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/ ,. , .ABSTRACT

>uie-prove the existence and the uniqueness of classical and strong

solutions for a class of non-homogeneous boundary value problems for first

order linear hyperbolic systems arising from the dynamics of compressible non-

viscous fluids. The method provides the existence of classical solutions

without resorting to strong or weak solutions. A necessary and sufficient

condition for the existence of solutions for the non-homogeneous problem is

proved. It consists of an explicit relationship between the boundary values

of u and those of the data f. Strong solutions are obtained without this

supplementary assumption. See Theorems 3.1, 4.1, 4.2, 4.3 and Corollary 4.4;

see also Remarks 2.1 and 2.4.

In this paper we consider equation (3.1) below. In the forthcoming part

II we prove similar results for the corresponding evolution problem.
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SIGNIFICANCE AND EXPLANATION

We undertake a mathematical study of the equations (1.1) governing the

motion of a compressible non-viscous fluid in some region of space. The

equations are presented in J. Serrin's article in the Handbuch der Physik, or

in the classical treatises of L. Landau-E. Lifchitz or L. Sedov.

A rigorous mathematical study of these equations is quite difficult but

of physical interest since existence and uniqueness properties are a test of

the validity of the model under discussion. Beyond that qualitative

properties of solutions often underlie the estimates derived in studying

existence problems. Finally, rigorous numerical approximations can frequently

be derived from the mathematical apparatus.

A general approach to studying non-linear equations is to use approxima-

tion by a family of linear ones. In general different linearizations can be

found. It is important to find simple ones not only to simplify the

mathematical study but also for possible use in applications, particularly

linear numerical approximations.

A study of the non-linear equations (1.1) was done in D. G. Ebin's paper

[5] and in the author's papers [2), (4]. However, the linearizations utilized

in these papers are not the simple canonical approximation (1.2) used here.

In fact, the known results in the literature are not applicable to this laqt

problem. The aim of our paper is the study of the linearized equations

(1.2). Actually, we study a class of boundary value problems for linear

hyperbolic symmetric systems which contains, as a particular case, the equa-

tions under consideration. To propound the central rule of linear hyperbolic

systems in pure and applied mathematics s'%?ms superfluous. We only point out

that in the course of our study many , ?ing problems arose - for

instance, the compatibility conditions coni. ting the boundary values of the

unknown vector field u to those of the external forces f (see Section 4).

Finally, we note that the proofs given here are quite simple, and use

only basic results in functional analysis and partial differential equations.

The responsibility for the wording and views expressed in this descriptive
summary lies with MRC, and not with the author of this report.



HOMOGENEOUS AND NON-HOMOGENEOUS BOUNDARY VALUE PROBLEMS FOR FIRST ORDER LINEAR

HYPERBOLIC SYSTEMS ARISING IN FLUID-MECHANICS (Part 1)

H. Beirao da Veiga*

1. Introduction. The motivation for the present work was the equations of motion of

a compressible non-viscous fluid in a domain with boundary. In order to simplify th

exposition we consider the half space R3 = x : x < 01. Let T > 0 be fixed

x'- (x2,x3 ). The governing non-linear equations are then

av -.
-F + (V*V)v + p- Vp = g "

+v.Vp p( -) divvO iK -

as +" v-V 0 .3 k.

(1.1) "+ vVs = 0,

V1 (t,O,xl) =0 *~~*' ~

v(O,x) = VOWx

p(Ox) , 

S(O,x) = SOX , \
where the velocity v - (v1 ,v2,v3 ), the pressure p, and the entropy S are unknow CoPY.

ItNSPECTD
3in ]-T,T[ x R3 . The functions g(t,x), v0 (x), p0 (x) and SO(X) are given. Furthermore

the equation of state of the medium p - p(p,S) is a known function of pS verifying

P > 0 and aP/ap > 0.

The motion of compressible non-viscous fluids was studied by Ebin for small initial

data (51 and by us for arbitrary initial data 121, [31, (4)(1). However, the

fDepartment of Mathematics, University of Trento (Italy).

