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ABSTRACT

_ir;»Asymptotic solutions are given for temperature profiles in laminar three-
dimensional flows with viscous dissipat?on. The results are asymptotically q
valid for small thermal diffusivityi h(iwthey hold for Newtonian or non-

Newtonian fluids. The fluid properties are evaluated at an average temperature

for the system; this is satisfactory for moderate temperature differences.

Heat transfer formulas for various thermal boundary conditions are included.

The general formulas are applied to several geometries; numerical results are

obtained for a wire-coating operati~... fjiy
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SIGNIFICANCE AND EXPLANATION

In this paper we study the etfect of viscous heating on the temperature
distribution in a flowing liquid. Matched asymptotic solutions are obtained
for the temperature distribution in the presence of viscous dissipation, with

and without interfacial heat transfer. The results are asymptotically valid

f for small thermal diffusivity (large Prandtl number); they should prove useful
in studies of wire coating, extrusion, heat transfer, and other flow processes

with high rates of shear or highly viscous liquids,

The responsibility tor the wording and views expressed 1n this descriptive
summary lies with MRC, and not with the authors ot this report.




FORCED CONVECTION IN THREE-DIMENSIONAL FLOWS: III.
ASYMPTOTIC SOLUTIONS WITH VISCOUS HEATING

Matthew A. McClelland and Warren E. Stewart

SCOPE
Small-diffusivity asymptotes have given useful information on a variety

of heat and mass transfer systems. Part 1 and II of this series (Stewart,
1963; Stewart, Angelo and Lightfoot, 1970) dealt with boundary-layer phenomena
% in the absence of viscous heating. The present paper adds the effects of
viscous heating in the boundary layers and in the main flow region. The

# results should prove useful in studies of wire-coating, extrusion, heat

4 transfer, and other flow processes involving rapid deformation or highly

viscous fluids.

This treatment holds for laminar non-geparated regions of external flows,
and for laminar thermal entrance regions of internal flows. The velocity
profiles are considered as given or separately calculable; this is consistent

with the use of an average temperature in evaluating the fluid properties.

Sponsored by the United States Army under Contract No. DAAG29-80-C-0041,




CONCLUSIONS

The key results of this analysis are the inner and outer solutions, given

in Equations (46), (15), and (54). These may be combined with the 4

superposition formulas of Papers I and II (Stewart, 1963; Stewart, Angelo and
Lightfoot, 1970) to predict the temperature profiles and heat transfer rates
in various three-dimensional flows once the velocity profiles are given. The
resulting general formulas for steady-state systems are given in Egs. (47) -
(51).

For fluids with small thermal diffusivities, &, the enthalpy increase

-1/3

caused by viscous heating is of order a in boundary layers that are
steady as viewed from the nearest interfacial element. The increase is of
order ao in time-dependent boundary layers, and is of order ao outside
the boundary layers both for steady and unsteady flows. The order a /3
agrees with that found by Meksyn (1960) for the steady laminar boundary layer
on a flat plate at high Prandtl numbers. A somewhat stronger

dependence, G-B@, holds for steady laminar boundary layers at Prandtl

numbers near unity (Pohlhausen, 1921).

INTRODUCTION

For complex flows with viscous dissipation, it is difficult and time-
consuming to solve the equations of change in full detail. However, useful
asymptotes are obtainable for heat transfer by considering the limiting case
of small thermal diffusivity. |

Paper I (Stewart, 1963) gave asymptotic solutions for forced convection
near fixed interfaces, with viscous dissipation neglected. The boundary
layers considered there were at steady state when viewed from any interfacial

element.




Paper II (Stewart et al., 1970) dealt with forced convection near mobile
interfaces. The boundary layers considered there were time-dependent as
viewed from the nearest interfacial element. The analysis included internal
heat sources, but viscous dissipation was not explicitly treated.

In this work the results of Papers I and II are extended to include
viscous dissipation. We use the continuity and energy equations for a

constant-property fluid

(Vew=0 ()
(1:Vy)

%:——avaa-—a—— (2)
PCp

and treat the velocity field as given.
Particular integrals of Equation (2) are derived here as matched |
asymptotic solutions for the boundary layers and the main flow region. The
complementary solutions from Papers I and II can be superimposed on these
results, to describe the combined effects of interfacial heat transfer and
viscous dissipation. We do the superposition explicitly for steady-state

systems in Egs. (47)-(51).

