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ABSTRACT

' "-Asymptotic solutions are given for temperature profiles in laminar three-

dimensional flows with viscous dissipation. The results are asymptotically

valid for small thermal diffusivity ' they hold for Newtonian or non-

Newtonian fluids. The fluid properties are evaluated at an average temperature

for the system; this is satisfactory for moderate temperature differences.

Heat transfer formulas for various thermal boundary conditions are included.

The general formulas are applied to several geometries; numerical results are

obtained for a wire-coating operati-...
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SIGNIFICANCE AND EXPLANATION

In this paper we study the effect of viscous heating on the temperature

distribution in a flowing liquid. Matched asymptotic solutions are obtained

for the temperature distribution in the presence of viscous dissipation, with

and without interfacial heat transfer. The results are asymptotically valid

for small thermal diffusivity (large Prandtl number); they should prove useful

in studies of wire coating, extrusion, heat transfer, and other flow processes

with high rates of shear or highly viscous liquids.
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FORCED CONVECTION IN THREE-DIMENSIONAL FLOWS: III.
ASYMPTOTIC SOLUTIONS WITH VISCOUS HEATING

Matthew A. McClelland and Warren E. Stewart

SCOPE

Small-diffusivity asymptotes have given useful information on a variety

of heat and mass transfer systems. Part I and II of this series (Stewart,

1963; Stewart, Angelo and Lightfoot, 1970) dealt with boundary-layer phenomena

in the absence of viscous heating. The present paper adds the effects of

viscous heating in the boundary layers and in the main flow region. The

results should prove useful in studies of wire-coating, extrusion, heat

transfer, and other flow processes involving rapid deformation or highly

viscous fluids.

This treatment holds for laminar non-separated regions of external flows,

and for laminar thermal entrance regions of internal flows. The velocity

profiles are considered as given or separately calculable; this is consistent

with the use of an average temperature in evaluating the fluid properties.

Sponsored by the United States Army under Contract No. AAG29-80-C-0041.



CONCLUSIONS

The key results of this analysis are the inner and outer solutions, given

in Equations (46), (15), and (54). These may be combined with the

superposition formulas of Papers I and 11 (Stewart, 1963; Stewart, Angelo and

Lightfoot, 1970) to predict the temperature profiles and heat transfer rates

in various three-dimensional flows once the velocity profiles are given. The

resulting general formulas for steady-state systems are given in Eqs. (47)-

(51).

For fluids with small thermal diffusivities, ax, the enthalpy increase

caused by viscous heating is of order a-1 /3  in boundary layers that are

steady as viewed from the nearest interfacial element. The increase is of

order a0 in ti-dndet boudar layers, and is of order a 0 outside

the boundary layers both for steady and unsteady flows. The order a- 1/3

agrees with that found by Meksyn (1960) for the steady laminar boundary layer

on a flat plate at high Prandtl numbers. A somewhat stronger

dependence, 1L-/2, holds for steady laminar boundary layers at rnt

numbers near unity (Pohlhausen, 1921).

INTRODUCTION

For complex flows with viscous dissipation, it is difficult and time-

consuming to solve the equations of change in full detail. However, useful

asymptotes are obtainable for heat transfer by considering the limiting case

of small thermal diffusivity.

Paper I (Stewart, 1963) gave asymptotic solutions for forced convection

near fixed interfaces, with viscous dissipation neglected. The boundary

layers considered there were at steady state when viewed from any interfacial

element.
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Paper II (Stewart et al., 1970) dealt with forced convection near mobile

interfaces. The boundary layers considered there were time-dependent as

viewed from the nearest interfacial element. The analysis included internal

heat sources, but viscous dissipation was not explicitly treated.

In this work the results of Papers I and II are extended to include

viscous dissipation. We use the continuity and energy equations for a

constant-property fluid

(V • V) = 0 (1)

DT 2 ((:VV)

pCp

and treat the velocity field as given.

Particular integrals of Equation (2) are derived here as matched

asymptotic solutions for the boundary layers and the main flow region. The

complementary solutions from Papers I and II can be superimposed on these

results, to describe the combined effects of interfacial heat transfer and

viscous dissipation. We do the superposition explicitly for steady-state

systems in Eqs. (47)-(51).

