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ABSTRACT

?'This paper proves the existence of traveling wave solutions connecting

liquid and vapor phases in a van der Waals fluid. The main constitutive

assumptions are that the fluid be an elastic fluid (with pressure given by the

van der Waals equation of state) possessing a higher order correction given by

Korteweg's theory of capillarity and the fluid is a conductor of heat with

large specific heat at constant volume. The main mathematical tool in the

analysis is the Conley-Easton theory of isolating blocks. -
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SIGNIFICANCE AND EXPLANATION

In the study of phase transitions in fluids a typical model given in

classical thermodynamics is provided by the equilibrium configurations of a

van der Waals fluid. Such equilibria show a fluid may exist in two phases,

liquid and vapor. Relatively untouched in classical thermodynamics is the

non-equilibrium case. This paper attempts to study this problem from the

viewpoint of examining the dynamics of liquid - vapor phase transitions. The

main mathematical idea is to look for traveling wave solutions of the relevant

balance laws and show the desired connections from one phase to another can be

made. Since the equations are analogous to those modeling phase transitions

of the "martensitic" or "shape memory" type in solids the results given here

may prove of value in that case as well.
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DYNAMIC PHASE TRANSITIONS IN A VAN DER WAALS FLUID

M. Slemrod*

0. Introduction

The purpose of this paper is to prove the existence of traveling wave

solutions connecting liquid and vapor phases in a van der Waals fluid. In an

earlier paper [1) I considered this problem when the fluid is emersed in a

heat bath thus forcing temperature to be constant. Here no such assumption is

made; the motions are not isothermal. The constitutive hypotheses made are

that the fluid be (i) an elastic fluid with pressure given by the van der

Waals equations of state (see (1.7)) possessing (ii) a higher order

correction term given by Korteweg's theory of capillarity (see (1.5)) and that

the fluid be (iii) a heat conductor with a large specific heat at constant

volume. Under these hypotheses I show that given an equilibrium state in the

stable part of the liquid (respectively, vapor) phase there is a second

equilibrium in the vapor (liquid) phase to which it may be connected with a

traveling wave of positive (negative) speed. Thus all the vapor (liquid) is

converted into liquid (vapor). I also prove that in both cases the liquid

equilibrium phase is at a higher temperature then the vapor equilibrium phase

to which it is connected.

The main tool of the analysis is the Conley-Easton theory of isolating

blocks f2]. This theory has been applied by Carpenter [3] to prove the

existence of traveling wave solutions to a generalization of the Fitzhugh-

Research sponsored in part by the National Science Foundation under Grant No.
MCS-79-02773 and by the Air Force Office of Scientific Research, Air Force
Systems Command, USAF, under Contract/Grant No. AFOSR-81-0172. The United
States Government is authorized to reproduce and distribute reprints for
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Nagumo equations modeling nerve impulse transmission. Surprisingly the

equations governing traveling wave solutions in the phase transition problem

given here and the generalized Fitzhugh-Nagumo equations are similar. in fact

I show a modification of Carpenter's approach to the wave impulse equations

yields the desired traveling wave solution to the phase transition problem.

WIhile this paper is devoted to fluid mechanics, it is closely related to

a recent paper of James [4J. In that paper he used a similar constitutive

model to discuss phase transitions in a solid exhibiting shape memory. He

showed that a knowledge of the non-isothermal dynamical phase transitions can

be used to determine certain constitutive parameters, e.g. the well known

Maxwell line. Since the theory given here gives conditions for such dynamical

phase transitions, it may prove useful in the study of shape memory solids as

well as fluids.
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1. One dimensional Lagrangian description of compressible fluid flow.

We follow the presentation of Courant and Friedrichs [5) of a Lagrangian

description of compressible fluid flow based on the law of conservation of

mass. The fluid flow is thought of as taking place in a tube of unit cross

section along the x-axis. We attach the value X = 0 to any definite "zero"

section moving with the fluid. For any other section we let X be equal in

magnitude to the mass of the fluid in the tube of unit cross sectional area

between that section and the zero section. Analytically the quantity X

satisfies the relation

fx(X ,t)
x . fx(Ot) P(x,t)dx (1.1)

Here P(x,t) denotes the density at position x and time t and x(X,t)

denotes the position of a particle which encloses a mass X of fluid in the

tube bounded by x(Xt) and x(,t). Differentiation of (1.1) implies I =

x x(Xt)P(x(Xjt),t). Set P(x(Xtt),t) - p(X,t), w(X,t) - p(X,t)- ' (the

specific volume), u(X,t) - xt(X,t) (the velocity).

