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ABSTRACT

&1A splitting-up method and an implicit finite difference

method are presented to solve time-dependent, one-dimensional,

laminar, premixed flame problems. An example for studying the

development of an ozone decomposition flame is calculated. A

movable boundary technique is adopted, therefore the grid

points can be significantly reduced. Special care is taken to

maintain the accuracy of the solution. The results are checked

in many ways. All checks show that the present method is

satisfactory.
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SIGNIFICANCE AND EXPLANATION

More and more attention is paid to combustion problems
not only by engineers but also by mathematicians, because a
number of interesting and difficult problems occur. For
example, a premixed flame problem will reduce to a typical
reaction-diffusion equation.

It is well known that in a premixed combustible fluid
mixture a steady flame will be developed when it is ignited.
This fact has been proved theoretically for a simple chemical
reaction model. There have been many works on studying the
configuration of a laminar, premixed flame. These works have
essentially followed two different approaches. One is the
steady-state approach in which the problem to be solved is
reduced to a two-point boundary value problem of ordinary
differential equations. The other is the time-dependent
approach in which the full time-dependent equations with proper
boundary and initial conditions are treated. In this paper
our attention is focused on the latter approach.

Since the combustion processes are highly exothermic,
chemically reaction processes and there exists a number of
vastly differing time scales, numerical solutions will suffer
from a number of difficulties. One is stiffness. With this
in mind a splitting-up method is presented, which splits the
chemical kinetic terms from the fluid mechanical terms. We
think it might ameliorate some of the difficulties. At the
same time, an implicit finite difference method is presented
in order to compare and identify the validity of the methods.

Generally speaking, the region of calculation must be
taken large enough, therefore a large mount of grid points
must be taken. Obviously it is costly. In order to reduce
grid points a movable boundary technique is adopted.

Special care of error control is taken to maintain the
accuracy of the solutions.

For comparison of the results obtained by the present
methods with published results an example for an ozone
decomposition flame is calculated. The results are also
present methods are satisfactory.

The responsibility for the wording and views expressed in this DTC

descriptive summary lies with MRC, and not with the author of COPY
this report.
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NOMENCLATURE

x space coordinate

t time coordinate

p pressure

P density of fluid mixture

T temperature

Yi mass fraction of the i-th species

V velocity of fluid mixture

R universal gas constant

C specific heat capacity at constant pressure ofP

the fluid mixture

Cpi specific heat capacity at constant pressure of

the i-th species

w. rate of production of i-th species1

M. molecular weight of i-th species

D. binary diffusion coefficient for the i-th species

thermal conductivity

h. enthalpy of i-th species
1

h0  standard enthalpy of formation of i-th species

0i
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NUMERICAL METHODS FOR SOLVING A PREMIXED LAMINAR FLAME

Xi-Chang Zhong

1. Introduction

More and more attention is paid to combustion problems

not only by engineers but also by mathematicians, because

a number of interesting and difficult problems occur. For

example, a premixed flame problem will reduce to a typical

reaction-diffusion equation.

It is well known that in a premixed combustible fluid

mixture a steady flame will be developed when it is ignited.

This fact has been proved theoretically for a simple chemical

reaction model. There have been many works on studying the

configuration of a laminar, premixed flame. These works

have essentially followed two different approaches. One is

the steady-state approach in which the problem to be solved

is reduced to a two-point boundary value problem of ordinary

differential equations. The other is the time-dependent

approach in which the full time-dependent equations with

proper boundary and initial conditions are treated. In this

paper our attention is focused on the latter approach.

Since the combustion processes are highly exothermic,

chemically reaction processes and there exists a number

of vastly differing time scales, numerical solutions

will suffer from a number of difficulties. One is

stiffness. With this in mind a splittinq-up method is

presented, which splits the chemical kinetic terms from the

Sponsored by the United States Army under Contract No. DAAG29-
80-C-0041.



fluid mechanical terms. We think it might ameliorate some

of the difficulties. At the same time, an implicit finite

difference method is presented in order to compare and identify

the validity of the methods.

Generally speaking, the region of calculation must be taken

large enough, therefore a large mount of grid points must

be taken. Obviously it is costly. In order to reduce grid

points a movable boundary technique is adopted.