-3-
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COORDINATES AND VELCITIES

The steady-state inner (boundary layer) solution is done in the

curvilinear coordinates x, y, and z of Paper I. The coordinate x is

measured along the surface streamlines; simplifications for two-dimensional

systems will be considered later. The coordinate y is the normal distance

from the surface, and the surface coordinate z is measured normal to the

local x-direction. In the neighborhood of a given interface these coordinates

are orthogonal, with scale factors defined by

dr = 6 h dx + 6 h dy + 6 h dz. (3)x x y y 2z z

The scale factor hy is unity here, and hx  and hz are taken at their

interfacial values.

The steady-state outer (main flow) solution is done in streamline

coordinates, illustrated in Figure 1. Each streamline is given by the

intersection of two stream sheets of constant * and *2 0 and each point

on a streamline is identified by £ , the arc length downstream from a

reference surface.

The velocity components for the steady-state inner solution are taken

from Paper I. They reduce to

V = y O(x,z) + O(y ) (4)
x

2
v(i) y 3y -) (hz + O (y 3 ) (5)
Vy 2h - Sx-- (p

V2  = 0 + O~y )(6)

in the absence of net mass transfer. These expressions satisfy Equation (1)

to first order in y . The non-negative function i is the interfacial

magnitude of the rate-of-strain tensor as defined by Bird, Armstrong and

Hassager (1977); for brevity we call this quantity the interfacial shear

-4-
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rate. A particular flow field is described (to the indicated order in y) by

specifyinq the surface coordinate qrid and the function B(x,z).

For the subsequent matchinq of inner and outer solutions, we need to

express Equation (4) in the coordinates of Fiqure 1. The continuity equation

is automatically satisfied by settinq

v~ V 42] (7)

which may be applied in the boundary layer coordinates (x,y,z) to qive

6 5 '5

v(i) = 1 01 1 ; 1 (8)~ R - x Th Ty- -z- (8)
x y z

1 a*2 1 a*2 1 a*2
17- SX'"- i7 v ii- z-
x y z

This expression aqrees with Exquations (4), (5), and (6) if we take the stream

functions in the forms

2
L- =h z + o(y) (9)

1 2 z

2 =z + C + O(y) (10)

with C an arbitrary constant. Hence, Equation (4) can be rewritten

v(i)= 2  1 B/h z  + 0(1) 1(11)

-6-
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OUTER SOLUTION FOR STEADY FLOWS

At a distance from the boundaries, the heat conduction term of Equation

(2) can be neqlected as a * 0 . For steady-state conditions this equation

then becomes

pc C * V' 0 1  
= -r V(12)

which may be rewritten in the streamline coordinates as

P v ! .- ( VV) (13)

Integration of this equation with the initial condition

T = % at =0 (14)

yields the outer temperature profile

(0) 1 £
( : VV)

(14 2 P 0 -- j d 1  (15)
pCp 01

p

which is well-behaved, except near stationary boundaries where V vanishes

and (T:VV) does not. Near such boundaries, heat conduction becomes important

and an inner solution is required.

The subsequent matching of solutions will require the asymptote of

Equation (15) as I * 0 * To order / we may set V = V
x

dt = h dx , andx

q : VY) = 0 (x,z)B (16)

in which T (x,z) is the wall shear stress. The resulting asymptote of
0

Equation (14) near stationary boundaries is

lim -2 [T (0) (it W T. fX 1 r.h-B h dx(7

+0 12PC 0 x

p

with = h dx in this limit.

o -7
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INNER SOLUTION FOR STEADY FLOWS

Equation (2) can be simplified according to the usual boundary layer

approximations (Schlichtinq, 1960; Rosenhead, 1963). In the limit of small

a , the Laplacian V2 T reduces essentially to the second normal derivative,
2T
a 2T
2 In the same limit, Equation (16) describes the viscous dissipation in

the boundary layer. With these substitutions, and use of Equations (4), (5)

and (6),the energy equation becomes

y T- y2  3 T(i) a2T(i) T0  (

h x 2h h x z'+ (18)
x x zy PC

p

for steady-state boundary layers in the limit of small o. Since no z-

derivatives remain, Fauation (18) can be integrated in two dimensions with

z as a parameter.