(1 Later in a paper independent from ours Agemi extended the approach of Thin
to arbitrary initial data (see [I1).

Sponsored by the United States Army under Contract No. DAAG29-80-C-0041.
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linearizations usied in these papers arP n-t the simple ones which consists in studying the

first order hyperbolic system (the linearization proevedure decouples the variable S)

av
- + (v.V)v + aVp - g

ap+ wVp + b div v = ,

(1.2) v1 (t#O,xl) - 0

v(O,x) = vo(X)

p(O,x) = Po(X)

Here a(t,x) and (t,x) are given positive functions and the given vector field

w(t.,x) verifies w1 (t,O,xl) - 0.

As pointed out in bins paper, the known results for linear hyperbolic systems do not

seem suitable for these problems. For this reason we will study the problem of the

existence of classical (i.e. differentiable) so.lutions for a class of boundary value

problems which contains as a particular case the system (1.2) and other systems arising in

fluid-mechanics. This will be done in this paper (stationary case) ard in a following one

(part 11, evolution case). The method used here also provides a simpler proof when the

problem is posed in the whole space. In this last case the statements and proofs are

obtained by dropping all the assumptions concerning the boundary.

In this paper we avoid the use of weak solutions, mollifiers, and negative norms by

proving directly the existence of classical solutions which are our main concern, in view

ot problem (1.1). The existence of strong solutions then follows as a consequence. Recall

that in the fundamental works of K. 0. Friedrichs (71 and P. D. Lax and R. S. Phillips [8)

one starts by proving the existence of weak solutions.

we prove the existence of classical solutions without assuming the boundary space N

to be maximal non-positive and the boundary matrix to oe of constant rank on the

boundary. See Theorems 3.1, 4.1, 4.2, 4.3 and Corollary 4.4; see also Remarks 2.1 and 2.4.

An essential tool in our method will be the introduction of a space Z of regular

functions verifying not only the assigned boundary conditions but also some "complementary

boundary conditions" such that: (i) the boundary integrals in (2.10) vanisn for every

u,v 6 Z; (ii) Z is dense in Y (roughly speaking: the complementary conditions loose

-2-

h~J _ __ _ _ _ _



sense in Y); (iii) there exists an homeomorphism D from Z into X for which (2.28)

holds; (iv) Lu 9 Y, Vua 6 Z. These conditions could be weakened, but the above form is

sufficient for our purposes.

In order to simplify the exposition we treat the problem in the half space 1P'.

However. by standard methods one can adapt the results to open regular subsets U of RFP.

-3-



2. Basic Lemmas. Let U= {x G x < 01, P' (X A C.=, arid

X= (x 2 ,.,,xm). The component.s of the outward normal t the boundary are t)'en

n., -6 1.7 ,  J =1..m

Let L2 (t") denote the space of all measurable real-valued (claasss of) ftAuz.c.or-,

whi.h are square integrable on Rm and let Hk(0t denote the space of all ftvn ,:ror..-

which belong, together with all the derivatives of order less or equAl to k, ', L ( ).MoevrHk vash11(2
Iaoreover --Cu)' k - 1. denotes the slibspace of ( .) of all functions va shag C,

the hcundary 0-1 in the usual trace sanse and HkN(I.), k > 2, .notes the subspact ('t

fuactions with vanishing normal derivative on the boundary. 1.e space at all xeal b,:un.le,

and continuous functions together wi:.W the derivatives of order less or eqal tr I ui

be denoted by Ck(3e). The usual nor. in this space is denct' d by I ,.

spaces on the boundary e-1 will be ured, in .verticular the fractio.. r Sc'olf.v ac:e

te(eI - 
) for s _-., 3 Other notations will be clear from the context.

Finally we denote by c different constants depending dt most 0': t0. ' ,1

and n. N denotes the set of all positive inteoers.

Let now H and AJ , J = 1...,i, be n m n - matrix values functions i-lined in a".