Ve Vi@t st a




COORDINATES AND VELOCITIES

The steady-state inner (boundary layer) solution is done in the
curvilinear coordinates x, y, and 2z of Paper I. The coordinate x 1is
measured along the surface streamlines; simplifications for two-dimensional
systems will be considered later. The coordinate y 1s the normal distance
from the surface, and the surface coordinate 2z is measured normal to the
local x-direction. 1In the neighborhood of a given interface these coordinates
are orthogonal, with scale factors defined by

dr = Qx h dx + éy hy dy + éz h adz . (3)
The scale factor hy is unity here, and hx and hz are taken at their
interfacial values.

The steady-state outer (main flow) solution is done in streamline
coordinates, illustrated in Figure 1. Each streamline is given by the
intersection of two stream sheets of constant ¢1 and Wz , and each point
on a streamline is identified by £ , the arc length downstream from a .
reference surface.

The velocity components for the steady-state inner solution are taken

from Paper I. They reduce to

vil) =y B(x,2z) + O(yz) (4)
NS A TN (5)
y  2hh 3x "z Y
X Z
vi oo + oty?) (6)
in the absence of net mass transfer. These expressions satisfy Equation (1) .

to first order in y . The non-negative function 8 1is the interfacial
magnitude of the rate-of-strain tensor as defined by Bird, Armstrong and

Hassager (1977); for brevity we call this quantity the interfacial shear

-4~
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rate. A particular flow field is described (to the indicated order in vy) by

specifying the surface coordinate gqrid and the function B(x,z).

For the subsequent matching of inner and outer solutions, we need to

express Equation (4) in the coordinates of Fiqure 1. The continuity equation

is automatically satisfied by setting
(7)

= (v
V=0V xV )

which may be applied in the boundary layer coordinates (x,y,z) to give

3 8 )
~X ~y ~z
ST I ST W B W (@
~ = h_ 9x h_dy h_dz
X Yy z
1_3'02 1_3"’2 1_3'#2
h_ 9x h_ dy h_ 9z
X Y z

This expression agrees with Equations (4), (5), and (6) if we take the stream

functions in the forms
2

= X 3
w1 =3 th + O(y7) (9)
V. =z 4+C + O(y) (10)

2

with C an arhitrary constant., Hence, Bquation (4) can be rewritten

v’((i)= /T, B+ o) . (11)

i — pacdiali el s, . . e i,
A 4 a e il T o
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OUTER SOLUTION FOR STEADY FLOWS
At a distance from the boundaries, the heat conduction term of Bquation
(2) can be neglected as a *+ 0 , For steady-state conditions this equation

then becomes

©) -z : vy (12)

pC_(V * VT
p~
which may be rewritten in the streamline coordinates as
- amp(©)
PC, V3 — = ~(L: ) . (13)

Integration of this equation with the initial condition

T=T, at £=0 (14)
yields the outer temperature profile
-(1 : Vv)
z ~ ~
'r(°)(£.1' V) - T = 1 f as (15)
172 o 0

\'4 1
eC
P

which is well-behaved, except near stationary boundaries where V vanishes
and (T:Y¥) does not. Near such boundaries, heat conduction becomes important
and an inner solution is required.

The subsequent matching of solutions will require the asymptote of

(i)

Equation (15) as ¢+ 0 . To order ¢¢1 we may set V = vx R

1
4% = h dx , and
x
-z YY) = T Mx,2)8 (16)
in which To(x,z) is the wall shear stress, The resulting asymptote of
Equation (14) near stationary boundaries is
1im /7%, (%02, ,9.) - T) =~ [* 1t /A B hdx (17
1 1772 ® 0 z x 1
¥,*0 pcp 0

with 2 = [* hdx, in this limit,
0

-7-




INNER SOLUTION FOR STEADY FLOWS

Equation (2) can be simplified according to the usual boundary layer

approximations (Schlichting, 1960; Rosenhead, 1963)., 1In the limit of small ‘

a , the Laplacian V2T reduces essentially to the second normal derivative, .
2
9

Yy
the boundary layer, With these substitutions, and use of Equations (4), (5)

3

. In the same limit, Equation (16) describes the viscous dissipation in

Q

and (6), the energy equation becomes

!g 3T(i) ) 2 2— b &) 3T(i)_ . 32T(i)+ TOB (18)
hx Ix 2hxhz Ix "z dy ay2 pC

for steady-state boundary layers in the limit of small a. Since no z-
derivatives remain, Fauation (18) can be inteqrated in two dimensions with
zZz as a parameter,

Eq. (18) can be solved conveniently by representing rOB as a
superposition of special functions €(x,£,z). Each e€-function has a

different value of the location parameter &, and vanishes for x < §. A

corresponding family of solutions T*(i) is defined by the differential
equation
*{1i *(1i * (3
LI SO SO St AU 5. Sl E9 10 (19)
h dx 2h h  3x 'z ' dy B 2 ol ’
x X z dy pC
P
and the boundary conditions
*(i)
T
av =0 at Yy = n (20)
w3
T W, T, as y *+ @ (21)
*
T y T, for x < E .