Eq. (18) can be solved conveniently by representing TO as a

superposition of special functions e(x,E,z). Each C-function has a

different value of the location parameter E, and vanishes for x < E. A

corresponding family of solutions T* (i ) is defined by the differential

equation
h_ _T

* (i )  y a 2T(i) a2T*(i) £(xAz)
yh8) aT--=i) y2 -- -- , (19)

h ax 2hhz 8x (2 y (

ay PC

and the boundary conditions

/a T* (i)
ay = 0 at y = A (20)

*(i)
T To as y + (21)

*(i)
T T. for x < . (22)

-8-
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Once the functions C(x,&,z) are found, these and the resultinq solutions

T*(i ) can he superimposed to solve Equation (18) for an adiabatic boundary.

We postulate the following form for T* ( i ) ,

*(i)
T - T = f(x,F,z)q(M) (23)

with
y

nl . (24)
6(xFz)

Here 6(x,&,z) is a boundary layer thickness, which (in view of Eq. (22)] is

taken to vanish for x < E. The boundary conditions (20) and (21) then reduce

to

__ = 0 at n = 0 (25)drn

g + 0 as n + (26)

Insertion of the postulates (23) and (24) into Equation (19) gives

_63_ 628 ad 3 a 2 dq d 2q+ 2Thxf + 2ah h §x (hz)[ ] . (73xx xz dn 2

The postulates hold only if the bracketted terms are independent of x , for

x >

628 36 63
h- - x +  2 -h -5 x (h zS

x x z

h Z a (6 8)= C (Z) (28)
ah h §x z 0

x z

368 alnf
ah ax = C1 (z) (29)

x

62z

kf -= C2 (z). (30)

The functions Ci(z) may he chosen as positive constants. Choosinq C 0 = 3

and inteqratinq Tquation (28) with the initial condition

-9-



R S(x,Cz) 0 at x = (31)
z

required by Eq. (22), we obtain the boundary layer thickness

= 1 { f fX S h h dx l1/3 (x > ). (32)
-rz xz 1

z

The choice C 2 = I gives

f = 62C/k (33)

Equations (28) and (29) qive the following differential equation for f

C aUn (6/h--W)
ax C z (x > ) (34)

Let C 1/C0 = r = constant; then Equation (34) may be integrated to give

f = C (6 /--)r (x > ). (35)
3 z

The value of C1  is determined by matching the inner and outer solutions

for the region x ) E. The outer limit of the inner solution has the form

lim {nT * (i ) - T.11 l f (36)
n 'W (C 0  + C 1)

according to Equations (23) and (27)-(30). Insertion of Equation (35) gives

C3 6r (h z)r/2lira (n[T t(i  - TI]} Zf C I (37)

(CO + C

The inner limit, Equation (17), of the outer solution may be rewritten for the

source distribution C(x,E,z) to qive

lim ( F T* (0)  T} -' /h h dx (38)
+1 0 PC

Here has replaced zero as the lower limit of integration. Insertion of

Equations (9), (33) and (35) qives r-1

lim [y(T * (° - T.]1 =C2 h h r-12(h ) 2 dx 1 (39)

-10-
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For r = 2 and C1 = 6, Equations (37) and (39) match, giving

lim y[*(i) - 9 ) - } = C36h (40)
y'00 y+O

Equation (27) then becomes

12 2
6ng - 3T,2 d d + 1 (41)dn dn 2

which may be solved numerically with boundary conditions (25) and (26). The

resulting surface value of the function g is

g(O) = 0.32973 (42)

and the function g(I) is shown in Figure 2.

The constant C 3 of Equation (35) remains to be determined. Equations

(33) and (35) give, for r = 2,
£

C3 = kh (x > ) (43)
z

By definition, E vanishes for x < E; thus, E/h z is a step function.

