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ABSTRACT

Steady two-dimensional flow past a sail is considered. The sail is

assumed to be supported by two masts. The flow and the shape of the sail are

determined as functions of the direction a of the flow at infinity and the

Weber number . The full nonlinear problem is formulated as an inteqro-

differential equation for the shape of the sail. This equation is discretized

and solved numerically by Newton's method. Sail profiles, the slack in the

sail, and the lift coefficient are presented for various values of a and
/
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SIGNIFICANCE AND EXPLANATION

We consider the flow past a two-dimensional sail supported by two

masts. Previous investigators (Thwaites , Nielsen2 , Tuck and Haselgrove3,

Vanden-Broeck and Keller 5) derived approximate solutions for this problem by

linearizing the boundary condition on the sail. In this paper we provide an

exact numerical solution of the fully nonlinear problem. This solution can be

used to estimate the range of validity of the previous approximate solutions.

Althouqh this problem is very specific, the technique used to solve it

can be viewed as a general method of the theory of aerodynamic surfaces formed

by flexible membranes. Examples of such surfaces are parawings, rotor blades

and glider winqs utilizinq flexible lifting surfaces. Other applications

involve the study of pneumatic structures such as those sometimes used to

cover sport arenas.

Our method to treat the basic nonlinear equation is new. In addition it

is easier to use than the approximate methods of Thwaites1 and Nielsen 2, which

the present work improves.

The responsibility for the wordina and views expressed in this descriptive
summary lies with MRC, and not with the author of this report.



NONLINEAR TWO-DIMENSIONAL SAIL THEORY

Jean-Marc Vanden-Broeck

1. Introduction

We consider the deformation of a two-dimensional sail due to the

steady potential flow of an incompressible inviscid fluid around it (see

Fiq. 1). The sail is supported by two masts and is characterized by its

constant tension 0 and by the distance c between the two masts. The

fluid has density p and velocity U at infinity. As we shall see, the

shape of the sail is determined by the direction a of the flow at

infinity and by the Weber number

22
A 2PCU2/0 . (1)

This problem was first considered by Thwaites1 and Nielsen 2  These

authors obtained approximate solutions for a small by usinq thin aerofoil

theory. Their work was further qeneralized by Tuck and Haselgrove3 and

* - lDuqan 4 . More recently Vanden-Broeck and Keller5 obtained an asymptotic

solution for A small for arbitrary values of a.

In the present paper we solve the fully nonlinear problem

numerically. In Sec. II we formulate the problem as an inteqrodifferential

equation for the unknown shape of the sail. In Sec. III we present a

method to solve this eouation numerically. The method involves

This work was supported at Stanford University by the Office of Naval
Research, the Air Force Office of Scientific Research, the National Science
Foundation and the Army Research Office.

Sponsored by the United States Army under Contract No. DAAG29-80-C-0041. This
material is based upon work stpported by the National Science Foundation under

Grant No. MCS-7927072, Mod. 1.

.



discretization, which converts the equation into a set of nonlinear

algebraic equationx. Then it emjployed Newton's method to solve these

equations. The results obtained are discussed in Sec. IV.

many different families of solutions exist. Tuck and Haselgrove's
6

stability analysis shows that only one family of solutions is stable for

a small. Therefore we present only numerical results for this family. It

is found that for each value of a there is a maximum value of the Weber

number A above which this family fails to exist.

II. Formulation.

Let us consider the steady two-dimensional flow of an inviscid in-

compressible fluid past an inextensible and flexible sail. The flow

configuration, the sail and the coordinates are sketched in Fig. 1.

The leading edge or luff of the sail is attached to a mast at x = 0,

v = 0 and the trailing edge or leach is attached to another mast at

x = c, y = 0. At infinity we require that the flow have speed U and

direction a.

We introduce dimensionless variables by taking c as the unit length

and U as the unit velocity. Let the shape of the sail be described in

dimensionless variables by y = F(x), 0 < x < 1. The conditions of

attachment to the masts imply

F(O) = F(l) = 0 . (2)

-2-



The difference between the pressures on the two sides of the sail is

balanced by (x)a, where K is the curvature of the sail and c is the

constant tension in it. By using Bernoulli's equation we obtain in di-

mensionless variables

K(x) = X [q (x)2 - q +(x) 2  (3)

Here q (x) and q (x) are the flow velocities above and below the sail,

respectively. The pirameter X is the Weber number defined by (1).