Also we let

p the pressure,

K the stress,

specific internal energy,
2

u -- + E specific total energy,

q specific heat absorption,

h heat flux,

b specific body force,

e absolute temperature,

n specific entropy,

* £ - On specific Helmholtz free energy,

cv  specific heat at constant volume,

a coefficient of thermal conductivity.
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The equations of balance of linear momentum, energy, and mass become

Tx=T + pb

pc= pq + Txx +h , (1.2)

P+Px =0
x

dwhere --. We now apply the chain rule and rewrite (1.2) in terms of the

independent variables X,t to obtain

xtt +b 

Ct T txx + hx + q  '(1.3)

(Pxx)t = 0

where we have used the fact that p(x,t) -P (X,t). (1.3;c) is automatically

satisfied since Pxx = 1. Hence (1.3) reduces to the first order system

ut M T x + b,

wt = ux  ,(1.4)

Et = (Tu)x + hx + q

The above set of balance laws must be supplemented by constitutive

relations for T, C, h, #. We assume the fluid is a heat conductor, slightly

viscous, with stress given by Korteweg's theory of capillarity (6).

Specifically this means

-4-
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T -p(w,O) + (w,O)u + D(w,8)w - C(w,8)w1 x

£= £(w,8) ,

h =hv,u, ,ex) , (1.5)
= (w,O) ,

where ;,p satisfy the thermodynamic relations

p = - (1.6)

and U, D, C are small.

The reason for introducing Korteweg's theory is the following: Our main

interest is in the case where p is a non-monotone function of w for fixed

8 so that pw can be both positive and negative for different values of

(w,e). For the case of an elastic fluid T = -p(w,O), (1.4) is a mixed

hyperbolic-elliptic initial value problem on fixed isotherms 6 8 constant.

But such a problem is ill-posed for initial data in lying the in the elliptic

domain. One way to circumvent this difficulty is to consider higher order

effects which become important precisely in the elliptic domain, namely

viscosity and interfacial capillarity. One theory of capillarity is

Korteweg's and a discussion of his work may be found in the monograph of

Truesdell and Noll [7). We note that Korteweg's theory has most recently been

reconsidered by Serrin (8] who has applied it to the study of finding

conditions for equilibrium of fluid and vapor phases in a van der Waals

fluid. (A related theory of capillarity based on statistical mechanics has

been presented in [91.)

We shall assume p in the constitutive relation (1.5;a) is given by the

van der Waals equation of state

p(wO) R6 a
-w-b -2 , 0 < b < w (1.7)

-5-
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where a, b, R are all positive constants (10], 111, (123. Pictorially the

isotherms of p are represented in Figure 1.

p^

" I increasing e

typical non-monotone
isotherm

II I -
I.

b wwO w

Figure 1

Also we note from (1.6) that is given by

= -Re In(w-b) - a + F(O)

where F(e) is an arbitrary function e. Since £ = * + e it follows that

E(w,e) - -a + F(e) - OF'(O)w

As a simplifying assumption we set (see [121, p. 74) F(6) - -c e1nO +
V

constant where cv  is a positive constant, to obtain

- + c 0 + constant " (1.8)

-6-

* 4-



2. Dynamic phase transitions

We fix our attention on a typical non-monotone isotherm as shown in

Figure 1. The domains (bwa) and (we,M) will be called the a-phase and

B-phase respectively,

(i Pw(w,6) < 0 , 0 < b < w < wa, w < w

(ii) Pw(Wa,') - PW(wo,) - 0

(iii) pw(W,8 ) > 0 if wa < w < w .

(Of course wa, w depend on the choice of non-monotone isotherm.) The a-

phase corresponds to the fluid being liquid, the B-phase corresponds to the

fluid being vapor.

Assume w- is a constant value of the specific volume lying in a-phase

of the 6 isotherm as shown in Figure 2. Our goal will be to see how a

homogeneous equilibrium state of (1.4) (with b - q - 0) w = w_, u = u_,

6 - 0 associated with the fluid being liquid can be dynamically transferred

to (or from) a second equilibrium state w - w+, u - u+, 6 = 6+ associated

with the fluid being vapor. Mathematically this means we shall try to find a

traveling wave solution of (1.4) connecting equilibrium states (w ,u ,6-)

and (w+,u+, +), where w- is in the a-phase of 8 isotherm and w+ is

in the B-phase of the e isotherm.+

In order to simplify our calculations we take

^(w,O) = P > 0, P a small constant (the viscosity)

C(w,8) = P 2  , A a positive constant ;

SO X  , a positive constant (2.1)

D E 0 ;

b-Eq -- 0.

