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ABSTRACT

‘\The convective dispersion of a solute in steady flow through a tube is
analyzed, and the concentration profile for any Peclet number is obtained as a
convolution of the profile for infinite Peclet number. Close approximations
are obtained for the concentration profile and its axial moments, by use of
orthogonal collocation in the radial direction. The moments thus obtained
converge rapidly, and the concentration profile less rapidly, toward exactness
as the number of collocation po‘nts is increased. A two-point radial grid
gives results of practical accuracy; analytical solutions are obtained at this

level of approximation.

AMS (MOS) Subject Classifications: 35A35, 41A10, 41A63, 44A30, 65N35, 65N40,
76R05
Key Words: Dispersion, Diffusion, Polynomial approximation, Orthogonal
collocation, Method of lines, Laplace transform, Fourier
transform, Convolution, Superposition, Moment-generating function
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SIGNIFICANCE AND EXPLANATION

‘Convective dispersion plays an important role in many processes of

chemical reaction and separation. Such systems are commonly analyzed by use

of a radially-averaged diffusion equationﬁ This approach has been popularized
by the simple results of Taylor (1953) and Aris (1956) for the cross~sectional
average concentration, and perhaps also by the belief that the radial
variations of concentration are too small to require detailed consideration.

Subsequent investigators (e.g. Gill and Sankarasubramanian (1970), Chatwin

(1977), De Gance and Johns (1978)) have extended this approach to shorter

times and to other boundary conditions.

‘The foregoing approach is not easy to apply to reaction or separation

processes if the fluid properties vary. nor if the kinetics or equilibria are
non-linear. Therefore, in this paper we consider an alternate method: we

solve the full diffusion equation by orthogonal collocation in the radial

Non-reactive systems are emphasized here; reactive ones will be

direction.
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NEW DESCRIPTIONS OF DISPERSION IN FLOW THROUGH TUBES:
CONVOLUTION AND COLLOCATION METHODS

James C. Wang and Warren E. Stewart
INTRODUCTION
The collocation procedure described here is a variant of that qiven by
villadsen and Stewart (1967); see also Finlayson (1972) and Villadsen and
Michelsen (1978). For axially symmetric states in a tubular reactor, we

approximate the profile of each unknown state variable Ym in the form
n
Y = ) aim(T,Z)EZi 0<E<CT . (1)

This expansion can also be written as a Laqrange polynomial
-~ n+1
wa)v(rzf:) 0<ECH (2)
k=1
with radial basis functions
W) = (g% - E U - E;) . (3)
i Ak

Thus, each approximate profile ;m is represented by Laqrange interpolation
in terms of its values ;m(r,z,gk) at a set of chosen radial nodes Ek. Ve
choose Ef,“‘E: as the zeros of the shifted Legendre polynomial P, (x)
(Abramowitz and Stequn, 1972) and choose £n+1 as the wall location, & = 1.
Any needed derivatives or inteqrals of ;h can now he represented as
linear combinations of the nodal values ;m(Ek); this is known as the method
of ordinates (Villadsen and Stewart, 1967). For example, the Aimensionless

radial derivatives of interest at the radial node Ei are:

de ni1
“F = (5) lY (1,2, E )
dag T,Z.Ei Kt dE E
(4)
n§1 -
= (t,2)
k=1 ik mk

Sponsored by the United States Army under Contract No. DAAG29-80-C-0041 and
the National Science Foundation under Grant Numbers ENG76-24368 and CPE79-
13162,




dy n+1 aw -

14 n 1a (¢ M
@ @iz = b Ta Bag)]e s
n§1 ~
= B,.Y (1,2) .
k=1 ik ‘mk

In this way, we reduce all radial derivatives to summations; the same can be
done for differences and inteqrals with respect to £. For the above choice
of nodes, weighted integrals of ;; over the cross-gsection can be ohtained
with high accuracy by use of Gauss' quadrature formula.

The boundary conditions at the wall may be linear or non-linear. If they

~

are linear, then Y can be expressed linearly in terms of the interior

m,n+1
values Ymk by use of the boundary condition and BEq. (4). This permits
elimination of Yh N+t from BEq. (5); the resulting new weight coefficients
’

will be denoted by B{k' In non-linear cases, on the other hand, one retains
the wall values as working variables and applies the boundary conditions

numerically during the solution process.

