Corollary 4.4. Assume that(a)

{4.14) rank M(x) = p, uniformly on ®®~!,

Then to each pair (f,w) ¢ y x Hg/z corresponds a unique classical solution u €y of

problem (3.1), (4.1). Moreover u verifies (4.9) with a value K such that

x<°—2lAl1lhl g i P,
q c ¢
(4.15)

k<< |A|29'3|uz‘|h| yo A P>,
d C C C

where the norms concern ¢.§. ®¥oundary spaces c"(l--‘), L =1,2.

Proof. Let I & o sat of all p-tuples of integers a = (al,...,ap) such that
1« LA "r % - 4 Demote by AJ, J® 1,00e,n = p the J-column of the matrix
M, by Ha' a = {6 .. . .o‘p) ¢ I, the value of the determinant whose columne are

Ao ""'Aa 2 by .‘.k‘«'";’(!) the value cf the determinant obtained from Mu by replacing
1
the J-column A“J by H‘p(’s“,...,Fp) - (h,F,,...,hpr). Let finally 9q H (91""'9n-p)
be the vector co.iumn such that 9q = H;'(F) for i = 1,.00,p and gy =0 for
i
x @ {a,,...,8 }. From the definitions one has Mg = § A g and arguing as in the
1 P o oy %ey
proof of Crammer's rule one shows that an = Haﬂp(?',...,rp). The vector

-1
2

(4.16) ge( I w) I mg

wr & aer v°

verifies equation (4.8) i.e, the vector g(x) is a solution of (4.8), for x ¢ =,

Obviously g € H:,{g. Finally estimate (4.15) follows from (4.16) with straightforward

calculations. Recall that #&nl < chfl nt . w]
w2 ™Yy W'

Remark 4.5. Condition (4.7) determines the linear subspace of data (f,w) for which

a classical solution u of problem (3.1), (4.1) exists,

(8)note that condition (4.14) can't be verified if 2p > n.

-18~
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For simplicity assume the homogeneous boundary condition w Z 0. By neglecting w
the above linear subspace becomes(g)
¥y = {tey: Pif(x) € range of HE‘(x)H(x) a.e. on the boundary} .

If we want to solve (3.1) for every y € ¥ (this means Y, = V) condition (4.7)
becomes rank M(x} S p on the boundary. In the other extreme case, namely rank
M(x) 2 0 on the boundary, condition (4.7) says that (smooth) solutions can not exist if
£ $ Yo In intermediate cases for which rank M(x) = q, 0 € q € p, explicitly necessary
and sufficient conditions could be obtained from equation (4.4) and from Theorem 4.3. This

was specitied only for q = p (Corollary 4.4) because this is the situation in problem

{1.2) where M = (0 0 1], consequently q = p = 1.

(g’uote by the way that Y C Y, < Y.

-19-

O o o et o3




{1}

(2]

{31

[4)

(5]

6]

(7]

(8}

(9]

HBdV:scr

REFERENCES
R. Agemi, "The initial boundary value problem for inviscid barotropic fluid motion®,
to appear in Hokkaido Math. J.
He Beir;o da Veiga, "On an Euler type equation in hydrodynamics®, Ann. Mat, Pura Appl.
125 (1980), 279-295.
H. Beirao da Veiga, “Un théoreme d'existence dans la dynamique des fluides
compressibles”, Comptes Rend. Acad. Sc. Paris 289 B (1979), 297-299.
He Beit;o da Veiga, "On the barotropic motion of compressible perfect fluids®, Ann.
Sc. Normale Sup. Pisa 8 (1981), 317~351.
D, G, Ebin, "The initial boundary value problem for sub-gonic fluid motion", Comm.
Pure Appl. Mat, 32 (1979), 1-19.
K. O, Friedrichs, "The identity of weak and strong extensions of differential
operators”, Trans. Amer. Math. Soc. 55 (1944), 132-151,
K. O, Friedrichs, "Symmetric positive linear differential equations”, Comm. Pure Appl.
Math. 11 (1958), 333-418.
P. D. Lax and R. S. Phillips, "local boundary conditions for digssipative symme%:.ic
linear differential operators", Comm. Pure Appl. Math, 13 (1960}, 427-455.
L. Nirenberg, "On elliptic partial differential equations®™, Ann. Sc. Norm. Sup. Pisa

13 (1959), 115-162,




! SECURITY CLASSIFICATION OF THIS PAGE (When DNata Enterod)
READ INSTRUCTION
REPORT DOCUMENTATION PAGE BEFORE CONPLETING FORM
1. REPORT NUMBER 2. GOVY ACCESSION NO| 3. RECIPIENT'S CATALOG NUMBER
V.
2300 Hi)- ﬂ jj[) /ﬂ o2
4. TITLE (and Subtitle) 5. TYPE OF REPORT & PERIOD COVERED
HOMOGENEOUS AND NON-HOMOGENEOUS BOUNDARY VALUE Summary Report - no specific 1
PROBLEMS FOR FIRST ORDER LINEAR HYPERBOLIC reporting period
! SYSTEMS ARISING IN FLUID-MECHANICS (Part I) 6. PERFORMING ORG. REPORT NUMBER
7. AUTHOR(e) 8. CONTRACT OR GRANT NUMBER(3)
H. Beirao da Veiga DAAG29-80-C-0041
9 PERFORMING ORGANIZATION NAME AND ADDRESS 0. :22‘2'}."20%53EI‘J‘J’u’??a‘EEs" TASK
Mathematics Research Center, University of Work Unit Number 1 =-
610 Walnut Street Wisconsin Applied Analysis
Madison, Wisconsin 53706
11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE LL
U. S. Army Research Office November 1981
P.O. Box 12211 13. NUMBER OF PAGES
Research Triangle Park, North Carolina 27709 20
14, MONITORING AGENCY NAME & ADDRESS(If different from Controlling Otlice) 18, SECURITY CLASS. (of this report)
UNCLASSIFIED
1Sa. DECLASSIFICATION/DOWNGRADING
SCHEDULE

H 16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, {{ diiferent Irom Report)

-

18. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverse side il necessary and tdentity by block number)

!

: Partial differential equations

| First order linear systems

H Boundary value problems

Classical solutions

Compressible fluids

20. ABSTRACT (Continue on reverse aide {f necassary snd identify by dlock number)

We prove the existence and the uniqueness of classical and strong solutions

for a class of non-homogeneous boundary value problems for first order linear
| - hyperbolic systems arising from the dynamics of compressible non-viscous fluids.
' The method provides tie existence of classical solutions without resorting to

| strong or weak solutions. A necessary and sufficient condition for the

DD 55y 1473 toimion oF 1 nov 6515 oesoLETE UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)




r-r——————__—"l”“

20. ABSTRACT - Cont'd.

existence of solutions for the non-homogeneous problem is proved. It consists
of an explicit relationship between the boundary values of u and those of
the data f. Strong solutions are obtained without this supplementary
assumption. See Theorems 3.1, 4.1, 4.2, 4.3 and Corollary 4.4; see also
Remarks 2.1 and 2.4.

In this paper we consider equation (3.1) below. In the forthcoming part

II we prove similar results for the corresponding evolution problem.