We assume that H is diagonal with diagorAl elemnts hk(x), k " 1,...,n, verifyiu g

(2.1) m0 = inf hk(x) > 0

For convenience we define h(x) . (hi(Y),....hn(x)). Moreovar we ciupu' tlw-f th.

todtrices AJ, J - 1...,., are symmetric:

(2.2) eik(X) - aki(X), V ,k - 1,...,n. Vx G am

Finally, for all index i,k,j,

(2.3) hka ik C -

(2)Only the funct.on. Ntt necessariLy the dorivetven.

-4.



Remark 2.1. The results and proofs stated in this paper can be easily adapted it the

assumption "for every x 9 Ri, H(x) is diagohal" is replaced by the more general

assumption "for every x Q FP., H(x) is symmetric, moreover for every x G P- 1  it has the

form

(2.4) 
H(x) = [Hp(X) 0 p

0 '_p(XW

with Hp(x) and Hn-p(x) matrices of type p x p and (n - p) x (n - p) respectively"

(definition of p in (2.13)). The assumption (2.1) is then replaced by "H is uniformly

positive definite". In this more general case the scalar products (u,v)h and ((uv))h

(definition below) are replaced by (Hu,v) and (Hu,v) + (H x(-4' x respectively.

Moreover the operator D in (2.27) becomes Dv Z-v - div(HVv) ( 3 ) where

v - (v 1,...,Vn). Note that now equation Dv - f is an elliptic system of n equations

instead of n single (decoupled) elliptic equations. Thanks to the boundary assumption

(2.4) the operator D is again an homeomorphism of Z onto X, moreover (2.28)

holds (4 ). The reader easily verifies that our proofs hold again.

Now let L be the partial differential operator

m

(2.5) Lu S I H-1AJ au
J-1 -

where u - (u1,...,u n) is a vector function defined in RI. In equations like (2.5) in

which matrices act on vectors these last are always to be considered as column vectors.

Note that equations (1.2) can be written in the form

au - J 3u(2.6) Wt+ H A-
J.1 3

where u = (v,V 2 ,v 3,P), f = (g 1 ,g 2 ,g 3,) and

(3)This2v
This means that (DV)k - h hk! V, for k = I .,n.

i=l h =1 T I J '
(4)Clearly with ((u,v))h rpplaced by the scalar product indicated above.

-5-



a-  0 0 W1  0 0

(2.7) H aH-1A1 0
a- 1 0 w1 0

L 0 b
- 1  

i 0 0 w 1

0 2  0 w3  0 0 0

H-IA 2 . -IA3 0

0 0 w2  0 0 w3  a

. 0 b 0 w 2  .0 0 b w 3

Let us return to the general case (2.5). Let us define A = H A hence

a! h~laJk . For convenience we will use the notations -A=I maxla. I,
. ikA C i,k A C

IAI = maxIAJ I and similarly for the other matrices used in this paper. By definition
C J C

hI - max.hk I - L. Let be
C k C C

X - [L2 (R)I n, - (Kl(_m]n, Z -I n 2 (3,)Jn

and define the scalar products in X

n n

(u.,v) 2- 1 f u3 vkdx, (uv)h- i f ukvkhkdx

and also the corresponding norms I and *'h (which are equivalent) and the scalar

products in V

((u,v)) ' (uv) + (Vu,Vv), ((uv))h - (ulv)h + (VuVv)h

and corresponding (equivalent) norms I.| and 1-1h . By definition:m
(vuvv) To point out that X is endowed with the norm

sometimes write Xh instead of X. A similar remark holds for V.