-7-
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The choice of the scaling for i and C reflects the idea that

viscosity and capillarity btKcome important only when there are large gradients

in the flow variables, for example in shock and interfacial layers. While on

physical grounds a should also be small ([13], Vol. 1, p. 69) we choose

here a- I = 0(I) compared with p, i.e. a small Prandtl number. In this

problem this means that the interfacial layer of interest to us will be the

one of width - P and not a wider, secondary, layer - a. The choice D M 0

while simplifying calculations is not crucial; see Theorem 5.8.

p

Area A = Area B

0 isotherm

* 4 1

j 
w

Fie 2

I

If we insert (2.1) into (1.4) we obtain the system

u =(-p +iu -2Aw )

wt = U ' (2.2)

Et = [u(-p + 2uX  P 2AWXX] X + Q6XX

. -8-



As mentioned above, we seek a traveling wave solution for (2.2) of the

form u = u(C), w = w(;), 6 = 6(4), where = -- (U the speed of the

traveling wave), subject to

w(- ) = w_, u(-) = u_, 0(-) = 6 (2.3)

Substitution into (2.2) yields the system

- Uu' (-p + u' - Aw")

- Uw' u'i (2.4)

- UE' [u(-p + u' - Aw"] +--

Sd
where =

2u

Set C_ =C(w ,8), p -p(w ,e ), E =-i- + £ and integrate (2.4) from

-w to 1. We then find u, w, 6 satisfy the system

- U(u-u_) = -(p-p_) + u' - Aw"

- U(w-w ) = u-u (25)

-U(E-E )=u(-p+u' - AW") + u p + 618

Finally we use (2.4;b) and (2.5;b) to eliminate u and u' from (2.5; a,c).

A straightforward computation shows w,O satisfy the equations

WI = V
w2 

-

AV' = -Uv - U 2(w-w_) - p(we) + P_ (2.6;U,1)
26' =- u{T~-(C(w,6) - £_) - p (w-w_ U + (-_2}

In terms of (2.6;U,P) our goal outlined at the beginning of this

section becomes the following: Find a solution of (2.6;U,P) connecting the

equilibrium points w = w, v = 0, 0 = 6 , w =w+, v =O, =8 , of

-9-
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(2.6UM) where w_ is in the a-phase of the 6. isotherm and w+ is in

the 8-phase of the 8 isotherm.+

We note (2.6;U,m) is remarkably similar to the system

W, V

AV' -UV + G(W,e) (FN - 1W)

of. PUI H(W,O)

governing traveling wave solutions of a generalization of the Fitzhugh-Nagumo

equations modeling nerve impulse transmission. One obvious difference,

however, between (2.6U,P) and (FN - TW) is that the equilibrium points of

(2.6U,p) depend on U, in (FN - TW) they don't. Nevertheless the two

sets of equations are sufficiently alike so that a modification of Carpenter's

argument [31 proving the existence of a heteroclinic solution of (FN - TW)

will yield existence of a solution to (2.6;U,P) connecting a- and 0-

phases. It is this topic which will be pursued in the next sections.

-10-
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3. The singular solution

Since P is assumed to be small, a useful first step in the analysis of

(2.6U,P) is the study of (2.6;U,0). This has been done in [I] and we

recall those results here. First, however, we introduce some notation.

For w_,U (respectively w+,U) given in the a-phase (B-phase) of a

non-monotone 8 (+) isotherm let w (U,8) (w (U,+)) denote the solution,

if it exists, of

2 p(w,8 ) + p(w_,6_)
w-W

2  - p(w+,B) + p(w,e +)
U w-w ++

lying in B-phase (a-phase). Also set

f_( ;U) = U( -w_) + pli;,e) - p(w_,e_)

f (;U) = U2 (-w+) + pl;16+) - p(w +8+)

We then recall from (11 the following lemma.

Lemma 3.1 (i) Let w_ be given in the a-phase of the 6 non-monotone

isotherm. If
w (0,8)(I) w + f (C;O)d < 0

*

then there exists a unique U (8), 0 < u (e ) so that (2.6;

U (0),O) possesses a solution (w,O), w(- 1  w- , w(+) - W+(U*(), )

8(c1 6 0. Here 3(0 ) is such that

w+(U(e_),e )fw- f.( ; U(B_))dC = 0

w (U ),e ) lies in the $-phase of the 8 isotherm.

- . .- '' '



(ii) Let w be given in the B-phase of the e non-monotone

+

isotherm. If
W

(II) fw+  f+(C;0)d0 >0
-(, +

then there exists a unique U (a+), U(8+) < U (0+) < 0, so that (2.6;
* *

U ( +),0) possesses a solution (w,O), w(-0) = w (U 1(+),0+), w(+*) = w

8a) 8 * Here U18(+ ) is such that
+ +

V

* + f+ (C U(8 ))d - 0
w (U (6+), )+1 +

w_(U (6+), +) lies in a-phase of the 8 +-isotherm.

Remark. The hypotheses of Lemma 3.1 have a simple interpretation. For

example in (i), (I) says the signed area between the chord joining (w_,

p(w ,O~)) and (w +(0,0_), p(w (0,0_), 0_)) and the graph of p(w_,O_)

between w and w (0,8 ) is negative. U(8 ) is that positive value of-- + -

U so that the signed area between the chord joining (w_, p(w_,O_)) and the

graph of p(w,8_) between w_ and w +(tl_),0_) is zero (see Figure 2). An

analogous interpretation holds for (ii).

Since the arguments used in describing the two cases w_ satisfies (I) and

W+ satisfies (II) are analogous we shall assume in what follows that w_ is

given in the a-phase of the 6 isotherm and (I) is satisfied.

