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INTRODUCTION

This report is divided into three sections. In the first chapter,
the accuracy of coupled mode theory as applied to volume, dielectric,
reflection gratings which have unslanted fringes and either periodic or
aperiodic refractive index profiles is investigated. The accuracy is
evaluated by comparing coupled mode theory results with those obtained
by Abele's exact multilayer theory. For the examples considered, coupled
mode theory gave accurate results only for gratings having periodic
refractive index profiles.

In Section 2, a method for designing volume, dielectric, reflection
gratings having unslanted fringes is developed. The technique is ap-
plicable to two types of problems. The first type is one in which the re-
flectance, R, vs. angle of incidence and wavelength is specified, and the
second type is one in which the amplitude reflection and transmission co-
efficients, r and t, respectivly, vs. angle of incidence and wavelength are
specified. In both cases, the technique determines (approximately) the cor-
responding one dimenstional refractive index profile, n(z). The synthesis
method is jllustrated by two examples, and for these examples, the method
is seen to be reasonably accurate. In the appendix to Section 2, the re-
flection grating design approach is extended to multilayer dielectric filters.

In Section3, a formal mathematical analogy between reflection grat-
ings and corrugated waveguide filters (CWF) is demonstrated. The possi-
bility of designing CWF, using the iterative Fourier transform technique
developed in Section 2, is explored. It is emphasized that the mathe-
matics developed for CWF is not rigorous. Consequently, predicted re-
sults should be experimentally verified and attempts should be made to
develop a rigorous mathematical approach.
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Section 1

ACCURACY OF COUPLED MODE THEORY

In this section, we examine the accuracy of
coupled mode theory as applied to volume, dielectric,
reflection gratings which have unslanted fringes and
either periodic or aperiodic refractive index pro-
files. The accuracy is determined by comparing coupled
mode theory results with those obtained from Abeld's
exact multilayer theory. For the examples considered,
coupled mode theory gave accurate results only for
gratings having periodic refractive index profiles.
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1-1. INTRODUCTION

The study of wave propagation through periodic media dates back
almost one hundred years, and has had a significant impact in a number
of areas including the theory of electron energy bands in crystals,

microwave devices, diffraction gratings, and thin film optical devices.[]]
Analytic solutions to these wave propagation problems were generally
based on Floquet's Theorem. 2 During the 1960's, considerable effort
was directed toward finding exact solutions of optical propagation
through sinusoidally periodic volume gratings. In particular, C.B. ;
Burckhardt solved the problem of diffraction of a plane wave by a planar,
sinusoidal, dielectric transmission grating having unslanted fringes.[3]
Unfortunately, the solutions obtained were not in closed form and in-
volved approximate numerical techniques for their evaluation. These
numerical techniques were often nontrivial to implement. The numerical

- difficulties encountered together with the lack of insight gained from
these numerical techniques was an impetus for developing a simpler approach.

A natural candidate was coupled mode theory.[4’5] This theory had
already been used quite sucessfully to study microwave devices.[6]
In many instances, one is interested in a structure into which a small
perturbation has been introduced. The modes which propagate in the non-
perturbed structure are often easily computed. The perturbation causes
some of these modes to interact with one another. Generally the structure
is excited in such a manner that a single mode is launched into the
structure, and the perturbation causes this mode to excite and exchange
energy with other modes as it propagates. In coupled mode theory
approximate equations are derived to describe this coupling between
modes .

Kogelnik used coupled mode theory to derive closed form expressions

for plane wave Bragg diffraction from thick, planar, sinusoidal hologram
gratings. 7 The gratings could have arbitrary fringe stant and operate

in either the reflection or transmission mode. Kogelnik's results were
later extended to periodic gratings having arbitrary shape (i.e. not
necessarily sinusoidal). 8
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Unlike Floquet's Theorem, the coupled mode approach does not re-
quire that the perturbation be periodic. There has been some interest
in producing corrugated waveguide devices for filtering which have
nonperiodic corrugations. The characteristics of these structures
have been arulyzed using coupled mode theory.[9'13] It appears quite
difficult to determine bounds on the accuracy of the coupled mode
approach. We note, however, that Bragg diffraction from periodic or non-
periadic reflection holograms having zero fringe slant can be solved
;'-i exactly using a simple multilayer matrix technique developed by Abeld
1 i in the 1950'5.[]4'15 Thus, these reflection grating structures can be
_ used as a check on the accuracy of the coupled mode approach. A re-
flection hologram of the type discussed above is analogous to corrugated
- ; waveguide devices and consequently takes on added importance.[4]

Sakuda,Stoll and Yariv have compared -coupled wave theory results

i and exact results (derived via Floquet's Theorem) for sinusoidally cor-

j rugated waveguides.[16'17] Their analysis indicated that the two

; approaches agree reasonably well. Moharam and Gaylord (18] also

N ran comparisons for unslanted, sinusoidal, reflection and transmission

; holograms. For reflection holograms having unslanted fringes, their
analysis indicated that the two approaches give results which are in

E . excellent agreement. For slanted fringes they show substantial dis-

. agreement, but they have assumed very high refractive index modulations
A (An/n as high as 0.29).

In this section we present four examples inwhichwe compare results of
: 3 coupled wave theory with those of Abeles' exact multilayer theory for re-
; flection gratings having unslanted fringes. The examples show that there
"\ is substantial disagreement between the two approaches for gratings hav-
‘ ing nonneriedic refractive index profiles.

| 1-2, PROBLEM STATEMENT

! Consider a pure dielectric material which has a refractive index
variation, n(z), only along the z-axis as shown in Figure 1-1,

]
i
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FIGURE 1-1. DIELECTRIC MATERIAL HAVING A REFRACTIVE
INDEX VARIATION IN THE Z DIRECTION. Also
shown are incident, reflected and transmitted beams.




[Rl“ RADAR AND OPTICS DIVISION

The refractive index variation is written as
n(z) = ny * an(z)sin(2nf(z)z) (1-1)

where
an(z)<< Ny (1-2)

The material is éssumed to be of infinite extent in both the x and y
dimensions. Regions C and S shown in Figure 1-1 have refractive indices
nc = n(o) and ng = n(D) respectively. An s polarized (electric field
along the y axis) plane wave of wavelength ) is incident upon the material.
Some of this incident field is reflected, and the remainder is trans-
mitted. The incident electric field amplitude is designated ER, while
the reflected and transmitted electric field amplitudes are designated
EL and ER respectively. We wish to determine the reflection and trans-
mission coefficients r and t defined by

E
A
r= ¥ (1-3a)
ER
E
t2 E& (1-3b)
R

The general procedure for determining r and t is to solve Maxwell's

Equations in the three regions shown in Figure 1-1, and then match the
tangential electric field and magnetic field components of these solu-
tions at the boundaries separating regions C and G and regions G and S.