Special care of error control is taken to maintain the

accuracy of the solutions.

For comparison of the results obtained by the present

methods with published results an example for an ozone

decomposition flame is calculated. The results are also

checked in many ways. The comparison and check show that

the present methods are satisfactory.
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2. Formulation of the Problem

2.1 Governing Equations

We consider one-dimensional flow and neglect the effects

of radiative heat transfer and thermal and pressure diffusion.

The governing equations are as follows.

Continuity

a- + D- = 0 (2.1)

Conservation of momentum

P u + Pu !- 2 + -L [(11 + I K) -u(2)P a+xPu a - 4 ax (2.2)

Conservation of species

ayi ayi Y
P j- + Pu - - (P D i  - + ' (2.3)

Conservation of energy

aT (22 ( 4 au2PC + PC3U aT + U + ( K)

+ px ax at ax3 a

a N
+ X 3T~-) - w.h.i=l i1

N C~ Dy T
- i PD.Cpi ax - (2.4)

and equation of state

P - -P- . (2.5)
Yi
' ) RT

The variables apearing in these equations have their usual

-3-
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meaning as listed in nomenclature. In order to simplify

these equations further, the effect of viscosity is assumed

to be negligible and fluid velocity is assumed to be small

compared to the speed of sound. From the latter we can

integrate equation (2.2) and obtain the following condition.

p = p0 = const. (2.6)

Then the equations (2.1) - (2.5) are simplified into

P a(Pu) 0  (2.7)E x

aYi ayi 1 .
+ U - P (PDi - - + (2.8)

3T BT 1 a(X 3 T 1 N

Tt U7- Cp -5- p =jl

N 3Yi I aTN ( C ap x -x (2.9)

i=1l

P = . (2.10)
Yi( M---)RT

1

It is convenient to introduce a Lagrangian coordinate J,

x

*(x,t) = J P(x,t) dx (2.11)

0

Under these coordinates, the continuity equation (2.7) is

identically satisfied, because

x x
-raP(x,t) d

Jt)dx f (Pu) dx = -Pu + m0
0 0

-4-
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where m0 = Pulx=O. Since

a a* a a

a a - a
- -+ Pu + m0 1  +

at at 0

the remaining equations become

ayi ayi a p2.i W .
D i -) + (2.12)

N3T + a T _1 a (p;\ 3T) w.h.

S C pi 2 'iaT
P D1  (2.13)

i=l p

By introducing the following nondimensional variables:

* P * T

p T
P= P- T To '

D
Di Di 

X

* C C

p C Pi

* h Mi
h =M, Mi = MCpCOTC O

t* t W =

X - x  P- p

00 

CP
x ' = Cp®

-5-
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the equations can be nondimensionalized as

ayi Yi -1 a 2Di W "
+ m 1 = (L) () + (2.14)

aT aT 1 a _ 1 N

E- + 0  TF C p p _ (p X Zi=l h

)_ N C 2 ayi aT

i=.) P D (2.15)
i C Cp 2i -

where P D .

is a characteristic Lewis number, and Pu,, T. , D,, X, , Cp.

and Mu, are some characteristic values of density, tempera-

ture, mass diffusivity, heat conductivity, specific heat

capacity, and molecular weight, respectively. For simplicity,

the superscript star is omitted in the above equations.

2.2 Initial and boundary conditions

The equations (2.14)-(2.15) are a parabolic system;

thus boundary and initial conditions are required. In

this paper we consider the propagation of a premixed flame.

So we can specify the boundary conditions in the following

way. At the burned boundary the burned values are taken

and at the unburned boundary the unburned values are taken,

i.e.

-6-
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T= Tb , at burned boundary

yi =Yi b'

T =T uT I at unburned boundary

Yi = iu

The unburned and burned values must satisfy some condi-

tions, which depend on what model is assumed. For example,

in this paper we assume that the flame is an adiabatic

flame and the burned values satisfy chemically equilibrium

equations.

The initial conditions are specified as a step function,

i.e.

T( 'O) = u for c

Tb <-c
(2.16)

yi(4, 0) = u for c

Yib <- c

where 0 c is a given value.