Lemma 3.1 assures the existence of an isothermal solution of (2.6;
* *

U (_),0) connecting (w_,O,8_) to (W+ (U (0_),0,O_}o Unfortunately this

solution does not satisfy the full system (2.6;0 (8_),M) when m A 0. The
*

reason is, of course, that the quantity in braces in (2.6;U (0 ), I;c) would

have to be identically zero along this isothermal solution and it is not.

-12-
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We also know however that if P is small and U is near U (8)

solutions of (2.6U,P) stay close to solutions of (2.6;U (8),0) provided

w' or v' is not small. If w and v' are small and p > 0, then the

"slow" system (2.6;U,P;c) becomes "fast" relative to the "fast" system

(2.6;U,P;a,b). A singular solution of (2.6;U,P) will consist of alternating

solutions or solution segments of the two systems (2.6;U (6),0) and

(2.6;U (0),U;c), the latter being defined where w' - v' - 0, i.e. on

w = g(P), a solution of

- u (9)2 (w-w_) - p(w,8 ) + p(w_,e_) 0 . (3.1)

Our hope is that if we can construct a singular solution of (2.6;U,)

connecting the state w w_, v =0 , 8= e in the (liquid) a-phase to a

state w = w+, v = 0, a = 8 in the (vapor) $-phase we can find a true+

solution of (2.6;U,P) that does the same thing, provided P is sufficiently

small.

From Lemma 3.1 we know the first piece of our singular solution will be a

curve in the 8 = 8 , v > 0 half plane connecting (w ,0,O ) to

(w+ (U ),),,8). According to our program the next piece of our singular

solution will be to follow the flow given by (2.61U (0_),p;c) when

w = g(8). Examination of the van der Waals isotherms (Figure 1) for differing

values of e leads to the graph of g shown in Figure 3.

-13-



0w

bv"w = g(0)

I I
I I i
I I
SI I

1 I .>

bw w -u( ),e w

Figure 3

To follow the solution of (2.61U (O),t;c) along w = g(e) means we

are studying the scalar equation

U, , - (e.) {-(E(g(e),e) - C_) - (g(e) - w_)p_

2 (3.2)

+ 2 (g() - w)

As the first part of the singular solution took us from (w O,e) to
*

(w+(U ( ), it is necessary to study behavior of (3.2) only on the

w > w branch of g(e) where g'(9) > 0 (Figure 3).

Crucial to the study of (3.2) is knowledge of equilibrium point

positions. The equilibrium points of (3.2) are found at the intersections of

the graph w m g(e) and w - X(O) where w - 1(0) is the solution of

-14-
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-(C(w,8) - _ - p (w w_ + 2 2- w - 0 . (3.3)

If we substitute our constitutive relation (1.8) into (3.3) and use the

fact that

.~ 12 -p(w+(U (9_,e _1 + p3
U (_ - ,(3.4)

w+(U 1w18) -w

we find w X t(e) must satisfy

c -) a(-[' - j
v 2 w 2

w w

- -p ( (U( ),O ) 3.5)

w+(U(le),e ) - -w 2 T

W -W

+ p(vW _2,(_1,e_

Differentiation of (3.5) with respect to w yields

dO -2a
v dw w3

1 .) (p_ (v(U (9),8) - w) (3.6)
wU (e ,O 1 -w

+ p(w +(U (w - w ))

So if the 8 isotherm is as shown in Figure 2 with p(w +(U( ) > 0 we
de *

have H < 0 for w- < w < w (U (8 l,) and w - L(O) is a decreasing
dv, +

function of 0 on the range w < w < w (U*(0 1,0 ). From (3.6) we then see
+

if cv is sufficiently large the curves w = g(8) and w = 1(0) will

intersect at three points in w - e plane as shown in Figure 4 giving the

equilibrium points of (3.2). Thus (3.2) has an equilibrium point e = 8 so
+

that = g(O+) w and g'(O) 0
tht + w'I (+l>O

-15-
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eI

w = g(0)
0_

+Allow w - 9(e

I
V II I

* II

i+i

Iw

I I S

S II I I

b w w + w *

Figure 4

As noted in the preceding paragraph we need p(w+(U ( ),_) > 0.

Examination of Lemma 3.1 shows that this will be implied by

Assumption U(O ):

For U(_ as given in Lemma 3.1 we have p(w+(U(8_,0_ > 0.

We also note the above result depends on c v being sufficiently large.

Otherwise the curve X(6) might fail to intersect g(6) except at the point

(w ,f )0 For this reason we make the basic constitutive assumption

Assumption cv .

c v is large enough to (i) force 1, g to intersect in three points as

shown in Figure 4 and (ii) yield p(w +, +) > 0.

Actually (ii) follows by continuity from p(w +(U > 0 when cv

is large.

, -16-
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Lemma 3.2. The equilibrium point V0 (where ;+ . g(W ) > w,) of (3.2) is

asymptotically stable.

