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INTRODUCTION

This report is divided into three sections. In the first chapter,

the accuracy of coupled mode theory as applied to volume, dielectric,

reflection gratings which have unslanted fringes and either periodic or

aperiodic refractive index profiles is investigated. The accuracy is

evaluated by comparing coupled mode theory results with those obtained

by Abele's exact multilayer theory. For the examples considered, coupled

mode theory gave accurate results only for gratings having periodic

refractive index profiles.

In Section 2, a method for designing volume, dielectric, reflection

gratings having unslanted fringes is developed. The technique is ap-

plicable to two types of problems. The first type is one in which the re-

flectance, R, vs. angle of incidence and wavelength is specified, and the

second type is one in which the amplitude reflection and transmission co-

efficients, r and t, respectivly, vs. angle of incidence and wavelength are

specified. In both cases, the technique determines (approximately) the cor-

responding one dimenstional refractive index profile, n(z). The synthesis

method is illustrated by two examples, and for these examples, the method

is seen to be reasonably accurate. In the appendix to Section 2, the re-

flection grating design approach is extended to multilayer dielectric filters.

In Section 3, a formal mathematical analogy between reflection grat-

ings and corrugated waveguide filters (CWF) is demonstrated. The possi-

bility of designing CWF, using the iterative Fourier transform technique

developed in Section -2, is explored. It is emphasized that the mathe-

matics developed for CWF is not rigorous. Consequently, predicted re-

sults should be experimentally verified and attempts should be made to

develop a rigorous mathematical approach.
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Section 1

ACCURACY OF COUPLED MODE THEORY

In this section, we examine the accuracy of
coupled mode theory as applied to volume, dielectric,
reflection gratings which have unslanted fringes and
either periodic or aperiodic refractive index pro-
files. The accuracy is determined by comparing coupled
mode theory results with those obtained from Abelb's
exact multilayer theory. For the examples considered,
coupled mode theory gave accurate results only for
gratings having periodic refractive index profiles.

2
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1-1. INTRODUCTION

The study of wave propagation through periodic media dates back

almost one hundred years, and has had a significant impact in a number

of areas including the theory of electron energy bands in crystals,

microwave devices, diffraction gratings, and thin film optical devices. I1 l

Analytic solutions to these wave propagation problems were generally

based on Floquet's Theorem.E 23 During the 1960's, considerable effort

was directed toward finding exact solutions of optical propagation

through sinusoidally periodic volume gratings. In particular, C.B.

Burckhardt solved the problem of diffraction of a plane wave by a planar,

sinusoidal, dielectric transmission grating having unslanted fringes.[
33

Unfortunately, the solutions obtained were not in closed form and in-

volved approximate numerical techniques for their evaluation. These

numerical techniques were often nontrivial to implement. The numerical

difficulties encountered together with the lack of insight gained from

these numerical techniques was an impetus for developing a simpler approach.
A natural candidate was coupled mode theory. 4 '53 This theory had

[46
already been used quite sucessfully to study microwave devices.[6 ]

In many instances, one is interested in a structure into which a small

perturbation has been introduced. The modes which propagate in the non-

perturbed structure are often easily computed. The perturbation causes

some of these modes to interact with one another. Generally the structure

is excited in such a manner that a single mode is launched into the

structure, and the perturbation causes this mode to excite and exchange

energy with other modes as it propagates. In coupled mode theory

approximate equations are derived to describe this coupling between

modes.

Kogelnik used coupled mode theory to derive closed form expressions

for plane wave Bragg diffraction from thick, planar, sinusoidal hologram

gratings. [7) The gratings could have arbitrary fringe slant and operate

in either the reflection or transmission mode. Kogelnik's results were

later extended to periodic gratings having arbitrary shape (i.e. not

necessarily sinusoidal).(8

3



-oRIM RADAR AND OPTICS DIVISION

Unlike Floquet's Theorem, the coupled mode approach does not re-
quire that the perturbation be periodic. There has been some interest

in producing corrugated waveguide devices for filtering which have
nonperiodic corrugations. The characteristics of these structures

have been arzlyzed using coupled mode theory. E-13] It appears quite
difficult to determine bounds on the accuracy of the coupled mode

approach. We note, however, that Bragg diffraction from periodic or non-
periodic reflection holograms having zero fringe slant can be solved
exactly using a simple multilayer matrix technique developed by Abelh
in the 1950's[l4 "l 1 5I Thus, these reflection grating structures can be
used as a check on the accuracy of the coupled mode approach. A re-
flection hologram of the type discussed above is analogous to corrugated
waveguide devices and consequently takes on added importance.(4]

Sakuda,Stoll and Yariv have compared coupled wave theory results
and exact results (derived via Floquet's Theorem) for sinusoidally cor-

rugated waveguides.[16-17] Their analysis indicated that the two
approaches agree reasonably well. Moharam and Gaylord [18] also
ran comparisons for unslanted, sinusoidal, reflection and transmission

holograms. For reflection holograms having unslanted fringes, their

analysis indicated that the two approaches give results which are in
excellent agreement. For slanted fringes they show substantial dis-

agreement, but they have assumed very high refractive index modulations
(An/n as high as 0.29).

In this sectionwe present four examples inwhichwe compare results of
* coupled wave theory with those of Abeles' exact multilayer theory for re-

flection gratings having unslanted fringes. The examples show that there
is substantial disagreement between the two approaches for gratings hav-
inn non.erlodic refractive index profiles.

1-2. PROBLEM STATEMENT

Consider a pure dielectric material which has a refractive index

variation, n(z), only along the z-axis as shown in Figure 1-1.

4
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The refractive index variation is written as

n(z) = no + An(z)sin(27rf(z)z) (1-1)

where

An(z)<< no (1-2)

The material is assumed to be of infinite extent in both the x and y
dimensions. Regions C and S shown in Figure 1-1 have refractive indices

in C 
= n(o) and n s = n(D) respectively. An s polarized (electric fieldalong the y axis) plane wave of wavelength k is incident upon the material.

Some of this incident field is reflected, and the remainder is trans-
mitted. The incident electric field amplitude is designated ER, while
the reflected and transmitted electric field amplitudes are designated
EL and ER respectively. We wish to determine the reflection and trans-

mission coefficients r and t defined by

\ EL
r E w(l-3a)ER

ER

The general procedure for determining r and t is to solve Maxwell's

Equations in the three regions shown in Figure 1-1, and then match the

tangential electric field and magnetic field components of these solu-
tions at the boundaries separating regions C and G and regions G and S.

