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SUMMARY

~ The performance of a geotextile or fabric interlayer in pavement
systems comprised of an aggregate surface over a soft subgrade was
analyzed through a half-scale model test program. Stress, strain, and
displacement responses were monitored during the testing. Independent
variables included: subgrade strength, crushed stone layer thickness,
dynamic load puise duration, and presence/type of interlayer. The
performance criterion by which variable influence was analyzed was the
number of load cycles at which specific rut depths were reached.
Increased subgrade strength, increased aggregate layer thickness,
decreased load pulse duration, and the presence of a geotextile inter-
layer were found to improve system performance. Experimental results
were used to analyze the effectiveness of existing analysis/design
methodologies and to derive equations relating key system parameters
to the load cycle-surface rutting relationships for aggregate-subgrade
(AS) systems and aggregate-fabric-subgrade (AFS) systems reinforced with
Typar 3401 fabric. Recommendations are made for the development of

design charts for AS and Typar 3401 reinforced AFS systems.

-

Key words: Geotextiles, fabric, pavements, aggregate, thickness design.




CHAPTER I

INTRODUCTION

Geotextiles are defined by the American Society for Testing and
Materials (ASTM) as:
"Any permeable textile used with geotechnica]lmateria1s
as an integral part of a man-made project, structure, or
system."
The use of these products in Civil Engineering applications is in a
state of rapid development. In recent years, geotextiles have become

increasingly popular and proven commercially successful in a variety of

applications, including: subgrade stabilization, reinforced earth con-

struction, subsurface drainage, and control of reflection cracking,
erosion and sediment runoff (17, 34, 47, 57, 66, 87, 100, 117, 118).

One of the most promising applications for these fabrics is sub-
grade stabilization, wherein the fabric is used in conjunction with
crushed stone to provide strong and durable support layers in unsur-
faced low volume roads. The use of fabrics has proven to be especially
effective in improving the performance of aggregate layers placed on
very soft subgrades. In this application, the fabric is placed between
the aggregate and subgrade soil, creating an aggregate-fabric-subgrade
(AFS) system.

The mechanisms by which the fabric affects the behavior and per-
formance of AFS systems have never been well defined, but are generally

believed (14, 17, 81, 100) to include the following:

T




(1) Separation of the aggregate and subgrade soil.

(2) Provision of a filter medium to facilitate drainage.

(3) Confinement and reinforcement of the aggregate layer.

(4) Alteration of the failure mechanism in the subgrade soil.

The separation mechanism prevents the aggregate and subgrade soil
from intermixing, which would tend to reduce the effective depth and
load distributing capability of the aggregate layer. Additionally, the
aggregate voids may become clogged by subgrade soil particles, pre-
venting free drainage of water, thereby reducing system stability and
strength through a buildup of pore pressure. The fabric induces the
formation of a natural filter in the subgrade soil. This process,
termed bridging, is initiated with the migration of some soil particles
through the fabric as a result of fluid flow. These soil particles,
originally adjacent to the subgrade face of the fabric, leave voids
which are filled or bridged over by other particles. Further migration
and reorientation create an inverted filter and filter cake that become
stable under the bridging action of the particles. Reversing flow
conditions may destroy this bridging effect.

It has been shown (64) that thick non-woven fabrics generally
provide the best performance, in single layer placements, under condi-
tions of severe flow reversal. Creation of the subgrade filter depends
upon the size and number of migrating particles and the hydraulic
gradient of the flow. The latter may be influenced by the in-situ stress
state of the fabric, where tensile and compressive stresses can alter

the pore size distribution in the fabric. Maintaining the integrity of

the fabric is critical to successful separation. Repeated dynamic




]

!
,
:
-
.

loading tends to cause the angular aggregate particlies to puncture the
fabric, creating openings through which intermixing may occur.

As previously described, the fabric induces the formation of
an inverted natural filter in the subgrade soil. This maintains separa-
tion of the aggregate and subgrade soil, while permitting the free flow
of water. Flow of water from the weak subgrade into the aggregate
allows consolidation of the former material under loading, thereby
stabilizing it and enhancing its strength.