Proof. From Taylor's theorem we know

U
o. = 2.- (0 ) {- £ (w ,8+  - p(; )}lg'(8 )(0 - )

Cl ,w +1 + + + + +

U

P 0- (_e 9 (w+,8)(0 - 0+) (3,)

2

We note first that C= C a w ---. > 0. Secondly Assumption c,
w3

implies p(w +,8 +) > 0. So 0+ is asymptotically stable. In fact the full

phase flow of (3.2) is shown in Figure 4 by the arrows on the graph of g.

If we combine Lemmas 3.1 and 3.2 we see we have constructed a singular

solution of (2.6;U,U). The singular solution consists of

(i) an isothermal solution of (2.6;U 1),0) running from (w_,08) to

(W+ (U ,8),0,) in the v > 0, 0 - half plane;

(ii) a solution of (3.2) traveling on the graph of g in the v - 0 plane

from the point (w (Ui(G), ),0,8) to the equilibrium of (3.2) 0+.

Pictorially the singular solution is represented in Figure 5.

-17-
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e 

g

I Ii I
I I

I II

I II I

b w :w~ v(U (6e),e) 20Vi

+ +

Figure 5. The singular solution

As W_ is in the a-phase of the 68 isotherm and ;v+ is in the

O-phase of the 8 isotherm we see this singular solution does indeed connect

a and 0 phases.

Our goal nov is to show there is a true solution of (2.6;U,1A) for U

near Uc (6) and u small with the same connecting properties as the

singular solution. Before doing this we recall some results from the Conley-

Easton theory of isolating blocks.

! 
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4. Conley-Easton theory of isolating blocks

In this section the Conley-Easton isolating block theory [21 is

outlined. The presentation given here is the same as that given by Carpenter

(31 modulo a small generalization (Corollary 4.6).

Consider a system of ordinary differential equations

y - F(y) (4.1)

1 Nwhere F 9 C (1;R) for A an open connected set contained in RN. For all

initial data y0 G £l we shall assume (4.1) has globally defined unique

solutions y(ty 0 ), y(Oy 0 ) = y0  lying in 11.

Definition 4.1. B is a block for (4.1) if there exists C1  functions

fjf2,o..,0f N : 1 -- R so that
N

B n fl([Oi-))
i=11

is homeomorphic to [0,11N and fB Vf- f F ,I 0 on 3B. b+ (the entrance

set) - (y G B : fi (y) = 0 and fily) > 0 for some i. b- (the exit set)

fy Q 3B : fi(y) = 0 and fi(y) < 0 for some i.

Example. A block about the saddle point Y, = Y2 - 0 for the system

Y1  Y2 '

(4.2)

2 1

Let B = fly 1 + 1Y21 B1 is a block with f (ylIy2) = 1 -yI -Y20

f2(YlY 2 ) = 1 + yl + Y 2. etc. f1(YlY 2 ) - -y1-y2 = -1 on fl(yly 2 ) = 0,

so b f 1 (0) n B. f2(Y11 Y2) = Y1 - Y2 = 1 if f2 (y11y 2 ) = 0, so

b f (0) n B. An illustration is given in Figure 6.
-2
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Y
2

1

Figure 6

Definition 4.2. If f is a C1 function from Q to R and y0 0 
2 ,

y(t,y0 ) crosses {y ; f(y) - c) transversely if T B inf(t > 0

f(y(t,y0)) u c) < - and f(y(t,y0)) ' 0.

T (y 0 ) (the time needed for y0 to reach b*)

0 if Y 0 e b

sup~t > 0 : y(t,y 0 1) n b is empty} if yo b

O(y0) y(Ti,y0 ) if 0 Tl(y0  < •

(y0 ) is the first point of y(t,y0) in bt

D*2 {y 1 0 < Tl(y0) < and * Y0) .b
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D contains the set on which #1 is defined and continuous. If y 6 Dt,

y(t,yO ) crosses (y ; fl(y) - c transversely at (y0) for some i.

In the example given above

+ [YIy ; y2 - y2 < I) n

{Y1 Y2 ; Y1 
< 0 and y2 > 0, or y I > 0 and

Y2 < 0} -B

D- = (D+ U B) -b- U S(<O, 0>)
Here S(<0,O>) is the stable manifold of (4.2) running into (0,0).

We now state the following results. Proofs may be found in (31, [14).

Lemma 4.3. (Continuity of maps defined by a block). If B is a block,

T and are continuous on D±.

Consider the parametrized system

- F(y,Q) (4.310)

where F G C (I x r R ?) for E, 0 open connected sets contained in RN,

Rk respectively.

Lemma 4.4. If B is a block for (4.3;0), 0 6 Z, there exists a

neighborhood Z of a*, * c Z, so that B is a block for (4.310) when
,

aGE.

Theorem 4.5. Assume there exists a block B for (4.3;0) for all 0 G E

with the following properties.