For the reader's convenience we state the following two lemmas (which proofs are

classical):

-- - - -



LZm 2.2. For Any air u,v 6 y the following identity holds%

(2.8) (Lu,v)h - -(u.Lv)h + a(u,v) + I vA Iu dx'

0-1

where a is the continuous and symmetric bilinear form on X defined by

(2.9) Qel,,) ;- d x)lv
k,-1 J-1 J

Lema 2.3. For any pair u,v B Z the following identity holds:

(2.10) a f v 5V Al 5U d'+f VAux

(2.10) ((LU.V))h - -((U,Lv))k + (u,v) + I a axLa i it

where B(u,v) is the bilinear continuous and symetric form on V

a u IV
(, 2.11) ,(UV) a (uV) + (V,.u) + . .L. T - J Q(u,V)

and

(2.12) Jlniv) * r -. * U V
,3-1 £ xj' h

Proof. Clearly

((Lu,.v)). a (LuV)h +. I V - '- + . X
Li J-1 A j £ 1-1 9 th

On the other hand (2.6) yields
Iau IV Biu IlV a u al iIV •i1 3u(L + (7- , L y- eCF, + f A dxl<"<

TL-~.-. ~ x ) '.(L4L +1V*.
ah-1

By adding the first equation with that obtained by switching u and v, and by using

the last equation above, one easily gets (2.10). 0

-7-
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Now let p be an integer, 0 4 p 4 n and let us define

N (u Q so 2 U .... . o, NI (u Q R" -p+ -. U. .o

PMU (up+1i..., n), PNU (u1 ,...,uI). We assume that the boundary conditions are given

by PIu . 0 on the boundary or more explicitly

(2.13) uk(O,xl) - 0, k 1,...,p, for x, G

~m
We also assume that the boundary matrix A1 = ) n9A verities for each x' Rm '  the

J-1
following assumptions (the reader is also referred to the papers (7] and (8]; see in

particular the sections 5 and 8 of (71):

12.14) { AIIN) C N.

((.1() 
C N.

Moreover we assume that for each x G;

(2.15) AJ(N) C N, J ,

With the boundary conditions in canonical form (2.13) assumptions (2.14) and (2.15)

are respectively equivalent to the following ones: The matrices Ai take on the boundary

the form

Fo Ml [i 0
(216 At AjS(2.16) ,~[T o A" , o J" 2....,m

INT  0[ S I

where H(xI), RJ(x') and SJ(x') are p x (n - p), p x p and (n - p) x (n - p)

matrices respectively. MT denotes the transpose of M. By preceding atusumptions RJ

and SJ  are symmetric. The ranks of these matrices are free.

Note that if p - 0 or if p - n the conditions (2.15) disappear and condition

(2.14) becomes A1 - 0 on the boundary; in case p - 0 it suffices that A1  was negative

semi-definite; see Remark 2.4. Note also that in the particular case (1.2) one has

p = 1 and the matrices (2.7) verify the assumptions (2.16).

Finally, we describe the assumptions on the lower order term Bu in equation (3.1).

We assume that B is an n x n matrix valued function defined in IP and verifying

(2.17) bik G -(ft). i,k = 1,f.,),

-8-
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Moreover we assume that for each x on the boundary one has

(2.18) B(N) C N .

This last condition means that on the boundary

(2.19) 
B = 03

B32  B 3

where 1 (x'), B2 (x') and b3 (x') are matrices of types p x p, (n - p) x p and

(n - p) x (n - p) respectively. Clearly b 6 L(Y;YI; see definitions (2.22).

We now define

ICBu'u) + - c(u,u)l 1((Bu,u)) +-3 (u,ul)i
(2.20) A0  maxisup h sup 2

UGX lul
2  

uGY lulh

From our assumptions on the coefficients it follows the existence of a constant c

such that

(2.21) AC 0 = c[.- IAl 1 + I- AN IhI + 'c
00 ma 0 2 C 

0  
C I C I

0

Moreover we define the following spaces:

Y = Lu Q V : u Q N on the boundary) = IHI(2)]P x ( 
_

)]
n -

P

and

Z 2 {u Q Z : u Q N and a G on the boundaryl - (H2(RT_)u
P 

X (H2(,)j
n - P

Note that Z is dense in Y and Y is dense in X.

Before going on we discuss in the following remark some features ot the boundary

assumptions.