CONVOLUTION RELATION
Consider the developed isothermal flow of a hinary Newtonian or non-
Newtonian fluid in an infinitely long circular tube. The continuity equation

for either species may be written in the dimensionless form

2
af n 19 11 1 93°Q
+ V(§) = (E xF) ¢+ —5 —= - X'''Q (6)
oT 9z  E OE '° 3T e’ 372
with the initial and boundarv conditions
At T =0: n(tlzlg) = G(ZIE) (7)

at E = 1 : 3 Qt,2,E) + x"Q1,2,E) =0 for T > O
L3




oy

At £ =0: %E-Q(t,z,ﬁ) =0 for T >0 . (9)

Here K''' and K" are the first and second dimensionless numbers of
Damk8hler (1936) for homogeneous and heteroqgeneous reactions. The Laplace-

Fourier transform of Bqs. (6) -~ (9) from (T,Z,€) into (s,p,E) is

2
. 19 F14) —
(s + Kt -ﬁz-)n + pv(E)T =7 3¢ (£ 39 +Glo,8) (10)
At ¢ =1 : Taﬁ n(spppe) + x'n(slplg) =0 (11)
3
At £ =0 3g-ﬁ(s,p,z) =0 . (12)

Let 1 be the solution of Eqs. (6) - (9) with Pe = =, Its transform
gsatisfies eqs. (10) - (12) with the p2 term suppressed. Use of the s-shift

theorem and Fourier convolution (Campbell and Foster 1967) then gives:

2
H(TIPDE) = QXP(L";‘)ﬁ.(T'ppE) (13)
Pe .

re’

2
avt (2-X) 718 (T,x,8)ax . (14)

Q(1,2,6) = f'
re ™ 2 m

exp(~

Thus, the complete solution of Egs. (6) ~ (9) is obtained by Gaussian

smoothing of the infinite-Pe solution.

TWO~-POINT COLLOCATION; NON-REACTIVE CASE
Let C_ be the solution of Eqs. (6) ~ (9) with K* =K''' = 0, Pe = =,
and the following initial mass fraction profile:
G(z,8) = 8(2)0(E) . (15)
Collocation with n = 2, and elimination of the wall concentration through

the boundary condition (8), yields an initial-value prohlem for the nodal

«3a




C

1o

in which

~

! functions CQ(T,Z,€1) 2 C_'”(‘l’,z)

~

and C,(T,Z,Ez) H Czw(t,z). The boundary

condition (9), and the symmetry of the true solution, are satisfied through
the use of only even powers of £ in the collocation hasis functions [see Eq.

(3)]. In place of Eq. (10) we then obtain

2
sci, + pViEiga = k£1 B{kak” + Q& i=1,2 (16)

the Gaussian nodes

i and invert the transforms.

= exp(-87){

= exp(-8T7){

12

- N

2
E2

o1s|m|r,(x) 80,1, (X)

in which vy and Q; are the nodal values of V() and O(). To complete

the solution, we evaluate the coefficients B{k from Egs. (5) and (8), with

-
2

-

12
(17)
1 1
=—2~+——-

/12

The solution differs from zero only within the

reqion |Z] ¢ |T|, and is given there by

5% + W,-VZT + o1c(z-'r)} (18.1)
025|T-2|1,(x) 80,1,(X) ~

o + ™, + 0,8(z+m} (18.2)
2 =2 - (V1 + VZ)T/2 (19)
T=(V, - V,)T/2 (20)
B = 256(V, - vz)'2 (21)
X = VB(TZ - ZZ) . (22)
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Interpolating the solution according to Eq. (2), and intearating over the tuhe
cross-gsection, we find the mean value to he (C + CZ.)/Z. Gaussian

1o

quadrature of the integral gives the same result.

CFNTRAL MOMENTS OF THE TWO-POINT SOLUTION
et C be the solution of Eqs. (6) - (9) and (15) with K" = K''' = O,
The mean mass fraction in a cross-section is defined, for these axisymmetric
problems, by
1
<C> = 2 fo ctgag . (23)
The central axial moments of <C> are
= t)tcraz
B =] g (2 = <DT)C (24)
and have the moment-generating function

= (-4 T
u = (- ) texetcwste) Crp, 80011 g (25)

in which ¢€(t,p,E) is the Fourier transform of C(T,2,§).

For the collocation solution with n = 2, we thus obtain

1

0= 3‘(01 + Qz) (26)

N _ 1-exp(-16T) !
M, o= (()1 ()2)(\’1 - V;_,)[—————G4 1 (27) ]
- ~ 2T (v1-v2)2 T 1-exp(-16T)

My = “o{Pez M (7" 64 1. (28)

For a radially uniform pulse of unit strength, O,

. = 1; and for developed

i . laminar flow of a Newtonian fluid, Vi =1 - Ef. Eqs. (26) - (28) then give

| .