-7-



2.3 Chemical Kinetic Formulation

The elementary chemical reactions are expressed as

N N
i v xi  -- , , em=l,2,.,M. (2.17)

The rate of production w. of the i-th species appearing in1

equations (2.12), (2.13) is given by the law of mass action.

M N N Vol v"
W= I (v" - ) M.(kf T ci  N kvb  Tm1 m,i Vm,i mi T im i T ci mi

m=1 i=1 i=l
(2.18)

where vi and v" are the stochastic coefficients of the

species i, i = l,...,N, appearing in a reactant and product

in the reversible reaction m, m = 1,2,...,M. The ci are

the moles per unit volume of species i and related to the mass

fraction by

P
C. Y i " (2.19)

The specific rate constants for forward and backward mode

of reaction m are usually given by the following expression.sf  f
Bf T m -Er/RT

km =m

(2.20)

B s f m = const.m m
b b

km has a similar expression. The constants Ef and Em arekm

the activation energy of the forward and backward mode of
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reaction m, respectively. In terms of nondimensional

variables wi in the equation (2.14) is expressed as

* a-i
. M I V1 N y .v i

M Mi.v - V )[k P- M1-* = ,i m,i ini1P i=l i ,I mi mi=l Mi

b m-i N 1Yi vi

- kb*P TN (-_ ] (2.21)
i=l

where the superscript star refers to the nondimensional

variable and

N N
a i= VI, i am i=l

f f P" a-ikf = k f t(-- )im

(2.22)
* P= C -

kbm kbt ) m

Correspondingly, in the equation (2.14)

Nh 0  * * * * . -v m i )

I hiwi Y I ( 0 
,~ + C* CT*-T 0 )M* (V

t  -v' .))
P i=l m=l i=l ii ( T -c POO T m 0,

f a m- N Yi O-l * VoN
x [k P V . mi _ k b *P T7 m( )

ili=l 3

(2.23)

-9-
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3. Numerical Method

3.1 Coordinate Transformation

Strictly speaking, the infinite boundary must be

considered, but it is impossible and unnecessary in practice.

In general one can take a value, 4 large enough to allow the

full development of the flame before any effect could be

felt there. However it is costly to do so. In order to

reduce grid points, it is effective to adopt the movable

boundary and to introduce the following coordinate trans-

formation:

4'- 4' 4- b(t)

i u ( t) - b(t) - E(t)

t =t

where * b ' 4n represent the burned and unburned values,

, respectively. Since

a a a a a u-b ) + $ b a

a 1 a

the equations (2.14) - (2.15) become

ayi + m0+b ayi 1 a )ayi + i (3.1)

aT m0+b aT 1 a _ ;) 1 NC p-aT w .h.

pi=l
1 N C Pi 02D i 3-T (32 C P D i aT
L 2i1 Cp

-10-LO ,e p



where b = - b (u- b + and the dot represents the deriva-

tive with respect to t.

In order to solve the equations (3.1)-(3.2), two numeri-

cal methods are adopted here. One is the splitting-up method

and the other is the implicit finite difference method. In

what follows, we describe these methods respectively.

3.2 Splitting-up Method

The system of equations (3.1)-(3.2) is usually stiff

and the solution frequently has rapid transients. In

other words, there are a number of time scales and these

scales vary widely. For example, in the vicinity of the

flame, the chemical reactions are quite rapid, compared

with the fluid mechanical scale and among the chemical

reactions some may be quite faster than others. The

splitting-up method could allow one to use different step

sizes according to different time scales, e.g. one large

step size can be used to advance the slowly varying terms

while several smaller step sizes can be taken on the faster

terms. For simplicity we rewrite the equations (3.1)-(3.2)

as

afaf af)
= a a- + d () n + q (3.3)

We split equation (3.3) into two parts which group

the fluid mechanics and echmical kinetics terms:

L -ii-



- = a ;T+ d R(I T-) (3.4)

af - g (3.5)

Since equation (3.4) is parabolic, we use the following

implicit finite difference scheme:

ki+l -fi
j j a. ~-i+1 ~-i+1

At =2 A (f j+ - fj-1 ) (3.6)

d. i+i
+ A&2 [ j+1/2fJ +  -(n j+l/2+ j-l/2 f

_ i+1
+ )j-1/2fj-1]

where superscripts represent time location and subscripts

denote space location, and

n1 (1+ (
j+/2= (j+ 1 +?lj) , nj- 1/2 = 2 (nj +j

Obviously, the equation (3.6) is a tridiagonal system.