Confinement and reinforcement of the aggregate layer apparently
provide a tensile capacity along the bottom of that layer. Characteris-
tically, granular materials have negligible tensile strength, thus when
an aggregate-subgrade (AS) system is subjected to load, the load distri-
buting effectiveness of the aggregate is limited by the shear stresses
which develop at the system interface. A layer of fabric at this loca-
tion can restrain interfacial aggregate movement from under the loaded
area, thereby increasing the interfacial shear strength and corresponding
load distributing effectiveness of the aggregate layer.

The presence of fabric tends to create a more even distribution
of the load induced stresses, resulting in less abrupt deformation pat-
terns. When the subgrade fails under applied loading, slip plane failure
surfaces theoretically form. When fabric is placed along the aggregate-
subgrade interface, tensile forces in the fabric and frictional/adhesive
resistance along the fabric-subgrade interface tend to limit the plastic
flow of the soil mass contained within these s1ip planes. The tensile
forces in the fabric, n conjunction with curvature along the interface

in a deformed system, induce a normal stress perpendicular to the plane




of the fabric. The magnitude of this stress depends upon the tensile
stress developed in the membrane and the radius of corvature along the
interface. In the wheel path, the net effect is a reduction in the
stress imposed on the subgrade. Qutside the wheel path, where reverse
curvature of the membrane occurs, a resultant downward pressure or
“apparent surcharge" is created, combining with the frictional/adhesive ]

resistance to restrain upheaval of the soil mass within the slip planes.

These actions, depicted schematically in Figure 1-1, tend to increase
the load bearing capacity of the system.

Concentrated loading due to aggregate layer weight and/or imposed
vehicular loading can cause a punching or localized bearing capacity
failure at the contact points between aggregate and subgrade. A geo-
textile at this interface serves to distribute the load, reducing

localized stresses and providing greater resistance to such failures.

Statement of the Problem

Designs of AS and AFS pavement systems are currently accomplished
by empirical based methods. The methods for AFS systems have generally
been developed for use with specific fabrics, without fully predicting
system response. Field verification of design adequacy is still required
of all methodologies.

Prediction of rutting for conventional pavement systems may be
accomplished by application of a hyperbolic plastic stress-strain law to

the stress state within the system (9, 10, 70). Parameters for use of

the hyperbolic curve fitting technique are obtained from laboratory ]

triaxial testing, both static and dynamic, of material from each layer

in the system. Non-linear soil properties and the inability of granular
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materials to carry tensile forces may be modeled. Determination of the
correct stress state remains a problem, especially for those systems
experiencing large deformations. Inclusion of fabric in the system
creates further problems in predicting the true stress state. The
effects of a fabric inclusion vary with the deformation state (i.e.,
fabric elongation and contour, and interfacial slippage) within the
system (56). The influences of specific fabric properties create addi-
tional uncertainties in the analysis.

The pressure of fabric is believed (14, 17, 81, 100) to impart a
tensile capacity to the crushed stone layer in AFS systems and thereby
alter the subgrade failure mechanism. If the degree of such capability
can be ascertained for a particular fabric, the correct AFS system
stress state might be approximated and the hyperbolic plastic stress-
strain law applied to predict rutting. Empirical determination of the
degree of such capability might be possible, by comparison of theoreti-
cally computed deformations and the deformations observed during a
series of model tests. Such model tests would also provide an indica-
tion of the adequacy of the existing design techniques, perhaps permit-
ting refinement of those methodologies or development of a single
methodology suitable for use with a variety of fabrics and capable of

fully predicting system response.

Objectives of Study

The general objective of this study is to examine the performance
characteristics of AS and AFS systems subjected to repeated (i.e.,

transient) loading. Specific objectives of this study are as follows:

(1) Evaluate the influence of subgrade strength on the perfor-




mance of AS and AFS systems.

(2) Evaluate the influence of aggregate layer thickness on the
performance of AS and AFS systems.