Once the functions

ot (1)

We postulate the following form for

€(x,£,2)

these and the resulting solutions

are found,

can be superimposed to solve Equation (18) for an adiabatic boundarvy.

o (1)

4

*(i)
T - Tm = f(XIEIz)Q(n) (23)
with
N =y - (24)
(x;E;Z)
Here &(x,£,z) 1is a boundary layer thickness, which [in view of Eq. (22)] is

taken to vanish for x < §&.

The boundary conditions (20) and (21) then reduce

to
dg _ _
I = o] at n =0 (25)
g*o0 as n +®, (26)
Insertion of the postulates (23) and (24) into Equation (19) gives
3 2 3 2 2
§°8 af 6°g 36 (] d 2 dq d’q 6%¢
s v -lagr mtsmw w0 @m=S+{51. ©n
X x X z an
The postulates hold only if the bracketted terms are independent of x , for
X 2.5 :
6% 26, &3 2 .
ah_ 9x ~ 2ah h_ 9x ' =z
X z
sz’hz_B ,
= e =
ah T P (8 Jh‘zs) Cyiz) (28)
3
§°B 3dInf
E Tx—- = C1 (z) (29)
2
§%€e
Py Cz(z). (30)
The functions Ci(z) may be chosen as positive constants. Choosing C, = 3

and inteqrating Fauation (?28) with the initial condition




/R;E 8{x,6,2) = 0 at x = £ (31)

required by Eq. (22), we obtain the houndary layer thickness

§ = foa [*AFnp ax 1 0. 2
hZB g
The choice C2 = 1 qgives
f = GZC/k o (33)

Fquations (28) and (29) give the following differential equation for € :

atn g S MO (x > £) (34)
3x - C 3% x 2

o

let C1/C0 = r = constant; then Equation (34) may be integrated to give
£=C,6 BT (x>0 (35)
The value of C1 is determined by matching the inner and outer solutions

for the region x » &. The outer limit of the inner solution has the form

. *(1) £
lim {n[T - Tw]} = W (36)

nM
according to Equations (23) and (27)-(30). Insertion of Baquatinn (35) gives
. sf r/2
03 (th)

(c0 + c1)

1im (et - T, =

nm
The inner limit, Bquation (17), of the outer solution may be rewritten for the

source distribution €(x,£,z) to qgive

1im (/29 it @ _p )= [* eF /B hadx, . (38)
> o« d z x 1
w, 0 pCp £

Here & has replaced zero as the lower limit of inteqration. Insertion of

Equations (9), (33) and (35) gives

r-1
c.a —_—
Lm {yrr" ) = 2= Fhn6TPmog) 2 oax . (39)
y*0 mB £ ?
=]0=

-l-‘ DS
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For r = 2 and C, = 6, Equations (37) and (39) match, giving

3
. c.6°h 8
EEI U S DEER LI 010 SR 30 ) S N (40)
y‘bw y’O
Equation (27) then becomes
2
6ng - 3n> %%-= 9—% +1 (41)
dn

which may be solved numerically with boundary conditions (25) and (26). The
resulting surface value of the function g is
g(0) = 0.32973 (42)
and the function g(n) is shown in Figure 2.
The constant C3 of Bquation (35) remains to be determined. Equations

(33) and (35) give, for r = 2,

€

€3 *%n B
Z

(x > &) . (43)
By definition, € vanishes for x < &; thus, E/th is a step function,
Insertion of Equations (43), (32), and (35) with r = 2 into Equation (23)
then gives

2/3

AL S —y 9(m ( J* /A Bhhnax J2/3 £ (44)
373 he
pC 0 1:5 z

as the fundamental inner solution.