We proceed as follows: The wave equation in all three regions

can be written as

V2Ey(X,Z) + ( n (Z)Ey(XZ) = 0 (1-4)

where Ey is the electric field component along the y axis. Since

An(z) << n0 , we can write

n2 (z) 2 n2 + 2noAn(z) sin 2Trf(z)z (1-5)

0 0

6
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In region G, Eq. (1-4) has a solution of the form

E(x,z) A(z)exp(-i(p x + p z)) + B(z)exp(-ilp x - p z z)) (1-6)

where

p -n sine (1-7a)

=z n 0 cose (1-7b)

Substituting Eqs. (1-5) and (1-6) into Eq. (1-4) yields

A"(z)exp(-i(p~x + p zz)) - 21p A'(z)exp(-i(px x + z)

p 2 fA(z)ep(-i(p x + p az)) - p A(z)exp(-i(p ~x + Paz))

+ B"l(z)exp(-i(pxx- p~z)) + 2ipz B'(z)exp(-i(pxx - pzz))

2 2
PZ B(z)exp(-i(pxx - p~z)) - p B(z)exp(-i~fpxx - p~z))

+ (LT- A(z)exp(-i(pxx + p az)) + (L- no) B(z)exp(-i(px - p~z))
0GA

i () n Anz)A(z)exp(-i (p xx + P z) + i2Tfff(z)z)

+ i(2yn )2 n(z) A(z)exp(-i(p x + p z) - i2wTf(z)z)
A0 x z

Aj %lf Afl~z) B(z)exp(-i(p X -p z) + 12lTf(z)z)

+ I i(-- 0 An (z) B (z) exp (-i ( px - p zz) - 12lrf(z)z) 0(-8

Using Eqs. (1-7a) and (1-7b), Eq. (1-8) reduces to

A"(z)exp(-i(p xx + p zz) - 21p z A'(z)exp(-i(px + p z))

+ B"(z)exp(-l(p x x - p zz)) + 21p zBl(z)exp(-i(p x - p Zz))
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Si( --)2noAn(z) A(z)exp(-i(px - p z) + iti(z)z)x 0 x

+ i(L- n An(z) A(z)exp(-i(p x + 3p z) - iA(z)z)
x z

i(-T)2 noAn(z) B(z)exp(-i(P x - 3p z) + iw(z)z)
2

+ i(-) non(z) B(z)exp(-i(p x + p z) - im(z)z) = 0 (1-9)
0 x z

where A

A (z) = 27f (z) - 2pz  (1-10)

It is important to note that no approximations have been made in

the derivation leading up to Eq. (1-10).

1-3. COUPLED MODE THEORY

It is comon in coupled mode theory to derive from Eq. (1-9) two

coupled mode differential equations when A (z) is small. First, it

is assumed that only termi in Eq. (1-9) which have approximately the

same phase factors will significantly interact with one another.

Second, it is assumed that A(z) and B(z) change phase slowly as com-

pared to exp(-ip zz). With these assumptions Eq. (1-9) becomes

2
A"(z) - 2ip A' (z)+ i(L) noAn(z)exp(-iA0(z)z)B(z) = 0 (1-ha)

2
B"(z) + 2ip B'(z )- i (2) noAn(z)exp(iAW(z))A(z) = 0 (1-llb)

Eqs. (l-lla) and (l-llb) are further simplified by making the assumption

that

IA"(z)I<<lpz A'(z)l and IB"(z)l << Jpz B'(z)l (1-12)

With the above approximation, Eqs. (l-lla) and (l-llb) become

8



LERM RADAR AND OPTICS DIVISION

12
A'(z) = n- (j)nAn(z)exp(-iAO(z)z)B(z) (1-1I 3a)

B'(z) = 1 IN .) 2n An(z)exp(iAO3(z)z)A(z) (1-13b)
TP -z- 0

Eqs. (1-13a) and (l-13b) are the first order coupled mode equations
which commonly appear in the literature. Since the refractive
index is continuous across the boundaries between regions C and G and re-

gions G and S, Maxwell';s boundary conditions require

A(0) =E (1-1 4a)
R

B(0) = E (1-14b)
L

A(D) = E (1-1 4c)
R

B(D) = 0 (1-1 4d)
Thus,

A(O) (1-14e)

t =A(D) (1-14f)

1-4. ABELES' EXACT MULTILAYER THEORY

In the 1950's Abele~s developed a convenient numerical matrix
technique for solving Eq.(-) 4  First, the structure shown in
Figurel1-1 is divided intothin slabs each parallel to the x-y plane.
The slabs are chosen to be sufficiently thin so that the refractive
index n(z) can be assumed constant within each thin slab. Thus, a
solution of the wave equation within the m11th thin slab, which is assumed
to have a constant refractive index of nm is

E YM(x~z) = mexp(-i(pxmx + p~zm)) + Bmexp(-J(Pxmx - P zmZ)) (1-15)

9
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where
xm m 2n sin 0 (1-1 6a)

Pzm n cos 0m (l-16b)

For m = 0 and In N+l Eq. (1-15) is also a solution of the wave equation
in the half space regions C and S respectively.

By requiring the tangential components of the electric and magnetic

fields to be continuous across the boundaries between the slabs,

it is straightforward to show that

I- I=v~ V~ U 1  (1-17)
B m = Vmljm +l B m+l

where

nm+l sin em+ = n msine (-18)

nm Cos ii

Ym= z 0  (z0 is the characteristic impedance (1-19)

of free space)

m = rr n dm cos m (dm is the thickness of the (1-20)
x mmth thin slab)

, L m  0 (1-21)

0 ~ exp(-i In

Now with the following definitions

10
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MA -mmm1

'm-V mUmVm- (1-23)

= U N+I a (1-24)
10 1

sA A (1-25)
==V; VN+ l

S21  S 22 =1

it immediately follows that

A] s[A N+l (1-26)

BN+IJ

Furthermore in Fig. 1-1,

BN+1 -O (1-27)

Therefore,

- 21
r A0  S1  (1-28a)

t l (1-28b)

1-5. EXAMPLES

We have calculated r vs A for five different refractive index

profiles using both the exact multilayer technique and the coupled

mode approach. The coupled mode equations (l-13a) and (l-13b) were

solved numerically using Runge-Kutta. The results are shown in

I 11
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Figure 1-2. The multilayer technique gives exact results of course, only

if the refractive index is constant within each of the slabs. This will

be the case, in the limit, as each of the slab thicknesses go to zero.