We proceed as follows: The wave equation in all three regions
can be written as

2
vzey(x.z) + (41 nz(z)sy(x,z) =0 (1-4)

where E s the electric field component along the y axis. Since
an(z) << n,s We can write

2

2
n“(z) = o

+ ZnOAn(z) sin 2nf(z)z (1-5)

6
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4
; In region G, Eq. (1-4) has a solution of the form
By
7 ;f Ey(x,z) = A(2)exp(-i(p, x + p, 2)) + B(z)exp(-i{p, x - 0, 2})  (1-6)
1 :
B3 where {
8 Bom s 7 g
% Py = 3 Mo Sine (1-7a) 3
,. q A [
' % o, = §§ n, oo (1-7b) ';
i

[

Substituting Eqs. (1-5) and (1-6) into Eq. (1-4) yields

A" (z)exp(-1(pyx + p,2)) - 2ip, A'(z)exp(-ilp,x + p,2))

pg Alz)exp(-ilp, x + 0,2)) - p,z( A(z)exp(-i{p x + p,2))

+

B"(z)exp(-i{p,Xx- 0,2)) + 2ip, B'(z)exp(-i(o,x - p,2))

pi B(z)exp(-i{oyx - p,2)) - pi B(z)exp(-i{p,x - p,2))

e e
[}

+

2 2
(B n) Alz)exp(~i(o,x +0,2)) + (5l n)) Bla)exp(-il,x - 0,2))

2—})2“9 an(z) A(z)exp(-ilp x +o,2) + i2nf(2)2)

1
-—te
—

v
-+

2
i(gﬁno) an(z) A(z)exp(-i(pxx + pzl) - i27f(z)z)

1(2'})2"0 an(z) B(z)exp(-ilo x - p,2) + i2nf(z)2)

. et S o —

+ 1'(y){)zﬂ_,ozsn(Z) B(2)exp(-i{p x - p,2) - i2nf(2)2) = O (1-8)
3 : Using Eqs. (1-7a) and (1-7b), Eq. (1-8) reduces to
LF A"(z)exp(-i(pxx + pzz) - 2ip, A'(z)exp(-i(pxx + pzZ))

+ B"(z)exp(-i(oxx - pzz)) + Zipz B'(z)exp(-i(pxx - pzz))
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i(giqznoAn(z) A(z)exp(-ile x - p,2z) + i25(2)2)

+

i(g§fnc an(z) Az)exp(-ile x + 3p,2) - {a8(2)2)

i(ﬁ;.)znoAn(z) B(z)exp(-i(p,x - 3p,2) + ias(2)2)

+

' 2
1(2—;') n,an(z) B(z)exp(-Ho x + 0,2) - 1a3(2)2) = 0 (1-9)

‘ where A
: a3(z) = 2nf (2) - 2o, (1-10)

It is important to note that no approximations have been made in
, the derivation leading up to Eq. (1-10).

1-3. COUPLED MODE THEORY

It is common in coupled mode theory to derive from Eq. (1-9) two .
coupled mode differential equations when Ag(z) is small. First, it
is assumed that only terms in Eq. (1-9) which have approximately the -
same phase factors will significantly interact with one another.
Second, it is assumed that A(z) and B(z) change phase slowly as com-
pared to exp(-ipzz). With these assumptions Eq. (1-39) becomes

2
o A (z) - 2ip, A'(2)* 1‘(2—‘;) n,An(z)exp(-iag(z)z)8(z) = 0 (1-11a)
\ )
- B"(z) + 2ip, B'(z)- i(gg) noAn(z)exp(iAB(z))A(z) =0 (1-11b)

Eqs. (1-11a) and (1-11b) are further simplified by making the assumption
) . that

@ |A"(z)|<<lpZ A'(z)| and |B"(2)] << |o, B'(2)] (1-12)

With the above approximation, Eqs. (1-11a) and (1-11b) become
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o

2
A'(2) = 5— (&) n An(z)exp(-i88(2)2)B(2) (1-13a)

1
P2
: 2
; ] B'(z) i%;-(g;) noAn(z)exp(iAB(z)z)A(z) (1-13b)

Eqs. (1-13a) and (1-13b) are the first order coupled mode equations
which commonly appear in the literature. Since the refractive

index is continuous across the boundaries between regions C and G and re-
; gions G and S, Maxwell's boundary conditions require

- 1-14a)
A(0) ER ( a
? | B(0) = | (1-14b)
- (1-14¢)
f A(D) ER ¢
: B(D) = 0 (1-14d)

| : Thus’
i r= %%%% (1-14e)

- _ A(D)

-i t = Al0Y (1-14f)

1-4. ABELES' EXACT MULTILAYER THEORY

. In the 1950's Abelés developed a convenient numerical matrix

P technique for solving Eq.(1-9)g14] First, the structure shown in

" Figure 1-1 is divided intothin slabs each parallel to the x-y plane.

‘ The slabs are chosen to be sufficiently thin so that the refractive

': index n(z) can be assumed constant within each thin slab. Thus, a

‘ solution of the wave equation within the mth thin slab, which is assumed
to have a constant refractive index of L is

Eym(x.Z) = Apexp{~i(p ox +p, 2)) + Baexp(-i(o,nx ~ 0,02)) (1-15)
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where A
A 2q .
Pym = ~x "m SN Oy (1-16a)
4 2n
Pom = % Mg COS O (1-16b)

Form =0 and m = N+1 Eq. (1-15) is also a solution of the wave equation
in the half space regions € and S respectively.

By requiring the tangential components of the electric and magnetic
fields to be continuous across the boundaries between the slabs,
it is straightforward to show that

Moo [ A

m m+1
where
Nae1S M B4y = Nosing, (1-18)
N, €os 6.
Yo = —5— (zo is the characteristic impedance (1-19)
)
of free space)
O 4 g%-nm d, cos o (d_ is the thickness of the (1-20)
mth thin slab)
1 1
A
v, = (1-21)
L Vm o
exp(ig,) 0
y ¢ m (1-22)
| 0 exp(-i¢ )

Now with the following definitions

10
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it immediately follows that

L

Furthermore in Fig. 1-1,

BN+1 =0
Therefore,
]
Ao 511
t=AN+]=L
LI

1-5. EXAMPLES

(1-23)

(1-24)

(1-25)

(1-26)

(1-27)

(1-28a)

(1-28b)

We have calculated r vs A for five different refractive index
profiles using both the exact multilayer technique and the coupled
mode approach. The coupled mode equations (1-13a) and (1-13b) were

solved numerically using Runge-Kutta. The results are shown in

1

“
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Figure 1-2. The multilayer technique gives exact results of course, only
if the refractive index is constant within each of the slabs. This will
be the case, in the limit, as each of the slab thicknesses go to zero.
The solid curves given in Figure 1-2 were obtained by decreasing all the
slab thicknesses until further reductions had no appreciéb]e affects upon
the multilayer theory predictions. Excellent agreement is seen to exist
for the periodic grating but the agreement is poor for the nonperiodic
gratings.

Several assumptions have been made in the derivation of the first
order coupled mode equations (1-13a) and (1-13b). Gaylord helieves that
the assumption given by Eq. (1-12) may contribute the most error. [18]
Kogelnik has shown that this assumption is justified for sinusoidal
gratings, but we feel that his argument is intorrect. Our reason-
ing goes as follows:

For a sinusoidal grating at the Bragg angle Ag(z) = 0 and An(zZ) is
a constant. Thus, Eqs. (1-13a) and (1-13b) may be rewritten as

A'(2)
B'(z)

KB(z) (1-29a)
KA(z) (1-29b)

where K is a constant. Combining Eqs. (1-29a) and (1-29b) yields
A"(Z) = KZA(z) (]-30)

Now for a reflection grating with unslanted fringes B(D) = 0 and
A (D) # 0. Thus Eq. (1-29a) implies

A'(D) = 0 (1-31)
while Eq. (1-30) implies
A"(D) # 0 (1-32)
Therefore,
|A"(D){ >[p,A'(D)] (1-33)

which contradicts the assumption of Eq. (1-12) for z=D.

12
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1-6. CONCLUSIONS

We have shown by example that coupled mode theory can give in-
accurate results under certain conditions. Furthermore, one of the
common assumptions used with coupled mode theory, i.e., neglecting
second derivatives, has been shown to lack justification. It ap-
pears that great care must be taken when attempting to use coupled
mode theory for analyzing optical propagation through gratings and
corrugated waveqguide filters.

Ay 8

14




DERIM

el
.

10.

1.

12.

13.

14,

15.