We now return to the solution of Equation (18) with an adiabatic boundary
at y = 0, a uniform upstream temperature T_  for x < 0 , and an arbitrary
shear stress distribution To(x,z) for x > 0 . The amplitudes of the step

functions e/th are now chosen by specifying

T
=2 d(—) = [ a(z5)
By =0 M2 |z =0 2

- e e~ ——— - .
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Figure 2. Boundary layer temperature function 7(n);

solution of Equationg (25), (26), and (41},
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thus equating the steps to increments of to/hz « Doing likewise in Equation i

(44) and superimposing the results, we obtain the inner solution i

. 2/3 T
T;" -1, = _2__7__ /* gm( * /mBhnax )Y 32 . (46)
. /3 z- xz 1 h
pCa €=0_ x,=& z |e,2
’

for the case of an adiabatic boundary. The outer limit of this solution

matches the inner limit of Equation (15). The outer integrations in Eqs. (45)

and (46) are begun from & = 0_, with TO initally zero to conform to the
€-functions.

Results for non-adiabatic boundaries may be obtained by combining the
present results with those of Stewart (1963). 1In that work Equation (2) was
solved without the dissipation term, with a uniform upstream temperature T_
and with arbitrary interfacial thermal conditions for x > 0 . Since Eq. (2)
is linear, we may superimpose Bg. (25) of the 1963 paper upon the particular
solution just found; this gives the following temperature profile for the case

of a given surface temperature distribution To(x,z):

— x - -
T(x,y,2) = T,(x,y,2) +OI SIS TLIDY P I SN A (a7)

Here TO,A is obtained from Eq. (46) with y = 0; also

1 n 3
il = -

(M) = 1775y £ exp( nl) an, (48)
with n defined by Equations (24) and (32). The resulting interfacial heat
flux is

9T
. 9 = -k'a—y y=0
k th X X i3 -1/3 (4
. = { J* /B hhax | AT-To e,

(90)'/31(4/3) g=0_x =t

-13-
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and the total heat transfer rate through a surface region O € x < xz(z),

27 <2z < zZyp is

1/3 z x (z) x_(2)
Q= ""il__lif73 I . I : L] : th hxhzdx1}2/3d(To'To A)lﬁ z* (50
2l (4/3)a z, 6=0_  x,=f o

A two-dimensional version of Eq. (49) was given by Lighthill (1950), but with
an approximate function TO,A based on the calculations of Pohlhausen (1921)
for Prandtl numbers near unity. The present results are preferable for large
Prandtl numbers.,

The temperature profile corresponding to any given surface heat flux
distribution qo(x,z) is obtained by combining Eq. (46) above with Egq. (39)

of Stewart (1963):

3
. exp(- n )qohxhz 13

2 2/3 x 2/
[3) ec,(9a) o I é vh,B b h dx. ]

(51)

T(X,Y,2) = TA(x,y,z) + 3 3 °

3

This completes the steady-state solutions to lowest order in a.

-14~

St iosioailh sinditichidictniinucitialiocitiiiviaion. ctbbin secniameiiiniiii . — i ok o

APt e e b e e i eman et nn




TRANSIENT SOLUTIONS
For transient processes, an outer solution for a *+ 0 is obtained by

starting tfrom Equation (2) without the conduction term:

- (o)
DT
pcp—l)_t_—- -(x: W) . (52)

The initial condition is taken to be

T(X1,X2,x3

Here the X; are material coordinates. Integration along the particle paths

)t) =T, at t =20, (53)

gives the time-dependent outer solution
O X xxt) - T = [F o VO, L dt, (54)
pcp 0 1772773
which reduces to Equation (15) for steady flows.

The transient inner solution for the dissipative temperature rise is
obtainable from Equation (80) of Paper II. In the limit of small «, the
dissipation term of Eq. (2) may be approximated in the boundary layer by the
local interfacial value. The resulting inner solution for T is independent
of the normal coordinate y , and is consequently unaffected by heat
conduction. Equation (54) matches this adiabatic inner solution exactly at
the interface, and is preferable everywhere else, Thus, for adiabatic time-
dependent systems with small a , Equation (54) is valid throughout the
fluid. This particular integral [with T(o) labelled as TA] can be
superimposed with Eqs. (76)-(79) of Paper II to describe unsteady-state heat
transfer with viscous dissipation. An application of Bq. (54) is given in the

final example.

~15-
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APPLICATIONS TO SIMPLE GEOMETRIES

The flows considered in this section are Newtonian and have uniform
temperature upstream from a locus x = 0 where gignificant dissipation
begins. Inner solutions are presented for adiabatic boundaries; these may be
superimposed with Equations (49) and (51) to obtain results for other

interfacial boundary conditions.