The solid curves given in Figure 1-2 were obtained by decreasing all the

slab thicknesses until further reductions had no appreciable affects upon

the multilayer theory predictions. Excellent agreement is seen to exist

for the periodic grating but the agreement is poor for the nonperiodic

gratings.

Several assumptions have been made in the derivation of the first

order coupled mode equations (l-13a) and (l-13b). Gaylord helieves that
the assumption given by Eq. (1-12) may contribute the most error. [18]

Kogelnik has shown that this assumption is justified for sinusoidal

gratings, but we feel that his argument is into rrect. Our reason-

ing goes as follows:

For a sinusoidal grating at the Bragg angle AB(Z) - 0 and An(z) is

a constant. Thus, Eqs. (1-13a) and (l-13b) may be rewritten as

A'(z) = KB(z) (1-29a)
B'(z) = KA(z) (1-29b)

where K is a constant. Combining Eqs. (l-29a) and (1-29b) yields

A"(z) = K2A(z) (1-30)

Now for a reflection qrating with unslanted fringes B(D) -0 and

A (D) 0. Thus Eq. (l-29a) implies

A'(D) = 0 (1-31)

while Eq. (1-30) implies (1-32)

Therefore, TA"(D)t >IpzA'(D) 
(1-33)

which contradicts the assumption of Eq. (1-12) forz D.

12
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1-6. CONCLUSIONS

We have shown by example that coupled mode theory can give in-
accurate results under certain conditions. Furthermore, one of the

common assumptions used with coupled mode theory, i.e., neglecting
second derivatives, has been shown to lack justification. It ap-
pears that great care must be taken when attempting to use coupled

-* mode theory for analyzing optical propagation through gratings and

corrugated waveguide filters.

14
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Section 2

AN ITERATIVE FOURIER TRANSFORM DESIGN TECHNIQUE

In this section an iterative technique for designing reflection

gratings having arbitrary reflectance vs. wavelength (or angle of

incidence) characteristics is presented. The technique is based

on Fourier transforms and is similar to the multilayer dielectric

stack design approaches developed earlier by Delano and Sossi.

Reflection grating design, using the iterative technique, is illus-

trated with two examples. In addition, the reflection grating design

technique is shown in Appendix A, to be applicable, with slight

modification, to the multilayer dielectric stack design problem.

r

r:

i 17
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*2.1 INTRODUCTION

Two approaches for determining the reflectivity characteristics

of periodic and aperiodic reflection gratings, first order coupled

mode theory and Abel's' multilayer theory, were presented in section

one. The two approaches were seen to give identical results for

sinusoidal gratings but substantially different results for some

aperiodic gratings. Recall that Abeles' multilayer theory is

known to be exact, whereas first order coupled mode theory is

* approximate. A formal mathematical analogy between corrugated

wavequide filters (CWF) and reflection gratings will be demonstrated

in chapter three, thus raising the possibility of applying reflection

grating design and analysis techniques to corrugated waveguide filters.

It is the aim of this chapter to describe an analytic approach for

designing reflection grating filters. The approach allows one to deter-

mine the refractive index profile, n(z), which results in some user

specified grating reflectivity vs, wavelength characteristic. The

reflection gratings to be considered will be structurally identical

to those described in section one.

Analytic design techniques for reflection gratings and cor-

*rugated waveguide filters have been under investigation during the

last ten years. Kogelnik has computed the characteristics of some

aperiodic CWF, but has not indicated any approach for designing

filters which would have specified reflectivity characteristics.
[1 ]

Shubert has demonstrated that step variations in the periodic

corrugations of a distributed feedback laser can result in lower

* threshold gains, greater higher order mode rejection, and unidirec-

tional operation. [2) Matsuhara, et. al. have even proposed a

general technique for CWF synthesis.[3] Kogelnik's analysis

approach and Matsuhara's analysis and design technique are suspect,

*since they depend on first order coupled mode theory. Furthermore,

even within the framework of first order coupled mode theory,

Matsuhara's approach requires one to make sevei-al questionable assumptions.

18
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Design techniques for multilayer dielectric filters have been,

and are still actively being, investigated. [4-6] The reflection

grating design approach, to be described below, relies heavily

on multilayer dielectric filter theory. It is quite similar to some

of the multilayer dielectric fitr Fourier Transform techniques

developed by Oelano 7_8jSoss9-, egis, [ 1 2
] and KnittlE 5 ]. Refer-

ence 8 provides an excellent overview of multilayer dielectric

filter Fourier synthesis techniques. Greenewalt, et. al. [13] has

also developed a Fourier synthesis technique. In Appendix A,our

reflection grating design approach is extended to multilayer di-

electric filters.

2.2 REFLECTION COEFFICIENT DIFFERENTIAL EQUATION

We start by deriving a differential equation for the reflection

coefficient. Consider the pure dielectric shown in Figure 1-1 which

has a refractive index variation n(z). The dielectric is assumed

to be of infinite extent in both the x and y dimensions. Regions

c and s have refractive indices nc = n(O) and ns= n(D), respectively.

An s polarized (electric field along the y axis) plane wave of

wavelength A is incident at angle of 0o upon the dielectric. Some

of the incident field is reflected, and the remainder is transmitted.

The incident electric field amplitude is designated ER, while the

reflected and transmitted electric field amplitudes are designated

EL and ER, respectively. The reflection and transmission coefficients

* are defined by Equations (l-3a) and(l-3b).

* In all three regions, the total electric (E) and total magnetic (H)

field components can be written as

E y(x,z) = U(z)exp(-ipxX) (2-1a)

Hx(x,z) = V(z)exp(-ip x) (2-1b)

H z(x,z) = W(z)exp(-ipxX) (2-1c)

I x
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where

P -27 n(O)s in 80(2-1d)

From two of Maxwell's Equations

adVt -r iW1(z)ff (2-2a)

VAT{ = T+ i Ut(z),E (2-2b)
where

2= c (c is the speed of light in vacuum)

U±(z) is the permeability

e(z) is the permittivity

it follows that

=E i wj(z)H (2-3a)

TY - iwu(z)H~ (2-3b)

3X 3H z- iu.(z)E (2-3c)

Substituting Equations (2-la) - (2-ic) into Equations (2-3a) -(2-3c)

yields

U,(z) =iW1i(z)V(z) (2-4a)

-'pxU(z) =-iwii.(z)W(z) (2-4b)

V,(z) + ipxW(z) = i(LEWzUMz (2-4c)