RADAR AND OPTICS DIVISION

REFERENCES /SECTION 1

C. Elachi, "Waves in Active and Passive Periodic Structures: A
Review", Proc. of IEEE, 64, No. 12, p. 1666, Dec. 1976.

E. C. Titchmarch, Eigenfunction Expansions Associjated with Sec-
ond Order Differential Equations, Part II, Oxford University Press,

London, 1958.

C. B. Burckhardt, "Diffraction of a Plane Wave at a Sinusoidally
Stratified Dielectric Grating", J. Opt. Soc. Am., 56, No. 11,
Nov. 1966.

A. Yariv, Introduction to Opticat * .itvonics (2nd Ed), Chap. 13,
Holt, Rinehart and Winston, Few w&st, .

T. Tamir: Editor, Topics in Apx'-:a Physics Vol. 7 (Integrated
Optics, Chap. 2), Springer- “&¢fﬁu New York, 1979.

W. H. Louisell, Coupled Mode and Parametric Electronics, dJohn
Wiley & Sons, New York, 1960.

H. Kogelnik, “Coupled Wave Theory for Thick Hologram Gratings",
Bell Sys. Tech. J., 48, No. 9, p.2909, Nov. 1969.

R. Magnusson and T. K. Gaylord, "Analysis of Multiwave Diffraction
by Thick Gratings J. Opt. Soc. Am., 67, p. 1165, Sept. 1977,

H. Kogelnik, "Filter Response of Nonuniform Almost-Periodic
Structures", Bell Sys. Tech. J., 55, No. 1, p. 109, Jan. 1976.

D. C. Flanders, H. Kogelnik, R. V. Schmidt, and C. V. Shank,
Appl. Phys. Lett., 24, p. 194 Feb. 15, 1974,

K. 0. Hill, "Optical -Waveguide Band-Rejection Filters: Design"
Appl. Opt., 13, No. 2, p. 2886, Dec. 1974.

M. Matsuhara, K. 0. Hill, and A. Watanabe, "Optical Waveguide

Filters: Synthesis", J. Opt. Soc. Am., 65, No. 7, p. 804, July 1975.

R. Shubert, "Theory of Optical-Waveguide Distributed Lasers with
Nonuniform Gain and Coupling", J. Appl. Phys., 15, No. 1, p. 209,
Jan. 1974,

Z. Knittl, Optics of Thin Films, (Chap. 2), John Wiley & Sons,
New York, 1976.

K. Winick, Optical Propagation Through Horizontally Stratified
Quasi Sinusogaal Phase Gratings, Pﬁ.%. Dissertation University
of Michigan 1981.

15




RADAR AND OPTICS DIVISION

DERN

16.

17.

18.

REFERENCES /SECTION 1

K. Sakuda and A. Yariv, "Analysis of Optical Propagation in
a Corrugated Dielectric Wavequide", Opt. Comm., 8. No. 1, p. 1,
May 1973.

H. Stoll and Yariv,"Coupled-Mode Analysis of Periodic Dielectric
Waveguides", Opt. Comm., 8 No. 1, p.5, May 1973.

M. G. Moharam and T. K. Gaylord, "Rigorous Coupled-Wave Analysis
of Planar-Grating Diffraction", 71, No. 7, p. 811, July 1981,




[R'M RADAR AND OPTICS DIVISION

Section 2
AN ITERATIVE FOURIER TRANSFORM DESIGN TECHNIQUE

In this section an iterative technique for designing reflection
gratings having arbitrary reflectance vs. wavelength (or angle of
incidence) characteristics is presented. The technique is based
on Fourier transforms and is similar to the multilayer dielectric
stack design approaches developed earlier by Delano and Sossi.
Reflection grating design, using the iterative technique, is illus-
trated with two examples. In addition, the reflection grating design
technique is shown in Appendix A, to be applicable, with slight
modification, to the multilayer dielectric stack design problem.
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2.1 INTRODUCTION

Two approaches for determining the reflectivity characteristics
of periodic and aperiodic reflection gratings, first order coupled
mode theory and Abeles' multilayer theory, were presented in section
one. The two approaches were seen to give identical results for
sinusoidal gratings but substantially different results for some
aperiodic gratings. Recall that Abeles' multilayer theory is
known to be exact, whereas first order coupled mode theory is
approximate. A formal mathematical analogy between corrugated
waveguide filters (CWF) and reflection gratings will be demonstrated
in chapter three, thus raising the possibility of applying reflection
grating design and analysis techniques to corrugated waveguide filters.
It is the aim of this chapter to describe an analytic approach for
designing reflection grating filters. The approach allows one to deter-
mine the refractive index profile, n(z), which results in some user
specified grating reflectivity vs, wavelength characteristic. The
reflection gratings to be considered will be structurally identical
to those described in section one.

Analytic design techniques for reflection gratings and cor-
rugated waveguide filters have been under investigation during the
Tast ten years. Kogelnik has computed the characteristics of some
aperiodic CWF, but has not indicated any approach for designing 03
filters which would have specified reflectivity characteristics.

Snubert has demonstrated that step variations in the periodic
corrug&tions of a distributed feedback laser can result in lcwer
threshold gains, greater higher order mode rejection, and unidirec-
tional operation, 2 Matsuhara, et. al. have even proposed a
general technique for CWF synthesis.[3] Kogelnik's analysis
approach and Matsuhara's analysis and design technique are suspect,
since they depend on first order coupled mode theory. Furthermore,
even within the framework of first order coupled mode theory,

Matsuhara's approach requires one to make several questionable assumptions.
18
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Design techniques for multilayer dielectric filters have been,
and are still actively being, investigated. [4-6] The reflection
grating design approach, to be described below, relies heavily
on multilayer dielectric filter theory. It is quite similar to some
of the multilayer dielectric Si}ﬁ r Fourier Transform techniques
developed by De]anoE7'8]Soss , jegis.[]zl and Knitt1[5]. Refer-
ence 8 provides an excellent overview of multilayer dielectric
filter Fourier synthesis techniques. Greenewalt, et. al. (13] has
also developed a Fourier synthesis technique. In Appendix A,our
reflection grating design approach is extended to multilayer di-

electric filters.
2.2 REFLECTION COEFFICIENT DIFFERENTIAL EQUATION

We start by deriving a differential equation for the reflection
coefficient. Consider the pure dielectric shown in Figure 1-1 which
has a refractive index variation n(z). The dielectric is assumed
to be of infinite extent in both the x and y dimensions. Regions
c and s have refractive indices ne = n(0) and n.= n(D), respectively.
An s polarized (electric field along the y axis) plane wave of
wavelength A is incident at angle of 60 upon the dielectric. Some
of the incident field is reflected, and the remainder is transmitted.
The incident electric field amplitude is designated ER, while the
reflected and transmitted electric field amplitudes are designated
EL and ER’ respectively. The reflection and transmission coefficients
are defined by Equations (1-3a) and(1-3b).