Developed Flows in Ducts

For slow flows of viscous liquids in ducts, the hydrodynamic development
region may be considerably shorter than the thermal entrance region. The
temperature profiles may then be approximated by assuming abrupt flow
development at the entrance of the duct. The x-coordinate for these systems
is measured parallel to the flow axis and the =z-coordinate is measured around
the duct perimeter. The scale factors hx and h, are set equal to unity.
Several duct geometries are shown in Figure 3, and the corresponding
expressions for B are shown in Table 1 . Equation (46) gives the inner

solution for the temperature rise,

‘ 2 2 ,4,1/3
(1) (81v? pr x? 8% 3B
Ta "~ To= = al v 5z ) (55)

p

and the outer solution is obtainable from Equation (15).

Wedge Flows
Consider a laminar two-dimensional flow impinging on the wedge shown in
Figure 4. The boundary-layer coordinates are rectangular with hx = 1 . The
velocity protiles are given by Hartree (1937); the interfacial shear rate is
m+1 U3 J1/2

8 = £"(0,m)| —— —

™ (x > 0) (56)

-16-
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Figure 3. Duct geometries: tube, annulus, equilateral three-walled duct,

and glit with one wall moving downstream.
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TABLE 1

WALL SHEAR RATES FOR FULLY DEVELOPED NEWTONIAN

FLOWS IN DUCTS

Duct Geometry Wall shear rate, 8
Tube (P0 - PL)R/ZLIL
83 ylirde 2HL 2 In(1/K) «
3
Outer Cylindei w 1 - .(_1;5_2_)__
- er Tyn 2uL 2 In(1/%) .
s {lateral Three-walled Duct L Tl VNPT
- Equilatera ree e c AL 3
(Landau and Lifshitz, 1960)
Slit with One Wall Moving
Downstream:
Fixed Wall Fo = M)t + Y
ixed Wa WL 2Y
L 3
M i Wall .(—po_:._g-lz - -vi
oving UL 2Y

-18=




Figure 4, Taminar flow over a wedge,
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Here U 1is the longitudinal velocity at the outer edge of the boundary layer,

U =ux" (57)
and the exponent m 1is given by potential flow theory as

m=6/(2n-0) . (58)
The dimensionless wall stress £"(0,m) is tabulated by Hartree; some values
are £f"(0,0) = 0.4696 for the flat plate and £"(0,1) = 1.233 for plane
stagnation flow. Equation (46) gives the following surface temperature
distribution for flow over an adiabatic wedge, when note is taken of the jump

in B8 (and thus in ro/hz) at x = 0 :

2 9m+1)102Pr1/3 (59)
3" 3m+3’/ c *
P

T(i) -T = {% 62/3[fn(0,m)]4/3g(0)3

For the special case of a flat plate (m = 0), the resulting recovery factor
is

-

(1) 1
clr -t | =
P °'A2 s =1.92 (60)
1/20

in agreement with the asymptote obtained by Meksyn (1960) for Pr >> 1 for

this geometry.

Creeping Flow Around a Sphere

Consider the steady creeping flow of a Newtonian fluid past a stationary
sphere. The surface streamlines are contours of constant longitude ¢ ,
running from 6 = 0 to 6 = 7w in spherical coordinates. The surface
coordinates for the inner solution are x =0 and z = ¢ , with scale
tactors h, = R and hz = R 8inf@ . The Stokes velocity profile gives the

interfacial shear rate

-20-
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3 {_sine

B = 3R (61)

Thus, To/hz is a step function, vanishing for x < 0 and equal to

3uV“/2R2 for x » 0. Equation (46) gives the dissipative temperature rise

4 3 2
(i) 9 413 Pr v _2 . 3
TO,A -T, = (-Z )® (o) :——— [‘E V,( 2 0 - sin 20) ] (62)
p

on the surface of an adiabatic sphere.

Slow Flow Around a Cylinder

Consider the slow steady flow of an infinite fluid across a circular
cylinder of radius R , The surface streamlines run from 6 =0 to 6 = 7w .,
The surface coordinates for the inner solution are x =8 and 2z = z' with
scale factors h, =R and h, =1, where (r,0,2) are the cylindrical
coordinates. A series expression for the velocity profile near the cylinder
is given by Rosenhead (1963). Using only the leading terms, one obtains the
interfacial shear rate

2V, sin ©
8 = —SrR ° (63)
Here

s =-;- - Y + In(8 Re ) (64)

and Y is Euler's constant. Equation (46) gives the surface temperature rise

due to viscous dissipation

2. .4 1 1 2
. 1296 Pr V- V. — - <
T:)I})\ -T, = — @® )3 T(O) Ie ( Ie sin201d91)3 cosEAE  (65)
. RS <, g=0_ 8 =¢

in the absence of heat exchange between the cylinder and fluid. The double

integral I(8) has been evaluated numerically and is given in Table 2.