(3) Evaluate the influence of load pulse duration on the perfor-
mance of AS and AFS systems.

(4) EQaluate the influence of limited range of membrane types
on the performance of AFS systems.

(5) Experimentally determine the states of stress and strain
within the aggregate and subgrade materials of AS and AFS systems, at
various stages of testing.

(6) Experimentally determine the in-plane deformations/strains
of the geotextile membrane in AFS systems at the completion of testing.

(7) Analyze, refine, or develop methodologies for the analysis

and prediction of the rutting response of AS and AFS systems.

Research Approach

The research approach for achieving the objectives of this study

is as follows:

(1) Phase 1 - Conduct literature review.

(2) Phase 2 - Formulate model test program.

(3) Phase 3 - Conduct model test program.

(4) Phase 4 - Reduce data obtained during model test program.
(5) Phase 5 - Analyze influences of model test program variables

on system responses.
(6) Phase 6 - Compare computed deformations with those observed

in the model test program to analyze, refine, or develop ™ethodologies

for the analysis and prediction of rutting response in AS and AFS systems.




CHAPTER I1I

REVIEW OF THE LITERATURE

Fabric Types

Woven and non-woven fabrics, available for application in sub-
grade stabilization, have been thoroughly discussed in the literature
(16, 19, 57, 100). These materials may be constructed in various ways
and consist of one or more synthetics, generally nylon, polyester,
polypropylene, polyethylene and vinyl. The filament properties within
any synthetic group can vary widely, but generally nylon and polyester
have significantly higher strength properties than the other groups.

A1l are combustible and, unless chemically stabilized, have a Tow
resistance to exposure to ultraviolet light. Ultraviolet light can
cause serious deterioration to occur in polypropylene, the most suscep-
tible poiymer, within four to eight weeks. Water absorption is minimal.
A1l groups are considered to have high resistance to the pH levels
likely to be encountered in soil.

Woven fabrics are made from either extruded filaments or split-
film tapes. Monofilament fabrics are composed of strands of single
polymer filaments. Multifilament fabrics are woven from yarns composed
of many fine filaments. Extruded filaments are generally circular in
cross-section and stronger and more expensive to produce than split-film
tapes, which are flat in cross-section. Due to the parallel filament

arrangement, woven fabrics are characterized by high strength and low

breaking strain. Woven fabrics are usually anisotropic, being stiffer




along the warp direction (i.e., parallel to the long axis of the fabric)
and more flexible along the bias (i.e., at a 45° angle from the warp).
In the unstressed fabric, the individual fibers are straight in the warp
and fill (i.e., parallel to the short axis of the fabric) directions,
but curved in the plane of the fabric as they are woven over and under
each other. When one set of fibers is stressed, it becomes straight in
the plane of the fabric, while displacing the unstressed cross-fibers.
This results in an apparent length increase with 1ittle applied stress.
Additional straining requires an actual stressing of the fibers, with
the stress-strain relationship of the fibers controlling the correspond-
ing behavior of the fabric. The mechanical properties of a woven fabric
may, therefore, be related to the mechanical properties of the polymer
composing the fibers.

There are three major types of non-woven fabrics, distinguished
from each other by their methods of construction, which give them dif-
fering physical properties. These fabric types are needle-punched,
heat~bonded, and resin-bonded. The fabrics may be formed from either
staple or continuous filaments. The staple filament fabrics are formed
by arranging short fiber nieces on a supporting screen or belt in pre-
paration for bonding. Continuous filament fabrics are formed by
extruding the polymer from dies at high temperature., The filament is
then cold drawn to form a ‘hin continuous thread, which is arranged on
a belt in preparation for bonding. Staple filaments are formed by chop-
ping such a thread into pieces of the desired length. Filament arrange-

ment is generally accomplished by means of air jets, although slurry

placement is possible with staple filaments.
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The needle-punched fabrics consist of filaments mechanically
interlocked by a barbed needle-punching operation, carried out normal
to the ptane of the fabric, which physically entangles the filaments
and produces a three-dimensional mat material. These fabrics are thick,
compressible, and have very complex pore structures. A