Remark 2.4. Assume that, instead of (2.16)1 , the boundary matrix has the more general

form

where L is a sy-metric and neqative semi-definite matrix; this is equivalent to replace

condition (2.14)i ny conoition

-9-
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(2.22) uA u 40, Vu N, Vx- . IP - 1

Under this weaker assumption the existence results proved in our paper (including those of

Section 4) holds again provided that one assume that A > A0 instead of JAI > A 0 . The

proofs remain unchangea in the essential features.

(ii) Energy estimates are obtained under weaker assumptions than those needed to get

existence. The a priori bound IUlh ' (WkI - A0)- IAu + Lu + BUH, Vu G Y, holds without

assumptions (2.74)2' (2.15) and (2.19); moreover assumption (2.14), can be replaced by

(2.22) if we take in accounit only the values A for which X > A0 . Analogously the a

priori bound fulh4 (JAI - A0)- IAu + Lu + Bulh, ' 6 Z, holds without the assumptions

(2.15) and (2.19)s moreover if we take in account only values X > A0 the assumptions

(2.14)i and (2.14)2 can be replaced respectively by (2.22) and by u*A1 u 4 0, Vu G Ni,

YX' 0 P-1. The remaining assumptions (2.14) , (2.15) and (2.19) are utilized only to

get L(Z) C Y and 8(Y) C Y; it seems clear that these assumptions could be weakened if

one only wants to prove existence for strong solutions.

Lemma 2.5. Assume that (2.14)I holds. Then

(2.23) (Lu,v)h - -(u,Lv)h + e(u'v) YU'v Q Y .

In particular

(2.24) j(Lu + Bu,u)hI 0 A 0  1 ' 6 Y

In tact, under the hypothesis of the lemma the last term in equation (2.8) vanishes.

Assume now both hypotheses (2.14) and let u,v G Z. If X * 1 the tangential
3u av

derivatives and T- belong to N and from (2.14)I it follows that the
9. .

corresponding integrals in equation (2.10) vanish. This also holds for I - I as one

shows by using (2.14)2 and by recalling that the normal derivatives 3U and belong

to N . Hence one gets the following result:

Lemma 2.6. Assume that (2.4) holds. Then

(2.25) ((Lu,v))h - -((uLv)) + B(u,v), Vuv Q Z

In particular

(2.26) 1((Lu + Eu,u))hl "k ouul
2  V 6 Z

-10-
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Lema 2.7. The operator L with domain Y is preclosed in X. Moreover its closure

L verifies (2.23) for each pair u,v 6 D(L).

The proof follows easily from (2.23).

Lemma 2.8. Assume that (2.14)2 and (2.15) hold. Then L 6 L(Z;Y], i.e. L is a

bounded linear operator from Z into Y.

Proof. Clearly L 0 L 12; Y). Let u 0 Z. Then T . N on the boundary hence

AN 6 . On the other hand for J one has

Consequently Lu G N on the boundary. 0

Define nov the operators Dkg I hkg - div(hkVg) aid put

(2.27) D

Lemma 2.9. The operator D is an homeomorphism from Z onto X. Moreover

(2.28) ((u~v))h - (u,Dv), Vu a Y, 'V Q z.

Proof. The first statement follows from well known results for the Dirichlet and

Neumann boundary value problems for second order linear elliptic equations; the reader is

referred to the classical paper of L. Nirenberg (9]. equation (2.28) follows by

integration by parts. 03

-11-
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3. Classical Solutions for f 9 y. Strong Solutions. The assumptions in this

section are (2.1), (2.2), (2.3), (2.14), (2.15), (2.17) and (2.18). Recall also the

definitions (2.5) and (2.20). The boundary conditions are given by (2.13). Under these

assumptions we prove the following theorem of existence and unicity for classical and

strong solutions of equation (3.1)(5):

Thereom 3.1. Let the above conditions hold and let A 6 R be such that JAI > A0.

Then (i) for each f 6 Y the equation

(3.1) Au + Lu + Bu = f

has a unique classical solution u Q Y. Moreover

(3.2) Nul h 4 1 Ifl h .