It is convenient to introduce the complex perturbation velocity

a - ib = u - cos a - i(v - sin a) (4)

Here u and v denote respectively the chordwise and normal components

of the velocity. The function a - ib is an analytic function of

z = x + iy which vanishes at infinity. Therefore we can write, by using

the Plemelj formula

a(x) + a (x) - i[b+(x) + b'(x)] (5)

-[a-(x) a (x )] - i[b-(Xl) - b+(x 1)]}[l + iF'(x 1 )]

T= (j I - x) + i[F(x- F(x)]
0

The integral in (5) is of Cauchy principal value form.

The velocity must be tangent to the sail on both sides. Thus we

have

+ +

v(x) u(x)F'(x) , < x < 1 . (6)

Using the definition (4), we can rewrite (6) in the more convenient form

b+(x) -b-(x)= [a+(x) -a-(x)]F'(x) , (7)

-3-



b+(x) + b-(x) - -2 sirmt + [a+(x) + a-(x)]F'(x) + 2cosa F'(x) (8)

By substituting (7) into (5) and taking real and imaginary parts we

obtain

1 [a+ (xi) - a-(xl)][1 + F'(xl)2](Xl - x)

b+ (x) + b-(x) = [l 2 dx1 , (9)0 f (x " x) 2  [F(xl) - F(x)] 2

a (x) + a (x) = - 1 [a+(x - a (x1)1[l + F'(x) 2 ][F(x) - F(x)] (10)
0 ( X x) + [F(x F(x)]2

We now rewrite (3) in the form

F"(x) + [a +(x) - a(x)]t1 + PF(x)2 12 coo Q

(1 + F'(x) 2]3/2 (11)

+ a+(x) + a-(x)] - 0

Finally we impose the Matta condition at x = 1 by requiring

a+ (1) = a(l) . (12)

The condition (12) is clearly not satisfactory when

F,(x) (1-x)V with vC-2- as x+1
2

However such exceptional cases did not occur in the numerical solution. We

shall consider only values of a between 0 and W/2 so that the Kutta

condition is imposed at the trailing edqe.

For given values of A and a relations (8)-(12) define a nonlinear

system of integrodifferential equations for the unknowns F(x), a+(x),

a'(x), b+(x) and b'(x).

-4-
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By substituting (7), (9) and (10) into (8) and (11) we obtain the

following reduced system of equations for the two unknowns a + x) - a (x)

and F(x):

11[1 + F'(x,) )][+() - a (x I)]{(xi x) + F'(x)[F(x)- F(x)]}

oT (x 1 - x) + [F(x 1) - W

= -2sirxt + 2cost F'(x) , (13)

F"(x) +X + W -x]I+FW2

[1 + F'(x) 2 / I[

2cosa - [a+xl -a-(x 1)][1 + F'(x1)
21[F(x 1) -F Id

0(xl -x) + [F(x) -~ )

0 (14)

This system is solved numerically in the next section.

From the solution we can then compute the slack t. in the sail by the

formula

= f (1 + [FI (x)]2}1/2 dx - 1 .(1s)

0

Following Thwaites 1we define the parameter 8 by the relation

8= sin2a/2.l (16)

The lift coefficients is obtained from the solution by substituting (7)

into the formula (15) given by Vanden-Broeck and Keller .Thus we obtain

1

CL 2 f[a-(x) -a+(x)]fl + [F'(x)1 2 Ix(17)

0



III. Numerical analysis.

In order to solve the system of equations defined by (2), (12), (13)

and (14) we introduce the mesh points

xI = (I - 1)/(N - 1) D I = 1,...,N , (18)

and the corresponding unknowns

FI = F(xI) , I = l,...,N , (19)

A = a+(x) - a-(xl) I = 2,...,N (20)

Relations (2) and (12) imply F1 = F N 0 and A = 0 so that there are

only 2N - 4 unknowns FI and A.

We shall satisfy the equations (13) and (14) at the N-3 intermediate

mesh points

x+1/2 = (xI + X )/2 , I = 2,...,N-2 . (21)

x1+1/ 1 l
First we compute F'(xI) F'(x1+1 /2 F(x 1+1/2) +/2 and a+(x )

), F"(x ), F(xI+/) 1X+l/2)

- a(x ) in terms of F1 and F- by four point formulas.1+1/2 1
Next we evaluate the integrals in (13) and (14) by using the

trapezoidal rule with the mesh points xI, The mesh points xI are locally

symmetric about xi+i/2 and the quadrature formula is also symmetric.

Therefore the contribution from the neighborhood of the singularity

cancels out, permitting us to evaluate the Cauchy principal value as if

it were an ordinary integral.