TABLE 2

INTEGRAL IN EQ. (65) FOR CYLINDER SURFACE TEMPERATURE

180 6/7 I(0) = fe ( fe sin1/281d61)2/3cos€d€
£=0_ 61=£

0" 0.0000

15 0.0355

30 0.1377

45 0. 2951

60 0.4896

75 0.6993

90 0.9008 -
105 1.073 L
120 1.198 %
135 1.267
150 1.278
165 1.243
180 1.195

'Stagnation line.

22~




Flew Near a Rotating Disk

Consider the three-dimensional axisymmetric flow induced by a disk
rotating with an anqular velocity ® in an otherwise quiescent fluid. A
cylindrical coordinate system is chosen which rotates with the disk. From the

analysis of Cochran (1934) the surface velocity components are

vV.o=ruw F(Z) (66)
Vg = r w [G(L) -1] (67)

with
-2 /T (e

From Cochran's tables of the solution, we obtain

1
t EE (Vi + V;)2
Z2=0 2=0

r /3 JiEron? + (et (0012

with F'(0) = 0.510 and G'(0) = -0.616 .

(69)

Since the temperature is independent of ©® , we choose r and 9 as
surface coordinates (x,z) for the inner solution, whence hx =1 and hz =
r. This is simpler than integration along the spiral surface streamlines, and
gives the same result. The fundamental solution is then done with Ve
omitted, and with 8 replaced by Br =r v m3/v F'(0) [see Equation (69)]
except in calculation of the viscous dissipation. 1in Equations (45) and (46),

we must accordingly replace e/th by €/thr, and To/hz by TOB/thr.

The resulting inner solution for the dissipative temperature rise is

. 2 1/3
(i) (wr) (9 Pr) 2 3 F'(O)m
L ML TR {te' (0112 + t6* (1%} q| 2 (70)
S N L 1av/? J

for a thermally insulated disk.

-23=
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Entrance Flow in a Tube

Consider a fluid which enters a circular tube of radius R with an

initially flat velocity profile. From the numerical results of Hornbeck

(1964), the quantity .
9
~4R vz

= — (71)
<V> 9dr r=R

is available as a function of downstream distance.

f Re

A curve fit of the numerical solutions plotted in Figure 5 gives the

expression

1
13280 2 +a520""" 4+ 15.6

f Re = o (72)
1 + 28.25 ¢ °

in which

o = (x/R)(ReVS/V) ™ (73)

Equation (72) satisfies the asymptotic relations

1
lim £ Re = 1.328 0 2 (74) .
o+0

lim £ Re = 16 . (75}

o’”

Equation (46}, (71) and (72) give the surface temperature rise in the thermal

entrance region of an adiabatic tube:

2 1
., 213 gt0) e v 2
T -7 = < J© (J° ftrRedo,)” dalf re)|, .
' ® 1 13
C E=0 O:;e
P - 1
(76)
This solution is plotted in dimensionless form in Figure 6. Near the *

entrance, the temperature rise is essentially that of the flat plate, whereas

downstream the curve approaches the asymptote for hydrodynamically developed

laminar flow.
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-A WIRE-COATING PROBLEM

Improvements in wire-coating processes have been made largely by
empirical means. Experimental studies of such flows are difficult, because of
the small clearances required in a wire-coating die. Theoretical treatment is
hampered by temperature-dependent properties, along with complicated rheology
and geometry. Previous theoretical work, summarized by Carley, Endd, and
Krantz (1978), has included approximate analytical treatments and elaborate
numerical computations. In this section we give an asymptotic analysis of a
representative wire-coating process.

The geometry (see Figure 7) and operating conditions of a typical wire-
coating die are given by Haas and Skewis (1974). The die wall is tapered,

with local radius

Rz(x) = a(x)R1. (77)

Here R1 is the wire diameter, and
x X

a({x) = a(0) (1 'E) +a(L)(-f) (78)
with

a(0) = 3.39

a(L) = l.17

L = 0.39 ino (0099 Cm)

R

1 0.0127 in. (0.0323 cm)

The coordinate x is the axial distance from the inlet of the die. The wire
velocity V,_, 1is 4000 ft. min~! = 2032 cm 5”7,

An exact description of the flow field would require numerical integra-
tion of the coupled mass, momentum, and energy equations. Here an approximate

velocity profile is used. The axial velocity profile in the melt is

approximated by a three-term expansion

<

- (L r_)2
= £,(x) + £.001n (3 )+ fzm(R1 ) (79)