Insertion of Equations (43), (32), and (35) with r = 2 into Equation (23)

then gives

T* 1i ) 2/3
(i) 2/3 9 g() I h h dx l2/3 E:

= T 1/3 z xz 1 44)
PC x =4 z
p1

as the fundamental inner solution.

we now return to the solution of Equation (18) with an adiabatic boundary

at y = 0 , a uniform upstream temperature T. for x < 0 , and an arbitrary

shear stress distribution T (x,z) for x > 0 . The amplitudes of the step

functions £/h z are now chosen by specifying

T T
- = d(.) = ix d (.. )  (45)h z =0 z 1 ,z z

-11-
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Figure 2. Roundary layemr temperatturp func~tion 'i(n);

solution of Equations (25), (26), and (41).
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thus equating the steps to increments of T /h z . Doing likewise in Equation

(44) and superimposing the results, we obtain the inner solution

2/3 Xog(O x
= . g )(n) Ahz8 hxhzdx )2/3cf- (46)

T i T. P pa 1 3 &= x1=& z h , tz (6

for the case of an adiabatic boundary. The outer limit of this solution

matches the inner limit of Equation (15). The outer integrations in Eqs. (45)

and (46) are begun from 0 = 0 , with T initally zero to conform to the

C-functions.

Results for non-adiabatic boundaries may be obtained by combining the

present results with those of Stewart (1963). In that work Equation (2) was

solved without the dissipation term, with a uniform upstream temperature T

and with arbitrary interfacial thermal conditions for x > 0 . Since Eq. (2)

is linear, we may superimpose Eq. (25) of the 1963 paper upon the particular

solution just found; this gives the following temperature profile for the case

of a given surface temperature distribution T0(x'z):

T(x,y,z) = TA(x,yz) + fx [I - H(n)]14,x,y,z d(TO-TOA)1'z * (47)
0

Here TO,A is obtained from Eq. (46) with y = 0; also

( fn' exp(- n3 ) dnI (48)fl(n) = T(-4/3) 01 1

with n defined by Equations (24) and (32). The resulting interfacial heat

flux is
aT

qo= -k-'yy=O

k h-'0 -1/3 (49)

z jx j fx f f h- h xh zdx 1 d(T 0-T 0,A)Iz

(9a) r(4/3) =O_ x1=10

-13-
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and the total heat transfer rate through a surface region 0 ( x < x 2(z),

z z << z I is

3 1 /3k zI fX 2 (z) x (z) 1/Q = fhO I 2 h 8 hxhzdXl d(T0-T0Alez •  (50)
2r(4/3) I /  z I  =O_ x10)

A two-dimensional version of Eq. (49) was given by Lighthill (1950), but with

an approximate function TO,A based on the calculations of Pohlhausen (1921)

for Prandtl numbers near unity. The present results are preferable for large

Prandtl numbers.

The temperature profile corresponding to any given surface heat flux

distribution q0 (x,z) is obtained by combining Eq. (46) above with Eq. (39)

of Stewart (1963):

1n¢ exp(- n )q hxh z d4

T(xyz) T T(xyz) + 2x (51)
r(-) pC (9a) 0 fJX ' Ah h h dx ]2/3

S3 p z xz I

This completes the steady-state solutions to lowest order in a.
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TRANSIENT SOLUTIONS

For transient processes, an outer solution for a + 0 is obtained by

starting from Equation (2) without the conduction term:
*P DT - VV) (52

p Dt

The initial condition is taken to be

T(X,1 X2,X3t) = T at t = 0. (53)

Here the Xi are material coordinates. Integration along the particle paths

gives the time-dependent outer solution

T()X1,XX3t) - T ft -(C " VV)Ix dt (54)
T (1 1X 1X 1tP p 0 1' 2 1 X3 "t 1

which reduces to Equation (15) for steady flows.

The transient inner solution for the dissipative temperature rise is

obtainable from Equation (80) of Paper II. In the limit of small a, the

dissipation term of Eq. (2) may be approximated in the boundary layer by the

local interfacial value. The resulting inner solution for T is independent

of the normal coordinate y , and is consequently unaffected by heat

conduction. Equation (54) matches this adiabatic inner solution exactly at

the interface, and is preferable everywhere else. Thus, for adiabatic time-

dependent systems with small a , Equation (54) is valid throughout the

fluid. This particular integral (with T(o) labelled as TA) can be

superimposed with Eqs. (76)-(79) of Paper II to describe unsteady-state heat

transfer with viscous dissipation. An application of Eq. (54) is given in the

final example.

-15-



APPLICATIONS TO SIMPLE GEOMETRIES

The flows considered in this section are Newtonian and have uniform

temperature upstream from a locus x = 0 where significant dissipation

begins. Inner solutions are presented for adiabatic boundaries; these may be

superimposed with Equations (49) and (51) to obtain results for other

interfacial boundary conditions.