In all three regions, the total electric (E) and total magnetic (H)
field components can be written as

Ey(x,z) = U(z)exp(-ipxx) (2-1a)
Hx(x,z) = V(z)exp(-ipxx) (2-1b)
Hz(x,z) = w(z)exp(-ipxx) (2-1¢)

19
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where

oy = 2—; n(0)sin (2-1d)

From two of Maxwell's Equations

and VXE. = - 10)]_1(2)“ (2-2&)

i VxH = T + iwe(z)E (2-2b)
where
2m

W= ¢ (c is the speed of light in vacuum)
u(z) is the permeability
‘ e(z) is the permittivity

it follows that

oF
5;¥-= 1'wu(z)HX (2-3a)
’. 3E
i 5§¥-= - iwu(2)H, (2-3b)
! BHX 3HZ
| S ime(z)E.y (2-3c)
;* ; Substituting Equations (2-1a) - (2-1c) into Equations (2-3a) - (2-3c)
r yields
U'(z) = jwn(z)v(z) (2-4a)
_ipxu(z) = - iwmu(z)W(z) (2-4b)
vi(z) + ipxw(z) = jue(z)U(z) (2-4c)

Equations (2-4b) and (2-4c) can be combined to give

V(2) = (- gy ¢ we@)U() (2:5)

20
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The permeability and permittivity of free space will be designated
M, and €g respectively. The quantities 6(z), y(z) and B(z) are
defined below

cosze(z) 8. u(g)z(g) sinZ 8, (2-6a)
A 1/2

v(z) = (u(z)e(z)/uge,)  cos 6(z) (2-6b)

8(2) 2yfu(@)/e(2)feos o(2) (2-6c)

k=2 (2-6d)

Using the above four definitions, Equations (2-4a) and (2-5) can be
rewritten as
U'(z) = iKky(2)8(z) Vv(z) (2-7a)

V' (z) = iK(v(z)/8(2))U(z) (2-7b)

T e e L e T N A~ i T ) B AT A Y 5 71 -

The input impedance, Q(z) is defined by

Q(z) 2 %%%% (2-8)

If follows from Equations (2-7a) and (2-7b) that

Q'(2) = iK y(z)8(z) - iK(v(2)/8(z))%(z)  (2-9)

Assume that the section of the dielectric to the left of the
plane z = z, (0 <z, < D) is replaced by a homogeneous dielectric
of refractive index n(zo). Further suppose that an s polarized
plane wave, having x propagation constant, ¢, and electric field strength
ER’ is incident from the left onto the z = z, plane. A portion of the in-
cident plane wave is reflected and the remainder is transmitted. From Eq.
(2-3a) and (2-3b) the incident (i) and reflected (r) plane wave fields can
be written as

21
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Eiy(x,z) = ERexp(-i(pxx+ pZ(ZO)Z) (2-10a)
Pz(zo) .
Hiy(x,2) = - “wulzg] Eg exp(~i(p,x + p,(z,)2))
(2-10b)
P
Hiz(x,z) = '357%2'7'ER exp(-i(pxx + pz(zo)z)
° (2-10c)
Ery(x,z) = ELexp(-i(pxx - oz(zo)z)) (2-10d)

p(z )
er(x,z) = '%ﬁfg_)EL exp(-i(oxx - oz(zo)z))(Z-IOe)
0

p
H.,(x.2) = 'Ei‘%ig) E, exp(-i(p,x - p,(z,)2))
(2-10f)

where

2
+J(g;\—r)n2(zo) - (2-10q)

p,(2)

Continuity of the tangential electric and magnetic field components
across the z = z, plane requires that

Eiy(x’zo) + Ery(x’zo) = U(zo)exp(-ioxx) (2-11a)

and
Hix(x’zo) +er(x,zo) = V(zo) exp(-ipxx) (2-11b)

Combining Equations (2-10a) through (2-11b) yields

1+ E /ER uu(zo) i U(zo)

= Q(z,) (2-12)
-1+ E/Eg p,(2)) V(z,)

22
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But by Equations (2-1d), (2-10g), (2-6a) and (2-6¢)

o (z,)

pz.rzo)- = B(Zo) (2-13)

Using Equations (2-13) and the definition of the reflection coefficient,
r, given by Equation (1-3a), Equation (2-12) can be rewritten as

1+ r(zo)

:—T-:—;ngj B(z,) = Q(zy) (2-14)

Finally substituting Equation (2-14) into Equation (2-9) results
in the following differential eguation for r(zo)

. . 8'(z,) 2 -
r (zo) = 12Ky(zo)r(z°) - ?BTEZT'(] -r (zo)) (2-15)

Equation (2-15) was originally given by Walker and wax[]4] and Kofink[ls].

When Ir(zo)l2 << 1, then by Equation (2-15)

, . 3'(20)
r (zo) = 12KY(z°)r(z°) - 73_17;) (2-16)

The solution, r(z), of Equation (2-16) with equality assumed is

b4 z p
r(2)exp(- iszY(c)dc) cro) = - [ BAR) expr- 21k fv(z)dcIdp
[ et 2 f

° 02-17)

Imposing the boundary condition r(D) = 0, it immediately follows that

0 P
r(o) =/ %exp[- i2K ﬁ(c)dcldp (2-18)
(o] o
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The refractive index n(z) is given by
n(z) = Eﬁﬁlgiil (2-19)
0°0

We restrict our analysis to nonmagnetic dielectrics, and therefore,

u(z) = g (2-20)

The definitions given by Equations (2-6a) - (2-6¢) can now be
rewritten as

2
cosze(z)é 1 - :7%3%.Sin26° (2-21a)
Y(z) = n(z)cos 6(z) (2-21b)
1J /
B(z) = ﬁ¥§7§§§512) (2-21c)

From Equations (2-21a) and (2-21c)

1 dg(z) _ n'(z) - n'(z)
8(z) dz n(z)cos2 8(z) n(z)[ 1 - nzio; sinl 90]
n“(z
(2-22a)
z z 2 172
- n (o0 . 2 _
fo v(z)dg = fon(cm - ?{BL sin? 6] dt (2-22b)
But by Equations (1-1) and(1-2)
nfo) . (2-23)

ne
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and so
1 dglz) . n'(z)
® 2-24a)
g(z)  dz 2 (
nocos eo
z 2
J/;(;)d; i/;(;)cos eod; = no(coseo)z {2-24b)
0 0

Finally, combining Equations (2-18) with (2-24a) and (2-24b) yields

D
r(o) = ———ﬂliél—— exp[-iZKno(coseo)z]dz (2-25)

o 2n°cos eo
The reflection coefficient, r(o), times coszeo is a function of
cos §
3 O as can be seen from Equation (2-25). There are several places

in this section where n(z) is assumed to be of the form given by
Equations (1-1) and (1-2). In Appendix A, the results derived in this
chapter are extended to n(z) of arbitrary form.

Now divide the structure shown in Figure 1-1 into N slabs each
parallel to the x-y plane (see Figure 2-1)
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The jth slab has thickness dj, and refractive index nj(z) given by

j-1
A .
nJ-(Z) = n(z - 2 d)) Jj#1
2=1

n(2) = n(2) (2-26)

Thus, we can write

D
2 2cos ©

o, & /. -
2n cos™ 8, F( ——)‘—) = /;1 (z) exp[-12Kn°(cos eo)z]dz

0 N j-1
= P +Z Psexp[i2 Z% ] 12-27a)
J=2 2=1

where d.
A J
PJ. =fnj(z)exp[-12Kno(cos 6,)2]dz (2-27b)
0
and A
¢; = Kng(cos 6;)d; (2-27c)

By defining n(z) to be identically zero for z> D and z< 0, we can write

2 2cos eo / ‘
2n,cos” 6, F(———r—) = n'(z) exp[-12Kno(cos eo)z]dz (2-27d)

-0

2.3 TRANSFER MATRIX DEVELOPMENT

Consider a pure dielectric material which has a refractive index
variation along the z axis as shown in Figure 2-2.