Equations (2-4b) and (2-4c) can be combined to give
2
Px

V(z) = i(- -x + UE(z))U(z) (2-5)

20
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The permeability and permittivity of free space will be designated

Po and e09 respectively. The quantities o(z), Y(z) and a(z) are

defined below

cos e(z) I (z) (z) Si n2 a (2-6a)

1/2
y(z) = (P(z)E(z)/po o) cos e(z) (2-6b)

a(z) =I()s)/os 0(z) (2-6c)

A27
K _(2-6d)

Using the above four definitions, Equations (2-4a) and (2-5) can be

rewritten as

U'(z) = iKy(z)o(z) V(z) (2-7a)

V'(z) = iK(y(z)/a(z))U(z) (2-7b)

The input impedance, Q(z) is defined by

Q(z) U(z) (2-8)

If follows from Equations (2-7a) and (2-7b) that

Q'(z) = iK y(z)o(z) - iK(y(z)/a(z))Q2 (z) (2-9)

Assume that the section of the dielectric to the left of the

plane z = zo (0 < zo < D) is replaced by a homogeneous dielectric

of refractive index n(z ). Further suppose that an s polarized

plane wave, having x propagation constant, Px', and electric field strength

ER, is incident from the left onto the z = z0 plane. A portion of the in-

cident plane wave is reflected and the remainder is transmitted. From Eq.

(2-3a) and (2-3b) the incident (i) and reflected (r) plane wave fields can

be written as

21
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Eiy (x,z) = ERexp(-i(pxx+ pz(zo)z) (2-10a)

P z(z 0)
H ix(X'Z) - u(Z0) ER exp(-i(PxX + Pz(zo)z))

(2-lOb)

Hiz(x,z) oX E exp(-i(P(x + pz)Z)P (z0) ER x + p (2-1oc)

Ery(XZ) ELexp(-i(Px - pz)) (2-10d)

ry ~ (z )
H (x,z) Z 0)EL exp(-i(p x - pz (z )z))(2-1Oe)rx Wjjz0)L

~Px

Hrz (X,Z) - X EL exp(-i(P - pz(Zo)Z))

(2-luf)

where 2 2 2(-lg

Pz(z) + (L)n (zo) " px

Continuity of the tangential electric and magnetic field components

across the z = zo plane requires that

E (xzo) + E (xzo) U(zo)exp(-iP x) (2-11a)
iy '0 ry '00

and

Hix(x,zo) +Hrx(X,Zo) = V(Zo) exp(-iP x) (2-11b)

Combining Equations (2-1Oa) through (2-llb) yields

1 + EL/ER Ui(zo) U(zo)
- - Qz o )  (2-12)

-1 + EL/ER Pz(zo) V(zo)
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But by Equations (2-1d), (2-10g), (2-6a) and (2-6c)

(zo0)
pz(Zo) = a(zo)  (2-13)

Using Equations (2-13) and the definition of the reflection coefficient,

r, given by Equation (l-3a), Equation (2-12) can be rewritten as

I + r(zo) A(z) = Q(z) (2-14)

-+ lz 0)

Finally substituting Equation (2-14) into Equation (2-9) results

in the following differential equation for r(z )

B'(Zo2
r'(zo) = i2Ky(zo)r(z0 ) - (1 - r (z0)) (2-15)

Equation (2-15) was originally given by Walker and Wax [14) and Kofink [15 ]

When Ir(z0)1 2 << 1, then by Equation (2-15)

r'(z) i2KY(zo)r(z) - a(Z) (2-16)

The solution, r(z), of Equation (2-16) with equalit3 assumed is

r(z)exp(- 12KJ'M d 0 - r(o) = - f2iK
0 0 0~ 7.. °k2-17)

Imposing the boundary condition r(D) = 0, it immediately follows that

0 P

r(o) L -exp[- i2K fY()dC]dp  (2-18)

0 0

I23
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The refractive index n(z) is given by

n(z) = ;z z  (2-19)

We restrict our analysis to nonmagnetic dielectrics, and therefore,

P(z5 = Po (2-20)

The definitions given by Equations (2-6a) - (2-6c) can now be

rewritten as

2 ~n2 (0) 2

Cos2o(Z) 1 - n(z) s2 (2-21a)

Y(z) = n(z)cos 0(z) (2-21b)

n(z)cos(z) (2-21c)

From Equations (2-21a) and (2-21c)

-l ~1 d (z) = n'(z) - n___________

_ (z) _ n(z)cos2  (z) n(z) (Z) sin 01

(2-22a)

f ( )f Z 1 sin2  1/2

.)d 11(0[ - sin 2  dC (2-22b)0 0 n (w

But by Equations (1-1) and(1-2)

n-T 1 (2-23)
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and so

n'z) (2-24a)

0 W z n 0Cos 20

z z

f jo()d; =(cos 0od4 n (Cose )z (2-24b)
fn0 0 00 0

Finally, combining Equations (2-18) with (2-24a) and (2-24b) yields

~ On'(z)

r(o) 2 exp[-i2Kn (Coseo )z]dz (2-25)

0 0 0

The reflection coefficient, r(o), times COS20 is aas cn b cosO 0  s afunction of
as can be seen from Equation (2-25). There are several places

in this section where n(z) is assumed to be of the form given by

Equations (1-1) and (1-2). In Appendix A, the results derived in this

chapter are extended to n(z) of arbitrary form.

Now divide the structure shown in Figure 1-1 into N slabs each

parallel to the x-y plane (see Figure 2-1)

25
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FIGURE 2-1. SLAB DECOMPOSITION
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The jth slab has thickness d. and refractive index nj(z) given by

j-1

n(z) = n(z - di) j 1
£= 1

n(z)= n(z) (2-26)

Thus, we can write
D

2oO2 o F(2cos 0 /

2n 0 cos 00 F( X ) = f'n(z) exp[-i2Kno(Cos o)z]dz

0 N j-1

= P" +E Pjexp[i2 " ] (2-27a)
j=2 = 1

where d.

pj fn jn(z)exp[-i2Kno(Cos 0o)z]dz (2-27b)

0

and
A

-j = Kno(cos 0o)d j  (2-27c)

By defining n(z) to be identically zero for z> D and z< 0, we can write

2n~cs 2 O° F( 2 00) =f n'(z) exp[-i2Kno(cos 0o)z]dz (2-27d)

2.3 TRANSFER MATRIX DEVELOPMENT

Consider a pure dielectric material which has a refractive index

variation along the z axis as shown in Figure 2-2.