X
V@ 1

-27-

per)

e N

e —————— v

s i s st et




*, amb1d

so1p bujapOo-a1im © JO MSIA o73PWAYOS

1 -

] .
e
) ) N . .
DT or ey
. N ; oo



based on functions appropriate to annular Newtonian flow with a moving inner

cylinder. Use of the no-slip conditions at the interfaces,

Vx = Vw at r = R1 (80)
vx =0 at r = a(x)R1 (81)
and the given mass flow rate,
aR
1
w=2mp [ v rdr (82)
R

leads to three equations in the three unknowns:

fo(x) + fz(x) =1 (83)
£4(x) + £4(x) In a(x) + £5(x)a%(x) = 0 (84)
a2 - 1= [ 20g 0 + £,00 10 u+ £,(00 )uau . (85)

1
Here w has been chosen so that there is no draw-down, i.e., the final

coating diameter matches the exit diameter of the die.

From Equation (79) the shear rates at the die wall and the wire surface

. are
v, E(x)
By E: ot 2a(x)f2(x)] (86)
VW
B, = |z [£,00 +2£,(0] (87)

1
These functions are plotted in Figure 8. The shear rate at the die wall rises

monotonically to a maximum of 3.3 X 105 sec.1 , Wwhile the shear rate at the

wire first declines to zero and then rises to 2.1 x 105 sec_1 « In the

entrance region, the fluid velocities do not exceed the wire velocity. 1In the
exit region, however, fluid velocities greater than the wire velocity must
’ occur to satisfy the zero draw-down specification.
Carley, Endo, and Krantz (1978) have provided property data for a
representative low-density polyethylene melt. For the boundary regions, they

use the shear stress model




Y e ey TR i S Y2
. -

.
w

AT WA
* Figy  ER

£
T
-COﬂ“EN&O buy3e00-21TM © 203 s9jed Jeays aoejans O&QEﬁxoamt ] OHﬂ—O..ﬂ.W ~ ..,,.

/%
Ol 60 80 20 90 60 0 ¢0 20 IO 0

I I I ] ] } HJ 0
IIOM ¥iQ |

10! XG0

33044NS aJIM
—c01%0°!

— OIXGT

(1-99s8)¢
- ooz

-30-

~ c0IXG'2

- mo_xoon

_ l _ _ _ l _ _ _ L0IXg'g




dv_|-~-2/3 4dv
2 2

Trz = -‘T dr dr (88)
Y with
E 1 1

mT’mOexp[E(¥-T )] (89)

. ref
and
- =572
mo = 101,000 g cm ! sec >/

11,700 cal mole'.1
1.987  cal mole | X

-1

Tref 479 K .

In this analysis ny is taken as a constant, and is evaluated as described

below. The following properties are treated as independent of temperature:

0.000786 cal sec_1 cm_‘ K-‘

k =
P =0.91gcm >
° -1 -1
. Cp = 0.55 calq K .

The surfaces of the wire-coating system are assumed adiabatic. At the
die wall we use hx = 1 and hz = a(x)R1 . Equations (46), (86), and (88) then

give the die wall temperature distribution

IR o RO LN




A

1/3 )
. 2/3 ( B
(i) 9 g(0) X 2/3 | 4
T - T, =—=— “——7 n ( f vag, a dx J —_—
0 oo RVE R 3 A d 1 a £=0 ﬁ
p 1
23 8y %) .
« PO 7aB] aax) ) Pa(—) . (90
\ £=0 x1=E )

for adiabatic operation. The first term of Eqguation (90) accounts for the
assumed initial jump in wall shear rate, and the second term accounts for all

' subsequent changes. The index mq is evaluated from Equation (89) at the

mean of the entrance and exit surface temperatures; this entails an iterative
calculation.

The temperature rise at the moving wire surface is obtained from
Equations (54), (87) and (88), with t = x/V, and (I : Vy) = 7 B.. The

result is

4 .
m —-—
I I il (Y T "I (91)
w 1
pC VvV x, =0
P W 1

The index m, is again evaluated at the mean of the entrance and exit surface
temperatures. Equation (15) is equivalent to Eg. (54) here since the system
is at gteady state when viewed from the die.