27




Ej exp(-i(p x~p 2)]

7 Eesplilp,x+7,]

‘ Ey exp[-i(p x-
ERexp(-i(p,x+p,7)] le—p —] LexP[-i(pyx - p,7)]

ﬂ ~
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" FIGURE 2-2, DIELECTRIC MATERIAL HAVING A REFRACTIVE
INDEX VARIATION IN THE Z DIRECTION. Also
shown are two planewave fields at the front and rear surfaces.
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If, as indicated in the Figure 2-2, the electric fields on each side

of the dielectric material are represented as the sum of the two plane
waves propagating in opposite directions, then EL and ER can be related
to EL and ER through a two by two transfer matrix S. The relationship
is given explicitly by

Eg S Sz IEe
= (2"28)
EL S)1 Spod LEL

The right-going reflection and transmission coefficients r and t,
respectively, and the left-going reflection and transmission coef-
ficients, r and t, respectively, are defined by

r = |rlexeliv] & &= (2-292)
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If follows immediately from

and so

L3~

[t]exp(ir]

Sz

ne>

|*|exp[iy]

m ]
r -

~ ~ A E
|tlexplir]2 L

Equations (2-28) and (2-29) that

e XJ

ct

(2-29b)

(2-29c)

(2-29d)

(2-30a)

(2-30b)

(2-30c)

(2-30d)

(2-31a)

(2-31b)

(2-31c)

(2-314d)
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(2-32)
r Et - ;r

Stoke's reversibility theorem L16] requires that

*o * (2-33a)
tr+rt=20
and
; tRE + opre = ] (2-33b)
; where * denotes complex conjugate. -
< Equation (2-33a) implies
i ¥ = -rvexp[i2r] (2-34)
' Combining Equations (2-33b) and (2-34) yields
: ;t - ;r = exp [i2r] (2-35)

Finally, with Equations (2-34) and (2-35), Equation (2-32) becomes

¥
s 1 r*exp[i2r]
- % (2-36)
r expli2r]
"
' The matrix S‘j is defined by
‘ 1 rgexp[Izer
‘. oy
jc fj (2-37)
rs exp[izrj] .

3
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Sj is the transfer matrix associated with the jth dielectric slab
shown in Figure 2-1. Thus, the transfer matrix, S, of the entire

structure shown in Figure 2-2 is |

N
s= T S; (2-38)
31

Using mathematical induction, it can be shown that[”]

(N) (N)
\ \ Ui 12
TS “Te, (2-39)
3=1 =1 T ) N
2 22 -
where
Cﬂ) = 1 + sum of all ep(m), Ly < N (2-40a)
Cg) = sum of all op(m), Ly < N (2-40b)
N
e . (N exp[i2(3 T )] (2-40c)
127 7 2 2 '
J J
(N) - (NS 3
Con’ = &) exp[iZ(jz::] ;)] (2-40d)
and where ep(m) is an expression of the form
L -1
I m-] j+] »
bz bf. ...bz exp['l Z 2 (] _ (_])J)r ]
172 m j=0 net, n
J

A% for j an odd integer
b ={ J

L

J rg for j an even integer
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he

0 (2-41a)

ne

To

m is a positive even integer and Lyaky coes Iy

is a monotonically increasing sequence of positive integers

and
op(m) is an expression of the form e o]
j+1
m-1 '
by b, ...b, exp[i L X (1- -3 ]
1 %2 m J=0 n=g,
A rj for j an odd integer
b ={
2j rg for j an even integer
Y
2o = 0 (2-41b)
a
Iy = 0
m is a positive odd integer and L1s Rps weenty is a monotonically
increasing sequence of positive integers.
Using Equations (2-30a), (2%30b), (2-39) and (2-40), we can now
write '
(N)
o= €21 _ sum of all op(m), m S N (2-42a)
CIN) T + sum of all ep(m),zm <N
n -

()

1L J=1 7
t- c(N)- T+ sumof all ep(m), ¢, <N (2-42b)
1 B
g <N
% _ sum of all op(m), - (2-42¢)

)
i=1
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As an example, for N=4 the above three equations become

ri#rpexp(i2n) + raexp(i2(ry + 1,)) + ryexp(i2(ry* 1, + 13))
+ r]r;r4exp(12 rs) + r2r3r4exp(12(rl +T,)) + P]r;r3exp(i2r2)
+ r]r5r4exp(12(r2 +T4))

e 1+ rTrzexp(iZP]) + r;r4exp(12F3) + r;rzr;r4exp(i2(rl +T5))
+ r;r3exp(izrz) + r?r3exp(12(rl +1,) + r;r4exp(1'2(r2 +Tay
+ r?r4exp(i2(F] +T, +F3))

- t]t2t3t4exp(1'(I‘1 +Ty) + Ty 4+ F4))
1+ r;rzexp(izrl) + r;r4exp(i2r3) + r?r2r§r4exp(12(T1 +T,))
+ r;r3exp(12P2) + r?r3exp(12(rl + Pz)) + r;r4exp(1'2(r'2 + F3))
+ r?r4 exp(iz(r1 + T, + F3))
ryt :Zexp(i?F]) + r3exg(12(F]'+ FZ)) + r4exp(ii(F] + ?2 + P3))
+ r1r3r4exp(12F3) + r2r3r4exp(12(F] +F3)) + r]r2r3exp(12F2)

v + r]r';r4exp(i2(r‘2 + T3))

‘ t1tatsty

Formulas analogous to Equations (2-42a) and (2-42b) were first derived
for multilayer dielectric stacks b, Crook[]gl. Equations (2-42) have
been exploited, by Pegis[lgl, De]ano[7'8], and Knittl[sl to aid in the
design of mulitlayer dielectric stacks and inhomogenous layers.

34
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2.4 THE BASIC DESIGN EQUATION

When n(z) is given by Equations (1-1) and (1-2) and when
lrj(zo)|2 <« 1 for0c<z < dj’ then from Equation (2-25)

%%z
d.
r. = ’ nj(z) .
i® ——————?——-exp[-12Kno(cos eo)z]dz (2-43)
0 2n_cos“p
) )
and o '( )
N n.(d. - z .
rs :J/P i\ exp[-12Kn°(cos eo)(dj - 2))dz
dj 2nocos 8o dj
- . n:(z)
-exp[-lano(cos eo)dj] A —g————7~—-exp [iZKnO(cos eo)z]dz
2n cos @
) 0
I - :
> rjexp[-12Kno(cos eo)dj] (2-44)

Combining Equations (2-43), (2-44) and (2-34) yieids
ry = -iKno(cos eo)dj (2-45)

2
when |rj(zo)| <1, 0<z, f.dj'

We note that the condition [rj(z°)|2 «<l, 0<z,
satisfied by choosing dj sufficiently small,

< dj can always be

According to (2-41b),
(sum of all op(1), g <Ny=ry + rzexp[iZF]] + r3exp[12(r1 + Fz)]
+ ...+ rNexp[iZ(F] It IN_])]
(2-46)

35
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o

Now from Equations (2-43), (2-45), (2-46), and (2-27), it follows that

2no(coszeo)(sum of all op(l),zli N)f/ n'(z)exp[-ZKno(coseo)z]dz
® (2-47)

2
when |rj(zo)| <1, 0< z, < dj

. According to Equation (2-41), op(m) is a product involving an

: odd number (m) of rj's. Similarly, ep(m) is a product involving an

) even number (m) of rj's. When the dj's are small, then the r.'s will

F be small. Thus, we expect [op(m)| and |ep(m)| to decrease rapidly as m
- increases. If all op(m) and ep(m), m > 1 are neglected then Equation
(2-42a) becomes

r = sum of all op(1), 2 <N (2-48a) -

If all op(m) and ep(m), m > 2 are neglected then Equations (2-42a) and
(2-42b) become °-

£, <N
, .. sum of all op(1), -
; " T+sumallep(2), 2, <N (2-48b)
- and
A r _ sum of all op(1), YN (2-48c) 3
t - j
)
(j:] J

'f It is expected that Equations (2-48b) and (2-48c) are more accurate
' than Equation (2-48a) since fewer terms were neglected in their
derivation.