27
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If, as indicated in the Figure 2-2, the electric fields on each side

of the dielectric material are represented as the sum of the two plane

waves propagating in opposite directions, then EL and ER can be related

to EL and ER through a two by two transfer matrix S. The relationship

is given explicitly by

E R 1 S 
(2-28)

L LS21 $22 i 9L

S

The right-going reflection and transmission coefficients r and t,

respectively, and the left-going reflection and transmission coef-

ficients, r and t, respectively, are defined by

r ={r~xp~Y]A EL

=Irlexp~iY] r (2-29a)

EL = 0

29
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t =itixp~r]A ER

t = Itlexpir) FR L (2-29b)
ER 

L=

=ilIexp[i =- (2-29c)
EL 1 R = 0

AEL

t Itexp~ir]= - (2-29d)
E L I ER

If follows immediately from Equations (2-28) and (2-29) that
S2 1

r = 21 (2-30a)

1 (2-30b)

- S (2-30c)

t S 22 - S12s21  (2-30d)

and so

S =/t (2-31a)

S12 = - rlt (2-31b)

S21 = r/t (2-31c)

$22= t - rr/t (2-31d)
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S =- (2-32)

Ir tt- r

Stoke's reversibility theorem L1]requires that

t i+ r*t = (2-33a)

and

t~t + rr* =1(2-33b)

where *denotes complex conjugate.

* Equation (2-33a) implies

r -r*exp~i2r] (2-34)

Combining Equations (2-33b) and (2-34) yields

tt - rr =exp [i2r] (2-35)

Finally, with Equations (2-34) and (2-35), Equation (2-32) becomes

[1 r*exp[i2r]

_ xpir (2-36)
tI

The matrix S is defined by

S I

S T [jr'x~~~ (2-37)
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t .h

S. is the transfer matrix associated with the jth dielectric slab

shown in Figure 2-1. Thus, the transfer matrix, S, of the entire

structure shown in Figure 2-2 is

N
S = fT Si (2-38)

j=l

Using mathematical induction, it can be shown that
[171

C(N )  c(N)-

N c( I .12

1TF sj = M (2-39)j=1 j=l J  c(N) c(N)

21 22

where

C(N) 1 + sum of all ep(m), t < N (2-40a)
11

c(N) = sum of all op(m), km < N (2-40b)

' N
12 2

j=l j

N

-(N) =C exp[i2(- P-)] (2-40d)- i "22j=l

: and where ep(m) is an expression of the form

m-1 Xj+l -

b1b .."bmexpEi 1 (1 - (-I)J)r
t1 E2 Im 01=0J~nJ=0 n=j

Ajrt for j an odd integer
bj feL i2 for j an even integer
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A
ko 0 (2-41a)

A
1' = 0
ro0

m is a positive even integer and £i,£2 ..., m

is a monotonically increasing sequence of positive integers

and

op(m) is an expression of the form -1rn-I j+l

b b b exp[i 2 X (1 - (-1)J~l)rn ]kZl £2 - km j=O n= .
J

A rj for j an odd integer

b r for j an even integer

to - 0 (2-41b)

A= 0

m is a positive odd integer and ZI,, 2 ' "'m is a monotonically

increasing sequence of positive integers.

Using Equations (2-30a), (230b), (2-39) and (2-40), we can now
.7. write C N ()<r write1 sum of all op(m), m - N

r ,=My-l + sum of all ep(m),tm <N

t 11

M - T+ sum of all ep(m), £m N (2-42b)

R~m <N

r sum of all op(m),- m<N(2-42c)
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As an example, for N=4 the above three equations become

r1+r2exp(i2ri + r3exp(i2(r l + F2)) + r4exp(i2(rl+ r2 + r3 ))

1 3r 4 3) 2+ rr4 exp(i2(r1 + + 3exp(i2r2)

+ rlr*r4exp(i2(r2 + F3 ))
r* *

I + rlr 2exp(i2F1 ) + r3r4exp(i2r3) + rlr 2r3r4exp(i2( 1 + r3))

+ rr3 exp(i2r2 ) + rlr 3exp(i2(r + r2) + r~r4exp(i2( 2 + F3))

+ rr 4exp(i2(r I +r2 +r3))

tlt 2 t3t4exp(i(F I + F2 + r3 + r4 ))

I + rlr 2exp(i2Fl) + r3r4exp(1i2 3) + r r2r3r4exp(i2(F1  + I3))

+ r~r3exp(i2F 2) + r~r3 exp(i2(F1 + r2)) + r~r4exp(i2( 2 + F3))

+ rlr 4 exp(i2(F + 2 + ))

rI + r2exp(i2 l) + r3exp(i2(Fl + F2 )) + r4exp(i2(rF + r2 + r3))

+ rr4r4e 3 ) + r r)exppi2+ + r+ rlrr exp(i r2 )

+ rlr*r4exp(i2(F2 + r3))

t tlt2t3t4

Formulas analogous to Equations (2-42a) and (2-42b) were first derived

for multilayer dielectric stacks b. Crook [181 . Equations (2-42) have

been exploited, by Pegis [19], Delano [7-8] , and Knittl [53 to aid in the

design of mulitlayer dielectric stacks and inhomogenous layers.
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2.4 THE BASIC DESIGN EQUATION

When n(z) is given by Equations (1-1) and (1-2) and when

lrj(Zo)l 2 << 1 for 0 < zo < di, then from Equation (2-25)

dj

j 3 (z)rj o nj0 z) exp[-i2Kno(cos e)z]dz (2-43)

0 0

~and

rj =f nj(dj - z) exp[i2Kno(COS o)(dj - z)]dz
dj 2n os2 0o dj

Sexp[ i2Kn(Cos  6)d nj(z)
0 0 fo ~2nos 2 .0o p[2n0(Cs00)jd

r- rexp[-i2Kno(cos 6o)dj (2-44)

Combining Equations (2-43), (2-44) and (2-34) yields

-iKno(Cos e )d. (2-45)
0 03

when Irj(Zo) 12 << 1, 0 <z o < d.

We note that the condition Irj(z)1 2 << 1, 0 < z < d. can always be

satisfied by choosing d. sufficiently small.