(i) There is a equilibrium point y1  of (4.3;0), y 1  B.

(ii) There is a path {<z Cs > : 0 ( s I 11 c D+ x E so that z5 G U<y>

(the unstable manifold leaving Y11 z0,z1 G D7 ; o #+(z* 0 10 

o *+(z ;01) are contained in distinct components of b-.

Then for some as one positive semiorbit beginning at + (z s;a) is

contained in B.

-21-
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Since Theorem 4.5 is slightly different from the result given in (31

(Theorem 1.5 of 131), we present a proof for completeness.

Proof ofTheorem 4.5. Since 0+ is continuous it maps a path U in D+  to a

path in b+ . If 0+(H) is contained in D-, 0- o *+ (1) is a path in b-.

Thus + (H) is not contained in D- if the end points of (H) are mapped

by - to distinct components of b-. In this case, one positive semiorbit

beginning at *+ (U) is contained in B.

Corollary 4.6. Assume the hypotheses of Theorem 4.5 hold. Assume in addition
RN

there exists a C1  function V : R R with the property that

V(y) = grad V(y) * F(y,o) 4 0 for y Q B, a 6 Z

Let

S - {y in Bj V(y) = 01

and N be the largest invariant set in S. If M consists only of

equilibrium points of (4.310), then for some 0 (4.3;0 s ) possesses a

heteroclinic solution connecting yl to Y2 (y1 (-) = y1, Y(+) = Y2)

where Y2 is an equilibrium point of (4.30 s ) lying in B.

Proof. From Theorem 4.5 we know the existence of an orbit which leaves yl

and eventually enters, never to leave, B. The function V is a Liapunov

function in the sense of LaSalle. So LaSalle's invariance principle (Theorem

1.3, Chap. X of [15]) implies this orbit approaches equilibrium point in B

as t .

-22-
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5. Construction 3f the connecting orbit.

In this section we use theory of Section 4 to prove the existence of an

orbit connecting the equilibrium point (w ,O,B.) of (2.61U,P) to another

equilibrium point (w +,0, +) where w- is in the m-phase of the e_

isotherm and w+ is in the $-phase of e isotherm. We shall need the

following lemmas.

Lemma 5.1. For 6 = e the equilibrium point (w+(U*(8),8 },0) of

(5.1)
Av' = -U (6 )v + U (6_)(w - w) + p(wO) + p(w ,0

is a saddle. Furthermore for 6 near 6 the equilibrium points (g(e),O)

of (5.1) near (w+(U(_),6),0) are also saddles and possess phase portraits

as shown in Figure 7.

V

w

Figure 7. Isolating block Be.
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Proof. Linearization of (5.1) when 0 - 8 about (w+lU*(8 ),O ),O) shows

the eigenvalues of the linearized system satisfy

AX2 + U*(e_)x + (U*(_)2 + pw(W+(U*((), Ie),e_)) = 0

Since U (8_)2 + p w ( ),_),_) < 0 (see Figure 2) the equilibrium

point is a saddle. The rest of the lemma follows from continuity with respect

to the parameter 8.

Lemma 5.2. For 6 near 0_ (5.1) possesses a block B8  as shown in Figure

7 where the lengths of the sides of Ba are independent of B8.

Proof. Lemma 1.2 of [3).

Lemma 5.3. Define B U B

+

where 8 - v is shown in Figure 5. Then B is a block for+

(2.6; U (0 ),u).

Proof. By Lemma 3.2 solutions of (2.6gU (8),I) are such that the top and

bottom of B are entrance points. We know the sides are points of exit or

entrance from Lemma 5.1.

Lemma 5.4. For U near U*(8_), B is a block for (2.6U,1).

Proof. Lemma 4.4 applies.

Lemma 5.5. For P sufficiently small there exist U > 0 and a solution of

(2.6;U P,) with w(-) = w_, v(-) - 0, 8(-) = 8 so that (w,v,G) is in

B for all ; sufficiently large. Furthermore U U U as +

Proof. When P - 0 linearization of (2.6;U (8),0) about (w.,O,O) shows

(2.6;U (6),0) has a one dimensional unstable manifold exiting from

(w.,0,U) (see Figure 8). By continuity with respect to parameters, if U

is near U (0) and M is sufficiently small, there is a one-dimensional

unstable manifold L(U, ) for (2.6;U,t) exiting from (w_,O,.). Consider

-24-
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an arc A * lying in U(U,P) (A* will lie near the arc A shown in Figure

9). As U runs from values slightly greater than U ) to values slightly

less than U (e) we see by continuity with respect to the parameters U,U

that the characteristic features of Figure 9 are preserved for the full system

(2.61 U,M) if P is small. Namely the end points of A* will be carried

into distinct components of b_ 6 B. Since Lemma 5.4 tells us B is a block

for (2.6;U,P) for all U near U (8), we know by Theorem 4.5 that for

each 0 sufficiently small there exists U so that (2.6;U P, ) possesses a

solution exiting from (w ,0,O ) which enters and remains in B. The proof

implies U may be chosen such that U P U (0) as P + 0+.