Numerical integration of Equations (90) and (91) with T_ = T}ef gives

the results shown in Figure 9 . The temperature at the die wall rises from

479K to 534K; this increase is comparable to the results obtained

numerically by Carley, Endo, and Krantz (1978) for similar wire-coating

systems., The calculated temperature rise at the wire surface is much smaller

(only 5.8K at the maximum) and becomes still less if one allows for heat .

transfer to the moving wire,
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The boundary layer thickness associated with each increment of To/hz

along the die wall is obtainahle from Equations (32) and (86):

1
§(x,E) -1 {9a f" v aBd a dx1}3 (92)
x, =,
1

v aﬂd

Figure (10} shows the growth of five representative bhoundary layers emanating
from equally spaced points alonq the die wall. Each of these layers qrows
rapidly at first, but then gets thinner as the flow converges and acceler-

ates, The final thickness of the layer associated with the initial jump in

TO is 0.,0011 inches (0.0028 cm) or 11% of the final coating thickness.

Thus, the small-diffusivity assumption of the analysis is accurate here.

. -34-
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B(m,n)

m 3|U_UO >

o]

£ (0,m)

0’f1'f2

p

oly™

NOTATION
= lenqgth of side of equilateral triangle; radius ratio in Egs.

(77)-(78).

T(m)T(n)/" (m+n)

= heat capacity at constant pressure (EM"T")

%g\r + (V * Y), substantial derivative

= dimensionless function defined in Equation (66)

= friction factor, see Equation (71)

= function defined in Eguation (23) (T)

= dimensionless shear stregs at wedge surface, see Equation (56)
= dimensionless functions defined in Equation (79)

= dimensionless function defined in Fquation (67)

= dimensionless temperature function defined in BEquation (23)
= scale factors defined in Equation (3)

= thermal conductivity (Et'1L'1T'1)

= length of channel

= arc length along a streamline

= dimensionless parameter defined in Egquation (58)

= parameter in power law model, see Equation (88)

= terms of order n or greater in vy

= p + 00 )

= decrease of P along duct length L
= Prandtl number
= pressure (M L'1t°2)

= conductive heat flux into the stream at y = 0 (E L’zt'1)
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<V>

<

X.l,Xz,X3

X

=

gas constant (E mole” T 1)

radius of sphere or cylinder

Reynolds number

wire radius

local radius of wire-coating die

position vector

radial coordinate

dimensionless ratio C1/C0 , see Equation (34)
absolute temperature

local free stream velocity for wedge flow (Lt")
mean velocity through cross-section of pipe (Lt”)
velocity vector relative to non-deforming coordinates (Lt“')
magnitude of velocity vector (Lt~

velocity of wire or moving wall (Lt'1)

components of wvelocity vector (Lt'l)

velocity components in cylindrical or spherical coordinates
(Le™)

-1)

tangential component of velocity vector (Lt
magnitude of free stream velocity (Lt~
material coordinates

surface coordinate directed along surface streamlines;
see Equations (3)-(6) (th'1)

half-width of slit (L)

normal distance from interface (L)

cylindrical axial coordinate (L)

surface coordinate normal to the local x~direction:

see Fquations (3)-(6) (Lh?‘1)
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Greek Symbols

<]
L}

k/pCP , thermal diffusivity (th'1)

8 = (avt/ay)|y=0, function introduced in Equation (4) (t~1) '
-z _Xx-1

F(x) = Z e =z dz , ?
Y = Euler's constant, 0.57721,..
§ = boundary layer thickness for viscous heating or heat transfer !

®) |

¥ 5§ 8,6 = unit vectors

~x'~y'~z
€ = special dissipation function for fundamental solution, see

Bquations (19) and (43)
n = dimensionless coordinate defined in Equation (24) ]
0 = angle in cylindrical or spherical coordinates :'
6 = wedge angle (radians) §
K = ratio of inner cylinder radius to outer
u = viscosity (ML='e~ ,
v = J/p kinematic viscosity (L2~
€ = value of x at the jump in € and ‘I"(i) A!
1¢ = dimensionless temperature function in Eguation (48)
P = density (ML™3)
c = (x/R)(R <V>/V)-1 sdimensionless downstream coordinate in tube ;
s = stress tensor (ML 't¢"2)
to = magnitude of tangential stress at interface (ML™'t~2)
; = gravitational potential energy (LZ%t”2)
$ = angle in spherical coordinates .
w = angular velocity of rotating disk (radians sec-1)
W1,W2 = gtream functions, see Equation (7) ¢
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Superscripts

(i)
(o)

*

Subscripts
A

4

inner solution
outer solution

solution with special dissipation function

dissipative solution for adiabatic boundary
at die wall

at wire surface

in or into the fluid at y = 0

upstream or initial state

dummy variable

e(x,£,2).
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