According to (2-41b),

(sum of all op(l), 9, <N)= r, + r2exp[i2r I] + r3exp[i2(rI + r2 )]

+ " + rN exp[i2(r + '2 + "'N-0

(2-46)
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Now from Equations (2-43), (2-45), (2-46), and (2-27), it follows that

2no(Cos 2 o)(sum of all op(l),l<N) n'(z)exp[-2Kno(coso )zldz

(2-47)

when Irj(z0 )2 << 1, 0< z0 < d

According to Equation (2-41), op(m) is a product involving an

odd number (M) of rj's. Similarly, ep(m) is a product involving an

even number (m) of r.'s. When the d.'s are small, then the ri's will
be small. Thus, we expect lop(m)f and lep(m)I to decrease rapidly as m

increases. If all op(m) and ep(m), m > 1 are neglected then Equation

(2-42a) becomes

r = sum of all op(l), k, < N (2-48a)

If all op(m) and ep(m), m > 2 are neglected then Equations (2-42a) and

(2-42b) become

sum of all op(l), k1 < N

r I + sum all ep(2), Z2 -N (2-48b)

"- and

r sum of all op(l), £1 < N
f t(2-48c)

* It is expected that Equations (2-48b) and (2-48c) are more accurate

than Equation (2-48a) since fewer terms were neglected in their

derivation.

Recall that n(z) is linked to op(l) through Equation (2-47). Thus,

Equations (2-48a) and (2-48c) can be rewritten as
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2no(Cos20o )r =fn' (z)exp-i2Kno(cos 0 )z]dz (2-49a)
00and N0

2n (Cos2 6 ).(1T j)-fn(z)exp[-i2Kno(cos o)z]dz (2-49b)

-- O

respectively. Equation (2-48b) appears to be of little use, since a

simple expression for the sum of all op(2), k2 <N in terms of n(z)

is not known. The right hand sides of Equations (2-49a) and (2-49b)

are the Fourier transform of n'(z). By the property of Fourier transforms

/ (Cos ) ,
n'(z)exp[i2Kno(cos eo)Z] = Jn(z)exp[-i2Kno(cos eo)z]dz

(2-50)

Using Equation (2-50), noting that n(z) is a real function, and taking

the inverse Fourier transform of both sides of Equations (2-49a) and

(2-49b), yields

n(z) =i r exp[-2Kn0 (Cos 0 )z]d( 0 ) (2-51a)

0

and 0N

n(z) 2Re -ix r t exp[-iKno(cos c)Z]d(  A

n 2 cos 00 t (2-51b)
0

respectively. In Equations (2-51a) and (2-51b), Re denotes the real

part. Equation (2-51a) is only valid in the regime of low reflectivity,
i.e. small Ir 2 , whereas Equation (2-51b)should also be valid in regimes where

the reflectivity is not low. Equation (2-51b) is the central result of

this chapter and will form the basis of our iterative Fourier Transform

reflection grating design technique.
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The Fourier Transform relation between r and n(z) for small r,

given by Equation (2-51a) is well knownt20 ].

A 2
In our design technique, R = Irl , is assumed to be given as

a function of cos and the objective is to find the refractive

index, n(z), which results in this R vs. Cos A0 characteristic.

Since nc = n (see Figure (l-l))energy conservation dictates that

2 2Irl + It! 1 (2-52)

Thus, Equation (2-51b) can be rewritten as

co1/2 . lr \2n cos 0
n(z) = 2Re R 1A j_! It.Iiexp~i2Kncos )z]d( 0 A 0)fcos eo 0tlepiKoO oZd

(2-53)

where N

= exp[i(y - r + r 1')] (See Equations (2-29)) (2-54a)

- exp[i(Y - r - Kn 0(Cos 0)D] (See Equation (2-45) and Figure (2-1))

(2-54b)

Y and r are the phases of the reflection (r) and transmission (t)

coefficients, respectively. Also note that a is a function of
cos eo  cos 0

. In general, R vs. A will be spcified by the design,
and a vs. cosO. will not be specified.

Our design procedure goes as follows:

1. A refractive index, n(z), is chosen.

2. a is assumed to be identically 1.
3. Using Abel'&s multilayer theory, the tj's are computed

Iteration from n(z).

Process 4. n(z) is calculated from Equation (2-53).

5. The corresponding R vs. cos e /X characteristic is computed.6. Step 3 is repeated until n~z) changes little from one

iteration to the next.
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7. The resulting n(z) is the desired design.

2.5 DESIGN EXAMPLES

The procedure outlined above was used to design two reflection

grating filters. The first filter was specified as having the

reflectance vs. wavelength characteristics shown in Figure [2-3a],

while the second filter was specified as having the characteristic

shown in Figure [2-3b]. The evolution of the designs, as a function

of the number of iterations, is shown in Figures [2-4 and 2-6]. Given

in Figure [2-5] is the refractive index profile corresponding to the

last iteration shown in Figure [2-4]. Similarly Figure [2-7] gives the

a refractive index profile corresponding to the last iteration shown in

Figure [2-6]. The refractive index profile is displayed by plotting

both An(z) (solid curve) and f(z) (dashed curve) as a function of z.

For both designs, no = 1.5, grating thickness = 180 Um, and n = 00.

The initial choice of n(z) for both filters one and two was

n(z) = 1.5 + 0.015 sin 2r(5.88m- I )z

An examination of the points plotted in Figures [2-4] and [2-5] would

indicate that both f(z) and An(z) are essentially constant over intervals

of length 1/f(z). Thus, n(z) is simply a sinusoid whose frequency and

amplitude are slowly changing as a function of z. The frequency "spikes"

shown in Figure [2-7] occur at points where An(z) = 0. Thus, these spikes

correspond to spacers (i.e., regions where An(z) = 0) of length l/(fz).

Although a detaild description of the computer implementation of

Equation (2-53) is not provided in this report,some important points
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associated with this implementation will be discussed. First, it

is noted that the n(z) obtained from Equation (2-53) will be of

infinite extent in z. After each iteration, one must truncate the

extent of n(z), so that An(z) is nonzero only over the interval of

finite length corresponding to the filter thickness. Generally

An(z) is quite small for large values of z, and thus, little accuracy

is lost by the truncation. Second, in order to compute _S* Itj I(
the thickness, di of each slab must be chosen. The approximations

used in the derivation Equation (2-53) are sensitive to these d's.

In our designs, for each value of cos e0 /A at which

1/2 NIn tjl
j=2

was evaluated, di was chosen so that Itj1 2 = 0.075. Thus, the d.'s are
not fixed during the design of a given filter, but change for each value

of cos 00/A. The optimum choice for the dj's has not been determined.