. uo =1 (29)
By =0 (30)
- 1 1 1-exp(~-16T)
Hy ‘sz + 732727 - — 536 . (31)
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The exact solutions derived by Aris (1956), Gill and Sankarasubramanian

{1970), and Chatwin (1977) for a radially uniform pulse confirm Eqs. (29) and

(30). Their expressions for u2 can be reduced {after a siqgn correction in

Aris' solution) to the common form

«®
1 1 1 ) 2
Wy = (=5 + 755027 ~ T * 32 ) Aj" exp(-AST) (32)
Pe =1
in which Aj is the jth zero of the Bessel function J,(x). The terms é

proportional to T constitute the prediction of the standard Fickian

dispersion model, with the long-~time asymptotic dispersion coefficient found

T . by Taylor (1953) and completed by Aris (1956). For brevity, the latter model

is called the Taylor-Aris model.

Before testing these results numerically, we give collocaticn solutions ;
1

of higher order for the axial moments of the function ¢C(7,Z,§).

COLLOCATION SOLUTIONS OF HIGHER ORDER
4

T

The moments of the mass fraction profile about the origin are defined by
i
m (7,8) = f:. z'¥(1,2,8)dz . (33)
The generating function for these moments isg

d yi
m (7.8 = (-SSP @e.enl ;. (34)

The moments at finite Pe can be obtained from those at infinite Pe by use

of Eqs. (13) and (34).

j A collocation solution for mi(T.E) at Pe = * is obtained as follows.

g f Let mi be the vector of mesh-point values of mi(T,E)z

T
m - !mi(T.E1).'".mi(‘t,En)l . (3%5)
We apply the Fourier transformation and n-point radial orthogqonal collocation

(34)

to BEgqgs, (6) - (9) with K" = K''' = 0 and Pe = ®, Then by use of Eq.

-6=
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we obtain

g?-mi = §'mi +1y ey (36)
Egs. (13), (34), and (36) can then be used to obtain the moments at finite

values of Pe. Finally, the cross-sectional average <m;> can be obtained by ;
Gaussian quadrature of B, . 5

Tables 1, 2, and 3 show the collocation solutions and the exact solutions
for uo, u1, and uz for two initial solution distributions. The
collocation solutions converge rapidly toward the exact results for all values
of T, and for both initial distributions. From Table 1 we see that the

collocation solution for n = 2 is particularly accurate in the case of a

uniform initial radial distribution.

TWO-DIMENSIONAL INITIAL DISTRIBUTIONS

Any axially symmetric initial distribution can be expressed in the form

6(z,E) =) J b, o (2)0°(E) (37)
sk

with suitable basis functions ¢j(Z) and Ck(E). let Ck(t,Z,E) be the
solution of Eqs. (6) - (9) with constant K" and K''', and with the initial
distribution Ck(O,Z,E) = G(Z)OF(E). Then the solution corresponding to the
initial condition (37) is obtainable by superposition,
2(1,z,§) =} ! b, f' wj(x)ck(r,z-x,E)dx (38)
yx %
and has the Fourier transform

Ttp8)=110b
ik

ij"(p)E"(t.p.E) . (39)

Let Oi and Mt be the ith moments of the functions wj(Z) and Ck(T,Z,E)

respectively with respect to Z. Then from Eqs. (34) and (39) we get the

moments my in the form

. .
e OREL o3

. » . I N
; *,'&'M'.".:-'ﬁio.m R




i
Tahle 1 Second moment 1000(112 - fﬁi) for initial condition O(§) = 1
T Collocation Exact* Taylor-Aris
n=2 n=3 n=4
« 01 « 00791 « 00782 « 00780 « 00779 1042
.05 «1623 .1575 «1574 .1574 «5208
«10 «5221 « 5059 « 5059 « 5059 1.042 }
.15 +9705 <9441 «9442 .9442 1.562 J
«20 1.459 1.425 1.425 1.425 2,083
«25 1.965 1.927 1.927 1.927 2,604
«40 3.517 3.474 3.474 3.474 4.167 ‘ k
1.0 9.766 9.722 9,722 9.722 10.42

'Exact values are calculated from Eq. (32). The
first two moments aqgree for all three methods.




Table 2 First moment

100 u

for initial condition OQ(§) = 2§

2

1
T Collocation Exact”
n=2 n=3 n=4

« 01 -. 1540 -. 1516 -. 1511 -+1511
«05 -.5736 -,5540 -.5541 -+ 5541
.10 -.8314 -.8083 -+ 8086 -« 8086
«15 -+9472 -.,9298 -.9299 -»9299
« 20 -+9992 -,9880 -.9880 -.9880
«25 -=1,0226 -1,0160 =1.0159 -1.0159
.40 -1,0399 -1,0388 ~-1.,0388 -1.,0388
1.0 =1.0417 =1.0417 -=-1.0417 =1.0417

*Exact values are calculated from Chatwin

(1977).