Developed Flows in Ducts

For slow flows of viscous liquids in ducts, the hydrodynamic development

region may be considerably shorter than the thermal entrance region. The

temperature profiles may then be approximated by assuming abrupt flow

development at the entrance of the duct. The x-coordinate for these systems

is measured parallel to the flow axis and the z-coordinate is measured around

the duct perimeter. The scale factors hxand hzare set equal to unity.

Several duct geometries are shown in Figure 3, and the corresponding

expressions for 8 are shown in Table 1 . Equation (46) gives the inner

solution for the temperature rise,

W ~(81V Pr B )1/3 3

and the outer solution is obtainable from Equation (15).

* Wedge Flows

Consider a laminar two-dimensional flow impinging on the wedge shown in

Figure 4. The boundary-layer coordinates are rectangular with hx I . The

velocity profiles are given by Hartree (1937); the interfacial shear rate is

f ='0, m)( 2+'! ) /2 (x > 0) (56)

-16-
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VW

x/

Figure 3. Duct geometries: tube, annulus, equilateral three-walled duct,

and alit with one wall moving downstream.
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TABLE 1

WALL SHEAR RATES FOR FULLY DEVELOPED NEWTONIAN

FLOWS IN DUCTS

Duct Geometry Wall shear rate, 8

Tube (P-P _+o L)/M

oP L )R 2 1
Annulus: Inner Cylirder -L K - ( +

2IiL L 2 ln(l/10Ic

(P -P )R 2

Outer Cylinde 2 L 2 (In J

/3 (P - P
Equilateral Three-walled Duct 0 L z(a-z)

2PL a

(Landau and Lifshitz, 1960)

Slit with One Wall Moving

Downstream:

(P -p)y V
Fixed Wall 0L +

(pP P)y V

Moving Wall 0PL -

-18-



Figure 4. Laminar flow over a wedqe.



Here U is the longitudinal velocity at the outer edge of the boundary layer,

U ulxm (57)

and the exponent m is given by potential flow theory as

m = 9/(2r-8) . (58)

The dimensionless wall stress f"(0,m) is tabulated by Hartree; some values

are f"(,0) = 0.4696 for the flat plate and f"(0,1) = 1.233 for plane

stagnation flow. Equation (46) gives the following surface temperature

distribution for flow over an adiabatic wedge, when note is taken of the jump

in 8 (and thus in T0/h z ) at x = 0:

Ti0 %. 2 62/3 [f.(0,m)14/3g( 0.B2,9m+I}U /  (59)

-,A 3 3 +3 ' '
C
p

For the special case of a flat plate (m = 0), the resulting recovery factor

is

C~ [T~i) - T IPF 'O,A - 3"
= 1.92 Pr (60)1/2 U2

in agreement with the asymptote obtained by Meksyn (1960) for Pr >> I for

this geometry.

Creeping Flow Around a Sphere

Consider the steddy creeping flow of a Newtonian fluid past a stationary

sphere. The surface streamlines are contours of constant longitude ,

running from 8 = 0 to e = N in spherical coordinates. The surface

coordinates for the inner solution are x = e and z - * , with scale

f.ctors hx = R and h = R sinO . The Stokes velocity profile gives the

interfacial shear rate

-20-



3 V sinO
B = R "(61)

8 2 R
Thus, T /hz  is a step function, vanishing for x < 0 and equal to

31V./2R 2  for x 0 0. Equation (46) gives the dissipative temperature rise

4 1 2

T - =( ) g(0) TM 4 [Vv( 2 e - sin 2e)] 3  (62)
C
p

on the surface of an adiabatic sphere.

Slow Flow Around a Cylinder

Consider the slow steady flow of an infinite fluid across a circular

cylinder of radius R . The surface streamlines run from e = 0 to 0 = v

The surface coordinates for the inner solution are x = 8 and z = Z with
I

scale factors hx = R and hz = 1, where (rO,Z) are the cylindrical

coordinates. A series expression for the velocity profile near the cylinder

is given by Rosenhead (1963). Using only the leading terms, one obtains the

interfacial shear rate

2 V .s i n (8= SR (63)
SR

Here

S=- y + ln(8 Re- ') (64)

and Y is Euler's constant. Equation (46) gives the surface temperature rise

due to viscous dissipation

241 1 2W 1296 Pr v2 V.4 ) g(O ye 2 y
- T 1 f f9  sin2  de1 )3 cosWdF (65)

0,A R2S C p =0 e=E 11
p - 1

in the absence of heat exchange between the cylinder and fluid. The double

integral 1(8) has been evaluated numerically and is given in Table 2.