! Recall that n(z) is linked to op(1) through Equation (2-47). Thus,
| Equations (2-48a) and (2-48c) can be rewritten as

36
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2 .
2n°(cos 8, )r i/rn’(z)exp[-IZKno(cos eo)z]dz (2-49a)
and N *®
2 . .
Zno(cos 8, )%(E tj)»;/n (z)exp[-12Kn0(cos eo)z]dz (2-49b)

-0

respectively. Equation (2-48b) appears to be of little use, since a
simple expression for the sum of all op(2), g <N in terms of n(z)

is not known. The right hand sides of Equations (2-49a) and (2-49b)

are the Fourier transform of n'(z). By the property of Fourier transforms

[+ ]

iZno(cos 60) . N
n‘(z)exp[-iZKno(cos eo)z] = x n(z)exp[-iZKno(cos eo)z]dz
- i (2-50)

Using Equation (2-50), noting that n(z) is a real function, and taking
the inverse Fourier transform of both sides of Equations (2-49a) and
(2-49b), yields

-ix 2n,cos 8, i
n(z) = 2Re EEE—EZ- r exp[-2Kn0(cos eo)z]d(————if———q (2-51a)
0
and © N
2n_cos 9
n(z) = 2Re -ix [(Tr tj)exp[—iKno(cos eo)z]d(——o)\—-—g)
cos 0. t\j=1
(V) (2-51b)
0

respectively. In Equations (2-51a) and (2-51b), Re denotes the real
part. Equation (2-51a) is only valid in the reqgime of low reflectivity,

i.e. small |r|2, whereas Equation (2-51b)should also be valid in regimes where

the reflectivity is not low. Equation (2-51b) is the central result of
this chapter and will form the basis of our iterative Fourier Transform
reflection grating design technique.
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The Fourier Transform relation between r and n(z) for small r,
given by Equation (2-51a) is well knownfzo].

A
In our design technique, R = |r|2, is assumed to be given as
. cos e . .
a function of _—_X_g’ and the objective is to find the refractive
index, n(z), which results in this R vs, EBEng-characteristic.

Since ne = N (see Figure (1-1))energy conservation dictates that
Ir)2 + Jtj% =1 (2-52)

Thus, Equation (2-51b) can be rewritten as

o R 1/2 i ] 2n°cos
R ZRe/ S w0\ [tl/erelizkageos 6g)zld(—5—

0 (2-53)
where N

expli(y - I' + Z] r,)] (See Equations (2-29)) (2-54a)
k:

a

exp[i{(Y - T - Kno(cos eo)D] (See Equation (2-45) and Figure (2-1))
(2-54b)

Y and T are the phases of the reflection (r) and transmission (t)

coefficients, respectively. Also note that a 1is a function of
cos o, cos 8,
- In general, R vs. X will be specified by the design,

cos @ .
and avys, ; Q- will not be specified.

Our design procedure goes as follows:

1. A refractive index, n(z), is chosen.
a is assumed to be identically 1.

3. Using Abele's multilayer theory, the tj's are computed
Iteration from n(z).

Process n(z) is calculated from Equation (2-53).

The corresponding R vs. cos 6_/x characteristic is computed.

6: Step 3 is repeated until n(z) changes little from one
iteration to the next.
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7. The resulting n(z) is the desired design.
2.5 DESIGN EXAMPLES

The procedure outlined above was used to design two reflection
grating filters. The first filter was specified as having the
reflectance vs. wavelength characteristics shown in Figure [2-3a],
while the second filter was specified as having the characteristic
shown in Figure [2-3b]. The evolution of the designs, as a function
of the number of iterations, is shown in Figures [2-4 and 2-6]. Given
in Figure [2-5] is the refractive index profile corresponding to the
last iteration shown in Figure [2-4]. Similarly Figure [2-7] gives the
refractive index profile corresponding to the last iteration shown in
Figure [2-6]. The refractive index profile is displayed by plotting
both an(z) (solid curve) and f(z) (dashed curve) as a function of z.
For both designs, no = 1.5, grating thickness = 180 ym, and 0, = 0°.
The initial choice of n{z) for both filters one and two was

n(z) = 1.5 + 0.015 sin 2n(5.88m" ')z

An examination of the points plotted in Figures [2-4] and [2-5] would
indicate that both f(z) and an(z) are essentially constant over intervals
of length 1/f(z). Thus, n(z) is simply a sinusoid whose frequency and
amplitude are slowly changing as a function of z. The frequency “spikes"
shown in Figure [2-7] occur at points where an(z) = 0. Thus, these spikes
correspond to spacers (i.e., regions where an(z) = 0) of length 1/(fz).

Although a detailed description of the computer implementation of
Equation (2-53) is not provided in this report, some important points
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FIGURE 2-6. ITERATIVE FOURIER SYNTHESIS OF A GRATING HAVING
A SADDLE CHARACTERISTIC: (a) First Iteration, (b) Second
Iteration, {c) Third Iteration, and (d) Fourth Iteration
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associated with this implementation will be discussed. First, it

is noted that the n(z) obtained from Equation (2-53) will be of
infinite extent in z. After each iteration, one must truncate the
extent of n(z), so that m(z) is nonzero only over the interval of
finite length corresponding to the filter thickness. Generally

An(z) is quite small for large values of z, and thus, little accuracy
is lost by the truncation. Second, in order to compute Eiir Itj|’

the thickness, dj of each slab must be chosen. The approximations
used in the derivation Equation (2-53) are sensitive to these dj's.
In our designs, for each value of cos 60/1 at which

( R )1/2 N |
t.
“T-R, 3!!; Jl

was evaluated, dj was chosen so that |tJ.|2 ~ 0,075. Thus, the dj‘s are
not fixed during the design of a given filter, but change for each value
of cos eo/A. The optimum choice for the dj's has not been determined.
Third, the tj's associated with each iteration and the resulting R of
the final design, are evaluated using an efficient computer imple-
mentation of Abelés' multilayer matrix technique. Details of this
implementation can be found elsewhere[]7]. At each iteration an n(z)
is known, and so, Abelds' multilayer matrix technique can be used to
determine vy and I, and hence a . Thus, it is noted that a better
design would most 1ikely be obtained by computing o at each itera-

tion rather than assuming that o is identically one.
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APPENDIX /SECTION 2

In this appendix, the reflection grating design technique is
extended so as to be applicable to multilayer dielectric stack
design. The multilayer dielectric stack design problem consists
of two phases. First, the refractive index profile, n(z), required
to realize a specified reflectance vs. wavelength characteristic at
a fixed angle of incidence, is determined. Second, a discontinuous
profile, which could be physically realized by a multilayer dielec-
tric stack, is fitted to the continuous refractive index profile,
n(z). The discussion here is restricted to the first phase of the
above mentioned design problem. The technique for determining n(z)
given the reflectance vs. cos eo/A has already been developed in
section two. This technique, however, required n(z) to be of the form
given by Equations (1-1) and (1-2). We will remove this restriction
below and allow for arbitrary n(z). The extension to arbitrary n(z)
involves only a small modification of our reflection grating design
technique and so our discussion will be brief.

Repeated below is Equation (2-18) which it will be recalled is
valid for arbitrary n(z) provided that |r(z)| <1, 0 <z <D.