Pe,

in view of Eqgs.

The first moment is independent

(13) and (34).

of

PN P

i A o e e



Table 3 Second moment 1000(112 - 215] for initial condition Q(§) = 262
Pe

T Collocation Exact*

n=2 n=3 n=4

« 01 « 00791 - 00747 . 00738 « 00737

.05 .1623  .1390  .1389  .1389 3
.10 05221 .4434  .4447  .4447 %
.15 .9705  .8415  .8431  .8431 é
.20 1.459  1.294  1.296  1.296 |
.25 1.965 1.778  1.779  1.779
.40 3.517  3.305  3.305  3.305 :
1.0 9.766  9.549  9.549  9.549 !
|
. *Exact values are calculated from Chatwin F‘

(1977). j.
|




& =11 el W
m, (T,8) = b ) M (T,8) (40)
i jx jk =0 T i-r

for any initial distribution of the form in BEq. (37). This result shows the
influence of the initial conditions on the moments of the mass fraction

profile at any later time.

PROFILES FOR A PULSE OF FINITE LENGTH
As a further test of the collocation solutions, we calculate the mass
fraction profiles for an initial pulse of maximum amplitude unity and of
finite length L equal to 0.1 unit of 2. The coordinate
U=(22 - 1)/(L + T) (41)
is introduced here to facilitate finite element calculations of the
solution. The following initial condition is used,
G(Z,E) = ¢(U) (42)

in which ¢(U) is a C1 cubic spline:

e(U) =1 for |u| € 0.975
2 3
U -0.975 U "0.975
e(u) =1 -3 5055 ) + 2(-’—-'————0.025 ) for 0.975 < Ju] < 1 (43)
¢(U) = 0 for |u] > 1

With this initial condition, the solution C_, (valid for Pe = ®) |is
permanently zero outside the region -1 € U < 1,

Fiqures 1, 2, and 3 show the cross-sectional average mass fraction <uw>
as a function of T and z at Pe = 15, 40, and infinity. Three methods of
solution are shown: orthogonal collocation on finite elements of U, two-
point radial collocation, and the Taylor-Aris model., The radial collocation

was done in all cases as described above; the finite elements of U were c!

cubic splines with length AU = 0,025. Each method was first applied with




Pe = ®, and Eq. (14) was then ugsed to get results at finite Peclet numbers.

The two~-point collocation profiles (dashed curves) model the true solutions
very well, except for some lack of smoothness at short times with Pe = o,

The Taylor-Aris model exaqgerates the width of the tails of the pulse in every

case.

-12-
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NOTATION

Ay coefficients for gradient operator in Eq. (4)
ajme bjk coefficients of basis functions.

By, coefficients for Laplacian operator in Eq, (5)
B{k coefficients for Laplacian operator with boundary point
eliminated,
B' matrix of order n with elements Bik
C solution of Eqs. (6) - (9) with constant K" and K''' and

with initial condition 6(z)0(&)

cX special form of C for initial condition G(z)o#(E)
Co limit of C as Pe + =

G(E,z) initial distribution, BEq. (7)

I,(x) modified Bessel function of the first kind

K''',K" first and second Damk8hler numbers
m; ith axial moment of R defined in Eq. (33)
pa
n number of collocation points interior to £ = 1

vector of nodal values of m . Eq. (35)

p Fourier transform variable
Pe = RVh‘x/th , Peclet number

O(E) radial function in initial condition

0; value of O(f) at ith collocation point

?/ ; QF(E) kth radial basis function in initial condition
o - 8 Laplace transform variable

i o U transformed Z coordinate in Eq. (41)

V(E) wvelocity profile, relative to centerline value

. ‘ v; value of V(E) at ith collocation point

Yy diagonal matrix with elements V,;, = Vv,




Yi mth state variahle (e.q., temperature or species mass fraction)
2 = zlAB/‘vhax RZ), dimensionless axial coordinate

< > averadqge over flow cross-section

(i) bhbinomial coefficient

Greek ILetters

M, ith central moment of C defined in Eq. (24)

£ =r/R, dimensionless radial coordinate

T = thB/Rz, dimensionless time

¢v(U) axial function in initial condition of Eq. (43)

vj(z) jth axial basis function in initial condition of Bg., (37)

®w solute mass fraction

R solution for ®w with general initial condition G(z,£)
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