Lemma 5.6. (i) Along smooth solutions of (2.2) the following equality is

satisfied

ent = u x(U X - A 2 wxx) + (s XX (5.2)

(ii) Along solutions of (2.6;U,p) the following equality is satisfied

-On = Uw' 2 + Aw'w* +- - . (5.3)

Proof. (i) Consider the specific free energy I with p - , = --

Then since O=c-en we have V t - E -t t - nt and hence
At

wwt + +98 t C t - Otn - Ont. This implies et + pwt - Ont. From (2.2;b) we

find t + Pux = 8nt * Now use (2.2;c) to complete the proof.

(ii) Substitute u = u(4), w a w(C), e = 8(l), n(C) - ;(w(C),8(C)) into

(5.2).
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v

arc A

U < U e

b

Figure 8

Theorem 5.7. (i) (Compression Wave) Assume w ,e ,u are given, w_

satisfies (I) of Lemma 3.1, and the constitutive Assumptions cv and U(B_)

are satisfied. Then for P sufficiently small there exists U > 0 and a

solution of (2.6;U 11P) with w(-) - w_, v(-) - 0, e(-") = 0_, w(+-) w

w+(U), V(+-) - 0, 6(+#) 0 * (U ) e; w (U ) is in the 8-phase of 8*(U
1+ 11 - + I + a

isotherm. Furthermore U + U _> 01 v cU + w+, a (U + < as
'A *+ + : ++ -

0+.

(ii) (Expansion wave) Assume w+,0+, u+ are given, w+ satisfies (II)

of Lemma 3.1, the constitutive Assumption cv  is satisfied and

p(w ,+ ) > 0. Then for P sufficiently small there exists

U < 0 and a solution of (2.6;U ,P) with w(-4) - W.(U ), v(-) - 0,

-26-
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t*

- e_(U ) > w, w(+i) - w, v(+-) - 0, e(+-) - 8+i wU ) is in
-4 +A ++;w(Uisi

the a-phase of the 8*(U ) isotherm. Furthermore U + U* ( +) < 0,

w (UU) + w_, 0_(UP) + 8_ > 0+ as P + 0+ where w_, 0_ are obtained in a

manner analogous to that given for the construction of w, e+

Proof. i) Define

U. U 2  2}

V(w,v,e) = ,(w,e) +-U (- (e(w,e) - _) - p(w - w) +Y (w - w

A 2

From (5.3) it follows that along solutions of (2.6;U,p) we have

-U w, 2( AA U22
v2- - (2(w,0) -j_) - p_(w - w_) + w ( - w _ )2

!-02 {- (C(w,8) - E ) - (w - w) +. 2(w - W 2}2
aO 2  2

Now if (v,w, O) is in B

2
f-(i(w,8) - C_) - p_(w - wv) +U2-- (w W 2

can be bounded independently of P. Hence for U sufficiently small we have

V' 4 -const.(w'2 + '2 ), for some positive constant, when (v,w,e) is in

B. Hence the hypotheses of Corollary 4.6 is satisfied and the result follows.

(ii) This follows by proving a sequence of lemmas analogous to Lemmas

5.1 - 5.5 for the case where (w_,8 _) is replaced (w+,8 ) in (2.6U,P).++

The same Liapunov function given in (M) will work as along as we replace

(e ,w) by (E+ w ). A pictorial representation of the singular solution for

this case is given in Figure 9.
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w = g( )

+

I I

• I
a

I
I-

b w (U (6 +),e + w+

V

Figure 9

Remark. While the special case of parameters (2.1) greatly simplifies

calculations results similar to those given here are valid for the general

Korteweg relation (1.5;a). Specifically consider

j(wB) = 6p0 (w,8)

0C(w,6) = 62C0(v,0)

D(w,8) = 62 D(wre) , (5.4)

b~q~0h - g ( l a x

where 6 is a small positive constant, -1 a 0(1) in 6, Po (W,e) > > O,

Co(w,O) > Z > 0, i, C positive constants, and P' Coo DO are smooth

functions. In this case (2.6;U,P) is replaced by

-28-
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W9 M V ,

C o(W,)v -iU0 (w,e)v (5.5;U,6)
0 0
- U2(w - w_) - p(we) + p_ + D0 (w,O)v

2 ,

6 -1 u {- (M(w,8) - C ) - p (w - w )

2+- (w-v w) }  ,

where

X - Ut

Instead of Theorem 5.7 we can obtain the following more general result.