(ii) For each f G X the equation

(3.3) Au + Lu + Bu = f

has a unique solution u 6 DCL). Moreover

IL
(3.4) ll 1] T° l1

Proof. We give two different approximations. By Galerkin's method and by elliptic

regularization.

Ist method. Let (a s, s 6 N, be a base for Z and put

(n) &u

(3.5) ult c a G

Select the real numbers c(M as the solutions of the linear non-homogeneous systems

(3.6) ((Au(9),ar))h + (((L + B)u(L),a r h (f,ar)), Vr ( .

(5)See also Remark 2.4, Ci).

-12-



For each X 6 this problem is uniquely solvable. By using (2.26) and (2.20) it

easily tollows that

(3.7) lu( lh r. JAI 0 
I f l h °

This gives the unicity for the linear homogeneous system hence the existence for the

non-homogeneous system (3.6). From (3.7) and from the weak compactness of the spheres in

Hilbert spaces it follows the existence of a subsequence u M and an element u Q Y such

that u~
v ) 

- u weakly in Y. Since L Q L[Y;X] one has Lu - Lu weakly in X.

Using now (3.6) and (2.28) one gets (Xu(v + (L + B)u (v
) - f,Dar ) = 0, r = 1,...,L, and

by passing to the limit

(3.8) (Xu + (L + B)u - fDar) = 0, yr Q N.

Since {Da I is a base for X equation (3.1) holds. Estimate (3.2) follows from
r

(3.7). Finally let u Q Y be an arbitrary solution of equation (3.1). By multiplying

scalarly in X. tne equation by u and by using (2.23) one gets (3.4). Hence the
(L)

solution is unique (in particular one gets the convergence of all the sequences u and

Lu(1 in the proof given above).

We prove now the second part of the theorem. Let f 6 X and consider a sequence

t(f) G Y, f *f in X. Let u G Y be the solutions of

(3.9) Xu(it ) 
+ (L + B)u

(
1
) 

= f()) .

By taking the scalar product in Xh  ot the difference of the t-th and the k-th

equations with u(9 ) 
- u(k), one gets u (1) - u(k)lh (IXI - A0)-1If() - f(k) 1n. It

follows that u + u 6 X strongly in X. Hence Bu + Bu and from (3.9)

LU * f - Au - bu strongly in X. This means that u U D L) and that (3.3) holds.

Let now u 6 DL) be an arbitrary solution of (3.3). Then from Lemma 2.7 one easily gets

the estimate (3.4) hence the unicity.

(7)Actually one has (u(t),Lu( ) 
6 Y X Y, VE 6 N.

-13-
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2hmethod. Let F. > 0 be a parameter and look for u ( Z such that

(3.10) A((u .v)) h + (((L + b)U .v)) h E ((u *v))z . ((t"v))hl v re Z

We take +C i f A and -C if X < -X0 The left handside of the above

equation is a bilinear continuous and coercive form over Z, consequently by a classical

result or P. D. Lax and A. N. Imilgram there exists a unique solution u Cof problem

(3.10). By taking v - u Cit follows that (I)I - A. )AU C1 2 + Clu C 12 4 Ifi u C I . Hence0 h 2 h h

(3.11) Iu V 12 4 1O(h TXT 

and from the first estimate above it follows that £iu e 2  is bounded by a constant
z

independent of E. Thus there exist a subsequence u Cand an element u Q Y such that

r u - u weakly in Y
(3.12) e lu C Hz + 0

when C * 0. in particular (L + B)u C~ (L + B)u weakly in Y. by using now (2.28) we

C 6
write (3.10) in the form (Au + (L + B)u -f,Dv) E ((u , v))f , v 6; Z. By passing to

the limit when C + 0 it follows that Aiu + (L +. B)u -f =0. The remainder of the proof

is as in the I at method above. 03

-14-



4. The Mon-Homogeneous Problem. For convenience define

Hp 2 [Hs(2m-'1p
1 3

for a = - or - and p 0 N. In this section we consider non-homogeneous boundary
2 2

condition PU a w or more explicitly

(4.1) uk(O,x') - wk(x'), k = 1,...,p, for x' •

Let r a X and w 0 H
1/ 2 

. We said that u 9 X is a strong solution of problem

p

(3.1), (4.1) if there exist sequences u
{
(

) 
a V, f(L) G X, L 9 N, such that

*= U + + - f. P u w w on the boundary (in the usual trace sense) and

U( t ) * u, f(I) . f strongly in X.