So the solutions for any f and all j can be accomplished

with a tridiagonal matrix algorithm.

Having obtained the solution for the first part of

the split, we may turn our attention to the equation (3.5).

The solutions fj can be thought of as predicated

intermediate values of the solution, and are used as the

initial conditions of the equation (3.5). Since g contains

no spatial derivatives equation (3.5) is a system of

ordinary differential equations at each grid j. Usually

the equation is stiff, so some effective stiff methods

-12-
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such as the Hindmarsh-Gear package can be used.

In order to improve the accuracy and efficiency of

the calculation, a symmetric split operator is used.

Let LD be the. operator providing a predicated value

of f. and L be the operator that obtains a correc-
J C

tion of that first step. The following operator is used

to advance the solution from t to t + 2At:

fi+ i
f9+ 2  = LDLcLcL f. (3.7)
j D CC D

3.3 Implicit Finite Difference Method

In order to compare and identify the validity of

the methods, an implicit finite difference method is also

presented. For equation (3.3) the implicit finite

difference scheme is as follows.

fi+l f a. i+l i+l d. i+l

f + __[ i 2 fj+1
At =2A (fj+l A..1 2 j1/ +

- n n ili+l gJ
j +f/2+ + j 2 j-/ 2 fj 1  +

(3.8)

where the index has the same meaning as in (3.6).

Similarly, the tridiagonal matrix algorithm is also used.

-13-
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3.4 Error Control

In calculating the nonlinear terms a, d, n, g, of

equations (3.6) and (3.8) are linearized and evaluated

explicitly. In order to control error the following

approach is taken. We take two steps of At/2 and one

step of At; then compare the solutions at t+At. Let

Sfi+l (1) - fi+l (2)

e = max ( (3.9)j max I i l ()

where superscripts (1), (2) refer to the number of steps.

Whether the step size is increased or decreased depends on

whether e is less than or greater than E. E is an error

tolerance and is specified beforehand. If the convergence
-i+1 (2)istknath

has been reached (i.e. e < E), f is taken as the

solution at t + At.

3.5 Movable Boundary Technique

As previously pointed out, if the boundary is fixed,

a large value of P must be taken. Thus it is computationally

costly. It is naturally desirable that the calculated region

be confined to such that it always contains the

flame and it is as small as possible. It is well

known that in a premixed combustible fluid mixture a steady

flame will be established after ignition. In other words,

the flame will propagate through the combustible fluid with

a constant velocity. In view of this fact, the movable

-14-
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boundaries could be used. Moreover, the moving velocity

could be taken to be the same as the velocity of the flame.

Let u's Sb I Su represent the moving velocities of the

unburned boundary, the burned boundary, and the flame,

respectively. Then the boundary values of * are obtained

by integrating

ut u

(3.10)

dt b

The flame velocity based on the density of the unburned mixture

can be evaluated by means of the mass conservation principle.

That is, the net mass production rate of species i, inside

a control volume (which is large compared to the thickness

of the flame), must be eaual to the mass rate of outflow

of species i. The resulting equation in terms of J is

Su = - I d / Pu(Yib- (3.11)
1 u

In principle, any of the chemical species can be used

to compute the flame velocity, because all these computed

flame velocities should be identical. But in practice,

owing to the numerical error there are some differences

between these velocities. In our calculation one of them

is taken and the other is used to check the accuracy of the

calculation.

:1 -15-
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In order that the calculated reqion can be automatically

confined to where significant changes occur, the grid

interval is allowed to expand or contract. The way to do so

is as follows. At the beginning, we use

'U = uif- Yiuu ]

SyiU - ib4#ui-Yiu Yib(3.12)

$b ui 2  {(Yib Yibb ) ]
_jb w.ad ,iresm

where -ui = - - d* / (Yib-Yiu)I and 6,x are some

constants (e.g. 6 = 100, a = 0.1). Subscripts uu, bb

represent some grid points near the unburned and burned

boundaries, respectively. After the calculation proceeds

some time we turn to use b

$u $b=uu f-u - y (3.13)
Yib - Yiu

The reason for doing so is that we found it was not easy

for the flame velocity to be stable if the formulas (3.12)

are used only.