Heat-bonded fabrics consist of filaments calendered or rolled
under heat and pressure to fuse the filaments at their crossover points.
This process produces tough, compact fabrics and due to the more numerous
fiber-to-fiber bondings, the process can achieve comparable strengths
at lower weights than the needle-punching process. The pore structure
is relatively discrete and simple. There are two types of heat-bonded
fabrics. These are homofilament and heterofilament fabrics. The former
utilizes single polymer filaments (homofilaments), with different fila-
ments having varied melting point characteristics. The latter type
utilizes both single polymer filaments and filaments of the same polymer
sheathed in a second polymer, having a differing melting point (hetero-
filaments). Bonding is achieved by controlling temperature and pressure
so as to fuse the lower melting point polymer.

The final type of non-woven fabric is resin bonded. These
materials are characterized by spraying or impregnating acrylic resin
into a fibrous web. The resin bonds the filaments, producing a fabric
of intermediate weight.

In addition to woven and non-woven fabrics, knitted, special and
combination fabrics are commercially available. These latter categories
have yet to receive the extensive degree of utilization, in Civil

Engineering applications, achieved by the former types. Knits are
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composed of loops of fibers connected by straight segments. Knitted

fabrics may be monofilament or multifilament and may stretch in one or
both directions (double knits) without significantly stressing the
fibers. Combination fabrics are produced by utilizing more than one of
the various construction and bonding techniques previously discussed.
Special fabrics are those which do not fit into any of the other cate-

gories, such as extruded plastic mesh.

Fabric Properties

In recent years, accompanying the increased usage of fabrics
in Civil Engineering applications, many tests have been developed to
assess the quality of the fabrics. Test methods are well documented !
in the literature (1, 5, 6, 16, 19, 57, 75, 92, 100, 112, 114). Several
of the more commonly cited fabric characterizations are summarized
in the following:

(1) Thickness (ASTM D-1777) is expressed in units of mils and
generally reflects the construction process. Split-film tape woven
fabrics and heat-bonded non-woven fabrics are typically 15 to 30 mils
thick, while needle-punched fabrics range from 75 to 250 mils in thick-
ness.

(2) Weight (ASTM D-1910) is expressed in units of oz/ydz. Heat-
bonded fabrics generally weigh the least (i.e., 4-5 oz/ydz) and needle-
punched fabrics are the heaviest (i.e., 4-20 oz/ydz).

(3) The specific gravity (ASTM D-792) of fabrics is controlled
exclusively by the specific gravity of the polymers. Values range
from 0.9 to 1.25, with nylon and polyester having specific gravities

greater than one, and polypropylene and polyethylene below one.
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(4) Equivalent Opening Size (U.S. Army Corps of Engineers
CW-02215), or EQS, is expressed in terms of the U.S. standard sieve size
(ASTM D-422). The EOS refers to the diameter of the uniformly sized
glass beads, of designated EOS number, for which 95 percent by weight
of the beads are retained on the fabric after vigorous shaking, carried
out in accordance with a standardized test procedure. The EOS of non-
woven fabrics is more variable and more subject to change under load
than for woven fabrics. The EQS is a "retained on" measure and typi-
cally ranges between 30 and 200. This property is important to the
separation mechanism in AFS systems. For filtration of soils with
greater than 50 percent passing a No. 200 sieve, it has been recommended
(57, 100) that the EOS have a value in the range of 60-100. In those
cases with less than 50 percent passing a No. 200 sieve, the EOS,
expressed in length units, should be no greater than the 085 (i.e.,
largest particle diameter of the finest 85 percent of the filtered soil)
for well-graded material, and no greater than the D60 (i.e., largest
particle diameter of the finest 60 percent of the filtered soil) for
uniformly graded material.

(5) Grab tensile strength {ASTM D-1682) is expressed in pounds,
as is strip tensile strength (ASTM D-1682). These tests report peak
load. Additionally, stress-strain data may be collected during these
t