D P
r(o) :[%'B-?E-g— exp[-i2K fY(C)dc]dp
0 0

v(z) 4 n(z)cos o(z)

V%,

B(z) 2 n(z)cos o(z) (2-21c)

NSV ¥ o e W 4 MO+ 1 = ek 4 125 -
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Next, n is defined by
7

2 /Y(c)dc (A-1)

0

It is noted that n(zo) is twice the optical path length that a plane
wave travels into the dielectric in order to reach the plane z = z
Combining Equations (2-18), (2-21b) and (2-21c) yields

"

n

0°

L

r(o):/ ﬁ'(g) exp[-iknldn (A-2)
S 2i(n)cos“®(n)
where A D
L=2 /y( z)dr (A-3)
)

fi{n) = n(z)
and n and z are related via Equation (A-1)
) £ o(z) (A-4)

Thus, n(n) and B(n) are simply the refractive index and propagation
angle, respectively, expressed as a function of twice the optical
path,

C(n) and F are defined by

A n(n) - n(n)n'(n)
Cln) = — - A-5)
" 2i(n) cos® 8(n) 2(?\2(71) _n?.(o) sin? 8(0)) (
L
F =A/ Cln)exp[-iknJdn (A-6)
0
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It follows immediately from Equations (A-5) and (A-%) that

2 N j-1
F=py+ ZPjexp[i D o] (A-7)
j=2 m:]
‘ where ZN:
{ d. =1L (A-8)
. j=1 9
! , d;
Pj = / C(n)exp[-1Kn]ldn (A-7)
0
i
_ A )
| 05 = Kdy (A-10)

Using Equation (A-2) it is easy to show (see for instance Equations
(2-43) and (2-44)) that

~ * )
ry - rjexp[-1de] (A-11)
A Combining Equations (A-11) and (2-34) now yields
.~ = 1iKd, -

I‘J 1 J/Z (A-12)
From Equations (2-46), (A-12) and (A-7) - (A-9)

F ~ sum of all op(1), 2 <N (A-13)
; From Equations (A-13), (A-6) and (2-48c) it follows that

N =]

= Jf C(n)exp[-ikn jdn (A-14)

—~~
e

e

{/

2 s naali
(&
"
—
1
8
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S
] ; Where C(n) is defined to be identically zero forn< 0 orn > L.

Delano 7-8 derives an expression similar to Equation (A- 14) but
assumes as a first order approximation that

N
Trt. =1
=1

| From Equation (A-14)
F Z N
, - r 6"' . 1
: C(n) = 2Ref,c— L tJ)exp[-iKn]d(A) (A-15)
0

where r and t are specified as a function of 1/A and the t.'s are
| computed as a function of 1/A. Note that Equation (A-15) is analogous
: to Equation (2-51b). Once C{n) is computed from Equation (A-15),

the differential equation defined by (A-5) can be solved, numerically,
to obtain n(n).

This differential equation can be solved analytically for the case
of normal incidence, i.e. 6(0) =

using the following relationship

| | " /:——di— - #ln) (A-16)
, o n(z)cos T(z) 7

L or equivalently (see Equation (2-6a))

-}

Finally, n is obtained from n by

‘ dz - A-17
| n 0/[#(;)-"2(0)51"%(0)]1/2 o)

We note that Equation (A-15) can be rewritten as

-

; C(n) =~ 2Re /(1—-—-R—) aTrlt ]exp(1Kn)d(-\ (A-18)
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where

N

o« = exp[i(Y - T + Z; )] (A-19)
J=

Equation (A-18) is analogous to Equation (2-53).

Delano (8] distinguishes between two types of synthesis problems,
ones where R is given (first type), and ones where r/t is given
(second type). He handles these two types of problems differently. We
handle synthesis problems of the first type via Equation (A-15) and those
of the second type via Equation (A-18). Thus, it is seen that our tech-
nique draws little distinction between the two types of synthesis prob-

Tems. Sossi [9] derives an equation similar to Equation (A18) for the

case of normal incidence (i.e., 8, = 0). In his equation the quantity

;ﬁ- tj is replaced by (1 - 2R- )]/2. We have been unable to follow
his derivation. Implicit in our derivation, in this appendix, has been
the assumption that the refractive index, n(z), does not have disconti-
nuities at the boundaries z = 0 and z = D (i.e., ne = n(o) and ng =
n(D)). We believe that our technique can be modified to remove this re-
striction. It is also noted that our technique can be easily extended

to handle the case of p, rather than s, polarization.

50




|
F- } . Eﬂ'" RADAR AND OPTICS DIVISION

REFERENCES SECTION 2

[1]. H. Kogelnik, "Filter Response of Nonuniform Almost-Periodic
Structures," Bell Sys. Tech. J., 55 No. 1, p. 109, Jan 1976.

[2]. R. Shubert, "Theory of Optical-Waveguide Distributed Lasers

with Nonuniform Gain and Coupling," J. Appl. Phys., 15, No. 1,
p. 209, Jan 1974, —_

: ! [3]. M. Matsuhara, K. 0. Hill, and Q. Watanabe, "Optical Waveguide
1 Filters: Synthesis," J. Opt. Soc. Am., 65, No. 7, July 1975.

e [4]. E. Wolf Ed., Progress in Optics, Vol. VII, Chap. 2 (Methods of
T Synthesis for Dielectric MuTtilayer Filters), John Wiley & Sons,
- New York, 1969,

[5]. %é Knittl, Optics of Thin Films, John Wiley & Sons, New York,
76.

[6] H. Kaiser and C. Kaiser, "Mathematical Methods in the Synthesis
and Identification of Thin Film Systems," Appl. Optics, 20, No. 1,
January, 1981,

[7]. E. Delano, “"Fourier Synthesis of Multilayer Filters", 57, No. 12,
| December, 1967.

[8]. E. Delano, Ph.D. thesis, University of Rochester, June 1966.

[9]. L. Sossi, "A Method For Synthesis of Multilayer Dielectric Inter-
ference Coatings," Eesti NSV Tead. Akad. Toim. Fuus. Mat., 23,
p. 229 (1974); an English translation of this paper is avaiTable
o from the Translation Services of the Canada Institute for Scien-
g . tific and Technical Information, National Research Council, Ottawa,
- Ontario, Canada K1A 0S2.

‘ [10]. L. Sossi, "On The Theory of the Synthesis of Multilayer Dielectric
‘ Light Filters," Eesti NSV Tead. Akad. Toim. Fuus. Mat., 25, p. 171
(1976), see Ref. 9.

o (11]. J. A. Dobrowoliski and D. Lowe, "Optical Thin Film Synthesis Program

Based on the Use of Fourier Transforms," Appl. Optics, 17, No. 13,
p. 3039, October 1978,

51

|
N




D ERIM

(12].
[13].

[14].

[15].

[16].

(17].

[18].

[19].

[20].

Unpublished.

C. H. Greenewalt, W. Brandt, and D. D. Friel, "Irridescent
Colors of Hummingbird Feathers," J. Opt. Soc. Am., 50,
p. 1005, October 1960. -

L. R. Walker and N. Wax, "Non-Uniform Transmission Lines and
Reflection Coefficients," J. Appl. Phys., 17, p. 1043, Decem-
ber 1946,

W. Kofink, "The Reflection of E.M. Waves at an Inhomogeneous Sheet,"
Ann. Physik, 1, p. 119, 1947,

I. Santavy, "On the Reversibility of Light Beams in Conducting
Media," Opt. Acta, 8, p. 301, November 1961.

K. A. Winick, Optical Propagation Through Quasi-Sinusoidal,
Horizontally Stratified, Phase Gratings, Ph.D. Thesis
University of Michigan, T98T.

A. W. Crook, "The Reflection and Transmission of Light by Any
System of Parallel Isotropic Films," J. Opt. Soc. Am., 38,
No. 11, p. 954, November 1948,

R. J. Pegis, "An Exact Design Method for Multilayer Dielectric
Films", J. Opt. Soc. Am., 51, No. 11, p. 1255, November 1961.

See Chapter 10 of reference 5.

52




ER'M RADAR AND OPTICS DIVISION

Section 3

CORRUGATED WAVEGUIDE FILTERS

A formal mathematical analogy between reflection
gratings and corrugated waveguide filters (CWF) is
demonstrated in this chapter. The possibility of de-
signing CWF, using the iterative Fourier transform
technique developed in Section 2, is explored.
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o e e

3-1. INTRODUCTION

In this section we demonstrate a formal mathematical analogy between
v reflection gratings and corrugated waveguide filters (CWF). The devel-

| opment given by Yariv [1] is closely followed. We emphasize that the
mathematics developed for CWF are not rigorous. Consequently, predicted
results should be experimentally verified and attempts should be made to
develop a rigorous mathematical approach.