-21-



TABLE 2

INTEGRAL IN EQ. (65) FOR CYLINDER SURFACE TEMPERATURE

180 e/w IC) = f1 ( f6 sinl/20Id81 ) 2 3 cos gdt
=o_ 81=

0 0.0000

15 0.0355

30 0.1377

45 0.2951

60 0.4896

75 0.6993

90 0.9008

105 1.073

120 1.198

135 1.267

150 1.278

165 1.243

180 1.195

,*

Stagnation line.
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Flc,; Near a Rotating Disk

Consider the three-dimensional axisymmetric flow induced by a disk

rotating with an angular velocity W in an otherwise quiescent fluid. A

cylindrical coordinate system is chosen which rotates with the disk. From the

analysis of Cochran (1934) the surface velocity components are

V = r W F(;) (66)
r

Ve = r a) (G() -1] (67)

with

= z . (68)

From Cochran's tables of the solution, we obtain3V 2
avt ( 2 + v 2

S3z - j(r + v0 )= -z=0o z=0

(69)

- r 31 F'C0)]2 + EG'(0)]2

with F'(0) = 0.510 and G'(0) = -0.616

Since the temperature is independent of 9 , we choose r and 8 as

surface coordinates (x,z) for the inner solution, whence hx = 1 and h z =

r. This is simpler than integration along the spiral surface streamlines, and

gives the same result. The fundamental solution is then done with Ve

omitted, and with 8 replaced by 8 = r 1,3/V F'(0) [see Equation (69)1r

except in calculation of the viscous dissipation. in Equations (45) and (46),

we must accordingly replace C/h 8 by E/h0r, and T /h by TO8/h 8
z z "0 z 0 z r

The resulting inner solution for the dissipative temperature rise is

p F'(0)) 2/ 3  ' ]3 a(1/2

for a thermally insulated disk.

-23-



Entrance Flow in a Tube

Consider a fluid which enters a circular tube of radius R with an

initially flat velocity profile. From the numerical results of Hornbeck

(1964), the quantity -4R aVz (

f Re -4R Z (71)

is available as a function of downstream distance.

A curve fit of the numerical solutions plotted in Figure 5 gives the

expression

1.328 0 2 + 452 0 1 .1 + 15.6 (72)f Re = (721.

1 + 28.25 01.1

in which

a = (x/R)(R<V>/V) I  (73)

Equation (72) satisfies the asymptotic relations

-1

lim f Re - 1.328 0 2 (74)
oO

lim f Re = 16 . (75)

Equation (46), (71) and (72) give the surface temperature rise in the thermal

entrance region of an adiabatic tube:

2 1
93 g)Pr3 >2 2

T(i) - T f ( ( pr <V>2 16 7 0 e d aI)3 d(f Re)I•
O,A 1^CO-a=C a4

p

(76)

This solution is plotted in dimensionless form in Figure 6. Near the

entrance, the temperature rise is essentially that of the flat plate, whereas

downstream the curve approaches the asymptote for hydrodynamically developed

laminar flow.
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A WIRE-COATING PROBLEM

Improvements in wire-coating processes have been made largely by

empirical means. Experimental studies of such flows are difficult, because of

the small clearances required in a wire-coating die. Theoretical treatment is

hampered by temperature-dependent properties, along with complicated rheology

and geometry. Previous theoretical work, summarized by Carley, Ends, and

Krantz (1978), has included approximate analytical treatments and elaborate

numerical computations. In this section we give an asymptotic analysis of a

representative wire-coating process.

The geometry (see Figure 7) and operating conditions of a typical wire-

coating die are given by Haas and Skewis (1974). The die wall is tapered,

with local radius

R2 (x) = a(x)R1 . (77)

Here R is the wire diameter, and

a(x) = a(O) (1 - 1 ) + a(L)( ) (78)L L

with

a(O) - 3.39

a(L) - 1.17

L = 0.39 in. (0.99 cm)

R - 0.0127 in. (0.0323 cm)
m1

The coordinate x is the axial distance from the inlet of the die. The wire

velocity Vw is 4000 ft. min - = 2032 cm S-.