Third, the ti's associated with each iteration and the resulting R of
the final design, are evaluated using an efficient computer imple-

mentation of Abel's' multilayer matrix technique. Details of this

implementation can be found elsewhereE 17]. At each iteration an n(z)

is known, and so, Abel~s' multilayer matrix technique can be used to

determine y and r, and hence a . Thus, it is noted that a better

design would most likely be obtained by computing a at each itera-

tion rather than assuming that a is identically one.
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APPENDIX/SECTION 2

In this appendix, the reflection grating design technique is

extended so as to be applicable to multilayer dielectric stack

design. The multilayer dielectric stack design problem consists

of two phases. First, the refractive index profile, n(z), required

to realize a specified reflectance vs. wavelength characteristic at

a fixed angle of incidence, is determined. Second, a discontinuous

profile, which could be physically realized by a multilayer dielec-

tric stack, is fitted to the continuous refractive index profile,

n(z). The discussion here is restricted to the first phase of the

above mentioned design problem. The technique for determining n(z)

given the reflectance vs. cos eo/A has already been developed in

section two. This technique, however, required n(z) to be of the form

given by Equations (1-1) and (1-2). We will remove this restriction

below and allow for arbitrary n(z). The extension to arbitrary n(z)

involves only a small modification of our reflection grating design

technique and so our discussion will be brief.

Repeated below is Equation (2-18) which it will be recalled is

valid for arbitrary n(z) provided that Ir(z)l << , 0 z < D.

D P

r(o) exp[-i2K f()d]dp (2-18)

where 0 0

y(z) = n(z)cos O(z) (2-21b)

Ii

(Z)= n(z)cos O(z) (2-21c)
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Next, n is defined by
z

n = 2 ( )dC (A-i)

0

It is noted thatn(z o) is twice the optical path length that a plane

wave travels into the dielectric in order to reach the plane z = zo.

Combining Equations (2-18), (2-21b) and (2-21c) yields

.0 L

r(o) 5  2 exp[-ikn]dn (A-2)

where A D

L = 2 ]y(C)dC (A-3)

0

-N n(z)

and n and z are related via Equation (A-i)

-(n) ) (A-4)

Thus, if(n) and -9(n) are simply the refractive index and propagation

angle, respectively, expressed as a function of twice the optical

path.

C(n) and F are defined by

AC(n) (A-5)(n) - ____ n__ n_(A-S)
26(n) cos 2 9(n) 2(2(n) -n 2() sin 2 6(0))

,.L

F A] C(n)exp[-iKn~dn (A-6)

0
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It follows immediately from Equations (A-5) and (A-'G) that

N j-l

F Pi I: ~pexp[i D'tm] (A-7)

j=2 m=l

whereN

d d. L (A-8)
j=l

d.

P A C(n)exp[-i Kn]dT, (A-7)f
0j Kd.i (A-10)

Using Equation (A-2) it is easy to show (see for instance Equations

(2-43) and (2-44)) that

r. r reKp[-i Kd] (A-l1)

- I Combining Equations (A-11) and (2-34) now yields

- iKd .,12 (A-12)

From Equations (2-46), (A-12) and (A-7) - (A-9)

F =sum of all op(l), zl < N (A-13)

* From Equations (A-13), (A-6) and (2-48c) it follows that

N N0

r11 t ) f C(n)expr-iKnjdn (A-14)
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Where C(n) is defined to be identically zero forn < 0 orn > L.

DelanoE7-81 derives an expression similar to Equation (A-14), but

assumes as a first order approximation that

N
TTtj

j=l

From Equation (A-14)

r1
C(n) : 2Re t)expE-iKn]d( ) (A-15)

€f

0

where r and t are specified as a function of l/A and the t,'s are

computed as a function of 1/X. Note that Equation (A-15) is analogous

to Equation (2-51b). Once C(n) is computed from Equation (A-15),

the differential equation defined by (A-5) can be solved, numerically,

to obtain n(n).

This differential equation can be solved analytically for the case

of normal incidence, i.e. 0(o) 0 0. Finally, n is obtained from n by

using the following relationship

n(' s : = (A-16)

or equivalently (see Equation (2-6a))

'; d A-7
, M - n (o)sin e(o)] 1h) =-(n (A-17)

We note that Equation (A-15) can be rewritten as

C(n) 2Re .) Tl tjjexp(iKn)d(T) (A-18)

0
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where

N

a exp[i(Y - F + r)] (A-19)
j=l

Equation (A-18) is analogous to Equation (2-53).

Delano [8] distinguishes between two types of synthesis problems,
ones where R is given (first type), and ones where r/t is given
(second type). He handles these two types of problems differently. We
handle synthesis problems of the first type via Equation (A-15) and those
of the second type via Equation (A-18). Thus, it is seen that our tech-
nique draws little distinction between the two types of synthesis prob-
lems. Sossi [9] derives an equation similar to Equation(A48) for the

case of normal incidence (i.e., e0 = 0). In his equation the quantity

R 112
t is replaced by (1 - 2-) We have been unable to follow

his derivation. Implicit in our derivation, in this appendix, has been
the assumption that the refractive index, n(z), does not have disconti-

nuities at the boundaries z = 0 and z = D (i.e., nc = n(o) and ns =

n(D)). We believe that our technique can be modified to remove this re-
striction. It is also noted that our technique can be easily extended
to handle the case of p, rather than s, polarization.
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Section 3

CORRUGATED WAVEGUIDE FILTERS

A formal mathematical analogy between reflection
gratings and corrugated waveguide filters (CWF) is
demonstrated In this chapter. The possibility of de-
signing CWF, using the iterative Fourier transform
technique developed in Section 2, is explored.
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3-1. INTRODUCTION

In this section we demonstrate a formal mathematical analogy between

reflection gratings and corrugated waveguide filters (CWF). The devel-

opment given by Yariv [1] is closely followed. We emphasize that the

mathematics developed for CWFarenot rigorous. Consequently, predicted

results should be experimentally verified and attempts should be made to
develop a rigorous mathematical approach.