-16-
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4. Example of Calculation

The methods described above are applied to calculate

the structure of an ozone decomposition flame. In order

to compare the results with the published results, the

following nonessential approximations were made:

D1 =D 2  ...- D. = D and P2 = const. = P 2 D,

P= const. = P A

Cpi= Cp ... Cpi = Cp = Cp.

The reaction mechanism for the ozono % -osition consists

of seven reversible reactions:

f

0 3 + X I , 0 2 + 0 + X (4.1)

kf

O + 03 202 (4.2)

k4

02 + X 20 + X (4.3)

k5

Where X represents any of the three species O, 02, 03

Below we illustrate how to determine the boundary

conditions. At unburned boundary a combustible mixture

of 75% 02 and 25% 03 (by volume) at a temperature of 300*K

are assumed. That is,

-17-



Ylu 20 T = 300*K (4.4)

The burned values can be determined by the unburned values.

Between these values some conditions must be satisfied.

In this case, they are

Conservation of total enthalphy

CpTb - CpTu + Ylbh ( 1) 0 Y3uh(3 ) (4.5)

Chemically equilibrium equation
f

(PbYlb 2  k 5  PbY2 b (4.6)

1 kb M2

The equations (4.5), (4.6) are a system of nonlinear equations. The

Newton iteration method is used. The solutions are

Ylb 0.1259 x 10- 7 , Y2b = 1 - 0.1259x10- 7, (4.7)

Y3b = 0 , Tb = 1246.90 K.

N
The rate of production wi and the term ( hiwi)/P1 i=l

are given by the equations (2.21) and (2.22). The

thermodynamics and kinetics data used here are given

in Table I.

The initial conditions were taken to be

-18-
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TABLE I

DATA FOR OZONE DECOMPOSITION

Symbol Value Symbol Value

EfEfEf 24140 calBb1.8x06

E1 E2 E3 2 Bb  1.88 x 06

fcal bb b2
Ef  6000 ol BbBBb 2 .47 x 102

f f f cal ()58675 cal
, 117350 mole 0875

Eb Eb E b 0 h(2) 0
V , 2 1E 3  0

Eb 99210 cal h(3) cal
4 mole 03535

b b b 0 p 1.201x10-3 q
E 5 , E 6 E 7  0 cm 3

f f f 5/2 Ta 300. K

5f 5/2 c 0.2524 cals4  5/. Cp - °K

f f f 5/2 A 9.l12xlO - 5  cal
s6' s7 a, cm-sec

sb, 'sb, 'sb  7/2 DC '0
7 2 3 Pac Lea

~2'5/2 Ma,

sb sb s 7/2 ta 4.203x0 - 3 cm

B ,B fB 3  6.76x 106 ta 5.878x0 - 5 sec.

Bf  4.58 x 106 /t 7151 cm

4 a" sec

Bf  f f 5.71x 106 P0  0.821 atm.

b Bb Bb 1.18X 102 M1 16 m-q-5
B1 1 B21 3  1 I-

2 32 mole

M3  48 mo e

-19-
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y 1 ) = 7 C (4.8)0.1259 x 10 - 7  < c

Y2 = C (4.9)

1- 0.1259xlO-  < C

Y30) 4 (4.10)

300 0K ). .cT('P) =(4.i

1246.9 0K ' < 'c

5. Results and Discussion

The solution of the equations (3.1)-(3.2) with

boundary conditions (4.4)-(4.7) and initial conditions

(4.8)-(4.11) have been obtained for L. = 1. In the

following we describe some results and discuss them.