An exact description of the flow field would require numerical integra-

tion of the coupled mass, momentum, and energy equations. Here an approximate

velocity profile is used. The axial velocity profile in the melt is

approximated by a three-term expansion

w fo(x) + f1 (x)ln rr ) + f 2 (x)(_r__ )2 (79)
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based on functions appropriate to annular Newtonian flow with a moving inner

cylinder. Use of the no-slip conditions at the interfaces,

Vx  VW  at r R I  (80)

Vx =0 at r =a(x)R (81)

and the given mass flow rate,
aRI

w =2rp f Vxrdr (82)
R I

leads to three equations in the three unknowns:

f0 (x) + f2 (x) = 1 (83)

f0 (x) + fx) In a(x) + f2 (x)a 2(x) - 0 (84)

a2 (L) - 1 = fa(x) 2(f0(x) + f (x) in u + f2 (x)u2 )udu * (85)

Here w has been chosen so that there is no draw-down, i.e., the final

coating diameter matches the exit diameter of the die.

From Equation (79) the shear rates at the die wall and the wire surface

are

aeVw  fl(x)
d = J [ (-- + 2a(x)f2(x)] (86)

Sw R= [f1 (x) + 2f (x)] (87)

These functions are plotted in Figure 8. The shear rate at the die wall rises

monotonically to a maximum of 3.3 x 105 sec - I , while the shear rate at the

15 -1
wire first declines to zero and then rises to 2.1 x 10 sec I In the

entrance region, the fluid velocities do not exceed the wire velocity. In the

exit region, however, fluid velocities greater than the wire velocity must

occur to satisfy the zero draw-down specification.

Carley, Endo, and Krantz (1978) have provided property data for a

representative low-density polyethylene melt. For the boundary regions, they

use the shear stress model
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Trz - d z 2/3 d (88)

with

1 x (89)
mT 0  ReX [ ( Tref

and

m0  101,000 g cm- 1 sec-5/3

E 11,700 cal mole-
1

R = 1.987 cal mole K- 1

Tref 2479 K.

In this analysis mT is taken as a constant, and is evaluated as described

below. The following properties are treated as independent of temperature:

k = 0.000786 cal sec -1 cm- 1 K-I

-3
P = 0.91 g cm

C = 0.55 cal - K 1

p
The surfaces of the wire-coating system are assumed adiabatic. ht the

die wall we use hx =1 and h. = a(x)R1 . Equations (46), (86), and (88) then

give the die wall temperature distribution

L-31-



2/3 
1d/3.0

(j) 92/ g(0) (' 2/ 3--'d
T -T - 1/ ( f / a d la

0 PC axIM O

B1/3(.

+ 1 2( dx  dx) 2/3d( d • (90)
C0 x1a a(C)

for adiabatic operation. The first term of Equation (90) accounts for the

assumed initial jump in wall shear rate, and the second term accounts for all

subsequent changes. The index mT is evaluated from Equation (89) at the

mean of the entrance and exit surface temperatures; this entails an iterative

calculation.

The temperature rise at the moving wire surface is obtained from

Equations (54), (87) and (88), with t = x/Vw and -(T : VV) - T08w. The

result is

4
m 4~

T(0) mT x dxT T =----B 3 dX (91)
0 PC pV W x 1 01Opw x10

The index mT is again evaluated at the mean of the entrance and exit surface

temperatures. Equation (15) is equivalent to Eq. (54) here since the system

is at steady state when viewed from the die.

Numerical integration of Equations (90) and (91) with T. - Tre f  gives

the results shown in Figure 9 . The temperature at the die wall rises from

479K to 534K; this increase is comparable to the results obtained

numerically by Carley, Endo, and Krantz (1978) for similar wire-coating

systems. The calculated temperature rise at the wire surface is much smaller

(only 5.8K at the maximum) and becomes still less if one allows for heat

transfer to the moving wire.
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The boundary layer thickness associated with each increment of T0/hz

along the die wall is obtainahle from Ecuations (32) and (86):

6(x,F.) f 1 {9 x a3 d a x1 (92)

ald 1

Figure (10w shows the growth of five representative boundary layers emanating

from equally spaced points along the die wall. Each of these layers grows

rapidly at first, but then gets thinner as the flow converges and acceler-

ates. The final thickness of the layer associated with the initial jump in

0 is 0.0011 inches (0.0028 cm) or 11% of the final coatinq thickness.