3-2. FORMAL MATHEMATICAL ANALOGY BETWEEN REFLECTION GRATINGS AND CWF

Consider the CWF shown in Figure [3-1]. The filter consists of a

thin waveguiding layer (0 < x < a) of refractive index n sandwiched

between two dielectrics having refractive indices nc and ns (n >

> n c). The upper surface of the wavegulding layer has a corrugation of

small, maximum depth (i.e., h0 << a). The refractive index, n(x, z),

can be written as

n 2(x, z) = n2 + w(x, z)(nc - n2) sin 2if(z)z (3-1)

where nb equals nc in region C, ng in region G and ns in region S,

and wherew(x, z) is a binary function which assumes either the value

zero or one. Note that w(x, z) =- 0 for

x< 0 or x> a

If we restrict our discussion to transverse electric fields, then Max-

well's wave equation in all three regions can be written as

V Ey (x, z) + (Ln 2 (x, z)Ey (x, z) =0 (3-2a)

or equivalently
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22 2., x  2 2.
V E (x, z) + n E (x Z) + , z)(n - ng)sin (2-f' = 0

y by c

(3-2b)

Since the corrugation depth is small, we will assume that the total field
in the "perturbed" wavegulde can be approximately written as the super-
position of the confined modes of the waveguide without the corrugation,

i.e.,

Ey(x, Z) ZAm)(z)E( m) (x)exp [-ipm)z]
y y z

m

+ B(m)(z)E(m)(x) exp ip(m),] (3-3)

In Eq. (3-3), E(m)(x) exp [+ip(m)z] is the mth confined mode of the un-InE. 33) y z

corrugated waveguide. Thus

v2 [Eym) (x) exp [+ip(m)z] + ()2 2E (m) [ ) z1 = 0V x)+x £ 2) ng E (x) exp +Ip~ m

(3-4)
and(M) is the propagation constant of the mth mode and can be written asan z

(m) 21r (m) (35)Pz =- -g Cos 6 W(35

where -(m)(X) is the propagation angle of the mth mode within the guiding
glayer Not thae(m) (m) and E Cm)

layer. Note that em) Pmz) are all functions of X. Given the

geometry of the uncorrugated wavegulde, e(m), P(m) and E(m) are easily
g ' ydetermined [I]. For the sake of simplicity the waveguide will be assumed
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to be single mode. Equation (3-3) now reduces to

Ey(x, z) = A(1)(z)E(1 )(x) exp [-ip2 1)z] + B(Z)E (1)(x) exp [ip (1)z

(3-6)

The reflection and transmission coefficients r and t of the CWF

are defined as B(1)(0)/A(1)(O) and A(l)(L)/A(l)(o) respectively. A

simple physical argument indicates that B(1)(L) 0. Substituting Eq.

(3-6) into Eq. (3-2b), and then using Eq. (3-4), yields

A((Z)E (x) exp [-ipl~z] - 2ip(l)A(l)'(z)E (x) exp [-ip z]
y zzy

+ B(1 ) (z)E(1)(x) exp [ipl)z] + 2ip(l) B (1) (z)El)(x) exp [ipl)z]
y zz y

2:-7A)2w(x, z)(nc n) sin 2)(x) exp (-in z)g n k1ff ZZ)(Z)Ey(X.

" + B(1)(z)E(1)(X) exp (ip~l)z)] (3-7)

Now it will be assumed that E(1)(x) has been normalized so that

f [E()(x2  dx = 1 (3-8)

-CO

Furthermore, since the maximum corrugation depth, ho, is small compared

to the thickness, a, of the waveguiding layer
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E(1)(x) - E(l)(a) for w(x, z) 0 (3-9)
y y

Multiplying both sides of Eq. (3-7) by Ey1 )(x) and then integrating from

-® to - yields

A 0 (z) exp (.. (I )z - 21P (l)(z)A( 1' (z) exp ip(1)z]
z z

+ B(1)" (z) exp [ipl)z] + 21p(l)B( 1 ).(z) exp [ipEl)z]

f2(n 2- 2 )Alz sin (21rf(z)z) exp ]-f(l)zrE ()( 2 " (x, z) dx

.- n )B(1z) sin (27rf(z)z) exp (Ip (1) E f) w(x, z) dx
(.?5f) (nc - g (z l zJy (aJ

(3-10)

where we have used Eqs. (3-8) and (3-9). Recall that E(l)(a) is a func-

tion of X. The functions e(x) and h(z) are defined by

e(E) E (a]2  (3-11)
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* I

and

h(z) = w(x, z) dz (3-12)

Observe that h(z) is the corrugation height. Using the above two

definitions, Eq. (3-10) becomes

AM1)s (z) exp [-ipl)z] - 2ip(I)A(1)'(z)exp (-ip~l)zl

(1"()(1)B1'z)ep"(1)z

+ B (z) exp [ip l)z] + 2ip zl B~1)(z) exp [ip zi
2 2

/ n C e(x)h(z)A (z) exp [i(21f(z) - p l)z)z
'. ( ) 2ng 2n(

+i n " le(x)h(z)A( 1)(z) exp [-i(2irf(z) + p )z]
92n 2

9

- n  2 n2
c " e(x)h(z)B(1(z) exp [i(27rf(z) +p lz]

S2n

5

t 2 n 2  n 2

+ 2, n c " e(x)h(z)B 1(z) exp [-i(2wf(z) - p~l))z] 0 (3-13)
Ii +i n 2ng

Now Eq. (3-13) is identical to Eq. (1-8) if the following quantities

Sare equated.

~59



2ERIM RADAR AND OPTICS DIVISION

A(z) - A(1) Z)  (3-14a)

B(z) --+ B 01 (z) (3-14b)

n fng (3-14c)

E (1) (  (3-14d)

n 2 n2
An(z) .*'.c ge(x)h(z) (3-14f)

2n
:. g

Recall that for any given x, (lW,) , e(x) and p () are known. Thus,
g z()

if h(z) is also known, Abehs " multilayer dielectric theory, as pre-

sented in Chapter 1, can be used to find r. Let us divide the CWF into

N sections along the z axis with the reflection and transmission coef-

ficients of the jth section being denoted by r. and ti, respectively.
Then, as in Section 3,

N
I.tj t- op(1) (3-15)

, , j=1

and
00 2 n2

op(1) -f c 2 )( e(x)hl(z) exp [12Kng(cos 0 l)(x)]d

2n cos el 9 W

(3-16)

60



/LRIM RADAR AND OPTICS DIVISION

Combining Eqs. (3-15) and (3-16) yields

h'(z) = f " t 2 2c exp [i2Kn (Cos (1) (x))z]d n cos \
f= twiJJ (nc-n e(x) g ((9

C1

(3-17)

Using the properties of Fourier transforms Eq. (3-17) becomes

h(z) : 2Re 1t ( ) i2Kn (cos 60) (x flg cos e , ,,

fetpn 2 n')(e(,) z d

Thus, if r and t are known as a function of x, then the iterative tech-

nique outlined in Section 3 can be used to determine h(z).
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