Theorem 4.1. Let f Q X and w a H1/2 be given, and let [).I > XO. Then there
- p

exists a unique strong solution u of problem (3.1), (4.1). Moreover

Ihl 1/2

(4.2)~1h 'u12 o C0  e~
C
0

(4.2) lulh f ifj + c(21XI - A + ' 'I + IE )IwI 2}

Proof. Consider a linear continuous operator w * Q from HI/ 2 
into V such that

p

Pvl . w on the boundary e'
"
1 (in the trace sense) and PM; B 0 in 0. By carrying out

the change of variables u - * + v and by using Theorem 3.1 the result follows easily. 0

For classical solutions a corresponding result fails. We start by giving a necessary

condition, later on we will prove its sufficiency. Define smooth solution as a classical

solution which belongs to Z. Let now f 0 y and let u be a smooth solution of equation

(3.1) with the non-homogeneous boundary condition (4.1). At each point x 9 0-1 one has

PNH A HMP
1 -1 J -1j

(4.3) PH1 A . H1 R P1 J - 2,...,m,
N B=B pN

%BI I P

where the operators act on column vectors of le and H-1 is the p K p diagonal matrix

with diagonal elements h;
1

(x), k = 1,...,p. Hence by restricting equation (3.1) to the

boundary and by applying PH to both sides one gets

I u au
(4.4) ..... F

-15-



where by definition

(4.5) F E P - F.,[VI

and F X is the operator

(4.6) FAN]j Aw + I H1 R3 w + Bv
J-2 p

which acts on vector fields w(x') - (w, (x'),...,wP(x')) defined on the boundary IP1 Hence

(4.7) F(X) 9 range of H;1 (x)t4(x) a.e. on the boundary.

is a necessary condition for the existence of a smooth solution. In order to reverse

condition (4.7) we want to state it in terms of the functional spaces used in this paper.

one has the following results

Theorem 4.2 (necessary condition). Let the data f Q V and w 9 H~3/2 be given and

define F by equation (4.5). If there exists a smooth solution of problem (3.1), (4.1)

then the equation

(4.8) H-1 (gp .... Fgn) -= .. FP

admits at least one solution g a N /

ProofA Hot tha FAN[H P1H' Hence F G H 1 .p Let now u G Z be a solution

of (3.1), (4.1). Clearly X, a ~-~ H;/ on the boundary. Moreover
1x 1

from equation (4.4) one shows that P .-.. ) is a solution of equation (4.8). 0
1

We will now prove in the next theorem that the necessary condition stated in Theorem

4.2 is a sufficient condition in order to get a classical solution u G V.

Theorem 4.3 (sufficient condition). Let f, w and F be as in Theorem 4.2. if

equation 14.8) admits a solution g 9 B / then problem (3.1), (4.1) is uniquely solvable

in V (hence in Y if w =- 0). Moreover the following estimate holds

cOhl 1/2

(4.9) IuIl 4 TfT-C J[1 + K(2jAj - A + IAI + Ise If
h0 0 C I Cl

+ [21AI A A0 + 1;1, 1 + 4S [ (A + IZ + B j~132

p



where K is any real number verifying

(4.10) IglH1/2 k KIFIH
1
/2

n-p p

Proof. For each Q 4H 2 (R"') denote by ¥0# dnd Y1 the values (in the usual trace

sense) of 0 and r- on the boundary. It is well known that there exist right inverses
I

Y01 Q L[H3/2Ip-IIH2(i )] and -f1
1 Q L(H 11 2

(m-
1
1;H

2
(jM!)) of y0  and Y

- 1 - -
respectively. Define u - I wJ, J - l,...p., and u 9 = Jga J = P + 1....n. Clearly