Theorem 5.8. (i) Assume w is given in the a-phase of the 0 non-

monotone isotherm and

w+(0,8 ) w + (Ole-)Wi) w -exp (2 ]f)+ D0(IO.)Col(C,O.I-'dC)C0IA, 8 _) - f (I ), o d X < 0
dfC0w0 0g~) 0 

II

and there exists U(8 ) so that

w (+ (),e) w (Oe) I -'
w+ - -exp(2 X D (CI )C (CI0,) dC)C (A,8)-f (X'U)dA - 0
fw 0 - 0 0

Also assume constitutive Assumptions cv and U(S_) are satisfied. Then for

6 sufficiently small the conclusion of Theorem 5.7 (i) holds for

(5.5;U,6).

(ii) Assume w+ is given in the 0-phase of the 0+ non-monotone

isotherm and
w w (0, 0+(III) fw+ ( O, 8 + ) e x p ( 2 4_ + Do01(CI+)c 0l(CI+)-I d&)Co0(A8+)-I f+ ( A; O) d X > 0

and there exists U(O + so that
-
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w w (0,--
f + exp (2 + D 0(t,e) )C( ) d)C (X,e )-I f (A;)d X 0

((O),) 0 + 0 + +

Also assume contitutive Assumption cv  is satisfied and p(w+,6+) > 0. Then

for 6 sufficiently small the conclusion of Theorem 5.7 (ii) holds for

(5.5, U,6).

Sketch of proof. The main idea is to use the generalization of Lemma 3.1

given by Lemma 3.8 of (1 to do the isothermal connections. After that

everything can be done as before except that we now use the Liapunov function

V(w,v,o) - I(w,8) +T {- (M(w,e) - c_) - p_(w - w

u2 Co (w,) 2+ (w - W_) ) + •M-

In this case we find along solutions of (5.51U,6)

2 C0(w,0) e,
V - W42(- UJA(W, 6) - 2

aC (w,') Of a 0'2  3Co(w,8) w,3 D 0(w,')89 2 T-) - ''+ N 2- ' -  0

As before the 0' terms in the expression in parentheses can be made small

for 6 sufficiently small. The w'3 terms also cause no difficulty as they

are dominated by w'2  for B with sufficiently small sides. Hence we again

find VI 4 -const.(w'2 + 0.2) when (v,w,G) is in B.

Remark 5.9. We note that as P + 0+ the traveling wave solution given by

Theorem 5.7 (1) approaches the functions

+ u_ -u(O_)(w+ -) +

w(X,t) - , u(X,t) = , B(x,t) -
w - u -

-30-



X > U (0-)t
for ,(5.6)

(Here u(X,t) is determined by (2.5;b).)

A similar statement, of course holds for Theorem 5.7 (ii). The point,

though is that (5.6) is not a distributional solution of the inviscid system

ut U -p(w,O) x

wt -u x  , (5.7)

Et = -(up) + aeXX

Mathematically the reason is that (5.7) c4nnot possess distributional

solutions with a jump in ; u,w piecewise constant and (5.7;c) implies 8XX

is a locally finite Borel measure and hence 9 is continuous. This has been

noted by Dafermos [16]; a physical explanation is given in ([13), Vol. II, p.

481).

Hence for the problem considered here the internal structure is

crucial. Solutions of the viscous problem do not converge to solutions of the

inviscid problem as P + 0+. This is a reflection of the h - meXX and

a-I a 0(1) in p assumptions and not the unusual non-hyperbolic nature of

(5.7).

Remark5.10. We note that Theorem 5.7 (i) says that the states in a-phase

determines both an upstream state in the B-phase and a speed of propagation

U > 0 so that a-phase (liquid) travels into the B-phase (vapor). This

stands in contrast to classical fluid dynamics (pw < 0) where both the state

on one side of a shock and the speed of propagation determine the state on the

other side of the shock. A similar interpretation can be given for Theorem

5.7 (ii).
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Remark 5.11. It may be valuable to note that for v small Theorem 5.7

predicts that the wave speeds uC (e) in Ui) or U (0O ) in (ii) will provide

a good approximation to the true wave speeds. Thus while the isothermal

equation (2.6;U,O) yields the wrong equilibrium states to which a transition

is made it does yield a good approximation to the correct speed of transition

(Lemma 3.1).

Remark 5.12. While it is not the purpose of this paper to predict any

particular set of experimental data it seems worthwhile to note the

observations of Dettleff, Thompson, M~eier and Spectman (17]. In that paper

they noted the ability to produce a wave which yields complete liquefaction of

a superheated vapor, i.e. a complete transition from gas to liquid. The

liquids used in their study were of "retrograde type" (their terminology) in

that they possessed high specific heat at constant volume (e.g.

fluorocarbons). They also noted an increase in temperature from vapor to

liquid phases. Remarkably all these observations are consistent with the

theory presented in this paper.

The results of [17j are for a compression wave only. I know of no

experimental results showing the liquid to vapor expansion wave predicted by

Theorem 5.7 (11). However within the range of solids (e.g. iron) exhibiting

phase transitions both expansion and compression waves have been observed [13;

Vol. II, p. 751]. The compression waves produced an increase in temperature,

the expansion waves a decrease. Again this is consistent with the conclusions

of Theorem 5.7.
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