-6-
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In doing so it is important to notice that the integrands in (13)

and (14) behave like x- 1 2 as x - 0. We handle these singularities by

subtracting the singular part before integrating numerically. We then

integrate the singular part analytically.

By discretizing (13) and (14) we obtain 2N - 6 nonlinear algebraic

equations for the 2N - 4 unknowns FI and A,. An extra equation is

obtained by imposing the Kutta condition at x = 1 via the relation

lim (1 - x) /2[a +(x) - a-(x)] = 0 . (22)
x-l

A three point Lagrange extrapolation formula is used to evaluate the

limit in terms of A,. The last equation is obtained by imposing (2) by

means of a three point Lagrange formula.

For given values of X and a this system of equations is solved by

Newton's method. The values of a and CL can then be computed by quadra-

ture from (16) and (17).

IV. Discussion of the results.

We have used the method described in Sec. III to compute solutions for

various values of A and a. Many different families of solutions exist.

They have been studied for a small by Thwaites1 . These families can be

computed for arbitrary a and A in the following way. For a given value

of A we compute the solution for a small value of a by usinq the

uniform stream (i.e. the solution correspondinq to a = 0) as the initial

guess. Providing A is not close to any of the critical values described

by Thwaites i, the numerical scheme converqes rapidly to Thwaites' solution

for the qiven value of A. Once a qiven solution has been obtained,

however, a type of 'boot-strap' technique is employed, that is a converged

-7-
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solution for one value of A is used as the initial guess for a solution

with X altered by a few per cent. Similarly, for fixed A, the angle

a could be varied using a neighborinq solution as a startinmy guess*

Among all these possible solutions, only one is "reasonable" in the

sense that it has a simple unimodal shape cambered to lee of the wind.

Tuck and Haselgrove's
6 stability analysis shows that this family of solu-

tions is the only stable one for a small. Therefore we extend only this

family to the nonlinear case.

Typical profiles are shown in Figs. 1 and 2. The values of 8 and CL

for a = 7/4 are shown as functions of X in Figs. 3 and 4. The broken

lines correspond to the asymptotic formulas (14) and (20) given by

Vanden-Broeck and Keller
5 . The asymptotic formula for $ agrees with the

numerical results within fifteen percent for X < 0.3.

In Fig. 5 we present the values of X versus B for a = w/100 and

a - v/10. The broken line corresponds to Thwaites' solution. It shows

that his solution is a good approximation for a small, but it is not

uniform as B tends to zero. The discrepancy between his solution and the

exact numerical solution increases rapidly as 0 gets close to zero. In

the particular case 0 - 1, the values of CL were computed for various

values of a. The numerical values of CL were found to agree with

Thwaites' solution within 5% for a 4 w/18. 20% for a 4 W/6 and 30% for

a 4 1/4.

Figs. 3 and 5 and similar results obtained for different values of a

indicate that for each value of a there exists a maximum value A (a) of

the Weber number above which there is no solution of the kind considered

here. For a given value of a there are two solutions for each value of

the Weber number in an interval below the maximum value. This non-

-8-



uniqueness is likely to he of mathematical interest only. The reason for

this is that the branch on the left of the maximum is probably unstable.

After all it corresponds to an increase of the tension arising from an

increase in the slack. This suqqests that the physically realizable

solutions correspond to X > X (0).

As ( increases, the slope of the profile increases at the leading

edge. This was found to limit the accuracy of the numerical scheme.

Accurate solutions for x > /3 and X - X0(a) could not be computed with

N < 35.

Finally it is worthwhile mentioning that the present model is not

physical for a large since separation is then likely to occur. A more

realistic model for a large was proposed by Dugan 4.

-9-
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Captions for Fiqures

Fiqure 1. Computed profile of a sail with a = v/6, A = 0.82 and

B 3.0. The unit length in y is c.

Figure 2. Computed profiles of a sail with a = w/4 of

A 0.5, 0.8 and 1.0. The correspondinq values of B are

respectively: 6, 2.8 and 1.6. The unit length in which both x and

y are measured is c.

Figure 3. Values of the Weber number A as a function of B for

a - w/4. The dashed curve corresponds to Vanden-Broeck and Keller's

asymptotic formula.

Fiqure 4. Values of the lift coefficient CL as a function of B

for a - 11/4. The dashed curve corresponds to Vanden-Broeck and Keller's

asymptotic formula.

Figure 5. Values of the Weber Number A as a function of B for

a - W/100 (curve a) and a = R/10 (curve b). The dashed curve

corresponds to Thwaites' calculations.

-15-
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