Nu z 4 C(oWsH3/2 + Ig H 1/2). Carry out the change of variables u = v + u. Equation

(3.1) becomes 
P  p

(4.11) Av + Lv + Bv f1 = f - (Au + Lu + Bu)

Obviously f1 I V. by using (2.16), (2.19) and (4.8) one easily gets f, 9 N on the

boundary. Hence f, Q Y. By Theorem 3.1 equation (4.11) has a unique solution v 9 Y,

moreover

(4.12) Ivah 4 1 ilf h

This means that equation (3.1) admits a solution u Q V verifying (4.1) and verifying

the estimate

,Ulh 4 1hu + Lu + Bu - f,)
L, 0

Recalling the above estimates and recalling also that

IF(WINI1 1 2 • c(JAI + IAN 1 + IBI )Iw /

p p

and that IPNtoH1/2 " cOff, the estimate (4.9) follows with straightforward

p
calculations. The uniqueness is obvious. 0

Consider now the matrix M(x). We say that rank M(x) - p uniformly or x G

if the sum of the squares of the determinants of order p contained in M(X) is bounded

below by a positive constant independent of x, i.e. if
(4.13) M

2 > (2 > 0, Vx G fm-.

-1"7-
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Corollary 4.4. Assume thatM~

(4.14) rank MW() p, uniformly on

Then to each pair (f,w) 6 V' x H3/ 2 corresponds a unique classical solution u 6 Y of
p

prbe (3.1), (4.1). Moreover u verifies (4.9).with a value K such that

d 2 C I C
(4.15)1

[ IA ~2p-3 IAN2 1hi I if p>I
d 

2  Co0 C
1
I C

where the norms concern ' ~oundary spaces CCRE) - 1,2.

Proof. Let I *w "-.. t of all p-tuplee of integers a - (a I..., ) such that

I~ F*' Dsvzte by AlJ 1..n p the J-column of the matrix

N# by He a -D ( p. a ) 1, the value of the determinant whose columns are

A ,... ,A i% *i by -Y'(F) the value of the determinant obtained from M by replacing
61 a p I

the J-column A a by lI (*t1,..F) p (h1F11 ...uh p p). Let finally g,, = I ,.,,P

be the vecto~r co-:.mn such that g6  K 14(F) for i - 1,...,p and gk 30 for

k 0 (a1,...)a. From the definitions one has 1 go- J, Ag. and arguing anin the

proof of Crammer's rule one shows that M4g6  N a K (F 1...F p). The vector

(4.16) g.( K~ M.g4
Cox Gel

verifies equation (4.8) i.e. the vector g9W is a solution of (4.8), for x 6 313-1.

Obviously g g H11 2. Finally estimate (4.15) follows from (4.16) with straightforwardn-p

calculations. Recall that Il H1/ 11 4G Cei 1 ,?in-IH 12 0-

Ramark 4.5. Condition (4.7) determines the linear subspace of data (f,w) for which

a classical solution u of problem (3.1), (4.1) exists.

~Note that condition (4.14) can't be verified if 2p > n.



For simplicity assume the homogeneous boundary condition w 0 0. By neglecting w

the above linear subspace becomes
( 9 )

S{
f  Y Y : P If(x) 9 range of H (X)(x) a.e. on the boundary)

If we want to solve (3.1) for every y Q V (this means Y, V) condition (4.7)

becomes rank N(x) B p on the boundary. In the other extreme case, namely rank

M(x) B 0 on the boundary, condition (4.7) says that (smooth) solutions can not exist if

f 9 Y. In intermediate cases for which rank M(x) Z q, 0 ( q 4 p, explicitly necessary

and sufficient conditions could be obtained from equation (4.4) and from Theorem 4.3. This

was specified only for q - p (Corollary 4.4) because this is the situation in problem

(1.2) where K - [0 0 11, consequently q - p 1 2.

9
'hote by the way tnat Y C Y1 C V.

-19-
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