In order to compare and identify the validity of the

methods, the splitting-up and implicit finite difference

method are used. In the former the integration of ODE (3.5)

uses the DGEAR routine of the IMSL package, which is an

adaptation of the package designed by Hindmarsh-Gear. The

steady profiles of temperature and concentrations for a fully

developed ozone flame are shown in Figures 1-2. Here 29

grid points are used and 'u-Pb = 12.97. From the figures

it is seen that the agreement of the results obtained by two

methods is good. The flame velocities based on 02 are

-20-
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- split
T 3 T implicit

4. .4

Y1

3. .3 0 10 3

2. .2 0-4

1. .1 10 - 5

10 20 30 grid point

Fig. 1

Steady profile of temperature T and concentrations 0, 03

-1
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2 split

1.0 * implicit

.91

.81

.74

0 10 20 30 grid point

Fig. 2

Steady profile of concentration 0 2
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S = 51.5 cm/sec for the splitting method,

Su = 49.7 cm/sec for the implicit method.

Margolis [l] used the method of lines involving collocation

with B-splines and obtained Su = 49.7 cm/sec, while

Bledjian [2] used the method of lines with low order accuracy

and got Su = 54 cm/sec.

We have analyzed the eigenvalues of the Jacobian

derivative matrix for the chemical reaction equation

dy i  .

For some typical cases, e.g. the fully burned mixture, we

obtained the ratio of maximum and minimum eigenvalue

is about 3x103 . That means the stiffness is mild in the

present example. So it is not surprising that two methods

can obtain satisfactory results. However, we think that

if the stiffness becomes serious, the splitting-up method

might be more effective.

In addition, the flame velocity is senstive to the

accuracy of variables, so the appropriate control error

must be chosen. In the present case, the control error

E is taken to be 10- 4 in equation (3.9) and 10- 5 in

integration of the ODE.

In order to establish the validity of the movable

boundary technique, the fixed boundary is also considered.

We take u U b = 50 and 99 grid points. The time development

of the right propagating flame and the profiles of

-23-
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temperature and concentrations are shown in Figures 3-5.

The flame velocity is in good agreement with that obtained

by movable boundaries. Their deviation is about 0.7%.

From this it is seen that the movable boundary technique

can significantly reduce grid points; therefore saving

machine time.

As for the grid points, some tests are made.

When grid points are reduced to 19, the results still remain

good. The flame velocity is almost the same as that obtained

by 29 grid points (the difference between them is only in

the fourth decimal). However, when grid points are reduced

to 14, the results get worse. The results with 19 grid points

are shown in Figures 6-7.

The results are checked in many ways. It is well known

that the concentrations must satisfy

NEYi. 1•
i=l

In the present calculation this condition is satisfied very

well. Its deviation from 1 is only in the fifth decimal.

As mentioned above, a comparison between the flame

velocities based on different species can be taken as a check

on the results. In our calculation the difference between the

flame velocities based on 02 and 03 is less than 0.2%.

Another different case is calculated, too, in which

the density P is considered as a constant. It has been

proved that when P is constant there also exists a steady

-24-



T Y 3T

4 .403

3 .3

t=10.

1 . t- t- 0.1 J26, t=36.9

10 20 30 40 50 x

Fig. 3

Profile of temperature T and concentration 03
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y2

1.0-

0 2

.9

.8

.7,

t=0O t-10.1 t=-26.9 t=-36.9

.. 10 20 30 40 50 x

Fig. 4

Profile of concentration 0 2
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flame [5]. Our calculation shows that it is indeed true.

The steady profile of temperature and concentrations for

an ozone flame with constant density is shown in Figures 8-9.

Finally, a remark has to be made. When using the

splitting-up method, one has to decide whether the solution

is considered after an LDLCLCLD sequence or after an

L CLDLDLC  sequence. Generally speaking, both yield valid

solutions, but there are always some differences between them.

In order that the solutions after an LD or an LC step

are within a certain tolerance of each other, an additional

constraint on the step size is required. Fortunately when

using the control error mentioned above, the solution after

an LC is in good agreement with that after an LD -

The difference between two flame velocities is less than 0.2%.

7. Conclusion

A splitting-up method and an implicit finite difference

method have been presented. An example for studying the

development of an ozone decomposition flame is calculated.

The calculation shows that two methods can obtain good results.

But the splitting-up method should be more effective when the

stiffness becomes serious. A movable boundary technique

is adopted, therefore the grid points can be significantly

reduced. The results are checked in many ways. All checks

show that the methods are satisfactory. The present method

can be applied to compute more general, time-dependent,

-30- I
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one-dimensional, laminar flame problems.
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