3-2. FORMAL MATHEMATICAL ANALOGY BETWEEN REFLECTION GRATINGS AND CWF

i Consider the CWF shown in Figure [3-1]. The filter consists of a
thin waveguiding layer (0 < x < a) of refractive index ng sandwiched

between two dielectrics having refractive indices ne and ng (ng > ng
> nc). The upper surface of the waveguiding lTayer has a corrugation of

small, maximum depth (i.e., hy << a). The refractive index, n(x, z),
can be written as -

nz(x, z) = ns + w(x, z)(ng - ng) sin 2nf(z)z (3-1) ’
where n equals n. in region C, ng in region G and ng in region S,

and wherew(x, z) is a binary function which assumes either the value
zero or one. Note that w(x, z) = 0 for

x<0 or x>a

,'. If we restrict our discussion to transverse electric fields, then Max-
well's wave equation in all three regions can be written as

’
i
4
i

2
vzgy(x, 2) + (%F nz(x, z)gy(x, 2) =0 (3-2a)

or equivalently
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FIGURE 3-1. CORRUGATED WAVEGUIDE FILTER (CWF)
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2 2
VzEy(x, z) + (i—") nEEy(x, z) + (—2;"1) w(x, z)(ni - nZ)sin(wa(z)z) =0

(3-2b)

Since the corrugation depth is small, we will assume that the total field
in the “perturbed" waveguide can be approximately written as the super-
position of the confined modes of the waveguide without the corrugation,

i.e.,
K Ey(x, z) =ZA(m)(z)E§m)(x) exp [-ipgm)z]

= + 8™ 2)e™ (x) exp [1p "] (3-3)

In Eq. (3-3), E)(("')(x) exp [_fipim)z] is the mth confined mode of the un-
corrugated waveguide. Thus

v [)(’m)(x) exp [+1p(m) ] (2") n E(m)(x) exp [+ip(m) ]:l 0

(3-4)

and oim) is the propagation constant of the mth mode and can be written as
¥
; (m) _ 2n (m)

Pz = Mg cos 6 (») (3-5)

th

where eém)(x) is the propagation angle of the m~ mode within the guiding

layer. Note that egm), p£m) and E§m) are all functions of A. Given the

geometry of the uncorrugated waveguide, eém) im) and E(m) are easily

determined [1]. For the sake of simplicity the waveguide will be assumed
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to be single mode. Equation (3-3) now reduces to
Ey(x’ Z) = A(])(Z)E‘f’])(x) exp [_ipi‘l)z] + B(])(Z)Ey(])()‘) exp [ipil )Z]

(3-6)

The reflection and transmission coefficients r and t of the CWF
are defined as B(])(O)/A(]%O) and A(])(L)/A(])(o) respectively. A
simple physical argument indicates that B(l)(L) = 0. Substituting Eq.
(3-6) into Eq. (3-2b), and then using Eq. (3-4), yields

A @D () exp 10 {121 - 216 AV (20N (x) exp [-10 (V2]

+ B(])"(Z)E§])(X) exp [ipi])ZJ + Zio§1) B (])'(Z)E§])(x) exp [ip§1)z]

= - %’i)zw(x, z)(nf_ - ng) sin (an(Z)z)[Am(Z)Ey)(X) exp (-ip?)Z)
+ B“)(Z)Ey)(X) exp (ipil)z)] (3-7)

Now it will be assumed that Eﬁl)(x) has been normalized so that

f”[zj(/”(x)]2 dx = 1 (3-8)

Furthermore, since the maximum corrugation depth, ho, is small compared
to the thickness, a, of the waveguiding layer
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Ey)(x) . E§”(a) for w(x, z) # 0 (3-9)

Multiplying both sides of Eq. (3-7) by E}(,”(x) and then integrating from
- to » yields '

A" (2) exp Bo{M21 - 210 2080 (2) exp T30 (V2]

+ B(])“(z) exp [ipi])z] + Zipil )B(”'(z) exp [ipgl)Z]

2 2
= -('le) (ng - ng)A(])(z) sin (2nf(z)z) exp (-ipg])z)[Ey)(a)] [w(x, z) dx

2 2
i (%E) ‘“i - "3)3“)(2> sin (2rf(z)z) exp (ipi”z)[sy’(a)] fw(x, z) dx

(3-10)

where we have used Eqs. (3-8) and (3-9). Recall that Ey)(a) is a func-
tion of A. The functions e(r) and h(z) are defined by

A 2
e(r) = [Ey)(a)]
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and

h(z) i] w(x, z) dz (3-12)

-0

Observe that h(z) is the corrugation height. Using the above two
definitions, Eq. (3-10) becomes

A" (2) exp [’1'09)21 - Zipil W' (2) e (-10‘(’-”2]

+ B“)“(z) exp [ipil)Z] + 21‘p§”8(”'(z) exp ['ip“)Z]

z
- 1(2“)2 e(x)h(z)A(])(z) exp [i(2nf(2) - pi‘))Z]

2 nl.pl
+1'<'2i1> “g"—; g e(x)h(z)A(l)(z) exp [-i(2nf(z) + pi”)z]
n

nZ

Z

2

) ‘(2") "g T—“‘ e n(2)81)(2) exp [i(2ne(2) +5{1)2]
n

g

+ 1(2" ng ?-—-ge(x)h(z)a(])(z) exp [-1(2nf(2) - o' ))2) = 0 (3-13)
n

Now Eq. (3-13) is identical to Eq. (1-8) if the following quantities
are equated.

—-
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Az) — A1 (2) (3-142)
B(z) « 81)(z) (3-14b)
s ng > ng (3-14c)
' 0g = o3 (0) (3-144)
i IRPRY (3-14e)

i 2 2
an(z) —ng—ﬂ e(A)h(z) (3-14f)

Recall that for any given A, e(])(x), e(r) and pil)(k) are known. Thus,

if h(z) is also known, Abelds' multilayer dielectric theory, as pre-

sented in Chapter 1, can be used to find r. Let us divide the CWF into
N sections along the z axis with the reflection and transmission coef- ,
ficients of the jth section being denoted by rj and tj, respectively. i

Then, as in Section 3, H

JUUSEREUUUTRIVIRY S

N

- %Htj = op(1) (3-15)

L j=1
and
- 2 2
op(1) f e ~ "% e(x)h' (z) exp [i2kn _(cos 8'1)(x))z] dz

| J 2ng cos’ e; (1) 9 9

S (3-16)
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Combining Eqs. (3-15) and (3-16) yields

2 2 (1) (1) |
2n° ¢ 6' (1) 2
h'(z) 'f Ht g 2 g exp [12kn (cos e“)(x))z]d(n ' ©° % ())> :

=1 (“5 - "Z)e(”

(3-17) 5
Using the properties of Fourier transforms Eq. (3-17) becomes
i
(1) () |
21n cos 8' '(x) n_cos 8 ‘()
- g : (1) g g ]
h(z) = 2Ref H (7 2) o exp [12Kng(cos eg (A))z]d 3
9
Thus, if r and t are known as a function of A, then the iterative tech-
nique outlined in Section 3 can be used to determine h(z).
3
{
1
:

61




ER'M RADAR AND OPTICS DIVISION

REFERENCES/SECTION 3

, 3 1. A. Yariv, Introduction to Optical Electronics (2nd Edition), Chap-

1 ter 13, Holt, Rinehart and Winston, New York, 1971.