Thus, the small-diffusivity assumption of the analysis is accurate here.

-34-



00
-4

$4
0)
01

4

0
x

00

-4

4

0 02

odo
-35-



NOTATION

a= lenqth of side of equilateral triangle; radius ratio in Fqs.

(77)-(78).

B(m,n) =(m)r(n)/(+n)

C = heat capacity at constant pressure (EM-T - 1)p
D

Dt = TJ r + (V VI), substantial derivative

F = dimensionless function defined in Equation (66)

f = friction factor, see Equation (71)

f = function defined in Equation (23) (T)

f (0,m) = dimensionless shear stress at wedge surface, see Equation (56)

f0,filf2 = dimensionless functions defined in Equation (79)

G = dimensionless function defined in Equation (67)

q = dimensionless temperature function defined in Equation (23)

h,h ,h = scale factors defined in Equation (3)x yz

k = thermal conductivity (Et-L-T- )

L = lenqth of channel

= arc length alonq a streamline

m = dimensionless parameter defined in Equation (58)

MT  = parameter in power law model, bee Equation (88)

O(yn )  = terms of order n or qreater in y

P = p + p (ML-1 t
- 2)

P -P
0- L = decrease of P alonq duct lenqth L

Pr = Prandtl number

p = pressure (M L-1t
- 2

q0 = conductive heat flux into the stream at y = 0 (E L-2t- I)
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R = gas constant (E mole-I T 1 )

R = radius of sphere or cylinder

Re = Reynolds number

R - wire radius

R2 (x) = local radius of wire-coating die

= position vector

r = radial coordinate

r = dimensionless ratio CI/C 0 , see Equation (34)

T = absolute temperature

U = local free stream velocity for wedge flow (Lt- )

<V> = mean velocity through cross-section of pipe (Lt - I)

V = velocity vector relative to non-deforming coordinates (Lt- )

V = magnitude of velocity vector (Lt- )

Vw = velocity of wire or moving wall (Lt- )

VxV yV z  = components of velocity vector (Lt-1 )

V ,Ve = velocity components in cylindrical or spherical coordinatesrp

(Lt-I)

Mt-1

Vt = tangential component of velocity vector (Lt- I1

V. = magnitude of free stream velocity (Lt- )

XX2FX 3  = material coordinates

x = surface coordinate directed along surface streamlines;

see Equations (3)-(6) (Lh x-1)

Y = half-width of slit (L)

y = normal distance from interface (L)

Z = cylindrical axial coordinate (L)

z = surface coordinate normal to the local x-direction;

see Equations (3)-(6) (Lh ')

-37-



Greek Symbols

= k/pCp , thermal diffusivity (L2t- )

8 = at /ay)l y=o, function introduced in Equation (4) (t- )

r(x) = e-z zx-ldz
0

Y = Euler's constant, 0.57721...

= boundary layer thickness for viscous heating or heat transfer

(L)

6 , ,6z = unit vectors

£ = special dissipation function for fundamental solution, see

Equations (19) and (43)

n = dimensionless coordinate defined in Equation (24)

e = angle in cylindrical or spherical coordinates

O = wedge angle (radians)

K = ratio of inner cylinder radius to outer

P = viscosity (ML-t - )

V = p/p kinematic viscosity (L2 t- )

= value of x at the jump in C and T*(i)

= dimensionless temperature function in Equation (48)

P = density (ML- 3 )

-1
a = (x/R)(R <V>/V) ,dimensionless downstream coordinate in tube

T = stress tensor (ML-lt-2 )

0 = magnitude of tangential stress at interface (ML-1t- 2)

# = gravitational potential energy (L2t- 2)

= angle in spherical coordinates

W = angular velocity of rotating disk (radians sec - )

S,*2 = stream functions, see Equation (7)
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Superscripts

(i) inner solution

(o) outer solution

* solution with special dissipation function £(x,F,z).

Subscripts

A dissipative solution for adiabatic boundary

d at die wall

w at wire surface

0 in or into the fluid at y 0

upstream or initial state

1 dummy variable
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